-
Notifications
You must be signed in to change notification settings - Fork 50
/
RegNet3D.py
452 lines (412 loc) · 26.4 KB
/
RegNet3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import argparse
import copy
import datetime
import logging
import matplotlib as mpl
import multiprocessing
import numpy as np
import os
from pathlib import Path
import shutil
import tensorflow as tf
import time
import functions.reading as reading
import functions.general_utils as gut
import functions.setting.setting_utils as su
import functions.network as network
import functions.tf_utils as tfu
def run_regnet(setting, stage=None):
"""
The main script to train the RegNet. It is possible to train for all stages with a for loop define in initialize()
:param setting: an initialized setting only have the root address
:param stage: RegNets: overwrite the stage
:return:
"""
load_model = False
network_name = 'crop4_connection' # choosing a network available in functions.network: 'decimation4', 'crop4_connection', 'unet1'
setting['stage'] = 1 # RegNets : 4, 2, 1
setting['AGMode'] = 'Resp' # Artificial Generation Mode: 'Resp', 'NoResp', 'SingleOnly', 'MixedOnly', 'SingleResp' , 'Visualization'
setting['use_keras'] = False # Use tf.keras.layers or tf.layers
deform_exp_s1 = '3D_max7_D14_K' # artificial generation defined in functions.setting.experiment_setting: '3D_max7_D14_K', '3D_max15_SingleFrequency_Visualization
setting['start_chunk'] = 0 # whether to start from the beginning or not
if stage is not None:
setting['stage'] = stage # overwrite the stage if it is given
if load_model:
loaded_network = {'NetworkLoad': '20190304_3D_max15_D14_K_NoResp_S2_r5_dec4',
'GlobalStepLoad': 'Last', # 'Auto', 'Last', '#Number'
'BatchSize': 'Auto',
'itr_load': 'Auto',
'semi_epoch_load': 'Auto'}
loaded_network = su.load_network(setting, loaded_network)
itr_load = loaded_network['itr_load']
semi_epoch_load = loaded_network['semi_epoch_load']
else:
itr_load = 0
semi_epoch_load = 0
setting['DetailedNetworkSummary'] = False # Write many feature maps of the network. This is an input to all networsk: functions.network.$network_name
regularization = True # bending energy (BE) regularizer
inspecting_regularization_weight = False # a special experiment in order to find the optimal weight for adding Huber loss and BE loss
setting['ParallelGeneration1stEpoch'] = True # Parallel generation of images in the first epoch. Can speed up the training.
setting['ParallelSearching'] = True # Using np.where in parallel with [number of cores - 2] in order to make balanced data. This is done with joblib library
setting['Randomness'] = True # Shuffling the data. Normally should be True
setting['PadTo'] = {'stage'+str(setting['stage']): getattr(getattr(network, network_name), 'get_padto')()} # if the design of the network force it to pad to a fixed number
# %%------------------------------------------------ Setting of reading DVFs ------------------------------------------------
dsmoothlist_training, dsmoothlist_validation = su.dsmoothlist_by_deform_exp(deform_exp_s1, setting['AGMode'])
data_exp_dict = [{'data': 'SPREAD', # Data to load. The image addresses can be modified in setting_utils.py
'deform_exp': deform_exp_s1, # Artificial deformation experiment
'TrainingCNList': [i for i in range(1, 11)], # Case number of images to load (The patient number)
'TrainingTypeImList': [0, 1], # Types images for each case number, for example [baseline, follow-up]
'TrainingDSmoothList': su.repeat_dsmooth_numbers(dsmoothlist_training, deform_exp_s1, repeat=2), # The synthetic type to load. For instance, ['single_frequency', 'respiratory_motion']
'TrainingDeformedImExt': ['Clean', 'Sponge', 'Noise'], # The sequence of intensity augmentation over the deformed image: 'Clean', 'Noise', 'Occluded', 'Sponge'
'ValidationCNList': [11, 12],
'ValidationTypeImList': [0, 1],
'ValidationDSmoothList': dsmoothlist_validation,
'ValidationDeformedImExt': ['Clean', 'Sponge', 'Noise'],
},
{'data': 'DIR-Lab_COPD',
'deform_exp': deform_exp_s1,
'TrainingCNList': [i for i in range(1, 10)],
'TrainingTypeImList': [0, 1],
'TrainingDSmoothList': su.repeat_dsmooth_numbers(dsmoothlist_training, deform_exp_s1, repeat=2),
'TrainingDeformedImExt': ['Clean', 'Sponge', 'Noise'],
'ValidationCNList': [10],
'ValidationTypeImList': [0, 1],
'ValidationDSmoothList': dsmoothlist_validation,
'ValidationDeformedImExt': ['Clean', 'Sponge', 'Noise'],
}
]
if setting['stage'] == 1:
data_exp_dict = copy.deepcopy(data_exp_dict)
for i in range(len(data_exp_dict)):
if setting['AGMode'] == 'SinlgeOnly':
data_exp_dict[i]['TrainingDSmoothList'] = su.repeat_dsmooth_numbers(dsmoothlist_training, data_exp_dict[i]['deform_exp'], repeat=5)
elif setting['stage'] == 2:
data_exp_dict = copy.deepcopy(data_exp_dict)
for i in range(len(data_exp_dict)):
data_exp_dict[i]['deform_exp'] = '3D_max15_D14_K'
data_exp_dict[i]['ValidationDSmoothList'] = su.repeat_dsmooth_numbers(dsmoothlist_training, data_exp_dict[i]['deform_exp'], repeat=2)
if setting['AGMode'] == 'Resp':
data_exp_dict[i]['TrainingDSmoothList'] = su.repeat_dsmooth_numbers(dsmoothlist_training, data_exp_dict[i]['deform_exp'], repeat=3)
if setting['AGMode'] == 'NoResp':
data_exp_dict[i]['TrainingDSmoothList'] = su.repeat_dsmooth_numbers(dsmoothlist_training, data_exp_dict[i]['deform_exp'], repeat=5)
if setting['AGMode'] == 'SingleOnly':
data_exp_dict[i]['TrainingDSmoothList'] = su.repeat_dsmooth_numbers(dsmoothlist_training, data_exp_dict[i]['deform_exp'], repeat=15)
elif setting['stage'] == 4:
data_exp_dict = copy.deepcopy(data_exp_dict)
for i in range(len(data_exp_dict)):
data_exp_dict[i]['deform_exp'] = '3D_max20_D14_K'
data_exp_dict[i]['ValidationDSmoothList'] = su.repeat_dsmooth_numbers(dsmoothlist_training, data_exp_dict[i]['deform_exp'], repeat=5)
data_exp_dict[i]['TrainingDSmoothList'] = su.repeat_dsmooth_numbers(dsmoothlist_training, data_exp_dict[i]['deform_exp'], repeat=5)
if setting['AGMode'] == 'SingleOnly':
data_exp_dict[i]['TrainingDSmoothList'] = su.repeat_dsmooth_numbers(dsmoothlist_training, data_exp_dict[i]['deform_exp'], repeat=15)
else:
raise ValueError("setting['stage'] should be in [1, 2, 4]")
setting = su.load_setting_from_data_dict(setting, data_exp_dict) # load the setting of desired data
setting = su.load_network_setting(setting, network_name=network_name) # load the setting of the selected network like radius and pad
setting['ClassBalanced'] = su.load_suggested_class_balanced(setting) # ClassBlanced is used for balance sampling. You can use suggested values or
# manually define it. eg. [2, 5, 15] --> equal number of samples in [0, 2), [2, 5), [5, 15)
if setting['PadTo']['stage'+str(setting['stage'])] is None:
setting['FullImage'] = False # for some network designs (eg: unet1) we don't use patch-based training, alternatively we give the entire images as inputs
else:
setting['FullImage'] = True
setting['DownSamplingByGPU'] = False
setting['Augmentation'] = False
# training
setting['NetworkTraining'] = dict()
setting['NetworkTraining']['reg_weight'] = 0.1
setting['NetworkTraining']['MaxQueueSize'] = 20
setting['NetworkTraining']['VoxelSize'] = [1, 1, 1]
setting['NetworkTraining']['LearningRate_Base'] = 1E-3
setting['NetworkTraining']['LearningRate_Decay'] = None # 0.9
setting['NetworkTraining']['MaxIterations'] = np.int(1E7)
setting['NetworkValidation'] = dict()
setting['NetworkValidation']['MaxQueueSize'] = 10
if setting['stage'] == 1:
setting['NetworkTraining']['NumberOfImagesPerChunk'] = 16 # Number of images that I would like to load in RAM
setting['NetworkTraining']['SamplesPerImage'] = 50
setting['NetworkTraining']['BatchSize'] = 15
setting['NetworkValidation']['NumberOfImagesPerChunk'] = 10 # Number of images that I would like to load in RAM
setting['NetworkValidation']['SamplesPerImage'] = 500
setting['NetworkValidation']['BatchSize'] = 50
elif setting['stage'] == 2:
setting['NetworkTraining']['NumberOfImagesPerChunk'] = 40
setting['NetworkTraining']['SamplesPerImage'] = 20
setting['NetworkTraining']['BatchSize'] = 15
setting['NetworkValidation']['NumberOfImagesPerChunk'] = 60
setting['NetworkValidation']['SamplesPerImage'] = 10
setting['NetworkValidation']['BatchSize'] = 50
elif setting['stage'] == 4:
if setting['FullImage']:
setting['NetworkTraining']['NumberOfImagesPerChunk'] = 40
setting['NetworkTraining']['SamplesPerImage'] = 20 # no use when using FullImage, each sample is the entire image
setting['NetworkTraining']['BatchSize'] = 5
setting['NetworkValidation']['NumberOfImagesPerChunk'] = 200
setting['NetworkValidation']['SamplesPerImage'] = 50 # no use when using FullImage
setting['NetworkValidation']['BatchSize'] = 10
else:
setting['NetworkTraining']['NumberOfImagesPerChunk'] = 80
setting['NetworkTraining']['SamplesPerImage'] = 5
setting['NetworkTraining']['BatchSize'] = 15
setting['NetworkValidation']['NumberOfImagesPerChunk'] = 200
setting['NetworkValidation']['SamplesPerImage'] = 10
setting['NetworkValidation']['BatchSize'] = 50
if setting['never_generate_image'] == 'True':
setting['ParallelGeneration1stEpoch'] = False
setting = backup_script(setting)
su.check_setting(setting)
su.write_setting(setting)
if not semi_epoch_load:
if setting['ParallelGeneration1stEpoch']:
# create a new process and generate images in parallel with the main process
generate_1st_epoch = reading.chunk_image.Images(
setting=setting,
class_mode='1stEpoch',
train_mode='Training',
number_of_images_per_chunk=setting['NetworkTraining']['NumberOfImagesPerChunk'],
samples_per_image=setting['NetworkTraining']['SamplesPerImage'],
im_info_list_full=su.get_im_info_list_from_train_mode(setting, train_mode='Training'),
stage=setting['stage'],
semi_epoch=semi_epoch_load,
full_image=setting['FullImage'],
)
process = multiprocessing.Process(target=generate_1st_epoch.generate_chunk_only)
if setting['only_generate_image']:
process.run()
exit()
else:
process.start()
else:
setting['ParallelGeneration1stEpoch'] = False
reg_weight = setting['NetworkTraining']['reg_weight']
tf.reset_default_graph()
tf.set_random_seed(0)
with tf.variable_scope('InputImages'):
images_tf = tf.placeholder(tf.float32, shape=[None, 2 * setting['R'] + 1, 2 * setting['R'] + 1, 2 * setting['R'] + 1, 2], name="Images")
dvf_ground_truth = tf.placeholder(tf.float32, shape=[None, 2*setting['Ry']+1, 2*setting['Ry']+1, 2*setting['Ry']+1, 3], name="DVF_GroundTruth")
bn_training = tf.placeholder(tf.bool, name='bn_training')
loss_average_tf = tf.placeholder(tf.float32)
if regularization:
huber_average_tf = tf.placeholder(tf.float32)
bending_average_tf = tf.placeholder(tf.float32)
learning_rate = tf.placeholder(tf.float32)
dvf_predict = getattr(getattr(network, setting['NetworkDesign']), 'network')(images_tf, bn_training,
detailed_summary=setting['DetailedNetworkSummary'],
use_keras=setting['use_keras'])
huber = tf.losses.huber_loss(dvf_ground_truth, dvf_predict, weights=1)
with tf.variable_scope('bending_energy'):
bending_energy = tfu.image_processing.bending_energy(dvf_predict, voxel_size=setting['NetworkTraining']['VoxelSize'])
extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if regularization:
if inspecting_regularization_weight:
with tf.control_dependencies(extra_update_ops):
train_step, mag_grad_loss, mag_grad_regularizer, regularization_weight = tf.train.AdamOptimizer(learning_rate).minimize_and_gradient(huber, bending_energy)
loss = huber + regularization_weight * bending_energy
else:
loss = tf.add(huber, reg_weight * bending_energy)
with tf.control_dependencies(extra_update_ops):
train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss)
else:
loss = huber
with tf.control_dependencies(extra_update_ops):
train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss)
with tf.variable_scope('Summary'):
batch_summary = tf.shape(images_tf)[0] // 2
tf.summary.image('Fixed_Images', images_tf[:, :, :, :, 0, np.newaxis][batch_summary, int(images_tf.get_shape()[1]) // 2, np.newaxis, :, :, :], 1)
tf.summary.image('Deformed_Images', images_tf[:, :, :, :, 1, np.newaxis][batch_summary, int(images_tf.get_shape()[1]) // 2, np.newaxis, :, :, :], 1)
tf.summary.image('GroundTruth_X', dvf_ground_truth[batch_summary, int(dvf_ground_truth.get_shape()[1]) // 2, np.newaxis, :, :, 0, np.newaxis], 1)
tf.summary.image('GroundTruth_Y', dvf_ground_truth[batch_summary, int(dvf_ground_truth.get_shape()[1]) // 2, np.newaxis, :, :, 1, np.newaxis], 1)
tf.summary.image('GroundTruth_Z', dvf_ground_truth[batch_summary, int(dvf_ground_truth.get_shape()[1]) // 2, np.newaxis, :, :, 2, np.newaxis], 1)
tf.summary.image('RegNet_X', dvf_predict[batch_summary, int(dvf_predict.get_shape()[1]) // 2, np.newaxis, :, :, 0, np.newaxis], 1)
tf.summary.image('RegNet_Y', dvf_predict[batch_summary, int(dvf_predict.get_shape()[1]) // 2, np.newaxis, :, :, 1, np.newaxis], 1)
tf.summary.image('RegNet_Z', dvf_predict[batch_summary, int(dvf_predict.get_shape()[1]) // 2, np.newaxis, :, :, 2, np.newaxis], 1)
tf.summary.scalar("loss", loss_average_tf)
if regularization:
tf.summary.scalar("Huber", huber_average_tf)
tf.summary.scalar("BendingE", bending_average_tf)
if inspecting_regularization_weight:
tf.summary.scalar("mag_grad_loss", mag_grad_loss)
tf.summary.scalar("mag_grad_regularizer", mag_grad_regularizer)
tf.summary.scalar("regularization_weight", regularization_weight)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=25, keep_checkpoint_every_n_hours=1)
summ = tf.summary.merge_all()
logging.debug('total number of variables %s' % (np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()])))
sess = tf.Session()
train_writer = tf.summary.FileWriter(su.address_generator(setting, 'summary_train'), sess.graph)
test_writer = tf.summary.FileWriter(su.address_generator(setting, 'summary_test'), sess.graph)
sess.run(tf.global_variables_initializer())
if load_model:
saver_loading = tf.train.Saver(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES))
saver_loading.restore(sess, su.address_generator(setting, 'saved_model_with_step',
current_experiment=loaded_network['NetworkLoad'],
step=loaded_network['GlobalStepLoad']))
train_queue = reading.train_queue.FillPatches(setting, semi_epoch=semi_epoch_load)
train_queue.start()
val_queue = reading.val_queue.FillPatches(setting)
val_queue.start()
loss_train_average = 0
if regularization:
huber_train_average = 0
bending_train_average = 0
count = 0
for itr in range(itr_load, setting['NetworkTraining']['MaxIterations']):
lr = setting['NetworkTraining']['LearningRate_Base']
if setting['NetworkTraining']['LearningRate_Decay'] is not None:
lr = setting['NetworkTraining']['LearningRate_Base'] * \
(setting['NetworkTraining']['LearningRate_Decay'] ** train_queue._chunk_direct._semi_epoch)
time_before_cpu1 = time.time()
while train_queue._PatchQueue.empty():
time.sleep(0.5)
logging.debug('waiting... Train Queue is empty :(')
batch_im, batch_dvf = train_queue._PatchQueue.get()
time_after_cpu1 = time.time()
time_before_gpu = time.time()
if regularization:
[loss_train_itr, huber_train_itr, bending_train_itr, _] = \
sess.run([loss, huber, bending_energy, train_step],
feed_dict={images_tf: batch_im, dvf_ground_truth: batch_dvf, bn_training: 1, learning_rate: lr})
else:
[loss_train_itr, _] = sess.run([loss, train_step],
feed_dict={images_tf: batch_im, dvf_ground_truth: batch_dvf, bn_training: 1, learning_rate: lr})
time_after_gpu = time.time()
logging.debug('itr={} done in CPU:{:.3f}s, GPU:{:.3f}s'.format(itr, time_after_cpu1 - time_before_cpu1, time_after_gpu - time_before_gpu))
if train_queue.paused: # Queue class would be paused when the queue is full
if not train_queue._PatchQueue.full():
train_queue.resume()
count_itr = np.shape(batch_im)[0] / setting['NetworkTraining']['BatchSize']
count += count_itr
loss_train_average = loss_train_average + loss_train_itr
if regularization:
huber_train_average += count_itr * huber_train_itr
bending_train_average += count_itr * bending_train_itr
if itr % 25 == 1:
loss_train_average = loss_train_average / count
if regularization:
huber_train_average = huber_train_average / count
bending_train_average = bending_train_average / count
[s, dvf_plot, dvf_predict_plot] = sess.run([summ, dvf_ground_truth, dvf_predict],
feed_dict={images_tf: batch_im, dvf_ground_truth: batch_dvf, bn_training: 0,
loss_average_tf: loss_train_average,
huber_average_tf: huber_train_average,
bending_average_tf: bending_train_average})
logging.info(setting['current_experiment'] + ', itr={} SemiEpoch={}, loss={:.2f} , huber={:.2f}, bendingE={:.2f}'.
format(itr, train_queue._chunk_direct._semi_epoch, loss_train_average, huber_train_average, bending_train_average))
huber_train_average = 0
bending_train_average = 0
else:
[s, dvf_plot, dvf_predict_plot] = sess.run([summ, dvf_ground_truth, dvf_predict],
feed_dict={images_tf: batch_im, dvf_ground_truth: batch_dvf, bn_training: 0,
loss_average_tf: loss_train_average})
logging.info('itr {} SemiEpoch = {}, loss = {:.2f}'.format(itr, train_queue._chunk_direct._semi_epoch, loss_train_average))
train_writer.add_summary(s, itr * setting['NetworkTraining']['BatchSize'])
loss_train_average = 0
count = 0
if itr % 1000 == 1:
saver.save(sess, su.address_generator(setting, 'saved_model'), global_step=itr * setting['NetworkTraining']['BatchSize'])
loss_val_average = 0
count_val = 0
if regularization:
huber_val_average = 0
bending_val_average = 0
end_of_validation = False
while not end_of_validation:
while val_queue._PatchQueue.empty():
time.sleep(0.5)
logging.debug('waiting... Val Queue is empty :(')
batch_im_val, batch_dvf_val, end_of_validation = val_queue._PatchQueue.get()
time_before_gpu_val = time.time()
count_val_itr = np.shape(batch_im_val)[0] / setting['NetworkValidation']['BatchSize']
count_val += count_val_itr
if regularization:
[loss_val_itr, huber_val_itr, bending_val_itr] = \
sess.run([loss, huber, bending_energy],
feed_dict={images_tf: batch_im_val, dvf_ground_truth: batch_dvf_val, bn_training: 0})
huber_val_average += count_val_itr * huber_val_itr
bending_val_average += count_val_itr * bending_val_itr
else:
[loss_val_itr] = sess.run([loss], feed_dict={images_tf: batch_im_val, dvf_ground_truth: batch_dvf_val, bn_training: 0})
time_after_gpu_val = time.time()
logging.debug('itrVal = {} done in {:.3f}s GPU validation'.format(count_val, time_after_gpu_val - time_before_gpu_val))
loss_val_average = loss_val_average + loss_val_itr
if val_queue.paused: # Queue class would be paused when the queue is full
if not val_queue._PatchQueue.full():
val_queue.resume()
val_queue._end_of_validation = False
loss_val_average = loss_val_average / count_val
if regularization:
huber_val_average = huber_val_average / count_val
bending_val_average = bending_val_average / count_val
[dvf_plot_val, dvf_predict_plot_val, s] = sess.run([dvf_ground_truth, dvf_predict, summ],
feed_dict={images_tf: batch_im_val, dvf_ground_truth: batch_dvf_val, bn_training: 0,
loss_average_tf: loss_val_average,
huber_average_tf: huber_val_average,
bending_average_tf: bending_val_average})
else:
[dvf_plot_val, dvf_predict_plot_val, s] = sess.run([dvf_ground_truth, dvf_predict, summ],
feed_dict={images_tf: batch_im_val, dvf_ground_truth: batch_dvf_val, bn_training: 0,
loss_average_tf: loss_val_average})
test_writer.add_summary(s, itr*setting['NetworkTraining']['BatchSize'])
def backup_script(setting):
"""
This script does
1. Update the current_experiment name based on stage and deform_exp name.
2. Make a backup of the whole code
3. Start logging.
:param setting
:return setting
"""
date_now = datetime.datetime.now()
network_name = ''
if 'crop' in setting['NetworkDesign']:
network_name = setting['NetworkDesign'].rsplit('_', 1)[0]
if 'decimation' in setting['NetworkDesign']:
network_name = 'dec' + setting['NetworkDesign'][-1]
if 'unet' in setting['NetworkDesign']:
network_name = 'unet' + setting['NetworkDesign'][-1]
current_experiment = '{:04d}{:02d}{:02d}_{:02d}{:02d}{:02d}'.format(date_now.year, date_now.month, date_now.day, date_now.hour, date_now.minute, date_now.second) +\
'_'+setting['DataExpDict'][0]['deform_exp']+'_'+setting['AGMode']+'_S'+str(setting['stage'])+'_'+network_name
setting['current_experiment'] = current_experiment
if not os.path.isdir(su.address_generator(setting, 'ModelFolder')):
os.makedirs(su.address_generator(setting, 'ModelFolder'))
shutil.copy(Path(__file__), su.address_generator(setting, 'ModelFolder'))
shutil.copytree(Path(__file__).parent / Path('functions'), Path(su.address_generator(setting, 'ModelFolder')) / Path('functions'))
gut.logger.set_log_file(su.address_generator(setting, 'LogFile'))
return setting
def initialize():
"""
read the arguments and set the root folder
--where_to_run: "Auto" or "Cluster" or "Root". The default value is "Auto"
check functions.setting.setting_utils.root_address_generator()
--only_generate_image: "True" or "False". The default value is "False
--never_generate_image: "True" or "False". The default value is "False"
call the run_regnet with the initialized value for setting
"""
mpl.rcParams['agg.path.chunksize'] = 10000
current_experiment = ''
parser = argparse.ArgumentParser(description='read where_to_run')
parser.add_argument('--where_to_run', '-w',
help='This is an optional argument, '
'you choose between "Auto" or "Cluster". The default value is "Auto"')
parser.add_argument('--only_generate_image', '-g',
help='This is an optional argument, '
'you choose between "True" or "False". The default value is "False"')
parser.add_argument('--never_generate_image', '-ng',
help='This is an optional argument, '
'you choose between "True" or "False". The default value is "False"')
args = parser.parse_args()
where_to_run = args.where_to_run
only_generate_image = args.only_generate_image
if only_generate_image == 'True':
only_generate_image = True
else:
only_generate_image = False
never_generate_image = args.never_generate_image
if never_generate_image == 'True':
never_generate_image = True
else:
never_generate_image = False
setting = su.initialize_setting(current_experiment=current_experiment, where_to_run=where_to_run)
setting['only_generate_image'] = only_generate_image
setting['never_generate_image'] = never_generate_image
run_regnet(setting, stage=None)
if __name__ == '__main__':
initialize()