-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
471 lines (386 loc) · 20.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# import PyTorch
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.tensorboard import SummaryWriter
# import python library
import os
import random
import numpy as np
import argparse
import zlib
import copy
import sys
import yaml
import time
import idx2numpy
from random import shuffle
from tqdm import tqdm
# import local library
import models
from fl_utils import (adjust_learning_rate, set_model, update_model, compute_client_gradients,
VirtualWorker, loss_prox, _zero_weights, adjust_gradient_by_scaffold, update_client_state, update_server_state, update_model_global_optim)
from utils import AverageMeter, Statistics, accuracy, Parser, LearningScheduler, UpdateScheduler, Cifar100_FL_Dataset, EMNIST_FL_Dataset
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('-cfg', '--cfg', default=None, type=str, required=True)
parser.add_argument('-seed', '--seed', default=None)
parser.add_argument('-data-path', '--data-path', default='/huipo/datasets', type=str)
parser.add_argument('-download', '--download', action='store_true')
parser.add_argument('-save_path', '--save_path', default='./saves', type=str)
# if start-epoch != 1, load the pretrained model
parser.add_argument('-start-epoch', '--start-epoch', default=1, type=int)
parser.add_argument('-start-model', '--start-model', default='./', type=str)
args = parser.parse_args()
with open(args.cfg, 'r') as stream:
settings = yaml.safe_load(stream)
args = Parser(args, settings)
args.name = os.path.basename(args.cfg).split('.')[0]
# used for keeping all model weights and the configuration file, etc.
args.train_dir = os.path.join(args.save_path, args.name)
if not os.path.exists(args.train_dir):
os.makedirs(args.train_dir)
print(args)
return args
def prepare_data(args, use_cuda):
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
split_in = False
if args.dataset == 'cifar10':
transform_train = transforms.Compose([
transforms.RandomCrop(
size=32,
padding=4),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(
brightness=0.4,
contrast=0.4,
saturation=0.4),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010) ),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = datasets.CIFAR10(args.data_path, train=True, transform=transform_train, download=args.download)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(args.data_path, train=False, transform=transform_test, download=args.download),
batch_size=args.test_batch_size, shuffle=False, **kwargs)
elif args.dataset == 'cifar100':
split_in = True
transform_train = transforms.Compose([
transforms.RandomCrop(
size=24,
padding=0),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(
brightness=0.4,
contrast=0.4,
saturation=0.4),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010) ),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = []
for i in range(args.n_client):
dset_tmp = Cifar100_FL_Dataset(args.data_path, i, transform=transform_train)
trainset.append(dset_tmp)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100(args.data_path, train=False, transform=transform_test, download=args.download),
batch_size=args.test_batch_size, shuffle=False, **kwargs)
elif args.dataset == 'mnist':
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
])
trainset = datasets.MNIST(args.data_path, train=True, transform=transform_train, download=args.download)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(args.data_path, train=False, transform=transform_test, download=args.download),
batch_size=args.test_batch_size, shuffle=False, **kwargs)
elif args.dataset == 'emnist':
split_in = True
data_num = np.load(f"{args.data_path}/EMNIST/num.npy").astype(np.uint)
data_start = np.array([0] + list(np.load(f"{args.data_path}/EMNIST/num.npy"))).astype(np.uint)
for i in range(1,len(data_start)):
data_start[i] = data_start[i] + data_start[i-1]
train_data_ubyte = idx2numpy.convert_from_file(f"{args.data_path}/EMNIST/emnist-byclass-train-images-idx3-ubyte")
train_label_ubyte = idx2numpy.convert_from_file(f"{args.data_path}/EMNIST/emnist-byclass-train-labels-idx1-ubyte")
test_data_ubyte = idx2numpy.convert_from_file(f"{args.data_path}/EMNIST/emnist-byclass-test-images-idx3-ubyte")
test_label_ubyte = idx2numpy.convert_from_file(f"{args.data_path}/EMNIST/emnist-byclass-test-labels-idx1-ubyte")
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
test_loader = torch.utils.data.DataLoader(
EMNIST_FL_Dataset(test_data_ubyte[:77483], test_label_ubyte[:77483], transform=transform_test ),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
trainset = []
for i in range(args.n_client):
dset_tmp = EMNIST_FL_Dataset(train_data_ubyte[data_start[i]:data_start[i]+data_num[i]], train_label_ubyte[data_start[i]:data_start[i]+data_num[i]], transform=transform_train )
trainset.append(dset_tmp)
else:
raise NotImplementedError()
return trainset, test_loader, split_in
def prepare_workers(args, trainset, use_cuda, split_in=False):
#kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
kwargs = {'pin_memory': True} if use_cuda else {}
# Create number of virtual workers that will act as clients
workers = {}
for i in range(args.n_client):
workers[i] = VirtualWorker(i)
# If split has been created outside the function, just assign it to the workers
if split_in:
if args.n_client != len(trainset):
raise ValueError(f'#client ({args.n_client}) != #training splits {len(trainset)}.')
for i in range(args.n_client):
workers[i].set_loader(torch.utils.data.DataLoader(trainset[i],
batch_size=args.batch_size, shuffle=True, **kwargs))
else: # divide the training set according to the noniid option
if args.noniid:
data_id, _ = noniid(trainset, args.n_client, args.shard_per_user)
print(f'non-iid split shape: {len(data_id)}x{data_id[0].shape}')
for i in range(args.n_client):
workers[i].set_loader(torch.utils.data.DataLoader(torch.utils.data.Subset(trainset, data_id[i]),
batch_size=args.batch_size, shuffle=True, **kwargs))
else:
data_id = list(range(len(trainset)))
shuffle(data_id)
n_sample_per_client = int(len(trainset) / args.n_client)
for i in range(args.n_client):
workers[i].set_loader(torch.utils.data.DataLoader(torch.utils.data.Subset(trainset, data_id[i*n_sample_per_client:i*n_sample_per_client+n_sample_per_client]),
batch_size=args.batch_size, shuffle=True, **kwargs))
return workers
def train(args, global_optim, full_model, subnet_server, subnet, state_server, metric,
device, workers, epoch, buffer, state_buffer, lr_scheduler, warmup=False):
subnet.train()
#current_lr = max(args['lr_scheduler']['lr'] * (1 + np.cos(np.pi * (epoch-1) / (args.epochs-1) ) ) / 2 , 1e-6)
#current_lr = args.lr
client_samples = list(range(args.n_client))
buffer['gradient_data'] = []
buffer['gradient_rec1'] = []
buffer['gradient_rec2'] = []
buffer['gradient_rec3'] = []
state_buffer['state_data'] = []
shuffle(client_samples)
for id_client in client_samples[:args.n_update_client]:
current_worker = workers[id_client]
current_data_loader = current_worker.loader
# mimic sending model weights to clients
start_time = time.time()
set_model(subnet_server, subnet.module, args)
print("--- %s seconds for copy submodel---" % (time.time() - start_time))
optimizer = current_worker.opt
#adjust_learning_rate(optimizer, current_lr)
if not warmup:
lr_scheduler.set_opt(optimizer)
for epoch_client in range(args.epoch_client):
epoch_time = time.time()
for batch_idx, (data, target) in enumerate(current_data_loader): # <-- now it is a distributed dataset
#start_time = time.time()
data, target = data.to(device), target.to(device)
#print("--- %s seconds for preparing data---" % (time.time() - epoch_time))
#start_time = time.time()
output = subnet(data)
if args.optimization == 'fedprox':
loss = metric(output, target) + args.mu_loss_prox * loss_prox(subnet_server , subnet.module, device)
else:
loss = metric(output, target)
if loss < 10:
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
#print("--- %s seconds for one training---" % (time.time() - start_time))
if global_optim['optim_init']:
global_optim['optim'].zero_grad()
loss_global = metric(subnet_server(data), target) * 0
loss_global.backward()
global_optim['optim'].step()
global_optim['optim_init'] = False
if batch_idx % args.log_interval == 0:
for param_group in optimizer.param_groups:
current_learning_rate = param_group['lr']
print('Train Epoch: {}, Client: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR: {:.4f}'.format(
epoch, id_client, batch_idx * args.batch_size, len(current_data_loader) * args.batch_size,
100. * batch_idx / len(current_data_loader) / 100, loss.item(), current_learning_rate ))
print("--- %s seconds for one local epoch---" % (time.time() - epoch_time))
#start_time = time.time()
compute_client_gradients(subnet_server, subnet.module, buffer, args)
update_model_global_optim(global_optim['optim'], subnet_server, buffer, device, args)
if not warmup:
lr_scheduler.step()
def test(args, model, device, test_loader, result):
model.eval()
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
pred = output.argmax(1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
print('Test set: Accuracy: {}/{} ({:.2f}%)\n'.format(
correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
result.append( 100. * correct / len(test_loader.dataset) )
model.train()
def create_server_opt(subnet_server, args):
global_optim = {}
if args.optimization == 'fedadam':
#global_optim['optim'] = optim.Adam(params=subnet_server.parameters(), lr=0.1, weight_decay=args.weight_decay)
global_optim['optim'] = optim.Adam(params=subnet_server.parameters(), lr=args.global_lr)
else:
global_optim['optim'] = optim.SGD(params=subnet_server.parameters(), lr=args.global_lr)
global_optim['optim_init'] = True
return global_optim
def main(args):
use_cuda = True if torch.cuda.is_available() else False
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
torch.manual_seed(args.seed)
random.seed(args.seed)
# data
trainset, test_loader, split_in = prepare_data(args, use_cuda)
# workers
workers = prepare_workers(args, trainset, use_cuda, split_in)
# Initialize the model
Network = getattr(models, args.arch)
model_server = Network(args).to(device)
n_param_model = 0
for parameter in model_server.parameters(): n_param_model += parameter.nelement()
print("# of model parameters: %d"%n_param_model)
if args.start_epoch != 1:
model_load_tmp = torch.load(args.start_model)
model.load_state_dict(model_load_tmp["state_dict"] , strict=False)
model_server.load_state_dict(model_load_tmp["state_dict"] , strict=False)
result = list(model_load_tmp["result"].numpy()[:-1])
if args.strategy == 'baseline':
layer_cnt = 3
else:
layer_cnt = 0
"""Dynamic updates, not used so far"""
if args.update_strategy == None:
update_scheduler = UpdateScheduler(args.update_cycle, num_stages=args.num_stages, update_strategy=None)
else:
update_scheduler = UpdateScheduler(model_server.return_stage_parameters(), num_stages=args.num_stages, update_strategy=args.update_strategy)
print(update_scheduler)
metric = nn.CrossEntropyLoss()
model_server.set_submodel(layer_cnt)
print(model_server)
# define subnets, which will be transmitted during training
subnet_server = model_server.gen_submodel().to(device)
global_optim = create_server_opt(subnet_server, args)
state_server = None
subnet = torch.nn.DataParallel(copy.deepcopy(subnet_server).to(device))
# initialize worker on every client
for i in range(args.n_client):
workers[i].set_opt(optim.SGD(params=subnet.parameters(), lr=args['lr_scheduler']['lr'], momentum=args.momentum, weight_decay=args.weight_decay))
lr_scheduler = LearningScheduler(args)
# log
writer = SummaryWriter(os.path.join('runs/', args.arch, args.name))
result = []
accu_cost = 0
for epoch in tqdm(range(args.start_epoch, args.epochs + 1)):
# Scheduling for progressive training
if (args.strategy != 'baseline' and epoch != 0 and
epoch == update_scheduler[layer_cnt] and layer_cnt < args.num_stages-1):
layer_cnt += 1
model_server.set_submodel(layer_cnt)
if args.strategy != 'svcca':
subnet_server = model_server.gen_submodel().to(device)
subnet = torch.nn.DataParallel(copy.deepcopy(subnet_server).to(device))
else:
subnet_server.ind = layer_cnt
subnet = torch.nn.DataParallel(copy.deepcopy(subnet_server).to(device))
print(f'{args.strategy}, {layer_cnt}')
print(subnet_server)
# Handling warm-up
if args.warmup and args.strategy != 'layerwise':
# initialize the global optimizer for warm-up
global_optim = create_server_opt(subnet_server, args)
for j in range(args.n_client):
workers[j].set_opt(optim.SGD(params=subnet.module.lastest_parameters(), lr=args['lr_scheduler']['lr'],
#workers[j].set_opt(optim.SGD(params=subnet.lastest_parameters(), lr=10*args['lr_scheduler']['lr'],
momentum=args.momentum,
weight_decay=args.weight_decay))
for w_i in range(args.warmup_epochs):
print(f'{w_i}th warmup')
cur_cost += sum(p.numel() for p in subnet_server.lastest_parameters())
if args.quantize_option != 'none':
accu_cost += args.n_update_client * (cur_cost*args.quantize_bits/8/1000/1000)
else:
accu_cost += args.n_update_client * (cur_cost*4/1000/1000)
train(args, global_optim, model_server, subnet_server, subnet, state_server, metric, device, workers, epoch, buffer, state_buffer, lr_scheduler, warmup=True)
# Prepare training new sub-models and re-init the global optimizer
global_optim = create_server_opt(subnet_server, args)
if args.strategy == 'layerwise':
for i in range(args.n_client):
workers[i].set_opt(optim.SGD(params=subnet.module.lastest_parameters(), lr=args['lr_scheduler']['lr'],
momentum=args.momentum,
weight_decay=args.weight_decay))
elif args.strategy == 'mixed' or args.strategy == 'dense':
raise NotImplementedError()
elif args.strategy in ['progressive', 'partial', 'svcca']:
for i in range(args.n_client):
workers[i].set_opt(optim.SGD(params=subnet.module.trainable_parameters(), lr=args['lr_scheduler']['lr'],
momentum=args.momentum,
weight_decay=args.weight_decay))
else:
raise NotImplementedError()
#lr_scheduler.set_opt(opt)
# record communication cost
if args.strategy == 'layerwise':
cur_cost = sum(p.numel() for p in subnet_server.lastest_parameters())
elif args.strategy == 'mixed':
cur_cost = (sum(p.numel() for p in subnet_server.trainable_parameters()) + sum(p.numel() for p in model_server.fc.parameters()))
else:
cur_cost = subnet_server.return_num_parameters()
# megabytes
if args.quantize_option != 'none':
accu_cost += args.n_update_client * (cur_cost*args.quantize_bits/8/1000/1000)
else:
accu_cost += args.n_update_client * (cur_cost*4/1000/1000)
buffer = {}
state_buffer = {}
train(args, global_optim, model_server, subnet_server, subnet, state_server, metric, device, workers, epoch, buffer, state_buffer, lr_scheduler)
if epoch % args.test_interval == 0:
#test(args, model_server, device, test_loader, result)
start_time = time.time()
test(args, subnet_server, device, test_loader, result)
print("--- %s seconds for test---" % (time.time() - start_time))
writer.add_scalar('Metric/acc-epoch', result[-1], epoch)
writer.add_scalar('Metric/acc-cost', result[-1], accu_cost)
writer.add_scalar('Debug/layer_cnt', layer_cnt, epoch)
writer.add_scalar('Debug/lr', lr_scheduler.get_lr(), epoch)
if args.save_model and epoch % args.save_interval == 1 and epoch != 1:
file_name = os.path.join(args.train_dir, 'model_%04d.tar'%epoch )
res = torch.from_numpy(np.array(result))
torch.save({
'args': vars(args),
'epoch': epoch,
'state_dict': model_server.state_dict(),
#'optim_dict': opt.state_dict(),
}, file_name)
if (args.save_model):
file_name = os.path.join(args.train_dir, 'model_last.tar')
res = torch.from_numpy(np.array(result))
torch.save({
'args': vars(args),
'epoch': epoch,
'state_dict': model_server.state_dict(),
#'optim_dict': opt.state_dict(),
}, file_name)
writer.close()
if __name__ == '__main__':
args = parse_args()
main(args)