Sandia
National _
Laboratories

Exceptional service in the national interest

EVALUATING GATHER AND
SCATTER PERFORMANCE ON
CPUS AND GPUS

Or: The Spatter Benchmark Suite

Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason
Riedy, Aaron Vose, Daniel Ernst

Originally Presented at MEMSYS '20

October XX, 2023, Alexandria, VA

INTRODUCTION

PURPOSE

Spatter’s goal is to represent a large class
of irregular memory access patterns with
a simple encoding that can be machine
generated or written by hand.

For each input memory pattern, Spatter
reports the rate at which data was read or
written

We compare these numbers to the
STREAM-bandwidth to understand how
much of the available bandwidth is
utilized by an architecture when running
different patterns

src
y
A e
- T -
\ v
6

idx: o0l 2] 4

0 I93I

/'/%%/%V

Gather Kernel

stride Bandwidth(MB/s)

1 217498.729807
2 94488.415153
4 48114.707001
8 24105.660703

E.g. Intel 6430 (SPR)

USE CASES

« Evaluate the effect of vectorized
instructions on available memory Compiler developers

bandwidth

« Compare how different architectures
handle sparse and irregular access
« Measure how bandwidth utilization has Architects, system
improved across processor generations designers

« Measure how CPUs and GPUs differ in
their utilization

 Easily share application-derived memory
access patterns System designers

IMPLEMENTATION
DETAILS

IMPLEMENTATION

Frontend

Specify inputs by hand or batch inputs with JSON

Backends

CPU
Serial
OpenMP
GPU Backend
CUDA

Tuning

OpenMP - work per thread
CUDA - block size, work per thread (in progress)

NVIDIA.
CUDA

OpenMP

"

IMPLEMENTATION

* Kernels frc
* Spatter has two kernels, one for Gather and 7
’ . -
one for Scatter . B %f’ %/,% %1
« The Gather kernel reads into the same buffer A | v
on each loop to avoid generating writes © idx: |0)|2]4]|6

 Vice versa for Scatter

o Gather example:
- Pattern dst: Z///é%/%// : Index = [0, 2, 4, 6]
: e Delta =1
« A memory access pattern is specified by:
y P P y src + delta Count=2

« Gather or Scatter l

« Index buffer R c E G
« Delta

- Number of gathers/scatters to perform

T I=23I

dst: |BIDI1F IE

12

INPUT FILE EXAMPLE

amg.json

[

{
"delta": 1,
"kernel": "Gather",
"pattern": [0, 2, 4, 6],
“count": 2

|

{
"delta": 1,
"kernel": "Scatter",
“pattern”: [1, 1, 5, 5],
"count": 1

}

13

OUTPUT EXAMPLE $./spatter -pFILE=amg.json

1. Read all patterns (kernel, idx, delta) Running Spatter version 0.4
from a JSON file Compiler: 1cc ver. 19.0.0.20190206

Compiler Location: /opt/intel/bin/icc
Backend: OPENMP
Aggregate Results? YES

2. Determine maximum memory
required and allocated data

Run Configurations

3. For each pattern: [{'kernel':'Gather', ‘pattern’:
1. Runthe SpeCiﬂed gather or [016112r1812413013614214815416016677217878479®] ’
scatter kernel N ‘Umesl 'delta’ 13, '1engthl : 83333333, 'threads' :24},

measuring the time it took (and .. (2 more omitted)]

optionally, PAPI counters)

config time(s) bw(MB/s)
_ o _ 0 0.05971 178631
4. Print out the timing and bandwidth 1 0.184 173873
for each pattern, and stats y) 0.03706 172690
aggregating the performance of all
patterns Min 25% Med 75% Max
172690 172690 173873 178631 178631
H.Mean H.StdErr

175027 1469.4

14

EXPERIMENTAL
RESULTS

RESULTS
105 {% Gather
Uniform Stride = 10
« We run gathers and scatters at power of 2
. s —e— BDW p—
2 strides 3L
—o— Naples
« Utilization drops as we are not using all of s
the data being brought into cache PO R R N R CR R
Stride (Doubles)
« Even past a stride of 8, where we would
use one element for every cache line, ek ceatter
bandwidth continues to drop on some N
architectures @ N
= 100
S
Z
= —e— BDW
: 10 -—: E::Ies
—4— SKX
—— TX2

20 21 22 23 24 5 26 37
Stride (Doubles)

16

50 ... Prefetch - 1
RESULTS BDW —
= 40 g
3 E
: : £ 30 3
Uniform Stride — Broadwell vs Skylake S 3
- : 220 =
« Upon closer inspection, we see the prefetcher s :
. . . . o
s responsible for the worse utilization on 10 <
Broadwell
< The next line is always fetches at strides lower 0 20 2 2 2 2’ X
than 128 Stride (Doubles)
. Sky|ake, hO\/\/e\/er, a|WayS brings iNn two cache L0 e
ines o DKX — of
—o | .
c 40 3
§30 E
-g
@ 20 g

-
o

20 21 2 23 ¢ 25 26 7
Stride (Doubles)

17

RESULTS 1o = G100

—¥— K40c
—d— P100
—e¢— Titan

g - 25% of peak _
Uniform Stride - GPUs A D e —

D10 N, e
« We see interesting improvements in GPU S

memory architecture beyond just higher 2 | T e
bandwidth

- For intermediate strides, newer GPUs utilize a A
higher percentage of their bandwidth,
particularly for Gather

Gather

106 |
0 —=— GV100

—¥— K40c
—4— P100
—e— Titan
- 12.5% of peak

105 4

Bandwidth (MB/s)

Scatter

20 21 22 23 4 25 26 7
Stride (Doubles)

18

RESULTS

Uniform Stride - Serial vs OpenMP Backend

Some architectures have more bandwidth
available when using vectorized loads

Surprisingly, some have less bandwidth
available

Broadwell had issues exposing the full
bandwidth to scatter instructions

801

Percent Improvement

_20 i

100 4

80 1

Percent Improvement

60
401
20

044

60 1
40

201

—e— BDW
=—p— KNL
—o— Naples
—4— SKX

20 21 22 23 4 5 6 7
Stride (Doubles)

—e— BDW
—p— KNL
—o— Naples
~4— SKX
TX2

20 21 22 3 24 25 96 DI
Stride (Doubles)

Gather

Scatter

Improvement of scatter and gather compared to

scalar loads and stores

19

RESULTS

We collected patterns from several mini-
apps

We compared the performance with
STREAM to see if it was correlated

For CPUs, we have a low R-value for the
Pearson correlation coefficient, so they
are not correlated

For GPUs, there is some correlation

« Pennant and Lulesh are still hard to
predict

Platform | AMG (n=36) Nekbone (n=6) Lulesh PENNANT STREAM
GB/s GB/s GB/s GB/s GB/s
(H-Mean) (H-Mean) (H-Mean) (H-Mean)
BDW 123 121 20 6 43
SKX 328 309 12 35 96
CLX 315 287 14 41 94
Naples 140 323 3 11 97
TX2 270 247 232 28 241
KNL 201 190 19 4 249
R-value 0.15 -0.04 0.50 -1
K40c 108 99 88 14 193
TitanXP 496 320 175 21 443
P100 703 673 165 19 541
R-value 0.66 0.62 0.62 0.57

20

RESULTS

Uniform Stride Bandwidth vs PENNANT Patterns

. ¥
- We can rank systems in two ways Pelected Gather pattems <&
« Absolute performance @ |
« Percent of bandwidth utilization)
« This plot does both!
- Pattern bandwidth as a function of ~
maximum bandwidth g G
g s
- Avertical (dashed) line representsa 8
single system &
» Trace a colored line to see how that &
pattern performs on different oA o
systems Gl R N ,]
~ 1GB/s 10 GB/s 100 GB/s 1 TB/s

Stride-1 DRAM Bandwidth

21

CONCLUSIONS

CONCLUSIONS AN

1. Spatter gives us a compact representation ofa| z* P b B
large class of memory access patterns g” ni E°

2. We can compare memory systems with metrics| 2| I =R TSV
beyond total bandwidth, such as how different e
architectures handle irregular and sparse T uide oubless T sndecowies
a C C eS S Uniform Stride Bandwidth vs PENNANT Patterns

3. We can write patterns by hand to investigate = xioc

microarchitectural details such as prefetcher
behavior

-- 25% of peak _

width

1001 N\, e

rn Band

Bandwidth (MB/s)

4. System designers easily share patterns from
real applications with vendors

Gather

> P
1GB/s 10 GB/s 100 GB/s 1TB/s

20 2t 22 23 24 25 26 27
Stride (Doubles) Stride-1 DRAM Bandwidth

23

NEW COLLABORATORS

Georgia Tech
* James Wood
Sudhanshu Agarwal
« Vincent Huang
 Julio Augustin Vaca Valverde

LANL
Galen Shipman

* Jered Dominguez-Trujillo
Kevin Sheridan

Cr

o

Georgia
Tech.

Los Alamos

NATIONAL LABORATORY

25

NEW FEATURES

flag, static_2d: FP Gather/Scatter Average Bandwidth per Rank (skylake-gold-bind)
11000

—8— Pattern 0
—&— Pattern 1
—8— Pafttern 2
—e— Pattern 3

10000 A

« MPI
« Weak scaling results!

9000
8000 4

7000 +

- Multiple indirection
« MultiGather, MultiScatter

« Target[i] = Source[idx1[idx2[1]]1]

6000 ~

5000 4

Average Bandwidth per Rank (MB/s)

« Concurrent Gather/Scatter ; % B P
e Target[idx1[i] = Source[idx2[i]]
flag, static_2d: Non-FP Gather/Scatter Average Bandwidth per Rank (skylake-gold-bind)
« General usability updates nooo | g = et
y p 10000 - {L mm“:ﬂ_‘ —e— Pattern 2

« Binary patterninput
* Improved testing
« Standard suite of benchmarks
- GettingStarted.ipynb
« Uniform Stride and BW-BW plots

E - —8— Pattern 3

N B —e— Pattern 4

1“:‘“ -®- Pattern 5
-

~ =@~ Pattern 6

-®- Pattern 7

29000 +

8000 A

7000 A

6000

5000 A

Average Bandwidth per Rank (MB/s)

4000 A

« Spatter-patterns repo (Coming soon!)]
< Share your patterns with other researchers 0 » w

Ranks

Patterns collected with gs_patterns (under release)
‘ [1] https://usrc.lanl.gov/emc3-project-deep-codesign-amt.php Image source: LANL'

26

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Award #1710371.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,

which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-ACO5-
000R22725

This research was supported in part by the Laboratory Directed Research and Development program at Sandia
National Laboratories under contract DE-NA-0003525. Disclaimer: The views, opinions, and/or findings contained in

this document are those solely of the author(s) and should not be interpreted as representing the official views or
policies of any of its funding sources.

. .

Table 5: Listing of Patterns

Gather Pattern | Index Delta Type
PENNANT-GO [2,484,482,0,4,486,484,2,6,488,486,4,8,490,488,6] 2

PENNANT-G1 [0,2,484,482,2,4,486,484,4,6,488,486,6,8,490,488] 2

PENNANT-G2 [0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60] 2 Stride-4
PENNANT-G3 [4,8,12,0,20,24,28,16,36,40,44,32,52,56,60,48] 2

PENNANT-G4 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 4 Broadcast
PENNANT-G5 [4,8,12,0,20,24,28,16,36,40,44,32,52,56,60,48] 4

PENNANT-G6 [482,0,2,484,484,2,4,486,486,4,6,488,488,6,8,490] 480

PENNANT-G7 [482,0,2,484,484,2,4,486,486,4,6,488,488,6,8,490] 482

PENNANT-G8 [2,0,0,0,2,0,0,0,2,0,0,0,2,0,0,0] 129608

PENNANT-G9 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 388852 Broadcast
PENNANT-G10 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 388848 Broadcast
PENNANT-G11 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 388848 Broadcast
PENNANT-G12 [6,0,2,4,14,8,10,12,22,16,18,20,30,24,26,28] 518408
PENNANT-G13 [6,0,2,4,14,8,10,12,22,16,18,20,30,24,26,28] 518408
PENNANT-G14 [6,0,2,4,14,8,10,12,22,16,18,20,30,24,26,28] 1036816
PENNANT-G15 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 1882384 Broadcast
LULESH-GO [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 1 Stride-1
LULESH-G1 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 8 Stride-1
LULESH-G2 [0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120] 1 Stride-8
LULESH-G3 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 8 Stride-24
LULESH-G4 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 4 Stride-24
LULESH-G5 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 1 Stride-24
LULESH-G6 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 8 Stride-24
LULESH-G7 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 41 Stride-1
NEKBONE-GO0 [0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90] 3 Stride-6
NEKBONE-G1 [0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90] 8 Stride-6
NEKBONE-G2 [0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90] 8 Stride-6
AMG-GO [1333,0,1,36,37,72,73,1296,1297,1332,1368,1369,2592,2593,2628,2629] 1 Mostly Stride-1
AMG-G1 [1333,0,1,2,36,37,38,72,73,74,1296,1297,1298,1332,1334,1368] 1 Mostly Stride-1
Scatter Pattern | Index Delta Type
PENNANT-S0 | [0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60] 1 Stride-4
LULESH-S0 [0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120] 1 Stride-8
LULESH-S1 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 8 Stride-24
LULESH-S2 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 1 Stride-24
LULESH-S3 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 0 Stride-24

29

PLATFORMS

System description Abbreviation System Type STREAM BW (MB/s) Power (W) Threads/Backend
Broadwell BDW 12-core Intel CPU 37,164 105 12 threads, OMP, OCL
Cavium ThunderX2 ThunderX2 28-core ARM CPU 120,000 175 112 threads, OMP
IBM Power8 Power8 8-core IBM CPU 25,389 190 64 threads, OMP
Kepler K40c K40c NVIDIA GPU 193,855 235 CUDA, OCL
Knight’s Landing KNL Intel Xeon Phi 64,060 215 128 threads, OMP
Pascal P100 P100 NVIDIA GPU 541,835 250 CUDA, OCL
Quadro GV100 GV100 NVIDIA GPU 591,350 300 CUDA

Sandy Bridge SNB 4-core Intel CPU 17,925 80 4 threads, OMP, OCL
Titan XP Titan XP NVIDIA GPU 443,533 250 CUDA, OCL

30

	Default Section
	Slide 1: Evaluating Gather and Scatter performance on CPUs and GPUs
	Slide 2: Introduction
	Slide 3: Purpose
	Slide 4: Use Cases
	Slide 10: Implementation Details
	Slide 11: Implementation
	Slide 12: Implementation
	Slide 13: Input File Example
	Slide 14: Output Example
	Slide 15: Experimental Results
	Slide 16: Results
	Slide 17: Results
	Slide 18: Results
	Slide 19: Results
	Slide 20: Results
	Slide 21: Results
	Slide 22: Conclusions
	Slide 23: Conclusions
	Slide 24: New Developments
	Slide 25: New Collaborators
	Slide 26: New Features
	Slide 27: Acknowledgements
	Slide 28: Backup Slides
	Slide 29
	Slide 30: Platforms

