
A Workflow for the Synthesis
of Irregular Memory Access
Microbenchmarks
Kevin Sheridan, Jered Dominguez-Trujillo, Galen Shipman (LANL)
Connor Radelja, Christopher Scott, Agustin Vaca Valverde, Jeffrey
Young (GT)
Patrick Lavin (SNL)

October 2nd, 2024

The “Cambrian Explosion” of new accelerators has led to many domain specific accelerators – not
just in AI but also for data movement!

Motivation

Introduction GS Patterns Spatter 2.0 SummarySpatter

However, we still have little understanding of how future memory accelerators might affect
codes of interest because:
• Finding appropriate regions of interest (ROI) for the memory system is challenging to infer even

with tools like SimPoints and LoopPoint
• Some applications that we might want to benchmark can’t be fully shared to extract

meaningful traces or ROIs

Our ideal workflow would allow us to 1) capture relevant memory accesses from full applications,
2) benchmark them on real systems, and 3) simulate new hardware models

Motivation

Introduction GS Patterns Spatter 2.0 SummarySpatter

Hardware Bottlenecks for LANL HPC codes [1]

[1] G. Shipman, et al., Assessing the Memory Wall in Complex Codes, MCHPC 2022 doi: 10.1109/MCHPC56545.2022.00009

Spatter - Version 1.0

Introduction Spatter GS Patterns Spatter 2.0 Summary

The basis of Spatter is two kernels; one
for gather and another for scatter.

The delta and the pattern in idx specify
the memory access pattern.

Gather kernel:
for i in 0..N:
 for j in len(idx):
 dst[j] = src[delta*i + idx[j]]
Scatter kernel:
for i in 0..N:
 for j in len(idx):
 dst[delta*i + idx[j]] = src[j]

The Need for an Open Source Workflow

Introduction GS Patterns SummarySpatter Spatter 2.0

Previous work focused just on the offsets found within individual instructions. We want to
capture application level gather and scatter behavior.

1. Trace G/S Instructions - pulled from a proprietary simulator

2. Change base address to delta

3. Aggregate Counts

Gather 0x0040, [0, 2, 4, 6]
Gather 0x0044, [0, 2, 4, 6]
Gather 0x0048, [0, 2, 4, 6]
Scatter 0x004C, [1, 1, 5, 5]

Gather _, [0, 2, 4, 6]
Gather 4, [0, 2, 4, 6]
Gather 4, [0, 2, 4, 6]
Scatter 4, [1, 1, 5, 5]

Gather 4, [0, 2, 4, 6], 2
Scatter 4, [1, 1, 5, 5], 1 Spatter’s Format

GS Patterns

Introduction GS Patterns SummarySpatter Spatter 2.0

Sliding window approach is used
to track non-trivial memory
accesses within an application
trace or region of interest (ROI)

Multiple filters are used to keep
the most relevant access patterns
for the final pattern output

GS Patterns codebase at
https://github.com/lanl/gs_patterns and
https://github.com/hpcgarage/gs_patterns

GS Patterns

Introduction GS Patterns SummarySpatter Spatter 2.0

Two passes are used to apply all
filters and output the patterns of
interest
GS Patterns output: A pattern for
each instruction address that makes
it all the way through the filters

GS Patterns Workflow

Introduction GS Patterns SummarySpatter Spatter 2.0

Further extensions to GS Patterns
refactored code to use C++ and a
plugin infrastructure for PinTool,
NVBit

Currently ROI analysis speeds up
the overall GS Patterns workflow
but is a somewhat manual process
to run and annotate codes

Check out collected public patterns at
https://github.com/hpcgarage/spatter-patterns

Pattern Visualization Tools

Introduction GS Patterns SummarySpatter Spatter 2.0

The GS Patterns JSON output can be
easily visualized in a variety of different
ways…

Pattern Visualization Tools

Introduction GS Patterns SummarySpatter Spatter 2.0

But we likely need to do more detailed statistical analysis to make more
sense of these patterns..

Spatter 2.0

Introduction Spatter GS Patterns Spatter 2.0 Summary

• Complete refactor of argument parsing, build
system, and movement towards C++ design

• Addition of new kernels to better represent
multiple levels of indirection - GatherScatter,
MultiGather, MultiScatter

• Support for longer offset buffer lengths for
improved application pattern representation

• MPI support for weak/strong scaling

• Support for atomics with scatter operations

https://github.com/hpcgarage/spatter

GatherScatter Kernel Representation

Spatter 2.0 MPI Workflow

Introduction Spatter GS Patterns Spatter 2.0 Summary

Weak Scaling – each MPI rank gets
the same pattern and scaling scripts
are used to sweep across N ranks

Strong Scaling – access patterns are
partitioned across MPI ranks

GPU Throughput – patterns are
truncated or expanded to vary amount
of memory accesses and saturate
GPU memory subsystem

Spatter 2.0 Results

Introduction Spatter GS Patterns Spatter 2.0 Summary

Weak Scaling MPI Tests for Xrage Gather pattern

Spatter 2.0 Results

Introduction Spatter GS Patterns Spatter 2.0 Summary

GPU BW-BW Plot CPU BW-BW Plot

Summary

Introduction The Rogues Infrastructure FC with RG Summary

Motivating work at LANL for ATS-5 for new
memory accelerator microbenchmarks led
to the release of GS Patterns and Spatter
2.0

• New capabilities allow for more complete
analysis and capture of real-world application
patterns

Improved workflow adds support for
visualization of patterns as well as future
work for simulation

• Much more work is needed to port to other
ModSim tools and to do validation and
analysis of patterns!

Spatter page from https://lanl.github.io/benchmarks/

Acknowledgements
This work is supported by the NSF Rogues Gallery testbed grant (CNS-
2016701)

This research used resources provided by the Darwin testbed at Los Alamos
National Laboratory (LANL) which is funded by the Computational Systems
and Software Environments subprogram of LANL’s Advanced Simulation and
Computing program (NNSA/DOE).

Kevin Sheridan, Galen Shipman, and Jered Dominguez-Trujillo acknowledge
support by the National Nuclear Security Administration. Los Alamos
National Laboratory is operated by Triad National Security, LLC for the U.S.
Department of Energy under contract 89233218CNA000001; LA-UR-24-
24856.

Thank You

GS Patterns codebase
https://github.com/lanl/gs_patterns

Spatter
Mainline: https://github.com/hpcgarage/spatter
ATS-5: https://github.com/lanl/spatter

Spatter Patterns
https://github.com/hpcgarage/spatter-patterns

	A Workflow for the Synthesis of Irregular Memory Access�Microbenchmarks
	Motivation
	Motivation
	Spatter - Version 1.0
	The Need for an Open Source Workflow
	GS Patterns
	GS Patterns
	GS Patterns Workflow
	Pattern Visualization Tools
	Pattern Visualization Tools
	Spatter 2.0
	Spatter 2.0 MPI Workflow
	Spatter 2.0 Results
	Spatter 2.0 Results
	Summary
	Acknowledgements
	Thank You

