diff --git a/src/transformers/trainer.py b/src/transformers/trainer.py index a5fcde1f93f664..678052b5ccbd2b 100755 --- a/src/transformers/trainer.py +++ b/src/transformers/trainer.py @@ -2867,6 +2867,8 @@ def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = Fa def _save_tpu(self, output_dir: Optional[str] = None): output_dir = output_dir if output_dir is not None else self.args.output_dir logger.info(f"Saving model checkpoint to {output_dir}") + model = self.model + model.to("cpu") if xm.is_master_ordinal(): os.makedirs(output_dir, exist_ok=True) @@ -2875,25 +2877,27 @@ def _save_tpu(self, output_dir: Optional[str] = None): # Save a trained model and configuration using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` xm.rendezvous("saving_checkpoint") - if not isinstance(self.model, PreTrainedModel): - if isinstance(unwrap_model(self.model), PreTrainedModel): - unwrap_model(self.model).to("cpu").save_pretrained( + if not isinstance(model, PreTrainedModel): + if isinstance(unwrap_model(model), PreTrainedModel): + unwrap_model(model).save_pretrained( output_dir, is_main_process=self.args.should_save, - state_dict=self.model.state_dict(), + state_dict=model.state_dict(), save_function=xm.save, ) else: logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.") - state_dict = self.model.state_dict().to("cpu") + state_dict = model.state_dict() xm.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME)) else: - self.model.to("cpu").save_pretrained( - output_dir, is_main_process=self.args.should_save, save_function=xm.save - ) + model.save_pretrained(output_dir, is_main_process=self.args.should_save, save_function=xm.save) if self.tokenizer is not None and self.args.should_save: self.tokenizer.save_pretrained(output_dir) + # We moved the model from TPU -> CPU for saving the weights. + # Now we should move it back to subsequent compute still works. + model.to(self.args.device) + def _save(self, output_dir: Optional[str] = None, state_dict=None): # If we are executing this function, we are the process zero, so we don't check for that. output_dir = output_dir if output_dir is not None else self.args.output_dir