Skip to content

Latest commit

 

History

History
501 lines (413 loc) · 14 KB

README.md

File metadata and controls

501 lines (413 loc) · 14 KB

IEasyHydroSDK

IEasyHydro SDK is a Python library used to simplify access to the iEasyHydro data. It supports both iEasyHydro and iEasyHydroHF. At the moment, support for iEasyHydroHF is limited to "static" data, but more functionalities will be added once the application becomes fully operational.

Installation

pip install git+https://github.com/hydrosolutions/ieasyhydro-python-sdk

Usage

Configuration

To use IEasyHydroSDK you need to configure next environment variables:

IEASYHYDRO_HOST=https://api.ieasyhydro.org
IEASYHYDRO_USERNAME=username
IEASYHYDRO_PASSWORD=password
ORGANIZATION_ID=1  # only fill if user is superadmin

For SDK for iEasyHydroHF, similar environment variables are required:

IEASYHYDROHF_HOST=https://api.ieasyhydro.org
IEASYHYDROHF_USERNAME=username
IEASYHYDROHF_PASSWORD=password

We strongly recommend to create a dedicated "machine" user for API usage.

Initialization

from ieasyhydro_sdk.sdk import IEasyHydroSDK, IEasyHydroHFSDK

# initialize SDK (configuration will be read from environment variables)
ieasyhydro_sdk = IEasyHydroSDK()
ieasyhydro_sdk_hf = IEasyHydroHFSDK()
from ieasyhydro_sdk.sdk import IEasyHydroSDK, IEasyHydroHFSDK

# initialize and configure SDK by providing configuration on class creation
ieasyhydro_sdk = IEasyHydroSDK(
    host='https://api.ieasyhydro.org',
    username='username',
    password='password',
    organization_id=1,
)
ieasyhydro_hf_sdk = IEasyHydroHFSDK(
    host='https://hf.ieasyhydro.org/api/v1/',
    username='username',
    password='password',
)

Sites

We can fetch details about all available discharge and meteo sites in the organization.

Example 1: Fetch discharge sites data

from ieasyhydro_sdk.sdk import IEasyHydroSDK

ieasyhydro_sdk = IEasyHydroSDK()

discharge_sites_data = ieasyhydro_sdk.get_discharge_sites()

For the HF SDK, it's exactly the same:

from ieasyhydro_sdk.sdk import IEasyHydroHFSDK

ieasyhydro_hf_sdk = IEasyHydroHFSDK()

discharge_sites_data = ieasyhydro_hf_sdk.get_discharge_sites()

The difference with the discharge stations is that due to different structure of the database in iEasyHydroHF, the virtual stations are separated from the discharge ones. If you need to retrieve the virtual stations, you can do it as follows:

from ieasyhydro_sdk.sdk import IEasyHydroHFSDK

ieasyhydro_hf_sdk = IEasyHydroHFSDK()

virtual_sites_data = ieasyhydro_hf_sdk.get_virtual_sites()

Example 2: Fetch meteo sites data

from ieasyhydro_sdk.sdk import IEasyHydroSDK

ieasyhydro_sdk = IEasyHydroSDK()

meteo_sites_data = ieasyhydro_sdk.get_meteo_sites()

The HF client works exactly the same.

Both methods are returning dictionary with the following structure (for the iEasyHydro SDK):

[
  {
    'elevation': 0.0,
    'organization_id': 1,
    'longitude': 0.0,
    'site_name': 'Site name 1',
    'site_type': 'discharge',
    'region': 'Region 1',
    'is_virtual': False,
    'country': 'Kyrgyzstan',
    'latitude': 0.0,
    'basin': 'Basin 1',
    'id': 23,
    'site_code': '10000'
  },
  {
    'elevation': 0.0,
    'organization_id': 1,
    'longitude': 0.0,
    'site_name': 'Site name 2',
    'site_type': 'discharge',
    'region': 'Region 2',
    'is_virtual': False,
    'country': 'Kyrgyzstan',
    'latitude': 0.0,
    'basin': 'Basin 2',
    'id': 53,
    'site_code': '11000'
  },
]

Again, since iEasyHydro HF works differently "under the hood", there are some differences in the output the SDK will return.

[
    {
        'basin': {
            'national_name': '',
            'official_name': 'Иссык-Куль'
        },
        'bulletin_order': 0,
        'country': 'Кыргызстан',
        'dangerous_discharge': 100.0,
        'elevation': 0.0,
        'enabled_forecasts': {
            'daily_forecast': False,
            'decadal_forecast': False,
            'monthly_forecast': False,
            'pentad_forecast': False,
            'seasonal_forecast': False
        },
        'historical_discharge_maximum': None,
        'historical_discharge_minimum': None,
        'id': 96,
        'latitude': 42.8746,
        'longitude': 74.5698,
        'national_name': '',
        'official_name': 'Ак-Сай - с.Көк-Сай',
        'region': {
            'national_name': '',
            'official_name': 'ИССЫК-КУЛЬСКАЯ ОБЛАСТЬ'
        },
        'site_code': '15054',
        'site_type': 'manual'
    },
    {
        'basin': {
            'national_name': '',
            'official_name': 'Сыр-Дарья'
        },
        'bulletin_order': 0,
        'country': 'Кыргызстан',
        'dangerous_discharge': 50.2,
        'elevation': 0.0,
        'enabled_forecasts': {
            'daily_forecast': False,
            'decadal_forecast': False,
            'monthly_forecast': False,
            'pentad_forecast': False,
            'seasonal_forecast': False
        },
        'historical_discharge_maximum': None,
        'historical_discharge_minimum': None,
        'id': 97,
        'latitude': 40.214,
        'longitude': 72.529,
        'national_name': '',
        'official_name': 'Араван-Сай-к.Жаны-Ноокат',
        'region': {
            'national_name': '',
            'official_name': 'БАТКЕНСКАЯ ОБЛАСТЬ'
        },
        'site_code': '16158',
        'site_type': 'manual'
    }
]

You will get similar response for meteo stations with the exception that the enabled_forecasts will be None.

Norm

The iEasyHydro has an API endpoint for fetching the norm for the next data types:

  • discharge
  • temperature
  • precitipation

It's important to understand that iEasyHydro is calculating norm with the "cutoff" logic - this logic is the legacy from the times when it was calculated manually on the paper. This was used to avoid frequent manual recalculation of the norm, but to do a recalculation every 5 years. The logic is just not considering the latest data in norm calculation, and the cutoff year is calculated by the next python code (the lowest_year is the year of the first data in the system):

    def get_norm_cutoff_year(cls, lowest_year):
        current_year = datetime.datetime.now().year
        if current_year - lowest_year < 10:
            return current_year

        return (current_year / 5) * 5

Example 1:

from ieasyhydro_sdk.sdk import IEasyHydroSDK

ieasyhydro_sdk = IEasyHydroSDK()

norm_data = ieasyhydro_sdk.get_norm_for_site(
    site_code='15212', 
    data_type='discharge')

The method is returning dictionary with the following structure:

{
    'norm_data': [
      2.02,
      1.88,
      1.69,
      1.65,
      1.72,
      1.6,
      1.69,
      1.61,
      1.5,
      1.42,
      1.51,
      1.61,
      1.64,
      2.31,
      3.76,
      10.2,
      13.3,
      13.6,
      13.9,
      11.0,
      12.1,
      12.6,
      9.21,
      6.13,
      4.68,
      3.7,
      2.6,
      2.82,
      2.36,
      2.09,
      2.05,
      2.3,
      2.5,
      2.44,
      2.35,
      2.02
    ],
    'end_year': 2020,
    'site_id': 10,
    'start_year': 2013
}

As norms also work differently in iEasyHydroHF, the output you get when requesting norms from its SDK is slightly different. iEasyHydroHF only works with the current norm values, instead of calculating it from norm data for all the previous years which also means the "cutoff" logic described above isn't relevant here. The interface for retrieving the norm however is the same:

from ieasyhydro_sdk.sdk import IEasyHydroHFSDK

ieasyhydro_hf_sdk = IEasyHydroHFSDK()

norm_data = ieasyhydro_hf_sdk.get_norm_for_site("15194", "discharge")

The data you would get in the norm_data variable would be:

[
    1.76306,
    1.69184,
    1.64643,
    1.61071,
    1.57296,
    1.5401,
    1.5451,
    1.54677,
    1.53255,
    1.53218,
    1.60733,
    1.7696,
    2.27225,
    3.08059,
    4.1617,
    6.32663,
    8.14099,
    10.01703,
    11.67733,
    13.4458,
    14.639,
    15.05198,
    13.84901,
    11.10554,
    8.11796,
    5.90596,
    4.43908,
    3.43042,
    2.89649,
    2.53247,
    2.32948,
    2.1932,
    2.08865,
    2.00885,
    1.92897,
    1.85072
]

Data Values

We can fetch data for all data types stored in iEasyHydro database by using the get_data_values_for_site() method. We just need to specify site_code and variable_type we want to fetch, and function will automatically fetch all data values from the API. It will take care to perform requests in chunks in order to avoid overloading of the server.

IMPORTANT At this time, iEasyHydro HF still doesn't provide the interface for retrieving the data values. As soon as it is in operational use, the library will be updated to provide support for this as well.

Examples 1: Fetch all daily discharge values

from ieasyhydro_sdk.sdk import IEasyHydroSDK

ieasyhydro_sdk = IEasyHydroSDK()

response_data = ieasyhydro_sdk.get_data_values_for_site('15212', 'discharge_daily')

Example 2: Fetch all historical decade averages

from ieasyhydro_sdk.sdk import IEasyHydroSDK

ieasyhydro_sdk = IEasyHydroSDK()

response_data = ieasyhydro_sdk.get_data_values_for_site('15212', 'discharge_historical_decade_average')

Example 3: Fetch all discharge measurements measured after 2018-01-01

import datetime

from ieasyhydro_sdk.sdk import IEasyHydroSDK
from ieasyhydro_sdk.filters import BasicDataValueFilters

ieasyhydro_sdk = IEasyHydroSDK()

filters = BasicDataValueFilters(
    local_date_time__gt=datetime.datetime(2018, 1, 1)
)

response_data = ieasyhydro_sdk.get_data_values_for_site(
    '15212', 
    'discharge_historical_decade_average',
    filters=filters
)

You can find all variable types listed here:

Variable type Description
water_level_daily
water_level_daily_average
water_level_daily_estimation
discharge_measurement
discharge_daily
free_river_area
maximum_depth
decade_discharge
dangerous_discharge
discharge_daily_average
ice_phenomena
water_level_measurement
water_temperature
air_temperature
fiveday_discharge
decade_temperature
monthly_temperature
decade_precipitation
monthly_precipitation
discharge_historical_decade_average

Available filters are described here:

Parameter Type Description
data_value float, optional Only include data with specified data value
data_value__ne float, optional Excludes the specified data value
data_value__gt float, optional Data values greater than the specified value
data_value__gte float, optional Data values greater than or equal to the specified value
data_value__lt float, optional Data values less than the specified value
data_value__lte float, optional Data values less than or equal to the specified value
data_value__isnull bool, optional Whether the data value is null
data_value__is_no_data_value bool, optional Whether the data value is not a data value
local_date_time datetime, optional Specific local date and time to filter the results
local_date_time__gt datetime, optional Local date and time greater than the specified value
local_date_time__gte datetime, optional Local date and time greater than or equal to the specified value
local_date_time__lt datetime, optional Local date and time less than the specified value
local_date_time__lte datetime, optional Local date and time less than or equal to the specified value
utc_date_time datetime, optional Specific UTC date and time to filter the results
utc_date_time__gt datetime, optional UTC date and time greater than the specified value
utc_date_time__gte datetime, optional UTC date and time greater than or equal to the specified value
utc_date_time__lt datetime, optional UTC date and time less than the specified value
utc_date_time__lte datetime, optional UTC date and time less than or equal to the specified value
order_by str, optional Name of the column we want to order data. Suported ordering local_date_time and -local_date_time

The method is returning dictionary with the following structure:

{
  'site': {
    'name': 'р.Ак-Суу с.Чон-Арык',
    'region': 'ЧУЙСКАЯ ОБЛАСТЬ',
    'site_code': '15212',
    'basin': 'Чу',
    'longitude': 74.008333,
    'latitude': 42.613889
  },
  'variable': {
    'variable_code': '0020',
    'variable_name': 'Discharge',
    'unit': 'm^3/s',
    'variable_type': 'discharge_historical_decade_average'
  },
  'data_values': [
    {
      'data_value': 2.02,
      'local_date_time': datetime .datetime (2013, 1, 5, 13, 0),
      'utc_date_time': datetime .datetime (2013, 1, 5, 13, 0)
    },
    {
      'data_value': 1.88,
      'local_date_time': datetime .datetime (2013, 1, 15, 13, 0),
      'utc_date_time': datetime .datetime (2013, 1, 15, 13, 0)
    },
    {
      'data_value': 1.69,
      'local_date_time': datetime .datetime (2013, 1, 25, 13, 0),
      'utc_date_time': datetime .datetime (2013, 1, 25, 13, 0)
    },
  ]
}