forked from BinFuPKU/DPJF-MBS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
NCF.py
62 lines (50 loc) · 2.19 KB
/
NCF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence
from src.Preprocess.profile_word2vec import EMBED_DIM
USER_EMBED_DIM = 100
class NCF(torch.nn.Module):
def __init__(self, n_expects, n_jobs):
super(NCF, self).__init__()
self.n_expects = n_expects
self.n_jobs = n_jobs
# embeddings: learnable
self.expect_embeddings = torch.nn.Embedding(n_expects, USER_EMBED_DIM)
self.expect_embeddings.weight.requires_grad = True
self.job_embeddings = torch.nn.Embedding(n_jobs, USER_EMBED_DIM)
self.job_embeddings.weight.requires_grad = True
# MLP
self.mlp = torch.nn.Sequential(
torch.nn.Linear(2 * USER_EMBED_DIM, USER_EMBED_DIM),
torch.nn.ReLU(inplace=True),
torch.nn.Linear(USER_EMBED_DIM, USER_EMBED_DIM),
torch.nn.ReLU(inplace=True),
torch.nn.Linear(USER_EMBED_DIM, USER_EMBED_DIM),
)
# MLP
self.final_mlp = torch.nn.Sequential(
torch.nn.Linear(2 * USER_EMBED_DIM, USER_EMBED_DIM),
torch.nn.Sigmoid(),
torch.nn.Linear(USER_EMBED_DIM, 1),
torch.nn.Sigmoid()
)
def predict(self, ids1, ids2, e2j_flag=True):
expect_embed, job_embed = None, None
if e2j_flag:
expect_embed = self.expect_embeddings(ids1)
job_embed = self.job_embeddings(ids2)
else:
job_embed = self.job_embeddings(ids1)
expect_embed = self.expect_embeddings(ids2)
gmf_features = expect_embed * job_embed
mlp_features = self.mlp(torch.cat([expect_embed, job_embed], dim=-1))
return self.final_mlp(torch.cat([gmf_features, mlp_features], dim=-1)).squeeze(-1)
def forward(self, ids, ids_pair, e2j_flag=True):
scores_pos, scores_neg = None, None
if e2j_flag:
scores_pos = self.predict(ids, ids_pair[:, 0], True)
scores_neg = self.predict(ids, ids_pair[:, 1], True)
else:
scores_pos = self.predict(ids, ids_pair[:, 0], False)
scores_neg = self.predict(ids, ids_pair[:, 1], False)
return torch.sigmoid(scores_pos - scores_neg)