-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathpred.py
162 lines (136 loc) · 6.2 KB
/
pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
'''
Created on Nov, 2016
@author: hugo
'''
from __future__ import absolute_import
import argparse
import math
import numpy as np
from autoencoder.core.ae import load_ae_model
from autoencoder.preprocessing.preprocessing import load_corpus, doc2vec
from autoencoder.utils.op_utils import vecnorm, revdict, unitmatrix
from autoencoder.utils.io_utils import dump_json, write_file
from autoencoder.testing.visualize import word_cloud
def calc_pairwise_cosine(model):
weights = model.get_weights()[0]
weights = unitmatrix(weights, axis=0) # normalize
n = weights.shape[1]
score = []
for i in range(n):
for j in range(i + 1, n):
score.append(np.arccos(weights[:, i].dot(weights[:, j])))
return np.mean(score), np.std(score)
def calc_pairwise_dev(model):
# the average squared deviation from 0 (90 degree)
weights = model.get_weights()[0]
weights = unitmatrix(weights, axis=0) # normalize
n = weights.shape[1]
score = 0.
for i in range(n):
for j in range(i + 1, n):
score += (weights[:, i].dot(weights[:, j]))**2
return np.sqrt(2. * score / n / (n - 1))
def get_similar_words(model, query_id, vocab, topn=10):
weights = model.get_weights()[0]
weights = unitmatrix(weights) # normalize
query = weights[query_id]
score = query.dot(weights.T)
vidx = score.argsort()[::-1][:topn]
return [vocab[idx] for idx in vidx]
def translate_words(model, query, vocab, revocab, topn=10):
weights = model.get_weights()[0]
weights = unitmatrix(weights) # normalize
query_vec = weights[vocab[query[0]]] - weights[vocab[query[1]]] + weights[vocab[query[2]]]
score = query_vec.dot(weights.T)
vidx = score.argsort()[::-1][:topn]
return [revocab[idx] for idx in vidx]
def get_topics(model, vocab, topn=10):
topics = []
weights = model.get_weights()[0]
for idx in range(model.output_shape[1]):
token_idx = np.argsort(weights[:, idx])[::-1][:topn]
topics.append([vocab[x] for x in token_idx])
return topics
def get_topics_strength(model, vocab, topn=10):
topics = []
weights = model.get_weights()[0]
for idx in range(model.output_shape[1]):
token_idx = np.argsort(weights[:, idx])[::-1][:topn]
topics.append([(vocab[x], weights[x, idx]) for x in token_idx])
return topics
def print_topics(topics):
for i in range(len(topics)):
str_topic = ' + '.join(['%s * %s' % (prob, token) for token, prob in topics[i]])
print 'topic %s:' % i
print str_topic
print
def test(args):
corpus = load_corpus(args.input)
vocab, docs = corpus['vocab'], corpus['docs']
n_vocab = len(vocab)
doc_keys = docs.keys()
X_docs = []
for k in doc_keys:
X_docs.append(vecnorm(doc2vec(docs[k], n_vocab), 'logmax1', 0))
del docs[k]
X_docs = np.r_[X_docs]
ae = load_ae_model(args.load_model)
doc_codes = ae.predict(X_docs)
dump_json(dict(zip(doc_keys, doc_codes.tolist())), args.output)
print 'Saved doc codes file to %s' % args.output
if args.save_topics:
topics_strength = get_topics_strength(ae, revdict(vocab), topn=10)
save_topics_strength(topics_strength, args.save_topics)
# topics = get_topics(ae, revdict(vocab), topn=10)
# write_file(topics, args.save_topics)
print 'Saved topics file to %s' % args.save_topics
if args.word_clouds:
queries = ['interest', 'trust', 'cash', 'payment', 'rate', 'price', 'stock', 'share', 'award', 'risk', 'security', 'bank', 'company',
'service', 'grant', 'agreement', 'proxy', 'loan', 'capital', 'asset', 'bonus', 'shareholder', 'income', 'financial', 'net', 'purchase',
'position', 'management', 'loss', 'salary', 'stockholder', 'due', 'business', 'transaction', 'govern', 'trading',
'tax', 'march', 'april', 'june', 'july']
weights = ae.get_weights()[0]
weights = unitmatrix(weights) # normalize
word_cloud(weights, vocab, queries, save_file=args.word_clouds)
print 'Saved word clouds file to %s' % args.word_clouds
if args.sample_words:
revocab = revdict(vocab)
queries = ['weapon', 'christian', 'compani', 'israel', 'law', 'hockey', 'comput', 'space']
words = []
for each in queries:
words.append(get_similar_words(ae, vocab[each], revocab, topn=11))
write_file(words, args.sample_words)
print 'Saved sample words file to %s' % args.sample_words
if args.translate_words:
revocab = revdict(vocab)
queries = [['father', 'man', 'woman'], ['mother', 'woman', 'man']]
for each in queries:
print each
print translate_words(ae, each, vocab, revocab, topn=10)
if args.calc_distinct:
# mean, std = calc_pairwise_cosine(ae)
# print 'Average pairwise angle (pi): %s (%s)' % (mean / math.pi, std / math.pi)
sd = calc_pairwise_dev(ae)
print 'Average squared deviation from 0 (90 degree): %s' % sd
def save_topics_strength(topics_prob, out_file):
try:
with open(out_file, 'w') as datafile:
for topic in topics_prob:
datafile.write(' + '.join(["%s * %s" % each for each in topic]) + '\n')
datafile.write('\n')
except Exception as e:
raise e
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', type=str, required=True, help='path to the input corpus file')
parser.add_argument('-o', '--output', type=str, required=True, help='path to the output doc codes file')
parser.add_argument('-st', '--save_topics', type=str, help='path to the output topics file')
parser.add_argument('-sw', '--sample_words', type=str, help='path to the output sample words file')
parser.add_argument('-wc', '--word_clouds', type=str, help='path to the output word clouds file')
parser.add_argument('-tw', '--translate_words', action='store_true', help='translate words flag')
parser.add_argument('-cd', '--calc_distinct', action='store_true', help='calc average pairwise angle')
parser.add_argument('-lm', '--load_model', type=str, required=True, help='path to the trained model file')
args = parser.parse_args()
test(args)
if __name__ == '__main__':
main()