forked from BinFuPKU/DPJF-MBS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Profile2Vec.py
56 lines (46 loc) · 2.33 KB
/
Profile2Vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
WORD_EMBED_DIM = 32
USER_EMBED_DIM = 16
class Profile2Vec(torch.nn.Module):
def __init__(self, word_embeddings, name):
super(Profile2Vec, self).__init__()
self.name = name
# profile: word embeddings for look_up
# embedding_matrix = [[0...0], [...], ...[]]
self.Word_Embeds = word_embeddings
self.ConvNet = torch.nn.Sequential(
# in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,...
torch.nn.Conv1d(in_channels=WORD_EMBED_DIM, out_channels=WORD_EMBED_DIM, kernel_size=5),
# BatchNorm1d只处理第二个维度
torch.nn.BatchNorm1d(WORD_EMBED_DIM),
torch.nn.ReLU(inplace=True),
torch.nn.MaxPool1d(kernel_size=3),
# in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,...
torch.nn.Conv1d(in_channels=WORD_EMBED_DIM, out_channels=USER_EMBED_DIM, kernel_size=5),
# BatchNorm1d只处理第二个维度
torch.nn.BatchNorm1d(USER_EMBED_DIM),
torch.nn.ReLU(inplace=True),
torch.nn.MaxPool1d(kernel_size=50)
)
# profiles: [batch_size, MAX_PROFILELEN, MAX_TERMLEN] = (40, 15, 50), word idx
# return [batch_size, USER_EMBED_DIM]
def forward(self, profiles):
# word level:
# [batch_size, MAX_PROFILELEN, MAX_TERMLEN] (40, 15, 50) ->
# [batch_size, MAX_PROFILELEN * MAX_TERMLEN](40 * 15, 50)
shape = profiles.shape
profiles_ = profiles.view([shape[0], -1])
# embeddings: [batch_size, MAX_PROFILELEN * MAX_TERMLEN, EMBED_DIM]
profiles_wordembed = self.Word_Embeds(profiles_).float()
# permute for conv1d
# embeddings: [batch_size, EMBED_DIM, MAX_PROFILELEN * MAX_TERMLEN]
profiles_wordembed_ = profiles_wordembed.permute(0, 2, 1)
# [batch_size, EMBED_DIM, x]
profiles_convs_out = self.ConvNet(profiles_wordembed_)
# [batch_size, EMBED_DIM, x] -> [batch_size, EMBED_DIM, 1]
profiles_len = profiles_convs_out.shape[-1]
profiles_final_out = torch.nn.MaxPool1d(kernel_size=profiles_len)(profiles_convs_out).squeeze(-1)
return profiles_final_out