Chaincode is a domain specific program which relates to specific business process. It programmatically accesses two distinct pieces of the ledger – a blockchain, which immutably records the history of all transactions, and a world state that holds a cache of the current value of these states. The job of a smart contract developer is to take an existing business process that might govern financial prices or delivery conditions, and express it as a smart contract in a programming language
Smart contracts primarily put, get and delete states in the world state, and can also query the state change history. Chaincode “shim” APIs implements ChaincodeStubInterface which contain methods for access and modify the ledger, and to make invocations between chaincodes. Main methods are:
-
GetState(key string) ([]byte, error)
performs a query to retrieve information about the current state of a business object -
PutState(key string, value []byte) error
creates a new business object or modifies an existing one in the ledger world state -
DelState(key string) error
removes of a business object from the current state of the ledger, but not its history -
GetStateByPartialCompositeKey(objectType string, keys []string) (StateQueryIteratorInterface, error)
queries the state in the ledger based on given partial composite key -
GetHistoryForKey(key string) (HistoryQueryIteratorInterface, error)
returns a history of key values across time.
All this methods use string key as record identifier and slice of bytes as state value. Most of examples uses JSON documents as chaincode state value. Hyperledger Fabric supports both LevelDB as CouchDB to serve as state database, holding the latest state of each object. LevelDB is the default key-value state database embedded in every peer. CouchDB is an optional alternative external state database with more features - it supports rich queries against JSON documents in chaincode state, whereas LevelDB only supports queries against keys.
As shown in many examples, assets can be represented as complex structures - Golang structs. The chaincode itself can store data as a string in a key/value pair setup. Thus, we need to marshal struct to JSON string before putting into chaincode state and unmarshal after getting from state.
With ChaincodeStubInterface
methods these operations looks like
this:
ct := ContractType{}
err := json.Unmarshal([]byte(args[0]), &req)
if err != nil {
return shim.Error(err.Error())
}
key, err := stub.CreateCompositeKey(prefixContractType, []string{req.UUID})
if err != nil {
return shim.Error(err.Error())
}
valAsBytes, err := stub.GetState(key)
if err != nil {
return shim.Error(err.Error())
}
if len(valAsBytes) == 0 {
return shim.Error("Contract Type could not be found")
}
err = json.Unmarshal(valAsBytes, &ct)
if err != nil {
return shim.Error(err.Error())
}
ct.Active = req.Active
valAsBytes, err = json.Marshal(ct)
if err != nil {
return shim.Error(err.Error())
}
err = stub.PutState(key, valAsBytes)
if err != nil {
return shim.Error(err.Error())
}
return shim.Success(nil)
In the example above smart contract code explicitly performs many auxiliary actions:
- Creating composite key
- Unmarshaling data after receiving it from state
- Marshaling data before placing it to state
CCKit contains wrapper on ChaincodeStubInterface
methods to working with chaincode state. This methods
simplifies chaincode key creation and data transformation during working with chaincode state.
type State interface {
// Get returns value from state, converted to target type
// entry can be Key (string or []string) or type implementing Keyer interface
Get(entry interface{}, target ...interface{}) (result interface{}, err error)
// Get returns value from state, converted to int
// entry can be Key (string or []string) or type implementing Keyer interface
GetInt(entry interface{}, defaultValue int) (result int, err error)
// GetHistory returns slice of history records for entry, with values converted to target type
// entry can be Key (string or []string) or type implementing Keyer interface
GetHistory(entry interface{}, target interface{}) (result HistoryEntryList, err error)
// Exists returns entry existence in state
// entry can be Key (string or []string) or type implementing Keyer interface
Exists(entry interface{}) (exists bool, err error)
// Put returns result of putting entry to state
// entry can be Key (string or []string) or type implementing Keyer interface
// if entry is implements Keyer interface and it's struct or type implementing
// ToByter interface value can be omitted
Put(entry interface{}, value ...interface{}) (err error)
// Insert returns result of inserting entry to state
// If same key exists in state error wil be returned
// entry can be Key (string or []string) or type implementing Keyer interface
// if entry is implements Keyer interface and it's struct or type implementing
// ToByter interface value can be omitted
Insert(entry interface{}, value ...interface{}) (err error)
// List returns slice of target type
// namespace can be part of key (string or []string) or entity with defined mapping
List(namespace interface{}, target ...interface{}) (result []interface{}, err error)
// Delete returns result of deleting entry from state
// entry can be Key (string or []string) or type implementing Keyer interface
Delete(entry interface{}) (err error)
...
}
State wrapper allows to automatically marshal golang type to/from slice of bytes. This type can be:
- Any type implementing ToByter and FromByter interface
type (
// FromByter interface supports FromBytes func for converting from slice of bytes to target type
FromByter interface {
FromBytes([]byte) (interface{}, error)
}
// ToByter interface supports ToBytes func for converting to slice of bytes from source type
ToByter interface {
ToBytes() ([]byte, error)
}
)
- Golang struct or one of supported types (
int
,string
,[]string
) - Protobuf golang struct
Golang structs automatically marshals/ unmarshals using json.Marshal and and json.Umarshal methods. proto.Marshal and proto.Unmarshal is used to convert protobuf.
In the chaincode data model we often need to store many instances of one type on the ledger, such as multiple commercial papers, letters of credit, and so on. In this case, the keys of those instances will be typically constructed from a combination of attributes— for example:
CommercialPaper
+ {Issuer} + {PaperId}
yielding series of chaincode state entries keys [ CommercialPaperIssuer1Id1
, CommercialPaperIssuer2Id2
, ...]
The logic of creation primary key of an instance can be customized in the code, or API functions can be provided in SHIM to construct a composite key (in other words, a unique key) of an instance based on a combination of several attributes. Composite keys can then be used as a normal string key to record and retrieve values using the PutState() and GetState() functions.
The following snippet shows a list of functions that create and work with composite keys:
// The function creates a key by combining the attributes into a single string.
// The arguments must be valid utf8 strings and must not contain U+0000 (nil byte) and U+10FFFF charactres.
func CreateCompositeKey(objectType string, attributes []string) (string, error)
// The function splits the compositeKey into attributes from which the key was formed.
// This function is useful for extracting attributes from keys returned by range queries.
func SplitCompositeKey(compositeKey string) (string, []string, error)
When putting or getting data to/from chaincode state you must provide key. CCKit have 3 options for dealing with entries key:
- Key can be passed explicit:
c.State().Put ( `my-key`, &myStructInstance)
- Key type can implement Keyer interface
Key []string
// Keyer interface for entity containing logic of its key creation
Keyer interface {
Key() (Key, error)
}
Key
type - is essentially slice of string, this slice will be automatically converted to string using shim.CreateCompositeKey
method.
and in chaincode you need to provide only type instance
c.State().Put (&myStructInstance)
- Type can have associate mapping
Mapping defines rules for namespace, primary and other key creation. Mapping mainly used with protobuf
state schema.
As well as retrieving assets with a unique key, SHIM offers API functions the opportunity to retrieve sets of assets based on a range criteria. Moreover, composite keys can be modeled to enable queries against multiple components of the key.
The range functions return an iterator (StateQueryIteratorInterface) over a set of keys matching the query criteria. The returned keys are in lexical order.
Additionally, when a composite key has multiple attributes, the range query function, GetStateByPartialCompositeKey()
, can be used to search for keys matching a
subset of the attributes.
For example, the key of a CommercialPaper
composed of Issuer
and PaperId
attributes can be searched for entries only from one Issuer.
This example uses Commercial paper scenario and implements same functionality as Node.JS chaincode sample from official documentation. Example code located here.
Protobuf schema advantages:
- Schema abstraction layer
Encoding the semantics of your business objects once, in proto format, is enough to help ensure that the signal doesn’t get lost between applications, and that the boundaries you create enforce your business rules.
- Extensions - validators etc
Protobuf v3 does not support validating required parameters, but there are third party projects for proto validation, for example https://github.com/mwitkow/go-proto-validators. It allows to encode, at the schema level, the shape of your data structure, and the validation rules.
- Easy Language Interoperability Because Protocol Buffers are implemented in a variety of languages, they make interoperability between polyglot applications in your architecture that much simpler. If you’re introducing a new service using Java or Node.Js SDK you simply have to hand the proto file to the code generator written in the target language and you have guarantees about the safety and interoperability between those architectures.
Protobuf (short for Protocol buffers) is a way of encoding structured data in an efficient and extensible format. With protocol buffers, you write a .proto description of the data structure you wish to store. From that, the protocol buffer compiler creates a golang struct (or ant) that implements automatic encoding and parsing of the protocol buffer data with an efficient binary format. The generated class provides getters and setters for the fields that make up a protocol buffer and takes care of the details of reading and writing the protocol buffer as a unit.
In Commercial Paper
example first we define messages, that will be stored in chaincode state or as events:
CommercialPaper
will be stored in chaincode stateCommercialPaperId
defines unique id part of commercial paper messageIssueCommercialPaper
payload forissue
transaction and event triggered when new commercial paper issuedBuyCommercialPaper
payload forbuy
transaction and event triggered when commercial paper change ownerRedeemCommercialPaper
payload forredeem
transaction and event triggered when commercial paper redeemed
syntax = "proto3";
package schema;
import "google/protobuf/timestamp.proto";
message CommercialPaper {
enum State {
ISSUED = 0;
TRADING = 1;
REDEEMED = 2;
}
string issuer = 1;
string paper_number = 2;
string owner = 3;
google.protobuf.Timestamp issue_date = 4;
google.protobuf.Timestamp maturity_date = 5;
int32 face_value = 6;
State state = 7;
}
// CommercialPaperId identifier part
message CommercialPaperId {
string issuer = 1;
string paper_number = 2;
}
// IssueCommercialPaper event
message IssueCommercialPaper {
string issuer = 1;
string paper_number = 2;
google.protobuf.Timestamp issue_date = 3;
google.protobuf.Timestamp maturity_date = 4;
int32 face_value = 5;
}
// BuyCommercialPaper event
message BuyCommercialPaper {
string issuer = 1;
string paper_number = 2;
string current_owner = 3;
string new_owner = 4;
int32 price = 5;
google.protobuf.Timestamp purchase_date = 6;
}
// RedeemCommercialPaper event
message RedeemCommercialPaper {
string issuer = 1;
string paper_number = 2;
string redeeming_owner = 3;
google.protobuf.Timestamp redeem_date = 4;
}
Protocol buffers to chaincode mapper can be used to store schema instances in chaincode state. Every schema type (protobuf or struct) can have mapping rules:
- Primary key creation logic
- Namespace logic
- Secondary key creation logic
For example, in definition below, we defined thant schema.CommercialPaper
mapped to chaincode state with key attributes
from schema.CommercialPaperId
message (Issuer
, PaperNumber
). Also we define event
var (
// State mappings
StateMappings = m.StateMappings{}.
//key namespace will be <`CommercialPaper`, Issuer, PaperNumber>
Add(&schema.CommercialPaper{}, m.PKeySchema(&schema.CommercialPaperId{}))
// EventMappings
EventMappings = m.EventMappings{}.
// event name will be `IssueCommercialPaper`, payload - same as issue payload
Add(&schema.IssueCommercialPaper{}).
Add(&schema.BuyCommercialPaper{}).
Add(&schema.RedeemCommercialPaper{})
)
package cpaper
import (
"fmt"
"github.com/pkg/errors"
"github.com/hyperledger-labs/cckit/examples/cpaper/schema"
"github.com/hyperledger-labs/cckit/extensions/debug"
"github.com/hyperledger-labs/cckit/extensions/encryption"
"github.com/hyperledger-labs/cckit/extensions/owner"
"github.com/hyperledger-labs/cckit/router"
"github.com/hyperledger-labs/cckit/router/param/defparam"
m "github.com/hyperledger-labs/cckit/state/mapping"
)
func NewCC() *router.Chaincode {
r := router.New(`commercial_paper`)
// Mappings for chaincode state
r.Use(m.MapStates(StateMappings))
// Mappings for chaincode events
r.Use(m.MapEvents(EventMappings))
// store in chaincode state information about chaincode first instantiator
r.Init(owner.InvokeSetFromCreator)
// method for debug chaincode state
debug.AddHandlers(r, `debug`, owner.Only)
r.
// read methods
Query(`list`, cpaperList).
// Get method has 2 params - commercial paper primary key components
Query(`get`, cpaperGet, defparam.Proto(&schema.CommercialPaperId{})).
// txn methods
Invoke(`issue`, cpaperIssue, defparam.Proto(&schema.IssueCommercialPaper{})).
Invoke(`buy`, cpaperBuy, defparam.Proto(&schema.BuyCommercialPaper{})).
Invoke(`redeem`, cpaperRedeem, defparam.Proto(&schema.RedeemCommercialPaper{})).
Invoke(`delete`, cpaperDelete, defparam.Proto(&schema.CommercialPaperId{}))
return router.NewChaincode(r)
}
func cpaperList(c router.Context) (interface{}, error) {
// commercial paper key is composite key <`CommercialPaper`>, {Issuer}, {PaperNumber} >
// where `CommercialPaper` - namespace of this type
// list method retrieves entries from chaincode state
// using GetStateByPartialCompositeKey method, then unmarshal received from state bytes via proto.Ummarshal method
// and creates slice of *schema.CommercialPaper
return c.State().List(&schema.CommercialPaper{})
}
func cpaperIssue(c router.Context) (interface{}, error) {
var (
issue = c.Param().(*schema.IssueCommercialPaper) //default parameter
cpaper = &schema.CommercialPaper{
Issuer: issue.Issuer,
PaperNumber: issue.PaperNumber,
Owner: issue.Issuer,
IssueDate: issue.IssueDate,
MaturityDate: issue.MaturityDate,
FaceValue: issue.FaceValue,
State: schema.CommercialPaper_ISSUED, // initial state
}
err error
)
if err = c.Event().Set(issue); err != nil {
return nil, err
}
return cpaper, c.State().Insert(cpaper)
}
func cpaperBuy(c router.Context) (interface{}, error) {
var (
cpaper *schema.CommercialPaper
// but tx payload
buy = c.Param().(*schema.BuyCommercialPaper)
// current commercial paper state
cp, err = c.State().Get(&schema.CommercialPaper{
Issuer: buy.Issuer,
PaperNumber: buy.PaperNumber}, &schema.CommercialPaper{})
)
if err != nil {
return nil, errors.Wrap(err, `not found`)
}
cpaper = cp.(*schema.CommercialPaper)
// Validate current owner
if cpaper.Owner != buy.CurrentOwner {
return nil, fmt.Errorf(`paper %s %s is not owned by %s`, cpaper.Issuer, cpaper.PaperNumber, buy.CurrentOwner)
}
// First buy moves state from ISSUED to TRADING
if cpaper.State == schema.CommercialPaper_ISSUED {
cpaper.State = schema.CommercialPaper_TRADING
}
// Check paper is not already REDEEMED
if cpaper.State == schema.CommercialPaper_TRADING {
cpaper.Owner = buy.NewOwner
} else {
return nil, fmt.Errorf(`paper %s %s is not trading.current state = %s`, cpaper.Issuer, cpaper.PaperNumber, cpaper.State)
}
if err = c.Event().Set(buy); err != nil {
return nil, err
}
return cpaper, c.State().Put(cpaper)
}
func cpaperRedeem(c router.Context) (interface{}, error) {
// implement me
return nil, nil
}
func cpaperGet(c router.Context) (interface{}, error) {
return c.State().Get(c.Param().(*schema.CommercialPaperId))
}
func cpaperDelete(c router.Context) (interface{}, error) {
return nil, c.State().Delete(c.Param().(*schema.CommercialPaperId))
}
We can test all chaincode use case scenarios using MockStub
package mapping_test
import (
"testing"
"github.com/hyperledger/fabric/protos/peer"
"github.com/golang/protobuf/ptypes"
"github.com/golang/protobuf/proto"
"github.com/hyperledger-labs/cckit/examples/cpaper/schema"
"github.com/hyperledger-labs/cckit/examples/cpaper/testdata"
"github.com/hyperledger-labs/cckit/state"
"github.com/hyperledger-labs/cckit/examples/cpaper"
examplecert "github.com/hyperledger-labs/cckit/examples/cert"
"github.com/hyperledger-labs/cckit/identity"
testcc "github.com/hyperledger-labs/cckit/testing"
expectcc "github.com/hyperledger-labs/cckit/testing/expect"
. "github.com/onsi/ginkgo"
. "github.com/onsi/gomega"
)
func TestState(t *testing.T) {
RegisterFailHandler(Fail)
RunSpecs(t, "State suite")
}
var (
actors identity.Actors
cPaperCC *testcc.MockStub
err error
)
var _ = Describe(`Mapping`, func() {
BeforeSuite(func() {
actors, err = identity.ActorsFromPemFile(`SOME_MSP`, map[string]string{
`owner`: `s7techlab.pem`,
}, examplecert.Content)
Expect(err).To(BeNil())
//Create commercial papers chaincode mock - protobuf based schema
cPaperCC = testcc.NewMockStub(`cpapers`, cpaper.NewCC())
cPaperCC.From(actors[`owner`]).Init()
})
Describe(`Protobuf based schema`, func() {
It("Allow to add data to chaincode state", func(done Done) {
events := cPaperCC.EventSubscription()
expectcc.ResponseOk(cPaperCC.Invoke(`issue`, &testdata.CPapers[0]))
Expect(<-events).To(BeEquivalentTo(&peer.ChaincodeEvent{
EventName: `IssueCommercialPaper`,
Payload: testcc.MustProtoMarshal(&testdata.CPapers[0]),
}))
expectcc.ResponseOk(cPaperCC.Invoke(`issue`, &testdata.CPapers[1]))
expectcc.ResponseOk(cPaperCC.Invoke(`issue`, &testdata.CPapers[2]))
close(done)
}, 0.2)
It("Disallow to insert entries with same keys", func() {
expectcc.ResponseError(cPaperCC.Invoke(`issue`, &testdata.CPapers[0]))
})
It("Allow to get entry list", func() {
cpapers := expectcc.PayloadIs(cPaperCC.Query(`list`), &[]schema.CommercialPaper{}).([]schema.CommercialPaper)
Expect(len(cpapers)).To(Equal(3))
Expect(cpapers[0].Issuer).To(Equal(testdata.CPapers[0].Issuer))
Expect(cpapers[0].PaperNumber).To(Equal(testdata.CPapers[0].PaperNumber))
})
It("Allow to get entry raw protobuf", func() {
cp := testdata.CPapers[0]
cpaperProtoFromCC := cPaperCC.Query(`get`, &schema.CommercialPaperId{Issuer: cp.Issuer, PaperNumber: cp.PaperNumber}).Payload
stateCpaper := &schema.CommercialPaper{
Issuer: cp.Issuer,
PaperNumber: cp.PaperNumber,
Owner: cp.Issuer,
IssueDate: cp.IssueDate,
MaturityDate: cp.MaturityDate,
FaceValue: cp.FaceValue,
State: schema.CommercialPaper_ISSUED, // initial state
}
cPaperProto, _ := proto.Marshal(stateCpaper)
Expect(cpaperProtoFromCC).To(Equal(cPaperProto))
})
It("Allow update data in chaincode state", func() {
cp := testdata.CPapers[0]
expectcc.ResponseOk(cPaperCC.Invoke(`buy`, &schema.BuyCommercialPaper{
Issuer: cp.Issuer,
PaperNumber: cp.PaperNumber,
CurrentOwner: cp.Issuer,
NewOwner: `some-new-owner`,
Price: cp.FaceValue - 10,
PurchaseDate: ptypes.TimestampNow(),
}))
cpaperFromCC := expectcc.PayloadIs(
cPaperCC.Query(`get`, &schema.CommercialPaperId{Issuer: cp.Issuer, PaperNumber: cp.PaperNumber}),
&schema.CommercialPaper{}).(*schema.CommercialPaper)
// state is updated
Expect(cpaperFromCC.State).To(Equal(schema.CommercialPaper_TRADING))
Expect(cpaperFromCC.Owner).To(Equal(`some-new-owner`))
})
It("Allow to delete entry", func() {
cp := testdata.CPapers[0]
toDelete := &schema.CommercialPaperId{Issuer: cp.Issuer, PaperNumber: cp.PaperNumber}
expectcc.ResponseOk(cPaperCC.Invoke(`delete`, toDelete))
cpapers := expectcc.PayloadIs(cPaperCC.Invoke(`list`), &[]schema.CommercialPaper{}).([]schema.CommercialPaper)
Expect(len(cpapers)).To(Equal(2))
expectcc.ResponseError(cPaperCC.Invoke(`get`, toDelete), state.ErrKeyNotFound)
})
})
})