
Except ional service in t he nat ional interes t

Sandia National Laborator ies is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned
subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Secur ity Administration under contract DE-NA0003525.

EVALUATING GATHER AND
SCATTER PERFORMANCE ON
CPUS AND GPUS

Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason
Riedy, Aaron Vose, Daniel Ernst

Or: The Spatter Benchmark Suite

Originally Presented at MEMSYS ’20

Updated for MEMSYS ’23

October XX, 2023, Alexandria, VA

INTRODUCTION

PURPOSE

• Spatter’s goal is to represent a large class
of irregular memory access patterns with
a simple encoding that can be machine
generated or written by hand.

• For each input memory pattern, Spatter
reports the rate at which data was read or
written

• We compare these numbers to the
STREAM-bandwidth to understand how
much of the available bandwidth is
utilized by an architecture when running
different patterns

Gather Kernel

E.g. Intel 6430 (SPR)

stride Bandwidth(MB/s)
1 217498.729807
2 94488.415153
4 48114.707001
8 24105.660703

3

USE CASES

• Evaluate the effect of vectorized
instructions on available memory
bandwidth

• Compare how different architectures
handle sparse and irregular access
• Measure how bandwidth utilization has

improved across processor generations

• Measure how CPUs and GPUs differ in
their utilization

• Easily share application-derived memory
access patterns

Compiler developers

Architects, system
designers

System designers

4

IMPLEMENTATION
DETAILS

IMPLEMENTATION

• Frontend
• Specify inputs by hand or batch inputs with JSON

• Backends
• CPU

• Serial

• OpenMP

• GPU Backend

• CUDA

• Tuning
• OpenMP – work per thread

• CUDA – block size, work per thread (in progress)

11

IMPLEMENTATION

• Kernels
• Spatter has two kernels, one for Gather and

one for Scatter

• The Gather kernel reads into the same buffer
on each loop to avoid generating writes

• Vice versa for Scatter

• Pattern
• A memory access pattern is specified by:

• Gather or Scatter

• Index buffer

• Delta

• Number of gathers/scatters to perform

Gather example:
Index = [0, 2, 4, 6]
Delta = 1
Count = 2

12

INPUT FILE EXAMPLE

amg.json
[
 {
 ”delta": 1,
 "kernel": "Gather",
 "pattern": [0, 2, 4, 6],
 “count": 2
 },
 {
 "delta": 1,
 "kernel": "Scatter",
 “pattern”: [1, 1, 5, 5],
 "count": 1
 }
]

13

OUTPUT EXAMPLE $./spatter -pFILE=amg.json

Running Spatter version 0.4
Compiler: icc ver. 19.0.0.20190206
Compiler Location: /opt/intel/bin/icc
Backend: OPENMP
Aggregate Results? YES

Run Configurations
[{'kernel':'Gather', ‘pattern’:
[0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90],
 'delta':3, 'length':83333333,'threads':24},
 … (2 more omitted)]

config time(s) bw(MB/s)
0 0.05971 178631
1 0.184 173873
2 0.03706 172690

Min 25% Med 75% Max
172690 172690 173873 178631 178631
H.Mean H.StdErr
175027 1469.4

1. Read all patterns (kernel, idx, delta)
from a JSON file

2. Determine maximum memory
required and allocated data

3. For each pattern:
1. Run the specified gather or

scatter kernel N times,
measuring the time it took (and
optionally, PAPI counters)

4. Print out the timing and bandwidth
for each pattern, and stats
aggregating the performance of all
patterns

14

EXPERIMENTAL
RESULTS

RESULTS

Uniform Stride

• We run gathers and scatters at power of
2 strides

• Utilization drops as we are not using all of
the data being brought into cache

• Even past a stride of 8, where we would
use one element for every cache line,
bandwidth continues to drop on some
architectures

16

RESULTS

Uniform Stride – Broadwell vs Skylake

• Upon closer inspection, we see the prefetcher
is responsible for the worse utilization on
Broadwell
• The next line is always fetches at strides lower

than 128

• Skylake, however, always brings in two cache
lines

17

RESULTS

Uniform Stride – GPUs

• We see interesting improvements in GPU
memory architecture beyond just higher
bandwidth

• For intermediate strides, newer GPUs utilize a
higher percentage of their bandwidth,
particularly for Gather

18

RESULTS

Uniform Stride - Serial vs OpenMP Backend

• Some architectures have more bandwidth
available when using vectorized loads

• Surprisingly, some have less bandwidth
available

• Broadwell had issues exposing the full
bandwidth to scatter instructions

Improvement of scatter and gather compared to
scalar loads and stores

Gather

Scatter

19

RESULTS

• We collected patterns from several mini-
apps

• We compared the performance with
STREAM to see if it was correlated

• For CPUs, we have a low R–value for the
Pearson correlation coefficient, so they
are not correlated

• For GPUs, there is some correlation
• Pennant and Lulesh are still hard to

predict

20

RESULTS

• We can rank systems in two ways
• Absolute performance

• Percent of bandwidth utilization

• This plot does both!
• Pattern bandwidth as a function of

maximum bandwidth

• A vertical (dashed) line represents a
single system

• Trace a colored line to see how that
pattern performs on different
systems

21

CONCLUSIONS

CONCLUSIONS

1. Spatter gives us a compact representation of a
large class of memory access patterns

2. We can compare memory systems with metrics
beyond total bandwidth, such as how different
architectures handle irregular and sparse
access

3. We can write patterns by hand to investigate
microarchitectural details such as prefetcher
behavior

4. System designers easily share patterns from
real applications with vendors

23

NEW
DEVELOPMENTS

NEW COLLABORATORS

Georgia Tech

• James Wood

• Sudhanshu Agarwal

• Vincent Huang

• Julio Augustin Vaca Valverde

LANL

• Galen Shipman

• Jered Dominguez-Trujillo

• Kevin Sheridan

25

NEW FEATURES

• MPI
• Weak scaling results1

• Multiple indirection
• MultiGather, MultiScatter
• Target[i] = Source[idx1[idx2[i]]]

• Concurrent Gather/Scatter
• Target[idx1[i] = Source[idx2[i]]

• General usability updates
• Binary pattern input

• Improved testing

• Standard suite of benchmarks

• GettingStarted.ipynb
• Uniform Stride and BW-BW plots

• Spatter-patterns repo (Coming soon!)
• Share your patterns with other researchers

Patterns collected with gs_patterns (under release)
Image source: LANL1

[1] https://usrc.lanl.gov/emc3-project-deep-codesign-amt.php
26

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Award #1710371.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725

This research was supported in part by the Laboratory Directed Research and Development program at Sandia
National Laboratories under contract DE-NA-0003525. Disclaimer: The views, opinions, and/or findings contained in
this document are those solely of the author(s) and should not be interpreted as representing the official views or
policies of any of its funding sources.

27

BACKUP SLIDES

29

PLATFORMS

30

	Default Section
	Slide 1: Evaluating Gather and Scatter performance on CPUs and GPUs
	Slide 2: Introduction
	Slide 3: Purpose
	Slide 4: Use Cases
	Slide 10: Implementation Details
	Slide 11: Implementation
	Slide 12: Implementation
	Slide 13: Input File Example
	Slide 14: Output Example
	Slide 15: Experimental Results
	Slide 16: Results
	Slide 17: Results
	Slide 18: Results
	Slide 19: Results
	Slide 20: Results
	Slide 21: Results
	Slide 22: Conclusions
	Slide 23: Conclusions
	Slide 24: New Developments
	Slide 25: New Collaborators
	Slide 26: New Features
	Slide 27: Acknowledgements
	Slide 28: Backup Slides
	Slide 29
	Slide 30: Platforms

