-
Notifications
You must be signed in to change notification settings - Fork 28.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. Weβll occasionally send you account related emails.
Already on GitHub? Sign in to your account
π CTRLsum #9001
Labels
Comments
I ported this model for easy use in Hugging Face Transformers. Try using the code below! 1. Create models and tokenizers>> from transformers import AutoModelForSeq2SeqLM, PreTrainedTokenizerFast
>>> model = AutoModelForSeq2SeqLM.from_pretrained("hyunwoongko/ctrlsum-cnndm")
>>> # model = AutoModelForSeq2SeqLM.from_pretrained("hyunwoongko/ctrlsum-arxiv")
>>> # model = AutoModelForSeq2SeqLM.from_pretrained("hyunwoongko/ctrlsum-bigpatent")
>>> tokenizer = PreTrainedTokenizerFast.from_pretrained("hyunwoongko/ctrlsum-cnndm")
>>> # tokenizer = PreTrainedTokenizerFast.from_pretrained("hyunwoongko/ctrlsum-arxiv")
>>> # tokenizer = PreTrainedTokenizerFast.from_pretrained("hyunwoongko/ctrlsum-bigpatent") 2. Unconditioned summarization>>> data = tokenizer("My name is Kevin. I love dogs. I loved dogs from 1996. Today, I'm going to walk on street with my dogs", return_tensors="pt")
>>> input_ids, attention_mask = data["input_ids"], data["attention_mask"]
>>> tokenizer.batch_decode(model.generate(input_ids, attention_mask=attention_mask, num_beams=5))[0]
'</s>My name is Kevin. I loved dogs from 1996.</s>' 3. Conditioned summarization
>>> data = tokenizer("today plan => My name is Kevin. I love dogs. I loved dogs from 1996. Today, I'm going to walk on street with my dogs", return_tensors="pt")
>>> input_ids, attention_mask = data["input_ids"], data["attention_mask"]
>>> tokenizer.batch_decode(model.generate(input_ids, attention_mask=attention_mask, num_beams=5))[0]
"</s> Today, I'm going to walk on street with my dogs. I loved dogs from 1996</s>" 4. Prompt summarization
>>> data = tokenizer("Q:What is my name? A: => My name is Kevin. I love dogs. I loved dogs from 1996. Today, I'm going to walk on street with my dogs", return_tensors="pt")
>>> input_ids, attention_mask = data["input_ids"], data["attention_mask"]
>>> tokenizer.batch_decode(model.generate(input_ids, attention_mask=attention_mask, num_beams=5, decoder_input_ids=tokenizer("Q:What is My name? A:", return_tensors="pt")["input_ids"][:, :-1]))[0]
'<s>Q:What is My name? A: Kevin.</s>' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
π New model addition
Model description
Open source status
The text was updated successfully, but these errors were encountered: