forked from intel/neural-compressor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglobals.py
117 lines (86 loc) · 3.32 KB
/
globals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
# whethre to consider all import modules and perform transformation based on all codes plus all import modules
consider_imports = True
# target batch size for feature of changing PyTorch batch size
target_batch_size = 1
# mark for successful batch size change
batch_size_changed = False
# number of benchmark iteration for feature of PyTorch benchmark
num_benchmark_iteration = 30
# print info for debugging purpose
logging_level = logging.INFO
# print code line info for debug use
print_code_line_info = False
# load transformers class def by a cache file instead of on-the-fly catch
cache_load_transformers = True
# detected device
device = "cpu_with_amx"
# device compatibility of the code: e.g. ["cpu", "cuda"], ["cuda"]
list_code_device_compatibility = ["cuda"]
# quantization config for HuggingFace optimum-intel optimizations
# it is either "" (None) or "xxx" (a string of config path)
optimum_quant_config = ""
# code domain
code_domain = ""
# modular design
use_modular = True
modular_item = "" # str
def reset_globals():
global list_code_path
global list_code_line_instance
global list_class_def_instance
global list_class_name
global list_parent_class_name
global list_model_def_instance
global list_model_name
global list_trans_insert_modified_file
global list_trans_insert_location_idxs
global list_trans_insert_number_insert_lines
global list_trans_insert_lines_to_insert
global list_trans_indent_modified_file
global list_trans_indent_location_idxs
global list_trans_indent_level
global list_all_function_name
global list_all_function_return_item
global list_wrapper_base_function_name
global list_wrapper_children_function_name
global list_wrapper_all_function_name
global list_calib_dataloader_name
global list_eval_func_lines
global list_eval_func_name
list_code_path = []
list_code_line_instance = [] # list of CodeLine instances
list_class_def_instance = [] # list of ClassDefinition instances
list_class_name = [] # list of class names
list_parent_class_name = []
list_model_def_instance = []
list_model_name = []
# for code transformation recording
list_trans_insert_modified_file = []
list_trans_insert_location_idxs = []
list_trans_insert_number_insert_lines = []
list_trans_insert_lines_to_insert = []
list_trans_indent_modified_file = []
list_trans_indent_location_idxs = []
list_trans_indent_level = []
list_all_function_name = []
list_all_function_return_item = []
list_wrapper_base_function_name = []
list_wrapper_children_function_name = []
list_wrapper_all_function_name = []
list_calib_dataloader_name = []
list_eval_func_lines = []
list_eval_func_name = []