diff --git a/subtitles/zh-CN/58_what-is-domain-adaptation.srt b/subtitles/zh-CN/58_what-is-domain-adaptation.srt index 7f3757b1e..b623e5bde 100644 --- a/subtitles/zh-CN/58_what-is-domain-adaptation.srt +++ b/subtitles/zh-CN/58_what-is-domain-adaptation.srt @@ -15,7 +15,7 @@ 4 00:00:05,910 --> 00:00:07,923 -- 什么是领域适应? +- 什么是域适配? - What is domain adaptation? 5 @@ -25,12 +25,12 @@ When fine-tuning a pre-trained model on a new dataset, 6 00:00:12,540 --> 00:00:15,480 -我们获得的微调模型将做出预测 +我们适配新的数据集所获得的微调模型 the fine-tuned model we obtain will make predictions 7 00:00:15,480 --> 00:00:17,433 -适应这个新数据集。 +将做出预测。 that are attuned to this new dataset. 8 @@ -40,47 +40,47 @@ When the two models are trained with the same task, 9 00:00:21,840 --> 00:00:25,320 -然后我们可以比较他们对相同输入的预测。 +我们可以使用相同的输入比较他们的预测结果。 we can then compare their predictions on the same input. 10 00:00:25,320 --> 00:00:27,870 -两个模型的预测会有所不同 +两个模型的预测结果 The predictions of the two models will be different 11 00:00:27,870 --> 00:00:29,790 -以反映差异的方式 +会以一种方式反映 in a way that reflects the differences 12 00:00:29,790 --> 00:00:31,680 -在两个数据集之间, +两个数据集之间的差别 between the two datasets, 13 00:00:31,680 --> 00:00:34,053 -我们称之为领域适应的现象。 +就是我们称之为域适配的现象。 a phenomenon we call domain adaptation. 14 00:00:35,310 --> 00:00:38,640 -让我们看一个带有掩码语言建模的例子 +让我们通过带有版本微调 Let's look at an example with masked language modeling 15 00:00:38,640 --> 00:00:41,910 -通过比较预训练的 DistilBERT 模型的输出 +比较预训练的 DistilBERT 模型的输出 by comparing the outputs of the pre-trained DistilBERT model 16 00:00:41,910 --> 00:00:43,080 -版本微调 +看一个和掩码语言建模相关的例子 with the version fine-tuned 17 00:00:43,080 --> 00:00:45,273 -在课程的第 7 章中,链接如下。 +该内容在课程的第 7 章中,链接如下。 in chapter 7 of the course, linked below. 18 @@ -100,27 +100,27 @@ has its first two predictions linked to cinema. 21 00:00:54,390 --> 00:00:57,210 -由于它在电影评论数据集上进行了微调, +由于它是基于电影评论数据集上进行了微调, Since it was fine-tuned on a movie reviews dataset, 22 00:00:57,210 --> 00:00:58,680 -看到是完全正常的 +因此它像这样调整它的推荐结果 it's perfectly normal to see 23 00:00:58,680 --> 00:01:01,440 -它像这样调整了它的建议。 +是完全正常的。 it adapted its suggestions like this. 24 00:01:01,440 --> 00:01:03,090 -注意它如何保持相同的预测 +注意它作为之后的预训练模型 Notice how it keeps the same prediction 25 00:01:03,090 --> 00:01:05,220 -作为之后的预训练模型。 +如何保持相同的预测。 as the pre-trained model afterward. 26 @@ -130,7 +130,7 @@ Even if the fine-tuned model adapts to the new dataset, 27 00:01:08,100 --> 00:01:10,450 -它不会忘记预先训练的内容。 +它不会遗失预先训练的内容。 it's not forgetting what it was pre-trained on. 28 @@ -140,57 +140,57 @@ This is another example on a translation task. 29 00:01:14,220 --> 00:01:17,310 -最重要的是,我们使用预训练的法语 / 英语模型, +在上面的代码里,我们使用预训练的法语 / 英语模型, On top, we use a pre-trained French/English model, 30 00:01:17,310 --> 00:01:21,330 -在底部,我们在第 7 章中微调的版本。 +在下面的代码里,是我们在第 7 章中微调的版本。 and at the bottom, the version we fine-tuned in chapter 7. 31 00:01:21,330 --> 00:01:23,610 -顶级模型在大量文本上进行了预训练, +上面的模型在大量文本上进行了预训练, The top model is pre-trained on lots of texts, 32 00:01:23,610 --> 00:01:25,170 -并留下技术英语术语, +并保留了英文中的技术术语, and leaves technical English terms, 33 00:01:25,170 --> 00:01:28,350 -像插件和电子邮件,翻译不变。 +像 plugin 和 email 这样的单词,是不会被翻译的。 like plugin and email, unchanged in the translation. 34 00:01:28,350 --> 00:01:31,350 -两者都被法国人完全理解。 +法国用户都可以很好地理解两者。 Both are perfectly understood by French people. 35 00:01:31,350 --> 00:01:33,780 -为微调选择的数据集是一个数据集 +为微调模型选择的数据集是 The dataset picked for the fine-tuning is a dataset 36 00:01:33,780 --> 00:01:36,660 -特别注意的技术文本 +一个包含技术文本的数据集 of technical texts where special attention was picked 37 00:01:36,660 --> 00:01:39,150 -用法语翻译一切。 +其中特别将所有内容都翻译为法语。 on translating everything in French. 38 00:01:39,150 --> 00:01:42,090 -结果,经过微调的模型选择了那个习惯 +结果,经过微调的模型适应了该特征 As a result, the fine-tuned model picked that habit 39 00:01:42,090 --> 00:01:44,193 -并翻译了插件和电子邮件。 +并翻译了 plugin 和 email 两个词。 and translated both plugin and email. 40