forked from ethanhe42/resnet-cifar10-caffe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
102 lines (90 loc) · 3.12 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#!/usr/bin/env python
import inspect
import os
import os.path as osp
import random
import sys
import matplotlib.cm as cmx
import matplotlib.colors as colors
import matplotlib.pyplot as plt
import matplotlib.legend as lgd
import matplotlib.markers as mks
import pandas as pd
import cfgs
class Field:
class x:
iters = u"#Iters"
Seconds = u"Seconds"
class y:
TrainingLoss = u"TrainingLoss"
LearningRate = u"LearningRate"
TestAccuracy = u"TestAccuracy"
TestLoss = u"TestLoss"
def get_log_parsing_script():
dirname = osp.join(cfgs.caffe_path, 'tools/extra')
return dirname + '/parse_log.sh'
def get_log_file_suffix():
return '.log'
def reader(filename):
table = pd.read_csv(filename, sep=' +', index_col=0)
print table.columns
return table
def plot_chart(path_to_log_list):
plt.cla()
plot_xlim=3
if not osp.exists(cfgs.plots):
os.mkdir(cfgs.plots)
path_to_png = ''
model_names = []
for path_to_log in path_to_log_list:
model_name = osp.basename(path_to_log).split('_')[0]
label_name = model_name
i = 0
while True:
if not label_name in model_names:
model_names.append(label_name)
break
else:
label_name = model_name + str(i)
i += 1
path_to_png+=osp.splitext(osp.basename(path_to_log))[0]
train_file = osp.basename(path_to_log+'.train')
test_file = osp.basename(path_to_log+'.test')
new_train_file = osp.join(cfgs.plots, train_file)
new_test_file = osp.join(cfgs.plots, test_file)
print train_file
print new_train_file
# if not osp.exists(new_test_file) or not osp.exists(new_train_file):
os.system('%s %s' % (get_log_parsing_script(), path_to_log))
os.rename(train_file, new_train_file)
os.rename(test_file, new_test_file)
table = reader(new_train_file)
table[table>plot_xlim]=plot_xlim
table.TrainingLoss.plot(legend=True, label=label_name+' tr')
# table.LearningRate.plot(legend=True, label=label_name+' lr')
try:
table = reader(new_test_file)
table[table>plot_xlim]=plot_xlim
table.TestLoss.plot(legend=True, label=label_name+' te')
table.TestAccuracy.plot(secondary_y=True, legend=True, label=label_name+' acc')
except:
# no accuracy
pass
os.remove(new_train_file)
os.remove(new_test_file)
plt.title(' '.join(model_names))
plt.xlabel(Field.x.iters)
# plt.ylabel(y_axis_field)
plt.savefig(os.path.join(cfgs.plots, path_to_png+'.png'))
plt.show()
plt.gcf().clear()
if __name__ == '__main__':
path_to_logs = sys.argv[1:]
for path_to_log in path_to_logs:
if not os.path.exists(path_to_log):
print 'Path does not exist: %s' % path_to_log
sys.exit()
if not path_to_log.endswith(get_log_file_suffix()):
print 'Log file must end in %s.' % get_log_file_suffix()
## plot_chart accpets multiple path_to_logs
plot_chart(path_to_logs)