-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_results.py
27 lines (23 loc) · 1.15 KB
/
test_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import pandas as pd
import numpy as np
def score(df, promo_pred_col = 'Promotion'):
n_treat = df.loc[df[promo_pred_col] == 'Yes',:].shape[0]
n_control = df.loc[df[promo_pred_col] == 'No',:].shape[0]
n_treat_purch = df.loc[df[promo_pred_col] == 'Yes', 'purchase'].sum()
n_ctrl_purch = df.loc[df[promo_pred_col] == 'No', 'purchase'].sum()
irr = n_treat_purch / n_treat - n_ctrl_purch / n_control
nir = 10 * n_treat_purch - 0.15 * n_treat - 10 * n_ctrl_purch
return (irr, nir)
def test_results(promotion_strategy):
test_data = pd.read_csv('Test.csv')
df = test_data[['V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7']]
promos = promotion_strategy(df)
score_df = test_data.iloc[np.where(promos == 'Yes')]
irr, nir = score(score_df)
print("Nice job! See how well your strategy worked on our test data below!")
print()
print('Your irr with this strategy is {:0.4f}.'.format(irr))
print()
print('Your nir with this strategy is {:0.2f}.'.format(nir))
print("We came up with a model with an irr of {} and an nir of {} on the test set.\n\n How did you do?".format(0.0188, 189.45))
return irr, nir