-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.js
271 lines (259 loc) · 7.7 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
export default class D {
/**
* @param {Float64Array|number} [size] number of random variables or buffer to fill
*/
constructor(size=32) {
//vs overlaps rs for full data exports
const vs = size.buffer ? new Float64Array(size.buffer, size.byteOffset, size.length) : new Float64Array(size*2),
rs = new Float64Array(vs.buffer, vs.byteOffset+(vs.byteLength>>1), vs.length>>1)
Object.defineProperties(this, { vs: {value: vs}, rs: {value: rs} })
}
// for transfers and copies
get data() { return this.vs }
// Number of samples
get N() { return this.rs[this.rs.length-1] }
// Expected Value
get E() { return this.Σ(1) / this.N }
// Sample Variance
get V() {
const N = this.N
return ( this.Σ(2) - this.Σ(1)**2 / N ) / (N-1)
}
// Sample Standard Deviation
get S() {
const v = this.V
return v < 0 ? 0 : Math.sqrt(v)
}
/**
* Σ(X**p)
* exact when there is no compression
* with compression, range between values treated as a uniform distribution
*
* @param {number} order
* @return {number} Σ( X^pow )
*/
Σ(pow) { //values as-is with internal uniform interval
const vs = this.vs,
rs = this.rs,
M = Math.min(rs.length, rs[rs.length-1]), // in case the buffer is not full
Mm = M-1,
Op = pow + 1
if (pow === 0) return rs[Mm]
if (pow === 1) { //same as below but simplified
let sum = vs[0] + vs[Mm] // correction at edge to match actual discrete result (PAD cancels out)
for (let i=0; i<Mm; ++i) sum += (vs[i+1] + vs[i]) * (rs[i+1] - rs[i])
return sum / Op
}
let sum = vs[0]**pow
for (let i=1; i<M; ++i) {
// https://en.wikipedia.org/wiki/Continuous_uniform_distribution#Moments
sum += vs[i]**pow
+ (rs[i] - rs[i-1] - 1) * (vs[i]**Op - vs[i-1]**Op) / (vs[i] - vs[i-1]) / Op
}
return sum
}
/**
* Origin Moments
* https://en.wikipedia.org/wiki/Continuous_uniform_distribution#Moments
*
* @param {number} order
* @return {number} E( X^order )
*/
M(order) { return this.Σ(order) / this.N }
/**
* Quantile function, provide the value for a given probability
* @param {number} prob - probability or array of probabilities
* @return {number} value or array of values
*/
Q(prob) {
const vs = this.vs,
rs = this.rs,
M = Math.min(rs.length, rs[rs.length-1]), // in case the buffer is not full
h = rs[M-1] * prob + 0.5, // 0.5 <= h <= N+0.5
j = topIndex(rs, h, M), // 0 <= j <= M
i = j-1
return j === 0 ? vs[0]
: j === M ? vs[M-1]
: vs[i] + (vs[j] - vs[i]) * (h-rs[i]) / (rs[j]-rs[i])
}
/**
* @param {number} x - probability or array of probabilities
* @return {number} value or array of values
*/
F(x) {
const vs = this.vs,
rs = this.rs,
M = Math.min(rs.length, rs[rs.length-1]), // in case the buffer is not full
N = rs[M-1],
j = topIndex(vs, x, M),
i = j-1
return (j === 0 ? 0.5
: j === M ? (N - 0.5)
: rs[i] - 0.5 + (rs[j] - rs[i]) * (x - vs[i]) / (vs[j] - vs[i])
) / N
}
/**
* @param {number} x - probability or array of probabilities
* @return {number} value or array of values
*/
f(x) {
const vs = this.vs,
rs = this.rs,
M = Math.min(rs.length, rs[rs.length-1]),
N = rs[M-1]
if (x === vs[0] || x === vs[M-1]) return 0.5/N
const j = topIndex(vs, x, M)
return j === 0 || j === M ? 0 : (rs[j] - rs[j-1]) / (vs[j] - vs[j-1]) / N
}
/**
* @param {Object} ctx - canvas 2D context
* @param {number} vMin
* @param {number} vMax
* @return {void}
*/
plotF(ctx, vMin=this.vs[0], vMax=this.vs[this.rs.length-1]) {
const rs = this.rs,
vs = this.vs,
xScale = (ctx.canvas.width-1) / (vMax-vMin),
yScale = (ctx.canvas.height-1) / (rs[rs.length-1]),
H = ctx.canvas.height,
getX = v => 0.5 + Math.round((v-vMin) * xScale),
getY = r => H-0.5 - Math.round(r * yScale)
ctx.beginPath()
ctx.moveTo( getX( Math.min(vs[0], vMin) ), H-0.5 )
ctx.lineTo( getX( vs[0] ), H-0.5 )
for (let i=0; i<rs.length; ++i) ctx.lineTo( getX( vs[i] ), getY( rs[i] ) )
ctx.lineTo( getX( vs[rs.length-1] ), 0.5 )
ctx.lineTo( getX( Math.max( vs[rs.length-1], vMax ) ), 0.5 )
}
/**
* @param {Object} ctx - canvas 2D context
* @param {number} vMin
* @param {number} vMax
* @param {number} yMax
* @return {void}
*/
plotf(ctx, vMin=this.vs[0], vMax=this.vs[this.rs.length-1], yMax = 1/(this.Q(0.75)-this.Q(0.25)) ) {
// f(mode)*IQR ~= 0.5(uniform) 0.54(normal) 0.55(logistic) 0.59(triangular) 0.64(cauchy) 0.69(laplace)
// aim for yMax ~= 3*E(f(mode)) ~= 3*0.5/IQR
const rs = this.rs,
vs = this.vs,
xScale = (ctx.canvas.width-1) / (vMax-vMin),
yScale = (ctx.canvas.height-1) / yMax / rs[rs.length-1],
H = ctx.canvas.height,
getX = v => 0.5 + Math.round((v-vMin) * xScale),
getY = drdv => H-0.5 - Math.round(drdv * yScale)
let x = getX(Math.min(vs[0], vMin)),
y = H
ctx.beginPath()
ctx.moveTo( getX( Math.min(vs[0], vMin) ), H-0.5 )
ctx.lineTo( x = getX(vs[0]), H-0.5 ) //right
for (let i=0, j=1; j<rs.length; i=j++) {
ctx.lineTo( x, y = getY( (rs[j]-rs[i])/(vs[j]-vs[i]) ) ) //up||down
ctx.lineTo( x = getX( vs[j] ), y ) //right
}
ctx.lineTo( x, H-0.5 ) //down
ctx.lineTo( getX( Math.max(vs[rs.length-1], vMax) ), H-0.5 ) //right
}
/**
* Adds a value, compressed only if buffer full
* @param {number} x
*/
push(x) {
const vs = this.vs,
rs = this.rs,
M = Math.min(rs.length, rs[rs.length-1])
let j = topIndex(this.vs, x, M)
// lossless insert
if (M < rs.length) {
for (let ir=M; ir>j; --ir) {
rs[ir] = ir+1
vs[ir] = vs[ir-1]
}
rs[j] = j ? rs[j-1] + 1 : 1
vs[j] = x
if (M!==rs.length-1) ++rs[rs.length-1]
}
// compression, droping a value while maintaining the interval average
else if (j === M) { // new maximum
--j
const i = j-1,
h = i-1,
Δwv = vs[j]-vs[i],
Δxu = x - vs[h],
rjh = rs[i]*(vs[j]-vs[h])
if (Δxu !== 0) {
const r_w = ( rs[j]*(x-vs[i]) + rjh - rs[h]*Δwv ) / Δxu,
r_v = ( rs[j]*(x-vs[j]) + rjh - Δwv ) / Δxu
if ( r_v < rs[h] || (vs[i] + vs[j] < vs[h] + x && r_w < rs[j]+1)) {
vs[i] = vs[j]
rs[i] = r_w
}
else rs[i] = r_v
vs[j] = x
}
++rs[j]
}
else if (j === 0) { // new minimum
const u = vs[0],
Δwx = vs[2] - x
if (Δwx !== 0) {
//DROP u = vs[0] : r'(w-x) = (w+v-2x) + r(w-u) //KEEP v
//KEEP u = vs[0] : r'(w-x) = (w+v-2x) + r(w-u) - s(v-u) //DROP v
const r_v = (vs[2] + vs[1] - 2*x + rs[1]*(vs[2] - u)) / Δwx, // DROP u KEEP v
r_u = r_v - rs[2] * (vs[1]-u) / Δwx // KEEP u DROP v
if ( (u + vs[1] > x + vs[2] && r_u > rs[0]) || r_v > rs[2]+1) {
vs[1] = u
rs[1] = r_u
}
else rs[1] = r_v
vs[0] = x
}
for (let ir=2; ir<rs.length; ++ir) ++rs[ir]
}
else if ( j !== 1 && (j === M-1 || 2*x < vs[j+1]+vs[j-2] ) ) { //vs[j]+vs[j-1] ) ) {
// not max, not min : u < v < x < w
--j
let k = j+1,
i = j-1
const w = vs[k],
v = vs[j],
Δwu = w-vs[i]
if (Δwu !== 0) {
const r_xΔwu = rs[j]*Δwu + ( w-x + (x-v)*(rs[k] - rs[i]) )
if ( vs[i]+w < v+x || r_xΔwu >= (rs[k]+1)*Δwu) rs[j] += ( w+v-2*x ) / Δwu
else {
rs[j] = r_xΔwu/Δwu
vs[j] = x
}
}
while(++j<rs.length) ++rs[j]
}
else {
// not max, not min : u < x < v < w
let k = j+1,
i = j-1
const w = vs[k],
v = vs[j],
Δwu = w-vs[i]
if (Δwu !== 0) {
const r_xΔwu = rs[j]*Δwu + ( w-x + (x-v)*(rs[k] - rs[i]) )
if ( x+v < vs[i]+w || r_xΔwu <= rs[i]*Δwu) rs[j] += ( w+v-2*x ) / Δwu
else {
rs[j] = r_xΔwu/Δwu
vs[j] = x
}
}
while(++j<rs.length) ++rs[j]
}
}
}
function topIndex(arr, v, max) {
let low = 0
while (low < max) {
const mid = (low + max) >>> 1
if (arr[mid] < v) low = mid + 1
else max = mid
}
return max
}