-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmulti_main.py
332 lines (288 loc) · 16.6 KB
/
multi_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#!/usr/bin/python3
# coding: utf-8
# @Time : 2020/11/10 11:07
import time
from tqdm import tqdm
import logging
import sys
import argparse
import pandas as pd
import torch
import torch.optim as optim
from utils.utils import save_json_data, create_dir, load_pkl_data
from common.mbr import MBR
from common.spatial_func import SPoint, distance
from common.road_network import load_rn_shp
from models.datasets import Dataset, collate_fn, split_data
from models.model_utils import load_rn_dict, load_rid_freqs, get_rid_grid, get_poi_info, get_rn_info
from models.model_utils import get_online_info_dict, epoch_time, AttrDict, get_rid_rnfea_dict
from models.multi_train import evaluate, init_weights, train
from models.models_attn_tandem import Encoder, DecoderMulti, Seq2SeqMulti
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Multi-task Traj Interp')
parser.add_argument('--module_type', type=str, default='simple', help='module type')
parser.add_argument('--keep_ratio', type=float, default=0.125, help='keep ratio in float')
parser.add_argument('--lambda1', type=int, default=10, help='weight for multi task rate')
parser.add_argument('--hid_dim', type=int, default=512, help='hidden dimension')
parser.add_argument('--epochs', type=int, default=10, help='epochs')
parser.add_argument('--grid_size', type=int, default=50, help='grid size in int')
parser.add_argument('--dis_prob_mask_flag', action='store_true', help='flag of using prob mask')
parser.add_argument('--pro_features_flag', action='store_true', help='flag of using profile features')
parser.add_argument('--online_features_flag', action='store_true', help='flag of using online features')
parser.add_argument('--tandem_fea_flag', action='store_true', help='flag of using tandem rid features')
parser.add_argument('--no_attn_flag', action='store_false', help='flag of using attention')
parser.add_argument('--load_pretrained_flag', action='store_true', help='flag of load pretrained model')
parser.add_argument('--model_old_path', type=str, default='', help='old model path')
parser.add_argument('--no_debug', action='store_false', help='flag of debug')
parser.add_argument('--no_train_flag', action='store_false', help='flag of training')
parser.add_argument('--test_flag', action='store_true', help='flag of testing')
opts = parser.parse_args()
debug = opts.no_debug
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args = AttrDict()
args_dict = {
'module_type':opts.module_type,
'debug':debug,
'device':device,
# pre train
'load_pretrained_flag':opts.load_pretrained_flag,
'model_old_path':opts.model_old_path,
'train_flag':opts.no_train_flag,
'test_flag':opts.test_flag,
# attention
'attn_flag':opts.no_attn_flag,
# constranit
'dis_prob_mask_flag':opts.dis_prob_mask_flag,
'search_dist':50,
'beta':15,
# features
'tandem_fea_flag':opts.tandem_fea_flag,
'pro_features_flag':opts.pro_features_flag,
'online_features_flag':opts.online_features_flag,
# extra info module
'rid_fea_dim':8,
'pro_input_dim':30, # 24[hour] + 5[waether] + 1[holiday]
'pro_output_dim':8,
'poi_num':5,
'online_dim':5+5, # poi/roadnetwork features dim
'poi_type':'company,food,shopping,viewpoint,house',
# MBR
'min_lat':36.6456,
'min_lng':116.9854,
'max_lat':36.6858,
'max_lng':117.0692,
# input data params
'keep_ratio':opts.keep_ratio,
'grid_size':opts.grid_size,
'time_span':15,
'win_size':25,
'ds_type':'random',
'split_flag':True,
'shuffle':True,
# model params
'hid_dim':opts.hid_dim,
'id_emb_dim':128,
'dropout':0.5,
'id_size':2571+1,
'lambda1':opts.lambda1,
'n_epochs':opts.epochs,
'batch_size':128,
'learning_rate':1e-3,
'tf_ratio':0.5,
'clip':1,
'log_step':1
}
args.update(args_dict)
print('Preparing data...')
if args.split_flag:
traj_input_dir = "./data/raw_trajectory/"
output_dir = "./data/model_data/"
split_data(traj_input_dir, output_dir)
extra_info_dir = "./data/map/extra_info/"
rn_dir = "./data/map/road_network/"
train_trajs_dir = "./data/model_data/train_data/"
valid_trajs_dir = "./data/model_data/valid_data/"
test_trajs_dir = "./data/model_data/test_data/"
if args.tandem_fea_flag:
fea_flag = True
else:
fea_flag = False
if args.load_pretrained_flag:
model_save_path = args.model_old_path
else:
model_save_path = './results/'+args.module_type+'_kr_'+str(args.keep_ratio)+'_debug_'+str(args.debug)+\
'_gs_'+str(args.grid_size)+'_lam_'+str(args.lambda1)+\
'_attn_'+str(args.attn_flag)+'_prob_'+str(args.dis_prob_mask_flag)+\
'_fea_'+str(fea_flag)+'_'+time.strftime("%Y%m%d_%H%M%S") + '/'
create_dir(model_save_path)
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(levelname)s %(message)s',
filename=model_save_path + 'log.txt',
filemode='a')
rn = load_rn_shp(rn_dir, is_directed=True)
raw_rn_dict = load_rn_dict(extra_info_dir, file_name='raw_rn_dict.json')
new2raw_rid_dict = load_rid_freqs(extra_info_dir, file_name='new2raw_rid.json')
raw2new_rid_dict = load_rid_freqs(extra_info_dir, file_name='raw2new_rid.json')
rn_dict = load_rn_dict(extra_info_dir, file_name='rn_dict.json')
mbr = MBR(args.min_lat, args.min_lng, args.max_lat, args.max_lng)
grid_rn_dict, max_xid, max_yid = get_rid_grid(mbr, args.grid_size, rn_dict)
args_dict['max_xid'] = max_xid
args_dict['max_yid'] = max_yid
args.update(args_dict)
print(args)
logging.info(args_dict)
# load features
weather_dict = load_pkl_data(extra_info_dir, 'weather_dict.pkl')
if args.online_features_flag:
grid_poi_df = pd.read_csv(extra_info_dir+'poi'+str(args.grid_size)+'.csv',index_col=[0,1])
norm_grid_poi_dict = get_poi_info(grid_poi_df, args)
norm_grid_rnfea_dict = get_rn_info(rn, mbr, args.grid_size, grid_rn_dict, rn_dict)
online_features_dict = get_online_info_dict(grid_rn_dict, norm_grid_poi_dict, norm_grid_rnfea_dict, args)
else:
norm_grid_poi_dict, norm_grid_rnfea_dict, online_features_dict = None, None, None
if args:
rid_features_dict = get_rid_rnfea_dict(rn_dict, args)
else:
rid_features_dict = None
# load dataset
train_dataset = Dataset(train_trajs_dir, mbr=mbr, norm_grid_poi_dict=norm_grid_poi_dict,
norm_grid_rnfea_dict=norm_grid_rnfea_dict, weather_dict=weather_dict,
parameters=args, debug=debug)
valid_dataset = Dataset(valid_trajs_dir, mbr=mbr, norm_grid_poi_dict=norm_grid_poi_dict,
norm_grid_rnfea_dict=norm_grid_rnfea_dict, weather_dict=weather_dict,
parameters=args, debug=debug)
test_dataset = Dataset(test_trajs_dir, mbr=mbr, norm_grid_poi_dict=norm_grid_poi_dict,
norm_grid_rnfea_dict=norm_grid_rnfea_dict, weather_dict=weather_dict,
parameters=args, debug=debug)
print('training dataset shape: ' + str(len(train_dataset)))
print('validation dataset shape: ' + str(len(valid_dataset)))
print('test dataset shape: ' + str(len(test_dataset)))
train_iterator = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=args.shuffle, collate_fn=collate_fn,
num_workers=4, pin_memory=True)
valid_iterator = torch.utils.data.DataLoader(valid_dataset, batch_size=args.batch_size,
shuffle=args.shuffle, collate_fn=collate_fn,
num_workers=4, pin_memory=True)
test_iterator = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size,
shuffle=args.shuffle, collate_fn=collate_fn,
num_workers=4, pin_memory=True)
logging.info('Finish data preparing.')
logging.info('training dataset shape: ' + str(len(train_dataset)))
logging.info('validation dataset shape: ' + str(len(valid_dataset)))
logging.info('test dataset shape: ' + str(len(test_dataset)))
enc = Encoder(args)
dec = DecoderMulti(args)
model = Seq2SeqMulti(enc, dec, device).to(device)
model.apply(init_weights) # learn how to init weights
if args.load_pretrained_flag:
model.load_state_dict(torch.load(args.model_old_path + 'val-best-model.pt'))
print('model', str(model))
logging.info('model' + str(model))
if args.train_flag:
ls_train_loss, ls_train_id_acc1, ls_train_id_recall, ls_train_id_precision, \
ls_train_rate_loss, ls_train_id_loss = [], [], [], [], [], []
ls_valid_loss, ls_valid_id_acc1, ls_valid_id_recall, ls_valid_id_precision, \
ls_valid_dis_mae_loss, ls_valid_dis_rmse_loss = [], [], [], [], [], []
ls_valid_dis_rn_mae_loss, ls_valid_dis_rn_rmse_loss, ls_valid_rate_loss, ls_valid_id_loss = [], [], [], []
dict_train_loss = {}
dict_valid_loss = {}
best_valid_loss = float('inf') # compare id loss
# get all parameters (model parameters + task dependent log variances)
log_vars = [torch.zeros((1,), requires_grad=True, device=device)] * 2 # use for auto-tune multi-task param
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)
for epoch in tqdm(range(args.n_epochs)):
start_time = time.time()
new_log_vars, train_loss, train_id_acc1, train_id_recall, train_id_precision, \
train_rate_loss, train_id_loss = train(model, train_iterator, optimizer, log_vars,
rn_dict, grid_rn_dict, rn, raw2new_rid_dict,
online_features_dict, rid_features_dict, args)
valid_id_acc1, valid_id_recall, valid_id_precision, valid_dis_mae_loss, valid_dis_rmse_loss, \
valid_dis_rn_mae_loss, valid_dis_rn_rmse_loss, \
valid_rate_loss, valid_id_loss = evaluate(model, valid_iterator,
rn_dict, grid_rn_dict, rn, raw2new_rid_dict,
online_features_dict, rid_features_dict, raw_rn_dict,
new2raw_rid_dict, args)
ls_train_loss.append(train_loss)
ls_train_id_acc1.append(train_id_acc1)
ls_train_id_recall.append(train_id_recall)
ls_train_id_precision.append(train_id_precision)
ls_train_rate_loss.append(train_rate_loss)
ls_train_id_loss.append(train_id_loss)
ls_valid_id_acc1.append(valid_id_acc1)
ls_valid_id_recall.append(valid_id_recall)
ls_valid_id_precision.append(valid_id_precision)
ls_valid_dis_mae_loss.append(valid_dis_mae_loss)
ls_valid_dis_rmse_loss.append(valid_dis_rmse_loss)
ls_valid_dis_rn_mae_loss.append(valid_dis_rn_mae_loss)
ls_valid_dis_rn_rmse_loss.append(valid_dis_rn_rmse_loss)
ls_valid_rate_loss.append(valid_rate_loss)
ls_valid_id_loss.append(valid_id_loss)
valid_loss = valid_rate_loss + valid_id_loss
ls_valid_loss.append(valid_loss)
dict_train_loss['train_ttl_loss'] = ls_train_loss
dict_train_loss['train_id_acc1'] = ls_train_id_acc1
dict_train_loss['train_id_recall'] = ls_train_id_recall
dict_train_loss['train_id_precision'] = ls_train_id_precision
dict_train_loss['train_rate_loss'] = ls_train_rate_loss
dict_train_loss['train_id_loss'] = ls_train_id_loss
dict_valid_loss['valid_ttl_loss'] = ls_valid_loss
dict_valid_loss['valid_id_acc1'] = ls_valid_id_acc1
dict_valid_loss['valid_id_recall'] = ls_valid_id_recall
dict_valid_loss['valid_id_precision'] = ls_valid_id_precision
dict_valid_loss['valid_rate_loss'] = ls_valid_rate_loss
dict_valid_loss['valid_dis_mae_loss'] = ls_valid_dis_mae_loss
dict_valid_loss['valid_dis_rmse_loss'] = ls_valid_dis_rmse_loss
dict_valid_loss['valid_dis_rn_mae_loss'] = ls_valid_dis_rn_mae_loss
dict_valid_loss['valid_dis_rn_rmse_loss'] = ls_valid_dis_rn_rmse_loss
dict_valid_loss['valid_id_loss'] = ls_valid_id_loss
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), model_save_path + 'val-best-model.pt')
if (epoch % args.log_step == 0) or (epoch == args.n_epochs - 1):
logging.info('Epoch: ' + str(epoch + 1) + ' Time: ' + str(epoch_mins) + 'm' + str(epoch_secs) + 's')
weights = [torch.exp(weight) ** 0.5 for weight in new_log_vars]
logging.info('log_vars:' + str(weights))
logging.info('\tTrain Loss:' + str(train_loss) +
'\tTrain RID Acc1:' + str(train_id_acc1) +
'\tTrain RID Recall:' + str(train_id_recall) +
'\tTrain RID Precision:' + str(train_id_precision) +
'\tTrain Rate Loss:' + str(train_rate_loss) +
'\tTrain RID Loss:' + str(train_id_loss))
logging.info('\tValid Loss:' + str(valid_loss) +
'\tValid RID Acc1:' + str(valid_id_acc1) +
'\tValid RID Recall:' + str(valid_id_recall) +
'\tValid RID Precision:' + str(valid_id_precision) +
'\tValid Distance MAE Loss:' + str(valid_dis_mae_loss) +
'\tValid Distance RMSE Loss:' + str(valid_dis_rmse_loss) +
'\tValid Distance RN MAE Loss:' + str(valid_dis_rn_mae_loss) +
'\tValid Distance RN RMSE Loss:' + str(valid_dis_rn_rmse_loss) +
'\tValid Rate Loss:' + str(valid_rate_loss) +
'\tValid RID Loss:' + str(valid_id_loss))
torch.save(model.state_dict(), model_save_path + 'train-mid-model.pt')
save_json_data(dict_train_loss, model_save_path, "train_loss.json")
save_json_data(dict_valid_loss, model_save_path, "valid_loss.json")
if args.test_flag:
model.load_state_dict(torch.load(model_save_path + 'val-best-model.pt'))
start_time = time.time()
test_id_acc1, test_id_recall, test_id_precision, test_dis_mae_loss, test_dis_rmse_loss, \
test_dis_rn_mae_loss, test_dis_rn_rmse_loss, test_rate_loss, test_id_loss = evaluate(model, test_iterator,
rn_dict, grid_rn_dict, rn,
raw2new_rid_dict,
online_features_dict,
rid_features_dict,
raw_rn_dict, new2raw_rid_dict,
args)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
logging.info('Test Time: ' + str(epoch_mins) + 'm' + str(epoch_secs) + 's')
logging.info('\tTest RID Acc1:' + str(test_id_acc1) +
'\tTest RID Recall:' + str(test_id_recall) +
'\tTest RID Precision:' + str(test_id_precision) +
'\tTest Distance MAE Loss:' + str(test_dis_mae_loss) +
'\tTest Distance RMSE Loss:' + str(test_dis_rmse_loss) +
'\tTest Distance RN MAE Loss:' + str(test_dis_rn_mae_loss) +
'\tTest Distance RN RMSE Loss:' + str(test_dis_rn_rmse_loss) +
'\tTest Rate Loss:' + str(test_rate_loss) +
'\tTest RID Loss:' + str(test_id_loss))