-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLRU Cache
50 lines (45 loc) · 1.61 KB
/
LRU Cache
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/**
*Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.
*get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
*set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
*/
struct CacheNode{
int key;
int value;
CacheNode(int k , int v) : key(k) , value(v){}
};
class LRUCache{
public:
LRUCache(int capacity) {
size = capacity;
}
int get(int key) {
if(cacheMap.find(key) != cacheMap.end()){
auto it = cacheMap[key];
cacheList.splice(cacheList.begin() , cacheList , it);
cacheMap[key] = cacheList.begin();
return cacheList.begin()->value;
}else{
return -1;
}
}
void set(int key, int value) {
if (cacheMap.find(key) == cacheMap.end()){
if(cacheList.size() == size){
cacheMap.erase(cacheList.back().key);
cacheList.pop_back();
}
cacheList.push_front(CacheNode(key , value));
cacheMap[key] = cacheList.begin();
}else{
auto it = cacheMap[key];
cacheList.splice(cacheList.begin() , cacheList , it);
cacheMap[key] = cacheList.begin();
cacheList.begin()->value = value;
}
}
private:
int size;
list<CacheNode> cacheList;
unordered_map<int , list<CacheNode>::iterator > cacheMap;
};