forked from hunkim/deep_architecture_genealogy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeural Net Arch Genealogy.txt
80 lines (80 loc) · 4.24 KB
/
Neural Net Arch Genealogy.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Neural Net Arch Genealogy
Memory Networks
Neural Programming
[Neural Turing Machine,'14.10](https://arxiv.org/pdf/1410.5401.pdf)
[Neural Random-Access Machines,'16.02](https://arxiv.org/pdf/1511.06392.pdf)
[Hierarchical Attentive Memory, '16.02](https://arxiv.org/abs/1602.03218)
[Neural GPUs Learn Algorithms, '16.03](https://arxiv.org/pdf/1511.08228.pdf)
[Neural Programmer,'16.08](https://arxiv.org/pdf/1511.04834.pdf)
[Neural Module Networks, '16.06](https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Andreas_Neural_Module_Networks_CVPR_2016_paper.html)
[Hybrid Computing, '16.10](https://www.nature.com/nature/journal/v538/n7626/full/nature20101.html)
[Memory Networks,'14.10](https://arxiv.org/pdf/1410.3916.pdf)
[End-to-End Memory Network,'15.03](https://arxiv.org/pdf/1503.08895.pdf)
[DMN: Dynamic Memory Network, '16.03](https://arxiv.org/pdf/1506.07285.pdf),[DMN+, `16.04 ](https://arxiv.org/pdf/1603.01417.pdf)
CNN
AlexNet
VggNet
GoggleNet
ResNet
DenseNet
[SENet: Squeeze-and-Excitation Networks, '17.09](https://arxiv.org/abs/1709.01507)
Object Detection
[R-CNN](https://arxiv.org/pdf/1311.2524.pdf)
[Fast R-CNN](https://arxiv.org/pdf/1504.08083.pdf)
[Faster R-CNN](https://arxiv.org/pdf/1506.01497.pdf)
[Mask R-CNN](https://arxiv.org/pdf/1703.06870.pdf)
[YOLO](https://arxiv.org/pdf/1506.02640.pdf)
[SSD](https://arxiv.org/pdf/1512.02325.pdf)
[R-FCN](https://arxiv.org/pdf/1605.06409.pdf)
Semantic Segmentation
[FCN](https://arxiv.org/pdf/1411.4038.pdf)
[DeconvNet](https://arxiv.org/pdf/1505.04366.pdf)
[DeepLab](https://arxiv.org/pdf/1606.00915.pdf)
[U-Net](https://arxiv.org/pdf/1505.04597.pdf)
Super-resolution
[MemNet](https://arxiv.org/abs/1708.02209)
[FSRCNN](https://arxiv.org/1608.00367)
[SRCNN](https://arxiv.org/abs/1501.00092)
[VDSR](https://arxiv.org/abs/1511.04587)
[DRCN](https://arxiv.org/abs/1511.04491)
[LabSRN](https://arxiv.org/abs/1704.03915)
[EDSR](https://arxiv.org/abs/1707.02921)
RNN
[LSTM, '97.11](http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735)
[GRU, 14.11](https://arxiv.org/abs/1412.3555)
[ACT: Adaptive Computation Time, '17.05](https://arxiv.org/abs/1603.08983)
[S2S: RNN Encoder-Decoder, '14.06](https://arxiv.org/abs/1406.1078)
[Attention: Jointly Learning to Align, '14.09](https://arxiv.org/abs/1409.0473)
[Effective Approaches to Attention, Luong et al. '15.08](https://arxiv.org/abs/1508.04025)
[DCN: Dynamic Coattention Networks, '16.08](https://arxiv.org/abs/1611.01604), [DCN+, '17.08](https://arxiv.org/abs/1711.00106)
[Transformer: Attention Is All You Need, '17.06](https://arxiv.org/abs/1706.03762)
[Capsule Net, '17.10](https://arxiv.org/abs/1710.09829)
Generative Models
Autoregressive models
[MADE, '15.02.12](https://arxiv.org/pdf/1502.03509.pdf)
[PixelRNN, '16.01.25](https://arxiv.org/pdf/1601.06759.pdf)
[NADE, '16.05.07](https://arxiv.org/pdf/1605.02226.pdf)
[PixelCNN, '16.06.16](https://arxiv.org/pdf/1606.05328.pdf)
[PixelCNN++, '17.01.19](https://arxiv.org/pdf/1701.05517.pdf)
Latent variable models
[VAE, '13.12.20](https://arxiv.org/pdf/1312.6114.pdf)
[CVAE, '14.06.20](https://arxiv.org/pdf/1406.5298.pdf)
[AAE, '15.11.18](https://arxiv.org/pdf/1511.05644.pdf)
[AVB, '17.01.17](https://arxiv.org/pdf/1701.04722.pdf)
[VQ-VAE, '17.11.2](https://arxiv.org/abs/1711.00937)
[GAN, '14.06.10](https://arxiv.org/pdf/1406.2661.pdf)
Variants
[CGAN, '14.11.06](https://arxiv.org/pdf/1411.1784.pdf)
[DCGAN, '15.11.19](https://arxiv.org/pdf/1511.06434.pdf)
[infoGAN, '16.06.12](https://arxiv.org/pdf/1704.00028.pdf)
[EBGAN, '16.09.11](https://arxiv.org/pdf/1609.03126.pdf)
[ACGAN, '16.10.30](https://arxiv.org/pdf/1610.09585.pdf)
[WGAN, '17.01.26](https://arxiv.org/pdf/1701.07875.pdf)
[BEGAN, '17.02.27](https://arxiv.org/pdf/1702.08431.pdf)
[WGAN-GP, '17.03.31](https://arxiv.org/pdf/1704.00028.pdf)
[TripleGAN, '17.03.07](https://arxiv.org/pdf/1703.02291.pdf)
Applications
[Pix2Pix, '16.11.21](https://arxiv.org/pdf/1611.07004v1.pdf)
[PPGN, '16.11.30](https://arxiv.org/pdf/1612.00005.pdf)
[StackGAN, '16.12.10](https://arxiv.org/pdf/1612.03242.pdf)
[CycleGAN, '17.03.31](https://arxiv.org/pdf/1703.10593.pdf)