
Co-designing for Sparseness: Simulating Next-Generation Memory Systems

Jeffrey Young, PhD · Principal Research Scientist · Partnership for Advanced Computing Environments Jered Trujillo-Dominguez, Kevin Sheridan, Galen Shipman (LANL) Connor Radelja, Christopher Scott (GT) Patrick Lavin (SNL)

August 14th, 2024

Motivation


			Mer	Floati]				
	L1	L2	L3	DRAM	DRAM BW	Mem Latency	DP FLOPs	Vectorization	Non-FP
Flag 3D Ale							2.50%	7.10%	97.50%
PartiSN 42 groups							26.20%	90.40%	73.80%
Jayenne DDMC Hohlraum							14.30%	0.20%	85.70%
xRAGE Shaped Charge							6.50%	14.00%	93.50%
Application 1							7.80%	19.20%	92.20%
Application 2							8.10%	17.60%	91.90%

Hardware Bottlenecks for LANL HPC codes [1]

However, we still have little understanding of how future memory accelerators might affect codes of interest because:

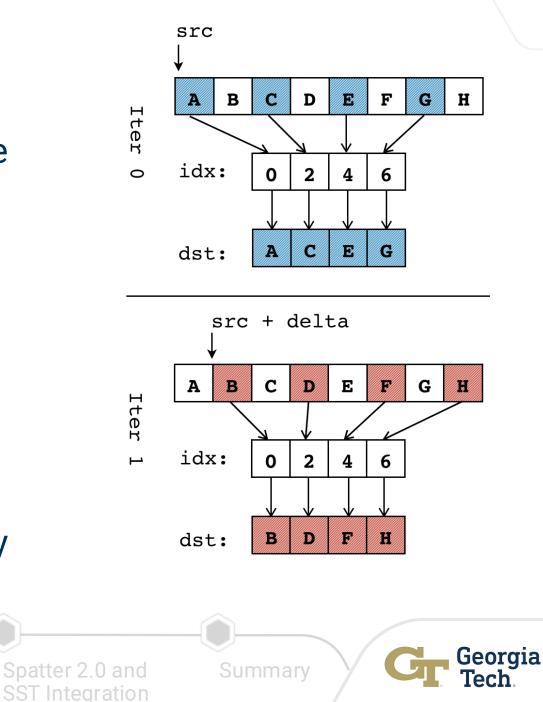
- Finding appropriate regions of interest (ROI) for the memory system is challenging to infer even with tools like SimPoints and LoopPoint
- Some applications that we might want to benchmark can't be fully shared to extract meaningful traces or ROIs

Our ideal workflow would allow us to 1) capture relevant memory accesses from real-world applications, 2) benchmark them on real systems, and 3) simulate new hardware models

Spatter - Version 1.0

Introduction

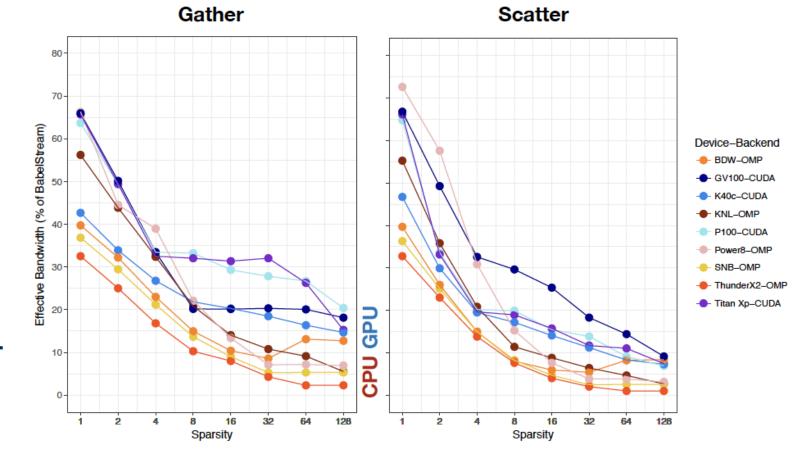
The basis of Spatter is two kernels; one for gather and another for scatter.


<u>Gather kernel:</u> for i in 0..N: reg = gather(src + delta*i, idx)

<u>Scatter kernel:</u> for i in 0..N: scatter(dst + delta*i, idx, reg)

Spatter

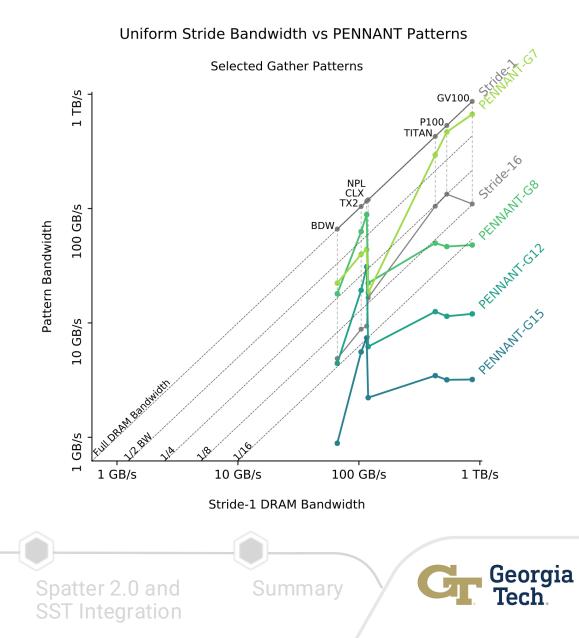
The delta and the pattern in idx specify the memory access pattern.


GS Patterns

Spatter - Version 1.0 Results

Initial tests focused on CPU and GPU analysis using OpenMP and CUDA backends

Vector and scalar modes along with prototype backends for SYCL



Spatter - Version 1.0 Results

Bandwidth-Bandwidth plots and application inputs for common HPC applications allowed for investigating "Peak Bandwidth versus Pattern Bandwidth"

	Index	Delta	Index Type
PENNANT	[2,484,482,0,4,486,484,2,6,488,486,4,8, 490,488,6]	2	N/A
LULESH	[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]	1	Stride-1
NEKBONE	[0,6,12,18,24,30,36,42,48,54,60,66,72,7 8,84,90]	3	Stride-6
АМG	[1333,0,1,2,36,37,38,72,73,74,1296,129 7,1298,1332, 1334,1368]	1	Mostly Stride-1



Introduction

Spatter

The Need for an Open Source Workflow

- 1. Trace G/S Instructions pulled from a proprietary simulator
 - Gather 0x0040, [0, 2, 4, 6] Gather 0x0044, [0, 2, 4, 6] Gather 0x0048, [0, 2, 4, 6] Scatter 0x004C, [1, 1, 5, 5]
- 2. Change base address to delta
 - Gather _, [0, 2, 4, 6] Gather 4, [0, 2, 4, 6] Gather 4, [0, 2, 4, 6] Scatter 4, [1, 1, 5, 5]
- 3. Aggregate Counts

Spatter's Format

Previous work relied on proprietary tools to create Spatter application inputs. We'd like to have a common open source workflow!

GS Patterns

Sliding window approach is used to track non-trivial memory accesses within an application trace or region of interest (ROI)

Multiple filters are used to keep the most relevant access patterns for the final pattern output

GS Patterns codebase at https://github.com/lanl/gs_patterns and https://github.com/hpcgarage/gs_patterns

	maddr1	maddr2		maddrN	iaddr
	[0x0480	0x0488		0x1488]	0x0001
ScatterWindow =	0x1780	0 <i>x</i> 1788		0 <i>x</i> 0783	0x0003
		•••	•••		
	L0x9580	0x5588		 0x3581	0x1019

Filter #	Description					
1	Index distances are only -1, 0, and/or 1					
2	No symbol					
3	Not in top 10 window appearance counts					
4	Less than 1024 instances					
5	Less than 6 unique index distances and less than					
	50% out of bounds distances*					

Filter rules apply to each full memory access sequence. Sub-sequences are not removed. *Default out of bounds distances in $(-\infty, -513]$ or $[513, \infty)$.

Georgia

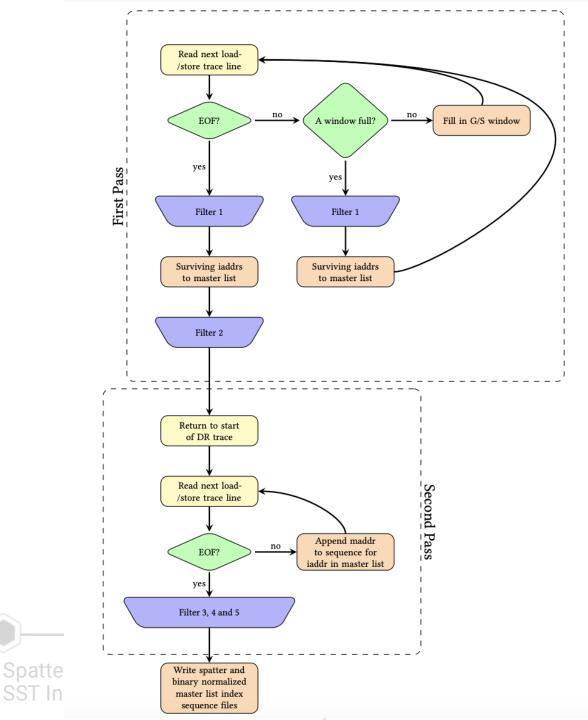
Introduction

GS Patterns

Spatter 2.0 and SST Integration

Summary

GS Patterns


Introduction

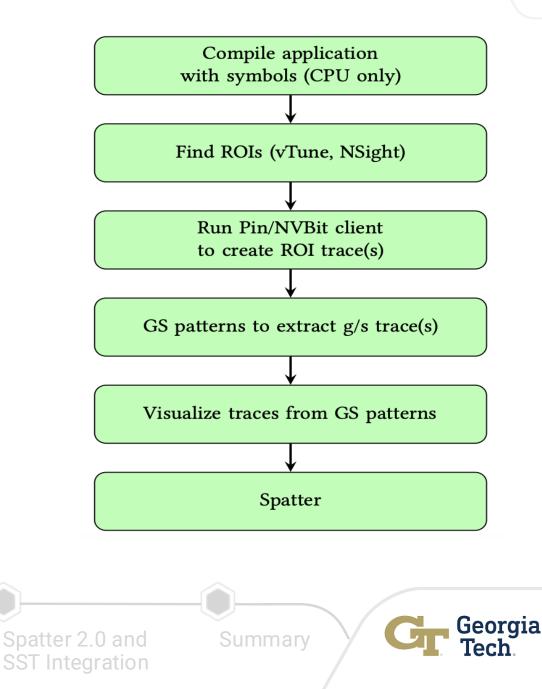
Two passes are used to apply all filters and output the patterns of interest

Filter #	Description
1	Index distances are only -1, 0, and/or 1
2	No symbol
3	Not in top 10 window appearance counts
4	Less than 1024 instances
5	Less than 6 unique index distances and less than 50% out of bounds distances*

Filter rules apply to each full memory access sequence. Sub-sequences are not removed. *Default out of bounds distances in $(-\infty, -513]$ or $[513, \infty)$.

GS Patterns

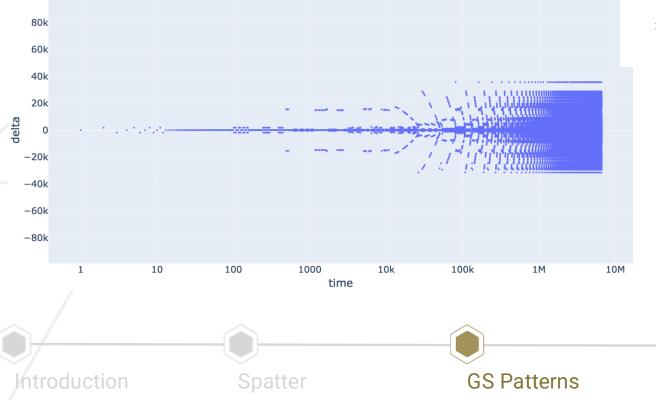
GS Patterns Workflow


Further extensions to GS Patterns refactored code to use C++ and a plugin infrastructure for PinTool, NVBit

Currently ROI analysis speeds up the overall GS Patterns workflow but is a somewhat manual process to run and annotate codes

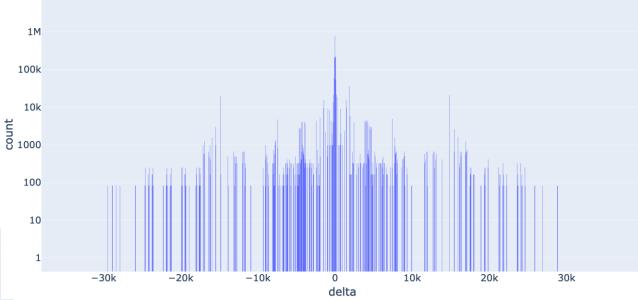
Check out collected public patterns at https://github.com/hpcgarage/spatter-patterns

GS Patterns


Spatter

Introduction

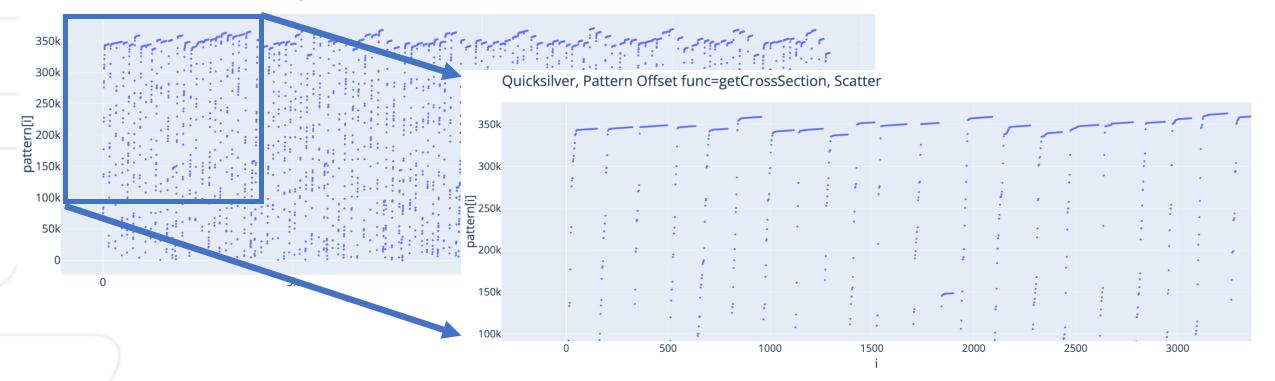
Pattern Visualization Tools


xRAGE, Deltas func=Asteroid Spatter 9, Scatter

xRAGE, Deltas Histogram func=Asteroid Spatter 9, Scatter

Spatter 2.0 and

SST Integration


The GS Patterns JSON output can be easily visualized in a variety of different ways...

Summary

Georgia

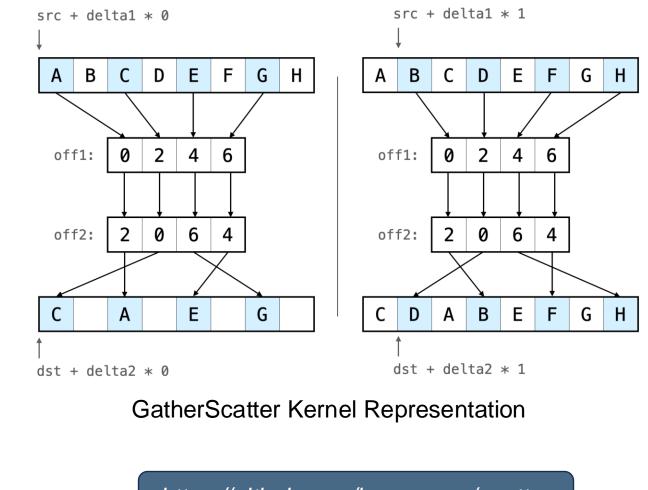
Pattern Visualization Tools

Quicksilver, Pattern Offset func=getCrossSection, Scatter

But we likely need to do more detailed statistical analysis to make more sense of these patterns..

Introduction Spatter GS Patterns Spatter 2.0 and Summary Cr Georgia Tech.

Spatter 2.0


Introduction

- Complete refactor of argument parsing, build system, and movement towards C++ design
- Addition of new kernels to better represent multiple levels of indirection - GatherScatter, MultiGather, MultiScatter
- Support for longer offset buffer lengths for improved application pattern representation
- MPI support for weak/strong scaling

Spatter

• Support for atomics with scatter operations

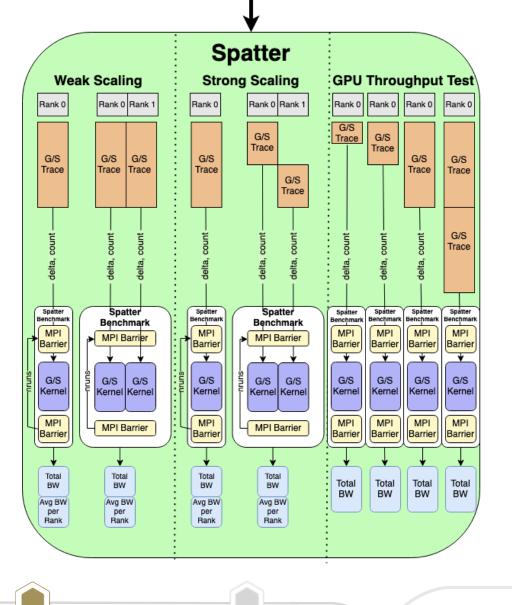
GS Patterns

https://github.com/hpcgarage/spatter

Summary

Spatter 2.0 and

SST Integration



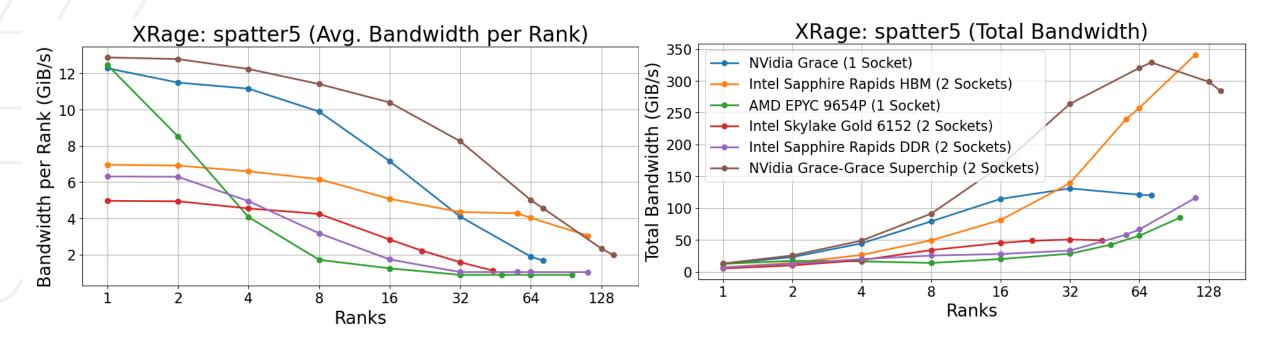
Spatter 2.0 MPI Workflow

<u>Weak Scaling</u> – each MPI rank gets the same pattern and scaling scripts are used to sweep across N ranks

<u>Strong Scaling</u> – access patterns are partitioned across MPI ranks

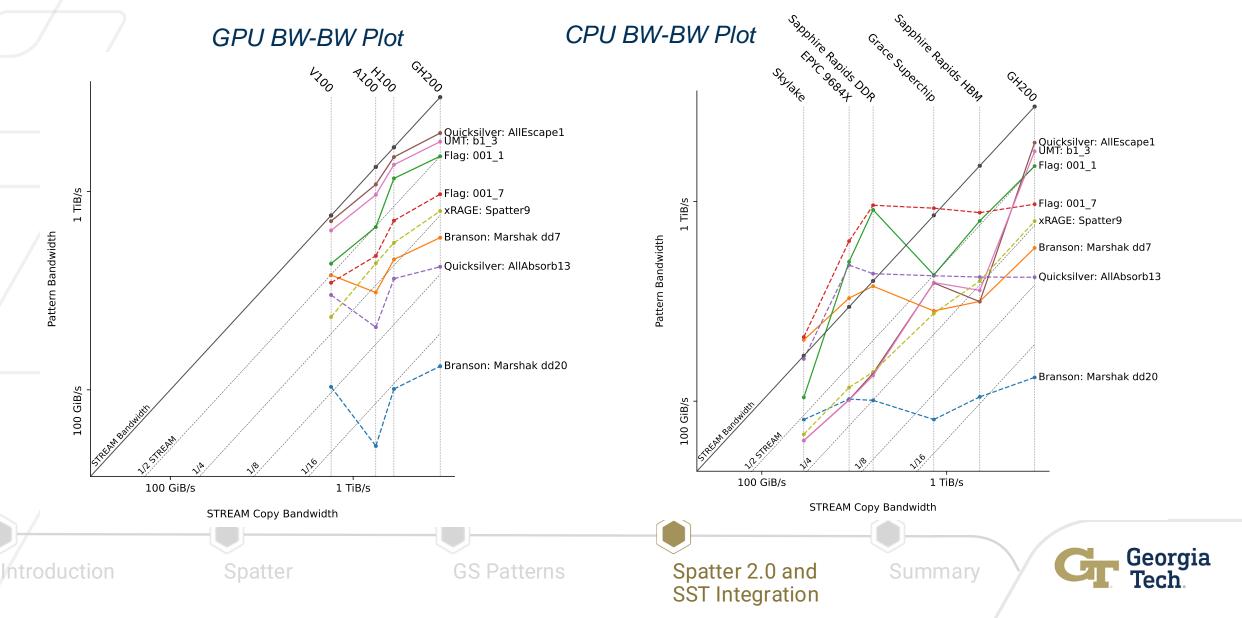
<u>GPU Throughput</u> – patterns are truncated or expanded to vary amount of memory accesses and saturate GPU memory subsystem

Introduction

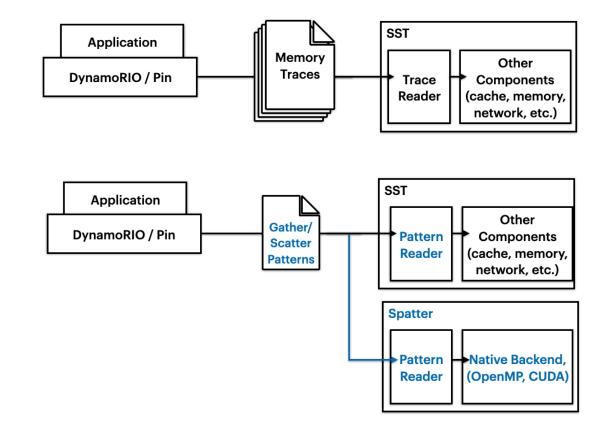

GS Patterns

Spatter 2.0 and SST Integration

Summary


Spatter 2.0 Results

Weak Scaling MPI Tests for Xrage Gather pattern



Spatter 2.0 Results

Revisiting Codesign

- Our ideal tool workflow would allow us to:
- Capture relevant memory accesses from real-world applications
- Run these patterns on bleeding edge systems
- Use the *same patterns* to simulate the performance of future near-memory accelerators

Introduction Spatter GS Patterns GS Patterns Spatter 2.0 and Summary Cr Georgia Tech.

Spatter Integration with SST

...

•••

'delta': 8, 'd {'id': 1, 'kernel' 'delta': 8, 'd {'id': 2, 'kernel' 'delta': 8, 'd {'id': 3, 'kernel'	11.4.0 NO delta-gather': 8, 'del ': 'scatter', 'pattern delta-gather': 8, 'del ': 'sg', 'pattern': [] delta-gather': 8, 'del ': 'multiscatter', 'pa	<pre>': [0, 1, 2, 3, 4, 5, 6, Lta-scatter': 8, 'count' n': [0, 1, 2, 3, 4, 5, 6 Lta-scatter': 8, 'count' l, 'pattern-gather': [0, Lta-scatter': 8, 'count' attern': [0, 1, 2, 3, 4, Lta-scatter': 8, 'count'</pre>	'delta {'id': 1, 'delta {'id': 2, 'delta {'id': 3, 'delta {'id': 4,	<pre>'kernel': 'gath ': 8, 'delta-ga 'kernel': 'scat ': 8, 'delta-ga 'kernel': 'sg', ': 8, 'delta-ga 'kernel': 'mult ': 8, 'delta-ga 'kernel': 'mult</pre>	ther': 8, 'delt ter', 'pattern' ther': 8, 'delt 'pattern': [], ther': 8, 'delt iscatter', 'pat ther': 8, 'delt igather', 'patt	a-scatter': 8, : [0, 1, 2, 3, a-scatter': 8, 'pattern-gath a-scatter': 8, tern': [0, 1, a-scatter': 8, ern': [0, 1, 2	<pre>'count': 4194304 4, 5, 6, 7], 'pa 'count': 4194304 er': [0, 1, 2, 3, 'count': 4194304 2, 3, 4, 5, 6, 7] 'count': 4194304 , 3, 4, 5, 6, 7],</pre>	<pre>tern-gather': [], 'pattern- , 'wrap': 1, 'threads': 1}, ttern-gather': [], 'pattern , 'wrap': 1, 'threads': 1}, 4, 5, 6, 7], 'pattern-scat , 'wrap': 1, 'threads': 1}, , 'pattern-gather': [], 'pa , 'wrap': 1, 'threads': 1}, 'pattern-gather': [0, 1, 2 , 'wrap': 1, 'threads': 1}</pre>	-scatter': [], ter': [0, 1, 2, 3, 4, ttern-scatter': [0, 1 ;, 3, 4, 5, 6, 7], 'pa	., 2, 3, 4, 5, 6, 7]
{'id': 4, 'kernel'	': 'multigather', 'pat	ctern': [0, 1, 2, 3, 4,	config	bytes	time(s)	bw(MB/s)	cycles	time(s)/cycles		
'delta': 8, 'd	delta-gather': 8, 'del	lta-scatter': 8, 'count'	0	268435456	0.0372244	7211.27	108773542	3.4222e-10		
and a bottom			1	268435456	0.0372244	7211.27	109804560	3.39006e-10		
config bytes		bw(MB/s) 16519.8	2	536870912	0.0744489	7211.27	112722151	6.60464e-10		
1 26843		16150	3	268435456	0.0372244	7211.27	109805007	3.39005e-10		
2 53687		21699.4	4	268435456	0.0372244	7211.27	108774550	3.42217e-10		
3 26843		14431.8								
4 26843		13717.6	Simulation i	s complete, sim	ulated time: 81	8.808 ms				
Spatter (can be cor		• •					anda Spatterber t for Miranda		
D/)						Georgia
Introduction	Sp	oatter	G	S Pattern	S		er 2.0 and ntegration	Summary	Y CI	Tech.

Spatter Integration with SST

•••

•••

10 11

Running Spatter version 1.1 Compiler: GNU ver. 11.4.0 Backend: Serial Aggregate Results? NO

Run Configurations

Run Configurations

[{'id': 0, 'kernel': 'scatter', 'pattern': [0, 24, 48, 72, 96, 120, 144 'pattern-gather': [], 'pattern-scatter': [], 'delta': 0, 'delta-gath []; 'delta': 0, 'delta-gath

{ 10 : 11,	gather', 'pattern': L0,	24, 48, 72, 96, 120, 144	config
'pattern-gather':	[], 'pattern-scatter': []	, 'delta': 1, 'delta-gath	0

bytes	time(s)	bw(MB/s)	
73959168	0.0025168	29386.1	
29593344	0.00101654	29111.8	
21479040	0.000900899	23841.8	
16384256	0.00103612	15813.1	
12334080	0.000430775	28632.3	
12334080	0.000427073	28880.5	
12311808	0.000426331	28878.5	
11265408	0.000443739	25387.5	
9829632	0.000339094	28987.9	
9829632	0.000783912	12539.2	
9829632	0.000334772	29362.2	
9250560	0.000322094	28720.1	
	73959168 29593344 21479040 16384256 12334080 12311808 11265408 9829632 9829632 9829632	739591680.0025168295933440.00101654214790400.000900899163842560.00103612123340800.000430775123140800.000427073123118080.000426331112654080.00044373998296320.00033909498296320.000334772	739591680.002516829386.1295933440.0010165429111.8214790400.00090089923841.8163842560.0010361215813.1123340800.00043077528632.3123118080.00042707328880.5112654080.00044373925387.598296320.00033909428987.998296320.00078391212539.298296320.00033477229362.2

{'id': 11, 'kernel': 'gather', 'pattern': [0, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240, 264, 288, 312, 336, 360],

'pattern-gather': [], 'pattern-scatter': [], 'delta': 1, 'delta-gather': 8, 'delta-scatter': 8, 'count': 72270, 'wrap': 1, 'threads': 1}]

bytes	time(s)	bw(MB/s)	cycles	time(s)/cycles
73959168	0.0104005	7111.11	5489157	1.89474e-09
29593344	0.00410376	7211.27	2300269	1.78404e-09
21479040	0.00297854	7211.26	1669566	1.78402e-09
16384256	0.00230403	7111.12	3393131	6.79029e-10
12334080	0.00163812	7529.40	1259456	1.30066e-09
12334080	0.00154176	8000.01	2530289	6.09321e-10
12311808	0.00153897	8000.01	2525826	6.09296e-10
11265408	0.0015622	7211.25	826265	1.89067e-09
9829632	0.00136309	7211.30	2024452	6.73312e-10
9829632	0.00136309	7211.28	10223443	1.3333e-10
9829632	0.00136308	7211.32	1212079	1.12458e-09
9250560	0.00128279	7211.26	678285	1.89123e-09

Simulation is complete, simulated time: 44.5121 ms

Lulesh Output (i5-12400F Alder Lake vs. SST Miranda Spatterbench)

Larger application patterns may benefit from either parallel simulation sweeps (e.g., gem5) or using MPI-based tests

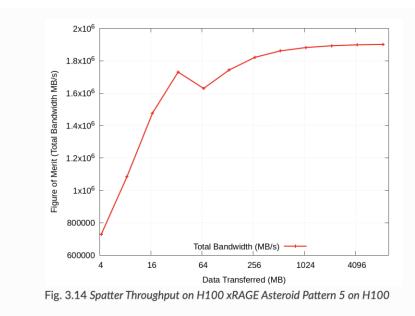
Thoughts on Software Sustainability

Unknowingly we committed several major sins with our Spatter refactor...

Thoughts on Software Sustainability

However, we've been working towards improving the overall codebase for ourselves and for new contributors

	ssues 27 👔	er গৈ Pull requests 2	co	G GettingStar	r ted.ipynb Insert Runtime Tools	ls Help					
			≣	+ Code + Text	Copy to Drive						
		e: 🌯 Bug Repor	Q	 Underst 	Actions		New workflow	Build and Test CUDA Backend			
	Create a	new issue for a bug with	$\{x\}$	First, let's look				build-cuda.yml			
		Add a title	(°)	To accomplish index buffer co	All workflows	S		-			
		🌯 [BUG] - <title></td><td></td><td>performance in
this test as a sa</td><td>Build and Te</td><td>est CUDA Backe</td><td>nd</td><td>17 workflow runs</td><td></td><td></td><td></td></tr><tr><td></td><td></td><td>Spatter Bug Re</td><td></td><td>One caveat whe
mode. The nurr</td><td>Build and Te</td><td>st MPI Backend</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td rowspan=3 colspan=2> Select your OS multipl Select your OS multipl </td><td></td><td>We'll write this</td><td>Build and Te</td><td colspan=2>Build and Test Serial and OpenMP bac</td><td colspan=5>Build and Test CUDA Backend</td></tr><tr><td></td><td>1</td><td>testsuites. This</td><td colspan=3>Notebook Build</td><td colspan=4>Build and Test CUDA Backend #17: Scheduled</td></tr><tr><td></td><td> </td><td>[] N = 8
index =</td><td colspan=2>padoc-build-doploymont</td><td></td><td colspan=5>Build and Test CUDA Backend</td></tr><tr><th></th><th></th><th rowspan=2>Selections: Architecture</th><th></th><th>delta = .</th><th></th><th colspan=2></th><th colspan=3>and and the second se</th><th>main</th></tr><tr><td></td><td></td><td></td><td></td><td rowspan=2 colspan=2><pre>= f'-l{2**24}' # The -l (count) option specifies
With an index buffer of length 8,
sity = '-v2' # Verbosity level (level >= 2 to pr</pre></td><td>buffer of length 8,</td><td>and 8 bytes per double, this will be 2^3 *</td><td></td><td></td><td></td></tr><tr><td></td><td></td><td>Select your Architecture</td><td>=</td><td>-</td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td>Selections: -</td><td>>_</td><td></td><td><pre>ocess.run([exe, in ('tmp.txt','r') as</pre></td><td></td><td><pre>verbosity], stdout=c</pre></td><td>open('tmp.txt','w'))</td><td></td><td></td><td></td></tr><tr><td>)7</td><td></td><td></td><td>-(</td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Coorrio</td></tr><tr><td>Int</td><td>roducti</td><td>ion</td><td></td><td>The Rog</td><td>gues</td><td>In</td><td>frastructure</td><td>E FC with RG</td><td>Summary</td><td>y Gt</td><td>Georgia
Tech</td></tr></tbody></table></title>									


Summary

Motivating work at LANL for ATS-5 for new memory accelerator microbenchmarks led to the release of GS Patterns and Spatter 2.0

 New capabilities allow for more complete analysis and capture of real-world application patterns

Improved workflow adds support for visualization of patterns as well as initial support for codesign with SST

 Much more work is needed to port to other ModSim tools and to do validation and analysis of patterns!

3.4.2.2. xRAGE Asteroid Spatter Pattern 9

Throughput experiment for the pattern in datafiles/xrage/asteroid/spatter9.json. Results will be found in spatter strongscaling/H100/yrage/asteroid/spatter9/ and Figures will be found in

Spatter page from https://lanl.github.io/benchmarks/

Questions?

<u>GS Patterns codebase</u> https://github.com/lanl/gs_patterns

<u>Spatter</u> https://github.com/hpcgarage/spatter ATS-5 version https://github.com/lanl/spatter

<u>Spatter Patterns</u> https://github.com/hpcgarage/spatter-patterns

<u>Spatter Miranda Extension</u> PR in progress!

Acknowledgements

This work is supported by the NSF Rogues Gallery testbed grant (CNS-2016701)

This research used resources provided by the Darwin testbed at Los Alamos National Laboratory (LANL) which is funded by the Computational Systems and Software Environments subprogram of LANL's Advanced Simulation and Computing program (NNSA/DOE).

Kevin Sheridan, Galen Shipman, and Jered Dominguez-Trujillo acknowledge support by the National Nuclear Security Administration. Los Alamos National Laboratory is operated by Triad National Security, LLC for the U.S. Department of Energy under contract 89233218CNA000001; LA-UR-24-24856.

