-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathpreprocess.py
executable file
·107 lines (83 loc) · 2.98 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#!/usr/bin/env python3
"""Precompute Wav2Vec features."""
import os
import json
from pathlib import Path
from tempfile import mkstemp
from multiprocessing import cpu_count
import tqdm
import torch
from torch.utils.data import DataLoader
from argparse import ArgumentParser
from copy import deepcopy
from models import load_pretrained_wav2vec
from data import PreprocessDataset
from data.feature_extract import FeatureExtractor
def parse_args():
"""Parse command-line arguments."""
parser = ArgumentParser()
parser.add_argument("data_dirs", type=str, nargs="+")
parser.add_argument("feature_name", type=str)
parser.add_argument("wav2vec_path", type=str)
parser.add_argument("out_dir", type=str)
parser.add_argument("--trim_method", choices=["librosa", "vad"], default="vad")
parser.add_argument("--n_workers", type=int, default=cpu_count())
parser.add_argument("--sample_rate", type=int, default=16000)
return vars(parser.parse_args())
def main(
data_dirs,
feature_name,
wav2vec_path,
out_dir,
trim_method,
n_workers,
sample_rate,
**kwargs,
):
"""Main function."""
out_dir_path = Path(out_dir)
if out_dir_path.exists():
assert out_dir_path.is_dir()
else:
out_dir_path.mkdir(parents=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dataset = PreprocessDataset(
data_dirs,
trim_method,
sample_rate
)
dataloader = DataLoader(
dataset, batch_size=1, shuffle=False, drop_last=False, num_workers=n_workers
)
speaker_infos = {}
speaker_infos['feature_name'] = feature_name
pbar = tqdm.tqdm(total=len(dataset), ncols=0)
mapping = {'apc': 'fbank', 'timit_posteriorgram': 'fbank', 'cpc': 'cpc_mel', 'wav2vec2': 'wav2vec2_mel'}
feat_extractor = FeatureExtractor(feature_name, wav2vec_path, device)
mel_extractor = FeatureExtractor(mapping[feature_name], wav2vec_path, device)
for speaker_name, audio_path, wav in dataloader:
if wav.size(-1) < 10:
continue
wav = wav.to(device)
speaker_name = speaker_name[0]
audio_path = audio_path[0]
with torch.no_grad():
feat = feat_extractor.get_feature(wav)[0]
mel = mel_extractor.get_feature(wav)[0]
fd, temp_file = mkstemp(suffix=".tar", prefix="utterance-", dir=out_dir_path)
torch.save({"feat": feat.detach().cpu(), "mel": mel.detach().cpu()}, temp_file)
os.close(fd)
if speaker_name not in speaker_infos.keys():
speaker_infos[speaker_name] = []
speaker_infos[speaker_name].append(
{
"feature_path": Path(temp_file).name,
"audio_path": audio_path,
"mel_len": len(mel),
}
)
pbar.update(dataloader.batch_size)
with open(out_dir_path / "metadata.json", "w") as f:
json.dump(speaker_infos, f, indent=2)
if __name__ == "__main__":
main(**parse_args())