
Co-designing for Sparseness:
Simulating Next-Generation
Memory Systems
Jeffrey Young, PhD ∙ Principal Research Scientist ∙ Partnership for
Advanced Computing Environments

Jered Trujillo-Dominguez, Kevin Sheridan, Galen Shipman (LANL)

Connor Radelja, Christopher Scott (GT)

Patrick Lavin (SNL)

August 14th, 2024

The “Cambrian Explosion” of new accelerators has led to many domain specific accelerators – not
just in AI but also for data movement!

Motivation

Introduction GS Patterns Spatter 2.0 and
SST Integration

SummarySpatter

However, we still have little understanding of how future memory accelerators might affect
codes of interest because:

• Finding appropriate regions of interest (ROI) for the memory system is challenging to infer even
with tools like SimPoints and LoopPoint

• Some applications that we might want to benchmark can’t be fully shared to extract
meaningful traces or ROIs

Our ideal workflow would allow us to 1) capture relevant memory accesses from real-world
applications, 2) benchmark them on real systems, and 3) simulate new hardware models

Motivation

Introduction GS Patterns Spatter 2.0 and
SST Integration

SummarySpatter

Hardware Bottlenecks for LANL HPC codes [1]

[1] G. Shipman, et al., Assessing the Memory Wall in Complex Codes, MCHPC 2022 doi: 10.1109/MCHPC56545.2022.00009

Spatter - Version 1.0

Introduction Spatter GS Patterns Spatter 2.0 and
SST Integration

Summary

The basis of Spatter is two kernels; one
for gather and another for scatter.

The delta and the pattern in idx specify
the memory access pattern.

Gather kernel:

for i in 0..N:

reg = gather(src + delta*i, idx)

Scatter kernel:
for i in 0..N:

scatter(dst + delta*i, idx, reg)

Spatter - Version 1.0 Results

Introduction Spatter GS Patterns Spatter 2.0 and
SST Integration

Summary

Initial tests focused on
CPU and GPU analysis
using OpenMP and
CUDA backends

Vector and scalar
modes along with
prototype backends for
SYCL

Spatter - Version 1.0 Results

Introduction Spatter GS Patterns Spatter 2.0 and
SST Integration

Summary

Bandwidth-Bandwidth plots and
application inputs for common
HPC applications allowed for
investigating “Peak Bandwidth
versus Pattern Bandwidth”

The Need for an Open Source Workflow

Introduction GS Patterns SummarySpatter Spatter 2.0 and
SST Integration

Previous work relied on proprietary tools to create Spatter application inputs. We’d like to
have a common open source workflow!

1. Trace G/S Instructions - pulled from a proprietary simulator

2. Change base address to delta

3. Aggregate Counts

Gather 0x0040, [0, 2, 4, 6]

Gather 0x0044, [0, 2, 4, 6]

Gather 0x0048, [0, 2, 4, 6]

Scatter 0x004C, [1, 1, 5, 5]

Gather _, [0, 2, 4, 6]

Gather 4, [0, 2, 4, 6]

Gather 4, [0, 2, 4, 6]

Scatter 4, [1, 1, 5, 5]

Gather 4, [0, 2, 4, 6], 2

Scatter 4, [1, 1, 5, 5], 1
Spatter’s Format

GS Patterns

Introduction GS Patterns SummarySpatter Spatter 2.0 and
SST Integration

Sliding window approach is used
to track non-trivial memory
accesses within an application
trace or region of interest (ROI)

Multiple filters are used to keep
the most relevant access patterns
for the final pattern output

GS Patterns codebase at

https://github.com/lanl/gs_patterns and

https://github.com/hpcgarage/gs_patterns

GS Patterns

Introduction GS Patterns SummarySpatter Spatter 2.0 and
SST Integration

Two passes are used to apply
all filters and output the
patterns of interest

GS Patterns Workflow

Introduction GS Patterns SummarySpatter Spatter 2.0 and
SST Integration

Further extensions to GS Patterns
refactored code to use C++ and a
plugin infrastructure for PinTool,
NVBit

Currently ROI analysis speeds up
the overall GS Patterns workflow
but is a somewhat manual process
to run and annotate codes

Check out collected public patterns at

https://github.com/hpcgarage/spatter-patterns

Pattern Visualization Tools

Introduction GS Patterns SummarySpatter Spatter 2.0 and
SST Integration

The GS Patterns JSON output can be
easily visualized in a variety of different
ways…

Pattern Visualization Tools

Introduction GS Patterns SummarySpatter Spatter 2.0 and
SST Integration

But we likely need to do more detailed statistical analysis to make more
sense of these patterns..

Spatter 2.0

Introduction Spatter GS Patterns Spatter 2.0 and
SST Integration

Summary

• Complete refactor of argument parsing, build
system, and movement towards C++ design

• Addition of new kernels to better represent
multiple levels of indirection - GatherScatter,
MultiGather, MultiScatter

• Support for longer offset buffer lengths for
improved application pattern representation

• MPI support for weak/strong scaling

• Support for atomics with scatter operations

https://github.com/hpcgarage/spatter

GatherScatter Kernel Representation

Spatter 2.0 MPI Workflow

Introduction Spatter GS Patterns Spatter 2.0 and
SST Integration

Summary

Weak Scaling – each MPI rank gets
the same pattern and scaling scripts
are used to sweep across N ranks

Strong Scaling – access patterns are
partitioned across MPI ranks

GPU Throughput – patterns are
truncated or expanded to vary amount
of memory accesses and saturate
GPU memory subsystem

Spatter 2.0 Results

Introduction Spatter GS Patterns Spatter 2.0 and
SST Integration

Summary

See our MEMSYS 2024 paper in October 2024 for more details!

Weak Scaling MPI Tests for Xrage Gather pattern

Spatter 2.0 Results

Introduction Spatter GS Patterns Spatter 2.0 and
SST Integration

Summary

GPU BW-BW Plot CPU BW-BW Plot

Revisiting Codesign

Introduction Spatter GS Patterns Spatter 2.0 and
SST Integration

Summary

Our ideal tool workflow would
allow us to:

- Capture relevant memory
accesses from real-world
applications

- Run these patterns on bleeding
edge systems

- Use the same patterns to
simulate the performance of
future near-memory accelerators

Spatter Integration with SST

Introduction Spatter GS Patterns Spatter 2.0 and
SST Integration

Summary

Spatter can be compiled as a library and used as a new pattern input for Miranda with SST

STREAM Output (i5-12400F Alder Lake vs. SST Miranda Spatterbench

Spatter Integration with SST

Introduction Spatter GS Patterns Spatter 2.0 and
SST Integration

Summary

Larger application patterns may benefit from either parallel simulation sweeps (e.g., gem5) or
using MPI-based tests

Lulesh Output (i5-12400F Alder Lake vs. SST Miranda Spatterbench)

Thoughts on Software Sustainability

Introduction The Rogues Infrastructure FC with RG Summary

Unknowingly we committed several major sins with our Spatter
refactor…

Thoughts on Software Sustainability

Introduction The Rogues Infrastructure FC with RG Summary

However, we’ve been working towards improving the overall
codebase for ourselves and for new contributors

Summary

Introduction The Rogues Infrastructure FC with RG Summary

Motivating work at LANL for ATS-5 for new
memory accelerator microbenchmarks led
to the release of GS Patterns and Spatter
2.0

• New capabilities allow for more complete
analysis and capture of real-world application
patterns

Improved workflow adds support for
visualization of patterns as well as initial
support for codesign with SST

• Much more work is needed to port to other
ModSim tools and to do validation and
analysis of patterns!

Spatter page from https://lanl.github.io/benchmarks/

Questions?

GS Patterns codebase

https://github.com/lanl/gs_patterns

Spatter

https://github.com/hpcgarage/spatter

ATS-5 version

https://github.com/lanl/spatter

Spatter Patterns

https://github.com/hpcgarage/spatter-patterns

Spatter Miranda Extension

PR in progress!

Acknowledgements

This work is supported by the NSF Rogues Gallery testbed grant (CNS-
2016701)

This research used resources provided by the Darwin testbed at Los Alamos
National Laboratory (LANL) which is funded by the Computational Systems
and Software Environments subprogram of LANL’s Advanced Simulation
and Computing program (NNSA/DOE).

Kevin Sheridan, Galen Shipman, and Jered Dominguez-Trujillo acknowledge
support by the National Nuclear Security Administration. Los Alamos
National Laboratory is operated by Triad National Security, LLC for the U.S.
Department of Energy under contract 89233218CNA000001; LA-UR-24-
24856.

	Slide 1: Co-designing for Sparseness: Simulating Next-Generation Memory Systems
	Slide 2: Motivation
	Slide 3: Motivation
	Slide 4: Spatter - Version 1.0
	Slide 5: Spatter - Version 1.0 Results
	Slide 6: Spatter - Version 1.0 Results
	Slide 7: The Need for an Open Source Workflow
	Slide 8: GS Patterns
	Slide 9: GS Patterns
	Slide 10: GS Patterns Workflow
	Slide 11: Pattern Visualization Tools
	Slide 12: Pattern Visualization Tools
	Slide 13: Spatter 2.0
	Slide 14: Spatter 2.0 MPI Workflow
	Slide 15: Spatter 2.0 Results
	Slide 16: Spatter 2.0 Results
	Slide 17: Revisiting Codesign
	Slide 18: Spatter Integration with SST
	Slide 19: Spatter Integration with SST
	Slide 20: Thoughts on Software Sustainability
	Slide 21: Thoughts on Software Sustainability
	Slide 22: Summary
	Slide 23: Questions?
	Slide 24: Acknowledgements

