-
Notifications
You must be signed in to change notification settings - Fork 7
/
csl_detr_r50_dota.py
156 lines (153 loc) · 5.28 KB
/
csl_detr_r50_dota.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# -*- coding: utf-8 -*-
angle_version = 'le90'
_base_ = [
'../_base_/datasets/dotav1.py', '../_base_/schedules/schedule_1x.py',
'../_base_/default_runtime.py'
]
model = dict(
type='ARSDETR',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='ChannelMapper',
in_channels=[512, 1024, 2048],
kernel_size=1,
out_channels=256,
act_cfg=None,
norm_cfg=dict(type='GN', num_groups=32),
num_outs=4),
bbox_head=dict(
type='ARSDeformableDETRHead',
num_query=300,
num_classes=15,
in_channels=2048,
sync_cls_avg_factor=True,
with_box_refine=True,
as_two_stage=True,
angle_coder=dict(
type='CSLCoder',
angle_version=angle_version,
omega=1,
window='gaussian',
radius=6),
transformer=dict(
type='ARSRotatedDeformableDetrTransformer',
two_stage_num_proposals=300,
encoder=dict(
type='DetrTransformerEncoder',
num_layers=6,
transformerlayers=dict(
type='BaseTransformerLayer',
attn_cfgs=dict(
type='MultiScaleDeformableAttention', embed_dims=256),
feedforward_channels=1024,
ffn_dropout=0.1,
operation_order=('self_attn', 'norm', 'ffn', 'norm'))),
decoder=dict(
type='ARSRotatedDeformableDetrTransformerDecoder',
num_layers=6,
return_intermediate=True,
transformerlayers=dict(
type='DetrTransformerDecoderLayer',
attn_cfgs=[
dict(
type='MultiheadAttention',
embed_dims=256,
num_heads=8,
dropout=0.1),
dict(
type='MultiScaleDeformableAttention',
embed_dims=256)
],
feedforward_channels=1024,
ffn_dropout=0.1,
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
'ffn', 'norm')))),
positional_encoding=dict(
type='SinePositionalEncoding',
num_feats=128,
normalize=True,
offset=-0.5),
bbox_coder=dict(
type='DeltaXYWHAOBBoxCoder',
angle_range=angle_version,
norm_factor=None,
edge_swap=True,
proj_xy=True,
target_means=(.0, .0, .0, .0, .0),
target_stds=(1, 1, 1, 1, 1)),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=2.0),
loss_bbox=dict(type='L1Loss', loss_weight=2.0),
loss_iou=dict(type='GIoULoss', loss_weight=5.0),
reg_decoded_bbox=True,
loss_angle=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=2.0),
),
# training and testing settings
train_cfg=dict(
assigner=dict(
type='ARS_HungarianAssigner',
cls_cost=dict(type='FocalLossCost', weight=2.0),
reg_cost=dict(type='BBoxL1Cost', weight=2.0, box_format='xywh'),
iou_cost=dict(type='IoUCost', iou_mode='giou', weight=5.0),
angle_cost=dict(type='CrossEntropyLossCost', weight=2.0)
)),
test_cfg=dict()
)
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RResize', img_scale=(1024, 1024)),
dict(
type='RRandomFlip',
flip_ratio=[0.25, 0.25, 0.25],
direction=['horizontal', 'vertical', 'diagonal'],
version=angle_version),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(pipeline=train_pipeline, version=angle_version),
val=dict(version=angle_version),
test=dict(version=angle_version))
optimizer = dict(
_delete_=True,
type='AdamW',
lr=1e-4,
weight_decay=0.00001,
betas=(0.9, 0.999),
paramwise_cfg=dict(
custom_keys={
'backbone': dict(lr_mult=0.1),
'sampling_offsets': dict(lr_mult=0.1),
'reference_points': dict(lr_mult=0.1)
}))
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(policy='step', step=[32])
runner = dict(type='EpochBasedRunner', max_epochs=36)
checkpoint_config = dict(interval=1)
evaluation = dict(interval=1,
save_best='auto',
metric='mAP')
find_unused_parameters = True
work_dir = 'work_dirs/new_refine/'