-
Notifications
You must be signed in to change notification settings - Fork 8
/
dael.py
210 lines (176 loc) · 7.35 KB
/
dael.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import torch.nn as nn
from dassl.data import DataManager
from dassl.optim import build_optimizer, build_lr_scheduler
from dassl.utils import count_num_param
from dassl.engine import TRAINER_REGISTRY, TrainerXU
from dassl.metrics import compute_accuracy
from dassl.engine.trainer import SimpleNet
from dassl.data.transforms import build_transform
from dassl.modeling.ops.utils import create_onehot
class Experts(nn.Module):
def __init__(self, n_source, fdim, num_classes):
super().__init__()
self.linears = nn.ModuleList(
[nn.Linear(fdim, num_classes) for _ in range(n_source)]
)
self.softmax = nn.Softmax(dim=1)
def forward(self, i, x):
x = self.linears[i](x)
x = self.softmax(x)
return x
@TRAINER_REGISTRY.register()
class DAEL(TrainerXU):
"""Domain Adaptive Ensemble Learning.
https://arxiv.org/abs/2003.07325.
"""
def __init__(self, cfg):
super().__init__(cfg)
n_domain = cfg.DATALOADER.TRAIN_X.N_DOMAIN
batch_size = cfg.DATALOADER.TRAIN_X.BATCH_SIZE
if n_domain <= 0:
n_domain = self.num_source_domains
self.split_batch = batch_size // n_domain
self.n_domain = n_domain
self.weight_u = cfg.TRAINER.DAEL.WEIGHT_U
self.conf_thre = cfg.TRAINER.DAEL.CONF_THRE
def check_cfg(self, cfg):
assert cfg.DATALOADER.TRAIN_X.SAMPLER == "RandomDomainSampler"
assert not cfg.DATALOADER.TRAIN_U.SAME_AS_X
assert len(cfg.TRAINER.DAEL.STRONG_TRANSFORMS) > 0
def build_data_loader(self):
cfg = self.cfg
tfm_train = build_transform(cfg, is_train=True)
custom_tfm_train = [tfm_train]
choices = cfg.TRAINER.DAEL.STRONG_TRANSFORMS
tfm_train_strong = build_transform(cfg, is_train=True, choices=choices)
custom_tfm_train += [tfm_train_strong]
dm = DataManager(self.cfg, custom_tfm_train=custom_tfm_train)
self.train_loader_x = dm.train_loader_x
self.train_loader_u = dm.train_loader_u
self.val_loader = dm.val_loader
self.test_loader = dm.test_loader
self.num_classes = dm.num_classes
self.num_source_domains = dm.num_source_domains
self.lab2cname = dm.lab2cname
def build_model(self):
cfg = self.cfg
print("Building F")
self.F = SimpleNet(cfg, cfg.MODEL, 0)
self.F.to(self.device)
print("# params: {:,}".format(count_num_param(self.F)))
self.optim_F = build_optimizer(self.F, cfg.OPTIM)
self.sched_F = build_lr_scheduler(self.optim_F, cfg.OPTIM)
self.register_model("F", self.F, self.optim_F, self.sched_F)
fdim = self.F.fdim
print("Building E")
self.E = Experts(self.num_source_domains, fdim, self.num_classes)
self.E.to(self.device)
print("# params: {:,}".format(count_num_param(self.E)))
self.optim_E = build_optimizer(self.E, cfg.OPTIM)
self.sched_E = build_lr_scheduler(self.optim_E, cfg.OPTIM)
self.register_model("E", self.E, self.optim_E, self.sched_E)
def forward_backward(self, batch_x, batch_u):
parsed_data = self.parse_batch_train(batch_x, batch_u)
input_x, input_x2, label_x, domain_x, input_u, input_u2 = parsed_data
input_x = torch.split(input_x, self.split_batch, 0)
input_x2 = torch.split(input_x2, self.split_batch, 0)
label_x = torch.split(label_x, self.split_batch, 0)
domain_x = torch.split(domain_x, self.split_batch, 0)
domain_x = [d[0].item() for d in domain_x]
# Generate pseudo label
with torch.no_grad():
feat_u = self.F(input_u)
pred_u = []
for k in range(self.num_source_domains):
pred_uk = self.E(k, feat_u)
pred_uk = pred_uk.unsqueeze(1)
pred_u.append(pred_uk)
pred_u = torch.cat(pred_u, 1) # (B, K, C)
# Get the highest probability and index (label) for each expert
experts_max_p, experts_max_idx = pred_u.max(2) # (B, K)
# Get the most confident expert
max_expert_p, max_expert_idx = experts_max_p.max(1) # (B)
pseudo_label_u = []
for i, experts_label in zip(max_expert_idx, experts_max_idx):
pseudo_label_u.append(experts_label[i])
pseudo_label_u = torch.stack(pseudo_label_u, 0)
pseudo_label_u = create_onehot(pseudo_label_u, self.num_classes)
pseudo_label_u = pseudo_label_u.to(self.device)
label_u_mask = (max_expert_p >= self.conf_thre).float()
loss_x = 0
loss_cr = 0
acc_x = 0
feat_x = [self.F(x) for x in input_x]
feat_x2 = [self.F(x) for x in input_x2]
feat_u2 = self.F(input_u2)
for feat_xi, feat_x2i, label_xi, i in zip(
feat_x, feat_x2, label_x, domain_x
):
cr_s = [j for j in domain_x if j != i]
# Learning expert
pred_xi = self.E(i, feat_xi)
loss_x += (-label_xi * torch.log(pred_xi + 1e-5)).sum(1).mean()
expert_label_xi = pred_xi.detach()
acc_x += compute_accuracy(pred_xi.detach(),
label_xi.max(1)[1])[0].item()
# Consistency regularization
cr_pred = []
for j in cr_s:
pred_j = self.E(j, feat_x2i)
pred_j = pred_j.unsqueeze(1)
cr_pred.append(pred_j)
cr_pred = torch.cat(cr_pred, 1)
cr_pred = cr_pred.mean(1)
loss_cr += ((cr_pred - expert_label_xi)**2).sum(1).mean()
loss_x /= self.n_domain
loss_cr /= self.n_domain
acc_x /= self.n_domain
# Unsupervised loss
pred_u = []
for k in range(self.num_source_domains):
pred_uk = self.E(k, feat_u2)
pred_uk = pred_uk.unsqueeze(1)
pred_u.append(pred_uk)
pred_u = torch.cat(pred_u, 1)
pred_u = pred_u.mean(1)
l_u = (-pseudo_label_u * torch.log(pred_u + 1e-5)).sum(1)
loss_u = (l_u * label_u_mask).mean()
loss = 0
loss += loss_x
loss += loss_cr
loss += loss_u * self.weight_u
self.model_backward_and_update(loss)
loss_summary = {
"loss_x": loss_x.item(),
"acc_x": acc_x,
"loss_cr": loss_cr.item(),
"loss_u": loss_u.item(),
}
if (self.batch_idx + 1) == self.num_batches:
self.update_lr()
return loss_summary
def parse_batch_train(self, batch_x, batch_u):
input_x = batch_x["img"]
input_x2 = batch_x["img2"]
label_x = batch_x["label"]
domain_x = batch_x["domain"]
input_u = batch_u["img"]
input_u2 = batch_u["img2"]
label_x = create_onehot(label_x, self.num_classes)
input_x = input_x.to(self.device)
input_x2 = input_x2.to(self.device)
label_x = label_x.to(self.device)
input_u = input_u.to(self.device)
input_u2 = input_u2.to(self.device)
return input_x, input_x2, label_x, domain_x, input_u, input_u2
def model_inference(self, input):
f = self.F(input)
p = []
for k in range(self.num_source_domains):
p_k = self.E(k, f)
p_k = p_k.unsqueeze(1)
p.append(p_k)
p = torch.cat(p, 1)
p = p.mean(1)
return p