-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvnsep.m
89 lines (79 loc) · 2.39 KB
/
convnsep.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
%CONVNSEP Separable N-dimensional convolution.
% C = CONVNSEP(h,V) performs an N-dimensional convolution or matrix V
% with N kernels defined in the cell array h.
% C = CONVNSEP(h,V,'shape') controls the size of the output. (See help
% for Matlab's CONVN function).
% Example: create a random 4-D array, convolve it with 4 kernels of
% various lengths:
% h={[1 -2 1], [-1 1 -1 1 -1],[1 -2 1],[1]};
% V = convnsep(h,randn([32,32,32,32]));
% See also CONVN, CONV, CONV2
%
% Written by Igor Solovey, 2010
%
% Version 1.1, February 26, 2011
% TODO: fix handling of even-sized kernels
function J = convnsep(h,V,type)
lh=length(h);
%input validation
assert(lh==ndims(V),'The number of kernels does not match the array dimensionality.');
L=nan(1,lh);
for j=1:lh,
L(j)=(length(h{j})-1)/2;
end
V=padarray(V,L);
J = convnsepsame(h,V);
%implicit behaviour: if no 'type' input, then type=='full' (don't trim the
%result)
if nargin>2
switch type
case 'full'
%do nothing
case 'valid'
J=trimarray(J,L*2);
case 'same'
J=trimarray(J,L);
otherwise
end
end
end
%Perform convolution while keeping the array size the same (i.e. discarding
%boundary samples)
function J = convnsepsame(h,V)
J=V;
sz=size(V);
n=length(sz);
indx2=nan(1,n);
for k=1:n
%dimensions other k-th dimension, along which convolution will happen:
otherdims = 1:n; otherdims(k)=[];
% permute order: place k-th dimension as 1st, followed by all others:
indx1=[k otherdims];
% inverse permute order:
indx2(indx1)=1:n;
%perform convolution along k-th dimension:
%
%1. permute dimensions to place k-th dimension as 1st
J = permute(J,indx1);
%2. create a 2D array (i.e. "stack" all other dimensions, other than
%k-th:
J = reshape(J,sz(k),prod(sz(otherdims)));
%3. perform 2D convolution with k-th kernel along the first dimension
J = conv2(h{k},1,J,'same');
%4. undo the "flattening" of step 2
J = reshape(J,sz(indx1));
%5. undo the permutation of step 1.
J = permute(J,indx2);
end
end
%extract only the central portion of the array V, based on kernels whose
%lengths are defined in L
function V = trimarray(V,L)
str='';
for j=1:ndims(V)
str=[str num2str(L(j)+1) ':' num2str(size(V,j)-L(j)) ','];
end
str=str(1:end-1); %remove last coma
eval(['V=V(' str ');']);
end