forked from 404nofound/Monocular_Distance_Velocity_Detect
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrack.py
505 lines (418 loc) · 21.9 KB
/
track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
# limit the number of cpus used by high performance libraries
import os
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
import sys
sys.path.insert(0, './yolov5')
import math
import argparse
import os
import platform
import shutil
import time
from pathlib import Path
import numpy as np
import pandas as pd
import cv2
import torch
import torch.backends.cudnn as cudnn
from yolov5.models.experimental import attempt_load
from yolov5.utils.downloads import attempt_download
from yolov5.models.common import DetectMultiBackend
from yolov5.utils.datasets import LoadImages, LoadStreams, VID_FORMATS
from yolov5.utils.general import (LOGGER, check_img_size, non_max_suppression, scale_coords,
check_imshow, xyxy2xywh, increment_path, strip_optimizer, colorstr)
from yolov5.utils.torch_utils import select_device, time_sync
from yolov5.utils.plots import Annotator, colors, save_one_box
from deep_sort.utils.parser import get_config
from deep_sort.deep_sort import DeepSort
from collections import deque
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
pts = [deque(maxlen=30) for _ in range(9999)]
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # yolov5 deepsort root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
def compute_color_for_labels(label):
"""
Simple function that adds fixed color depending on the class
"""
color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette]
return tuple(color)
#Your video/image resolution/size
#画面分辨率
W = 1280
H = 720
excel_path = r'./camera_parameters.xlsx'
def camera_parameters(excel_path):
# Load Intrinsics matrix of Camera
df_intrinsic = pd.read_excel(excel_path, sheet_name='内参矩阵', header=None)
# Load Extrinsics matrix of Camera
df_p = pd.read_excel(excel_path, sheet_name='外参矩阵', header=None)
print('外参矩阵形状 intrinsics matrix shape:', df_p.values.shape)
print('内参矩阵形状 Extrinsics matrix shape:', df_intrinsic.values.shape)
return df_p.values, df_intrinsic.values
def object_point_world_position(u, v, w, h, p, k):
u1 = u
v1 = v + h / 2
#point (x,y) in image coordinate position
print('图像坐标系image_coordinate_position', u1, v1)
#alpha = -(90 + 0) / (2 * math.pi)
#peta = 0
#gama = -90 / (2 * math.pi)
fx = k[0, 0]
fy = k[1, 1]
#vertical height(m) from camera to the ground/road
#相机高度
Height = 0.5
#The angle between the camera len and the horizontal line(the moving direction of vehicle), default is 0
#相机与水平线夹角, 默认为0 相机镜头正对前方,无倾斜
angle_a = 0
angle_b = math.atan((v1 - H / 2) / fy)
angle_c = angle_b + angle_a
print('angle_b', angle_b)
depth = (Height / np.sin(angle_c)) * math.cos(angle_b)
print('depth', depth)
print('k', k)
print('p', p)
k_inv = np.linalg.inv(k)
p_inv = np.linalg.inv(p)
point_c = np.array([u1, v1, 1])
point_c = np.transpose(point_c)
print('point_c', point_c)
print('k_inv', k_inv)
print('p_inv', p_inv)
#point (x,y) in camera coordinate position
# depth is Zc
# https://learnopencv.com/geometry-of-image-formation/
c_position = np.matmul(k_inv, depth * point_c)
print('相机坐标系camera_coordinate_position', c_position)
# c = p[R|t] * w --> w = p^-1[R|t] *c
#point (x,y) in world coordinate position
c_position = np.append(c_position, 1)
c_position = np.transpose(c_position)
c_position = np.matmul(p_inv, c_position)
print('世界坐标系world_coordinate_position', c_position)
d1 = np.array((c_position[0], c_position[1]), dtype=float)
return d1
def distance_func(kuang, xw=5, yw=0.1):
print('\n','=' * 50)
print('开始测距 Begin Ranging')
#fig = go.Figure()
#p=Extrinsics matrix, k=Intrinsics matrix
#p外参矩阵, k内参矩阵
p, k = camera_parameters(excel_path)
if len(kuang):
obj_position = []
#u, v, w, h = kuang[1] * W, kuang[2] * H, kuang[3] * W, kuang[4] * H
u, v, w, h = kuang[1], kuang[2], kuang[3], kuang[4]
#u,v=center point(x,y) w,h=box width/height
#u,v中心点坐标 w,h框宽和框高
print('中心点 center point(x,y)', u, v)
print('框宽/高 box width/height', w, h)
d1 = object_point_world_position(u, v, w, h, p, k)
distance = 0
print('距离 Distance', d1)
if d1[0] <= 0:
d1[:] = 0
else:
distance = math.sqrt(math.pow(d1[0], 2) + math.pow(d1[1], 2))
return distance, d1
def detect(opt):
out, source, yolo_model, deep_sort_model, show_vid, save_vid, save_txt, save_csv, imgsz, evaluate, half, \
project, exist_ok, update, save_crop = \
opt.output, opt.source, opt.yolo_model, opt.deep_sort_model, opt.show_vid, opt.save_vid, \
opt.save_txt, opt.save_csv, opt.imgsz, opt.evaluate, opt.half, opt.project, opt.exist_ok, opt.update, opt.save_crop
webcam = source == '0' or source.startswith(
'rtsp') or source.startswith('http') or source.endswith('.txt')
# Initialize
device = select_device(opt.device)
half &= device.type != 'cpu' # half precision only supported on CUDA
# The MOT16 evaluation runs multiple inference streams in parallel, each one writing to
# its own .txt file. Hence, in that case, the output folder is not restored
if not evaluate:
if os.path.exists(out):
pass
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
# Directories
if type(yolo_model) is str: # single yolo model
exp_name = yolo_model.split(".")[0]
elif type(yolo_model) is list and len(yolo_model) == 1: # single models after --yolo_model
exp_name = yolo_model[0].split(".")[0]
else: # multiple models after --yolo_model
exp_name = "ensemble"
exp_name = exp_name + "_" + deep_sort_model.split('/')[-1].split('.')[0]
save_dir = increment_path(Path(project) / exp_name, exist_ok=exist_ok) # increment run if project name exists
(save_dir / 'tracks' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
model = DetectMultiBackend(yolo_model, device=device, dnn=opt.dnn)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Half
half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
if pt:
model.model.half() if half else model.model.float()
# Set Dataloader
vid_path, vid_writer = None, None
# Check if environment supports image displays
if show_vid:
show_vid = check_imshow()
# Dataloader
if webcam:
show_vid = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
nr_sources = len(dataset)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
nr_sources = 1
vid_path, vid_writer, txt_path = [None] * nr_sources, [None] * nr_sources, [None] * nr_sources
# initialize deepsort
cfg = get_config()
cfg.merge_from_file(opt.config_deepsort)
# Create as many trackers as there are video sources
deepsort_list = []
for i in range(nr_sources):
deepsort_list.append(
DeepSort(
deep_sort_model,
device,
max_dist=cfg.DEEPSORT.MAX_DIST,
max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
)
)
outputs = [None] * nr_sources
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
# Run tracking
model.warmup(imgsz=(1 if pt else nr_sources, 3, *imgsz)) # warmup
dt, seen = [0.0, 0.0, 0.0, 0.0], 0
storage = []
distance_list = pd.DataFrame()
outputs_list = pd.DataFrame()
name_str=''
for frame_idx, (path, im, im0s, vid_cap, s) in enumerate(dataset):
print('frame_idx',frame_idx)
name_str=path.split('\\')[-1].split('.')[0]
t1 = time_sync()
im = torch.from_numpy(im).to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255.0 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference
visualize = increment_path(save_dir / Path(path[0]).stem, mkdir=True) if opt.visualize else False
pred = model(im, augment=opt.augment, visualize=visualize)
t3 = time_sync()
dt[1] += t3 - t2
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms, max_det=opt.max_det)
dt[2] += time_sync() - t3
# Process detections
for i, det in enumerate(pred): # detections per image
print('i:::::::::',i)
seen += 1
if webcam: # nr_sources >= 1
p, im0, _ = path[i], im0s[i].copy(), dataset.count
p = Path(p) # to Path
s += f'{i}: '
txt_file_name = p.name
save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ...
else:
p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
# video file
if source.endswith(VID_FORMATS):
txt_file_name = p.stem
save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ...
# folder with imgs
else:
txt_file_name = p.parent.name # get folder name containing current img
save_path = str(save_dir / p.parent.name) # im.jpg, vid.mp4, ...
txt_path = str(save_dir / 'tracks' / txt_file_name) # im.txt
s += '%gx%g ' % im.shape[2:] # print string
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=2, pil=not ascii)
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
#det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape)
#print(det[:, :4])
# Print results
for c in det[:, -1].unique():
if not names[int(c)] in ['person', 'car', 'truck', 'bicycle', 'motorcycle', 'bus']:
continue
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
xywhs = xyxy2xywh(det[:, 0:4])
confs = det[:, 4]
clss = det[:, 5]
# pass detections to deepsort
t4 = time_sync()
outputs[i] = deepsort_list[i].update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0)
t5 = time_sync()
dt[3] += t5 - t4
outputs_list=outputs_list.append([[frame_idx,outputs[0]]])
# draw boxes for visualization
distance_temp=[]
if len(outputs[i]) > 0:
for j, (output, conf) in enumerate(zip(outputs[i], confs)):
cls = output[5]
if not names[int(cls)] in ['person', 'car', 'truck', 'bicycle', 'motorcycle', 'bus']:
continue
bboxes = output[0:4]
points_list=[[output[0],output[1]],[output[2],output[3]],[output[2],output[1]],[output[0],output[3]]]
id = output[4]
pre_width=-999
pre_frame=-999
if len(outputs_list)>0:
for ind in range(frame_idx-1,-1,-1):
if len(outputs_list[outputs_list[0]==ind])!=0:
# [[1,2,3]]->[1,2,3]
temp_outputs_list=outputs_list[outputs_list[0]==ind][1].to_list()[0]
for output_item in temp_outputs_list:
if len(output_item)>0:
print('output',output_item)
if output_item[4]==id:
pre_width=abs(output_item[2]-output_item[0])
pre_frame=ind
break
if pre_width!=-999:
break
print('pre_frame:',pre_frame)
thickness=2
color=compute_color_for_labels(id)
center=(int((output[0]+output[2])/2),int((output[1]+output[3])/2))
pts[id].append(center)
center_bottom=(int(output[0]+abs(output[2]-output[0])/2),int(output[1]+abs(output[3]-output[1])))
kuang = [cls, (output[0]+output[2])/2, (output[1]+output[3])/2, abs(output[2]-output[0]), abs(output[3]-output[1])]
distance, d = distance_func(kuang)
if d[0]>0:
print('d',d)
distance_temp.append([id,d[0]])
pre_distance=-999
if len(distance_list)>0 and pre_frame!=-999:
#print(distance_list)
print('pre_frame',pre_frame)
#if (len(distance_list)-1)>=pre_frame:
if len(distance_list[distance_list[0]==pre_frame])!=0:
temp_distance_list=distance_list[distance_list[0]==pre_frame][1].to_list()[0]
for distance_item in temp_distance_list:
if len(distance_item)>0:
if distance_item[0]==id:
pre_distance=distance_item[1]
break
velocity=-999
ttc=-999
if pre_width!=-999 and pre_distance!=-999:
# Speed calculation
#速度计算
velocity=(((abs(output[2]-output[0])-pre_width)/abs(output[2]-output[0]))*pre_distance)/((frame_idx-pre_frame)/20)
if d[0]>0 and velocity!=0:
ttc=d[0]/velocity
if save_txt:
# to MOT format
bbox_left = output[0]
bbox_top = output[1]
bbox_w = output[2] - output[0]
bbox_h = output[3] - output[1]
# Write MOT compliant results to file
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * 10 + '\n') % (frame_idx + 1, id, bbox_left, # MOT format
bbox_top, bbox_w, bbox_h, -1, -1, -1, i))
if save_csv:
storage.append([name_str, frame_idx+1, id, names[int(cls)], output[0], output[1], distance, d[0], d[1], output[2] - output[0], output[3] - output[1], velocity, ttc])
if save_vid or save_crop or show_vid: # Add bbox to image
c = int(cls) # integer class
label = f'{id} {names[c]} {conf:.2f} {d[0]:.2f}m {velocity:.2f}m/s'
#draw_boxes(im0, bboxes, id)
cv2.circle(im0,(center),1,color,thickness)
cv2.circle(im0,(center_bottom),1,color,thickness*2)
for j in range(1,len(pts[id])):
if pts[id][j-1] is None or pts[id][j] is None:
continue
cv2.line(im0,(pts[id][j-1]),(pts[id][j]),(color),thickness)
annotator.box_label(bboxes, label, color=colors(c, True))
if save_crop:
txt_file_name = txt_file_name if (isinstance(path, list) and len(path) > 1) else ''
save_one_box(bboxes, imc, file=save_dir / 'crops' / txt_file_name / names[c] / f'{id}' / f'{p.stem}.jpg', BGR=True)
distance_list=distance_list.append([[frame_idx,distance_temp]])
LOGGER.info(f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)')
else:
deepsort_list[i].increment_ages()
LOGGER.info('No detections')
# Stream results
im0 = annotator.result()
if show_vid:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_vid:
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
# Print results
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS, %.1fms deep sort update \
per image at shape {(1, 3, *imgsz)}' % t)
# Modify the output path Here
if save_csv:
df = pd.DataFrame(storage)
df.to_excel('Your_path/test.xlsx',index=False)
if save_txt or save_vid:
s = f"\n{len(list(save_dir.glob('tracks/*.txt')))} tracks saved to {save_dir / 'tracks'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(yolo_model) # update model (to fix SourceChangeWarning)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--yolo_model', nargs='+', type=str, default='yolov5m.pt', help='model.pt path(s)')
parser.add_argument('--deep_sort_model', type=str, default='osnet_ibn_x1_0_MSMT17')
parser.add_argument('--source', type=str, default='0', help='source') # file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.5, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--show-vid', action='store_true', help='display tracking video results')
parser.add_argument('--save-vid', action='store_true', help='save video tracking results')
parser.add_argument('--save-txt', action='store_true', help='save MOT compliant results to *.txt')
parser.add_argument('--save-csv', action='store_true', help='save results to *.csv')
# class 0 is person, 1 is bycicle, 2 is car... 79 is oven
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 16 17')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--evaluate', action='store_true', help='augmented inference')
parser.add_argument("--config_deepsort", type=str, default="deep_sort/configs/deep_sort.yaml")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detection per image')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--project', default=ROOT / 'runs/track', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
with torch.no_grad():
detect(opt)