diff --git a/README.md b/README.md index ac7a363..09851fc 100644 --- a/README.md +++ b/README.md @@ -2,87 +2,85 @@ > :warning: This work is in early development and changing rapidly. It is not ready for scientific use. :warning: -### What is this repo? +## Why does Neuroscience need HoloViz+Bokeh? -Our ultimate goal is to facilitate the creation of fully open, reproducible, +We hypothesize the process of science stands to benefit from having the option to suddenly become interactive and shareable - allowing for the poking or plucking, pushing or pulling, drilling in or out, grouping or separating, and sending or receiving of what would otherwise be a static snapshot of the data. The combined use of HoloViz and Bokeh tools could provide the interactivity, shareability, and scalability needed to support research as a collective action rather than a collection of solitary observations. + + +### What is the purpose of this GitHub repository? + +One of our overall goals is to facilitate the creation of fully open, reproducible, OS-independent, browser-based workflows for biomedical research primarily using sustainable, domain-independent visualization tools. In support of this -goal, this repository is the development ground for optimization and demonstration of -[HoloViz](https://github.com/holoviz/) and [Bokeh](https://github.com/bokeh/bokeh) tools within the realm of neuroscience. +goal, this repository is the **development ground for optimization of +[HoloViz](https://github.com/holoviz/) and [Bokeh](https://github.com/bokeh/bokeh) tools within the realm of neuroscience.** -
- Urgent objectives: - -- **Workflow Development:** Host the development of workflows. -- **Code Sharing:** Promote consistency and facilitate sharing of code across different workflows. -- **Collaboration:** Foster collaborative efforts between the HoloViz+Bokeh development teams and scientific collaborators outside these groups. This cross-collaboration aims to effectively tailor the tools to the specific requirements of the neuroscience community. -- **Issue Identification and Resolution:** As part of ongoing development, identify and address any performance or user interface bottlenecks in the workflows to optimize their usage and effectiveness. -- **Benchmarking and Testing Integration:** Host benchmarking work that involves the use of real and simulated data to assess the performance and functionality of the tools under relevant conditions. - -
- -
- Slightly less urgent objectives: - -- **Improvement and Refinement:** Over time, enhance, improve, and refine the developed workflows based on user feedback and advancements in the field. -- **Dissemination:** Eventually, share workflows with the broader scientific community. It's unclear yet where these all will be showcased, but at least some will go to examples.holoviz.org. -- **Education and Community Building:** Undertake educational and community-building activities such as providing tutorials, workshops, other educational resources to help researchers effectively utilize the developed tools. -- **Host Domain-Specific Package:** It is possible that not all required code for workflows will be accepted or appropriate for integrations into domain-independent HoloViz/Bokeh packages. Therefore, this repo *might* end up hosting code to be packaged as a domain-specific extension. TBD! - -
- -
- Roadmap: - -- High-level summary: Our current grant period is through 2024, but we want to have a - first pass of prioritized improvements for generalized workflows to disseminate for - feedback **within** Q4 2023. The remainder of Q4 2023 and all of 2024 will be for - iterating on feedback, developing the specialized workflows, demonstrating biomedical - use-cases, collaborating lab support, educational activities, and as time permits - - wishlist features and new collaborations. -- A living task-goal roadmap is visible on [this project board - view](https://github.com/orgs/holoviz-topics/projects/1/views/3) - currently through Q3 - and early Q4 2023. - -
+**Specific repo objectives:** +- **Workflow Development:** Host the development versions of workflows, facilitating consistency and code sharing across them. +- **Collaboration Hub:** Foster collaborative efforts between the developer teams and scientific collaborators outside these groups - aiming to effectively tailor development to specific requirements of the neuroscience community. +- **Project Management:** Track ideas, feedback, requirements, specifications, issues, requests, topic research, and progress in the associated [Project Board](https://github.com/orgs/holoviz-topics/projects/1) and [Meeting Notes](https://github.com/holoviz-topics/neuro/wiki/Meeting-Notes). +- **Host Domain-Specific Scripts:** For instance, simulated data generators. +- **Temporarily Host Benchmark Tooling:** Eventually, to be be migrated to a dedicated, domain-independent repository. + ### What are workflows? -This repository contains developmental versions of workflows, which can be categorized into two types: **generalized** and **specialized**. Generalized workflows aim to be broadly applicable and primarily utilize domain-independent tools such as Numpy, Pandas, Xarray, and others. These generalized workflows serve as the foundational building blocks for specialized workflows. On the other hand, specialized workflows are designed to cater to specific contexts and have no limitations on the use of domain-specific tools like MNE, Minian, and more. +This repository contains developmental versions of workflows, which can be loosely categorized into two types: **generalized** and **specialized**. Generalized workflows aim to be broadly applicable and primarily utilize domain-independent [Pandata](https://github.com/panstacks/pandata) tools such as Numpy, Pandas, Xarray, SciPy, etc. These generalized workflows serve as the foundational building blocks for specialized workflows. Specialized workflows are designed to cater to specific contexts and have no limitations on the use of domain-specific tools. -**Generalized Workflows**: +## **Generalized Workflows in Development**: -| Title | Modality | Thumbnail | Info & Links | Description | +| Title | Example Modality | Thumbnail | Info & Links | Description | | --- | --- | --- | --- | --- | -| Stacked Timeseries | eeg, ephys | Stacked Timeseries | ![Status](https://img.shields.io/badge/status-in%20progress-orange)
[readme](./workflows/eeg-viewer/readme_eeg-viewer.md)
[workflow](./workflows/stacked-timeseries/0-StackedTimeseries.ipynb) | Synchronized examination of stacked time-series with large data handling, scale bar, annotations, minimap, and signal grouping. -| ~~EEG Viewer~~ See Stacked Timeseries| eeg | EEG Viewer | ![Status](https://img.shields.io/badge/status-in%20progress-orange)
[readme](./workflows/eeg-viewer/readme_eeg-viewer.md)
[workflow](./workflows/eeg-viewer/workflow_eeg-viewer.ipynb) | Synchronized examination of EEG with stacked time-series, large data handling, scale bar, annotations, minimap, and signal grouping. -| Video Viewer | calcium imaging | Video Viewer | ![Status](https://img.shields.io/badge/status-in%20progress-orange)
[readme](./workflows/video-viewer/readme_video-viewer.md)
[workflow](./workflows/video-viewer/workflow_video-viewer.ipynb) | Efficient visualization of large Miniscope calcium imaging movies with, playback controls, 2D annotation, scale bar, time views, intensity histogram, and summary statistics. | -| ~~Ephys Viewer~~ See Stacked Timeseries | ephys | Ephys Viewer | ![Status](https://img.shields.io/badge/status-in%20progress-orange)
[readme](./workflows/ephys-viewer/readme_ephys-viewer.md)
[workflow](./workflows/ephys-viewer/workflow_ephys-viewer.ipynb) | Synchronized examination of multielectrode intracranial extracellular electrophysiology (ephys) with all the relevant goodies of the EEG viewer.| -| Waveform | ephys | Waveform | ![Status](https://img.shields.io/badge/status-in%20progress-orange)
[readme](./workflows/waveform/readme_waveform.md)
[workflow](./workflows/waveform/workflow_waveform.ipynb) | Oscilloscope-style display of action potential waveform snippets | -| Spike Raster | ephys | Spike Raster | ![Status](https://img.shields.io/badge/status-in%20progress-orange)
[readme](./workflows/spike-raster/readme_spike-raster.md)
[workflow](./workflows/spike-raster/workflow_spike-raster.ipynb) | Efficient visualization of large-scale neuronal spike time data, with a simple API, aggregate views of spike counts, and spike-level metadata management | - -- Multimodal - visualizing and aligning ca-imaging with simultaneously recorded (but +| Multi-Channel Timeseries | eeg, ephys | Multi-Channel Timeseries | :warning:![Status](https://img.shields.io/badge/status-in%20progress-orange)
[workflow](./workflows/multi_channel_timeseries/index.ipynb) | Synchronized examination of stacked time-series with large data handling, scale bar, annotations, minimap, and signal grouping. +| Deep Image Stack | miniscope imaging | Video Viewer | :warning: ![Status](https://img.shields.io/badge/status-in%20progress-orange)
[workflow](./workflows/image_stack/workflow_image-stack.ipynb) | Efficient visualization of deep 2D calcium imaging movies with, playback controls, 2D annotation, scale bar, time views, intensity histogram, and summary statistics. | +| Waveform | ephys | Waveform | :warning:![Status](https://img.shields.io/badge/status-in%20progress-orange)
[workflow](./workflows/waveform_snippets/workflow_waveform.ipynb) | Oscilloscope-style display of action potential waveform snippets | +| Spike Raster | ephys | Spike Raster | :warning:![Status](https://img.shields.io/badge/status-in%20progress-orange)
[workflow](./workflows/spike-raster/workflow_spike-raster.ipynb) | Efficient visualization of large-scale neuronal spike time data, with a simple API, aggregate views of spike counts, and spike-level metadata management | + +- ![status: todo](https://img.shields.io/badge/status-todo-purple) Streaming data - extend the ephys, eeg, and/or video viewer workflows to + display live streaming data. +- ![status: idea](https://img.shields.io/badge/status-idea-blue) Multimodal - visualizing and aligning ca-imaging with simultaneously recorded (but differently sampled) timeseries like EEG, EMG, and/or behavior. Alternatively, - visualizing behavioral video (eye tracking, maze running) with timeseries data. ![status: todo](https://img.shields.io/badge/status-todo-purple) -- Linked eeg-sensor layout ![status: todo](https://img.shields.io/badge/status-todo-purple) -- Linked ephys-sensor layout ![status: todo](https://img.shields.io/badge/status-todo-purple) + visualizing behavioral video (eye tracking, maze running) with timeseries data. +- ![status: idea](https://img.shields.io/badge/status-idea-blue) Linked electrode-array layout -**Specialized Workflows**: +## **Specialized Workflows in Development**: -- Spike Motif ![status: todo](https://img.shields.io/badge/status-todo-purple) -- MNE Raw ![status: todo](https://img.shields.io/badge/status-todo-purple) -- Minian CNMF ![status: todo](https://img.shields.io/badge/status-todo-purple) +| Title | Example Modality | Thumbnail | Info & Links | Description | +| --- | --- | --- | --- | --- | +| Neuroglancer notebook | electron microscopy, histology | Neuroglancer Notebook | :warning:![Status](https://img.shields.io/badge/status-in%20progress-orange)
[workflow](./workflows/neuroglancer_notebook/neuroglancer-nb-workflow.ipynb) | Notebook-based workflow for visualizing 3D volumetric data in a [Neuroglancer](https://github.com/google/neuroglancer?tab=readme-ov-file) application| ---- -**Incubation/Wishlist**: +- ![status: idea](https://img.shields.io/badge/status-idea-blue) Spike Motif +- ![status: idea](https://img.shields.io/badge/status-idea-blue) MNE integration +- ![status: idea](https://img.shields.io/badge/status-idea-blue) Minian CNMF Temporal update parameter exploration app long timeseries + improvement +workflows/neuroglancer_notebook/assets/20240612_neuroglancerNB.png + +## Dissemination +- Workflows will be shared with the broader scientific community as they are ready. The target date for a first round of workflows is the end of 2024. Completed workflows will be listed on [examples.holoviz.org](https://examples.holoviz.org/gallery/index.html), while select aspects will also go into the relevant Bokeh and HoloViz documentation pages. +- Workflow progress will be presented at the [CZI open science](https://chanzuckerberg.com/science/programs-resources/open-science/) conference in Boston, MA in June 2024. +- If you have ideas for where our workflows might be cross-linked of hosted, please reach out! We would love it if there was also a central place for bioscience workflows, like the Geoscience community has with [Project Pythia](https://projectpythia.org/). + +## Get Involved +- We are actively looking for opportunities to deliver tutorials, workshops, or other educational resources to help researchers in underrepresented communities effectively utilize our tools. Reach out on [Discord](https://discord.gg/rb6gPXbdAr) if you want to brainstorm some ideas! +- Visit the [Community page on HoloViz.org](https://holoviz.org/community.html) for more ways to join the conversation. +- If you want to contribute to the workflows or underlying libraries, read on for installation and contribution instructions. -- General: Streaming data - extend the ephys, eeg, and/or video viewer workflows to - display live streaming data. ![status: idea](https://img.shields.io/badge/status-idea-blue) -- General: Videos/Timeseries recorder ![status: idea](https://img.shields.io/badge/status-idea-blue) -- Specialized: CNMF Temporal update parameter exploration app long timeseries - improvement ![status: idea](https://img.shields.io/badge/status-idea-blue) + +## Who is behind this effort? + +This work is a collaboration between developers and scientists, and some developer-scientists. While some contributions are visible through the GitHub repo, many other contributions are less visible yet equally important. + +Funding: +- 2023 - 2024: Chan Zuckerberg Initiative. Learn more in the [grant announcement](https://blog.bokeh.org/announcing-czi-funding-for-bokeh-for-bioscience-5f74426c011a). + +## Need to contact us? +- Project Lead: Dr. Demetris Roumis (@droumis on [Discord](https://discord.gg/X6Eq9CvZZn)) +- HoloViz Director: Dr. James (Jim) Bednar (@jbednar on [Discord](https://discord.gg/X6Eq9CvZZn)) +- Bokeh Director: Bryan Van de Ven (bryan@bokeh.org) --- + +# Contributors ## Installation for individual workflows with Conda ### Prerequisites @@ -97,7 +95,7 @@ Before installing the workflow environments, make sure you have Miniconda instal 2. **Navigate to Workflow**: Change to the directory of the workflow you're interested in. ```bash - cd neuro/workflows/eeg_viewer + cd neuro/workflows/ ``` 3. **Create Environment**: Use `conda` to create a new environment from the `environment.yml` file. @@ -107,11 +105,9 @@ Before installing the workflow environments, make sure you have Miniconda instal 4. **Activate Environment**: After the environment is created, activate it. ```bash - conda activate eeg_viewer + conda activate ``` -Replace `eeg_viewer` with the appropriate workflow name for different workflows. - ### Updating Workflow Environments @@ -124,7 +120,7 @@ If you've already installed a workflow environment and the `environment.yml` fil 2. **Navigate to Workflow**: Go to the directory of the workflow you're interested in. ```bash - cd neuro/workflows/eeg_viewer + cd neuro/workflows/ ``` 3. **Update Environment**: Update the existing Conda environment based on the latest `environment.yml` file. @@ -134,24 +130,21 @@ If you've already installed a workflow environment and the `environment.yml` fil The `--prune` option will remove packages from the environment not present in the updated `environment.yml` file. -Replace `eeg_viewer` with the appropriate workflow name for different workflows. - --- -## Contributing +## Resources for Contributing - **Task Management:** As workflows are developed and honed, performance and UI bottlenecks will be identified and addressed. Some improvements for the workflows themselves will be within this repo, but many improvements will be in the appropriate underlying libraries within the [HoloViz](https://github.com/holoviz/), [Bokeh](https://github.com/bokeh), or other GitHub Organizations. We will do our best to track the disparate tasks related to these efforts into this [project board](https://github.com/orgs/holoviz-topics/projects/1). - - Abstracted project board tasks prefixed with 'GOAL:' are for roadmap generation and hours estimation. - **Communication:** - Meeting minutes: Logged in the [Wiki > Meeting Notes](https://github.com/holoviz-topics/neuro/wiki/Meeting-Notes) whenever possible. - - [HoloViz Discord #neuro channel](https://discord.gg/X6Eq9CvZZn) for real-time chat + - [HoloViz Discord #neuro channel](https://discord.gg/X6Eq9CvZZn) for real-time chat (if archived, post on the General HoloViz Discord channel) - [holoviz-topics/neuro GitHub repo issue tracker](https://github.com/holoviz-topics/neuro/issues) -- **Specifications:** The [Wiki](https://github.com/holoviz-topics/neuro/wiki) has some data specifications and modality notes (in progress). -- **Data Generation:** To assist the development using real data, some workflows utilize simple data generators to help benchmark across data and parameter space. As the data generators/simulators can be useful to multiple workflows, they are kept as a separate and importable module ([`/src/neurodatagen`](./src/neurodatagen)). -- **Visualization source code:** If there is visualization code or utilities that we want to live separate from the individual workflows, we can store them in [`/src/hvneuro`](./src/hvneuro) for now. However, it's unclear whether this will be released as a new package, incorporated into existing libraries, or live in particular workflows. TBD +- **Specifications and Research:** The [Wiki](https://github.com/holoviz-topics/neuro/wiki) has some data specifications and modality notes. +- **Data Generation:** To assist the development using real data, some workflows utilize simple data generators to help benchmark across data and parameter space. As the data generators/simulators can be useful to multiple workflows, they are kept as a separate module ([`/src/neurodatagen`](./src/neurodatagen)). +- **Visualization source code:** If there is visualization code or utilities that we want to live separate from the individual workflows, we can store them in [`/src/hvneuro`](./src/hvneuro) for now. However, this should be considered a temporary space until the code can be incorporated into existing libraries, or live in particular workflows. - **Repo Structure and dev patterns:** ``` /workflows @@ -164,25 +157,5 @@ Replace `eeg_viewer` with the appropriate workflow name for different workflows. ``` - Use `readme_.md` for any essential workflow-specific info or links. - Maintain `workflow_.ipynb` as the latest version of the workflow. - - Each workflow should have an `environment.yml` with which to create a conda env that will install the `neurodatagen` module in dev mode. - - Use the `dev` dir in each workflow as shared scratch space within the `main` branch. There is no expectation that anything here is maintained. - ---- -## Who is behind this? - -This work is a collaboration between developers and scientists, and some developer-scientists. While some contributions are visible through the GitHub repo, many other contributions are less visible yet equally important. - -Funding: -- 2023 - 2024: Chan Zuckerberg Initiative. Learn more in the [grant announcement](https://blog.bokeh.org/announcing-czi-funding-for-bokeh-for-bioscience-5f74426c011a). - -## Need to contact us? -- Project Lead: Demetris Roumis (@droumis on [Discord](https://discord.gg/X6Eq9CvZZn)) ---- - -## Why Neuroscience? - -Multiple (probably all) HoloViz+Bokeh developers believe that helping people through the furthering of clinically impactful science is a worthy pursuit and in need of a data visualization boost. - -## Why HoloViz+Bokeh? - -We hypothesize that the visualization within the process of working always benefits from having the option to suddenly become interactive and shareable - allowing for the poking or plucking, pushing or pulling, drilling in or out, grouping or separating, and sending or receiving of what would otherwise be a static snapshot of the data. The combined use of HoloViz and Bokeh tools provides the interactivity and shareability needed to support research as a collective action rather than a collection of solitary observations. + - Each workflow should have an `environment.yml` with which to create a conda env + - The `dev` dir in each workflow is scratch space. There is no expectation that anything here is maintained. \ No newline at end of file diff --git a/benchmarks/create_ephys_data.ipynb b/benchmarks/create_ephys_data.ipynb index df4f2d1..e5a0de0 100644 --- a/benchmarks/create_ephys_data.ipynb +++ b/benchmarks/create_ephys_data.ipynb @@ -13,7 +13,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -29,7 +29,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -142,6 +142,76 @@ " mr.save_recording_generator(recgen, f'data/ephys_sim_neuropixels_{dur}s_384ch.h5')" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Add channel names object" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/Users/droumis/data/ephys_sim_neuropixels/ephys_sim_neuropixels_1s_384ch.h5 num_channels: 384\n", + "channels object already present.\n", + "/Users/droumis/data/ephys_sim_neuropixels/ephys_sim_neuropixels_10s_384ch.h5 num_channels: 384\n", + "channels object already present.\n", + "/Users/droumis/data/ephys_sim_neuropixels/ephys_sim_neuropixels_100s_384ch.h5 num_channels: 384\n", + "channels object added successfully.\n", + "channels object already present.\n", + "/Users/droumis/data/ephys_sim_neuropixels/ephys_sim_neuropixels_200s_384ch.h5 num_channels: 384\n", + "channels object added successfully.\n", + "channels object already present.\n" + ] + } + ], + "source": [ + "import h5py\n", + "from pathlib import Path\n", + "\n", + "durations = [1, 10, 100, 200]\n", + "\n", + "for dur in durations:\n", + " # Open the existing HDF5 file in append mode\n", + " H5_PATH = Path(f'~/data/ephys_sim_neuropixels/ephys_sim_neuropixels_{dur}s_384ch.h5').expanduser()\n", + " with h5py.File(H5_PATH, 'a') as f:\n", + " num_channels = f['channel_positions'].shape[0]\n", + " print(H5_PATH, 'num_channels:', num_channels)\n", + " # skip if 'channels' object already exists\n", + " if 'channels' in f:\n", + " print(\"channels object already present.\")\n", + " else:\n", + " f.create_dataset('channels', data=list(range(384)))\n", + " print(\"channels object added successfully.\") \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "PosixPath('/Users/droumis/data/ephys_sim_neuropixels_10s_384ch.h5')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "H5_PATH" + ] + }, { "cell_type": "code", "execution_count": null, @@ -152,7 +222,7 @@ ], "metadata": { "kernelspec": { - "display_name": "neuro-eeg-viewer", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -166,9 +236,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.6" + "version": "3.11.8" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/workflows/image_stack/workflow_image-stack.ipynb b/workflows/image_stack/workflow_image-stack.ipynb index fc1476c..a9cf804 100644 --- a/workflows/image_stack/workflow_image-stack.ipynb +++ b/workflows/image_stack/workflow_image-stack.ipynb @@ -370,16 +370,6 @@ "# TODO: Consider including additional advanced versions are in 231218_backup_workflow_image-stack.ipynb" ] }, - { - "cell_type": "markdown", - "id": "4905ce20-3c49-4631-b4b7-6676faa2d9e7", - "metadata": {}, - "source": [ - "## Conclusion\n", - "\n", - "This workflow represents our efforts to create a performant and easily adaptable tool for neuroscience imaging data visualization." - ] - }, { "cell_type": "code", "execution_count": null, @@ -405,7 +395,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.12.3" } }, "nbformat": 4, diff --git a/workflows/multi_channel_timeseries/assets/231024_StackedTimeseries.png b/workflows/multi_channel_timeseries/assets/231024_MChanTS.png similarity index 100% rename from workflows/multi_channel_timeseries/assets/231024_StackedTimeseries.png rename to workflows/multi_channel_timeseries/assets/231024_MChanTS.png diff --git a/workflows/multi_channel_timeseries/assets/large_multichan-ts.png b/workflows/multi_channel_timeseries/assets/large_multichan-ts.png new file mode 100644 index 0000000..beb6fd0 Binary files /dev/null and b/workflows/multi_channel_timeseries/assets/large_multichan-ts.png differ diff --git a/workflows/multi_channel_timeseries/assets/pollen.png b/workflows/multi_channel_timeseries/assets/pollen.png new file mode 100644 index 0000000..4ffc548 Binary files /dev/null and b/workflows/multi_channel_timeseries/assets/pollen.png differ diff --git a/workflows/multi_channel_timeseries/dev/AH_large_multi-chan-ts.ipynb b/workflows/multi_channel_timeseries/dev/AH_large_multi-chan-ts.ipynb new file mode 100644 index 0000000..1a219b7 --- /dev/null +++ b/workflows/multi_channel_timeseries/dev/AH_large_multi-chan-ts.ipynb @@ -0,0 +1,721 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "vscode": { + "languageId": "plaintext" + } + }, + "source": [ + "# Large - Multi-Channel Timeseries with Dynamic Data Access" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TODO create banner image\n", + "![]()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overview" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "

Visit the Index Page

\n", + " This workflow example is part of set of related workflows. If you haven't already, visit the index page for an introduction and guidance on choosing the appropriate workflow.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The intended use-case for this workflow is to browse and annotate multi-channel timeseries data from an [electrophysiological](https://en.wikipedia.org/wiki/Electrophysiology) recording session.\n", + "\n", + "Compared to other approaches in this set of workflows, this particular workflow is focused on 'large-sized' datasets, which we define as a dataset that does not comfortably fit into the available RAM.\n", + "\n", + "In such cases where the entire dataset cannot be loaded into memory, we have to consider what approaches might work best for scalability. The approach we will demonstrate is one of the most common approaches in the bio-imaging community, and is based on the use of multi-resolution data structures.\n", + "\n", + "We will create a derived dataset that includes a multi-resolution pyramid (incrementally downsampled versions of a large dataset), and then use a dynamic accessor to access the appropriate resolution based on viewport and screen parameters." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prerequisites and Resources\n", + "\n", + "| Topic | Type | Notes |\n", + "| --- | --- | --- |\n", + "| [Intro and Guidance](./index.ipynb) | Prerequisite | Background |\n", + "| [Time Range Annotation](./time_range_annotation.ipynb) | Next Step | Display and edit time ranges |\n", + "| [Smaller Dataset Workflow](./small_multi-chan-ts.ipynb) | Alternative | Use Numpy |\n", + "| [Medium Dataset Workflow](./medium_multi-chan-ts.ipynb) | Alternative | Use Pandas and downsampling |" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Preprocessing the data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Imports and Configuration" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We start by importing the libraries necessary to preprocess the data, notably:\n", + "\n", + "- `tsdownsample` for downsampling data\n", + "- `ndpyramid` for creating a multi-resolution pyramid\n", + "- `datatree` for opening and reading datatrees" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "import dask.array as da\n", + "import datatree as dt\n", + "import h5py\n", + "import numpy as np\n", + "import xarray as xr\n", + "from ndpyramid import pyramid_create\n", + "from tsdownsample import MinMaxLTTBDownsampler\n", + "\n", + "DATA_DIR = os.path.expanduser(\"~/repos/czi/allensdk_cache/session_715093703\")\n", + "PYRAMID_PATH = os.path.join(DATA_DIR, \"pyramid_neuropix_10s.zarr\")\n", + "OVERWRITE = False" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Serialize into XArray\n", + "\n", + "We use `h5py` to open the HDF5 file and because `xarray` provides an interface with many of the modern data wrangling libraries, we serialize pieces of the data into an `xr.DataArray`. We also wrap `dask` on the data so that it's lazily loaded, i.e. data isn't loaded until necessary.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def serialize_to_xarray(f, data_key, dims):\n", + " coords = {f[dim] for dim in dims.values()}\n", + " data = f[data_key]\n", + " ds = xr.DataArray(\n", + " da.from_array(data, name=\"data\", chunks=(data.shape[0], 1)),\n", + " dims=dims,\n", + " coords=coords,\n", + " ).to_dataset()\n", + " return ds\n", + "\n", + "\n", + "h5py_path = os.path.join(DATA_DIR, \"probe_810755797_lfp.nwb\")\n", + "f = h5py.File(h5py_path, \"r\")\n", + "\n", + "ts_ds = serialize_to_xarray(\n", + " f,\n", + " \"acquisition/probe_810755797_lfp_data/data\",\n", + " {\n", + " \"time\": \"acquisition/probe_810755797_lfp_data/timestamps\",\n", + " \"channel\": \"acquisition/probe_810755797_lfp_data/electrodes\",\n", + " },\n", + ").isel(channel=slice(10))\n", + "\n", + "ts_ds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a DataTree\n", + "\n", + "Now that we have an `xr.DataArray`, we can perform computations on it in a vectorized & parallelized manner with `xr.apply_ufunc`.\n", + "\n", + "Combine it with `ndpyramid.pyramid_create` to create a data tree with various levels containing the downsampled by various factors data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Define the factors for downsampling, that scale with the number of channels.\n", + "FACTORS = list(np.array([1, 2, 4, 8, 16, 32, 64, 128, 256]) ** (len(ts_ds[\"channel\"]) // 4))\n", + "\n", + "\n", + "def _help_downsample(data, time, n_out):\n", + " \"\"\"\n", + " Helper function for downsampling and returning as a specific format.\n", + " \"\"\"\n", + " indices = MinMaxLTTBDownsampler().downsample(time, data, n_out=n_out)\n", + " return data[indices], indices\n", + "\n", + "\n", + "def apply_downsample(ts_ds, factor, dims):\n", + " \"\"\"\n", + " Apply downsampling to a time series dataset.\n", + " \"\"\"\n", + " dim = dims[0]\n", + " n_out = len(ts_ds[\"data\"]) // factor\n", + " print(f\"Downsampling by factor {factor} for a size of {n_out}.\")\n", + " ts_ds_downsampled, indices = xr.apply_ufunc(\n", + " _help_downsample,\n", + " ts_ds[\"data\"],\n", + " ts_ds[dim],\n", + " kwargs=dict(n_out=n_out),\n", + " input_core_dims=[[dim], [dim]],\n", + " output_core_dims=[[dim], [\"indices\"]],\n", + " exclude_dims=set((dim,)),\n", + " vectorize=True,\n", + " dask=\"parallelized\",\n", + " dask_gufunc_kwargs=dict(output_sizes={dim: n_out, \"indices\": n_out}),\n", + " )\n", + " ts_ds_downsampled[dim] = ts_ds[dim].isel(time=indices.values[0])\n", + " return ts_ds_downsampled.rename(\"data\")\n", + "\n", + "\n", + "if not os.path.exists(PYRAMID_PATH) or OVERWRITE:\n", + " ts_dt = pyramid_create(\n", + " ts_ds,\n", + " factors=FACTORS,\n", + " dims=[\"time\"],\n", + " func=apply_downsample,\n", + " type_label=\"pick\",\n", + " method_label=\"pyramid_downsample\",\n", + " )\n", + " display(ts_dt)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Persist and Re-open\n", + "\n", + "`dt.DataTree`s mirror `xr.DataArray`s in functionality, and so we can easily export it as zarr." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if not os.path.exists(PYRAMID_PATH) or OVERWRITE:\n", + " ts_dt.to_zarr(PYRAMID_PATH, mode=\"w\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And read it back in just as easily--just be sure to specify the correct engine." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ts_dt = dt.open_datatree(PYRAMID_PATH, engine=\"zarr\")\n", + "\n", + "ts_dt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import and Configuration\n", + "\n", + "We now import the libraries necessary for interactively utilizing the datatree / pyramid we just created, notably:\n", + "\n", + "- `holoviews`, using `bokeh` backend, to build interactive plots\n", + "- `panel` to create widgets and dashboard\n", + "- `scipy` for calculating a zscore of the data\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import holoviews as hv\n", + "import panel as pn\n", + "import datatree as dt\n", + "\n", + "from bokeh.models.tools import HoverTool, WheelZoomTool\n", + "from holoviews.operation.datashader import rasterize\n", + "from holoviews.plotting.links import RangeToolLink\n", + "from scipy.stats import zscore\n", + "\n", + "pn.extension()\n", + "hv.extension(\"bokeh\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Prepare the Data\n", + "\n", + "Here, we prepare some metadata about the data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def _extract_ds(ts_dt, level, channel):\n", + " \"\"\"\n", + " Helper function to extract a dataset at a specific level and channel.\n", + " \"\"\"\n", + " ds = ts_dt[str(level)].sel(channel=channel).ds\n", + " return ds\n", + "\n", + "\n", + "ts_dt = dt.open_datatree(PYRAMID_PATH, engine=\"zarr\")\n", + "\n", + "num_levels = len(ts_dt) - 1\n", + "sel_group = f\"{num_levels}\"\n", + "time_da = _extract_ds(ts_dt, sel_group, 0)[\"time\"]\n", + "\n", + "channels = ts_dt[sel_group].ds[\"channel\"].values\n", + "num_channels = len(channels)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create Dynamic Plot\n", + "\n", + "Here we define a `rescale` function that reruns when the axes' ranges (`RangeXY`) or the size of a plot (`PlotSize`) changes.\n", + "\n", + "Based on the changes and thresholds, a new plot is created using a new subset of the datatree. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_PADDING = 0.2 # buffer around x so if user zooms out, data is still visible\n", + "\n", + "\n", + "def rescale(x_range, y_range, width, scale, height):\n", + " # fix edge cases when streams are initialized\n", + " if x_range is None:\n", + " x_range = time_da.min().item(), time_da.max().item()\n", + " if y_range is None:\n", + " y_range = 0, num_channels\n", + " x_padding = (x_range[1] - x_range[0]) * X_PADDING\n", + " time_slice = slice(x_range[0] - x_padding, x_range[1] + x_padding)\n", + "\n", + " # calculate the appropriate zoom level and size\n", + " if width is None or height is None:\n", + " zoom_level = num_levels - 1\n", + " size = time_da.size\n", + " else:\n", + " sizes = [\n", + " _extract_ds(ts_dt, zoom_level, 0)[\"time\"].sel(time=time_slice).size\n", + " for zoom_level in range(num_levels)\n", + " ]\n", + " zoom_level = np.argmin(np.abs(np.array(sizes) - width))\n", + " size = sizes[zoom_level]\n", + "\n", + " # re-plot the data\n", + " curves = hv.Overlay(kdims=\"Channel\")\n", + " for channel in channels:\n", + " hover = HoverTool(\n", + " tooltips=[\n", + " (\"Channel\", str(channel)),\n", + " (\"Time\", \"$x s\"),\n", + " (\"Amplitude\", \"$y µV\"),\n", + " ]\n", + " )\n", + " sub_ds = _extract_ds(ts_dt, zoom_level, channel).sel(time=time_slice).load()\n", + " curve = hv.Curve(sub_ds, [\"time\"], [\"data\"], label=f\"ch{channel}\").opts(\n", + " color=\"black\",\n", + " line_width=1,\n", + " subcoordinate_y=True,\n", + " subcoordinate_scale=1,\n", + " default_tools=[\"pan\", \"reset\", WheelZoomTool(), hover],\n", + " )\n", + " curves *= curve\n", + "\n", + " # update the title\n", + " title = (\n", + " f\"level {zoom_level} ({x_range[0]:.2f}s - {x_range[1]:.2f}s) \"\n", + " f\"(WxH: {width}x{height}) (length: {size})\"\n", + " )\n", + " curves = curves.opts(\n", + " xlabel=\"Time (s)\",\n", + " ylabel=\"Channel\",\n", + " title=title,\n", + " show_legend=False,\n", + " padding=0,\n", + " aspect=1.5,\n", + " responsive=True,\n", + " framewise=True,\n", + " axiswise=True,\n", + " )\n", + " return curves\n", + "\n", + "\n", + "range_stream = hv.streams.RangeXY()\n", + "size_stream = hv.streams.PlotSize()\n", + "dmap = hv.DynamicMap(rescale, streams=[size_stream, range_stream])\n", + "\n", + "dmap" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Associate a Minimap\n", + "\n", + "Lastly, we can link a minimap to the main plot to allow for easier navigation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = ts_dt[sel_group].ds[\"data\"].values\n", + "y_positions = range(num_channels)\n", + "yticks = [(i, ich) for i, ich in enumerate(channels)]\n", + "z_data = zscore(data, axis=1)\n", + "\n", + "minimap = rasterize(\n", + " hv.Image((time_da, y_positions, z_data), [\"Time (s)\", \"Channel\"], \"Amplitude (uV)\")\n", + ").opts(\n", + " cnorm='eq_hist',\n", + " cmap=\"RdBu_r\",\n", + " xlabel=\"\",\n", + " yticks=[yticks[0], yticks[-1]],\n", + " toolbar=\"disable\",\n", + " height=120,\n", + " responsive=True,\n", + "x alpha=0.8,\n", + ")\n", + "\n", + "tool_link = RangeToolLink(\n", + " minimap,\n", + " dmap,\n", + " axes=[\"x\", \"y\"],\n", + " boundsx=(0, time_da.max().item() // 2),\n", + " boundsy=(0, len(channels) // 2),\n", + ")\n", + "\n", + "app = (dmap + minimap).cols(1)\n", + "app" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add a Widget\n", + "\n", + "Currently, the minimap uses only the coarsest level of the datatree. We can create a widget to control the level of granularity the minimap shows!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "input_group = pn.widgets.Select(value=f\"/{sel_group}\", options=list(ts_dt.groups[1:]))\n", + "\n", + "\n", + "def update_minimap(group):\n", + " data = ts_dt[group].ds[\"data\"].values\n", + " y_positions = range(num_channels)\n", + " z_data = zscore(data, axis=1)\n", + " time_da = _extract_ds(ts_dt, group, 0)[\"time\"]\n", + "\n", + " minimap = hv.Image(\n", + " (time_da, y_positions, z_data), [\"Time (s)\", \"Channel\"], \"Amplitude (uV)\"\n", + " )\n", + " return minimap\n", + "\n", + "\n", + "yticks = [(i, ich) for i, ich in enumerate(channels)]\n", + "minimap = rasterize(\n", + " hv.DynamicMap(pn.bind(update_minimap, input_group.param.value)).opts(\n", + " cnorm=\"eq_hist\",\n", + " cmap=\"RdBu_r\",\n", + " xlabel=\"\",\n", + " yticks=[yticks[0], yticks[-1]],\n", + " toolbar=\"disable\",\n", + " height=120,\n", + " responsive=True,\n", + " alpha=0.8,\n", + " )\n", + ")\n", + "\n", + "app = pn.Column(input_group, (dmap + minimap).cols(1))\n", + "app" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## *Optional:* Standalone App" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using HoloViz Panel, we can also set this application as servable so we can launch it in a browser window, outside of a Jupyter Notebook (templates do not work in notebooks at the time of writing)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pn.template.FastListTemplate(main=[app]).servable(); # semi-colon to prevent it from showing output in a notebook" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Summary" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Full app for easy copy/pasting" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import holoviews as hv\n", + "import panel as pn\n", + "import datatree as dt\n", + "\n", + "from bokeh.models.tools import HoverTool, WheelZoomTool\n", + "from holoviews.operation.datashader import rasterize\n", + "from holoviews.plotting.links import RangeToolLink\n", + "from scipy.stats import zscore\n", + "\n", + "pn.extension()\n", + "hv.extension(\"bokeh\")\n", + "\n", + "X_PADDING = 0.2 # buffer around x so if user zooms out, data is still visible\n", + "\n", + "\n", + "def rescale(x_range, y_range, width, scale, height):\n", + " # fix edge cases when streams are initialized\n", + " if x_range is None:\n", + " x_range = time_da.min().item(), time_da.max().item()\n", + " if y_range is None:\n", + " y_range = 0, num_channels\n", + " x_padding = (x_range[1] - x_range[0]) * X_PADDING\n", + " time_slice = slice(x_range[0] - x_padding, x_range[1] + x_padding)\n", + "\n", + " # calculate the appropriate zoom level and size\n", + " if width is None or height is None:\n", + " zoom_level = num_levels - 1\n", + " size = time_da.size\n", + " else:\n", + " sizes = [\n", + " _extract_ds(ts_dt, zoom_level, 0)[\"time\"].sel(time=time_slice).size\n", + " for zoom_level in range(num_levels)\n", + " ]\n", + " zoom_level = np.argmin(np.abs(np.array(sizes) - width))\n", + " size = sizes[zoom_level]\n", + "\n", + " # re-plot the data\n", + " curves = hv.Overlay(kdims=\"Channel\")\n", + " for channel in channels:\n", + " hover = HoverTool(\n", + " tooltips=[\n", + " (\"Channel\", str(channel)),\n", + " (\"Time\", \"$x s\"),\n", + " (\"Amplitude\", \"$y µV\"),\n", + " ]\n", + " )\n", + " sub_ds = _extract_ds(ts_dt, zoom_level, channel).sel(time=time_slice).load()\n", + " curve = hv.Curve(sub_ds, [\"time\"], [\"data\"], label=f\"ch{channel}\").opts(\n", + " color=\"black\",\n", + " line_width=1,\n", + " subcoordinate_y=True,\n", + " subcoordinate_scale=1,\n", + " default_tools=[\"pan\", \"reset\", WheelZoomTool(), hover],\n", + " )\n", + " curves *= curve\n", + "\n", + " # update the title\n", + " title = (\n", + " f\"level {zoom_level} ({x_range[0]:.2f}s - {x_range[1]:.2f}s) \"\n", + " f\"(WxH: {width}x{height}) (length: {size})\"\n", + " )\n", + " curves = curves.opts(\n", + " xlabel=\"Time (s)\",\n", + " ylabel=\"Channel\",\n", + " title=title,\n", + " show_legend=False,\n", + " padding=0,\n", + " aspect=1.5,\n", + " responsive=True,\n", + " framewise=True,\n", + " axiswise=True,\n", + " )\n", + " return curves\n", + "\n", + "\n", + "def _extract_ds(ts_dt, level, channel):\n", + " \"\"\"\n", + " Helper function to extract a dataset at a specific level and channel.\n", + " \"\"\"\n", + " ds = ts_dt[str(level)].sel(channel=channel).ds\n", + " return ds\n", + "\n", + "\n", + "def update_minimap(group):\n", + " data = ts_dt[group].ds[\"data\"].values\n", + " y_positions = range(num_channels)\n", + " z_data = zscore(data, axis=1)\n", + " time_da = _extract_ds(ts_dt, group, 0)[\"time\"]\n", + "\n", + " minimap = hv.Image(\n", + " (time_da, y_positions, z_data), [\"Time (s)\", \"Channel\"], \"Amplitude (uV)\"\n", + " )\n", + " return minimap\n", + "\n", + "\n", + "ts_dt = dt.open_datatree(PYRAMID_PATH, engine=\"zarr\")\n", + "\n", + "num_levels = len(ts_dt) - 1\n", + "sel_group = f\"{num_levels}\"\n", + "time_da = _extract_ds(ts_dt, sel_group, 0)[\"time\"]\n", + "\n", + "channels = ts_dt[sel_group].ds[\"channel\"].values\n", + "num_channels = len(channels)\n", + "\n", + "range_stream = hv.streams.RangeXY()\n", + "size_stream = hv.streams.PlotSize()\n", + "dmap = hv.DynamicMap(rescale, streams=[size_stream, range_stream])\n", + "\n", + "input_group = pn.widgets.Select(value=f\"/{sel_group}\", options=list(ts_dt.groups[1:]))\n", + "yticks = [(i, ich) for i, ich in enumerate(channels)]\n", + "minimap = rasterize(\n", + " hv.DynamicMap(pn.bind(update_minimap, input_group.param.value)).opts(\n", + " cnorm=\"eq_hist\",\n", + " cmap=\"RdBu_r\",\n", + " xlabel=\"\",\n", + " yticks=[yticks[0], yticks[-1]],\n", + " toolbar=\"disable\",\n", + " height=120,\n", + " responsive=True,\n", + " alpha=0.8,\n", + " )\n", + ")\n", + "\n", + "app = pn.Column(input_group, (dmap + minimap).cols(1))\n", + "app" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```python\n", + "\n", + "```" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "neuro-multi-chan", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/workflows/multi_channel_timeseries/dev/Scalebar.ipynb b/workflows/multi_channel_timeseries/dev/Scalebar.ipynb new file mode 100644 index 0000000..074842c --- /dev/null +++ b/workflows/multi_channel_timeseries/dev/Scalebar.ipynb @@ -0,0 +1,160 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "df229fb9-0a56-47b4-a8d2-72cab8782624", + "metadata": {}, + "source": [ + "#### **Title**: Scalebar\n", + "\n", + "**Dependencies**: Bokeh\n", + "\n", + "**Backends**: [Bokeh](./Scalebar.ipynb)\n", + "\n", + "The `scalebar` feature overlays a scale bar on the element to help gauge the size of features on a plot. This is particularly useful for maps, images like CT or MRI scans, and other scenarios where traditional axes might be insufficient." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1cee420f-3ad1-4b0c-ae66-b26d726d7a0a", + "metadata": {}, + "outputs": [], + "source": [ + "import holoviews as hv\n", + "import numpy as np\n", + "\n", + "hv.extension(\"bokeh\")\n", + "\n", + "pollen = hv.RGB.load_image(\"../assets/pollen.png\", bounds=(-10, -5, 10, 15))\n", + "pollen = pollen.opts(scalebar=True, responsive=True, aspect=1)\n", + "pollen" + ] + }, + { + "cell_type": "markdown", + "id": "d58cb23b-206b-4368-aed7-b083a7766320", + "metadata": {}, + "source": [ + "Zoom in and out to see the scale bar dynamically adjust." + ] + }, + { + "cell_type": "markdown", + "id": "04f983fc-69cf-4b79-bdd2-6e437366167d", + "metadata": {}, + "source": [ + "### Custom Units" + ] + }, + { + "cell_type": "markdown", + "id": "298933cc-8122-4252-b510-fca24f07326b", + "metadata": {}, + "source": [ + "By default, the `scalebar` uses meters. To customize the units, use the `scalebar_unit` parameter, which accepts a tuple of two strings: the first for the actual measurement and the second for the base unit that remains invariant regardless of scale. In the example below, the y-axis unit is micro-volts (`µV`), and the base unit is Volts (`V`).\n", + "\n", + "You can also apply a unit to the y-label independently of the scale bar specification using `hv.Dimension`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1140d0c9-5538-477c-b461-82f09648bd1c", + "metadata": {}, + "outputs": [], + "source": [ + "dim = hv.Dimension('Voltage', unit='µV')\n", + "hv.Curve(np.random.rand(1000), ['time'], [dim]).opts(\n", + " responsive=True,\n", + " aspect=2,\n", + " scalebar=True,\n", + " scalebar_range='y',\n", + " scalebar_unit=('µV', 'V'),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "39af797f-4ea2-449b-96c7-eb7d0da8394e", + "metadata": {}, + "source": [ + "### Customization\n", + "\n", + "In the plot above, you can see that we applied the scalebar to the y-axis by specifying the `scalebar_range` argument. Below are further customization options for the scalebar:\n", + "\n", + "- The `scalebar_location` parameter defines the positioning anchor for the scalebar, with options like \"bottom_right\", \"top_left\", \"center\", etc.\n", + "- The `scalebar_label` parameter allows customization of the label template, using variables such as `@{value}` and `@{unit}`.\n", + "- The `scalebar_opts` parameter enables specific styling options for the scalebar, as detailed in the [Bokeh's documentation](https://docs.bokeh.org/en/latest/docs/reference/models/annotations.html#bokeh.models.ScaleBar).\n", + "\n", + "All these parameters are only utilized if `scalebar` is set to `True` in `.opts()`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0ab063b3-d1cb-40b4-9fa7-a5860932c16d", + "metadata": {}, + "outputs": [], + "source": [ + "dim = hv.Dimension('Voltage', unit='µV')\n", + "hv.Curve(np.random.rand(1000), ['time'], [dim]).opts(\n", + " color='lightgrey',\n", + " responsive=True,\n", + " aspect=2,\n", + " scalebar=True,\n", + " scalebar_range='y',\n", + " scalebar_unit=('µV', 'V'),\n", + " scalebar_location = 'top_right',\n", + " scalebar_label = '@{value} [@{unit}]',\n", + " scalebar_opts={\n", + " 'background_fill_alpha': 0,\n", + " 'border_line_color': None,\n", + " 'label_text_font_size': '20px',\n", + " 'label_text_color': 'maroon',\n", + " 'label_text_alpha': .5,\n", + " 'label_location': 'left',\n", + " 'length_sizing': 'exact',\n", + " 'bar_length': 0.5,\n", + " 'bar_line_color': 'maroon',\n", + " 'bar_line_alpha': .5, \n", + " 'bar_line_width': 5,\n", + " 'margin': 0,\n", + " 'padding': 5,\n", + " },\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "871c7b55-353e-4ec6-8b79-bf1299cd2a45", + "metadata": {}, + "source": [ + "### Toolbar \n", + "\n", + "The scalebar tool is added to the toolbar with a measurement ruler icon. Toggling this icon will either hide or show the scalebars. To remove scalebar icon from the toolbar, set `scalebar_tool = False`.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/workflows/multi_channel_timeseries/dev/Two_Group_multichannel_timeseries_viewer.ipynb b/workflows/multi_channel_timeseries/dev/Two_Group_multichannel_timeseries_viewer.ipynb new file mode 100644 index 0000000..5584175 --- /dev/null +++ b/workflows/multi_channel_timeseries/dev/Two_Group_multichannel_timeseries_viewer.ipynb @@ -0,0 +1,353 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fa351c46-75ba-40db-b6f4-08b78ef08934", + "metadata": {}, + "source": [ + "# Two Data group example" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6ac3812a", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import holoviews as hv\n", + "from holoviews.operation.normalization import subcoordinate_group_ranges\n", + "from holoviews.operation.datashader import rasterize\n", + "from holoviews.plotting.links import RangeToolLink\n", + "from scipy.stats import zscore\n", + "import colorcet as cc\n", + "\n", + "hv.extension('bokeh')\n", + "\n", + "GROUP_EEG = 'EEG'\n", + "GROUP_POS = 'Position'\n", + "N_CHANNELS_EEG = 10\n", + "N_CHANNELS_POS = 3\n", + "N_SECONDS = 5\n", + "SAMPLING_RATE_EEG = 200\n", + "SAMPLING_RATE_POS = 25\n", + "INIT_FREQ = 2 # Initial frequency in Hz\n", + "FREQ_INC = 5 # Frequency increment\n", + "AMPLITUDE_EEG = 1000 # EEG amplitude multiplier\n", + "AMPLITUDE_POS = 2 # Position amplitude multiplier\n", + "\n", + "# Generate time for EEG and position data\n", + "total_samples_eeg = N_SECONDS * SAMPLING_RATE_EEG\n", + "total_samples_pos = N_SECONDS * SAMPLING_RATE_POS\n", + "time_eeg = np.linspace(0, N_SECONDS, total_samples_eeg)\n", + "time_pos = np.linspace(0, N_SECONDS, total_samples_pos)\n", + "\n", + "# Generate EEG timeseries data\n", + "def generate_eeg_data(index):\n", + " return AMPLITUDE_EEG * np.sin(2 * np.pi * (INIT_FREQ + index * FREQ_INC) * time_eeg)\n", + "\n", + "eeg_channels = [str(i) for i in np.arange(N_CHANNELS_EEG)]\n", + "eeg_data = np.array([generate_eeg_data(i) for i in np.arange(N_CHANNELS_EEG)])\n", + "eeg_df = pd.DataFrame(eeg_data.T, index=time_eeg, columns=eeg_channels)\n", + "eeg_df.index.name = 'Time'\n", + "\n", + "# Generate position data\n", + "pos_channels = ['X', 'Y', 'Z'] # avoid lowercase 'x' and 'y' as channel/dimension names\n", + "pos_data = AMPLITUDE_POS * np.random.randn(N_CHANNELS_POS, total_samples_pos).cumsum(axis=1)\n", + "pos_df = pd.DataFrame(pos_data.T, index=time_pos, columns=pos_channels)\n", + "pos_df.index.name = 'Time'" + ] + }, + { + "cell_type": "markdown", + "id": "e89432c6-ec76-4957-9673-6f7c9114a538", + "metadata": {}, + "source": [ + "## Create a Curve per data series" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9476769f-3935-4236-b010-1511d1a1e77f", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def df_to_curves(df, kdim, vdim, color='black', group='EEG'):\n", + " curves = []\n", + " for i, (channel, channel_data) in enumerate(df.items()):\n", + " ds = hv.Dataset((channel_data.index, channel_data), [kdim, vdim])\n", + " curve = hv.Curve(ds, kdim, vdim, group=group, label=str(channel))\n", + " curve.opts(\n", + " subcoordinate_y=True, color=color if isinstance(color, str) else color[i], line_width=1, \n", + " hover_tooltips=hover_tooltips, tools=['xwheel_zoom'], line_alpha=.8,\n", + " )\n", + " curves.append(curve)\n", + " return curves\n", + "\n", + "hover_tooltips = [(\"Group\", \"$group\"), (\"Channel\", \"$label\"), (\"Time\"), (\"Value\")]\n", + "\n", + "vdim_EEG = hv.Dimension(\"Value\", unit=\"µV\")\n", + "vdim_POS = hv.Dimension(\"Value\", unit=\"cm\")\n", + "time_dim = hv.Dimension(\"Time\", unit=\"s\")\n", + "\n", + "eeg_curves = df_to_curves(eeg_df, time_dim, vdim_EEG, color='black', group='EEG')\n", + "pos_curves = df_to_curves(pos_df, time_dim, vdim_POS, color=cc.glasbey_cool, group='POS')\n", + "\n", + "# Combine EEG and POS curves into an Overlay\n", + "eeg_curves_overlay = hv.Overlay(eeg_curves, kdims=\"Channel\")\n", + "pos_curves_overlay = hv.Overlay(pos_curves, kdims=\"Channel\")\n", + "curves_overlay = (eeg_curves_overlay * pos_curves_overlay).opts(\n", + " xlabel=time_dim.pprint_label, ylabel=\"Channel\", show_legend=False, aspect=3, responsive=True,\n", + ")\n", + "curves_overlay" + ] + }, + { + "cell_type": "markdown", + "id": "9388d59b-c79b-4dc4-94a6-9316594ed4c5", + "metadata": {}, + "source": [ + "## Apply group-wise normalization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2bb78a48-5c6a-4969-bf58-539fce784364", + "metadata": {}, + "outputs": [], + "source": [ + "normalized_overlay = subcoordinate_group_ranges(curves_overlay)\n", + "normalized_overlay" + ] + }, + { + "cell_type": "markdown", + "id": "ebd39c14-d9a8-4095-87f9-6bd25bd3dd81", + "metadata": {}, + "source": [ + "## Minimap" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "41e4c745-4ed3-4319-b316-785411a8b46d", + "metadata": {}, + "outputs": [], + "source": [ + "y_positions = range(N_CHANNELS_EEG + N_CHANNELS_POS)\n", + "\n", + "# Reindex the lower frequency DataFrame to match the higher frequency index\n", + "pos_df_interp = pos_df.reindex(eeg_df.index).interpolate(method='index')\n", + "\n", + "# concatenate the EEG and interpolated POS data and z-score the full data array\n", + "z_data = zscore(np.concatenate((eeg_df.values, pos_df_interp.values), axis=1), axis=0).T\n", + "\n", + "minimap = rasterize(hv.Image((time_eeg, y_positions , z_data), [time_dim, \"Channel\"], \"Value\"))\n", + "minimap = minimap.opts(\n", + " cmap=\"RdBu_r\", xlabel='', alpha=.7,\n", + " yticks=[(y_positions[0], f'EEG {eeg_channels[0]}'), (y_positions[-1], f'POS {pos_channels[-1]}')],\n", + " height=120, responsive=True, toolbar='disable', cnorm='eq_hist'\n", + ")\n", + "minimap\n", + "\n", + "RangeToolLink(\n", + " minimap, normalized_overlay, axes=[\"x\", \"y\"],\n", + " boundsx=(.5, 3), boundsy=(1.5, 12.5),\n", + " intervalsx=(None, 3),\n", + ")\n", + "\n", + "dashboard = (normalized_overlay + minimap).cols(1).opts(shared_axes=False)\n", + "dashboard" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "426f7bae-9ec3-4d0c-9621-386fdabaeedd", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1c771121-a6f7-4d85-805a-1e57cec3ea07", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b3da00f4-8ab1-419a-bb01-d8ef07e4e233", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "0139f461-8cb4-4c55-be31-fd3ee29e8d04", + "metadata": {}, + "source": [ + "# NdOverlay and group, channel key to demo wide df issues" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "49ee0c7b-5bba-4b55-8300-902bbcca5a58", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import holoviews as hv\n", + "import colorcet as cc\n", + "hv.extension('bokeh')\n", + "\n", + "GROUP_EEG = 'EEG'\n", + "N_CHANNELS_EEG = 31\n", + "N_SECONDS = 5\n", + "SAMPLING_RATE_EEG = 100\n", + "INIT_FREQ = 2 # Initial frequency in Hz\n", + "FREQ_INC = 5 # Frequency increment\n", + "AMPLITUDE_EEG = 1000 # Amplitude multiplier\n", + "\n", + "# Generate data\n", + "total_samples_eeg = N_SECONDS * SAMPLING_RATE_EEG\n", + "time_eeg = np.linspace(0, N_SECONDS, total_samples_eeg)\n", + "def generate_eeg_data(index):\n", + " return AMPLITUDE_EEG * np.sin(2 * np.pi * (INIT_FREQ + index * FREQ_INC) * time_eeg)\n", + "eeg_channels = [str(i) for i in np.arange(N_CHANNELS_EEG)]\n", + "eeg_data = np.array([generate_eeg_data(i) for i in np.arange(N_CHANNELS_EEG)])\n", + "eeg_df = pd.DataFrame(eeg_data.T, index=time_eeg, columns=eeg_channels)\n", + "eeg_df.index.name = 'Time'\n", + "\n", + "# Create plot\n", + "time_dim = hv.Dimension(\"Time\", unit=\"s\")\n", + "curves = {}\n", + "for col in eeg_df.columns:\n", + " curve = hv.Curve(eeg_df[col], time_dim, hv.Dimension(col, label='Amplitude', unit='uV'),\n", + " label=str(col))\n", + " curve = curve.opts(subcoordinate_y=True, tools=['xwheel_zoom', 'hover'], color='grey',\n", + " )\n", + " curves['EEG', col] = curve\n", + "\n", + "curves_overlay = hv.NdOverlay(curves, [\"Group\", \"Channel\"], sort=False).opts(\n", + " xlabel=time_dim.pprint_label, ylabel=\"Channel\", show_legend=False, aspect=3, responsive=True,\n", + " min_height=600,\n", + ")\n", + "print(curves_overlay)\n", + "curves_overlay" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "65e08528-a575-4d6a-a0ea-7f3f03d9ef25", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6dcd2c3a-0896-44ee-a9c6-2ce732cb3aba", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "829044cf-f1a0-49dd-bbfb-2a9e9e462be9", + "metadata": {}, + "source": [ + "# NdOverlay with wide df and hover_tooltips" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a805bec7-5f8a-4d49-9b7f-15b90daa250f", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import holoviews as hv\n", + "import colorcet as cc\n", + "hv.extension('bokeh')\n", + "\n", + "GROUP_EEG = 'EEG'\n", + "N_CHANNELS_EEG = 31\n", + "N_SECONDS = 5\n", + "SAMPLING_RATE_EEG = 100\n", + "INIT_FREQ = 2 # Initial frequency in Hz\n", + "FREQ_INC = 5 # Frequency increment\n", + "AMPLITUDE_EEG = 1000 # Amplitude multiplier\n", + "\n", + "# Generate data\n", + "total_samples_eeg = N_SECONDS * SAMPLING_RATE_EEG\n", + "time_eeg = np.linspace(0, N_SECONDS, total_samples_eeg)\n", + "def generate_eeg_data(index):\n", + " return AMPLITUDE_EEG * np.sin(2 * np.pi * (INIT_FREQ + index * FREQ_INC) * time_eeg)\n", + "eeg_channels = [str(i) for i in np.arange(N_CHANNELS_EEG)]\n", + "eeg_data = np.array([generate_eeg_data(i) for i in np.arange(N_CHANNELS_EEG)])\n", + "eeg_df = pd.DataFrame(eeg_data.T, index=time_eeg, columns=eeg_channels)\n", + "eeg_df.index.name = 'Time'\n", + "\n", + "# Create plot\n", + "time_dim = hv.Dimension(\"Time\", unit=\"s\")\n", + "curves = {}\n", + "for col in eeg_df.columns:\n", + " curve = hv.Curve(eeg_df[col], time_dim, hv.Dimension(col, label='Amplitude', unit='uV'),\n", + " group='EEG', label=str(col))\n", + " curve = curve.opts(subcoordinate_y=True, tools=['xwheel_zoom'], color='grey',\n", + " hover_tooltips = [(\"Group\", \"$group\"), (\"Channel\", \"$label\"), (\"Time\"), (\"Amplitude\")])\n", + " curves[('EEG', col)] = curve\n", + "\n", + "curves_overlay = hv.NdOverlay(curves, [\"Group\", \"Channel\"], sort=False).opts(\n", + " xlabel=time_dim.pprint_label, ylabel=\"Channel\", show_legend=False, aspect=3, responsive=True,\n", + " min_height=600, title='Multi-Chan TS'\n", + ")\n", + "print(curves_overlay)\n", + "curves_overlay" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "06576c9c-aeab-4a88-b624-e4c578b81954", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/workflows/multi_channel_timeseries/dev/bad_multichannel_timeseries_viewer.ipynb b/workflows/multi_channel_timeseries/dev/bad_multichannel_timeseries_viewer.ipynb new file mode 100644 index 0000000..aba964a --- /dev/null +++ b/workflows/multi_channel_timeseries/dev/bad_multichannel_timeseries_viewer.ipynb @@ -0,0 +1,1043 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "549b47a4", + "metadata": {}, + "source": [ + "This example demonstrates advanced visualization techniques using HoloViews with the Bokeh plotting backend. You'll learn how to:\n", + "\n", + "1. Display multiple timeseries from different data groups in a single plot using `subcoordinate_y`.\n", + "2. Normalize the timeseries per data group.\n", + "3. Create and link a minimap to the main plot with `RangeToolLink`.\n", + "\n", + "Specifically, we'll simulate [Electroencephalography](https://en.wikipedia.org/wiki/Electroencephalography) (EEG) and position data, plot it, and then create a minimap based on the [z-score](https://en.wikipedia.org/wiki/Standard_score) of the data for easier navigation." + ] + }, + { + "cell_type": "markdown", + "id": "1c95f241-2314-42b0-b6cb-2c0baf332686", + "metadata": {}, + "source": [ + "## Generating data\n", + "\n", + "Let's start by `EEG` and position (`POS`) data. We'll create a timeseries for each EEG channel using sine waves with varying frequencies, and random data for three position channels. We'll set these two data groups to have different amplitudes and units." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "49ebcb84-c1c4-4990-90f0-f63edbe58433", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload \n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "6ac3812a", + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + " var py_version = '3.5.0.dev5+9.gbaa1f110.dirty'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " var reloading = false;\n", + " var Bokeh = root.Bokeh;\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " if (!reloading) {\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", + " root._bokeh_is_loading = css_urls.length + 0;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " var existing_stylesheets = []\n", + " var links = document.getElementsByTagName('link')\n", + " for (var i = 0; i < links.length; i++) {\n", + " var link = links[i]\n", + " if (link.href != null) {\n", + "\texisting_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " if (existing_stylesheets.indexOf(url) !== -1) {\n", + "\ton_load()\n", + "\tcontinue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } var existing_scripts = []\n", + " var scripts = document.getElementsByTagName('script')\n", + " for (var i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + "\texisting_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " var url = js_exports[name];\n", + " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [\"https://cdn.bokeh.org/bokeh/dev/bokeh-3.5.0.dev5.min.js\", \"https://cdn.bokeh.org/bokeh/dev/bokeh-gl-3.5.0.dev5.min.js\", \"https://cdn.bokeh.org/bokeh/dev/bokeh-widgets-3.5.0.dev5.min.js\", \"https://cdn.bokeh.org/bokeh/dev/bokeh-tables-3.5.0.dev5.min.js\", \"https://cdn.holoviz.org/panel/1.4.4/dist/panel.min.js\"];\n", + " var js_modules = [];\n", + " var js_exports = {};\n", + " var css_urls = [];\n", + " var inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + "\ttry {\n", + " inline_js[i].call(root, root.Bokeh);\n", + "\t} catch(e) {\n", + "\t if (!reloading) {\n", + "\t throw e;\n", + "\t }\n", + "\t}\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + "\tvar NewBokeh = root.Bokeh;\n", + "\tif (Bokeh.versions === undefined) {\n", + "\t Bokeh.versions = new Map();\n", + "\t}\n", + "\tif (NewBokeh.version !== Bokeh.version) {\n", + "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + "\t}\n", + "\troot.Bokeh = Bokeh;\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + "\troot.Bokeh = undefined;\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + "\trun_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.5.0.dev5+9.gbaa1f110.dirty'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/dev/bokeh-3.5.0.dev5.min.js\", \"https://cdn.bokeh.org/bokeh/dev/bokeh-gl-3.5.0.dev5.min.js\", \"https://cdn.bokeh.org/bokeh/dev/bokeh-widgets-3.5.0.dev5.min.js\", \"https://cdn.bokeh.org/bokeh/dev/bokeh-tables-3.5.0.dev5.min.js\", \"https://cdn.holoviz.org/panel/1.4.4/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ] + }, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p1004" + } + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "\n", + "\n", + "\n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import holoviews as hv\n", + "from holoviews.operation.normalization import subcoordinate_group_ranges\n", + "from holoviews.plotting.links import RangeToolLink\n", + "from scipy.stats import zscore\n", + "\n", + "hv.extension('bokeh')\n", + "\n", + "GROUP_EEG = 'EEG'\n", + "GROUP_POS = 'Position'\n", + "N_CHANNELS_EEG = 10\n", + "N_CHANNELS_POS = 3\n", + "N_SECONDS = 5\n", + "SAMPLING_RATE_EEG = 200\n", + "SAMPLING_RATE_POS = 25\n", + "INIT_FREQ = 2 # Initial frequency in Hz\n", + "FREQ_INC = 5 # Frequency increment\n", + "AMPLITUDE_EEG = 1000 # EEG amplitude multiplier\n", + "AMPLITUDE_POS = 2 # Position amplitude multiplier\n", + "\n", + "# Generate time for EEG and position data\n", + "total_samples_eeg = N_SECONDS * SAMPLING_RATE_EEG\n", + "total_samples_pos = N_SECONDS * SAMPLING_RATE_POS\n", + "time_eeg = np.linspace(0, N_SECONDS, total_samples_eeg)\n", + "time_pos = np.linspace(0, N_SECONDS, total_samples_pos)\n", + "\n", + "# Generate EEG timeseries data\n", + "def generate_eeg_data(index):\n", + " return AMPLITUDE_EEG * np.sin(2 * np.pi * (INIT_FREQ + index * FREQ_INC) * time_eeg)\n", + "\n", + "eeg_channels = [str(i) for i in np.arange(N_CHANNELS_EEG)]\n", + "eeg_data = np.array([generate_eeg_data(i) for i in np.arange(N_CHANNELS_EEG)])\n", + "eeg_df = pd.DataFrame(eeg_data.T, index=time_eeg, columns=eeg_channels)\n", + "eeg_df.index.name = 'Time'\n", + "\n", + "# Generate position data\n", + "pos_channels = ['X', 'Y', 'Z'] # avoid lowercase 'x' and 'y' as channel/dimension names\n", + "pos_data = AMPLITUDE_POS * np.random.randn(N_CHANNELS_POS, total_samples_pos).cumsum(axis=1)\n", + "pos_df = pd.DataFrame(pos_data.T, index=time_pos, columns=pos_channels)\n", + "pos_df.index.name = 'Time'" + ] + }, + { + "cell_type": "markdown", + "id": "ec9e71b8-a995-4c0f-bdbb-5d148d8fa138", + "metadata": {}, + "source": [ + "## Visualizing EEG Data\n", + "\n", + "Next, let's dive into visualizing the data. We construct each timeseries using a `Curve` element, assigning it a `group`, a `label` and setting `subcoordinate_y=True`. All these curves are then aggregated into a list per data group, which serves as the input for an `Overlay` element. Rendering this `Overlay` produces a plot where the timeseries are stacked vertically.\n", + "\n", + "Additionally, we'll enhance user interaction by implementing a custom hover tool. This will display key information about the group, channel, time, and amplitude value when you hover over any of the curves." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "67d9acdb-5fe4-4244-af0a-856bc32a9408", + "metadata": {}, + "outputs": [ + { + "data": {}, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ], + "text/plain": [ + ":Curve [x] (y)" + ] + }, + "execution_count": 5, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p1068" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "hv.Curve([])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9476769f-3935-4236-b010-1511d1a1e77f", + "metadata": {}, + "outputs": [], + "source": [ + "# Create a Curve per data series\n", + "def df_to_curves(df, kdim, vdim, color='black', group='EEG'):\n", + " curves = []\n", + " for i, (channel, channel_data) in enumerate(df.items()):\n", + " ds = hv.Dataset((channel_data.index, channel_data), [kdim, vdim])\n", + " curve = hv.Curve(ds, kdim, vdim, group=group, label=str(channel))\n", + " curve.opts(\n", + " subcoordinate_y=True, color=color if isinstance(color, str) else color[i], line_width=1, \n", + " hover_tooltips=hover_tooltips, tools=['xwheel_zoom'], line_alpha=.8,\n", + " )\n", + " curves.append(curve)\n", + " return curves\n", + "\n", + "hover_tooltips = [(\"Group\", \"$group\"), (\"Channel\", \"$label\"), (\"Time\"), (\"Value\")]\n", + "\n", + "vdim_EEG = hv.Dimension(\"Value\", unit=\"µV\")\n", + "vdim_POS = hv.Dimension(\"Value\", unit=\"cm\")\n", + "time_dim = hv.Dimension(\"Time\", unit=\"s\")\n", + "\n", + "eeg_curves = df_to_curves(eeg_df, time_dim, vdim_EEG, color='black', group='EEG')\n", + "pos_curves = df_to_curves(pos_df, time_dim, vdim_POS, color=cc.glasbey_cool, group='POS')\n", + "\n", + "# Combine EEG and POS curves into an Overlay\n", + "eeg_curves_overlay = hv.Overlay(eeg_curves, kdims=\"Channel\")\n", + "pos_curves_overlay = hv.Overlay(pos_curves, kdims=\"Channel\")\n", + "curves_overlay = (eeg_curves_overlay * pos_curves_overlay).opts(\n", + " xlabel=time_dim.pprint_label, ylabel=\"Channel\", show_legend=False, aspect=3, responsive=True,\n", + ")\n", + "curves_overlay" + ] + }, + { + "cell_type": "markdown", + "id": "983e1f84-6006-4d64-9144-4aba0ad93946", + "metadata": {}, + "source": [ + "Note that the overlay above has multiple wheel-zoom tools in the toolbar, you can hover over the icons in the toolbar to reveal each of the first two control the Y-axis zoom of their respective data group within each curve's subcoordinate range, and the third wheel zoom tool controls the X-axis scale of all the curves together.\n", + "\n", + "By default, all the curves, including across data groups, have the same y-axis range that is computed from the min and max across all channels. As a consequence, the position curves in blue, which have a much smaller amplitude than timeseries in the EEG data group, appear to be quite flat and are hard to inspect. To deal with this situation, we can transform the *Overlay* with the `subcoordinate_group_ranges` operation that will apply a min-max normalization of the timeseries per group." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2bb78a48-5c6a-4969-bf58-539fce784364", + "metadata": {}, + "outputs": [], + "source": [ + "# Apply group-wise normalization\n", + "normalized_overlay = subcoordinate_group_ranges(curves_overlay)\n", + "normalized_overlay" + ] + }, + { + "cell_type": "markdown", + "id": "b4f603e2-039d-421a-ba9a-ed9e77efab99", + "metadata": {}, + "source": [ + "## Creating the Minimap\n", + "\n", + "A minimap can provide a quick overview of the data and help you navigate through it. We'll compute the z-score for each channel and represent it as an image; the z-score will normalize the data and bring out the patterns more clearly. To enable linking in the next step between the timeseries `Overlay` and the minimap `Image`, we ensure they share the same y-axis range. We will also leverage rasterization in case the full image resolution is too large to render on the screen." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "40fa2198-c3b5-41e1-944f-f8b812612168", + "metadata": {}, + "outputs": [], + "source": [ + "y_positions = range(N_CHANNELS_EEG + N_CHANNELS_POS)\n", + "\n", + "# Reindex the lower frequency DataFrame to match the higher frequency index\n", + "pos_df_interp = pos_df.reindex(eeg_df.index).interpolate(method='index')\n", + "\n", + "# concatenate the EEG and interpolated POS data and z-score the full data array\n", + "z_data = zscore(np.concatenate((eeg_df.values, pos_df_interp.values), axis=1), axis=0).T\n", + "\n", + "minimap = rasterize(hv.Image((time_eeg, y_positions , z_data), [time_dim, \"Channel\"], \"Value\"))\n", + "minimap = minimap.opts(\n", + " cmap=\"RdBu_r\", xlabel='', alpha=.7,\n", + " yticks=[(y_positions[0], f'EEG {eeg_channels[0]}'), (y_positions[-1], f'POS {pos_channels[-1]}')],\n", + " height=120, responsive=True, toolbar='disable', cnorm='eq_hist'\n", + ")\n", + "minimap" + ] + }, + { + "cell_type": "markdown", + "id": "a5b77970-342f-4428-bd1c-4dbef1e6a2b5", + "metadata": {}, + "source": [ + "## Building the dashboard\n", + "\n", + "Finally, we use [`RangeToolLink`](../../../user_guide/Linking_Plots.ipynb) to connect the minimap `Image` and the timeseries `Overlay`, setting bounds for the initially viewable area with `boundsx` and `boundsy`, and finally demonstrate setting an upper max zoom range of 3 seconds with `intervalsx`. Once the plots are linked and assembled into a unified dashboard, you can interact with it. Experiment by dragging the selection box on the minimap or resizing it by clicking and dragging its edges." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "260489eb-2dbf-4c88-ba83-dd1cba0e547b", + "metadata": {}, + "outputs": [], + "source": [ + "RangeToolLink(\n", + " minimap, normalized_overlay, axes=[\"x\", \"y\"],\n", + " boundsx=(.5, 3), boundsy=(1.5, 12.5),\n", + " intervalsx=(None, 3),\n", + ")\n", + "\n", + "dashboard = (normalized_overlay + minimap).cols(1).opts(shared_axes=False)\n", + "dashboard" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "615ae86f-b40b-4e3b-a971-da450ea82d7e", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/workflows/multi_channel_timeseries/dev/bokeh_scalebar.ipynb b/workflows/multi_channel_timeseries/dev/bokeh_scalebar.ipynb new file mode 100644 index 0000000..bf208d5 --- /dev/null +++ b/workflows/multi_channel_timeseries/dev/bokeh_scalebar.ipynb @@ -0,0 +1,316 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 9, + "id": "e2fe800c-eadd-4bbb-80df-966abeb05aa5", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "from bokeh.models import LogColorMapper\n", + "from bokeh.plotting import figure, show\n", + "\n", + "\n", + "def normal2d(X, Y, sigx=1.0, sigy=1.0, mux=0.0, muy=0.0):\n", + " z = (X-mux)**2 / sigx**2 + (Y-muy)**2 / sigy**2\n", + " return np.exp(-z/2) / (2 * np.pi * sigx * sigy)\n", + "\n", + "X, Y = np.mgrid[-3:3:200j, -2:2:200j]\n", + "Z = normal2d(X, Y, 0.1, 0.2, 1.0, 1.0) + 0.1*normal2d(X, Y, 1.0, 1.0)\n", + "image = Z * 1e6\n", + "\n", + "color_mapper = LogColorMapper(palette=\"Viridis256\", low=1, high=1e7)\n", + "\n", + "plot = figure(x_range=(0,1), y_range=(0,1), toolbar_location=None)\n", + "r = plot.image(image=[image], color_mapper=color_mapper,\n", + " dh=1.0, dw=1.0, x=0, y=0)\n", + "\n", + "color_bar = r.construct_color_bar(padding=1)\n", + "\n", + "plot.add_layout(color_bar, \"right\")\n", + "\n", + "# show(plot)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "11f19e9a-228b-406c-a42e-eba8998b930e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function embed_document(root) {\n", + " const docs_json = {\"c282d1ea-4a8f-4b65-b011-116e512d7f7c\":{\"version\":\"3.4.1\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1881\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1890\"},\"y_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1891\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1892\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1893\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1888\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1924\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1915\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1916\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1917\"},\"data\":{\"type\":\"map\",\"entries\":[[\"image\",[{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"IQMC9o/tN0Be+kF7i+c4QLV+ZG8M6TlAdtmEQSryOkA2cxzp+gI8QH7Pu82SGz1A9EqfrgQ8PkCCoC2KYWQ/QHZqt0JcSkBAtmDFaYvmQEDDgq/Ow4ZBQEBYnvQJK0JAzjlvQWHTQkBgUtTxy39DQCxiog1LMERAr05VXN7kREB+tNRZhJ1FQP7VgSs6WkZA2F6YlfsaR0DUi+vwwt9HQCZXCSGJqEhAcFDNikV1SUB/yWwL7kVKQND4BfB2GktAt6K77dLyS0ApwmYa885MQJ+I5+XGrk1AxuIeFDySTkApfJm3PnlPQEOAepbcMVBAogmEC8qoUED9k+otWyFRQB4HKJGCm1FAhNF+6DEXUkC8V7oGWpRSQD1FY97qElNAhctqgtOSU0CTmk8nAhRUQKoXvyRkllRACw219+UZVUCtvxtFc55VQFkG7tz2I1ZA36jcvVqqVkCB9XcZiDFXQHQg3lhnuVdAfaLuIeBBWEAcbQJd2cpYQMpmKDs5VFlAaT/lPOXdWUAjRnU5wmdaQL6Ejma08VpAvfugYJ97W0ArdJIzZgVcQPjy8mPrjlxAdXOm+BAYXUDKJgCFuKBdQJARSzPDKF5ADXy7zxGwXkC5R8TThDZfQLrcynH8u19AgAKaUCwgYEBm2GGVvGFgQL+kpNqeomBAffJI6cLiYEDkrkyGGCJhQPqEeXmPYGFArEIxlBeeYUCVYk64oNphQM23FN8aFmJAHB8uIHZQYkAQAq+4ooliQDBkHhKRwWJAVSJ9yTH4YkA+/ke2dS1jQA4IcPFNYWNAhu9E3KuTY0AVxkwngcRjQMG6BNm/82NANV6GVFohZEBaBg1gQ01kQMf0Vitud2RASvPdVc6fZECoLuP0V8ZkQAMuSpn/6mRAU+E+VboNZUDf36LBfS5lQHURPgNATWVAQyOvz/dpZUCeURhynIRlQLw7hc8lnWVA6qUGa4yzZUCzP4FpycdlQIi4LJXW2WVAraPAYK7pZUDm5UzqS/dlQA+iu/2qAmZARtf6FsgLZkAjIsxjoBJmQPpROcUxF2ZAzcWs0HoZZkDNxazQehlmQPpROcUxF2ZAIyLMY6ASZkBG1/oWyAtmQA+iu/2qAmZA5uVM6kv3ZUCto8BgrullQIi4LJXW2WVAsz+BacnHZUDqpQZrjLNlQLw7hc8lnWVAnlEYcpyEZUBDI6/P92llQHURPgNATWVA39+iwX0uZUBT4T5Vug1lQAMuSpn/6mRAqC7j9FfGZEBK891Vzp9kQMf0Vitud2RAWgYNYENNZEA1XoZUWiFkQMG6BNm/82NAFcZMJ4HEY0CG70Tcq5NjQA4IcPFNYWNAQ/5HtnUtY0BVIn3JMfhiQDBkHhKRwWJACwKvuKKJYkAcHy4gdlBiQNO3FN8aFmJAlWJOuKDaYUCsQjGUF55hQPWEeXmPYGFA5K5MhhgiYUB98kjpwuJgQL+kpNqeomBAZthhlbxhYEB7AppQLCBgQLPcynH8u19AuUfE04Q2X0ANfLvPEbBeQJARSzPDKF5AyiYAhbigXUB1c6b4EBhdQADz8mPrjlxAK3SSM2YFXEC9+6Bgn3tbQL6Ejma08VpAI0Z1OcJnWkBpP+U85d1ZQMpmKDs5VFlAHG0CXdnKWEB9ou4h4EFYQHQg3lhnuVdAgfV3GYgxV0DfqNy9WqpWQFkG7tz2I1ZArb8bRXOeVUALDbX35RlVQKoXvyRkllRAk5pPJwIUVECFy2qC05JTQD1FY97qElNAvFe6BlqUUkCE0X7oMRdSQB4HKJGCm1FA/ZPqLVshUUCiCYQLyqhQQEOAepbcMVBAKXyZtz55T0DG4h4UPJJOQJ+I5+XGrk1AKcJmGvPOTEC3orvt0vJLQND4BfB2GktAf8lsC+5FSkBwUM2KRXVJQCZXCSGJqEhA1Ivr8MLfR0DSXpiV+xpHQATWgSs6WkZAfrTUWYSdRUCvTlVc3uREQCxiog1LMERAYFLU8ct/Q0DTOW9BYdNCQEBYnvQJK0JAw4KvzsOGQUC2YMVpi+ZAQHZqt0JcSkBAiqAtimFkP0D0Sp+uBDw+QH7Pu82SGz1ANnMc6foCPEBu2YRBKvI6QLV+ZG8M6TlAXvpBe4vnOEAhAwL2j+03QOuFT+VqLjpA54xK/fA/O0AV53XWsVk8QDE13xTHez1Ay3qSwUimPkAZ0gkwTdk/QKW8unF0ikBAJ8f1OZcsQUBovcc5F9NBQALb4Kn7fUJAMJE0pUotQ0A58LMbCeFDQJ3+JsU6mURAUnIuFOJVRUCkencpABdGQD2AK8eU3EZAYO6lRJ6mR0AxQXqCGXVIQPy11N4BSElAMRNAKlEfSkANENuc//pKQHHsB8wD20tAUMqgoFK/TEAQUrtN36dNQG8ZBkiblE5AJSrKPXaFT0CEcM0HLz1QQEgY32SfuVBAyowrTwE4UUCo9S3wSLhRQPbHsH9pOlJAcWoiQlW+UkAvH12H/UNTQI9F5qlSy1NASM2oDkRUVEBedC4lwN5UQLMmW2i0alVAd42tXw34VUAOkAehtoZWQAA3AdOaFldASgzIr6OnV0BDu4wIujlYQIRVgMnFzFhAa0Fi/q1gWUDac5/XWPVZQLYvA7CrilpAxhz5EosgW0AxHGDD2rZbQEfT7MJ9TVxAJXYaWlbkXED566cgRntdQOf0ngYuEl5A5ojiXe6oXkBmNEHkZj9fQFjHB8521V9ABx2IaH41YEBTHiSY639gQDw81ePxyWBAYI9SDIATYUD1+3OrhFxhQD7gyTrupGFA4R5iGqvsYUCBC7eXqTNiQLWRxPTXeWJAksQ/byS/YkAB3OxHfQNjQFF/D8rQRmNAARrxUg2JY0B813hZIcpjQBzG0HX7CWRAd4gTaYpIZEA45v0kvYVkQK57n9OCwWRALrgF38r7ZEAiUtz4hDRlQAlP/iGha2VA5bzysQ+hZUBkOlBewdRlQBFxAkKnBmZAda5s5LI2ZkCJ1mRA1mRmQNn6AcsDkWZA9vg5ei67ZkDYmknLSeNmQO/S4shJCWdAX84cESMtZ0ChvSHbyk5nQNdclvw2bmdAqXG37l2LZ0CEpCnTNqZnQH5OeHi5vmdAXQtAXt7UZ0DYGAK5nuhnQKPHnXX0+WdAEoJtPNoIaEAoLAV0SxVoQGHkj0NEH2hAHHHLlMEmaEAY7J8VwStoQF2GUjlBLmhAXYZSOUEuaEAY7J8VwStoQBxxy5TBJmhAYeSPQ0QfaEAoLAV0SxVoQBKCbTzaCGhAo8eddfT5Z0DYGAK5nuhnQF0LQF7e1GdAfk54eLm+Z0CEpCnTNqZnQKlxt+5di2dA11yW/DZuZ0ChvSHbyk5nQF/OHBEjLWdA79LiyEkJZ0DYmknLSeNmQPb4OXouu2ZA2foBywORZkCJ1mRA1mRmQHWubOSyNmZAEXECQqcGZkBkOlBewdRlQOW88rEPoWVACU/+IaFrZUAiUtz4hDRlQDS4Bd/K+2RArnuf04LBZEA45v0kvYVkQHGIE2mKSGRAHMbQdfsJZECC13hZIcpjQAEa8VINiWNAUX8PytBGY0D72+xHfQNjQJLEP28kv2JAtZHE9Nd5YkCBC7eXqTNiQOEeYhqr7GFAOODJOu6kYUD1+3OrhFxhQGCPUgyAE2FAPDzV4/HJYEBTHiSY639gQAcdiGh+NWBAWMcHznbVX0BtNEHkZj9fQOaI4l3uqF5A5/SeBi4SXkD566cgRntdQCV2GlpW5FxAR9Pswn1NXEAxHGDD2rZbQMYc+RKLIFtAti8DsKuKWkDac5/XWPVZQGZBYv6tYFlAhFWAycXMWEBDu4wIujlYQEoMyK+jp1dAADcB05oWV0AOkAehtoZWQHeNrV8N+FVAsyZbaLRqVUBedC4lwN5UQEjNqA5EVFRAj0XmqVLLU0AvH12H/UNTQHFqIkJVvlJA9sewf2k6UkCo9S3wSLhRQMqMK08BOFFASBjfZJ+5UECEcM0HLz1QQCUqyj12hU9AbxkGSJuUTkAQUrtN36dNQFDKoKBSv0xAcewHzAPbS0ANENuc//pKQDETQCpRH0pA/LXU3gFISUA5QXqCGXVIQGDupUSepkdAPYArx5TcRkCkencpABdGQE1yLhTiVUVAo/4mxTqZREA58LMbCeFDQDCRNKVKLUNAAtvgqft9QkBovcc5F9NBQCzH9TmXLEFApby6cXSKQEAZ0gkwTdk/QMt6ksFIpj5AKjXfFMd7PUAN53XWsVk8QOeMSv3wPztA64VP5WouOkDOjTm87p48QM6MUFHxyT1AYVL69PL9PkBB73HXhx1AQOtTtuKwwEBAmVZO0IBoQUAal3fWAhVCQIBnAR9BxkJAb1KguER8Q0BEMEaIFTdEQF87iDq69kRAQeUcNTi7RUBXe3uIk4RGQO/wp+HOUkdAKGQ1fOslSEBnL4oU6f1IQDqKcNrF2klAg+r+Y368SkAneeOgDaNLQPMJHs5sjkxA+Bk0apN+TUBpYOopd3NOQOl/j+0LbU9Ab65x26E1UEDzRNNPB7dQQHqPbmitOlFA4xNoPYrAUUD7UezmkkhSQOpq/3m70lJAxCq8BfdeU0A9hQeRN+1TQORnvRhufVRAdY9bjooPVUBK1C7Xe6NVQDYiB8wvOVZAGAx2OZPQVkDSoJvgkWlXQDPZhHgWBFhAFaIesAqgWEBkLcAwVz1ZQK3XTqHj21lAbI79qZZ7WkC+Pan4VRxbQGJi00UGvltA1nA7WotgXEASURcVyANdQA296nKep11A/9j8lO9LXkA15mrJm/BeQMp21pOClV9AbIdWW0EdYECnUYMevW9gQIz1i0IjwmBAX32aJWIUYUCLE7DaZ2ZhQGZYsC8iuGFAdyCus34JYkCO43a9alpiQE7qWXLTqmJASQ4ozaX6YkBwqWilzkljQJwbwLY6mGNABhmEqNblY0BUw3kVjzJkQMZfuZNQfmRALFGzvAfJZEBP0lE1oRJlQHnIMrYJW2VA4+H0Ey6iZUAsFZNH++dlQEZ7yXZeLGZANmV+/ERvZkCieypxnLBmQGClOrNS8GZASGhm71UuZ0AebvWolGpnQH/W7sH9pGdAlf4sg4DdZ0ADblCkDBRoQK6ijFOSSGhAA4RJPQJ7aEABWZSTTatoQDw1WxVm2WhAAOxtFT4FaUAduj+ByC5pQCT7ZOf4VWlAwmfIfcN6aUAZiJMnHZ1pQJ81xnr7vGlADTx5xVTaaUAXYsgSIPVpQLhcYC9VDWpA62+trewiakD4v6fp3zVqQOmbOgwpRmpAqU9EDsNTakAjViy7qV5qQJAODrPZZmpAQ2R2bFBsakAJKLM1DG9qQAkoszUMb2pAQ2R2bFBsakCQDg6z2WZqQCNWLLupXmpAqU9EDsNTakDpmzoMKUZqQPi/p+nfNWpA62+trewiakC4XGAvVQ1qQBdiyBIg9WlADTx5xVTaaUCfNcZ6+7xpQBmIkycdnWlAwmfIfcN6aUAk+2Tn+FVpQB26P4HILmlAAOxtFT4FaUA8NVsVZtloQAFZlJNNq2hAA4RJPQJ7aECuooxTkkhoQANuUKQMFGhAlf4sg4DdZ0B/1u7B/aRnQB5u9aiUamdASGhm71UuZ0BmpTqzUvBmQKJ7KnGcsGZANmV+/ERvZkBAe8l2XixmQCwVk0f752VA6eH0Ey6iZUB5yDK2CVtlQE/SUTWhEmVAJVGzvAfJZEDGX7mTUH5kQFTDeRWPMmRABhmEqNblY0CcG8C2OphjQGupaKXOSWNARA4ozaX6YkBO6lly06piQI7jdr1qWmJAdyCus34JYkBmWLAvIrhhQIsTsNpnZmFAYn2aJWIUYUCM9YtCI8JgQKdRgx69b2BAbIdWW0EdYEDKdtaTgpVfQDXmasmb8F5A/9j8lO9LXkANvepynqddQBJRFxXIA11A1nA7WotgXEBiYtNFBr5bQL49qfhVHFtAbI79qZZ7WkCt106h49tZQGQtwDBXPVlAFaIesAqgWEAz2YR4FgRYQNKgm+CRaVdAGAx2OZPQVkA2IgfMLzlWQErULtd7o1VAdY9bjooPVUDkZ70Ybn1UQD2FB5E37VNAxCq8BfdeU0Dqav95u9JSQPtR7OaSSFJA4xNoPYrAUUB6j25orTpRQPNE008Ht1BAb65x26E1UEDpf4/tC21PQGlg6il3c05A+Bk0apN+TUDzCR7ObI5MQCF546ANo0tAier+Y368SkA6inDaxdpJQGcvihTp/UhAKGQ1fOslSEDv8KfhzlJHQF17e4iThEZAQeUcNTi7RUBfO4g6uvZEQEQwRogVN0RAb1KguER8Q0CEZwEfQcZCQBqXd9YCFUJAmVZO0IBoQUDrU7bisMBAQD3vcdeHHUBAYVL69PL9PkDOjFBR8ck9QM6NObzunjxA/P8KQFxCP0CohGicd0RAQOofMseq7EBAOs/27taZQUA2te5sCkxCQOL8GZVSA0NAXJFNpru/Q0AGUTG6UIFEQIZKObUbSEVAffOjNiUURkAZqYeIdOVGQPIh+o8PvEdAes1cvfqXSEBkatn8OHlJQJ9jGqfLX0pAm8RKcrJLS0AkzGlj6zxMQMtV/r9yM01AaXk2AEMvTkC53X/BVDBPQG2o0lxPG1BA+SE/1QqhUEDsYx4rVilRQLtPM7optFFAjvPC03xBUkA+2M65RdFSQONjt5p5Y1NArU9MjQz4U0AvDlGN8Y5UQG3YengaKFVAKOrtC3jDVUAQQz/i+WBWQNUIAHKOAFdAI2fXDCOiV0BthS/fo0VYQP7eefD76lhA8vkOJBWSWUDxIq062DpaQDN4mdQs5VpAei1mdPmQW0DojGCCIz5cQFfOqFCP7FxA2W/1HyCcXUCBRgMluExeQIUIs444/l5AhJbUjIGwX0BP5s8ruTFgQNoR7Zt0i2BATPTTx2HlYEDnpAPybj9hQOR7efOJmWFAYsUUQaDzYUDeLUvxnk1iQFr6K8Jyp2JAZtuvHwgBY0Cn5lIqS1pjQIQA9r0ns2NAKb4EeYkLZEC7h9zDW2NkQEuEcdiJumRAVpwtyv4QZUAzpAWOpWZlQGGIwAJpu2VAVR5s+TMPZkA9Cvs98WFmQGL5BqCLs2ZAwEOy++0DZ0Aj3qNCA1NnQJtfGIW2oGdAYrsC+/LsZ0DYMTcNpDdoQEzhml61gGhA1klS1RLIaEBjBemjqA1pQBLqbFJjUWlA1MJ2xy+TaUAbyRpR+9JpQIYKu62zEGpARuy1FEdMakCuCes+pIVqQEK7EG+6vGpAPKjUeXnxakCz38HN0SNrQNYT53q0U2tAYLY3OhOBa0Cw3KJ04KtrQBH/2kkP1GtAddfJlpP5a0DE2av7YRxsQBz4zuFvPGxAEaTwgLNZbEB5PTfkI3RsQARlw+64i2xAee/VX2ugbEDegYfWNLJsQJArD9UPwWxAnKOVw/fMbEC+IJPy6NVsQEMWtpzg22xAVHdR6NzebEBUd1Ho3N5sQEMWtpzg22xAviCT8ujVbECco5XD98xsQJArD9UPwWxA3oGH1jSybEB579Vfa6BsQARlw+64i2xAeT035CN0bEARpPCAs1lsQBz4zuFvPGxAxNmr+2EcbEB118mWk/lrQBH/2kkP1GtAsNyidOCra0Bgtjc6E4FrQNYT53q0U2tAs9/BzdEja0A8qNR5efFqQEK7EG+6vGpArgnrPqSFakBG7LUUR0xqQIYKu62zEGpAG8kaUfvSaUDUwnbHL5NpQBLqbFJjUWlAaQXpo6gNaUDWSVLVEshoQEzhml61gGhA0jE3DaQ3aEBiuwL78uxnQKFfGIW2oGdAI96jQgNTZ0DAQ7L77QNnQFv5BqCLs2ZAPQr7PfFhZkBVHmz5Mw9mQGGIwAJpu2VAM6QFjqVmZUBRnC3K/hBlQEuEcdiJumRAu4fcw1tjZEApvgR5iQtkQIQA9r0ns2NAp+ZSKktaY0Bm268fCAFjQGD6K8Jyp2JA3i1L8Z5NYkBixRRBoPNhQOR7efOJmWFA56QD8m4/YUBM9NPHYeVgQNoR7Zt0i2BAT+bPK7kxYECEltSMgbBfQIUIs444/l5AeUYDJbhMXkDZb/UfIJxdQFfOqFCP7FxA6IxggiM+XEB6LWZ0+ZBbQDN4mdQs5VpA8SKtOtg6WkDy+Q4kFZJZQP7eefD76lhAbYUv36NFWEAjZ9cMI6JXQNUIAHKOAFdAEEM/4vlgVkAo6u0LeMNVQG3YengaKFVALw5RjfGOVECtT0yNDPhTQONjt5p5Y1NAPtjOuUXRUkCO88LTfEFSQLtPM7optFFA7GMeK1YpUUD5IT/VCqFQQG2o0lxPG1BAud1/wVQwT0BpeTYAQy9OQNJV/r9yM01AJMxpY+s8TECbxEpysktLQJ9jGqfLX0pAXmrZ/Dh5SUCBzVy9+pdIQPIh+o8PvEdAGamHiHTlRkB986M2JRRGQIZKObUbSEVAC1ExulCBREBckU2mu79DQOL8GZVSA0NANrXubApMQkA2z/bu1plBQOUfMseq7EBAqIRonHdEQED8/wpAXEI/QJYr+xwODkFAw9eejTvAQUDf4l1dxXdCQC54JEC8NENA0W4i3i/3Q0DueH3CLr9EQL5+6UnGjEVAGiIxkQJgRkAD2Lhj7jhHQC5wByqTF0hAJ0tf2Pj7SEB933PdJeZJQI2KRxEf1kpA1/09pOfLS0Bn5m8OgcdMQNGyTP/qyE1A2JeXTSPQTkALKc3nJd1PQMmCf2L2d1BAA50Z6zcEUUCghyp8UpNRQBKFYvM/JVJAY/BKF/m5UkCWD0KRdVFTQHAP2+er61NAz+ioeZGIVEBp2Hp4GihVQHzzEOU5ylVAnj9Pi+FuVkBCifX+ARZXQJAC4piKv1dA53zkdGlrWEAh0CdwixlZQES+NijcyVlAvFah+kV8WkDhiUcFsjBbQKtGTScI51tASB28Ai+fXEBH/tX+C1ldQMFDHEuDFF5AU8MN43fRXkBeM56Sy49fQKpatH2vJ2BAMGxPzQiIYECnc9rn4OhgQMnm5XEmSmFApivsiMerYUDugcPHsQ1iQPSJbUvSb2JAi3VDuBXSYkD3pX0/aDRjQC0wFaW1lmNA9Xb9Ren4Y0BjwLMe7lpkQGpiItKuvGRADtnUsBUeZUB30HnADH9lQLTlr8N932VAGJsZQlI/ZkC2uLSQc55mQHwPcdrK/GZAjVQCKUFaZ0Dhjehtv7ZnQOpMqosuEmhAR707X3dsaEA0WI3JgsVoQFbcPLk5HWlAOPxiNIVzaUBmDHhiTshpQFHUSZZ+G2pA+oT8V/9sakA8uxBvurxqQLlcaOyZCmtAQwpENIhWa0DE1jIIcKBrQKPm7ZA86GtALJoZaNktbEC15eWhMnFsQN6Bh9Y0smxAvqqDK83wbEBrNshc6SxtQInhicV3Zm1Aks7iaGedbUA7VCv6p9FtQFpfB+UpA25A3dciVd4xbkA5qZc9t11uQFdE+F+nhm5AIqv5UqKsbkATVLiInM9uQLN3k1SL725A1J+a8GQMb0AqnImCICZvQM1MTyC2PG9A5wUc1B5Qb0D8ovSfVGBvQGm4x4BSbW9A1qoCcRR3b0AUz6Rql31vQNsTz2jZgG9A2xPPaNmAb0AUz6Rql31vQNaqAnEUd29AabjHgFJtb0D8ovSfVGBvQOcFHNQeUG9AzUxPILY8b0AqnImCICZvQNSfmvBkDG9As3eTVIvvbkATVLiInM9uQCKr+VKirG5AV0T4X6eGbkA5qZc9t11uQN3XIlXeMW5AWl8H5SkDbkA7VCv6p9FtQJLO4mhnnW1AieGJxXdmbUBrNshc6SxtQL6qgyvN8GxA3oGH1jSybEC15eWhMnFsQCyaGWjZLWxAo+btkDzoa0DE1jIIcKBrQEkKRDSIVmtAuVxo7JkKa0A8uxBvurxqQPKE/Ff/bGpAUdRJln4bakBsDHhiTshpQDj8YjSFc2lAVtw8uTkdaUAvWI3JgsVoQEe9O193bGhA6kyqiy4SaEDhjehtv7ZnQI1UAilBWmdAeA9x2sr8ZkC2uLSQc55mQBibGUJSP2ZAtOWvw33fZUB30HnADH9lQA7Z1LAVHmVAamIi0q68ZEBpwLMe7lpkQPV2/UXp+GNALTAVpbWWY0D3pX0/aDRjQIt1Q7gV0mJA9IltS9JvYkDugcPHsQ1iQKYr7IjHq2FAyeblcSZKYUCnc9rn4OhgQC1sT80IiGBAqlq0fa8nYEBeM56Sy49fQFPDDeN30V5AwUMcS4MUXkBH/tX+C1ldQEgdvAIvn1xAq0ZNJwjnW0DhiUcFsjBbQLxWofpFfFpARL42KNzJWUAh0CdwixlZQOd85HRpa1hAkALimIq/V0BCifX+ARZXQJ4/T4vhblZAfPMQ5TnKVUBp2Hp4GihVQM/oqHmRiFRAcA/b56vrU0CWD0KRdVFTQGPwShf5uVJAEoVi8z8lUkCghyp8UpNRQAOdGes3BFFAyYJ/YvZ3UEATKc3nJd1PQNiXl00j0E5A0bJM/+rITUBn5m8OgcdMQND9PaTny0tAlYpHER/WSkB933PdJeZJQCdLX9j4+0hALnAHKpMXSEAD2Lhj7jhHQB8iMZECYEZAvn7pScaMRUDueH3CLr9EQNFuIt4v90NAKXgkQLw0Q0Db4l1dxXdCQMPXno07wEFAliv7HA4OQUBQoCvr35dCQIbJkLQfWkNAkzvipjciREAEqbz3OfBEQD0U2rg3xEVAlmw0xUCeRkDRAgyuY35HQFK43KetZEhAWEdNdypRSUB5diRe5ENKQA58UAjkPEtARz4NeTA8TEBNgTb4zkFNQOFw0//CTU5AOUbpKQ5gT0AYjFEPWDxQQKaSbkHTy1BAKxCRc3ZeUUD/m5RbPvRRQETa8ZQmjVJAXJAUmSkpU0DKfwi4QMhTQLGIhBFkalRAfI9bjooPVUDTlFraqbdVQOtbm162YlZApOFSPKMQV0BKxiJIYsFXQKuj9AXkdFhANhtmpRcrWUAaMcz+6uNZQBlN1JBKn1pA9PTIfiFdW0CtCYCPWR1cQFn+9yzb31xAyCWpZI2kXUAY1Y/oVWteQBiy8xAZNF9A2xfw3rn+X0BChOD/jGVgQBvVa+iMzGBAd2dcMkw0YUBIwVPEuZxhQM6IjuXDBWJA5LaHQVhvYkANIgPsY9liQAtBf2XTQ2NA9bcNoJKuY0DU9JEEjRlkQLrRZHithGRAJeNbY97vZEB+yDK2CVtlQKKEVPEYxmVA/5ICLPUwZkArHtcbh5tmQGxsnxy3BWdAEkiLOG1vZ0Dj260wkdhnQCgvzIUKQWhAvCJ1gcCoaEBsiF4/mg9pQA+nArd+dWlAFDx5xVTaaUD8yIY3Az5qQBjA3NNwoGpAeemEZYQBa0BjI3LGJGFrQKdwMOo4v2tAdhmu6KcbbEDiehcJWXZsQGf9vswzz2xArYsK+h8mbUBlyV+nBXttQG80CEbNzW1AaE0GrV8ebkC72NQjpmxuQMJHCW2KuG5AzFnS0PYBb0AbDUwn1khvQGwFouITjW9AEKH5GJzOb0DKhg7HrQZwQPFmcN6fJHBAIaMecBtBcEAWBwv+F1xwQJJ71HKNdXBAYHbPJXSNcEBvhtzexKNwQOpKCtp4uHBAkkYAy4nLcEDIJDDg8dxwQJssy8Wr7HBAx8Z5qLL6cEDvJdM3AgdxQFRNk6iWEXFAn9+NtmwacUBXT1ymgSFxQF47xkbTJnFAAfPi8V8qcUA4UfONJixxQDhR840mLHFAAfPi8V8qcUBeO8ZG0yZxQFdPXKaBIXFAn9+NtmwacUBUTZOolhFxQO8l0zcCB3FAx8Z5qLL6cECbLMvFq+xwQMgkMODx3HBAkkYAy4nLcEDqSgraeLhwQG+G3N7Eo3BAYHbPJXSNcECSe9RyjXVwQBYHC/4XXHBAIaMecBtBcEDxZnDenyRwQMqGDsetBnBAEKH5GJzOb0BsBaLiE41vQBsNTCfWSG9AzFnS0PYBb0DCRwltirhuQLvY1COmbG5AaE0GrV8ebkB0NAhGzc1tQGXJX6cFe21ArYsK+h8mbUBh/b7MM89sQOJ6FwlZdmxAfRmu6KcbbECncDDqOL9rQGMjcsYkYWtAc+mEZYQBa0AYwNzTcKBqQPzIhjcDPmpAFDx5xVTaaUAPpwK3fnVpQGaIXj+aD2lAvCJ1gcCoaEAoL8yFCkFoQOPbrTCR2GdAEkiLOG1vZ0BsbJ8ctwVnQCse1xuHm2ZABJMCLPUwZkCihFTxGMZlQH7IMrYJW2VAJeNbY97vZEC60WR4rYRkQNT0kQSNGWRA9bcNoJKuY0ALQX9l00NjQA0iA+xj2WJA5LaHQVhvYkDKiI7lwwViQEjBU8S5nGFAd2dcMkw0YUAb1WvojMxgQEKE4P+MZWBA2xfw3rn+X0AYsvMQGTRfQBjVj+hVa15AyCWpZI2kXUBZ/vcs299cQK0JgI9ZHVxA9PTIfiFdW0AZTdSQSp9aQBoxzP7q41lANhtmpRcrWUCro/QF5HRYQErGIkhiwVdApOFSPKMQV0DrW5tetmJWQNOUWtqpt1VAfI9bjooPVUCxiIQRZGpUQMp/CLhAyFNAXJAUmSkpU0BE2vGUJo1SQP+blFs+9FFALxCRc3ZeUUCmkm5B08tQQBiMUQ9YPFBAOUbpKQ5gT0DbcNP/wk1OQFOBNvjOQU1ARz4NeTA8TEAOfFAI5DxLQHl2JF7kQ0pAWEdNdypRSUBZuNynrWRIQNECDK5jfkdAlmw0xUCeRkA9FNq4N8RFQP+ovPc58ERAkDvipjciRECGyZC0H1pDQFCgK+vfl0JAjdjNbYBARECi9qNqFBRFQO2HOQkG7kVAoaoHH2nORkC6z5pDULVHQA2EBrzMokhAtI06Zu6WSUDMOUWkw5FKQFI8j0dZk0tAmgIefLqbTEDi1Omz8KpNQIaVVZIDwU5AalnW1/jdT0DqvOwm6oBQQD8NfNlLFlFAgrnDUyGvUUDquEpNaUtSQMzGsFsh61JAtOaw6UWOU0AmG3Iu0jRUQGJ0LiXA3lRATKM4hQiMVUAJPWi6ojxWQOrV9N2E8FZASgzIr6OnV0C+h06Q8mFYQK/Uz3pjH1lAMeFUAOffWUD1syRDbKNaQGfE3vLgaVtABR86STEzXEDeP3AHSP9cQLFBWnQOzl1ADK9GW2yfXkAs6Y0LSHNfQC9bdSzDJGBAPRFOTgWRYEC6tapbW/5gQNoeAIq1bGFANIOqVQPcYUAkTyaEM0xiQI8CtyY0vWJApyt9nfIuY0AcSPyaW6FjQNkJEShbFGRAlCxYqNyHZEA0uAXfyvtkQEQ5LPQPcGVApSNzepXkZUDuPTt1RFlmQE6dL18FzmZA5WFBMcBCZ0A9DAxqXLdnQBjsnxXBK2hA7tGv1dSfaEDW1B7qfRNpQDSp6jmihmlAka9uXCf5aUDXj/ui8mpqQEzkviLp22pA5Cj2vu9La0C/1mcz67prQJRLHR/AKGxAJtVXD1OVbEAc+LqKiABtQPvJpRxFam1A6Pu0YG3SbUA0/mYO5jhuQOty2wSUnW5Ax/mmVlwAb0CyOLRVJGFvQB3iKp/Rv29Aea+qEyUOcEAT1b4iOjtwQN3u3F8bZ3BAEXJQa7yRcEB3328oEbtwQBrqU8MN43BAh153tqYJcUAYDzzQ0C5xQH4UUTiBUnFAmb72dK10cUDnoxxwS5VxQCZQVnxRtHFAHCujWbbRcUCLSQY6ce1xQLv36sV5B3JApexSIMgfckBdN8vqVDZyQEodJUkZS3JA4Efw5A5eckD6ybPwL29yQAOy4yp3fnJAzQuR4N+LckDzZdLvZZdyQFQg48kFoXJAC/33dLyockCfoseNh65yQCX0xUhlsnJAt1sRc1S0ckC3WxFzVLRyQCX0xUhlsnJAn6LHjYeuckAL/fd0vKhyQFQg48kFoXJA82XS72WXckDNC5Hg34tyQAOy4yp3fnJA+smz8C9vckDgR/DkDl5yQEodJUkZS3JAXTfL6lQ2ckCl7FIgyB9yQLv36sV5B3JAi0kGOnHtcUAcK6NZttFxQCZQVnxRtHFA56MccEuVcUCZvvZ0rXRxQH4UUTiBUnFAGA880NAucUCHXne2pglxQBrqU8MN43BAd99vKBG7cEARclBrvJFwQN3u3F8bZ3BAFtW+Ijo7cEB5r6oTJQ5wQB3iKp/Rv29Aqzi0VSRhb0DH+aZWXABvQPJy2wSUnW5ANP5mDuY4bkDo+7RgbdJtQPPJpRxFam1AHPi6iogAbUAm1VcPU5VsQJRLHR/AKGxAv9ZnM+u6a0DdKPa+70trQEzkviLp22pA14/7ovJqakCRr25cJ/lpQDSp6jmihmlA1tQe6n0TaUDu0a/V1J9oQB7snxXBK2hAPQwMaly3Z0DlYUExwEJnQE6dL18FzmZA7j07dURZZkClI3N6leRlQEQ5LPQPcGVANLgF38r7ZECULFio3IdkQNkJEShbFGRAF0j8mluhY0CnK32d8i5jQI8CtyY0vWJAJE8mhDNMYkA0g6pVA9xhQNoeAIq1bGFAurWqW1v+YEA9EU5OBZFgQC9bdSzDJGBALOmNC0hzX0AMr0ZbbJ9eQLFBWnQOzl1A3j9wB0j/XEAFHzpJMTNcQGfE3vLgaVtA9bMkQ2yjWkAx4VQA599ZQK/Uz3pjH1lAvodOkPJhWEBKDMivo6dXQOrV9N2E8FZACT1ouqI8VkBMoziFCIxVQGJ0LiXA3lRAJhtyLtI0VEC05rDpRY5TQNLGsFsh61JA6rhKTWlLUkCCucNTIa9RQD8NfNlLFlFA5bzsJuqAUEBxWdbX+N1PQIaVVZIDwU5A4tTps/CqTUCaAh58uptMQFI8j0dZk0tA0jlFpMORSkC0jTpm7pZJQA2EBrzMokhAus+aQ1C1R0Cbqgcfac5GQOiHOQkG7kVAovajahQURUCN2M1tgEBEQGN9a9rgCUZAitbeLx/wRkBZaDDrSt1HQACTyKF50UhAuu0Wj7/MSUDMATZ+L89KQKSkbbPa2EtAGdqg1dDpTEDJtrTXHwJOQHBH/uHTIU9AJgPjnXskUEC48ncaybtQQHe164fVVlFAsuS39aL1UUD3INxWMphSQFi8SneDPlNAqFiQ8ZToU0CmF78kZJZUQIMVpirtR1VANvxdzir9VUANjTODFrZWQJEE+VuocldAqz7HAtcyWEAneTexl/ZYQGWEHinevVlAdBvSrZyIWkBp/gD+w1ZbQA9DJk5DKFxAjyCgQwj9XEAoRHLw/tRdQAV8u88RsF5ALT7mwimOX0DDn80HlzdgQHF7Pi+CqWBAvEJZXcgcYUDPCiTJWpFhQOYmtdspB2JAnf5AMSV+YkATU5qaO/ZiQHwAJx9bb2NALgJL/3DpY0A8NEu3aWRkQD//qAIx4GRA8Mn337FcZUCDuCyV1tllQMnqaLSIV2ZAqRI+IbHVZkDP4GwWOFRnQGlqHCwF02dAgUyJXv9RaEDJ8yoVDdFoQLUPTSoUUGlACdka8/nOaUCPcxlIo01qQDBUDo70y2pAcTVOv9FJa0Ajx3B1HsdrQPPpZPO9Q2xA5uzgL5O/bECe6inggDptQL4OLYNptG1ApzjlbC8tbkD+IAfStKRuQD3b7dPbGm9Ax0TBjIaPb0Ai1+eNSwFwQFvmCdn3OXBAsuJvT7lxcEDR+FIugahwQLXj685A3nBAxJTprOkScUB5HutsbUZxQHjh+OK9eHFAAe/4GM2pcUAGjBpVjdlxQO64NCDxB3JAV6ETTOs0ckAJ17D5bmByQGlAUp9vinJAxqqLDuGyckDl+x56t9lyQHYNt3vn/nJACU95GWYic0A5YWrLKERzQFP1oYAlZHNAR1lKpFKCc0BFN2gip55zQJ0yZ2wauXNAXjFofaTRc0CJSk7ePehzQMB7h6nf/HNAQneOjoMPdEBBCyPVIyB0QOTVNmC7LnRAYy6MsEU7dECyYQXnvkV0QL2ZosYjTnRAHgAttnFUdEAX6I3Bplh0QBQI0ZrBWnRAFAjRmsFadEAX6I3Bplh0QB4ALbZxVHRAvZmixiNOdECyYQXnvkV0QGMujLBFO3RA5NU2YLsudEBBCyPVIyB0QEJ3jo6DD3RAwHuHqd/8c0CJSk7ePehzQF4xaH2k0XNAnTJnbBq5c0BFN2gip55zQEdZSqRSgnNAUPWhgCVkc0A5YWrLKERzQAlPeRlmInNAdg23e+f+ckDl+x56t9lyQMaqiw7hsnJAaUBSn2+KckAJ17D5bmByQFehE0zrNHJA7rg0IPEHckAGjBpVjdlxQAXv+BjNqXFAeOH44r14cUB5HutsbUZxQMCU6azpEnFAtePrzkDecEDW+FIugahwQLLib0+5cXBAW+YJ2fc5cEAe1+eNSwFwQMdEwYyGj29APdvt09sab0D+IAfStKRuQKc45WwvLW5Atg4tg2m0bUCX6inggDptQObs4C+Tv2xA8+lk871DbEAjx3B1HsdrQHE1Tr/RSWtAMFQOjvTLakCVcxlIo01qQAnZGvP5zmlAtQ9NKhRQaUDJ8yoVDdFoQIFMiV7/UWhAaWocLAXTZ0DP4GwWOFRnQKkSPiGx1WZAyepotIhXZkCDuCyV1tllQPDJ99+xXGVAP/+oAjHgZEA8NEu3aWRkQC4CS/9w6WNAfAAnH1tvY0ATU5qaO/ZiQJ3+QDElfmJA5ia12ykHYkDPCiTJWpFhQLxCWV3IHGFAcXs+L4KpYEDDn80HlzdgQC0+5sIpjl9ABXy7zxGwXkAoRHLw/tRdQI8goEMI/VxAD0MmTkMoXEBp/gD+w1ZbQHQb0q2ciFpAZYQeKd69WUAneTexl/ZYQKs+xwLXMlhAkQT5W6hyV0ANjTODFrZWQDb8Xc4q/VVAfRWmKu1HVUCqF78kZJZUQKhYkPGU6FNAWLxKd4M+U0D3INxWMphSQLLkt/Wi9VFAe7Xrh9VWUUC48ncaybtQQCYD4517JFBAcEf+4dMhT0DJtrTXHwJOQB/aoNXQ6UxApKRts9rYS0DMATZ+L89KQLrtFo+/zElA+JLIoXnRSEBZaDDrSt1HQIrW3i8f8EZAY31r2uAJRkA3GfilBvZHQMBgOpda8EhAWeZroDbySUCd6PE4svtKQPLnCmDjDExAeQt/hN4lTUCQPCxstkZOQH4AfBt8b09AWdtoXh9QUEAcPADEhexQQGoz7NT2jFFA5eDtFXcxUkDPSxbuCdpSQN4w4pqxhlNAW6KDJG83VEAgiGJSQuxUQKk43Z8ppVVAbYhSMSJiVkCHy37JJyNXQJZcNb806FdAy0uA80GxWEBW4S/IRn5ZQMaf4xY5T1pAz2mWKA0kW0A0YbettfxbQMT52LYj2VxAH5z/rUa5XUDVCJlQDJ1eQC55JapghF9Ax5/NB5c3YECJscaNrq5gQKyxjlVqJ2FAhP3f7byhYUAaKu4EmB1iQC9dJmjsmmJAiLBjBKoZY0CbrZrmv5ljQMKt/jwcG2RAcKSjWKydZEBCj56vXCFlQH15pt8YpmVA6643scsrZkAMZTobX7JmQJPJLUe8OWdAoAnYlcvBZ0B3h3ukdEpoQG0UkVKe02hAAaIGyC5daUAreQF8C+dpQMihIjwZcWpA/LtLNDz7akDlJ+L2V4VrQNTtjYVPD2xAenNxWgWZbEA2odZxWyJtQL20TVQzq21AlZg5IW4zbkAjM8WZ7LpuQFi+PCyPQW9AJ9nF/zXHb0DAUjiA4CVwQMD2zfWHZ3BA2vhSLoGocEBYmPHsu+hwQAAV6vAnKHFAdWlJ/LRmcUALGLjaUqRxQEQjXWjx4HFA/i3RmIAcckBspR1+8FZyQI2/w08xkHJAMAXHcTPIckB7Dbd75/5yQGEEtD8+NHNA/Ypp0Shoc0A6e/uMmJpzQGoV4B1/y3NAjx+jhc76c0BZg40ieSh0QCMALbZxVHRA+pK3a6t+dECmRkbeGad0QMkx4x6xzXRAfYBmumXydEBfgh6/LBV1QD7UPsL7NXVAfd8S5chUdUAZDvDZinF1QLk75Og4jHVAphcd9MqkdUANWwV8Obt1QObnFKN9z3VAOhpRMZHhdUCgy3qXbvF1QHvC5/EQ/3VAvYEFC3QKdkDXqoNdlBN2QOBiJBZvGnZA1WsxFQIfdkCP5JTvSyF2QI/klO9LIXZA1WsxFQIfdkDgYiQWbxp2QNeqg12UE3ZAvYEFC3QKdkB7wufxEP91QKDLepdu8XVAOhpRMZHhdUDm5xSjfc91QA1bBXw5u3VAphcd9MqkdUC5O+ToOIx1QBkO8NmKcXVAfd8S5chUdUA+1D7C+zV1QFyCHr8sFXVAfYBmumXydEDJMeMesc10QKZGRt4Zp3RA+pK3a6t+dEAjAC22cVR0QFmDjSJ5KHRAjx+jhc76c0BqFeAdf8tzQDp7+4yYmnNA+4pp0Shoc0BhBLQ/PjRzQHsNt3vn/nJAMAXHcTPIckCNv8NPMZByQGmlHX7wVnJA/i3RmIAcckBEI11o8eBxQAsYuNpSpHFAdWlJ/LRmcUAAFerwJyhxQFiY8ey76HBA2vhSLoGocEDA9s31h2dwQMBSOIDgJXBAJ9nF/zXHb0Bfvjwsj0FvQCMzxZnsum5AlZg5IW4zbkC9tE1UM6ttQDah1nFbIm1AenNxWgWZbEDU7Y2FTw9sQOUn4vZXhWtA/LtLNDz7akDBoSI8GXFqQCt5AXwL52lAAaIGyC5daUBtFJFSntNoQHeHe6R0SmhAoAnYlcvBZ0CTyS1HvDlnQAxlOhtfsmZA6643scsrZkB9eabfGKZlQEKPnq9cIWVAcKSjWKydZEDCrf48HBtkQJutmua/mWNAiLBjBKoZY0AvXSZo7JpiQBUq7gSYHWJAhP3f7byhYUCssY5VaidhQImxxo2urmBAx5/NB5c3YEAkeSWqYIRfQNUImVAMnV5AH5z/rUa5XUDE+di2I9lcQDRht621/FtAyWmWKA0kW0DGn+MWOU9aQFbhL8hGfllAy0uA80GxWECWXDW/NOhXQIfLfsknI1dAbYhSMSJiVkCpON2fKaVVQCCIYlJC7FRAW6KDJG83VEDeMOKasYZTQM9LFu4J2lJA5eDtFXcxUkBqM+zU9oxRQBw8AMSF7FBAVdtoXh9QUEB+AHwbfG9PQJA8LGy2Rk5AeQt/hN4lTUDy5wpg4wxMQJ3o8Tiy+0pAUeZroDbySUDAYDqXWvBIQDcZ+KUG9kdAlSWpVwsHSkCEWKIX9hZLQFLMgzgPL0xADKnLN3BPTUD0kmD6MHhOQBdRKbJnqU9AkIS+YZRxUEAFpz1VwxJRQKz1LfBIuFFAFH1jYCxiUkCJNaO3cxBTQAdicd4jw1NAkK7+hkB6VEBlcz0gzDVVQD6+KMnH9VVA5PZGRDO6VkD0I3LrDINXQAf876NRUFhAVhDk0vwhWUA8dyZSCPhZQHBuiWVs0lpAo3WYsB+xW0AoY9ssF5RcQAHspyBGe11AJgeMFp5mXkDfeVvVDlZfQDNbdSzDJGBAKoTAZXigYEDQ6QVAHB5hQBs0jvainWFA5tBc1P8eYkCzGocyJaJiQNEX/nYEJ2NAMN7OE46tY0Ddbt2GsTVkQAieHVpdv2RAu1hNJH9KZUBNUjOKA9dlQI3WZEDWZGZAUy6VDeLzZkCsrXDNEIRnQCgsBXRLFWhAq0m5EXqnaECtg9PXgzppQAi7kR1PzmlAoWTRZcFiakAWN0hlv/dqQCO8TAktjWtAS8Atf+0ibECPLBc847hsQEVmggXwTm1AyeEv+vTkbUDaIaeb0npuQBDvOdhoEG9ASiCHFZelb0Afb7wdHh1wQN3u3F8bZ3BAmU/OWLKwcECmqzfj0flwQFZeG7NoQnFAKchkXGWKcUAgK6NZttFxQNUp7hJKGHJA4Efw5A5eckDonhMo86JyQI/TzDfl5nJAZDAAetMpc0CiqXxmrGtzQGZtiI5erHNAg4d6pNjrc0CbBl2DCSp0QBb7kjbgZnRA1JV9AUyidEDMnhtnPNx0QIpwnjGhFHVAaJ/veWpLdUBmcCKviIB1QJhEzJ3ss3VAGCQ/d4fldUAjnKHYShV2QBgy39EoQ3ZAMb5s7BNvdkDHFtwx/5h2QFCOOjLewHZA5OM1CqXmdkByZwNpSAp3QDE4BZa9K3dAP6wpdvpKd0AxHQGR9Wd3QL+EhhWmgndAEIiX3gObd0C8xRh3B7F3QDd0wx2qxHdAQZmZyOXVd0DlYf4nteR3QE5icKkT8XdAm8fjef36d0AFyrqHbwJ4QH7zWoRnB3hAKBZe5eMJeEAoFl7l4wl4QH7zWoRnB3hABcq6h28CeECbx+N5/fp3QE5icKkT8XdA5WH+J7Xkd0BBmZnI5dV3QDd0wx2qxHdAvMUYdwexd0AQiJfeA5t3QL+EhhWmgndAMR0BkfVnd0A/rCl2+kp3QDE4BZa9K3dAcmcDaUgKd0Dg4zUKpeZ2QFCOOjLewHZAxxbcMf+YdkAxvmzsE292QBgy39EoQ3ZAI5yh2EoVdkAYJD93h+V1QJhEzJ3ss3VAZnAir4iAdUBon+95akt1QIZwnjGhFHVAzJ4bZzzcdEDUlX0BTKJ0QBb7kjbgZnRAmwZdgwkqdECBh3qk2OtzQGZtiI5erHNAoql8Zqxrc0BkMAB60ylzQI/TzDfl5nJA5p4TKPOickDjR/DkDl5yQNUp7hJKGHJAICujWbbRcUApyGRcZYpxQFZeG7NoQnFAqas349H5cECZT85YsrBwQN3u3F8bZ3BAH2+8HR4dcEBKIIcVl6VvQBDvOdhoEG9A2iGnm9J6bkDJ4S/69ORtQEVmggXwTm1AjywXPOO4bEBLwC1/7SJsQCO8TAktjWtAFjdIZb/3akChZNFlwWJqQAG7kR1PzmlArYPT14M6aUCrSbkReqdoQCgsBXRLFWhArK1wzRCEZ0BTLpUN4vNmQInWZEDWZGZATVIzigPXZUC7WE0kf0plQAieHVpdv2RA3W7dhrE1ZEAr3s4Tjq1jQNEX/nYEJ2NAsxqHMiWiYkDm0FzU/x5iQBs0jvainWFAzekFQBweYUAqhMBleKBgQDNbdSzDJGBA33lb1Q5WX0AmB4wWnmZeQPnrpyBGe11AKGPbLBeUXECjdZiwH7FbQHBuiWVs0lpAPHcmUgj4WUBPEOTS/CFZQAf876NRUFhA9CNy6wyDV0Dk9kZEM7pWQD6+KMnH9VVAZXM9IMw1VUCQrv6GQHpUQAdicd4jw1NAiTWjt3MQU0AUfWNgLGJSQKj1LfBIuFFABac9VcMSUUCQhL5hlHFQQBdRKbJnqU9A9JJg+jB4TkAMqcs3cE9NQFLMgzgPL0xAhFiiF/YWS0CVJalXCwdKQPkzgD8cP0xAxv9/vzVmTUBuy3YvMJZOQCWCOTknz09AReSXZZqIUECEo9V9OC5RQAoWCvZ42FFAd7n91WWHUkC6GBIOCDtTQJfyymhn81NAdzBlfIqwVECEToWcdnJVQD0iB8wvOVZAaTL5rrgEV0DREs58EtVXQPJwzvI8qlhA6q/WRjaEWUDHHmsa+2JaQLn2LW6GRltAcWrCldEuXEBrIygs1BtdQJOSmgiEDV5AcHv/M9UDX0DbF/Deuf5fQJMPNCwRf2BAoO+Sgv4AYUB1N+MrG4VhQINn1GRcC2JAv0lRaraTYkB3M8h2HB5jQFA05r+AqmNArgTKdNQ4ZEAsUbO8B8lkQH7IMrYJW2VA7RHfdsjuZUBLj5ILMYRmQDmENXkvG2dAz+4Xvq6zZ0DvCt7TmE1oQBEiArLW6GhAX+3tUFCFaUDxb62t7CJqQMHKPM6RwWpAXCNyxiRha0AFTIS9iQFsQM9rLvSjomxAmXVwy1VEbUD0xuvLgOZtQMDT2q0FiW5A5UmiYcQrb0AQofkYnM5vQF1HVKi1OHBA7y5r7QeKcEDd1vN0M9twQDhR840mLHFAt4s4Q898cUCW9pNhG81xQFoKTX74HHJA/cPS/VNsckBD9qMaG7tyQGYYbOw6CXNAtARRb6BWc0D35m2LOKNzQGxpdxzw7nNAEQGF+bM5dEAQDvv8cIN0QNBckQwUzHRAB25xIYoTdUBKymdQwFl1QJ+GI9KjnnVA/wN/CyLidUCo3MyVKCR2QC3eI0elZHZA7t+kOoajdkCiObXYueB2QCqXKN8uHHdAMuNUadRVd0AIBAv4mY13QJ0rb3lvw3dAJ4arUEX3d0ASIXhdDCl4QHz3cgO2WHhAeyhDMTSGeECad4JnebF4QLJXaL942nhAs+Qx8SUBeUBfWUJadSV5QPS59wJcR3lAPZ0vpM9meUAwMXisxoN5QJ3P6UQ4nnlA/7GlVRy2eUC0kfaJa8t5QANCEFQf3nlAaZVr8DHueUA3Jbxonvt5QJXafZZgBnpAjWIYJXUOekD/AZeT2RN6QCWM8zWMFnpAJYzzNYwWekD/AZeT2RN6QI1iGCV1DnpAldp9lmAGekA3Jbxonvt5QGmVa/Ax7nlAA0IQVB/eeUC0kfaJa8t5QP+xpVUctnlAnc/pRDieeUAwMXisxoN5QD2dL6TPZnlA9Ln3AlxHeUBfWUJadSV5QLPkMfElAXlArldov3jaeECad4JnebF4QHsoQzE0hnhAfPdyA7ZYeEASIXhdDCl4QCeGq1BF93dAnStveW/Dd0AIBAv4mY13QDLjVGnUVXdAKpco3y4cd0CgObXYueB2QO7fpDqGo3ZALd4jR6VkdkCo3MyVKCR2QP8Dfwsi4nVAn4Yj0qOedUBKymdQwFl1QAducSGKE3VA0FyRDBTMdEAQDvv8cIN0QA0BhfmzOXRAb2l3HPDuc0D35m2LOKNzQLQEUW+gVnNAZhhs7DoJc0BD9qMaG7tyQP3D0v1TbHJAWgpNfvgcckCW9pNhG81xQLeLOEPPfHFAOFHzjSYscUDh1vN0M9twQO8ua+0HinBAXUdUqLU4cEAQofkYnM5vQOVJomHEK29AwNParQWJbkD0xuvLgOZtQJl1cMtVRG1Az2su9KOibEAFTIS9iQFsQFwjcsYkYWtAwco8zpHBakDxb62t7CJqQF/t7VBQhWlAESICstboaEDvCt7TmE1oQM/uF76us2dAOYQ1eS8bZ0BLj5ILMYRmQO0R33bI7mVAfsgytglbZUAsUbO8B8lkQK4EynTUOGRAUDTmv4CqY0B3M8h2HB5jQL9JUWq2k2JAg2fUZFwLYkB1N+MrG4VhQKDvkoL+AGFAkw80LBF/YEDbF/Deuf5fQHB7/zPVA19Ak5KaCIQNXkBrIygs1BtdQHFqwpXRLlxAsvYtboZGW0DNHmsa+2JaQOqv1kY2hFlA8nDO8jyqWEDREs58EtVXQGky+a64BFdAQiIHzC85VkCEToWcdnJVQHcwZXyKsFRAl/LKaGfzU0C6GBIOCDtTQHy5/dVlh1JAChYK9njYUUCEo9V9OC5RQEXkl2WaiFBAG4I5OSfPT0Buy3YvMJZOQMb/f781Zk1A+TOAPxw/TEDDTXoOeqBOQCPhrMhx4E9AAQeg/gSVUEDNEmlVsD5RQN0Km/dI7VFAiTcw9NugUkBhBJNKdVlTQCAZ79ofF1RAaZV9VuXZVEA8LdYvzqFVQJk/T4vhblZAQVh3LyVBV0DK37J1nRhYQPQICTtN9VhA/U4r0TXXWUCrGMPvVr5aQHRIEaauqltAbbPrTDmcXECNnSR58ZJdQPd3aO7Pjl5AVzOeksuPX0CuQOuw7EpgQFwxazF20GBAXqokznpYYUCUrlMF8uJhQPCJbUvSb2JA2s/ZBhH/YkDVMheMopBjQCb0URp6JGRARoRx2Im6ZEDgv6LSwlJlQHQDZPgU7WVAGBcYG2+JZkBDtiTtvidnQHwzoQHxx2dAp26ZzPBpaEBdBemjqA1pQIlQssABs2lA32h0QeRZakBzDMMsNwJrQKrconTgq2tAFwOM+sRWbEA23xSUyAJtQCDuRRDOr21AM6mXPbddbkDMn5rwZAxvQKSWSQu3u29A/XuCQsY1cECaMJu54Y1wQNNLTYkc5nBA3dWX6GQ+cUBcRmKsqJZxQKllE03V7nFAxGF17NdGckBh8eRbnZ5yQIUdySIS9nJAUwlRhSJNc0B6z3SLuqNzQAZONgjG+XNA+nseoTBPdEB6qPPV5aN0QLXJpAjR93RAXMplhd1KdUCBj/iK9px1QJY+HlMH7nVAyhssG/s9dkAyLb8svYx2QPGlieY42nZAvfc0xVkmd0B3R1NsC3F3QPnjWq85undAr0SmmtABeECYAHN8vEd4QBcd2u3pi3hAnAe820XOeECIhZqPvQ55QF/iWrg+TXlApqXqcreJeUCfIMFSFsR5QKEuOGpK/HlACpO2UkMyekA+dKY08WV6QKmMMs9El3pA/cjEfy/GekBDLUFJo/J6QB0C+NqSHHtAH3dKl/FDe0D2Fv2Zs2h7QMWeM77NintAwwESpDWqe0DRnv614cZ7QIPsgS3J4HtAGiTAF+T3e0AmuYlZKwx8QIm1/7KYHXxAtFzJwiYsfECJx9gI0Td8QKZ6vOiTQHxA4Ep8q2xGfECbNwCBWUl8QJs3AIFZSXxA4Ep8q2xGfECmerzok0B8QInH2AjRN3xAtFzJwiYsfECJtf+ymB18QCa5iVkrDHxAGiTAF+T3e0CD7IEtyeB7QNGe/rXhxntAwwESpDWqe0DFnjO+zYp7QPYW/ZmzaHtAH3dKl/FDe0AdAvjakhx7QEAtQUmj8npA/cjEfy/GekCpjDLPRJd6QD50pjTxZXpACpO2UkMyekChLjhqSvx5QJ8gwVIWxHlApqXqcreJeUBf4lq4Pk15QIiFmo+9DnlAmQe820XOeEAXHdrt6Yt4QJgAc3y8R3hAr0SmmtABeED541qvObp3QHdHU2wLcXdAvfc0xVkmd0DxpYnmONp2QDItvyy9jHZAyhssG/s9dkCTPh5TB+51QISP+Ir2nHVAXMplhd1KdUC1yaQI0fd0QHqo89Xlo3RA+nseoTBPdEAGTjYIxvlzQHrPdIu6o3NAUwlRhSJNc0CEHckiEvZyQF7x5FudnnJAxGF17NdGckCpZRNN1e5xQFxGYqyolnFA3dWX6GQ+cUDTS02JHOZwQJowm7nhjXBA/XuCQsY1cECklkkLt7tvQMyfmvBkDG9AM6mXPbddbkAg7kUQzq9tQDbfFJTIAm1AFwOM+sRWbECq3KJ04KtrQHMMwyw3AmtA32h0QeRZakCJULLAAbNpQF0F6aOoDWlAp26ZzPBpaEB8M6EB8cdnQEO2JO2+J2dAGBcYG2+JZkB0A2T4FO1lQOC/otLCUmVARoRx2Im6ZEAm9FEaeiRkQNUyF4yikGNA2s/ZBhH/YkDwiW1L0m9iQJSuUwXy4mFAXqokznpYYUBcMWsxdtBgQK5A67DsSmBAVzOeksuPX0D3d2juz45eQIadJHnxkl1AdbPrTDmcXEB0SBGmrqpbQKsYw+9WvlpA/U4r0TXXWUD0CAk7TfVYQNDfsnWdGFhAQVh3LyVBV0CZP0+L4W5WQDwt1i/OoVVAaZV9VuXZVEAkGe/aHxdUQGEEk0p1WVNAiTcw9NugUkDdCpv3SO1RQMkSaVWwPlFAAQeg/gSVUEAj4azIceBPQMNNeg56oE5AwtMuJ7yWUECM0FgFC0RRQIcrLsGQ9lFACrG/mV2uUkCY/bLJgGtTQFG9bXYILlRAg8snnwH2VEAd6u0LeMNVQFI0nzx2llZA2dnvVwVvV0C+E3waLU1YQEmi9sXzMFlAinx+EF4aWkBurCcUbwlbQHycwz4o/ltAuWH1QYn4XECQxZ4DkPhdQHYIs444/l5AKD8+gr4EYEA2IzHHKo1gQK27HShcGGFAypCerUymYUDeRshQ9TZiQB6IT/VNymJAIlsQZE1gY0Dxdv1F6fhjQOEOfh8WlGRAH3NATMcxZUAav4f77tFlQBmm+ix+dGZAAT35rWQZZ0BAa38XkcBnQKdumczwaWhACpxv+W8VaUAzPO6S+cJpQO4VDld3cmpApd/BzdEja0AweIxK8NZrQPVkw+64i2xAyqyArBBCbUD0ukZK2/ltQAqFWGf7sm5AabjHgFJtb0DCHJ17YBRwQBvhswqTcnBAL/SnCzDRcECsKRQZJjBxQA8ugU5jj3FAqWUTTdXucUAV7ZJAaU5yQDmHzOQLrnJAg/xJi6kNc0DjJ2AhLm1zQHGlkDaFzHNAbc88A5ordEDNbqdvV4p0QEI+Qhuo6HRAORlEZHZGdUBEbIRvrKN1QBI6mDA0AHZAXscscvdbdkD0wZve37Z2QNN6tAjXEHdAR5K1dMZpd0A3PnKhl8F3QNEfnhE0GHhA+206VYVteEB+DR8TdcF4QLsHmhLtE3lAqawfRddkeUBHjAXQHbR5QIlYQharAXpAuakswmlNekCpjDLPRJd6QN60g5Mn33pATSSoyf0ke0D2Fv2Zs2h7QMMBEqQ1qntAwXvfB3Hpe0AD9NFuUyZ8QBkoohTLYHxAXmX1z8aYfEDiur8aNs58QEViYhoJAX1ArMuApzAxfUBU44ZVnl59QBFX23lEiX1AYdW4MhaxfUAIealtB9Z9QH7Qn+0M+H1A6DGpUBwXfkCzUDUVLDN+QDdT754zTH5AIvIkOytifkAte7gkDHV+QHvimofQhH5ArGLLg3ORfkD6gtov8Zp+QH2z7ppGoX5AnQpJznGkfkCdCknOcaR+QH2z7ppGoX5A+oLaL/GafkCsYsuDc5F+QHvimofQhH5ALXu4JAx1fkAi8iQ7K2J+QDdT754zTH5As1A1FSwzfkDoMalQHBd+QH7Qn+0M+H1ACHmpbQfWfUBh1bgyFrF9QBFX23lEiX1AVOOGVZ5efUCny4CnMDF9QEViYhoJAX1A4rq/GjbOfEBeZfXPxph8QBkoohTLYHxAA/TRblMmfEDBe98Hcel7QMMBEqQ1qntA9hb9mbNoe0BNJKjJ/SR7QNu0g5Mn33pAqYwyz0SXekC5qSzCaU16QIlYQharAXpAR4wF0B20eUCprB9F12R5QLsHmhLtE3lAfg0fE3XBeED7bTpVhW14QNEfnhE0GHhAND5yoZfBd0BKkrV0xml3QNN6tAjXEHdA9MGb3t+2dkBexyxy91t2QBI6mDA0AHZARGyEb6yjdUA5GURkdkZ1QEI+Qhuo6HRAzG6nb1eKdEBqzzwDmit0QHGlkDaFzHNA4ydgIS5tc0CD/EmLqQ1zQDmHzOQLrnJAFe2SQGlOckCpZRNN1e5xQA8ugU5jj3FArCkUGSYwcUAv9KcLMNFwQBvhswqTcnBAwhyde2AUcEBpuMeAUm1vQAqFWGf7sm5A9LpGStv5bUDKrICsEEJtQPVkw+64i2xAMHiMSvDWa0Cl38HN0SNrQO4VDld3cmpAMzzukvnCaUAKnG/5bxVpQKdumczwaWhAQGt/F5HAZ0ABPfmtZBlnQBmm+ix+dGZAGr+H++7RZUAfc0BMxzFlQOEOfh8WlGRA8Xb9Ren4Y0AiWxBkTWBjQB6IT/VNymJA3kbIUPU2YkDKkJ6tTKZhQK27HShcGGFANiMxxyqNYEAkPz6CvgRgQH0Is444/l5AkMWeA5D4XUC5YfVBifhcQHycwz4o/ltAbqwnFG8JW0CSfH4QXhpaQEmi9sXzMFlAvhN8Gi1NWEDZ2e9XBW9XQFI0nzx2llZAI+rtC3jDVUCDyyefAfZUQFG9bXYILlRAmP2yyYBrU0AGsb+ZXa5SQIcrLsGQ9lFAjNBYBQtEUUDC0y4nvJZQQAWclFs+9FFAHtOfpNCvUkBzD4ynB3FTQP03tfn0N1RACUWdFqkEVUCd4rRNM9dVQAriCLChr1ZARv7e/QCOV0Am7UyUXHJYQN0n1Vq+XFlAR0MVsS5NWkBAFZJctENbQIxFrnZUQFxAUkHYWhJDXUAP2fyU70teQG4bTNDrWl9AMB8vYwI4YEDVT2MXm8VgQJyJkdc8VmFAIOzaZePpYUAGU0xsiYBiQDuny3UoGmNABjpg57i2Y0DFY935MVZkQOuT9rOJ+GRAmu3D5LSdZUBsc74ep0VmQGylOrNS8GZAnk1orqidZ0D1Ct7TmE1oQLT1tpsRAGlAMH5IMAC1aUBQZHZsUGxqQPZdqtrsJWtASLN0tL7ha0DIwNrirZ9sQMbzV/+gX21A0XGVVX0hbkAVM9zlJuVuQB3oRGiAqm9AYkdUqLU4cEDqD6rp45xwQLKfQHW6AXFAyqpKLihncUCW9pNhG81xQDFUaMmBM3JALEbekUiackAU6IRdXAFzQE5jdEqpaHNAbfC/9xrQc0CXF0iLnDd0QJGU67cYn3RApvUUxHkGdUA3vqKQqW11QMOIJ6CR1HVAlVZ/Hhs7dkBk77boLqF2QB/oQZW1BndAMZ57fJdrd0AZLW/BvM93QN8d4loNM3hAskydHHGVeEDqP+/Az/Z4QJbtYvIQV3lABLKlVRy2eUADApeT2RN6QCcwfGMwcHpAOmxSlQjLekCL+DgcSiR7QKpp7Rjde3tAB6JT5KnRe0CFHQMamSV8QOgH06KTd3xANIVev4LHfECFhHoSUBV9QNJslqvlYH1APu8AES6qfUAvTApKFPF9QEBg/eiDNX5ApdroFGl3fkBzETKTsLZ+QJEA69BH835Anx3l6xwtf0DBznq7HmR/QMh6Cdk8mH9AQFcWqGfJf0CvTBhekPd/QFDA8IRUEYBAyKlRTVIlgEDD8ENzuzeAQMAtbliKSIBAwuzj17lXgEBESsVIRWWAQJ/koIAocYBASG2W1V97gEDpUTgg6IOAQPIiK72+ioBAh4yBjuGPgEDt5tP8TpOAQFqUEvgFlYBAWpQS+AWVgEDt5tP8TpOAQIeMgY7hj4BA8iIrvb6KgEDpUTgg6IOAQEhtltVfe4BAn+SggChxgEBESsVIRWWAQMLs49e5V4BAwC1uWIpIgEDD8ENzuzeAQMipUU1SJYBAUMDwhFQRgECvTBhekPd/QEBXFqhnyX9AxHoJ2TyYf0DBznq7HmR/QJ8d5escLX9AkQDr0EfzfkBzETKTsLZ+QKXa6BRpd35AQGD96IM1fkAvTApKFPF9QD7vABEuqn1A0myWq+VgfUCChHoSUBV9QDSFXr+Cx3xA6AfTopN3fECFHQMamSV8QAeiU+Sp0XtAqmntGN17e0CL+DgcSiR7QDpsUpUIy3pAJzB8YzBwekADApeT2RN6QAGypVUctnlAme1i8hBXeUDqP+/Az/Z4QLJMnRxxlXhA3x3iWg0zeEAZLW/BvM93QDGee3yXa3dAH+hBlbUGd0Bk77boLqF2QJJWfx4bO3ZAwYgnoJHUdUA3vqKQqW11QKb1FMR5BnVAkZTrtxifdECXF0iLnDd0QG3wv/ca0HNATWN0Sqloc0AU6IRdXAFzQCxG3pFImnJAMVRoyYEzckCW9pNhG81xQMaqSi4oZ3FAsp9AdboBcUDqD6rp45xwQGJHVKi1OHBAHehEaICqb0AVM9zlJuVuQNFxlVV9IW5AxvNX/6BfbUDIwNrirZ9sQEizdLS+4WtA9l2q2uwla0BQZHZsUGxqQDB+SDAAtWlAtPW2mxEAaUD1Ct7TmE1oQJ5NaK6onWdAbKU6s1LwZkBsc74ep0VmQJrtw+S0nWVA65P2s4n4ZEDFY935MVZkQAY6YOe4tmNAO6fLdSgaY0AGU0xsiYBiQCDs2mXj6WFAnImR1zxWYUDYT2MXm8VgQDAfL2MCOGBAbhtM0OtaX0AP2fyU70teQE1B2FoSQ11AlEWudlRAXEBAFZJctENbQEdDFbEuTVpA3SfVWr5cWUAm7UyUXHJYQEv+3v0AjldACuIIsKGvVkCd4rRNM9dVQAlFnRapBFVA9ze1+fQ3VEBvD4ynB3FTQB7Tn6TQr1JABZyUWz70UUDUeBww/2lTQCYbci7SNFRAHUfIYb8FVUB8fYTN2dxVQN72RkQzulZAJRA4VNydV0CxTzgz5IdYQMFi/qpYeFlARfAuBUZvWkCzmnr3tmxbQMz+zo+0cFxAAeynIEZ7XUBLe44tcYxeQL0J1Fc5pF9AbbnLJVBhYED9m5HW0vNgQI3CWYOjiWFAtqBZ278iYkCVxD9vJL9iQCGK4KjMXmNAIJQ1w7IBZEDq37fCz6dkQGtKHG4bUWVAUlZ6R4z9ZUB59uSFF61mQPYLfQ+xX2dAKCwFdEsVaEA/If7n181oQM5tU0BGiWlA0eue7oRHakCOZgr+gAhrQMbP1RAmzGtAsGiIXl6SbECQ6dKyElttQPNbKG0qJm5AY/8SgYvzbkBjK0p3GsNvQKzbxjddSnBARX+lkSa0cEBPj4d02R5xQCnIZFxlinFAKdtwGLn2cUD/uRDOwmNyQGknO/xv0XJA+gRFf60/c0ByiRmVZ65zQC493uGJHXRAskoCdf+MdEAaYLjOsvx0QKgL2uWNbHVACiszLnrcdUBQsDOfYEx2QDOsBbspvHZAMTgFlr0rd0AQiJfeA5t3QCgWXuXjCXhA8YvCpUR4eEAdt9fODOZ4QGiLi8wiU3lAaOQl0Wy/eUA/bg/f0Cp6QHfT29I0lXpAJgiSbX7+ekAHRy1fk2Z7QAcWUVFZzXtAKmsq8rUyfECc03f/jpZ8QARKslHK+HxAyTpQ501ZfUBGChzw/7d9QDZLl9jGFH5AmrNjVYlvfkBWw6puLsh+QGH6fIudHn9AP2whfb5yf0BUdU6KecR/QOYoIr3bCYBAEizhzzAwgECt0OfxMFWAQGn7J2jReIBA//guzQebgEAbqjEWyruAQLVe9JcO24BANQeLC8z4gEDHd+6S+RSBQFuTY72OL4FARU+xi4NIgUAMnyJ00F+BQBB5UWZudYFANEi4zlaJgUD6RAeag5uBQGpYOzjvq4FAJVZ0n5S6gUARh4hOb8eBQJmsU0970oFAk9S/OLXbgUBGh4YwGuOBQDQMqeyn6IFALbaetFzsgUB0XDhiN+6BQHRcOGI37oFALbaetFzsgUA0DKnsp+iBQEaHhjAa44FAk9S/OLXbgUCZrFNPe9KBQBGHiE5vx4FAJVZ0n5S6gUBqWDs476uBQPpEB5qDm4FANEi4zlaJgUAQeVFmbnWBQAyfInTQX4FARU+xi4NIgUBbk2O9ji+BQMV37pL5FIFANQeLC8z4gEC1XvSXDtuAQBuqMRbKu4BA//guzQebgEBp+ydo0XiAQK3Q5/EwVYBAEizhzzAwgEDmKCK92wmAQFR1Top5xH9APWwhfb5yf0Bh+nyLnR5/QFbDqm4uyH5AmrNjVYlvfkA2S5fYxhR+QEYKHPD/t31AyTpQ501ZfUAESrJRyvh8QJzTd/+OlnxAKmsq8rUyfEAEFlFRWc17QAxHLV+TZntAJgiSbX7+ekB309vSNJV6QD9uD9/QKnpAaOQl0Wy/eUBoi4vMIlN5QB23184M5nhA8YvCpUR4eEAkFl7l4wl4QA6Il94Dm3dAMTgFlr0rd0AzrAW7Kbx2QFCwM59gTHZACiszLnrcdUCoC9rljWx1QBZguM6y/HRAskoCdf+MdEAuPd7hiR10QHKJGZVnrnNA+gRFf60/c0BmJzv8b9FyQP+5EM7CY3JAKdtwGLn2cUApyGRcZYpxQE+Ph3TZHnFARX+lkSa0cECs28Y3XUpwQGMrSncaw29AY/8SgYvzbkDzWyhtKiZuQJDp0rISW21AsGiIXl6SbEDGz9UQJsxrQI5mCv6ACGtA0eue7oRHakDObVNARolpQD8h/ufXzWhAKCwFdEsVaED2C30PsV9nQHn25IUXrWZAUlZ6R4z9ZUBrShxuG1FlQOrft8LPp2RAIJQ1w7IBZEAhiuCozF5jQJLEP28kv2JAu6BZ278iYkCNwlmDo4lhQP2bkdbS82BAbbnLJVBhYEC9CdRXOaRfQFN7ji1xjF5AAeynIEZ7XUDM/s6PtHBcQLOaeve2bFtARfAuBUZvWkDGYv6qWHhZQLFPODPkh1hAJRA4VNydV0De9kZEM7pWQHd9hM3Z3FVAHUfIYb8FVUAmG3Iu0jRUQNR4HDD/aVNATMiiZUL5VEA+VgSaYNRVQBONM4MWtlZALBibq3ieV0CWjGRUmo1YQGy9MGCNg1lAu0ywPWKAWkAhwSjSJ4RbQPjy8mPrjlxAwiYAhbigXUCbq3P9mLleQMBJX7aU2V9Aip9Y0liAYEBmdzHaeRdhQAjk+1kusmFAHB8uIHZQYkB8e5rYT/JiQAJK1wK5l2NAQ1nv6K1AZEBrcWOWKe1kQLw7hc8lnWVAiQw0CZtQZkCuBgRhgAdnQJkJ2JXLwWdAP8z2AHF/aECkcqOPY0BpQCrOQb2UBGpANlQOjvTLakCbqXGKcZZrQApt97r4Y2xAZ63vpHU0bUCWNMJH0gduQO2B+hr33W5ACfsSDcu2b0CAvoLBGUlwQGGJUywKuHBAABXq8CcocUAMFjl2Y5lxQK9ypWGsC3JAxdHimPF+ckCStUBEIfNyQPuKadEoaHNADsuU9vTdc0AgAC22cVR0QJsv6mKKy3RAmNdgpClDdUAKWwV8Obt1QERho0qjM3ZA+lVI1k+sdkCw3Z9QJyV3QDW5wF0RnndAYDdoG/UWeEA5+qEouY94QOh42a1DCHlA0E1SZXqAeUC+BQSkQvh5QD/M1WKBb3pAevk1SBvmekDNLwmy9Ft7QKBj7L/x0HtAEtbEXfZEfEA9vJhO5rd8QCMBqzelKX1ApUfUqxaafUA2DRM3Hgl+QCWNTGqfdn5AJMg3533ifkBa22tsnUx/QLufiuHhtH9ASi7AsZcNgECTl2gotT+AQHhT9qq7cIBAbvy/vJ2ggEAmil8UTs+AQAZqzqG//IBAXT11lOUogUCyUiths1OBQLPwIcgcfYFAq4232hWlgUDfFS8Bk8uBQCpuRwCJ8IFAQG6v/uwTgkCIn1KKtDWCQAIie53VVYJAmDDFo0Z0gkD62OB+/pCCQFKZHov0q4JA2bbDoyDFgkASRCMne9yCQAf0ePr88YJADQGDjZ8Fg0DGmNjdXBeDQIdt+nkvJ4NA4jwbhBI1g0CBTZ60AUGDQC8aSlz5SoNAjZUtZvZSg0AOqTZZ9liDQP/JeFn3XINAybgiKfheg0DJuCIp+F6DQP/JeFn3XINADqk2WfZYg0CNlS1m9lKDQC8aSlz5SoNAgU2etAFBg0DiPBuEEjWDQIdt+nkvJ4NAxpjY3VwXg0ANAYONnwWDQAf0ePr88YJAEkQjJ3vcgkDZtsOjIMWCQFKZHov0q4JA+tjgfv6QgkCWMMWjRnSCQAIie53VVYJAiJ9SirQ1gkBAbq/+7BOCQCpuRwCJ8IFA3xUvAZPLgUCrjbfaFaWBQLPwIcgcfYFAslIrYbNTgUBdPXWU5SiBQARqzqG//IBAJopfFE7PgEBu/L+8naCAQHhT9qq7cIBAk5doKLU/gEBKLsCxlw2AQLufiuHhtH9AWttrbJ1Mf0AkyDfnfeJ+QCWNTGqfdn5AMQ0TNx4JfkCoR9SrFpp9QCMBqzelKX1APbyYTua3fEAS1sRd9kR8QKBj7L/x0HtAzS8JsvRbe0B6+TVIG+Z6QD/M1WKBb3pAuwUEpEL4eUDNTVJleoB5QOh42a1DCHlAOfqhKLmPeEBgN2gb9RZ4QDW5wF0RnndAsN2fUCcld0D3VUjWT6x2QERho0qjM3ZAClsFfDm7dUCY12CkKUN1QJsv6mKKy3RAHgAttnFUdEAOy5T29N1zQPuKadEoaHNAkrVARCHzckDB0eKY8X5yQK9ypWGsC3JADBY5dmOZcUAAFerwJyhxQGGJUywKuHBAgL6CwRlJcEAJ+xINy7ZvQO2B+hr33W5AljTCR9IHbkBnre+kdTRtQApt97r4Y2xAm6lxinGWa0A2VA6O9MtqQCrOQb2UBGpApHKjj2NAaUA/zPYAcX9oQJkJ2JXLwWdArgYEYYAHZ0CJDDQJm1BmQLw7hc8lnWVAa3FjlintZEBDWe/orUBkQAdK1wK5l2NAfHua2E/yYkAcHy4gdlBiQAjk+1kusmFAYncx2nkXYUCNn1jSWIBgQMBJX7aU2V9Am6tz/Zi5XkDCJgCFuKBdQPjy8mPrjlxAKcEo0ieEW0C7TLA9YoBaQGy9MGCNg1lAloxkVJqNWEAlGJureJ5XQA2NM4MWtlZAPlYEmmDUVUBMyKJlQvlUQKoxwGNTo1ZA9vQ21dSPV0DIhyHoc4NYQFHhL8hGfllAtUywPWKAWkCJc5eW2YlbQLkfZo++mlxAUvb5OyGzXUA/AlfwD9NeQI10eCmX+l9AfsQbu+CUYED7/iuwSzBhQLYE5aqPz2FAShEZya5yYkCDsGMEqhljQBXGTCeBxGNARSSowjJzZECSijojvCVlQCoCrUcZ3GVAlqPX1kSWZkDP4GwWOFRnQOJ1DuLqFWhA2SPVolPbaEDmUVRHZ6RpQMGhIjwZcWpAn23wZFtBa0AZBjUWHhVsQNteew9Q7GxAIalWdt7GbUD+IAfStKRuQP8R1we9hW9AJeYbrO80cEDW+FIugahwQJwSLoOFHXFAQ2LtTu6TcUCvcqVhrAtyQI0u4bevhHJAeA23e+f+ckCYzFMGQnpzQM/O/OGs9nNA0faLzBR0dEB6gGa6ZfJ0QBcO8NmKcXVAm8t6l27xdUDdMrWh+nF2QMejle4X83ZAh6jDwK50d0BXYH6tpvZ3QIMt/6LmeHhAB2NX71T7eEDSTMdH1315QKCMjNBSAHpAWmIlJayCekCsFQZhxwR7QK5TvSiIhntALPODs9EHfECGMTTVhoh8QGUbpAiKCH1ALXheer2HfUDmM7UTAwZ+QGvrJ4Y8g35AnukYV0v/fkBvksrrEHp/QBXqnpVu839Ahk5Jz6I1gEB2U/aqu3CAQM66jY7yqoBArBRcOjjkgEDTLdSEfRyBQLJSK2GzU4FAR/j85cqJgUBlvvFTtb6BQPCuZRxk8oFAn5EJ6MgkgkACInud1VWCQFjwz2d8hYJACrMOva+zgkDDz5JkYuCCQP/nVX2HC4NA4DwbhBI1g0D9yXhZ91yDQAQGukcqg4NA+EqYCKCng0AD/sTKTcqDQIOoQTcp64NAFVGCdigKhECzg1Y1QieEQGyblaltQoRA5QaLlqJbhEBIah9R2XKEQN6tu8MKiIRADDfjcTCbhEDCu4J7RKyEQINT8Z9Bu4RAup+hQCPIhEATHYFj5dKEQPfoA7WE24RAQYLbif7hhECRSFfgUOaEQMW7bWF66IRAxbttYXrohECRSFfgUOaEQEGC24n+4YRA9+gDtYTbhEATHYFj5dKEQLqfoUAjyIRAg1Pxn0G7hEDCu4J7RKyEQAw343Ewm4RA3q27wwqIhEBIah9R2XKEQOUGi5aiW4RAbJuVqW1ChECzg1Y1QieEQBVRgnYoCoRAgqhBNynrg0AD/sTKTcqDQPhKmAigp4NABAa6RyqDg0D9yXhZ91yDQOA8G4QSNYNA/+dVfYcLg0DDz5JkYuCCQAqzDr2vs4JAWPDPZ3yFgkD/IXud1VWCQJ+RCejIJIJA8K5lHGTygUBlvvFTtb6BQEf4/OXKiYFAr1IrYbNTgUDTLdSEfRyBQKwUXDo45IBAzrqNjvKqgEB2U/aqu3CAQIROSc+iNYBAF+qelW7zf0BvksrrEHp/QJ7pGFdL/35Aa+snhjyDfkDmM7UTAwZ+QC14Xnq9h31AZRukCIoIfUCGMTTVhoh8QCzzg7PRB3xAq1O9KIiGe0CsFQZhxwR7QFpiJSWsgnpAoIyM0FIAekDSTMdH1315QARjV+9U+3hAgS3/ouZ4eEBXYH6tpvZ3QIeow8CudHdAx6OV7hfzdkDaMrWh+nF2QJvLepdu8XVAFw7w2YpxdUB6gGa6ZfJ0QNH2i8wUdHRAzM784az2c0CWzFMGQnpzQHgNt3vn/nJAjS7ht6+EckCvcqVhrAtyQENi7U7uk3FAmBIug4UdcUDW+FIugahwQCXmG6zvNHBA/xHXB72Fb0D+IAfStKRuQBmpVnbexm1A2157D1DsbEAZBjUWHhVsQJ9t8GRbQWtAwaEiPBlxakDgUVRHZ6RpQNkj1aJT22hA4nUO4uoVaEDP4GwWOFRnQJaj19ZElmZAIwKtRxncZUCSijojvCVlQEUkqMIyc2RAFcZMJ4HEY0CDsGMEqhljQEoRGcmucmJAtgTlqo/PYUD7/iuwSzBhQH7EG7vglGBAjXR4KZf6X0A3AlfwD9NeQFL2+Tshs11AuR9mj76aXECJc5eW2YlbQLVMsD1igFpAUeEvyEZ+WUDIhyHoc4NYQPb0NtXUj1dAqjHAY1OjVkBjMZWVhGlYQG+quBqPaFlAPvAuBUZvWkCJ1Xg9wX1bQCJj2ywXlFxAgg+bpFyyXUA+/RHFpNheQKPGV3KAA2BAGBh4O8CeYEASf655GD5hQIKXUd6O4WFAGAzqAyiJYkDqa+9h5zRjQH6nqkDP5GNAfjxHreCYZEBnShxuG1FlQJf0Nvd9DWZASJ0vXwXOZkBkolNUrZJnQGRdLRJwW2hAFDh0V0YoaUCRr25cJ/lpQJEg0MkIzmpAzS8csN6ma0AfkZl/m4NsQDXX3QAwZG1A4NP7TYtIbkAu5l3MmjBvQHWvqhMlDnBA1fOzpcGFcEBGyDExF/9wQBrtIOgYenFAJdtwGLn2cUD7C1Ar6XRyQPQf66SZ9HJADD6iJLp1c0AkyrdlOfhzQDBLe0AFfHRAQhPzqwoBdUDI7wbANYd1QNzYLbhxDnZAnkOg9qiWdkB1ZBAIxR93QLtU6aeuqXdAD7IVxU00eEAs7k2Hib94QPMj7lRIS3lAMOJS2W/XeUC09rsL5WN6QJXcszaM8HpAIwj6/0h9e0BJ4e1w/gl8QJnTd/+OlnxAAHFtl9wifUD9Om2kyK59QA89Lhw0On5AtDs/if/EfkAc1TAWC09/QJqMJZk22H9AECzhzzAwgEAR9Ly9tXOAQBRDFqeZtoBAMgeLC8z4gEDymQFgPDqBQKZ3YxXaeoFAI1Z0n5S6gUDdwcF7W/mBQN5HpzgeN4JARhVjfMxzgkC+2jYMVq+CQAuqkNOq6YJAMnA367oig0B2nXagdlqDQPZ+RHzOkINAw8NeSrPFg0A+oVggFvmDQM8HlmToKoRAKVov1RtbhECxHrmOoomEQBIr6xJvtoRA19YiT3ThhEB/0ruipQqFQIJUO+X2MYVA9WVJbFxXhUArNHQRy3qFQMdruTc4nIVAHcXR0Jm7hUBNDzti5tiFQMgx/QkV9IVAScgmgx0NhkCLLf4p+COGQBD74/+dOIZArjrkrghLhkCKvfOMMluGQEBH154WaYZA8HeymrB0hkBbnjzq/H2GQGHbmaz4hIZAm0HXt6GJhkCB3gia9ouGQIHeCJr2i4ZAm0HXt6GJhkBh25ms+ISGQFuePOr8fYZA8HeymrB0hkBAR9eeFmmGQIq984wyW4ZArjrkrghLhkAQ++P/nTiGQIst/in4I4ZAScgmgx0NhkDIMf0JFfSFQE0PO2Lm2IVAHcXR0Jm7hUDHa7k3OJyFQCg0dBHLeoVA9WVJbFxXhUCCVDvl9jGFQH/Su6KlCoVA19YiT3ThhEASK+sSb7aEQLEeuY6iiYRAKVov1RtbhEDPB5Zk6CqEQD6hWCAW+YNAwMNeSrPFg0D2fkR8zpCDQHaddqB2WoNAMnA367oig0ALqpDTqumCQL7aNgxWr4JARhVjfMxzgkDeR6c4HjeCQN3BwXtb+YFAI1Z0n5S6gUCkd2MV2nqBQPOZAWA8OoFAMgeLC8z4gEAUQxanmbaAQBH0vL21c4BAECzhzzAwgECajCWZNth/QBzVMBYLT39AtDs/if/EfkAOPS4cNDp+QPo6baTIrn1AAHFtl9wifUCZ03f/jpZ8QEnh7XD+CXxAIwj6/0h9e0CV3LM2jPB6QLD2uwvlY3pAMOJS2W/XeUDzI+5USEt5QCzuTYeJv3hAD7IVxU00eEC4VOmnrql3QHVkEAjFH3dAnkOg9qiWdkDc2C24cQ52QMXvBsA1h3VAQhPzqwoBdUAwS3tABXx0QCTKt2U5+HNADD6iJLp1c0D0H+ukmfRyQPsLUCvpdHJAJdtwGLn2cUAa7SDoGHpxQEbIMTEX/3BA1fOzpcGFcEB1r6oTJQ5wQC7mXcyaMG9A4NP7TYtIbkA1190AMGRtQB+RmX+bg2xAzS8csN6ma0CRINDJCM5qQJGvblwn+WlAFDh0V0YoaUBkXS0ScFtoQF6iU1StkmdATp0vXwXOZkCX9Db3fQ1mQGdKHG4bUWVAfjxHreCYZEB+p6pAz+RjQO9r72HnNGNAGAzqAyiJYkCCl1HejuFhQBJ/rnkYPmFAGBh4O8CeYECnxldygANgQD79EcWk2F5Agg+bpFyyXUAiY9ssF5RcQILVeD3BfVtAPvAuBUZvWkBvqrgaj2hZQGMxlZWEaVhAR0MVsS5NWkAp6Mcx9l9bQF5QPx8Ce1xA/lGqO2yeXUAfMFOsTMpeQNsX8N65/l9AGuRlN+SdYEDs5eqExUBhQLss1SoJ6GFAv0lRaraTYkALQX9l00NjQINaHRJl+GNADgVSLG+xZEAnS54p9G5lQASTAiz1MGZASptf9XH3ZkBG0x3baMJnQIFWJbrWkWhA0fQw67ZlaUD8yIY3Az5qQBbyIM6zGmtAuQxROb/7a0DFCelUGuFsQHf480S4ym1AwkcJbYq4bkAd6ERogKpvQGlJ9wBEUHBAqiZtl0bNcEByA8YDPUxxQJb2k2EbzXFAumOc2dRPckBjqSqgW9RyQOib1vOgWnNA7eTCHJXic0CqJFdsJ2x0QClzeT1G93RAD5xK9d6DdUCwJmgE3hF2QGHvtuguoXZAd8W4L7wxd0CgK295b8N3QDb/zHsxVnhAC224BurpeEAdOp4IgH55QP8Bl5PZE3pAKaYe49upekB2v11ia0B7QDJ3BLNr13tAcL+1tL9ufEBbcgGNSQZ9QA5w66/qnX1APWD96IM1fkC0S+Bk9cx+QMHOerseZH9AwzSQ+t76f0DALW5YikiAQOzm0/xOk4BAZotnRKzdgEBa8ZvbkCeBQDIN10frcIFALF8R7qm5gUA58qIZuwGCQBVuOgMNSYJA9JD6142PgkAJOrrAK9WCQIwFY+nUGYNAFFVqiHddg0Dke2DmAaCDQOemkWVi4YNAl/uziYchhEAUT57/X2CEQFXBAqXanYRA93UokObZhECOlZ8XcxSFQJG36tlvTYVA484YxcyEhUBPr0oeerqFQGBEH4lo7oVAAZcBD4kghkANyVMmzVCGQEo7crkmf4ZAiiSKLYirhkD79T5p5NWGQOwCGtsu/oZADADAf1skh0DUD+jnXkiHQHw3ED4uaodAEkHrS7+Jh0ANPIR/CKeHQAL+E/AAwodA5ziFYqDah0BQ8qNN3/CHQI9h9d22BIhA6HU1+SAWiECzhXdBGCWIQN3n5xeYMYhAdnwsn5w7iEA8bmK9IkOIQFm9tx0oSIhApmufMatKiECma58xq0qIQFm9tx0oSIhAPG5ivSJDiEB2fCyfnDuIQN3n5xeYMYhAs4V3QRgliEDodTX5IBaIQI9h9d22BIhAUPKjTd/wh0DnOIVioNqHQAL+E/AAwodADTyEfwinh0ASQetLv4mHQHw3ED4uaodA1A/o515Ih0AJAMB/WySHQOwCGtsu/oZA+/U+aeTVhkCKJIotiKuGQEo7crkmf4ZADclTJs1QhkABlwEPiSCGQGBEH4lo7oVAT69KHnq6hUDjzhjFzISFQI+36tlvTYVAjpWfF3MUhUD3dSiQ5tmEQFXBAqXanYRAFE+e/19ghECX+7OJhyGEQOemkWVi4YNA5Htg5gGgg0AUVWqId12DQIwFY+nUGYNABjq6wCvVgkD2kPrXjY+CQBVuOgMNSYJAOfKiGbsBgkAsXxHuqbmBQDIN10frcIFAWvGb25AngUBmi2dErN2AQOzm0/xOk4BAvy1uWIpIgEC/NJD63vp/QMHOerseZH9AtEvgZPXMfkA9YP3ogzV+QA5w66/qnX1AW3IBjUkGfUBrv7W0v258QDJ3BLNr13tAdr9dYmtAe0Apph7j26l6QP8Bl5PZE3pAGjqeCIB+eUALbbgG6ul4QDb/zHsxVnhAoCtveW/Dd0B0xbgvvDF3QGHvtuguoXZAsCZoBN4RdkAPnEr13oN1QClzeT1G93RAqiRXbCdsdEDt5MIcleJzQOib1vOgWnNAY6kqoFvUckC6Y5zZ1E9yQJb2k2EbzXFAcgPGAz1McUCqJm2XRs1wQGlJ9wBEUHBAHehEaICqb0DCRwltirhuQHf480S4ym1AxQnpVBrhbEC5DFE5v/trQBbyIM6zGmtA/MiGNwM+akDR9DDrtmVpQIdWJbrWkWhARtMd22jCZ0BKm1/1cfdmQASTAiz1MGZAIkueKfRuZUATBVIsb7FkQINaHRJl+GNAC0F/ZdNDY0C/SVFqtpNiQLss1SoJ6GFA8OXqhMVAYUAa5GU35J1gQNsX8N65/l9AHzBTrEzKXkD2Uao7bJ5dQFdQPx8Ce1xAKejHMfZfW0BHQxWxLk1aQP3TKOivT1xAXpvjlnZ3XUAEhntrI6heQJmMASDS4V9AQpMKWU6SYEAdYRWjTThhQJyuUwXy4mFAAuhwjUWSYkCljg0xUUZjQCbiP78c/2NAamIi0q68ZEB30HnADH9lQHahfI86RmZAkhzG5DoSZ0BjnH/4DuNnQCKnyoe2uGhAzMJ2xy+TaUD1FQ5Xd3JqQEMKRDSIVmtAFEDRrls/bEBrNshc6SxtQPoTbg8nH25Agv6iyAgWb0DGsnJYwAhwQPXI/Ya/iHBAi1cnHfkKcUAULoFOY49xQDbQaVHzFXJAY/HkW52eckBPHuKgVClzQCSX9k0LtnNARi+PibJEdEA+055xOtV0QIUczhqSZ3VABxwwkKf7dUBEQIDTZ5F2QEXz7N2+KHdAPT5yoZfBd0DYbccK3Ft4QLta4gN193hAKJ0Sd0qUeUARk7ZSQzJ6QG+6i41F0XpAZHqbKzZxe0BWCcVD+RF8QKmv5AVys3xA2DSYwYJVfUCD0J/tDPh9QAGD2i/xmn5AMkDcZQ8+f0Aa3xuuRuF/QKci27g6QoBAweVht7yTgEByLp7hF+WAQKwsM3w6NoFAMeRlhxKHgUCDeVjFjdeBQA+Cg8CZJ4JAQG1q0iN3gkC144cqGcaCQGzCbtVmFINArSIcxPlhg0A1rHbTvq6DQD0+99Oi+oNAhc12kZJFhEDZKR3beo+EQMw0bItI2IRAeO1ikOgfhUDqkrPzR2aFQNf/B+NTq4VAu0ZPuPnuhUAufg8CJzGGQHaZtovJcYZA1xnlZc+whkBZWa3uJu6GQAMpwtm+KYdAHHmPOIZjh0CSwzeCbJuHQKr2cJth0YdAFqg73lUFiEBWZ28hOjeIQIEZF8D/ZohA7V+YoJiUiEANJ6E797+IQCWb1qIO6YhAd+RAh9IPiUB+NW8/NzSJQJDhT80xVolAFGO447d1iUACbJnrv5KJQEtT2whBrYlA5GvfHjPFiUAhEaPUjtqJQNxzgZhN7YlAaHiRo2n9iUDqOp383QqKQNsXsXqmFYpAYmFAx78dikBoNd5fJyOKQE02iZfbJYpATTaJl9slikBoNd5fJyOKQGJhQMe/HYpA2xexeqYVikDqOp383QqKQGh4kaNp/YlA3HOBmE3tiUAhEaPUjtqJQORr3x4zxYlAS1PbCEGtiUACbJnrv5KJQBRjuOO3dYlAkOFPzTFWiUB+NW8/NzSJQHfkQIfSD4lAIZvWog7piEANJ6E797+IQO1fmKCYlIhAgRkXwP9miEBWZ28hOjeIQBaoO95VBYhAqvZwm2HRh0CSwzeCbJuHQBx5jziGY4dAAynC2b4ph0BWWa3uJu6GQNcZ5WXPsIZAdpm2i8lxhkAufg8CJzGGQLtGT7j57oVA1/8H41OrhUDqkrPzR2aFQHjtYpDoH4VAzDRsi0jYhEDZKR3beo+EQIPNdpGSRYRAPj7306L6g0A1rHbTvq6DQK0iHMT5YYNAbMJu1WYUg0C144cqGcaCQEBtatIjd4JAD4KDwJkngkCDeVjFjdeBQC/kZYcSh4FAqiwzfDo2gUByLp7hF+WAQMHlYbe8k4BApyLbuDpCgEAa3xuuRuF/QDJA3GUPPn9A/oLaL/GafkCD0J/tDPh9QNg0mMGCVX1Aqa/kBXKzfEBWCcVD+RF8QF96mys2cXtAb7qLjUXRekARk7ZSQzJ6QCidEndKlHlAt1riA3X3eEDYbccK3Ft4QD0+cqGXwXdARfPs3b4od0BEQIDTZ5F2QAccMJCn+3VAhRzOGpJndUA+055xOtV0QEYvj4myRHRAJJf2TQu2c0BPHuKgVClzQGPx5FudnnJANtBpUfMVckAULoFOY49xQItXJx35CnFA9cj9hr+IcEDGsnJYwAhwQIL+osgIFm9A+hNuDycfbkBrNshc6SxtQBRA0a5bP2xAQwpENIhWa0D7FQ5Xd3JqQMzCdscvk2lAIqfKh7a4aEBjnH/4DuNnQI0cxuQ6EmdAe6F8jzpGZkB30HnADH9lQGpiItKuvGRAJuI/vxz/Y0Cljg0xUUZjQAfocI1FkmJAnK5TBfLiYUAdYRWjTThhQEKTCllOkmBAkYwBINLhX0D8hXtrI6heQF6b45Z2d11A/dMo6K9PXEDuSxUDa3JeQHyW1IyBsF9AITBaCxV8YEB/rBs5wSRhQBbtc0lT0mFAU9S5N9iEYkCSzEzxWzxjQPF2/UXp+GNARoRx2Im6ZEBtZ4wORoFlQEPr5gElTWZAhw1gcCweZ0Cg0dGsYPRnQJUJ9Y/Ez2hAB1h/aVmwaUBF7YbxHpZqQFi2NzoTgWtAreXloTJxbECJ4YnFd2ZtQLfCsXPbYG5A9KL0n1Rgb0C2AXorbDJwQCXLe9kst3BA3dWX6GQ+cUBWN9XjC8hxQFz/A04YVHJAN6V8nX/ickDYq0o4NnNzQEEzyHAvBnRAawewgl2bdEBWkKuQsTJ1QIrVYaIbzHVA0Y4Mo4pndkAb/5dg7AR3QJISUostpHdAIPAstjlFeEA24JhX++d4QHgW+cpbjHlACpO2UkMyekC68fMamdl6QCWa5DxDgntAt1zJwiYsfEC6G5SsJ9d8QPevM/Uog31AcMSImAwwfkCm7QOas91+QE7G7Av+i39APa+oi2UdgEC0ZU6C/HSAQAeSaaKyzIBAp1q4PXYkgUDs2XRENXyBQIiX40rd04FAgcEuj1srgkBjAoz/nIKCQNqQqkCO2YJAB9RmtBswg0DZuMCAMYaDQFmVEZe724NA9zp+u6UwhECYnKGM24SEQMk0bItI2IRAqCA0I9gqhUARsPGxdXyFQFL5o5AMzYVAvs/YG4gchkDAUFO802qGQC8SzO/at4ZA5tfFUYkDh0BglXGkyk2HQFxinNmKlodAlvChG7bdh0B2+13WOCOIQH0ZF8D/ZohAJktd4veoiEAem9aiDumIQIcg9MsxJ4lAL7WJlU9jiUCSuEKtVp2JQM5C7j421YlA5zqd/N0KikA42IwmPj6KQAEw2JJHb4pAOY7rtOudikA4e7SkHMqKQMt2iSXN84pA9pzErPAai0BEmAxoez+LQF15R0NiYYtAoEMz7pqAi0AgOqDhG52LQGE3SWTctotAa51Gj9TNi0CjsBhS/eGLQKx5RnZQ84tADZWOosgBjEBfpaddYQ2MQO5sjhAXFoxACeVfCOcbjECq/L13zx6MQKr8vXfPHoxACeVfCOcbjEDubI4QFxaMQF+lp11hDYxADZWOosgBjECseUZ2UPOLQKOwGFL94YtAa51Gj9TNi0BhN0lk3LaLQCA6oOEbnYtAoEMz7pqAi0BdeUdDYmGLQESYDGh7P4tA9pzErPAai0DLdoklzfOKQDd7tKQcyopAOY7rtOudikABMNiSR2+KQDjYjCY+PopA5zqd/N0KikDOQu4+NtWJQJK4Qq1WnYlAL7WJlU9jiUCHIPTLMSeJQB6b1qIO6YhAJEtd4veoiEB9GRfA/2aIQHb7XdY4I4hAlvChG7bdh0BcYpzZipaHQGCVcaTKTYdA5tfFUYkDh0AvEszv2reGQMBQU7zTaoZAvs/YG4gchkBP+aOQDM2FQBOw8bF1fIVAqCA0I9gqhUDJNGyLSNiEQJicoYzbhIRA9zp+u6UwhEBZlRGXu9uDQNm4wIAxhoNAB9RmtBswg0DXkKpAjtmCQGICjP+cgoJAgcEuj1srgkCIl+NK3dOBQOzZdEQ1fIFAp1q4PXYkgUAHkmmissyAQLNlToL8dIBAPa+oi2UdgEBOxuwL/ot/QKbtA5qz3X5AcMSImAwwfkD0rzP1KIN9QLoblKwn13xAt1zJwiYsfEAlmuQ8Q4J7QLfx8xqZ2XpACpO2UkMyekB4FvnKW4x5QDbgmFf753hAIPAstjlFeECSElKLLaR3QBv/l2DsBHdA0Y4Mo4pndkCK1WGiG8x1QFaQq5CxMnVAawewgl2bdEBBM8hwLwZ0QNirSjg2c3NAN6V8nX/ickBc/wNOGFRyQFY31eMLyHFA3dWX6GQ+cUAly3vZLLdwQLYBeitsMnBA9KL0n1Rgb0C3wrFz22BuQIHhicV3Zm1AteXloTJxbEBYtjc6E4FrQEXthvEelmpAB1h/aVmwaUCVCfWPxM9oQKXR0axg9GdAhw1gcCweZ0BD6+YBJU1mQG1njA5GgWVARoRx2Im6ZED1dv1F6fhjQJLMTPFbPGNAU9S5N9iEYkAW7XNJU9JhQHqsGznBJGFAITBaCxV8YEB8ltSMgbBfQO5LFQNrcl5AHtTaMWNbYEC7p8oKRgZhQDgH1RlNtmFADG7rY4hrYkDz0TftBiZjQAYZhKjW5WNANsqIZgSrZEA+jCzFm3VlQGZzvh6nRWZAM4Q1eS8bZ0AXNoB1PPZnQIsc7z7U1mhAnzXGevu8aUD0rQA4tahqQH0zU98CmmtAXTR5I+SQbECioNnxVo1tQF34j2NXj25A+Jjmrt+Wb0DaracM9FFwQN3W83Qz23BAxqpKLihncUDQjORKy/VxQJo5essUh3JAfrDfmfsac0CqpgWEdbFzQKHmZzd3SnRAgeLuPPTldEAKnEr13oN1QKXczJUoJHZA+IfIJcHGdkArnnt8l2t3QLJGiT+ZEnhAqfoI4rK7eEA8nS+kz2Z5QPwBl5PZE3pAMQ0ojLnCekBSP6s5V3N7QHsdAxqZJXxAd4MTgGTZfEC7gFiXnY59QK3zLmgnRX5A5aDQ3OP8fkDhDAXHs7V/QL/wQ3O7N4BAVZQS+AWVgEAvkcVKqPKAQMR66MaQUIFAjHlYT62ugUCRSzpT6wyCQGb0R9M3a4JAeKV0Z3/JgkCuIeVErieDQGmXOkSwhYNAFaYt6HDjg0Ck/XZk20CEQFDBAqXanYRATJJrVVn6hEAo5LnoQVaFQBn7Y6F+sYVAsLSKmfkLhkD5/W7LnGWGQO+eGxpSvoZAbMo+WgMWh0B7rC5bmmyHQP/9E/AAwodA4nU1+SAWiEARxF5t5GiIQAabXWM1uohA8SiPG/4JiUCGQXgJKViJQMleYt2gpIlAMYj3jVDviUCEHddhIziKQGB1HfkEf4pAWzfYVuHDikDsVWHqpAaLQO6Nmpg8R4tAuVgDxZWFi0DuSKNansGLQL/bwtRE+4tABd5sR3gyjEAJoLJnKGeMQLpSrZNFmYxAeA432sDIjEBJLVYCjPWMQH/RVZKZH41AcaSG1txGjUBvEaPnSWuNQH580rDVjI1AEzVH9XWrjUBCKHNVIceNQGWez1PP341AF5o0WXj1jUCavby4FQiOQO7rMrOhF45Aoi4HehckjkB/v8gxcy2OQJpsI/SxM45ABOde0dE2jkAE517R0TaOQJpsI/SxM45Af7/IMXMtjkCiLgd6FySOQO7rMrOhF45Amr28uBUIjkAXmjRZePWNQGWez1PP341AQihzVSHHjUATNUf1dauNQH580rDVjI1AbxGj50lrjUBxpIbW3EaNQH/RVZKZH41ASS1WAoz1jEB0DjfawMiMQLpSrZNFmYxACaCyZyhnjEAF3mxHeDKMQL/bwtRE+4tA7kijWp7Bi0C5WAPFlYWLQO6Nmpg8R4tA7FVh6qQGi0BbN9hW4cOKQF11HfkEf4pAhB3XYSM4ikAxiPeNUO+JQMleYt2gpIlAhkF4CSlYiUDxKI8b/gmJQAabXWM1uohAEcRebeRoiEDidTX5IBaIQP/9E/AAwodAeKwuW5psh0Btyj5aAxaHQO+eGxpSvoZA+f1uy5xlhkCwtIqZ+QuGQBn7Y6F+sYVAKOS56EFWhUBMkmtVWfqEQFDBAqXanYRAov12ZNtAhEATpi3ocOODQGmXOkSwhYNAriHlRK4ng0B4pXRnf8mCQGb0R9M3a4JAkUs6U+sMgkCJeVhPra6BQMR66MaQUIFAL5HFSqjygEBVlBL4BZWAQL/wQ3O7N4BA3gwFx7O1f0DloNDc4/x+QK3zLmgnRX5Au4BYl52OfUBzgxOAZNl8QHsdAxqZJXxAUj+rOVdze0AxDSiMucJ6QPwBl5PZE3pAPJ0vpM9meUCp+gjisrt4QLJGiT+ZEnhAK557fJdrd0D4h8glwcZ2QKXczJUoJHZACpxK9d6DdUCB4u489OV0QKHmZzd3SnRAqqYFhHWxc0B+sN+Z+xpzQJo5essUh3JA0IzkSsv1cUDGqkouKGdxQN3W83Qz23BA2q2nDPRRcED4mOau35ZvQGT4j2NXj25AoqDZ8VaNbUBdNHkj5JBsQH0zU98CmmtA7a0AOLWoakClNcZ6+7xpQIsc7z7U1mhAFzaAdTz2Z0AzhDV5LxtnQGZzvh6nRWZARIwsxZt1ZUA2yohmBKtkQAYZhKjW5WNA89E37QYmY0AIbutjiGtiQDQH1RlNtmFAu6fKCkYGYUAe1NoxY1tgQKgblngVj2FAcXte6YZGYkD72+xHfQNjQHbeisYJxmNAckLcgzyOZECLKw55JFxlQBHP62fPL2ZA79LiyEkJZ0DYGAK5nuhnQDgh/ufXzWhAlZpGhv24aUA9FjkzFqpqQGo5fesmoWtA+xiX9zKebEC0vLzaO6FtQDsQ/EFBqm5AocS+80C5b0DZ7txfG2dwQCZoqzeO9HBAHB1S2/SEcUDPKe4SShhyQJ+ix42HrnJAbsi/26VHc0DaVh9nnONzQIHxy25hgnRA1KPrAOojdUBwTv31Kch1QC6+bOwTb3ZAZAOpRJkYd0A0dMMdqsR3QBmRnVI1c3hAKsqrdygkeUAz4lLZb9d5QLRm5Xr2jHpAfGVGFqZEe0B2NDYcZ/57QC7GTbUgunxAGqSsw7h3fUAwQV3lEzd+QLrqcncV+H5AZirkmZ+6f0AQ+xGaST+AQCvGPf3noYBAbi0TOhoFgUBqZBgBz2iBQCsZjXP0zIFAxOucJ3gxgkBo+PIsR5aCQJPDrRFO+4JAEY2y53hgg0DDw15Ks8WDQM8HlmToKoRAO90q9wKQhEAu5J9f7fSEQNsgP5+RWYVAGZGEYtm9hUCoA9kIriGGQGHbmaz4hIZAmSBqK6LnhkDk/Mguk0mHQNB46TS0qodAJxHHme0KiEAVenKgJ2qIQEmpkXxKyIhAPQcOXD4liUAYcetw64CJQEeCQvs524lA+W1YUxI0ikAJhs7zXIuKQLpm44MC4YpAMZy/4es0i0D6eccsAoeLQCrE688u14tAfbbyi1sljEBb57KBcnGMQPF7OTxeu4xAwh7VugkDjUC/K/96YEiNQF2MHIJOi41AvsoPZ8DLjUAg9ZVbowmOQK8CaDXlRI5Ax4cad3R9jkCAqrVYQLOOQN9v/8845o5AYqdymE4Wj0Du7Nw6c0OPQHZvnhSZbY9AlmeGXrOUj0D+aEcztriPQM7+fpWW2Y9AmktMdUr3j0Cc2bha5AiQQAby/peEFJBAU3U8XYIekEALKMmU2iaQQArPJqqKLZBA2n9Vi5AykEDmCeWp6jWQQBezwvuXN5BAF7PC+5c3kEDmCeWp6jWQQNp/VYuQMpBACs8mqootkEALKMmU2iaQQFN1PF2CHpBABvL+l4QUkECc2bha5AiQQJpLTHVK949Azv5+lZbZj0D+aEcztriPQJZnhl6zlI9Adm+eFJltj0Du7Nw6c0OPQGKncphOFo9A2W//zzjmjkCAqrVYQLOOQMeHGnd0fY5ArwJoNeVEjkAg9ZVbowmOQL7KD2fAy41AXYwcgk6LjUC/K/96YEiNQMIe1boJA41A8Xs5PF67jEBY57KBcnGMQH228otbJYxAKsTrzy7Xi0D6eccsAoeLQDGcv+HrNItAumbjgwLhikAJhs7zXIuKQPltWFMSNIpAR4JC+znbiUAYcetw64CJQDgHDlw+JYlAS6mRfErIiEAVenKgJ2qIQCcRx5ntCohA0HjpNLSqh0Dk/Mguk0mHQJkgaiui54ZAYduZrPiEhkCoA9kIriGGQBaRhGLZvYVA2CA/n5FZhUAu5J9f7fSEQDvdKvcCkIRAzweWZOgqhEDDw15Ks8WDQBGNsud4YINAkcOtEU77gkBo+PIsR5aCQMTrnCd4MYJAKxmNc/TMgUBqZBgBz2iBQGwtEzoaBYFAK8Y9/eehgEAQ+xGaST+AQGYq5Jmfun9AtupydxX4fkAwQV3lEzd+QBqkrMO4d31ALsZNtSC6fEB2NDYcZ/57QHxlRhamRHtAtGblevaMekAz4lLZb9d5QCrKq3coJHlAGZGdUjVzeEA0dMMdqsR3QGQDqUSZGHdALr5s7BNvdkBwTv31Kch1QNSj6wDqI3VAgfHLbmGCdEDaVh9nnONzQG7Iv9ulR3NAn6LHjYeuckDPKe4SShhyQBwdUtv0hHFAI2irN470cEDd7txfG2dwQKHEvvNAuW9AOxD8QUGqbkC0vLzaO6FtQPsYl/cynmxAcjl96yaha0A9FjkzFqpqQJWaRob9uGlAOCH+59fNaEDYGAK5nuhnQPTS4shJCWdAEc/rZ88vZkCLKw55JFxlQHJC3IM8jmRAcd6KxgnGY0D72+xHfQNjQHF7XumGRmJAqBuWeBWPYUC9ket1AdViQKCtmua/mWNAQDRLt2lkZEB4UXhZETVlQE3X+hbIC2ZA5tTt/p3oZkB+qHbSoctnQCSTe/HgtGhA7FFUR2ekaUBEtoA3P5pqQKGpcYpxlmtAenNxWgWZbEDafbgAAKJtQJMxvAJlsW5AJ9nF/zXHb0C64m9PuXFwQLaZkz4MA3FAutVIjpGXcUBfYZrpRS9yQGylj90kynJA/Ypp0Shoc0AgQTf/Sgl0QFKAymyDrXRAf98S5chUdUB+wufxEP91QP1VSNZPrHZAcfMYiXhcd0D/JWWwfA94QHRhLZ1MxXhA1kzHR9d9eUCgS9dMCjl6QL2y6erR9npAsdGxABm3e0C/q/QLyXl8QOnpJCnKPn1A7jO1EwMGfkDevSUnWc9+QHpv0WCwmn9AQE4/sfUzgEA8aNu6dZuAQOZa9EfIA4FABVCrq9xsgUBk3WmUodaBQLKqKA8FQYJAWJkei/SrgkDLmNjdXBeDQAkGukcqg4NAUSfleEjvg0DqBouWoluEQMKfoUAjyIRAvv3+l7Q0hUC6otdEQKGFQOwunn2vDYZAePpBDut5hkCx+8lf2+WGQJwFSYBoUYdAohkoK3q8h0D4OMPR9yaIQADVVKTIkIhAY7Irm9P5iECGySaA/2GJQMVncvgyyYlAVpGBjlQvikASYj68SpSKQO3ta/X794pAqOczsk5ai0AnHtp5KbuLQEauj+1yGoxAuplf0xF4jEAiSi4h7dOMQOVixQfsLY1AqyXl/fWFjUA+klTL8tuNQAhX6ZPKL45Av5aA4mWBjkBgf+GzrdCOQPqpgoGLHY9AujwrTOlnj0DQ0Gimsa+PQM4q077P9I9AK3QLtZcbkEBNL2CWXjuQQJkCYCKzWZBAovZQWYx2kEAJ+Dih4ZGQQCI4I8qqq5BAeN81EuDDkEBJOJUpetqQQDaXETZy75BAx2qd1sECkUCW/4gmYxSRQKStgcBQJJFAHk1SwYUykUBd+2LK/T6RQIxm9gO1SZFAgwQjH6hSkUCTyYZX1FmRQLkltHQ3X5FAvEBXy89ikUCToRI+nGSRQJOhEj6cZJFAvEBXy89ikUC5JbR0N1+RQJPJhlfUWZFAgwQjH6hSkUCMZvYDtUmRQF37Ysr9PpFAHk1SwYUykUCkrYHAUCSRQJb/iCZjFJFAx2qd1sECkUA2lxE2cu+QQEk4lSl62pBAeN81EuDDkEAiOCPKqquQQAb4OKHhkZBAovZQWYx2kECZAmAis1mQQE0vYJZeO5BAK3QLtZcbkEDOKtO+z/SPQNDQaKaxr49AujwrTOlnj0D6qYKBix2PQGB/4bOt0I5AvJaA4mWBjkAIV+mTyi+OQD6SVMvy241AqyXl/fWFjUDlYsUH7C2NQB1KLiHt04xAuplf0xF4jEBGro/tchqMQCce2nkpu4tAqOczsk5ai0Dq7Wv1+/eKQBViPrxKlIpAVpGBjlQvikDFZ3L4MsmJQIbJJoD/YYlAY7Irm9P5iEAA1VSkyJCIQPg4w9H3JohAohkoK3q8h0CcBUmAaFGHQK77yV/b5YZAePpBDut5hkDsLp59rw2GQLqi10RAoYVAvv3+l7Q0hUC/n6FAI8iEQOcGi5aiW4RAUSfleEjvg0AJBrpHKoODQMuY2N1cF4NAVZkei/SrgkCyqigPBUGCQGTdaZSh1oFABVCrq9xsgUDmWvRHyAOBQDlo27p1m4BAPU4/sfUzgEB6b9FgsJp/QN69JSdZz35A7jO1EwMGfkDp6SQpyj59QLur9AvJeXxAsdGxABm3e0C9sunq0fZ6QKBL10wKOXpA1kzHR9d9eUBuYS2dTMV4QP8lZbB8D3hAcfMYiXhcd0D9VUjWT6x2QH7C5/EQ/3VAe98S5chUdUBSgMpsg610QCBBN/9KCXRA/Ypp0Shoc0BspY/dJMpyQFphmulFL3JAutVIjpGXcUC2mZM+DANxQLrib0+5cXBAJ9nF/zXHb0CTMbwCZbFuQNp9uAAAom1AenNxWgWZbEChqXGKcZZrQES2gDc/mmpA5lFUR2ekaUAkk3vx4LRoQH6odtKhy2dA5tTt/p3oZkBN1/oWyAtmQHhReFkRNWVAQDRLt2lkZECgrZrmv5ljQL2R63UB1WJAkbm6VNwtZEDYPxSSrQBlQIi4LJXW2WVAoKw7IWu5ZkBumrC8fZ9nQGmouZwfjGhAvMirkGB/aUBbHljtTnlqQPb5Wnj3eWtA6ENxU2WBbEDaouHnoY9tQAUhB9K0pG5A7X4LzaPAb0C24m9PuXFwQMoCQYKRBnFA0sJPT9qecUAcclFvkjpyQOr7Hnq32XJAyrG/3UV8c0DdAMLVOCJ0QJ4v6mKKy3RAlEg/QzN4dUCRV37qKih2QOEX/Hpn23ZAKiX9vt2Rd0Cwq4wigUt4QOt42a1DCHlA5ykhABbIeUDFCTFL54p6QPj/g0+lUHtAdbMEWTwZfEB2xXo8l+R8QC69qVWfsn1Ab+snhjyDfkBbNPM0VVZ/QDqmZCfnFYBAG0eko8WBgEAUD28Nt+6AQJvOwqirXIFA4hUvAZPLgUCv/gvsWzuCQFWZHov0q4JAJhCsT0odg0CtSvz9SY+DQMOMTLHfAYRA1D4y4PZ0hEDIu21heuiEQJutLHFUXIVA8i27tm7QhUBPiqJKskSGQH00NL0HuYZAkBF/HVcth0BiAa0AiKGHQMIhxomBFYhAq/jWcSqJiECnWnYQafyIQLyMp2Qjb4lAu8wUHj/hiUA5GJ6moVKKQKe5Nywww4pAQ9QTq88yi0D52xH4ZKGLQAWdbsvUDoxAvDGvywN7jEBlAsGY1uWMQOasSNcxT41A9XcZPPq2jUB0v86XFB2OQLyWgOJlgY5AybGMR9PjjkByfmwxQkSPQEo2kVWYoo9A2JQ+wLv+j0AgZC5wSSyQQNoQnUkCWJBAV4AaGHyCkEAgOCPKqquQQFv3spaC05BAznDfAvj5kECcIljn/x6RQGGex3WPQpFAkaESPpxkkUDJbnEzHIWRQOXsX7EFpJFAGidhgE/BkUCi45La8NyRQEkjDnDh9pFAb3sRaxkPkkAeX/JzkSWSQDCQ0rRCOpJArRkX3SZNkkC3XZ4kOF6SQHHusk5xbZJAhBa5rM16kkANJ5UgSYaSQPnRyB7gj5JAvwtGsI+XkkA2JPZzVZ2SQIH8858voZJAG3d4Ah2jkkAbd3gCHaOSQIH8858voZJANiT2c1WdkkC/C0awj5eSQPnRyB7gj5JADSeVIEmGkkCEFrmszXqSQHHusk5xbZJAt12eJDhekkCtGRfdJk2SQDCQ0rRCOpJAHl/yc5ElkkBvexFrGQ+SQEkjDnDh9pFAouOS2vDckUAXJ2GAT8GRQOXsX7EFpJFAyW5xMxyFkUCRoRI+nGSRQGGex3WPQpFAnCJY5/8ekUDOcN8C+PmQQFv3spaC05BAIDgjyqqrkEBXgBoYfIKQQNcQnUkCWJBAIGQucEkskEDYlD7Au/6PQEo2kVWYoo9Acn5sMUJEj0DFsYxH0+OOQLyWgOJlgY5AdL/OlxQdjkD1dxk8+raNQOasSNcxT41AYgLBmNbljEC/Ma/LA3uMQAWdbsvUDoxA+dsR+GShi0BD1BOrzzKLQKe5Nywww4pAORiepqFSikC7zBQeP+GJQLyMp2Qjb4lAp1p2EGn8iECo+NZxKomIQMIhxomBFYhAYgGtAIihh0CQEX8dVy2HQH00NL0HuYZATIqiSrJEhkDuLbu2btCFQJutLHFUXIVAyLttYXrohEDUPjLg9nSEQMCMTLHfAYRArUr8/UmPg0AmEKxPSh2DQFWZHov0q4JAr/4L7Fs7gkDfFS8Bk8uBQJjOwqirXIFAFA9vDbfugEAbR6SjxYGAQDqmZCfnFYBAWzTzNFVWf0Br6yeGPIN+QC69qVWfsn1AdsV6PJfkfEB1swRZPBl8QPj/g0+lUHtAvQkxS+eKekDnKSEAFsh5QOt42a1DCHlAsKuMIoFLeEAqJf2+3ZF3QNsX/Hpn23ZAkVd+6ioodkCUSD9DM3h1QJ4v6mKKy3RA3QDC1TgidEDIsb/dRXxzQOr7Hnq32XJAHHJRb5I6ckDSwk9P2p5xQMoCQYKRBnFAtuJvT7lxcEDtfgvNo8BvQAUhB9K0pG5A2qLh56GPbUDoQ3FTZYFsQO75Wnj3eWtAWx5Y7U55akC8yKuQYH9pQGmouZwfjGhAbpqwvH2fZ0CgrDsha7lmQIi4LJXW2WVA2D8Ukq0AZUCRubpU3C1kQDZ6yJxammVABpmd0Qt8ZkChMzBeh2RnQD/Qr2riU2hA/O4pzDBKaUDL657uhEdqQOQo9r7vS2tAWCjelIBXbEDzyaUcRWptQMppHEFJhG5AQiCHFZelb0Dd7txfG2dwQEbIMTEX/3BAwXfOA8GacUB98eTFGTpyQP/wbkQh3XJATfEJIdaDc0ACYRXINS50QMqeG2c83HRAB2CO4+SNdUAVMt/RKEN2QKHN/GwA/HZAj/Q9jmK4d0Dui8KlRHh4QCmVU7OaO3lAbpPKP1cCekDFzAhXa8x6QPevhoLGmXtAOXqDxFZqfEDJAd2TCD59QDNLl9jGFH5AGUkb6XrufkD/1TOIDMt/QKvQ5/EwVYBAUzRHyi/GgEA0tw9PdDiBQGpYOzjvq4FAy/XudJAggkBo+PIsR5aCQCYwnsIBDYNAQps01a2Eg0CSjbtDOP2DQPRdRDCNdoRAfXGuA5jwhEA6KeFxQ2uFQEfjfX555oVApOgJgiNihkATyY8vKt6GQKJLt5p1WodA+75SPu3Wh0BGGGADeFOIQHTxe0j8z4hAEBvE6V9MiUDfFidJiMiJQF10HVdaRIpAd6rJm7q/ikDNrnpAjTqLQC8wjRm2tItAYwGnsBgujEAA60dPmKaMQMXGqgkYHo1A3XXxyXqUjUAg9ZVbowmOQMeHGnd0fY5AYaryzdDvjkDFPJ4Wm2CPQOwT8Bi2z49AVHU8XYIekEDXuYcFNVSQQHEQt6jkiJBAbYTvC4O8kEBlGHccAu+QQD4xDfZTIJFADU8+6WpQkUASE6+BOX+RQI2MWoyyrJFAv8O/HcnYkUB2e/qXcAOSQEsmw7CcLJJAGBRSd0FUkkC/5yFaU3qSQKJzjSzHnpJAaC1FLJLBkkCcfpgGquKSQJFQj90EApNASE3QTJkfk0BZblBuXjuTQGyUyN5LVZNA0gbuwVltk0Bg4mrGgIOTQB6pkym6l5NA8FDXuv+pk0AhX+feS7qTQKXPlZKZyJNAGLtmbeTUk0CN49OjKN+TQG2HQAlj55NAuxKcEZHtk0B3gLLSsPGTQHF5KQXB85NAcXkpBcHzk0B3gLLSsPGTQLsSnBGR7ZNAbYdACWPnk0CN49OjKN+TQBi7Zm3k1JNApc+VkpnIk0AhX+feS7qTQPBQ17r/qZNAHqmTKbqXk0Bg4mrGgIOTQNIG7sFZbZNAbJTI3ktVk0BZblBuXjuTQEhN0EyZH5NAjlCP3QQCk0CcfpgGquKSQGgtRSySwZJAonONLMeekkC/5yFaU3qSQBgUUndBVJJASybDsJwskkB2e/qXcAOSQL/Dvx3J2JFAjYxajLKskUAOE6+BOX+RQA1PPulqUJFAPjEN9lMgkUBlGHccAu+QQG2E7wuDvJBAcRC3qOSIkEDXuYcFNVSQQFR1PF2CHpBA7BPwGLbPj0DFPJ4Wm2CPQF2q8s3Q745Ayocad3R9jkAg9ZVbowmOQN118cl6lI1AxcaqCRgejUAA60dPmKaMQGMBp7AYLoxALzCNGba0i0DNrnpAjTqLQHOqyZu6v4pAWHQdV1pEikDfFidJiMiJQBAbxOlfTIlAdPF7SPzPiEBGGGADeFOIQPu+Uj7t1odAn0u3mnVah0ATyY8vKt6GQKToCYIjYoZAR+N9fnnmhUA6KeFxQ2uFQHpxrgOY8IRA9F1EMI12hECSjbtDOP2DQEKbNNWthINAIzCewgENg0Bo+PIsR5aCQMv17nSQIIJAalg7OO+rgUA0tw9PdDiBQFM0R8ovxoBAq9Dn8TBVgED/1TOIDMt/QBlJG+l67n5AM0uX2MYUfkDJAd2TCD59QDl6g8RWanxA96+GgsaZe0DFzAhXa8x6QG6Tyj9XAnpAKZVTs5o7eUDui8KlRHh4QI/0PY5iuHdAoc38bAD8dkAVMt/RKEN2QAdgjuPkjXVAyJ4bZzzcdEAGYRXINS50QE3xCSHWg3NA//BuRCHdckB98eTFGTpyQLx3zgPBmnFATMgxMRf/cEDd7txfG2dwQEIghxWXpW9AymkcQUmEbkDzyaUcRWptQF0o3pSAV2xA5Cj2vu9La0DL657uhEdqQPzuKcwwSmlAONCvauJTaECbMzBeh2RnQAaZndELfGZANnrInFqaZUAzhDV5LxtnQO2NKiCVDGhAAOxtFT4FaUBSOhL6QAVqQPTLbgSzDGtAdhmu6KcbbEAOMTnBMTJtQGawDfdgUG5AO2gMKkR2b0DaracM9FFwQJssy8Wr7HBA4vbsm02LcUAKeArX3C1yQF6pKqBb1HJA3aoS9sp+c0DNRi+iKi10QNFEvC1533RAg5Qy17OVdUCkdAaI1k92QJ3SvsrbDXdAEy1vwbzPd0CtTJ0ccZV4QNkmnBLvXnlAqjZlVyssekAZifkUGf16QAGiU+Sp0XtASj/zxs2pfEAo1wshc4V9QO58XrSGZH5A7Z3Hm/NGf0BpYsSjURaAQOwiK72+ioBALzGYI7QAgUDFiQcIJHiBQI2js8L/8IFAZvRH0zdrgkDITobhu+aCQHDKYb56Y4NA5aaRZWLhg0ART57/X2CEQPVZauRf4IRAzBU5nk1hhUDI2DPtE+OFQPn9bsucZYZAbxxvcdHohkB7rC5bmmyHQE3yo03f8IdA6KXGXId1iEAjcBTyePqIQITyktOZf4lAS6xNK88EikDiq02P/YmKQOKWCAoJD4tAjC9EI9WTi0DOGWvpRBiMQJU/T/s6nIxAf9FVkpkfjUB9gAiNQqKNQKIuB3oXJI5AJvhUo/mkjkA+HPsZyiSPQEH2+8Fpo49ACPJHr1wQkEBm01LPTE6QQK2/z5R1i5BAHQAjVsfHkEBfpvRyMgORQGif1FqnPZFAklrukxZ3kUCXDMjBcK+RQH5/Caym5pFAqU1GRakckkDaVcexaVGSQKkpT07ZhJJA+S3Vtum2kkC1HzPNjOeSQBqswL+0FpNAas3YD1REk0BqoUSYXXCTQIN3h5PEmpNAT+AHonzDk0DtlxHQeeqTQLg3rJuwD5RAurJC+hUzlEBHuhden1SUQP9Fg7tCdJRAeZv1jfaRlEDYVbzcsa2UQEIVhj9sx5RAQKih4h3flEDRrvWKv/SUQEbmrZlKCJVAQICbD7kZlUCjG0aQBSmVQNQtq2QrNpVAheOpfSZBlUBeuxl280mVQMZZipSPUJVAh1KrzPhUlUCj5FrALVeVQKPkWsAtV5VAh1KrzPhUlUDGWYqUj1CVQF67GXbzSZVAheOpfSZBlUDULatkKzaVQKMbRpAFKZVAQICbD7kZlUBG5q2ZSgiVQNGu9Yq/9JRAQKih4h3flEBCFYY/bMeUQNhVvNyxrZRAeZv1jfaRlED/RYO7QnSUQES6F16fVJRAurJC+hUzlEC4N6ybsA+UQO2XEdB56pNAT+AHonzDk0CDd4eTxJqTQGqhRJhdcJNAas3YD1REk0AarMC/tBaTQLUfM82M55JA9y3Vtum2kkCpKU9O2YSSQNpVx7FpUZJAqU1GRakckkB+fwmspuaRQJYMyMFwr5FAklrukxZ3kUBon9Rapz2RQF+m9HIyA5FAHQAjVsfHkECrv8+UdYuQQGjTUs9MTpBACPJHr1wQkEBB9vvBaaOPQD4c+xnKJI9AJvhUo/mkjkCiLgd6FySOQH2ACI1Coo1Af9FVkpkfjUCVP0/7OpyMQMoZa+lEGIxAjC9EI9WTi0DilggKCQ+LQOKrTY/9iYpAS6xNK88EikCA8pLTmX+JQCBwFPJ4+ohA6KXGXId1iEBN8qNN3/CHQHusLluabIdAbBxvcdHohkD5/W7LnGWGQMjYM+0T44VAzBU5nk1hhUD1WWrkX+CEQA5Pnv9fYIRA46aRZWLhg0BwymG+emODQMhOhuG75oJAZvRH0zdrgkCNo7PC//CBQMSJBwgkeIFALzGYI7QAgUDsIiu9voqAQGlixKNRFoBA7Z3Hm/NGf0DkfF60hmR+QCjXCyFzhX1ASj/zxs2pfEABolPkqdF7QBmJ+RQZ/XpAojZlVyssekDZJpwS7155QK1MnRxxlXhAEy1vwbzPd0Cd0r7K2w13QKJ0BojWT3ZAg5Qy17OVdUDRRLwted90QM1GL6IqLXRA3aoS9sp+c0BeqSqgW9RyQAp4CtfcLXJA4vbsm02LcUCbLMvFq+xwQNqtpwz0UXBAMmgMKkR2b0BmsA33YFBuQA4xOcExMm1Adhmu6KcbbED0y24EswxrQFI6EvpABWpA+OttFT4FaUDtjSoglQxoQDOENXkvG2dA9iZr8wuxaECJULLAAbNpQDW7EG+6vGpAsZIULU7Oa0CwVK2l0+dsQG11HudfCW5AVZ/MSQYzb0CyAXorbDJwQDppq9dyz3BAv8n5+J1wcUAy0GlR8xVyQGRPAYl3v3JA4ydgIS5tc0A9RX9pGR90QDfTnnE61XRAM/9s/5CPdUDnxm6CG052QNN6tAjXEHdAabrjM7/Xd0B+x6AuzqJ4QGkfYaL8cXlAOFCxrUFFekAdAvjakhx7QBokwBfk93tAtxuUrCfXfECxvXM1Trp9QH2z7ppGoX5ATsbsC/6Lf0CkqRb8Lz2AQG13wwUrtoBAgfr3FOQwgUDmOSw2Tq2BQH/BLo9bK4JAgNtuXv2qgkCg+Lr6IyyDQDCsdtO+roNAYGJLcbwyhEAxslZ3CriEQKzk2KSVPoVAZf5l10nGhUDqR5sNEk+GQNL9WmrY2IZAFnmPOIZjh0A2xnbvA++HQNxCdzc5e4hAkXl97wwIiUDYD+MyZZWJQGM13l8nI4pAG5x4HjixikBEmAxoez+LQGidRo/UzYtAD+OoSCZcjEBBkI6zUuqMQJ1iq2M7eI1AOloEa8EFjkBKil1kxZKOQEPFGH4nH49A3nOAhceqj0DZwDx5whqQQENzy3mfX5BA7HlEPeqjkEB8GHEkkueQQHmblX6GKpFADVQfkLZskUABB3OZEa6RQDAO2N2G7pFAU0h8qgUukkDG0YxdfWySQB1jX23dqZJAkxeobxXmkkD+RLcgFSGTQPb6umrMWpNATq3/bCuTk0DCgCuDIsqTQDSmb0yi/5NAMiurspszlEAto3rx/2WUQJMOMJ3AlpRA2Gmuqc/FlEBjVyRxH/OUQDtkobqiHpVA63eBwExIlUCdFKo2EXCVQKYklVDklZVA4y4lx7q5lUC76j7eiduVQE9QJGpH+5VAemeN1OkYlkDnQnshaDSWQJTBwfO5TZZAhOFEkddklkCGoebmuXmWQGamIoxajJZA9g9VxrOclkCmJaqLwKqWQJ2/tIV8tpZAp4+pE+S/lkAirz1M9MaWQEsYJ/+qy5ZAivU9tgbOlkCK9T22Bs6WQEsYJ/+qy5ZAIq89TPTGlkCnj6kT5L+WQJ2/tIV8tpZApiWqi8CqlkD2D1XGs5yWQGamIoxajJZAhqHm5rl5lkCE4USR12SWQJTBwfO5TZZA50J7IWg0lkB6Z43U6RiWQE9QJGpH+5VAu+o+3onblUDfLiXHurmVQKYklVDklZVAnRSqNhFwlUDrd4HATEiVQDtkobqiHpVAY1ckcR/zlEDYaa6pz8WUQJMOMJ3AlpRALaN68f9llEAyK6uymzOUQDOmb0yi/5NAwoArgyLKk0BOrf9sK5OTQPb6umrMWpNA/kS3IBUhk0CQF6hvFeaSQB1jX23dqZJAxtGMXX1skkBTSHyqBS6SQDAO2N2G7pFA/QZzmRGukUAQVB+QtmyRQHmblX6GKpFAfBhxJJLnkEDseUQ96qOQQENzy3mfX5BA2cA8ecIakEDec4CFx6qPQEPFGH4nH49ASopdZMWSjkA3WgRrwQWOQJ1iq2M7eI1AQZCOs1LqjEAP46hIJlyMQGidRo/UzYtAQJgMaHs/i0AWnHgeOLGKQGM13l8nI4pA2A/jMmWViUCReX3vDAiJQNhCdzc5e4hANsZ27wPvh0AWeY84hmOHQNL9WmrY2IZA6kebDRJPhkBi/mXXScaFQKnk2KSVPoVAMbJWdwq4hEBgYktxvDKEQDCsdtO+roNAoPi6+iMsg0B+225e/aqCQH/BLo9bK4JA5jksNk6tgUCB+vcU5DCBQG13wwUrtoBAoakW/C89gEBOxuwL/ot/QH2z7ppGoX5Asb1zNU66fUC3G5SsJ9d8QBIkwBfk93tAHQL42pIce0A4ULGtQUV6QGkfYaL8cXlAfsegLs6ieEBmuuMzv9d3QNN6tAjXEHdA58ZughtOdkAz/2z/kI91QDfTnnE61XRAPUV/aRkfdEDjJ2AhLm1zQGRPAYl3v3JAMtBpUfMVckC/yfn4nXBxQDZpq9dyz3BAsgF6K2wycEBVn8xJBjNvQG11HudfCW5AsFStpdPnbECxkhQtTs5rQDW7EG+6vGpAiVCywAGzaUD2JmvzC7FoQLHHyiKeXGpAh5Re5QZwa0D9ZMPuuItsQCXuRRDOr21AdgJcfV7cbkDGsnJYwAhwQOhZIqmkp3BAo+YvjeVKcUDx8Etci/JxQGPx5FudnnJAHV60sSFPc0DJqGFWHQR0QABhRAiUvXRApf9OPoh7dUDNGywb+z12QB3/l2DsBHdAKL8AY1rQd0COKXf9QaB4QN3x+oWedHlAvKkswmlNekCdHXDcmyp7QCu5iVkrDHxAzZfBDg3yfECy3JYYNNx9QOzcDdKRyn5AyIqjzBW9f0C1Nnjk1lmAQHugAtgi14BA8ZHFxmNWgUCAeVjFjdeBQByV9/STWoJAMKTVgWjfgkC1quGh/GWDQAHfBJRA7oNAEaLcnyN4hEB3IvQVlAOFQLIGgVB/kIVALDKmtNEehkC2az+0dq6GQDhaONBYP4dAqPZwm2HRh0C0ODG+eWSIQKJlLfqI+IhAeQgcL3aNiUBoNd5fJyOKQOdTOriBuYpAvUApk2lQi0AALbWBwueLQM4waVJvf4xASRlQGVIXjUBkh4A4TK+NQFEENGk+R45ADT1mxQjfjkAbJfnRinaPQM8mrcTRBpBA46ZSsxhSkEB9VJ84CZ2QQIAYcSSS55BAZrsPGaIxkUAkOZ+RJ3uRQKwRw+gQxJFAmUVvX0wMkkCifuMjyFOSQD+2zFhympJAcIGJHDngkkDv/4yQCiWTQDlH3ODUaJNAhv6hS4ark0DlwNMoDe2TQO295PFXLZRAsveASVVslEBBZ0wD9KmUQPE9oSsj5pRACWxID9IglUDSiSdD8FmVQP8536ttkZVARxlVhTrHlUBVUCRqR/uVQOni71qFLZZAM+CRxeVdlkBtpiKMWoyWQDd90wvWuJZAeeCXI0vjlkAS75g6rQuXQOWObkbwMZdAbfkZ0QhWl0DXib3+63eXQKnODZOPl5dAcQ549um0l0Cxnvo68s+XQI+gqyCg6JdA7uzqGez+l0DrMzxPzxKYQHGPxqJDJJhAPwh3s0MzmECDzcPfyj+YQIQiDkjVSZhAV0uh0F9RmED3B00jaFaYQF51mrDsWJhAXnWasOxYmED3B00jaFaYQFdLodBfUZhAhCIOSNVJmECDzcPfyj+YQD8Id7NDM5hAcY/GokMkmEDrMzxPzxKYQO7s6hns/pdAj6CrIKDol0Cxnvo68s+XQHEOePbptJdAqc4Nk4+Xl0DXib3+63eXQG35GdEIVpdA4o5uRvAxl0AS75g6rQuXQHnglyNL45ZAN33TC9a4lkBtpiKMWoyWQDPgkcXlXZZA6eLvWoUtlkBVUCRqR/uVQEcZVYU6x5VA/znfq22RlUDQiSdD8FmVQAlsSA/SIJVA8T2hKyPmlEBBZ0wD9KmUQLL3gElVbJRA6r3k8VctlEDlwNMoDe2TQIb+oUuGq5NAOUfc4NRok0Dv/4yQCiWTQG2BiRw54JJAQLbMWHKakkCifuMjyFOSQJlFb19MDJJArBHD6BDEkUAkOZ+RJ3uRQGa7DxmiMZFAgBhxJJLnkEB9VJ84CZ2QQOOmUrMYUpBAziatxNEGkEAbJfnRinaPQA09ZsUI345AUQQ0aT5HjkBkh4A4TK+NQEcZUBlSF41AyzBpUm9/jEAALbWBwueLQL1AKZNpUItA51M6uIG5ikBmNd5fJyOKQHkIHC92jYlAomUt+oj4iEC0ODG+eWSIQKj2cJth0YdANVo40Fg/h0C0az+0dq6GQCwyprTRHoZAsgaBUH+QhUB3IvQVlAOFQBGi3J8jeIRAAN8ElEDug0C1quGh/GWDQDCk1YFo34JAHJX39JNagkCAeVjFjdeBQOyRxcZjVoFAe6AC2CLXgEC1Nnjk1lmAQMiKo8wVvX9A7NwN0pHKfkCp3JYYNNx9QM2XwQ4N8nxAK7mJWSsMfECdHXDcmyp7QLypLMJpTXpA2vH6hZ50eUCOKXf9QaB4QCi/AGNa0HdAHf+XYOwEd0DNGywb+z12QKX/Tj6Ie3VAAGFECJS9dEDJqGFWHQR0QB1etLEhT3NAY/HkW52eckDt8Etci/JxQKPmL43lSnFA6FkiqaSncEDGsnJYwAhwQHYCXH1e3G5AJe5FEM6vbUD9ZMPuuItsQIeUXuUGcGtAscfKIp5cakDNbYRRkB5sQJl1cMtVRG1ATPRe+vFybkAd6ERogKpvQJJ71HKNdXBAn9+NtmwacUCux0ID6cNxQJ0BLVUMcnJAX1hhkt8kc0AQZWl8atxzQF8g66GzmHRATcpnUMBZdUDyCRyGlB92QF1sC+Qy6nZAGKlBoJy5d0D0TFR40Y14QD2dL6TPZnlAQrE5yZNEekA449btGCd7QLPUWm1YDnxAC1Zx7En6fEB4iQpO4+p9QIGb1agY4H5A52FVPdzZf0BrD002D2yAQAXF1ddm7YBALw3XR+twgUCKLGfPkfaBQLZl/rhOfoJA01zCTRUIg0C440PT15ODQJf7s4mHIYRAfqSUqhSxhEC62ulnbkKFQODj7uuC1YVAhclTWT9qhkCklwbMjwCHQMumi1pfmIdA2+fnF5gxiEBk0B8WI8yIQIcqTWnoZ4lATqxNK88EikDp1QuAvaKKQCovY5qYQYtAYJGgwUThi0DavJ5XpYGMQAIIf9+cIo1A7oL9BA3EjUCqdF+k1mWOQBag+tLZB49AAEZT6PWpj0AcMOfDBCaQQBKMelX5dpBAHwAjVsfHkED3D0gpXRiRQHWzae6oaJFAetNQh5i4kUB8Xn2eGQiSQGkPz60ZV5JAnsllBYalkkB5NbbSS/OSQKUUzydYQJNA/JHLApiMk0CZoG5V+NeTQF5P4wxmIpRAzsqdGc5rlEDWnlh3HbSUQDqkKTVB+5RAh+OpfSZBlUCqmCufuoWVQOFm+RPryJVAm7WZiqUKlkA/GxHu10qWQF6rHm5wiZZAIPJsh13GlkAXYLILjgGXQDPmuynxOpdAHoNcdXZyl0BLiTzvDaiXQM1ugwyo25dA+gZXvjUNmECSGCt5qDyYQLha3DvyaZhAfv6RlgWVmEDfCmGx1b2YQN/0rFJW5JhADgZB5XsImUBDTx5+OyqZQOUV+uGKSZlAGd1oimBmmUDvY7Kqs4CZQEYrSzR8mJlAh1Tw2rKtmUAJ6mIYUcCZQIDlvy9R0JlAio5yMK7dmUCYEr/4Y+iZQDqC4zdv8JlATarNb831mUAZjWT2fPiZQBmNZPZ8+JlATarNb831mUA6guM3b/CZQJgSv/hj6JlAio5yMK7dmUCA5b8vUdCZQAnqYhhRwJlAh1Tw2rKtmUBGK0s0fJiZQO9jsqqzgJlAGd1oimBmmUDlFfrhikmZQENPHn47KplADgZB5XsImUDf9KxSVuSYQNwKYbHVvZhAfv6RlgWVmEC4Wtw78mmYQJIYK3moPJhA+gZXvjUNmEDNboMMqNuXQEuJPO8NqJdAHoNcdXZyl0Az5rsp8TqXQBdgsguOAZdAHvJsh13GlkBeqx5ucImWQD8bEe7XSpZAm7WZiqUKlkDhZvkT68iVQKqYK5+6hZVAh+OpfSZBlUA6pCk1QfuUQNaeWHcdtJRAzsqdGc5rlEBaT+MMZiKUQJugblX415NA/JHLApiMk0ClFM8nWECTQHk1ttJL85JAnsllBYalkkBpD8+tGVeSQHxefZ4ZCJJAetNQh5i4kUBzs2nuqGiRQPYPSCldGJFAHwAjVsfHkEASjHpV+XaQQBww58MEJpBAAEZT6PWpj0AWoPrS2QePQKd0X6TWZY5A7oL9BA3EjUACCH/fnCKNQNq8nlelgYxAYJGgwUThi0AnL2OamEGLQOnVC4C9oopATqxNK88EikCHKk1p6GeJQGHQHxYjzIhA2+fnF5gxiEDLpotaX5iHQKSXBsyPAIdAhclTWT9qhkDg4+7rgtWFQLra6WduQoVAfqSUqhSxhECX+7OJhyGEQLjjQ9PXk4NA01zCTRUIg0C2Zf64Tn6CQIosZ8+R9oFALw3XR+twgUAFxdXXZu2AQGsPTTYPbIBA52FVPdzZf0CBm9WoGOB+QHiJCk7j6n1AC1Zx7En6fECz1FptWA58QDXj1u0YJ3tASLE5yZNEekA9nS+kz2Z5QPRMVHjRjXhAGKlBoJy5d0BbbAvkMup2QPcJHIaUH3ZATcpnUMBZdUBfIOuhs5h0QBBlaXxq3HNAX1hhkt8kc0CiAS1VDHJyQK7HQgPpw3FAn9+NtmwacUCSe9RyjXVwQBboRGiAqm9ATPRe+vFybkCZdXDLVURtQM1thFGQHmxA8wkSF4j3bUAu5l3MmjBvQFYWsXCMOXBAZwik14/fcEAlyGRcZYpxQH3x5MUZOnJACURg0bjuckD5PgQjTahzQBL7kjbgZnRADcoKUHoqdUDJfVxsIvN1QFCOOjLewHZAk6YL47GTd0DXaQtMoGt4QCCHpLeqSHlAO24P39AqekA6LkHcEBJ7QHE0Nhxn/ntAKcikUc7vfEDxOyNoP+Z9QKLizXex4X5AKt94uRnif0AT9Ly9tXOAQDIHiwvM+IBAwMBPc0eAgUCZlyeeHgqCQGj48ixHloJAqGKQtLUkg0Agq4W6XbWDQJrdHbIxSIRAzQsB+iLdhEC+JkvaIXSFQEzIJoMdDYZAw5bwCwSohkBmqedywkSHQDoNb51E44dAZTzkWHWDiEA9Bw5cPiWJQNsWJ0mIyIlAJdSGsDptikBBHOsTPBOLQGbGZOpxuotAWZPopMBijECOsYWzCwyNQH+OQos1to1AZDigrB9hjkA+G8SqqgyPQP5oRzO2uI9A2n9Vi5AykEBxELeo5IiQQNjm4gpG35BAhQz56qI1kUAKIJcn6YuRQAzrm0oG4pFAXmg0j+c3kkDq3y/oeY2SQJx+mAaq4pJAAZKNYGQ3k0CCUVw4lYuTQI3j06Mo35NARRLRkwoylEBd6/3bJoSUQB9QwTpp1ZRAQEdaYb0llUC/sCL8DnWVQMrN9LpJw5VAweOuWVkQlkDwGNCoKVyWQMCFKZamppZALFSeNbzvlkAaqu3JVjeXQJkCgc1ifZdAJ4U5+8zBl0CK2TZXggSYQHzqkTdwRZhAIwIGTYSEmEDRp4KrrMGYQA+ooNLX/JhAb7b0tfQ1mUAKIzrF8myZQIMtUPTBoZlANJMEw1LUmUCND6ZElgSaQKmiWSd+MppAdZQtu/xdmkAUUeX4BIeaQBRmeYiKrZpA2hZHx4HRmkDtMevN3/KaQKsHxHWaEZtAyZ0WXqgtm0D0eNPwAEebQPiX92acXZtA+H+GzHNxm0A6gRoEgYKbQCumCMq+kJtARgoWtyicm0AYprxCu6SbQP/s/cRzqptADuzBd1Ctm0AO7MF3UK2bQP/s/cRzqptAGKa8Qrukm0BGCha3KJybQCumCMq+kJtAOoEaBIGCm0D4f4bMc3GbQPiX92acXZtA9HjT8ABHm0DJnRZeqC2bQKsHxHWaEZtA7THrzd/ymkDaFkfHgdGaQBRmeYiKrZpAFFHl+ASHmkBylC27/F2aQKmiWSd+MppAjQ+mRJYEmkA0kwTDUtSZQIMtUPTBoZlACiM6xfJsmUBvtvS19DWZQA+ooNLX/JhA0aeCq6zBmEAjAgZNhISYQHnqkTdwRZhAitk2V4IEmEAnhTn7zMGXQJkCgc1ifZdAGqrtyVY3l0AsVJ41vO+WQMCFKZamppZA8BjQqClclkDB465ZWRCWQMrN9LpJw5VAu7Ai/A51lUBDR1phvSWVQB9QwTpp1ZRAXev92yaElEBFEtGTCjKUQI3j06Mo35NAglFcOJWLk0ABko1gZDeTQJx+mAaq4pJA5t8v6HmNkkBbaDSP5zeSQAzrm0oG4pFACiCXJ+mLkUCFDPnqojWRQNjm4gpG35BAcRC3qOSIkEDZf1WLkDKQQP5oRzO2uI9APhvEqqoMj0BkOKCsH2GOQH+OQos1to1AibGFswsMjUBZk+ikwGKMQGbGZOpxuotAQRzrEzwTi0Ah1IawOm2KQNsWJ0mIyIlAPQcOXD4liUBlPORYdYOIQDoNb51E44dAZqnncsJEh0DDlvALBKiGQEzIJoMdDYZAviZL2iF0hUDNCwH6It2EQJrdHbIxSIRAIKuFul21g0CoYpC0tSSDQGj48ixHloJAmZcnnh4KgkDAwE9zR4CBQDIHiwvM+IBAE/S8vbVzgEAq33i5GeJ/QKLizXex4X5A8TsjaD/mfUAkyKRRzu98QHk0Nhxn/ntAOi5B3BASe0A7bg/f0Cp6QCCHpLeqSHlA02kLTKBreECYpgvjsZN3QFCOOjLewHZAyX1cbCLzdUANygpQeip1QBL7kjbgZnRA/j4EI02oc0AJRGDRuO5yQH3x5MUZOnJAJchkXGWKcUBjCKTXj99wQFYWsXCMOXBALuZdzJowb0DzCRIXiPdtQIgV72gl6G9A6rliMr6acEB5HutsbUZxQNm20wMw93FAG9xtnBStckD5imnRKGhzQFaDjSJ5KHRAnJZg5BDudEAk5c0v+rh1QDYwztE9iXZApMYgO+Ned0Bu7B5w8Dl4QL7ztPhpGnlAoIyM0FIAekBSGHRXrOt6QJUPD0J23HtA3MLbiq7SfEC27ZpjUc59QNW9JSdZz35AiA2/S77Vf0B2U/aqu3CAQPO38mU8+YBA5q/QlFqEgUAYC8xqDhKCQBlqHQtPooJA4DwbhBI1g0AD/sTKTcqDQPjIvrb0YYRAtkfD/vn7hEBKzJE1T5iFQCQ8XsfkNoZAOD/I96nXhkDO6V7gjHqHQA/YtW96H4hAVmsQaV7GiEC6jKdkI2+JQJsGjtCyGYpAKS438vTFikAOOaPo0HOLQGc4NK8sI4xAGkouIe3TjECjJeX99YWNQEW3mO0pOY5A8wcCh2rtjkBCNpFVmKKPQBxkLnBJLJBAjw7hWJyHkEARItuvM+OQQFj7Ysr9PpFARnfhjOiakUBGIw5w4faRQK+Fb4bVUpJArsstgrGukkDI5DW7YQqTQInPqjXSZZNAAJaiqO7Ak0A3NSyFohuUQBtom/3YdZRApAwXDX3PlECfmmZ/eSiVQL3k+vi4gJVAPyEu/yXYlUAx/bYAqy6WQLRGSl4yhJZA0oVmc6bYlkCuqkSf8SuXQKDJ6E3+fZdAILNNAbfOl0D7DqZaBh6YQEx/rSPXa5hAoDAEWBS4mECBIo8uqQKZQEld1yKBS5lAmThi/oeSmUCyyPzhqdeZQBaB9E7TGppAPRc3MPFbmkC0sVPj8JqaQPt2V0HA15pAc5p/p00Sm0CbFrv/h0qbQExZ9shegJtACEErH8Kzm0D16S/DouSbQFjtPiLyEpxAA98zXaI+nEBeAndPpmecQAxik5XxjZxABaxyk3ixnEBRbjp6MNKcQFSPxk0P8JxAax696QsLnUAb4DcGHiOdQG9BADw+OJ1A/qpaCGZKnUDDel7Qj1mdQCU92OO2ZZ1A8BG0f9dunUD6fu7P7nSdQLxJCvH6d51AvEkK8fp3nUD6fu7P7nSdQPARtH/Xbp1AJT3Y47ZlnUDDel7Qj1mdQP6qWghmSp1Ab0EAPD44nUAb4DcGHiOdQGsevekLC51AVI/GTQ/wnEBRbjp6MNKcQAWscpN4sZxADGKTlfGNnEBeAndPpmecQAPfM12iPpxAVu0+IvISnED16S/DouSbQAhBKx/Cs5tATFn2yF6Am0CbFrv/h0qbQHOaf6dNEptA+3ZXQcDXmkC0sVPj8JqaQD0XNzDxW5pAFoH0TtMamkCvyPzhqdeZQJk4Yv6HkplASV3XIoFLmUCBIo8uqQKZQKAwBFgUuJhATH+tI9drmED7DqZaBh6YQCCzTQG3zpdAoMnoTf59l0CuqkSf8SuXQM6FZnOm2JZAt0ZKXjKElkAx/bYAqy6WQD8hLv8l2JVAveT6+LiAlUCfmmZ/eSiVQKQMFw19z5RAG2ib/dh1lEA3NSyFohuUQP+VoqjuwJNAh8+qNdJlk0DI5DW7YQqTQK7LLYKxrpJAr4VvhtVSkkBGIw5w4faRQEZ34YzompFAV/tiyv0+kUARItuvM+OQQI8O4Vich5BAHGQucEkskEBCNpFVmKKPQO4HAodq7Y5ARbeY7Sk5jkCjJeX99YWNQBpKLiHt04xAZDg0rywjjEAOOaPo0HOLQCkuN/L0xYpAmwaO0LIZikC6jKdkI2+JQFZrEGlexohAD9i1b3ofiEDO6V7gjHqHQDg/yPep14ZAJDxex+Q2hkBKzJE1T5iFQLZHw/75+4RA+Mi+tvRhhEAD/sTKTcqDQOA8G4QSNYNAGWodC0+igkAYC8xqDhKCQOav0JRahIFA87fyZTz5gEB2U/aqu3CAQIgNv0u+1X9A070lJ1nPfkC97ZpjUc59QNzC24qu0nxAlQ8PQnbce0BSGHRXrOt6QJ6MjNBSAHpAwvO0+GkaeUBu7B5w8Dl4QKTGIDvjXndANjDO0T2JdkAk5c0v+rh1QKGWYOQQ7nRAVoONInkodED5imnRKGhzQBvcbZwUrXJA1bbTAzD3cUB5HutsbUZxQOq5YjK+mnBAiBXvaCXob0CvYB/RgPhwQAXv+BjNqXFACdew+W5gckA/3hcSdxxzQAvLlPb03XNAunHsH/ekdEAXDvDZinF1QJDZGzK8Q3ZA8j0w5pUbd0Cgb9BSIfl3QBChMWJm3HhAnGHmemvFeUAjFdJuNbR6QGTFUGrHqHtAiNuf4yKjfED7lJSKR6N9QPFDrTgzqX5AuJ+K4eG0f0DwSe/BJmOAQA8Pbw237oBAsfAhyBx9gUBEkHjXUQ6CQBtqHQtPooJA/EH4Fgw5g0CwOpWNf9KDQP5P9tqeboRAgNPVP14NhUCSbmDNsK6FQK0HbWGIUoZAhr44o9X4hkBcAa0AiKGHQNyFNayNTIhAXrIrm9P5iEDivtyERamJQLGKL+LNWopAx9Hu7VUOi0DvFbylxcOLQLkxr8sDe4xA8iem6PUzjUBxWUhPgO6NQF7cvx+Gqo5AsjwrTOlnj0BuuuRORROQQJO4cN0kc5BAWfeyloLTkEAYASs1TTSRQCoF7exylZFARiMOcOH2kUAl3m3zhViSQCnD2zNNupJATAuYeyMck0D8sC2o9H2TQFgspDCs35NAS74GLDVBlEDs6D5YeqKUQHhrPyFmA5VAhs98qOJjlUB2TrDM2cOVQJ+Q4TE1I5ZAZYOzSd6BlkC1QfBbvt+WQE/KT4++PJdADAJ18seYl0CMRRyFw/OXQCiWdkGaTZhAbzmsJTWmmEDjcYE9ff2YQBHKF6xbU5lA+EHGtbmnmUAJigLKgPqZQGJVVY2aS5pAtLFT4/CamkCmOpf4beiaQOnsrkz8M5tARk4CvIZ9m0A5mKCJ+MSbQKyO9Wg9CpxA261dh0FNnEAMYpOV8Y2cQIEH79A6zJxA1YJzDAsInUDtWKG5UEGdQLdJCvH6d51AapKfevmrnUB4IrXVPN2dQN85tEC2C55ARhh4wFc3nkANmU8nFGCeQPPSnhvfhZ5AnQ8cHq2onkBdsqOPc8ieQJLrnrYo5Z5AyWD5w8P+nkDzPqLXPBWfQMt9lQSNKJ9A425qVK44n0DPCWXKm0WfQAbAB2ZRT59A1/0jJcxVn0Dt2mcFClmfQO3aZwUKWZ9A1/0jJcxVn0AGwAdmUU+fQM8JZcqbRZ9A425qVK44n0DLfZUEjSifQPM+otc8FZ9AyWD5w8P+nkCS6562KOWeQF2yo49zyJ5AnQ8cHq2onkDz0p4b34WeQA2ZTycUYJ5ARhh4wFc3nkDfObRAtgueQHUitdU83Z1AapKfevmrnUC3SQrx+nedQO1YoblQQZ1A1YJzDAsInUCBB+/QOsycQAxik5XxjZxA261dh0FNnECsjvVoPQqcQDmYoIn4xJtAQk4CvIZ9m0Dp7K5M/DObQKY6l/ht6JpAtLFT4/CamkBiVVWNmkuaQAaKAsqA+plA+EHGtbmnmUARyhesW1OZQONxgT19/ZhAbzmsJTWmmEAllnZBmk2YQI9FHIXD85dADAJ18seYl0BPyk+PvjyXQLVB8Fu+35ZAZYOzSd6BlkCfkOExNSOWQHZOsMzZw5VAhs98qOJjlUB4az8hZgOVQOroPlh6opRAS74GLDVBlEBYLKQwrN+TQPywLaj0fZNATAuYeyMck0Aow9szTbqSQCLebfOFWJJARiMOcOH2kUAqBe3scpWRQBgBKzVNNJFAWPeyloLTkECTuHDdJHOQQG665E5FE5BAsjwrTOlnj0Be3L8fhqqOQGxZSE+A7o1A7Sem6PUzjUC5Ma/LA3uMQO8VvKXFw4tAx9Hu7VUOi0Cxii/izVqKQN++3IRFqYlAXrIrm9P5iEDchTWsjUyIQFwBrQCIoYdAhr44o9X4hkCoB21hiFKGQJJuYM2wroVAgNPVP14NhUD+T/banm6EQLA6lY1/0oNA90H4Fgw5g0Abah0LT6KCQESQeNdRDoJAsfAhyBx9gUAPD28Nt+6AQO5J78EmY4BAuJ+K4eG0f0DxQ604M6l+QPuUlIpHo31AiNuf4yKjfEBkxVBqx6h7QCMV0m41tHpAnGHmemvFeUAQoTFiZtx4QKBv0FIh+XdA7D0w5pUbd0CQ2RsyvEN2QBcO8NmKcXVAunHsH/ekdEALy5T29N1zQD/eFxJ3HHNABtew+W5gckAF7/gYzalxQK9gH9GA+HBAOPiWQVcJckBRjmHzxcVyQLzlswDgh3NAkEyTE7dPdEBh8N+6Wx11QPkYCFjd8HVAHxKgDErKdkC+VOmnrql3QPH1U5QWj3hAV9QFxYt6eUCdaXOjFmx6QESMFv29Y3tAsc5P8YZhfEDtgX/fdGV9QJqzY1WJb35AasnI/cN/f0DMTc1HEUuAQDAUsl5Q2YBApxOmEpxqgUD9cs4g8P6BQGz48ixHloJAEgtjupowg0BXKTYl482DQHIW75sXboRAEPWIGS4RhUDccvVfG7eFQLIPE/PSX4ZAk2siFEcLh0CzX8G9aLmHQBt6cqAnaohAcD63H3IdiUD1U8NPNdOJQA+GzvNci4pAJDQLfdNFi0ClfUYKggKMQIUgN2hQwYxAmaN/EiWCjUC0Amg15USOQLGoUrB0CY9A9hPwGLbPj0A8BppfxUuQQPVrB1lpsJBA8Ct2YrYVkUDVPP1Km3uRQA3rm0oG4pFABmklBuVIkkDyf5CTJLCSQOL2qn6xF5NAHPsvznd/k0Bwh0AJY+eTQNB7PD1eT5RAqsf6A1S3lEApvF6KLh+VQHNMSJfXhpVAvbTckjjulUAysySOOlWWQCAx/UrGu5ZA1u9WRMQhl0D8gcG2HIeXQKqSPam365dAyjRS9nxPmEC9sWBVVLKYQNQMMmQlFJlAEjO5sNd0mUA6kwTDUtSZQK+iWSd+MppAwZ90eEGPmkCgseZphOqaQKpajNIuRJtASQoWtyicm0CZeJxUWvKbQB1YOiusRpxABNGkCAeZnEAkJbwSVOmcQGrNDdJ8N51AalhBPGuDnUC6TWm+Cc2dQHpbMUdDFJ5ARBvjUANZnkBjyDrrNZueQPtTBcXH2p5AYFyBNaYXn0B6qnxFv1GfQN/7J7gBiZ9A4QibE129n0B95AKpwe6fQLiDOk6QDqBAE8gw9jUkoEB5v088SzigQP77hgTKSqBAqO3iqaxboEDxpmsB7mqgQOqOx1yJeKBAWh+gjHqEoEA++MbivY6gQNy+GTRQl6BAcGwj2i6eoEAR4Hm0V6OgQIK31inJpqBAT6TqKIKooEBPpOoogqigQIK31inJpqBAEeB5tFejoEBwbCPaLp6gQNy+GTRQl6BAPvjG4r2OoEBaH6CMeoSgQOqOx1yJeKBA8aZrAe5qoECo7eKprFugQP77hgTKSqBAeb9PPEs4oEATyDD2NSSgQLiDOk6QDqBAfeQCqcHun0DfCJsTXb2fQN/7J7gBiZ9Aeqp8Rb9Rn0BgXIE1phefQPtTBcXH2p5AY8g66zWbnkBEG+NQA1meQHpbMUdDFJ5Auk1pvgnNnUBqWEE8a4OdQGfNDdJ8N51AJCW8ElTpnEAE0aQIB5mcQB1YOiusRpxAmXicVFrym0BJCha3KJybQKpajNIuRJtAoLHmaYTqmkDBn3R4QY+aQK+iWSd+MppAN5MEw1LUmUAWM7mw13SZQNQMMmQlFJlAvbFgVVSymEDKNFL2fE+YQKqSPam365dA/IHBthyHl0DW71ZExCGXQCAx/UrGu5ZAL7MkjjpVlkC7tNySOO6VQHNMSJfXhpVAKbxeii4flUCqx/oDVLeUQNB7PD1eT5RAcIdACWPnk0Aa+y/Od3+TQOL2qn6xF5NA8n+QkySwkkAGaSUG5UiSQA3rm0oG4pFA0zz9Spt7kUDwK3ZithWRQPVrB1lpsJBAPAaaX8VLkEDyE/AYts+PQLGoUrB0CY9AtAJoNeVEjkCZo38SJYKNQIUgN2hQwYxApX1GCoICjEAkNAt900WLQA+GzvNci4pA9VPDTzXTiUBwPrcfch2JQBt6cqAnaohAs1/BvWi5h0CTayIURwuHQLIPE/PSX4ZA3HL1Xxu3hUAQ9YgZLhGFQHIW75sXboRAVyk2JePNg0ASC2O6mjCDQGz48ixHloJA/XLOIPD+gUCkE6YSnGqBQDQUsl5Q2YBAzE3NRxFLgEBqycj9w39/QJqzY1WJb35A64F/33RlfUC3zk/xhmF8QESMFv29Y3tAnWlzoxZsekBX1AXFi3p5QPH1U5QWj3hAxFTpp66pd0AfEqAMSsp2QPkYCFjd8HVAYfDfulsddUCLTJMTt090QLnlswDgh3NAUY5h88XFckA4+JZBVwlyQJG/fJTaJnNAb2l3HPDuc0BjJJi+Cr10QMmsgjw9kXVAcYEzK5lrdkClb5HfLkx3QNwd4loNM3hAgMwsN0IgeUD/AZeT2RN6QB1QxwDeDXtAs9RabVgOfECChHoSUBV9QA62nWDKIn5AssCH7Mo2f0CSbUeuqSiAQIBZHasxuYBAeb0kNvxMgUBbNJUGB+SBQLZl/rhOfoJAQoQRx84bg0CHc7x/gbyDQBRPnv9fYIRAiA7dKWIHhUAa+2OhfrGFQFufksKqXoZAXsVjndoOh0AC/hPwAMKHQLwJTyIPeIhAWVLrQPUwiUCqdTr6oeyJQKSo9ZoCq4pAb3zMCwNsi0A2SJzPjS+MQE0tVgKM9YxAGVaZWOW9jUA7tQYggIiOQH0mU0BBVY9ARjWOHgYSkEC6gkKcYXqQQARJTXuj45BAWc/EcLtNkUB601CHmLiRQPmZFSIpJJJA29AIAFuQkkC/urA/G/2SQC/NTWNWapNAm6BuVfjXk0D4wO1t7EWUQNaeWHcdtJRA046+tHUilUCpc+bn3pCVQD9c6VdC/5VA+Qsw2IhtlkCqENHPmtuWQKG2TEFgSZdAANmj0sC2l0B/O8bVoyOYQILKVFHwj5hAs8+zCY37mEAZ3WiKYGaZQIXlvy9R0JlAfLGyMEU5mkC9mg2pIqGaQHw1zKPPB5tAqFCoJTJtm0CLetU3MNGbQGkA4/KvM5xAtiy+iZeUnEB3WM5UzfOcQBw7JN03UZ1Avr61572snUD3fp+ARgaeQBf+ZAa5XZ5As4YoNf2ynkAlodMx+wWfQHv5KJWbVp9AaI+4dsekn0ACC693aPCfQKWMvGa0HKBAn+AZptk/oEAfW3G4mWGgQOjisrXqgaBA6U8TFMOgoEAiLrysGb6gQFUnUcDl2aBAt/NH+x70oEA9zQ96vQyhQF1/Bc25I6FAbE0x/Aw5oUArDcyKsEyhQJj4iHqeXqFAmOGhTtFuoUBknKMORH2hQC6h+EjyiaFAbRMwFdiUoUBrjP8V8p2hQOY3/no9paFAeAMYAriqoUA31bf4X66hQCTypzw0sKFAJPKnPDSwoUA31bf4X66hQHgDGAK4qqFA5jf+ej2loUBrjP8V8p2hQG0TMBXYlKFALqH4SPKJoUBknKMORH2hQJjhoU7RbqFAmPiIep5eoUAqDcyKsEyhQGxNMfwMOaFAXX8FzbkjoUA9zQ96vQyhQLbzR/se9KBAVSdRwOXZoEAiLrysGb6gQOlPExTDoKBA6OKyteqBoEAcW3G4mWGgQJ/gGabZP6BApYy8ZrQcoEACC693aPCfQGiPuHbHpJ9Ae/kolZtWn0AlodMx+wWfQLeGKDX9sp5AF/5kBrldnkD3fp+ARgaeQLm+tee9rJ1AHDsk3TdRnUB8WM5UzfOcQLYsvomXlJxAaQDj8q8znECIetU3MNGbQKhQqCUybZtAfDXMo88Hm0C9mg2pIqGaQHyxsjBFOZpAgOW/L1HQmUAZ3WiKYGaZQLbPswmN+5hAgspUUfCPmEB/O8bVoyOYQADZo9LAtpdAobZMQWBJl0CtENHPmtuWQPkLMNiIbZZAP1zpV0L/lUCpc+bn3pCVQNOOvrR1IpVA1p5Ydx20lED4wO1t7EWUQJugblX415NAL81NY1Zqk0C/urA/G/2SQNvQCABbkJJA+ZkVIikkkkB601CHmLiRQFnPxHC7TZFABElNe6PjkEC6gkKcYXqQQEY1jh4GEpBAfSZTQEFVj0A7tQYggIiOQBlWmVjlvY1ASS1WAoz1jEA2SJzPjS+MQG98zAsDbItApKj1mgKrikCqdTr6oeyJQFZS60D1MIlAvAlPIg94iEAC/hPwAMKHQF7FY53aDodAW5+SwqpehkAZ+2OhfrGFQIgO3SliB4VAFE+e/19ghECHc7x/gbyDQEKEEcfOG4NAtmX+uE5+gkBdNJUGB+SBQHm9JDb8TIFAgFkdqzG5gECSbUeuqSiAQLDAh+zKNn9AELadYMoifkCChHoSUBV9QLPUWm1YDnxAHVDHAN4Ne0D8AZeT2RN6QIPMLDdCIHlA3B3iWg0zeEClb5HfLkx3QHGBMyuZa3ZAxayCPD2RdUBjJJi+Cr10QG9pdxzw7nNAkb98lNomc0AvUM5/SlF0QKRJ0+ONJXVAFTqYMDQAdkAWlwdMUeF2QOqXF933yHdAwvUsNzm3eEDe5l5FJax5QJM6qHXKp3pAxgESpDWqe0Cmr+QFcrN8QNUZ7RSJw31A+jHjeoLafkBwwAD9Y/h/QOdl67OYjoBAp1q4PXYkgUCOMupryr2BQBqV9/STWoJAx5d/bND6gkAmzkQ6fJ6DQIDNdpGSRYRADVBSaA3whECRKiBw5Z2FQPBHmw0ST4ZA5tfFUYkDh0BH0DXzP7uHQNvL4EcpdohAezVvPzc0iUBzih5eWvWJQOJTOriBuYpAoEMz7pqAi0BAplspkkqMQEMZUBlSF41ALyoT8sPmjUBSMOJqz7iOQHBayb1ajY9AUUP+UyUykECKCX01wZ6QQOEyPudxDJFAITmfkSd7kUCEg0uj0eqRQKwTd9NeW5JAQ5aHJL3MkkCG7Czn2T6TQEL56b2hsZNAXy4OoQAllECTCCDj4ZiUQDxVuDUwDZVA/crNrtWBlUC1KHDOu/aVQJi48YTLa5ZAfL19Oe3glkBp+RnRCFaXQL8jEbYFy5dAgc3D38o/mECH2tzaPrSYQMVe5tFHKJlAJlk7lsubmUDtb1Kprw6aQMZ/XUbZgJpA8Hw5bC3ymkDi1qnnkGKbQMpC2l3o0ZtAHochVxhAnECWnP9JBa2cQLA2UaaTGJ1ALIay4KeCnUAnzgp+JuudQEsuOh/0UZ5Ai9LijPW2nkBJjUbDDxqfQNy4Mf4ne59AChzsxCPan0BfOBR7dBugQLaK9emuSKBAAzGwh7R0oEDphk3qeJ+gQCeIGevvyKBAQbRerA3xoECEnwqfxhehQK1yN4gPPaFAQKWWht1goUAFTLkXJoOhQF9mMh3fo6FA1aiP4f7CoUBjWiUdfOChQEf0qfpN/KFAxFCeG2wWokCUVX+czi6iQAEpvhhuRaJAGyZ8rkNaokBf7AcCSW2iQBoRGUF4fqJAiCXIJcyNokAh80D5P5uiQAQALZbPpqJA4J/UanewokBtCfV6NLiiQPMdSmEEvqJA2sbKUOXBokDqBJcV1sOiQOoElxXWw6JA2sbKUOXBokDzHUphBL6iQG0J9Xo0uKJA4J/UanewokAEAC2Wz6aiQCHzQPk/m6JAiCXIJcyNokAaERlBeH6iQF/sBwJJbaJAGSZ8rkNaokABKb4YbkWiQJRVf5zOLqJAxFCeG2wWokBG9Kn6TfyhQGNaJR184KFA1aiP4f7CoUBfZjId36OhQAVMuRcmg6FAQKWWht1goUCtcjeIDz2hQISfCp/GF6FAQbRerA3xoEAniBnr78igQOmGTep4n6BAAzGwh7R0oEC5ivXprkigQF84FHt0G6BAChzsxCPan0DXuDH+J3ufQEmNRsMPGp9AkdLijPW2nkBLLjof9FGeQCfOCn4m651AJ4ay4KeCnUCwNlGmkxidQJac/0kFrZxAHochVxhAnEDKQtpd6NGbQN/WqeeQYptA7Xw5bC3ymkDJf11G2YCaQO1vUqmvDppAJlk7lsubmUDFXubRRyiZQIfa3No+tJhAg83D38o/mEC/IxG2BcuXQGn5GdEIVpdAfL19Oe3glkCVuPGEy2uWQLUocM679pVA/crNrtWBlUA8Vbg1MA2VQJMIIOPhmJRAXC4OoQAllEA/+em9obGTQIbsLOfZPpNAQ5aHJL3MkkCsE3fTXluSQISDS6PR6pFAHjmfkSd7kUDhMj7ncQyRQIoJfTXBnpBAUUP+UyUykEBwWsm9Wo2PQE0w4mrPuI5ALyoT8sPmjUBDGVAZUheNQECmWymSSoxAoEMz7pqAi0DfUzq4gbmKQHOKHl5a9YlAezVvPzc0iUDby+BHKXaIQEfQNfM/u4dA5NfFUYkDh0DwR5sNEk+GQJEqIHDlnYVADVBSaA3whECAzXaRkkWEQCLORDp8noNAyJd/bND6gkAalff0k1qCQI4y6mvKvYFAp1q4PXYkgUDnZeuzmI6AQHbAAP1j+H9A+jHjeoLafkDVGe0UicN9QKav5AVys3xAwwESpDWqe0CWOqh1yqd6QN7mXkUlrHlAwvUsNzm3eEDqlxfd98h3QBSXB0xR4XZADzqYMDQAdkCkSdPjjSV1QC9Qzn9KUXRAmxYjV+GIdUB7Qmf+22l2QJRKVn+bUXdAD8gC8TRAeEBpnW8YvDV5QA2TtlJDMnpAwVYOf9s1e0Cmerzok0B8QMWdADF6Un1AA3AGOZprfkBOxuwL/ot/QLU2eOTWWYBA+e7kxlfxgEBYr6awg4yBQIHBLo9bK4JAeCagL9/NgkCpwrM0DXSDQCuQ3gzjHYRAAl3C6FzLhEATsPGxdXyFQCx+DwInMYZAl19TGmnphkCp93rbMqWHQLA4Mb55ZIhAhyD0yzEniUDXc4GYTe2JQKjg0ju+topAqsqxTHODi0C81erbWlOMQEcNKXBhJo1AKEiAAnL8jUDfIq77ddWOQPiZGDJVsY9AMHxI9PpHkECttvBmnriQQH2blX6GKpFAam+N/6OdkUDmx/vl5hGSQOAGSWc+h5JAU6kL9Jj9kkD8I2U65HSTQOXA0ygN7ZNAMqN68f9llEAmyOANqN+UQNCJJ0PwWZVAzNO4psLUlUD442yjCFCWQE4YJ/+qy5ZAzfHo4JFHl0AAGFrXpMOXQIPNw9/KP5hA1ud9beq7mEBlAMtx6TeZQGc2IWSts5lAynzcShsvmkCrElfEF6qaQD1pZBCHJJtAk2AqGk2em0Cda1SCTRecQDLWm6lrj5xAshOgu4oGnUDxqwm6jXydQD4O8odX8Z1A6UeK9cpknkAAVfrLytaeQIF/ctk5R59ASwNo/fq1n0DA+XqaeBGgQN+UrdP/RqBAdOxG2YR7oEB0me57+a6gQL62TLRP4aBANCpdqXkSoUB4P762aUKhQNSW9nIScaFATWWutWaeoUBHANidWcqhQMyww5fe9KFASs4aY+kdokABKb4YbkWiQCXXgzBha6JAT4bQhrePokDmhAhiZrKiQCrM1Hdj06JABGw48qTyokB41XJ0IRCjQD2fqx/QK6NA2IFkl6hFo0A7ba4Fo12jQIbBHh+4c6NAkN6BJuGHo0DLakjwF5qjQB3hrOVWqqNAjiaPB5m4o0BUHATx2cSjQMpXl9kVz6NAI2E9l0nXo0DqEfWfct2jQF7mFguP4aNAhk9Rkp3jo0CGT1GSneOjQF7mFguP4aNA6hH1n3Ldo0AjYT2XSdejQMpXl9kVz6NAVBwE8dnEo0COJo8HmbijQB3hrOVWqqNAy2pI8Beao0CQ3oEm4YejQIbBHh+4c6NAO22uBaNdo0DYgWSXqEWjQD2fqx/QK6NAd9VydCEQo0AEbDjypPKiQCrM1Hdj06JA5oQIYmayokBPhtCGt4+iQCXXgzBha6JAASm+GG5FokBKzhpj6R2iQMyww5fe9KFARwDYnVnKoUBLZa61Zp6hQNSW9nIScaFAeD++tmlCoUA0Kl2peRKhQL62TLRP4aBAdJnue/muoEB07EbZhHugQN+UrdP/RqBAwPl6mngRoEBLA2j9+rWfQIF/ctk5R59A/FT6y8rWnkDsR4r1ymSeQD4O8odX8Z1A8asJuo18nUCyE6C7igadQDLWm6lrj5xAnWtUgk0XnECTYCoaTZ6bQD1pZBCHJJtAqBJXxBeqmkDHfNxKGy+aQGc2IWSts5lAZQDLcek3mUDW531t6ruYQIPNw9/KP5hAABha16TDl0DK8ejgkUeXQE4YJ/+qy5ZA+ONsowhQlkDM07imwtSVQNCJJ0PwWZVAJMjgDajflEAyo3rx/2WUQOXA0ygN7ZNA/CNlOuR0k0BQqQv0mP2SQOAGSWc+h5JA5sf75eYRkkBqb43/o52RQH2blX6GKpFArbbwZp64kEAwfEj0+keQQPiZGDJVsY9A3yKu+3XVjkAoSIACcvyNQEcNKXBhJo1AvNXq21pTjECqyrFMc4OLQKjg0ju+topA13OBmE3tiUCHIPTLMSeJQLA4Mb55ZIhAqfd62zKlh0CXX1MaaemGQCx+DwInMYZAE7DxsXV8hUD+XMLoXMuEQC6Q3gzjHYRAqcKzNA10g0B4JqAv382CQIHBLo9bK4JAV6+msIOMgUD/7uTGV/GAQLU2eOTWWYBATsbsC/6Lf0ADcAY5mmt+QMWdADF6Un1Arnq86JNAfEDBVg5/2zV7QA2TtlJDMnpAaZ1vGLw1eUAJyALxNEB4QJFKVn+bUXdAe0Jn/ttpdkCbFiNX4Yh1QAky53/TzXZAvlkF9RC8d0Cad4JnebF4QDQDriwjrnlAJJfaMyOyekCW3DrvjL17QKTtmzxy0HxAbokKTuPqfUCICnGS7gx/QCdQHk9QG4BAJGsMCgK0gEDJeujGkFCBQI2js8L/8IFAZ1c5H1GVgkCqvunXhT2DQB5b6Lad6YNAKatXSpeZhECOt+rZb02FQAOSxVwjBYZAJeG1b6zAhkDtpcxLBICHQDxuYr0iQ4hA+CiPG/4JiUAnyR5Ai9SJQObVC4C9oopAMu6IpIZ0i0C2J6Lk1kmMQAIIf9+cIo1ATKZNl8X+jUA2S99sPN6OQHKh/hvrwI9A2Z9D3FxTkEAfACNWx8eQQGif1FqnPZFAG9ijc+60kUDQDCJUjS2SQDrcydpzp5JAp1YWEpEik0CqmxAy056TQP7/VaInHJRAUJGY/HqalEBBgJsPuRmVQJanrOLMmZVAAxScuaAalkD1GDIZHpyWQJYlJMwtHpdAjDGI6Legl0B+O8bVoyOYQBH0BlPYpphAQ08efjsqmUCHVPDasq2ZQCQjTlsjMZpAAb5IZ3G0mkCIzvblgDebQDksqkY1uptAXpSRinE8nEBynMJOGL6cQO6Kp9YLP51A3WPMFi6/nUAYHAbAYD6eQMqM7kqFvJ5AIGuvA305n0DMNRYWKbWfQHtd9Uy1F6BANsfATxFUoEDawEEemY+gQN12cUw9yqBAcLD7fe4DoUCzBtxsnTyhQLyQBvA6dKFAdgMYAriqoUAMMQnIBeChQATE4ZcVFKJAfQVm/9hGokCwdLvKQXiiQC3w/wpCqKJAuS7PHMzWokAGR7Ku0gOjQPYJdcdIL6NAm/tczCFZo0DAwj2HUYGjQF32ZizMp6NAE0NnYIbMo0Bv+aA9de+jQGYvrFmOEKRAAL2CyscvpEBMfHIrGE2kQBhZ0qF2aKRAF+N24dqBpECOP+MwPZmkQO6DM22WrqRAWbK9DeDBpEDCwmYnFNOkQNlXqW8t4qRAQ/VLPyfvpED3xMSU/fmkQDU0SRatAqVA3uuHEzMJpUCU5QuHjQ2lQCadRxe7D6VAJp1HF7sPpUCU5QuHjQ2lQN7rhxMzCaVANTRJFq0CpUD3xMSU/fmkQEP1Sz8n76RA2Vepby3ipEDCwmYnFNOkQFmyvQ3gwaRA7oMzbZaupECMP+MwPZmkQBfjduHagaRAGFnSoXZopEBMfHIrGE2kQP28gsrHL6RAZi+sWY4QpEBv+aA9de+jQBNDZ2CGzKNAXfZmLMyno0DAwj2HUYGjQJv7XMwhWaNA9gl1x0gvo0AGR7Ku0gOjQLkuzxzM1qJALPD/CkKookCwdLvKQXiiQH0FZv/YRqJABMThlxUUokAMMQnIBeChQHYDGAK4qqFAvJAG8Dp0oUCzBtxsnTyhQHCw+33uA6FA3XZxTD3KoEDawEEemY+gQDTHwE8RVKBAfV31TLUXoEDMNRYWKbWfQCBrrwN9OZ9AyozuSoW8nkAYHAbAYD6eQN1jzBYuv51A7oqn1gs/nUBynMJOGL6cQFqUkYpxPJxANyyqRjW6m0CIzvblgDebQAG+SGdxtJpAJCNOWyMxmkCHVPDasq2ZQENPHn47KplADvQGU9immEB+O8bVoyOYQIwxiOi3oJdAliUkzC0el0D1GDIZHpyWQP8TnLmgGpZAlqes4syZlUBBgJsPuRmVQFCRmPx6mpRA+/9VoicclECqmxAy056TQKdWFhKRIpNAOtzJ2nOnkkDQDCJUjS2SQBvYo3PutJFAaJ/UWqc9kUAfACNWx8eQQNmfQ9xcU5BAcqH+G+vAj0A2S99sPN6OQEymTZfF/o1AAgh/35wijUC2J6Lk1kmMQDLuiKSGdItA5tULgL2iikAnyR5Ai9SJQPgojxv+CYlAPG5ivSJDiEDtpcxLBICHQCXhtW+swIZAAJLFXCMFhkCRt+rZb02FQCmrV0qXmYRAHlvotp3pg0CqvunXhT2DQGRXOR9RlYJAk6Ozwv/wgUDJeujGkFCBQCRrDAoCtIBAJ1AeT1AbgECICnGS7gx/QHiJCk7j6n1ApO2bPHLQfECW3DrvjL17QCSX2jMjsnpALwOuLCOueUCXd4JnebF4QL5ZBfUQvHdACTLnf9PNdkBZQUDkTiB4QNsmgpFcHHlAKPgOof8fekCqvbSzTyt7QJz9gu9iPnxAxDpQ501ZfUCM6RqCI3x+QBL8U+L0pn9ArOKQpuhsgECPRdUIYwqBQGpYOzjvq4FAH3d9wZFRgkCTw60RTvuCQJ73PGomqYNAKVov1RtbhEAM9YgZLhGFQAJV+q9by4VAm0HXt6GJhkDb+WDs+0uHQEmZbZpkEohAdFl2ltTciEA/bBYzQ6uJQFMsBDimfYpAtFiO2fFTi0BjAaewGC6MQI6xhbMLDI1AyULqLrrtjUB4mgnAEdOOQLBeLU/+u49A1bmHBTVUkEA15nyyHsyQQDRl2YavRZFA4wef+dnAkUC0oryfjz2SQCL2zSvBu5JAWW5Qbl47k0CfzU9WVryTQBeSjfKWPpRAUqElcw3ClEARebIrpkaVQFPW8pVMzJVAmnHyVOtSlkBnGbc4bNqWQK0bc0K4YpdAp5I9qbfrl0Amy1DfUXWYQNaZzpdt/5hAbxEKzfCJmUA5p1XHwBSaQEVtVCTCn5pAk6HM3tgqm0D+aflW6LWbQHgrWVvTQJxAJoP1MXzLnEDUfiGixFWdQI5Lqv6N351AJCp2MLlonkCDFI3BJvGeQE8chui2eJ9AJipUlEn/n0B8MzY8X0KgQFcfoIx6hKBArkmCbObFoEC2sl+CkgahQOtyynBuRqFAZ04m3WmFoUAjhYN2dMOhQF/yjfx9AKJAV3CMRnY8okDqWmxKTXeiQLL01CPzsKJAul0+G1jpokCCugetbCCjQI0ciJAhVqNA9LMVv2eKo0BXy/56ML2jQM8McFZt7qNAHZBDOhAepEDWNrRsC0ykQEzk8JdReKRAdiuL0NWipEA6Hb2bi8ukQKf1gfVm8qRAbX59VlwXpUAQGK65YDqlQJt65aFpW6VAs2AEH216pUAVdvXSYZelQGALZPY+sqVAjT0rXfzKpUCSbnp6kuGlQPEerGT69aVAgGzM2C0IpkBtssw9JximQKP/YafhJaZAzlSM2FgxpkCz2MRFiTqmQLVw0RZwQaZAhWw8KAtGpkB+NW8MWUimQH41bwxZSKZAhWw8KAtGpkC1cNEWcEGmQLPYxEWJOqZAzlSM2FgxpkCj/2Gn4SWmQG2yzD0nGKZAgGzM2C0IpkDxHqxk+vWlQJJuenqS4aVAij0rXfzKpUBgC2T2PrKlQBV29dJhl6VAs2AEH216pUCZeuWhaVulQBAYrrlgOqVAbX59VlwXpUCn9YH1ZvKkQDodvZuLy6RAdiuL0NWipEBM5PCXUXikQNY2tGwLTKRAHZBDOhAepEDPDHBWbe6jQFbL/nowvaNA9LMVv2eKo0CNHIiQIVajQIK6B61sIKNAul0+G1jpokCy9NQj87CiQOlabEpNd6JAV3CMRnY8okBf8o38fQCiQCOFg3Z0w6FAZk4m3WmFoUDpcspwbkahQLeyX4KSBqFArkmCbObFoEBXH6CMeoSgQHwzNjxfQqBAJipUlEn/n0BPHIbotnifQIMUjcEm8Z5AJCp2MLlonkCOS6r+jd+dQNB+IaLEVZ1AJoP1MXzLnEB4K1lb00CcQP5p+VbotZtAk6HM3tgqm0BCbVQkwp+aQDWnVcfAFJpAbxEKzfCJmUDWmc6Xbf+YQCbLUN9RdZhAo5I9qbfrl0CtG3NCuGKXQGcZtzhs2pZAmnHyVOtSlkBT1vKVTMyVQA55siumRpVAUKElcw3ClEAXko3ylj6UQJ/NT1ZWvJNAWW5Qbl47k0Ai9s0rwbuSQLKivJ+PPZJA4wef+dnAkUA0ZdmGr0WRQDXmfLIezJBA1bmHBTVUkECpXi1P/ruPQHiaCcAR045AyULqLrrtjUCOsYWzCwyNQGMBp7AYLoxArFiO2fFTi0BTLAQ4pn2KQD9sFjNDq4lAdFl2ltTciEBJmW2aZBKIQNj5YOz7S4dAm0HXt6GJhkACVfqvW8uFQAz1iBkuEYVAKVov1RtbhECe9zxqJqmDQJPDrRFO+4JAH3d9wZFRgkBqWDs476uBQI9F1QhjCoFApuKQpuhsgEAS/FPi9KZ/QIzpGoIjfH5AxDpQ501ZfUCc/YLvYj58QKq9tLNPK3tAJfgOof8fekDbJoKRXBx5QFlBQOROIHhA0E1SZXqAeUDFCTFL54p6QNUOt0VYnXtAPbyYTua3fEC1aDPPqNp9QBaRrYa1BX9AATT4N5AcgECz2sTTfbqAQJvOwqirXIFAlUKovyADgkDn9dgK462CQP/JeFn3XINAr3icSmEQhEC9n6FAI8iEQBqRt1Q+hIVATIqiSrJEhkASJMOEfQmHQMHxa/ic0odAZmiPIgygiEAePtD8xHGJQH6D/vK/R4pAKsEL2fMhi0B0ZYDhVQCMQHvEfJTZ4oxAot1Px3DJjUAz/q2UC7SOQEo2kVWYoo9AD7RmzYFKkECRwbATnMWQQF+ex3WPQpFAFydhgE/BkUCK9SfTzkGSQPBjix//w5JAT88DKNFHk0CY2M6/NM2TQFgmJ8sYVJRAb+f6P2vclEDPECQnGWaVQI0FJZ4O8ZVAiwls2TZ9lkBCjB8nfAqXQBECdfLHmJdADqiTxwIomECjMARYFLiYQO31rX/jSJlACuthSlbamUBcH/P5UWyaQLk93Ay7/ppA8gZxRXWRm0CCW5qxYyScQA36GrNot5xABqtaCGZKnUB7IrXVPN2dQEJzSa/Nb55Ag39Go/gBn0BIZrBEnZOfQD5ATVtNEqBA0oro22daoEAHxHZXDaKgQPCoZ9ss6aBAjOS5VbUvoUCSIJOblXWhQNzhAHC8uqFAl6Heihj/oUAvat2fmEKiQPUXqWUrhaJAQjgnnb/GokBlYMsYRAejQC62/MOnRqNAe0iIqtmEo0AjvRsAycGjQLbEwydl/aNAtLJpu503pECvikuTYnCkQK/Iac2jp6RAhCTm1FHdpED7jE5pXRGlQGCZz6W3Q6VAwbRJCFJ0pUDJT0R4HqOlQC9zuk0P0KVA9x28Vxf7pUDX79/iKSSmQFa5gL86S6ZA76fCRz5wpkCS5VtlKZOmQM2mHJfxs6ZAdMsy9ozSpkCrYCU78u6mQCuChMIYCadAn0pKkfggp0DKt+lYijanQBWfCHvHSadAmQniDKpap0B5i07aLGmnQKppcGhLdadAbaIB+AF/p0BPL0KHTYanQHwchdMri6dAg1ZbWpuNp0CDVltam42nQHwchdMri6dATy9Ch02Gp0BtogH4AX+nQKppcGhLdadAeYtO2ixpp0CZCeIMqlqnQBWfCHvHSadAyrfpWIo2p0CfSkqR+CCnQCmChMIYCadAq2AlO/LupkB0yzL2jNKmQM2mHJfxs6ZAkeVbZSmTpkDvp8JHPnCmQFa5gL86S6ZA1+/f4ikkpkD3HbxXF/ulQC9zuk0P0KVAyU9EeB6jpUDBtEkIUnSlQGCZz6W3Q6VA+4xOaV0RpUCDJObUUd2kQK/Iac2jp6RAr4pLk2JwpEC0smm7nTekQLbEwydl/aNAI70bAMnBo0B6SIiq2YSjQC62/MOnRqNAZWDLGEQHo0BCOCedv8aiQPQXqWUrhaJALmrdn5hCokCXod6KGP+hQNzhAHC8uqFAkiCTm5V1oUCM5LlVtS+hQO6oZ9ss6aBAB8R2Vw2ioEDSiujbZ1qgQD5ATVtNEqBASGawRJ2Tn0CAf0aj+AGfQEJzSa/Nb55AeyK11TzdnUAGq1oIZkqdQA36GrNot5xAf1uasWMknEDuBnFFdZGbQLk93Ay7/ppAXB/z+VFsmkAK62FKVtqZQOr1rX/jSJlAozAEWBS4mEAOqJPHAiiYQBECdfLHmJdAQowfJ3wKl0CJCWzZNn2WQIsFJZ4O8ZVAzxAkJxlmlUBv5/o/a9yUQFgmJ8sYVJRAmNjOvzTNk0BMzwMo0UeTQPBjix//w5JAivUn085BkkAXJ2GAT8GRQF+ex3WPQpFAjcGwE5zFkEAPtGbNgUqQQEo2kVWYoo9AM/6tlAu0jkCi3U/HcMmNQHXEfJTZ4oxAdGWA4VUAjEAqwQvZ8yGLQH6D/vK/R4pAHj7Q/MRxiUBiaI8iDKCIQMHxa/ic0odAEiTDhH0Jh0BMiqJKskSGQBqRt1Q+hIVAvZ+hQCPIhECveJxKYRCEQP/JeFn3XINA5/XYCuOtgkCVQqi/IAOCQJbOwqirXIFAs9rE0326gEABNPg3kByAQBaRrYa1BX9AtWgzz6jafUA9vJhO5rd8QNIOt0VYnXtAxQkxS+eKekDQTVJleoB5QCfipk117npANPODs9EHfEAjAas3pSl9QCYtPToKVH5ASz2TdBmHf0DxO/XudGGAQOZa9EfIA4FAVbiDVZCqgUAEInud1VWCQA0Bg42fBYNA5A9XbfS5g0BMah9R2XKEQCNu6QtSMIVACiZKImHyhUB6NDS9B7mGQFFsC51FhIdAhXQADRlUiEC4/b7WfiiJQGIyeTZyAYpAeiRbz+zeikBbDXGg5sCLQBA+C/pVp4xAQJ+qcy+SjUC8loDiZYGOQMAXjVDqdI9ASsMy+lU2kEDOedcUTLSQQBwBKzVNNJFALktHJE62kUAukNK0QjqSQO6H1cAdwJJAT88DKNFHk0Da4HrOTdGTQPTQ+5uDXJRArsKje2HplECfySZc1XeVQOqnkDDMB5ZA8YyO8TGZlkCxqkSf8SuXQDQkskP1v5dA5H+l9SVVmEDtbEPca+uYQPtKITOugplAGYH0TtMamkAuSdeiwLOaQLssI8ZaTZtAQAPheoXnm0Cw0820I4KcQE6K86AXHZ1AHQLUrUK4nUDvbCSUhVOeQOexFmDA7p5APOQte9KJn0A+QE1bTRKgQH1UDat7X6BAuROtDWOsoECAw+Yo8vigQIWUgW0XRaFAwmSyHcGQoUB9vbFT3duhQM7cgwhaJqJAA2jvGiVwokAuM59WLLmiQLxba3tdAaNA48fFRKZIo0AI80Vx9I6jQGHIT8o11KNAcinRK1gYpEDhnBGMSVukQDWFjwP4nKRAgyTm1FHdpEAlnLd0RRylQHsElpHBWaVAK6rmG7WVpUAuc7pND9ClQExnlrK/CKZAkFQnL7Y/pkDhidsI43SmQEynXe02qKZAQI3r+aLZpkApgoTCGAmnQMm36ViKNqdAJXBsU+php0B8HIXTK4unQOfuLoxCsqdAcHoDyCLXp0A7IxJvwfmnQBpLbwwUGqhAkVR30xA4qECux8GkrlOoQCkZwRLlbKhAwcsLZqyDqEAc30uh/ZeoQAu90YTSqahAPxbIkSW5qEBZYgYN8sWoQAT8fwE00KhAGBhOQujXqECpH1NsDN2oQOw9duee36hA7D12557fqECpH1NsDN2oQBgYTkLo16hABPx/ATTQqEBZYgYN8sWoQD8WyJEluahAC73RhNKpqEAc30uh/ZeoQMHLC2asg6hAKRnBEuVsqECsx8GkrlOoQJFUd9MQOKhAGktvDBQaqEA7IxJvwfmnQG96A8gi16dA5+4ujEKyp0B8HIXTK4unQCVwbFPqYadAybfpWIo2p0ApgoTCGAmnQECN6/mi2aZATKdd7TaopkDhidsI43SmQJBUJy+2P6ZAS2eWsr8IpkAuc7pND9ClQCuq5hu1laVAewSWkcFZpUAlnLd0RRylQIMk5tRR3aRAM4WPA/icpEDhnBGMSVukQHIp0StYGKRAYchPyjXUo0AG80Vx9I6jQOLHxUSmSKNAvltre10Bo0AuM59WLLmiQANo7xolcKJAztyDCFomokB8vbFT3duhQMJksh3BkKFAhZSBbRdFoUCAw+Yo8vigQLkTrQ1jrKBAe1QNq3tfoEA+QE1bTRKgQDzkLXvSiZ9A57EWYMDunkDvbCSUhVOeQBkC1K1CuJ1ASYrzoBcdnUCw0820I4KcQEAD4XqF55tAuywjxlpNm0ArSdeiwLOaQBmB9E7TGppA+0ohM66CmUDtbEPca+uYQOR/pfUlVZhAMiSyQ/W/l0CuqkSf8SuXQPGMjvExmZZA6qeQMMwHlkCfySZc1XeVQK7Co3th6ZRA8tD7m4NclEDa4HrOTdGTQE/PAyjRR5NA7ofVwB3AkkAukNK0QjqSQClLRyROtpFAHAErNU00kUDOedcUTLSQQErDMvpVNpBAwBeNUOp0j0CyloDiZYGOQECfqnMvko1AED4L+lWnjEBbDXGg5sCLQHokW8/s3opAXzJ5NnIBikC4/b7WfiiJQIV0AA0ZVIhAUWwLnUWEh0B6NDS9B7mGQAomSiJh8oVAI27pC1IwhUBMah9R2XKEQOQPV230uYNADQGDjZ8Fg0D/IXud1VWCQFW4g1WQqoFA5lr0R8gDgUDxO/XudGGAQEs9k3QZh39AJi09OgpUfkAeAas3pSl9QDTzg7PRB3xAJ+KmTXXuekA9eoPEVmp8QAVKpOMzk31AuDs/if/EfkCjSn+J1f9/QC3GPf3noYBARU+xi4NIgUAhhr2RyPOBQCKnhCbBo4JA8GIWSHZYg0AN4uLM7xGEQOetO1U00IRAJi/sPEmThUCOvfOMMluGQKCDa+3yJ4dANrmil4v5h0B48XtI/M+IQEJsFjNDq4lADIbO81yLikB+haCDRHCLQD4h+SvzWYxAwiv/emBIjUA/3GE4gjuOQJItt1pMM49A+eC6ftgXkEAZ1MorUJiQQPKgcVkEG5FASbEHMuufkUAPx8Ph+SaSQPJ/kJMksJJAWW5Qbl47k0Clz5WSmciTQLu40hjHV5RAbF4GENfolED45Ot8uHuVQMXjrllZEJZAw4UplqamlkAn5q8YjD6XQFf6a7/015dA8gZNYspymEDYRY3V9Q6ZQHsG0OxerJlASDHafuxKmkCcseZphOqaQNHhl5gLi5tAIKiGB2YsnEA4hG/Lds6cQFNb/RcgcZ1AelsxR0MUnkB12GbhwLeeQCeM8aV4W59AKSpUlEn/n0AIXgb7iFGgQA/gebRXo6BAxEQVdf/0oEDtcspwbkahQNrI7JaSl6FAIUdymFnooUDt+HLusDiiQO2s4+CFiKJA9tiIjcXXokA4Sx7vXCajQFcWsOQ4dKNAavIgOUbBo0C3G9qqcQ2kQI2JoPOnWKRAeSuL0NWipECJshUK6OukQAFGS3zLM6VAtGAEH216pUD/9DIOur+lQO3ZN5KfA6ZAh2w8KAtGpkB/PIuK6oamQKuL4rgrxqZAbFy7AL0Dp0C5w38FjT+nQIQwq8iKeadAs1vPsaWxp0C4mXiWzeenQAtR7MHyG6hArGe8/AVOqEDDjCqU+H2oQGJbVmG8q6hA724x0EPXqECKojTmgQCpQK7Y0UhqJ6lALdGdQ/FLqUBhwC3OC26pQEqKpJGvjalAILnr7dKqqUAafpT+bMWpQF9GXZ913alAMqxYcOXyqUCdzbLZtQWqQL9VEg/hFapABsySEmIjqkCCBVa3NC6qQKLeqqNVNqpAZbDHUsI7qkBCQRcWeT6qQEJBFxZ5PqpAZbDHUsI7qkCi3qqjVTaqQIIFVrc0LqpABsySEmIjqkC/VRIP4RWqQJ3Nstm1BapAMqxYcOXyqUBfRl2fdd2pQBp+lP5sxalAHLnr7dKqqUBKiqSRr42pQGHALc4LbqlALdGdQ/FLqUCs2NFIaiepQIqiNOaBAKlA724x0EPXqEBiW1ZhvKuoQMOMKpT4fahArGe8/AVOqEALUezB8huoQLiZeJbN56dAs1vPsaWxp0CEMKvIinmnQLnDfwWNP6dAbFy7AL0Dp0Cri+K4K8amQH88i4rqhqZAh2w8KAtGpkDt2TeSnwOmQP70Mg66v6VAtGAEH216pUABRkt8yzOlQImyFQro66RAdyuL0NWipECMiaDzp1ikQLgb2qpxDaRAavIgOUbBo0BXFrDkOHSjQDhLHu9cJqNA9diIjcXXokDtrOPghYiiQO34cu6wOKJAIUdymFnooUDYyOyWkpehQOxyynBuRqFAxUQVdf/0oEAP4Hm0V6OgQAheBvuIUaBAKSpUlEn/n0AjjPGleFufQG/YZuHAt55AelsxR0MUnkBTW/0XIHGdQDiEb8t2zpxAHaiGB2YsnEDR4ZeYC4ubQJyx5mmE6ppASDHafuxKmkB7BtDsXqyZQNRFjdX1DplA7wZNYspymEBX+mu/9NeXQCfmrxiMPpdAw4UplqamlkDF465ZWRCWQPbk63y4e5VAbF4GENfolEC7uNIYx1eUQKXPlZKZyJNAWW5Qbl47k0Dtf5CTJLCSQA/Hw+H5JpJASbEHMuufkUDyoHFZBBuRQBnUyitQmJBA9eC6ftgXkECSLbdaTDOPQD/cYTiCO45Awiv/emBIjUA+Ifkr81mMQHmFoINEcItADIbO81yLikBCbBYzQ6uJQHjxe0j8z4hANrmil4v5h0Cgg2vt8ieHQI6984wyW4ZAJi/sPEmThUDnrTtVNNCEQA3i4szvEYRA62IWSHZYg0Aip4QmwaOCQCGGvZHI84FARU+xi4NIgUAtxj3956GAQKNKf4nV/39AtDs/if/EfkAFSqTjM5N9QD16g8RWanxABbEGQy30fUCZHeXrHC1/QMHwQ3O7N4BAZotnRKzdgEAeJjCpboiBQCkuIWcPOIJAg/MlOprsgkCS/DrFGaaDQHiYEoOXZIRAPza+thsohUAgYmZcrfCFQPSeGxpSvoZASqLKMA6Rh0AUxF5t5GiIQNu1HRrWRYlA6dNH8OInikDllggKCQ+LQL/bwtRE+4tAhNzEA5HsjEAe0m+D5uKNQDZL32w83o5AZk4c+ofej0CTL3Q93nGQQJ45FqXl9pBATekL4lF+kUB8Xn2eGQiSQI9DdHwylJJAp1YWEpEik0C5C0/mKLOTQPjA7W3sRZRAs9I9Cc3alEB2qx0Cu3GVQJu1mYqlCpZAitcPvHqllkAt4d+WJ0KXQG4JrQKY4JdAgk00z7aAmEDvMLu1bSKZQKsFGlulxZlA04ZkUkVqmkD9LjMgNBCbQH9Njz5Xt5tAHXODIZNfnEC/YFE8ywidQMUwTgfisp1AE/5kBrldnkDV0z/QMAmfQMw1FhYptZ9AIgoQVsAwoEB3v1XJCoegQEZ16X9i3aBAh63otLUzoUAuofhI8omhQAwxCcgF4KFAbT5hb901okCmEfIzZouiQP4078iM4KJA3uunpj01o0CyMJ8RZYmjQAbo3iHv3KNAAL2CyscvpEAX43bh2oGkQMLCZicU06RA4GLXT18jpUDpL2kJqHKlQDGTPAbawKVA1aF0BOENpkC0AtPWqFmmQIAGaG0dpKZAacxR3irtpkCTMIVuvTSnQPoom5rBeqdAeyCdHyS/p0AMz8oD0gGoQFgCVJ+4QqhA8cEApcWBqEBwN8Iq576oQDbEJrIL+qhAorSrMCIzqUCPC+cXGmqpQE7wg13jnqlAnV0Mg27RqUD2yHqdrAGqQPqWjlyPL6pA1lPeEQlbqkD5zKK3DISqQNtTNveNqqpAPaFDL4HOqkCYAqB52++qQA2zzLCSDqtAUnsbdZ0qq0DI8nIx80OrQAv9rh+MWqtAP2SaTGFuq0C9t36bbH+rQAHhR8mojatAEy05bxGZq0Br1zEFo6GrQIBzf+Nap6tAYOQ8RDeqq0Bg5DxEN6qrQIBzf+Nap6tAa9cxBaOhq0ATLTlvEZmrQAHhR8mojatAvbd+m2x/q0A/ZJpMYW6rQAv9rh+MWqtAyPJyMfNDq0BSext1nSqrQAuzzLCSDqtAmAKgedvvqkA9oUMvgc6qQNtTNveNqqpA+MyitwyEqkDWU94RCVuqQPqWjlyPL6pA9sh6nawBqkCdXQyDbtGpQE7wg13jnqlAjwvnFxpqqUCitKswIjOpQDbEJrIL+qhAcDfCKue+qEDwwQClxYGoQFgCVJ+4QqhADM/KA9IBqEB7IJ0fJL+nQPoom5rBeqdAkzCFbr00p0BozFHeKu2mQIAGaG0dpKZAtALT1qhZpkDVoXQE4Q2mQDCTPAbawKVA6C9pCahypUDhYtdPXyOlQMLCZicU06RAF+N24dqBpEAAvYLKxy+kQATo3iHv3KNAsjCfEWWJo0De66emPTWjQP4078iM4KJApRHyM2aLokBrPmFv3TWiQAwxCcgF4KFALqH4SPKJoUCHrei0tTOhQEZ16X9i3aBAd79VyQqHoEAhChBWwDCgQMw1FhYptZ9A1dM/0DAJn0AT/mQGuV2eQMUwTgfisp1AumBRPMsInUAdc4Mhk1+cQH9Njz5Xt5tA/S4zIDQQm0DQhmRSRWqaQKsFGlulxZlA7zC7tW0imUCCTTTPtoCYQG4JrQKY4JdALeHflidCl0CK1w+8eqWWQJu1mYqlCpZAdqsdArtxlUCz0j0JzdqUQPjA7W3sRZRAuQtP5iizk0CnVhYSkSKTQI9DdHwylJJAfF59nhkIkkBN6QviUX6RQJ45FqXl9pBAky90Pd5xkEBmThz6h96PQDZL32w83o5AHtJvg+bijUCC3MQDkeyMQMXbwtRE+4tA5ZYICgkPi0Dp00fw4ieKQNu1HRrWRYlAEcRebeRoiEBQosowDpGHQPSeGxpSvoZAIGJmXK3whUA/Nr62GyiFQHiYEoOXZIRAlvw6xRmmg0CD8yU6muyCQCkuIWcPOIJAHiYwqW6IgUBhi2dErN2AQL/wQ3O7N4BAmR3l6xwtf0AFsQZDLfR9QE7G7Av+i39AyjT8IslqgEBj/emAiBSBQDSPYpJMw4FAO21q0iN3gkAH1Ga0GzCDQAHfBJRA7oNARAcSpZ2xhEAyoE/jPHqFQO1ZSwInSIZAXzFHXWMbh0DEjjvn9/OHQMCo/hrp0YhAAJCc6zm1iUA5juu0652KQB/FaCz+i4tAyzBpUm9/jECdYqtjO3iNQPdwVstcdo5AY7ZyFcx5j0BaiPTwP0GQQF2tCmw2yJBAOG58zcJRkUD0sQxf3d2RQMbRjF19bJJAUKkL9Jj9kkCesG03JZGTQKwsdCIWJ5RAjWE5kl6/lEDQiSdD8FmVQLUocM679pVAihkJqLCVlkD/gzQdvTaXQBSemFPO2ZdAPN7rSNB+mEB19DnTrSWZQEGQxaFQzplA46GKPqF4mkA4aWQQhySbQM9C2l3o0ZtAy7yVUKqAnECqEoT5sDCdQLe9pFXf4Z1AGVWGUxeUnkB9f3LZOUefQFg9Scwm+59A3qmFi95XoEAjj4lZbbKgQKhFfVguDaFAXT8WoQ9ooUDUqI/h/sKhQEjOGmPpHaJA+/egD7x4okApzNR3Y9OiQB0AkdnLLaNAj96BJuGHo0Bd5hYLj+GjQOCCufXAOqRAKJ5FHmKTpECajsCNXeukQLejSiaeQqVAuFpHqw6ZpUBpCrjJme6lQGafxCAqQ6ZA6c1tSqqWpkC87WPkBOmmQIeH/ZgkOqdAZnBIKPSJp0CwKjBxXtinQAggtHpOJahAtioofa9wqECSyXnrbLqoQINEdHxyAqlAcPX9M6xIqUBh3UhsBo2pQBml8N5tz6lALyUArs8PqkBok9hsGU6qQHF59Cg5iqpAf6SAch3EqkDKTcVktfuqQDLRWa7wMKtARWEdmb9jq0BUR+8RE5SrQJZhIbDcwatAabqfvA7tq0AcQMg4nBWsQNzW7eR4O6xAlTOCRplerEDSKOKt8n6sQF5MwDt7nKxAwx0q5im3rEAyGyR99s6sQEd62a7Z46xAoYVcC831rEBp7vQHywStQFax+QHPEK1Ag4E0QdUZrUApAM352h+tQHxeuk3eIq1AfF66Td4irUApAM352h+tQIOBNEHVGa1AVrH5Ac8QrUBp7vQHywStQKGFXAvN9axAR3rZrtnjrEAyGyR99s6sQMMdKuYpt6xAXkzAO3ucrEDSKOKt8n6sQJUzgkaZXqxA3Nbt5Hg7rEAcQMg4nBWsQGi6n7wO7atAlmEhsNzBq0BUR+8RE5SrQEVhHZm/Y6tAMtFZrvAwq0DKTcVktfuqQH+kgHIdxKpAcXn0KDmKqkBok9hsGU6qQC8lAK7PD6pAF6Xw3m3PqUBh3UhsBo2pQHD1/TOsSKlAg0R0fHICqUCSyXnrbLqoQLYqKH2vcKhAByC0ek4lqECwKjBxXtinQGZwSCj0iadAh4f9mCQ6p0C77WPkBOmmQOfNbUqqlqZAZ5/EICpDpkBpCrjJme6lQLhaR6sOmaVAt6NKJp5CpUCYjsCNXeukQCieRR5ik6RA4IK59cA6pEBd5hYLj+GjQI7egSbhh6NAHACR2csto0AqzNR3Y9OiQPv3oA+8eKJASM4aY+kdokDUqI/h/sKhQFs/FqEPaKFApkV9WC4NoUAjj4lZbbKgQN6phYveV6BAWD1JzCb7n0B9f3LZOUefQBVVhlMXlJ5At72kVd/hnUCqEoT5sDCdQMu8lVCqgJxAykLaXejRm0A4aWQQhySbQOOhij6heJpAQZDFoVDOmUB19DnTrSWZQDze60jQfphAFJ6YU87Zl0D/gzQdvTaXQIoZCaiwlZZAtShwzrv2lUDQiSdD8FmVQI1hOZJev5RArCx0IhYnlECesG03JZGTQFCpC/SY/ZJAxtGMXX1skkD0sQxf3d2RQDhufM3CUZFAXa0KbDbIkEBaiPTwP0GQQGO2chXMeY9A83BWy1x2jkClYqtjO3iNQMswaVJvf4xAH8VoLP6Li0A5juu0652KQP6PnOs5tYlAyKj+GunRiEDEjjvn9/OHQF8xR11jG4dA7VlLAidIhkAyoE/jPHqFQEoHEqWdsYRAAd8ElEDug0AH1Ga0GzCDQDttatIjd4JALo9ikkzDgUBg/emAiBSBQMo0/CLJaoBATsbsC/6Lf0DQD3JT4piAQAnGbKVHRoFArhYCguT4gUC7nl0qybCCQIoOHtsEboNA9zp+u6UwhECNC2XMuPiEQGX+ZddJxoVAzma8XWOZhkD79EuHDnKHQIN5sRFTUIhAfjVvPzc0iUBcYUDHvx2KQODmn8PvDItADZWOosgBjEDxWaUVSvyMQChIgAJy/I1ABWKPczwCj0DOJq3E0QaQQGsaIrZPj5BA2pVuH5MakUDLQGcIlqiRQNaxN2lROZJAQ5aHJL3MkkAHUwEC0GKTQOawQKl/+5NAlg4wncCWlEC7dto3hjSVQMzTuKbC1JVAtVKA52Z3lkBK1HfFYhyXQAAYWtekw5dAlAzKfRptmEDycF7irxiZQOOlSfdPxplAUkGid+R1mkDGnlDoVSebQNhMpZmL2ptALdabqWuPnEAW/swG20WdQDIcE3S9/Z1AkdLijPW2nkCW4lnKZHGfQP61gsR1FqBAAzGwh7R0oEDdQIXKXdOgQPvGWyVgMqFAUAdrsamRoUBvInYNKPGhQPm81GLIUKJA4J/UanewokB31XJ0IRCjQCd/amqyb6NAyVeX2RXPo0DOjqn3Ni6kQC1hKKoAjaRAmo7AjV3rpEAmhNv9N0mlQEDRexx6pqVAwDlb2g0DpkDldkb/3F6mQOJ6sjLRuaZAY86GBNQTp0BQZhj2zmynQG4ZUIOrxKdAY6r3K1MbqEC2Kih9r3CoQEBP1BqqxKhAICZpySwXqUDaeX93IWipQJ8NmEdyt6lAkMLcmQkFqkBKn+AV0lCqQF+gWLS2mqpABCvHyKLiqkDn8hMLgiirQFEgCqFAbKtAtoW2J8utq0Bpup+8Du2rQGv80Qb5KaxAQsy4P3hkrEBeTMA7e5ysQP+IuHLx0axAau70B8sErUCAWCLS+DStQBZSzmJsYq1A1UiaDRiNrUCurxXv7rStQFBBOvPk2a1A59GF2+77rUDnX61EAhuuQOVY5asVN65A3U+7cyBQrkDBrn3oGmauQPw7LkT+eK5AEZ/8scSIrkBDZEZRaZWuQN9VGjjonq5Afls9dT6lrkDPaa8RaqiuQM9prxFqqK5Afls9dT6lrkDfVRo46J6uQENkRlFpla5AEZ/8scSIrkD8Oy5E/niuQMGufegaZq5A3U+7cyBQrkDlWOWrFTeuQOdfrUQCG65A5dGF2+77rUBQQTrz5NmtQK6vFe/utK1A1UiaDRiNrUATUs5ibGKtQIBYItL4NK1Aau70B8sErUD/iLhy8dGsQF5MwDt7nKxAQsy4P3hkrEBr/NEG+SmsQGm6n7wO7atAtoW2J8utq0BRIAqhQGyrQObyEwuCKKtABCvHyKLiqkBfoFi0tpqqQEqf4BXSUKpAkMLcmQkFqkCfDZhHcrepQNh5f3chaKlAICZpySwXqUBAT9QaqsSoQLYqKH2vcKhAYqr3K1MbqEBtGVCDq8SnQFFmGPbObKdAY86GBNQTp0DierIy0bmmQOV2Rv/cXqZAvjlb2g0DpkBA0XsceqalQCaE2/03SaVAmo7AjV3rpEArYSiqAI2kQM6Oqfc2LqRAyleX2RXPo0Anf2pqsm+jQHfVcnQhEKNA4J/UanewokD4vNRiyFCiQG0idg0o8aFAUAdrsamRoUD7xlslYDKhQN1Ahcpd06BAAzGwh7R0oED9tYLEdRagQJbiWcpkcZ9AkdLijPW2nkAyHBN0vf2dQBP+zAbbRZ1ALdabqWuPnEDYTKWZi9qbQMaeUOhVJ5tAUkGid+R1mkDjpUn3T8aZQPJwXuKvGJlAlAzKfRptmEAAGFrXpMOXQErUd8ViHJdAtVKA52Z3lkDM07imwtSVQLt22jeGNJVAlg4wncCWlEDmsECpf/uTQAdTAQLQYpNAQ5aHJL3MkkDWsTdpUTmSQMtAZwiWqJFA2pVuH5MakUBrGiK2T4+QQMwmrcTRBpBADWKPczwCj0AoSIACcvyNQPFZpRVK/IxADZWOosgBjEDd5p/D7wyLQGJhQMe/HYpAfjVvPzc0iUCDebERU1CIQPv0S4cOcodAzma8XWOZhkBq/mXXScaFQI0LZcy4+IRA9zp+u6UwhECKDh7bBG6DQLeeXSrJsIJArBYCguT4gUAJxmylR0aBQNAPclPimIBAPZMwMLlygUAZC7NWAimCQMga4IDH5IJAkvw6xRmmg0BtQF4oCW2EQMTXR4ukOYVAsrSKmfkLhkApNHC3FOSGQAL+E/AAwodAY3OF48eliED4Lfq0cY+JQGB1HfkEf4pAMu6IpIZ0i0C1G3P6+W+MQFWdoHtgcY1ADlel1bl4jkCP84LSA4aPQMAxWSSdTJBA8RTThSvZkEBys2nuqGiRQBzVpy4Q+5FA29AIAFuQkkBhXXH+gSiTQFLgB6J8w5NASTZzOUFhlEBo24bkxAGVQLVEY4/7pJVAQhsR7tdKlkBq5Z14S/OWQB1+wGdGnpdA3ocLsrdLmECzz7MJjfuYQIdU8NqyrZlAs2D5ShRimkAx1qs3mxibQIh61Tcw0ZtAP7UunLqLnEDD0wVxIEidQPd+n4BGBp5AIqNPVhDGnkAHmU1CYIefQCD0Iq8LJaBAd79VyQqHoEBn3WTOnOmgQCoNzIqwTKFAI/KnPDSwoUAExOGXFRSiQLB0u8pBeKJAcZy7gqXcokAQM/jxLEGjQITRvtTDpaNAu+yYd1UKpEARLqq9zG6kQL/CZicU06RAti+f2RU3pUC37N6ku5qlQHe/Gg3v/aVAZ4arUZlgpkBT25F1o8KmQDqw/kf2I6dAtsQcbXqEp0C7kBZnGOSnQFYCVJ+4QqhAvS/rb0OgqEDn5T4tofyoQMrFxS+6V6lAZXD03XaxqUDmEkW2vwmqQA16Vll9YKpAu60clJi1qkDh8xxq+girQAr9rh+MWqtAYOQ8RDeqq0D/mXu85ferQBNAlcyBQ6xAfPo+IvaMrEC5rLPeLdSsQDIkjaAUGa1AZDN1jZZbrUDNT6hboJutQP9VQ1sf2a1AKi9WfwEUrkA+MLVmNUyuQCAtg2Sqga5AAGJuiFC0rkDagZqmGOSuQIpqMl/0EK9AWjacJdY6r0B7nUpHsWGvQL/aJvJ5ha9AtIqOOiWmr0AZReEgqcOvQLn8mZb83a9A9YHwghf1r0DB639jeQSwQIovtyDEDLBApp7KaGkTsEB8VxItZxiwQCe0oeG7G7BAzLoTfmYdsEDMuhN+Zh2wQCe0oeG7G7BAfFcSLWcYsECmnspoaROwQIovtyDEDLBAwet/Y3kEsED1gfCCF/WvQLn8mZb83a9AGUXhIKnDr0C0io46JaavQL3aJvJ5ha9Ae51KR7Fhr0BaNpwl1jqvQIpqMl/0EK9A1oGaphjkrkAAYm6IULSuQCAtg2Sqga5APjC1ZjVMrkAqL1Z/ARSuQP9VQ1sf2a1AzU+oW6CbrUBkM3WNllutQDIkjaAUGa1Auayz3i3UrEB6+j4i9oysQBNAlcyBQ6xA/5l7vOX3q0Bg5DxEN6qrQAr9rh+MWqtA4fMcavoIq0C4rRyUmLWqQA16Vll9YKpA5hJFtr8JqkBlcPTddrGpQMjFxS+6V6lA5uU+LaH8qEDAL+tvQ6CoQFYCVJ+4QqhAu5AWZxjkp0C2xBxteoSnQDmw/kf2I6dAU9uRdaPCpkBnhqtRmWCmQHe/Gg3v/aVAtOzepLuapUC1L5/ZFTelQMLCZicU06RAES6qvcxupEC77Jh3VQqkQITRvtTDpaNADjP48SxBo0BunLuCpdyiQLB0u8pBeKJABMThlxUUokAj8qc8NLChQCgNzIqwTKFAZt1kzpzpoEB3v1XJCoegQCD0Iq8LJaBAB5lNQmCHn0Aho09WEMaeQPR+n4BGBp5Aw9MFcSBInUA/tS6cuoucQIh61Tcw0ZtAMdarN5sYm0CuYPlKFGKaQIdU8NqyrZlAs8+zCY37mEDehwuyt0uYQB1+wGdGnpdAZeWdeEvzlkBCGxHu10qWQLVEY4/7pJVAaNuG5MQBlUBJNnM5QWGUQE7gB6J8w5NAYV1x/oEok0Db0AgAW5CSQBzVpy4Q+5FAcrNp7qhokUDvFNOFK9mQQMAxWSSdTJBAj/OC0gOGj0AOV6XVuXiOQFWdoHtgcY1AtRtz+vlvjEAy7oikhnSLQGB1HfkEf4pA+C36tHGPiUBjc4Xjx6WIQP39E/AAwodAKTRwtxTkhkCytIqZ+QuGQMTXR4ukOYVAbUBeKAlthECS/DrFGaaDQMca4IDH5IJAGQuzVgIpgkA9kzAwuXKBQPwcc+d2U4JAf9RR/esSg0DIDUq7I9iDQFUB+RMwo4RAviZL2iF0hUCxOuSuCEuGQKODa+3yJ4dAJxHHme0KiECQKVFNBPSIQG+NEyRB44lA36cUqqzYikABKsPITdSLQN/yjLQp1oxAxn+u2kPejUArc0jPneyOQGKG5J2bAJBAftbb5gaOkEAPXPiSjh6RQDUtMGQvspFABmklBuVIkkCdfpgGquKSQBz7L853f5NAgkSdmUYflEBSoSVzDcKUQKTglizCZ5VAxeOuWVkQlkAcMf1KxruWQOGXRQn7aZdArsRqUegamEC0eeeQfc6YQCLn3OKohJlAXmW8DVc9mkBUjpKBc/iaQP5p+VbotZtApRC3Tp51nEBnzQ3SfDedQJ1twvNp+51AEATdcUrBnkDb+ye4AYmfQLhyuPE4KaBAPvjG4r2OoEDFRBV1//SgQHGHLs7sW6FAJYWDdnTDoUCxaABdhCuiQF1vCNsJlKJAeVHXuPH8okAF+0cyKGajQG3c//uYz6NAGc39SC85pEB3K4vQ1aKkQLCWjdR2DKVA1U43KPx1pUAC+RM3T9+lQIE1bwxZSKZAUScSWwKxpkD3vlSFMxmnQIhNf6XUgKdAuJl4ls3np0CsZ7z8BU6oQJQclk9ls6hAUuKa4tIXqUA2bV7vNXupQF1GXZ913alAQkEXFnk+qkBsilR7J56qQHqIjwVo/KpAipd9BCJZq0Aae7DrPLSrQLw5Sl2gDaxANvO8NDRlrECQIpCR4LqsQKSkJOKNDq1ANsdw7iRgrUDdla3ijq+tQLSQ7lm1/K1At/ScaIJHrkDtv8+m4I+uQI6ieTq71a5A/xtm4f0Yr0BTFf/6lFmvQMNj1JFtl69A2LveZHXSr0A74Tt4TQWwQAeJgLvmH7BA5hyahP44sEAk+ApHjVCwQNJ2Q+WLZrBANo82tPN6sEBiErh+vo2wQEoyoojmnrBA8xHAkWausEBYTHvYObywQKiIShxcyLBAXl7fn8nSsEC/+BErf9uwQKYYiQx64rBA50IdG7jnsEBjG/a2N+uwQJ4eYcr37LBAnh5hyvfssEBjG/a2N+uwQOdCHRu457BAphiJDHrisEC/+BErf9uwQF5e35/J0rBAqIhKHFzIsEBYTHvYObywQPMRwJFmrrBASjKiiOaesEBhErh+vo2wQDaPNrTzerBA0nZD5YtmsEAk+ApHjVCwQOUcmoT+OLBAB4mAu+YfsEA74Tt4TQWwQNi73mR10q9Aw2PUkW2Xr0BTFf/6lFmvQP8bZuH9GK9AjqJ5OrvVrkDtv8+m4I+uQLf0nGiCR65AspDuWbX8rUDdla3ijq+tQDbHcO4kYK1ApKQk4o0OrUCQIpCR4LqsQDbzvDQ0ZaxAuzlKXaANrEAae7DrPLSrQIqXfQQiWatAeoiPBWj8qkBsilR7J56qQD5BFxZ5PqpAX0Zdn3XdqUA2bV7vNXupQFLimuLSF6lAlByWT2WzqECqZ7z8BU6oQLiZeJbN56dAiE1/pdSAp0D3vlSFMxmnQE8nElsCsaZAgDVvDFlIpkAE+RM3T9+lQNVONyj8daVAsJaN1HYMpUB3K4vQ1aKkQBnN/UgvOaRAatz/+5jPo0AF+0cyKGajQHlR17jx/KJAXW8I2wmUokCvaABdhCuiQCOFg3Z0w6FAcYcuzuxboUDFRBV1//SgQD74xuK9jqBAtXK48TgpoEDb+ye4AYmfQBAE3XFKwZ5AnW3C82n7nUBnzQ3SfDedQKUQt06edZxA/mn5Vui1m0BUjpKBc/iaQF5lvA1XPZpAIufc4qiEmUC0eeeQfc6YQK7EalHoGphA4ZdFCftpl0AcMf1KxruWQMXjrllZEJZApOCWLMJnlUBSoSVzDcKUQIJEnZlGH5RAHPsvznd/k0CdfpgGquKSQAZpJQblSJJAMi0wZC+ykUATXPiSjh6RQH7W2+YGjpBAYobknZsAkEArc0jPneyOQMF/rtpD3o1A5PKMtCnWjEABKsPITdSLQN+nFKqs2IpAb40TJEHjiUCQKVFNBPSIQC8Rx5ntCohAo4Nr7fInh0CxOuSuCEuGQL4mS9ohdIVATwH5EzCjhEDFDUq7I9iDQH/UUf3rEoNA/Bxz53ZTgkAZGVwvCTuDQNbAWpDxA4RAEx2BY+XShEBP3DZ+96eFQMeb/4c5g4ZAZvn35rtkh0DfhTWsjUyIQBHaFIC8OolAVJGBjlQvikBwY0RzYCqLQMINZCbpK4xA9Sem6PUzjUBsaD0wjEKOQCg7s5WvV49ArnKN4LA5kEAzX84r0cqQQLcltHQ3X5FARiMOcOH2kUAP5dm2y5GSQDH/A77xL5NA2uB6zk3Rk0AcaJv92HWUQOv4/iWLHZVAFNSy4FrIlUDlXuB+PXaWQNv37QMnJ5dAvtofIArbl0BsdMAr2JGYQExd1yKBS5lAyAF2ofMHmkBwx6DgHMeaQCk/27PoiJtA3q1dh0FNnEBx5/leEBSdQHgitdU83Z1AoQ8cHq2onkB+G1YDRnafQD0sfnX1IqBAjw7c676LoEBMdla2b/WgQK1g2Hj3X6FAy6cqLEXLoUAnJuIgRzeiQBAcuALro6JAkk1N3B0Ro0C0A1gbzH6jQG7PPJXh7KNA4ZwRjElbpECwVQq07smkQIP/TTm7OKVAOfEyxpinpUCNZuCJcBamQDRmUz8rhaZAWpvENLHzpkAlcGxT6mGnQEZkoie+z6dAMElU6RM9qEALvdGE0qmoQHvu56PgFalAiGZJtySBqUAMSz0AheupQIJDkZrnVKpA2uTIhjK9qkAjRoW0SySrQDAhHw0ZiqtAm6ZtfoDuq0A69bMFaFGsQCvyrrq1sqxARg+92k8SrUBTZBnUHHCtQNVZI1EDzK1AZwSsQ+olrkD/NELwuH2uQPgsdvlW065AoNUNa6wmr0CYUCLFoXevQK+yHwcgxq9Ac95PXQgJsEBvNwz/ri2wQPetq0f5ULBAPGDh6txysEA4tyz2T5OwQDRktdVIsrBACRQAWb7PsEB/nHi3p+uwQLiAzpT8BbFALsUgBbUesUDxKfaQyTWxQHQC/zgzS7FAsQWeeetesUANlzVO7HCxQDkwNzQwgbFAi77yLbKPsUBM8iPFbZyxQGGsOw1fp7FATOZjpYKwsUDCoTy61bexQDafUAdWvbFAus5A2AHBsUDroqUJ2MKxQOuipQnYwrFAus5A2AHBsUA2n1AHVr2xQMKhPLrVt7FATOZjpYKwsUBhrDsNX6exQEzyI8VtnLFAi77yLbKPsUA5MDc0MIGxQA2XNU7scLFAsAWeeetesUB0Av84M0uxQPEp9pDJNbFALsUgBbUesUC3gM6U/AWxQH+ceLen67BACRQAWb7PsEA0ZLXVSLKwQDi3LPZPk7BAPGDh6txysED2ratH+VCwQG83DP+uLbBAc95PXQgJsECvsh8HIMavQJZQIsWhd69AoNUNa6wmr0D4LHb5VtOuQP80QvC4fa5AZwSsQ+olrkDVWSNRA8ytQFFkGdQccK1ARw+92k8SrUAr8q66tbKsQDr1swVoUaxAmKZtfoDuq0AwIR8NGYqrQCNGhbRLJKtA2uTIhjK9qkCCQ5Ga51SqQAxLPQCF66lAhmZJtySBqUB77uej4BWpQAu90YTSqahAMElU6RM9qEBFZKInvs+nQCRwbFPqYadAW5vENLHzpkA0ZlM/K4WmQI1m4IlwFqZAOfEyxpinpUCC/005uzilQLBVCrTuyaRA4ZwRjElbpEBuzzyV4eyjQLQDWBvMfqNAkE1N3B0Ro0AQHLgC66OiQCcm4iBHN6JAy6cqLEXLoUCtYNh491+hQEx2VrZv9aBAjw7c676LoEA9LH519SKgQH4bVgNGdp9AoQ8cHq2onkB4IrXVPN2dQGzn+V4QFJ1A3q1dh0FNnEApP9uz6IibQHDHoOAcx5pAyAF2ofMHmkBJXdcigUuZQGx0wCvYkZhAvtofIArbl0Db9+0DJyeXQOVe4H49dpZAEdSy4FrIlUDr+P4lix2VQBxom/3YdZRA2uB6zk3Rk0Ax/wO+8S+TQA/l2bbLkZJASSMOcOH2kUC3JbR0N1+RQDNfzivRypBArnKN4LA5kEAkO7OVr1ePQG9oPTCMQo5A9Sem6PUzjUDCDWQm6SuMQHBjRHNgKotAUJGBjlQvikAT2hSAvDqJQN+FNayNTIhAZvn35rtkh0DHm/+HOYOGQEzcNn73p4VAEx2BY+XShEDWwFqQ8QOEQBkZXC8JO4NA+gp98lcphEC7R8P++fuEQHW9TGXy1IVAOnLk5FS0hkDPStT/M5qHQPVScOeghohA3XyDZ6t5iUCnpqnRYXOKQBU5o+jQc4tAvDGvywN7jECT5fjhA4mNQJM6J8bYnY5AIoQbMoi5j0CDSHf1Cm6QQMZqndbBApFAS3fhjOiakUAfAULRfTaSQKvgITx/1ZJAdf9UPOl3k0A6/XoOtx2UQFnKr7TixpRAH1qa7mRzlUCmkOExNSOWQOyID6NJ1pZAKUPrDpeMl0AVtlDkEEaYQIQijy6pAplACmVVkFDCmUAM1jM/9oSaQJ4Wu/+HSptAXe0+IvISnEDAFESAH96cQHKSn3r5q51Aht1N+Gd8nkAKwAdmUU+fQD5ATVtNEqBAUjsEshN+oECKYLu47OqgQPIs9rbIWKFAVybzO5fHoUAnJuIgRzeiQAQviIvGp6JAFeBR8QIZo0D4TtUa6YqjQLjEwydl/aNAr4pLk2JwpEAEpOk4zOOkQOD8qlmMV6VA5kTcoYzLpUCSVCcvtj+mQM2mHJfxs6ZAIBkn7iYop0AlzefOPZynQNKu92EdEKhAw8sLZqyDqEAgUXk40faoQIGwFd5xaalAYhdvDHTbqUBnElkzvUyqQNzkyIYyvapAT878CLksq0BqLOmUNZurQCIe5uiMCKxA1weYsaN0rECjFQ2VXt+sQA+bCT6iSK1ADvV8Z1OwrUC0XRjoVhauQMPvAL6Req5AXeyVGuncrkASLkRuQj2vQAaTX3SDm69A8Qv7PpL3r0Cs81uhqiiwQCNwQrFZVLBAnbai/cl+sEDp46x376ewQAsUAFm+z7BA6NpDKSv2sED94KbDKhuxQBz3PlyyPrFAKQJHhbdgsUA6MDc0MIGxQKj8s8YSoLFAN59QB1a9sUCGnCEy8dixQK9KHPnb8rFAszxAiA4LskCJqYeJgSGyQM8InCguNrJAiUZMFg5JskAeGcKLG1qyQCoxdE1RabJArCjTrap2skBdR6+PI4KyQNtjVWi4i7JA8FxhQWaTskDS2kS6KpmyQLY+gQkEnbJA992T/fCeskD33ZP98J6yQLY+gQkEnbJA0tpEuiqZskDwXGFBZpOyQNtjVWi4i7JAXUevjyOCskCsKNOtqnayQCoxdE1RabJAHhnCixtaskCJRkwWDkmyQM4InCguNrJAiamHiYEhskCzPECIDguyQK9KHPnb8rFAhZwhMvHYsUA3n1AHVr2xQKj8s8YSoLFAOjA3NDCBsUApAkeFt2CxQBz3PlyyPrFA/OCmwyobsUDo2kMpK/awQAsUAFm+z7BA6eOsd++nsECctqL9yX6wQCNwQrFZVLBArPNboaoosEDxC/s+kvevQAaTX3SDm69AEi5EbkI9r0Bb7JUa6dyuQMXvAL6Req5AtF0Y6FYWrkAO9XxnU7CtQA6bCT6iSK1AoxUNlV7frEDXB5ixo3SsQCIe5uiMCKxAaizplDWbq0BNzvwIuSyrQNrkyIYyvapAaRJZM71MqkBiF28MdNupQIGwFd5xaalAH1F5ONH2qEDBywtmrIOoQNSu92EdEKhAJc3nzj2cp0AgGSfuJiinQM2mHJfxs6ZAkVQnL7Y/pkDmRNyhjMulQOD8qlmMV6VABKTpOMzjpECvikuTYnCkQLbEwydl/aNA9k7VGumKo0AV4FHxAhmjQAQviIvGp6JAJybiIEc3okBXJvM7l8ehQPEs9rbIWKFAimC7uOzqoEBSOwSyE36gQD5ATVtNEqBACsAHZlFPn0CC3U34Z3yeQHKSn3r5q51AwBREgB/enEBd7T4i8hKcQJ4Wu/+HSptACdYzP/aEmkAKZVWQUMKZQIQijy6pAplAFbZQ5BBGmEApQ+sOl4yXQOqID6NJ1pZAppDhMTUjlkAfWpruZHOVQFnKr7TixpRAOv16DrcdlEB1/1Q86XeTQK3gITx/1ZJAHwFC0X02kkBLd+GM6JqRQMZqndbBApFAgEh39QpukEAkhBsyiLmPQJM6J8bYnY5Ak+X44QOJjUC8Ma/LA3uMQBM5o+jQc4tArKap0WFzikDdfINnq3mJQPVScOeghohAz0rU/zOah0A3cuTkVLSGQHW9TGXy1IVAu0fD/vn7hED6Cn3yVymEQP2AlR1FHoVAmKgW++X6hUATyY8vKt6GQFutqmkmyIdAfQeLDO64iEAJOGEak7CJQNYZ3R4mr4pALzCNGba0i0CAIDdoUMGMQInlNrEA1Y1AYaryzdDvjkCd2bha5AiQQLyVkjN3nZBAhwz56qI1kUBMCsZpaNGRQC9eGH7HcJJAnRFq0b4Tk0AhX+feS7qTQBPEDupqZJRAXp2i9RYSlUDOzfS6ScOVQFPzlKH7d5ZA17FptyMwl0Cnkj2pt+uXQLfqx7urqphADyM6xfJsmUCrolknfjKaQExzLso9+5pAgo1OFyDHm0AGhM31EZacQO0H2Mb+Z51AKHsCY9A8nkCseFEYbxSfQHnkAqnB7p9A69uOpdZloEDpLGfUitWgQOxyynBuRqFAbyclxnG4oUCvaABdhCuiQMnR4fyUn6JAGqWcrpEUo0D3sxW/Z4qjQPsje8IDAaRATeTwl1F4pEASVbJtPPCkQD5QqcWuaKVAlW56epLhpUCCDAbF0FqmQJ06XUJS1KZAyGsp+v5Np0CJWIVlvsenQBI0RXZ3QahAefOrnhC7qECdDIvZbzSpQIS2ybJ6ralAR1pQUBYmqkBsilR7J56qQO99AaqSFatAdbV4CTyMq0AcHSaIBwKsQJ+qYuDYdqxAYChgo5PqrECCkVhEG12tQA4a+yNTzq1APbkQnB4+rkBWylELYayuQP0bZuH9GK9Am40Iq9iDr0DhJkce1eyvQMQzbJPrKbBAQjI/eWFcsEBhErh+vo2wQCjJYA/1vbBAnh5hyvfssEBajqWIuRqxQOu3+WItR7FAs20SuEZysUDAcYMy+ZuxQLP0nM44xLFAPvIs4PnqsUDUkSAYMRCyQEPAAYrTM7JAxkhNsdZVskBhyJ12MHayQOTupzTXlLJAoZsEvcGxskA2gsVc58yyQOkk0eA/5rJADhYDmsP9skCnmA1haxOzQOPhGZowJ7NA82gkOA05s0DY4BLA+0izQE2ogUv3VrNAUK5Gi/tis0AO/qfJBG2zQOpaROwPdbNAzoysdRp7s0B2NayGIn+zQF1BQd8mgbNAXUFB3yaBs0B2NayGIn+zQM6MrHUae7NA6lpE7A91s0AO/qfJBG2zQFCuRov7YrNATaiBS/dWs0DY4BLA+0izQPNoJDgNObNA4+EZmjAns0CmmA1haxOzQA4WA5rD/bJA6STR4D/mskA2gsVc58yyQKCbBL3BsbJA5O6nNNeUskBhyJ12MHayQMZITbHWVbJAQ8ABitMzskDUkSAYMRCyQD3yLOD56rFAs/SczjjEsUDAcYMy+ZuxQLNtErhGcrFA6rf5Yi1HsUBajqWIuRqxQJ4eYcr37LBAKMlgD/W9sEBhErh+vo2wQEIyP3lhXLBAwzNsk+spsEDjJkce1eyvQJuNCKvYg69A/Rtm4f0Yr0BUylELYayuQD25EJwePq5ADhr7I1POrUCCkVhEG12tQGAoYKOT6qxAnqpi4Nh2rEAbHSaIBwKsQHe1eAk8jKtA730BqpIVq0BsilR7J56qQERaUFAWJqpAg7bJsnqtqUCeDIvZbzSpQHnzq54Qu6hAEjRFdndBqECJWIVlvsenQMdrKfr+TadAnTpdQlLUpkCCDAbF0FqmQJVuenqS4aVAPlCpxa5opUARVbJtPPCkQEzk8JdReKRA+yN7wgMBpED3sxW/Z4qjQBqlnK6RFKNAydHh/JSfokCtaABdhCuiQG8nJcZxuKFA7HLKcG5GoUDpLGfUitWgQOvbjqXWZaBAdeQCqcHun0CseFEYbxSfQCh7AmPQPJ5A7QfYxv5nnUAGhM31EZacQH+NThcgx5tATHMuyj37mkCrolknfjKaQA8jOsXybJlAt+rHu6uqmECjkj2pt+uXQNexabcjMJdAU/OUoft3lkDOzfS6ScOVQF6dovUWEpVAE8QO6mpklEAkX+feS7qTQJ0RatG+E5NAL14YfsdwkkBMCsZpaNGRQIUM+eqiNZFAvpWSM3edkECd2bha5AiQQGGq8s3Q745AieU2sQDVjUB9IDdoUMGMQDIwjRm2tItA1hndHiavikAJOGEak7CJQH0HiwzuuIhAWK2qaSbIh0ATyY8vKt6GQJioFvvl+oVA/YCVHUUehUD64/9xrBmGQKSXBsyPAIdAqrbugmXuh0AHv5g7Q+OIQKtv9D8934lAnnyUaGbiikDgyiAG0OyLQBgltMqJ/oxA8+sys6EXjkAe0KjwIziPQPsU3mgNMJBAHQAjVsfHkEAUI4/jQmORQBcjFiKCApJAm8llBYalkkD+GUtZTkyTQNeFUrfZ9pNATuOrfCWllECj5FrALVeVQJTlvEntDJZAHvJsh13GlkBz8Y6GdoOXQFXhiuouRJhADgZB5XsImUCA5b8vUdCZQKvMhAOhm5pAh4BPFFxqm0BelJGKcTycQJmwgf7OEZ1AMt3ac2DqnUAho09WEMaeQGOPuHbHpJ9A2qiChDZDoEBoq3tRc7WgQJ8u1h0MKaFAa4z/FfKdoUAExOGXFRSiQKUR8jNmi6JABkeyrtIDo0Df86YCSX2jQJolxGK296NAcDpSPQdzpEBC9Us/J++kQLSuNlgBbKVAeSt1vn/ppUB4SRX0i2emQLJcGMwO5qZA4rk1cPBkp0C7kBZnGOSnQL/ZCZttY6hA+rwuYdbiqECXdxOBOGKpQChmxjx54alADHpWWX1gqkBpAMAnKd+qQIpCQo5gXatAsykaEgfbq0Dvs53h/1esQLmss94t1KxA/8OiqXNPrUDjxzKss8mtQIpyGiXQQq5AMe2zM6u6rkCu3fHjJjGvQLKKjjolpq9Aii+3IMQMsEBkahcKmUWwQIBKbXaCfbBAxrJdmHG0sECHJaG+V+qwQHQOf1omH7FAmlFMBs9SsUD8G+mLQ4WxQJTmOet1trFADpOXYFjmsUBphDJr3RSyQOqSZNP3QbJASLztsJptskAwdRdxuZeyQIiJutxHwLJAEYQjHjrnskAepdHGhAyzQGuCDNUcMLNAp39MufdRs0C7aHJbC3KzQNKSyh9OkLNA+AjY67ass0C3a+QqPcezQLhQUdLY37NAIBioZYL2s0CQWGX6Mgu0QJUwfTvkHbRAzfyVbJAutECcJPdsMj20QA/kKbrFSbRARTBKckZUtEArDAZWsVy0QE/dScoDY7RAxIuY2TtntEDJdA41WGm0QMl0DjVYabRAxIuY2TtntEBP3UnKA2O0QCsMBlaxXLRARTBKckZUtEAP5Cm6xUm0QJwk92wyPbRAzfyVbJAutECVMH075B20QJBYZfoyC7RAHxioZYL2s0C4UFHS2N+zQLdr5Co9x7NA+AjY67ass0DRksofTpCzQLtoclsLcrNAp39MufdRs0BrggzVHDCzQB6l0caEDLNAEYQjHjrnskCIibrcR8CyQDB1F3G5l7JASLztsJptskDqkmTT90GyQGeEMmvdFLJADpOXYFjmsUCU5jnrdbaxQPwb6YtDhbFAmlFMBs9SsUB0Dn9aJh+xQIYlob5X6rBAxrJdmHG0sECASm12gn2wQGRqFwqZRbBAii+3IMQMsECwio46JaavQLDd8eMmMa9AMe2zM6u6rkCKchol0EKuQOPHMqyzya1A/cOiqXNPrUC5rLPeLdSsQO+zneH/V6xAsykaEgfbq0CIQkKOYF2rQGgAwCcp36pADXpWWX1gqkAoZsY8eeGpQJd3E4E4YqlA+rwuYdbiqEC92QmbbWOoQLiQFmcY5KdA4rk1cPBkp0CyXBjMDuamQHhJFfSLZ6ZAeCt1vn/ppUC0rjZYAWylQEL1Sz8n76RAcDpSPQdzpECaJcRitvejQN3zpgJJfaNABEeyrtIDo0ClEfIzZouiQATE4ZcVFKJAa4z/FfKdoUCfLtYdDCmhQGare1FztaBA2qiChDZDoEBjj7h2x6SfQCGjT1YQxp5AMt3ac2DqnUCTsIH+zhGdQF6UkYpxPJxAh4BPFFxqm0CrzIQDoZuaQIDlvy9R0JlABgZB5XsImUBV4YrqLkSYQHPxjoZ2g5dAHvJsh13GlkCU5bxJ7QyWQKDkWsAtV5VATuOrfCWllEDXhVK32faTQP4ZS1lOTJNAm8llBYalkkAXIxYiggKSQBQjj+NCY5FAHQAjVsfHkED7FN5oDTCQQB7QqPAjOI9A6usys6EXjkAYJbTKif6MQODKIAbQ7ItAnnyUaGbiikCrb/Q/Pd+JQAe/mDtD44hAp7bugmXuh0CklwbMjwCHQPrj/3GsGYZAYTFHXWMbh0B4vVoiywyIQH8qDEZ2BYlANeagaXsFikDg5p/D7wyLQAnlXwjnG4xArJZyUnMyjUDUc/oKpVCOQBsl+dGKdo9A46ZSsxhSkEDfd+vH0eyQQBkVTQJ1i5FAWUh8qgUukkDf5ITphdSSQNJGLr72fpNA6r3k8VctlEAmyOANqN+UQKwklVDklZVA+ONsowhQlkALseKQDw6XQLGe+jryz5dAwcsnUqiVmECJMqcMKF+ZQEvvWB5mLJpAfzshsVX9mkDPQtpd6NGbQOfX3yUOqpxAjOU9bbWFnUDsR4r1ymSeQH1/ctk5R59A/rWCxHUWoEAKeWDj44qgQAKNtVLaAKFAtuteQ0t4oUBvInYNKPGhQCXXgzBha6JAhyclVObmokAflCZJpmOjQF7mFguP4aNA3zhUwo1gpEC4/ZTGjuCkQHCQ7qF9YaVAso5aFEXjpUAk3rsXz2WmQL7tY+QE6aZAUWYY9s5sp0CMIZkRFfGnQGrfpUq+dahA8dGCCrH6qECltPoW03+pQJDC3JkJBapAdXn0KDmKqkDTtHjORQ+rQFRH7xETlKtAyNSBAYQYrEBgTMA7e5ysQCsAzfnaH61AlvbtGYWirUCqs34qWySuQH9bPXU+pa5AO7XtChAlr0AAP0zPsKOvQPGXpcKAELBAUHrJbXFOsEBgtJ+8mouwQMxiaQXtx7BAa3+rp1gDsUAhA9MSzj2xQPab6Mw9d7FARv9PeZivsUDZyI7fzuaxQDHFFvLRHLJA33QP1ZJRskAQihrlAoWyQDwYD74Tt7JAyyenQbfnskBBXRue3xazQJNkqFR/RLNAFtb5P4lws0C5Unaa8JqzQG6haASpw7NA9qYBiqbqs0DCJC+p3Q+0QAlCQ1dDM7RApvxoBs1UtED0vOGqcHS0QJVoCMAkkrRA3XQWTeCttEBVoKfpmse0QMMl+cFM37RAAGjhmu70tEA1Rn3VeQi1QFZ6kHLoGbVAE5mWFTUptUAqgYIHWza1QKVBKjlWQbVARrldRSNKtUAtbqZyv1C1QKVar7QoVbVAY6tTrV1XtUBjq1OtXVe1QKVar7QoVbVALW6mcr9QtUBGuV1FI0q1QKVBKjlWQbVAKoGCB1s2tUATmZYVNSm1QFZ6kHLoGbVANUZ91XkItUAAaOGa7vS0QMIl+cFM37RAVaCn6ZrHtEDddBZN4K20QJVoCMAkkrRA8bzhqnB0tECm/GgGzVS0QAlCQ1dDM7RAwiQvqd0PtED2pgGKpuqzQG6haASpw7NAuVJ2mvCas0AW1vk/iXCzQJNkqFR/RLNAQV0bnt8Ws0DJJ6dBt+eyQDwYD74Tt7JAEIoa5QKFskDfdA/VklGyQDHFFvLRHLJA2ciO387msUBG/095mK+xQPab6Mw9d7FAIQPTEs49sUBrf6unWAOxQMtiaQXtx7BAX7SfvJqLsEBResltcU6wQPGXpcKAELBAAD9Mz7Cjr0A7te0KECWvQH5bPXU+pa5AqrN+KlskrkCW9u0ZhaKtQCsAzfnaH61AXkzAO3ucrEDF1IEBhBisQFVH7xETlKtA07R4zkUPq0B1efQoOYqqQJDC3JkJBapAo7T6FtN/qUDt0YIKsfqoQGrfpUq+dahAjCGZERXxp0BRZhj2zmynQLztY+QE6aZAI967F89lpkCyjloUReOlQHCQ7qF9YaVAuP2Uxo7gpEDdOFTCjWCkQF3mFguP4aNAH5QmSaZjo0CHJyVU5uaiQCXXgzBha6JAbyJ2DSjxoUC1615DS3ihQAKNtVLaAKFACnlg4+OKoED+tYLEdRagQH1/ctk5R59A5EeK9cpknkCM5T1ttYWdQOfX3yUOqpxAz0LaXejRm0B/OyGxVf2aQEbvWB5mLJpAiTKnDChfmUDByydSqJWYQLGe+jryz5dAC7HikA8Ol0D142yjCFCWQKwklVDklZVAJsjgDajflEDqveTxVy2UQNJGLr72fpNA3+SE6YXUkkBZSHyqBS6SQBkVTQJ1i5FA33frx9HskEDjplKzGFKQQBMl+dGKdo9A1HP6CqVQjkCslnJSczKNQAnlXwjnG4xA4Oafw+8Mi0A15qBpewWKQHwqDEZ2BYlAeL1aIssMiEBhMUddYxuHQHn7XdY4I4hAQE689GQfiUBjNd5fJyOKQDRFbLuXLotAn9EiMMxBjEAbeFRT2VyNQHIbSA7Sf45A4nOAhceqj0C3+v1/5G6QQOEyPudxDJFAAgdzmRGukUCifuMjyFOSQFCpC/SY/ZJAhP6hS4ark0Dz5co0kV2UQKOHg3a5E5VAiS1Nif3NlUBqpiKMWoyWQEk3wTnMTpdAiMBO3kwVmED8y2ZN1d+YQGpBmNhcrplAzH9dRtmAmkDWkZjJPlebQIgknfl/MZxAks3Ryo0PnUA+DvKHV/GdQABV+svK1p5AIwzHfNO/n0DPwzfjLVagQP6usgsmzqBAbTSwjsVHoUDXqI/h/sKhQHgWgpfDP6JA8R1KYQS+okBivHANsT2jQJgK8oi4vqNAjsZk4AhBpEC+MZ9Bj8SkQCaE2/03SaVAKuVdjO7OpUB0iZ2NnVWmQD8/8s4u3aZAZVnHTotlp0BAjlRBm+6nQA8A3RVGeKhAhUR0fHICqUBi3UhsBo2pQHcvcyrnF6pA/J5HUfmiqkCkECrYIC6rQMCm4BtBuatAwChj5zxErEAyGyR99s6sQJ4l0KBPWa1ACfx/oSnjrUDZm1hkZWyuQHhGlW/j9K5AHkH29YN8r0B4gEdxkwGwQAYGd/JVRLBA9T7MPnmGsEDMYmkF7cewQMjw1+qgCLFAkAawj4RIsUCZxFuXh4exQEfy8q6ZxbFAyPMqlKoCskAbBlccqj6yQJKbdDuIebJAops/CzWzskDYNErSoOuyQPXeEwu8IrNA9B0ba3dYs0DtjOXpw4yzQI2x+ceSv7NAcRbGldXws0DIK3E6fiC0QLFyjfp+TrRAcICtfsp6tEAzc9PZU6W0QFCCt48OzrRA/2fhmu70tEBWepBy6Bm1QJhkbhDxPLVAFpEI9v1dtUAKdgwyBX21QBQeQ2X9mbVAv21Ix920tUAX1Poqns21QF1DoAI35LVAQYG9Y6H4tUDAEp0K1wq2QAs/g13SGrZAuN6Mb44otkDl5zYDBzS2QPfljIw4PbZAqMr8MiBEtkAFx87Su0i2QPwcQP4JS7ZA/BxA/glLtkAFx87Su0i2QKjK/DIgRLZA9+WMjDg9tkDl5zYDBzS2QLjejG+OKLZACz+DXdIatkDAEp0K1wq2QEGBvWOh+LVAXUOgAjfktUAW1Poqns21QL9tSMfdtLVAFB5DZf2ZtUAKdgwyBX21QBSRCPb9XbVAmGRuEPE8tUBWepBy6Bm1QP9n4Zru9LRAUIK3jw7OtEAzc9PZU6W0QG+ArX7KerRAsXKN+n5OtEDIK3E6fiC0QHEWxpXV8LNAjLH5x5K/s0DtjOXpw4yzQPQdG2t3WLNA9d4TC7wis0DYNErSoOuyQKKbPws1s7JAkJt0O4h5skAdBlccqj6yQMjzKpSqArJAR/LyrpnFsUCXxFuXh4exQJAGsI+ESLFAyPDX6qAIsUDMYmkF7cewQPU+zD55hrBABgZ38lVEsEB3gEdxkwGwQCBB9vWDfK9AeEaVb+P0rkDZm1hkZWyuQAf8f6Ep461AnSXQoE9ZrUA0GyR99s6sQMAoY+c8RKxAwKbgG0G5q0CkECrYIC6rQPyeR1H5oqpAdy9zKucXqkBi3UhsBo2pQIVEdHxyAqlADwDdFUZ4qEA/jlRBm+6nQGRZx06LZadAPz/yzi7dpkB0iZ2NnVWmQCrlXYzuzqVAJoTb/TdJpUC8MZ9Bj8SkQI7GZOAIQaRAmAryiLi+o0BivHANsT2jQPEdSmEEvqJAdxaCl8M/okDXqI/h/sKhQG00sI7FR6FA/q6yCybOoEDPwzfjLVagQB0Mx3zTv59AAFX6y8rWnkA+DvKHV/GdQJLN0cqND51AiCSd+X8xnEDRkZjJPlebQMx/XUbZgJpAakGY2FyumUD8y2ZN1d+YQIjATt5MFZhASTfBOcxOl0BtpiKMWoyWQIktTYn9zZVAo4eDdrkTlUDz5co0kV2UQIH+oUuGq5NAU6kL9Jj9kkCifuMjyFOSQAIHc5kRrpFA4TI+53EMkUCz+v1/5G6QQOZzgIXHqo9AchtIDtJ/jkAbeFRT2VyNQJ/RIjDMQYxAMkVsu5cui0BjNd5fJyOKQEBOvPRkH4lAeftd1jgjiEBZUutA9TCJQIUd12EjOIpA8o2amDxHi0DQHgmRWV6MQJ6af2uRfY1AKvhUo/mkjkDxECX1pdSPQML4gSJUhpBAI5VUQogmkUDOktFM9sqRQAWR0SGkc5JAO355gZYgk0DQP5P/0NGTQJA0DfdVh5RAh+OpfSZBlUA/XOlXQv+VQDz6Ne2nwZZAhWRePFSIl0CwwWbQQlOYQO0wu7VtIplATarNb831mUAKcCnvWM2aQH88BogFqZtAlE9l6caInEBpbsIUj2ydQK/NYlZOVJ5AuLxLPvM/n0B9XfVMtRegQLA1PLdPkaBAPM0Per0MoUAuofhI8omhQMQSV+3gCKJAah43RXuJokCi55ZCsgujQFPNI+t1j6NAnn1xWLUUpEB8P664XpukQOJi109fI6VAN35weaOspUBE0r+qFjemQFPbkXWjwqZA/sCFizNPp0AR/OPBr9ynQOgtABYAa6hANsQmsgv6qEDYoRbzuImpQAegBm7tGapA21M2942qqkDkGgmpfjurQH0GquuizKtA/9E2fd1drECoom96EO+sQD7j6GcdgK1A0B+8O+UQrkB/WbRnSKGuQLLd8eMmMa9AaUEBOmDAr0D4WzDIaSewQIVKN9svbrBAyLJdmHG0sEDD09wiHvqwQB5mYoUkP7FAnmm8uHODsUBGu6mq+saxQLnGy0SoCbJA2H61c2tLskANpRMuM4yyQGZF6nvuy7JAty7jfYwKs0C/Eql0/EezQLjhSsgthLNA+9+iDxC/s0C44rwXk/izQPQSN+umMLRAx4uY2TtntEBUIpl+Qpy0QG6jVcmrz7RA5NNrA2kBtUD8hfnXazG1QG0felqmX7VAUPh9DQuMtUCaDDfpjLa1QJeO1mEf37VAbQG3bbYFtkCfn06LRiq2QJXx5cbETLZATpwOwCZttkDHl9auYou2QMontGhvp7ZAqx8nZUTBtkBdKwzC2di2QBcMn0co7rZASu4obCkBt0AfOFhX1xG3QBVsP+UsILdAevn4qCUst0D4FO7uvTW3QHz1vr7yPLdAQxXL3MFBt0DkW1jLKUS3QORbWMspRLdAQxXL3MFBt0B89b6+8jy3QPgU7u69NbdAefn4qCUst0AVbD/lLCC3QB84WFfXEbdASu4obCkBt0AXDJ9HKO62QF0rDMLZ2LZAqx8nZUTBtkDKJ7Rob6e2QMeX1q5ii7ZATpwOwCZttkCV8eXGxEy2QJ2fTotGKrZAbQG3bbYFtkCXjtZhH9+1QJoMN+mMtrVATvh9DQuMtUBtH3papl+1QPyF+ddrMbVA5NNrA2kBtUBuo1XJq8+0QFQimX5CnLRAxYuY2TtntED0EjfrpjC0QLjivBeT+LNA+9+iDxC/s0C44UrILYSzQL8SqXT8R7NAuS7jfYwKs0BmRep77suyQA2lEy4zjLJA1361c2tLskC4xstEqAmyQEi7qar6xrFAnmm8uHODsUAeZmKFJD+xQMLT3CIe+rBAx7JdmHG0sECGSjfbL26wQPhbMMhpJ7BAaUEBOmDAr0Cy3fHjJjGvQH1ZtGdIoa5A0R+8O+UQrkA+4+hnHYCtQKiib3oQ76xA/9E2fd1drEB9BqrrosyrQOIaCal+O6tA21M2942qqkAHoAZu7RmqQNihFvO4ialANsQmsgv6qEDlLQAWAGuoQBH848Gv3KdA/sCFizNPp0BT25F1o8KmQEPSv6oWN6ZAN35weaOspUDiYtdPXyOlQHw/rrhem6RAnn1xWLUUpEBTzSPrdY+jQKDnlkKyC6NAah43RXuJokDEElft4AiiQC6h+EjyiaFAPM0Per0MoUCuNTy3T5GgQH1d9Uy1F6BAuLxLPvM/n0CvzWJWTlSeQGluwhSPbJ1Aj09l6caInEB/PAaIBambQApwKe9YzZpATarNb831mUDtMLu1bSKZQK3BZtBCU5hAiGRePFSIl0A8+jXtp8GWQD9c6VdC/5VAh+OpfSZBlUCQNA33VYeUQNM/k//Q0ZNAO355gZYgk0AFkdEhpHOSQM6S0Uz2ypFAIZVUQogmkUDE+IEiVIaQQPEQJfWl1I9AKvhUo/mkjkCemn9rkX2NQM4eCZFZXoxA7o2amDxHi0CFHddhIziKQFlS60D1MIlAXXQdV1pEikAgnkSZxVaLQFvnsoFycYxA3XXxyXqUjUBteC+P9r+OQCKZmzf8849AGdTKK1CYkEBS8GPL+jqRQA3rm0oG4pFA6t8v6HmNkkBbujDEWz2TQHeAstKw8ZNAoaWaznyqlECk4JYswmeVQAU9Rg6CKZZAL1SeNbzvlkDAypb4brqXQCRWJTWXiZhA/a+URTBdmUAg9kD1MzWaQK4HxHWaEZtAlnicVFrym0A3tllxaNecQK/uV/S3wJ1AyzsWRjqunkD4djEH35+fQP77hgTKSqBAsCido6LHoEDtcspwbkahQOv3noshx6FA6KMvIa9JokBWcGlqCc6iQAhI2KohVKNAu6flL+jbo0DI1pJQTGWkQBJVsm088KRAqNej8qV8pUC15JVWdQqmQOLSTx6WmaZAsJ6G3vIpp0Dasr4+dbunQKxnvPwFTqhAW5+E8IzhqECPhe4Q8XWpQJoTx3gYC6pAdJSGbOigqkDz+ZdgRTerQMpoMQATzqtANvO8NDRlrEDZCtAti/ysQJXBr2n5k61A839fvl8rrkBiZTdjnsKuQFEV//qUWa9A0UGJniLwr0Ad6uXzEkOwQGESuH6+jbBA9SFrzwLYsEB49kKYziGxQM+ng2QQa7FAebwOn7azsUAR4C2Zr/uxQMOeh5HpQrJAfXs6u1KJskBrixpF2c6yQKeYDWFrE7NATaiBS/dWs0AxnflSa5mzQEqQq9+12rNAdlsse8UatEC3uSPYiFm0QDFKBNrulrRAB7HCnObStECTAod8Xw21QAObUx1JRrVAin2ccpN9tUB0U8rGLrO1QCMlpMIL57VA4uuadBsZtkBoJfJXT0m2QEufwFuZd7ZAUcLE6eujtkCyuwftOc62QLH7Sth29rZAP587rJYct0DPe2f9jUC3QPap7/lRYrdA8pT0btiBt0CbwbfNF5+3QK+vbzAHurdA8mvKXp7St0DInxvS1ei3QPUkM7mm/LdA8l/Z+woOuEA24u49/Ry4QN0WLeJ4KbhA6/6FDHozuEC2RyGk/Tq4QDBM9VQBQLhApdn6kINCuECl2fqQg0K4QDBM9VQBQLhAtkchpP06uEDr/oUMejO4QNwWLeJ4KbhANuLuPf0cuEDyX9n7Cg64QPUkM7mm/LdAyJ8b0tXot0Dya8pentK3QK+vbzAHurdAm8G3zReft0DylPRu2IG3QPap7/lRYrdAz3tn/Y1At0A/nzuslhy3QLH7Sth29rZAsrsH7TnOtkBRwsTp66O2QEufwFuZd7ZAaCXyV09JtkDi65p0Gxm2QCMlpMIL57VAdFPKxi6ztUCJfZxyk321QAObUx1JRrVAkwKHfF8NtUAHscKc5tK0QDFKBNrulrRAt7kj2IhZtEB0Wyx7xRq0QEqQq9+12rNAMZ35UmuZs0BNqIFL91azQKaYDWFrE7NAaosaRdnOskB+ezq7UomyQMOeh5HpQrJAEeAtma/7sUB5vA6ftrOxQM2ng2QQa7FAePZCmM4hsUD1IWvPAtiwQGESuH6+jbBAG+rl8xJDsEDRQYmeIvCvQFMV//qUWa9AYmU3Y57CrkDzf1++XyuuQJXBr2n5k61A2ArQLYv8rEAz87w0NGWsQMpoMQATzqtA8/mXYEU3q0B0lIZs6KCqQJkTx3gYC6pAj4XuEPF1qUBbn4TwjOGoQKxnvPwFTqhA2rK+PnW7p0Ctnobe8imnQOLSTx6WmaZAteSVVnUKpkCo16PypXylQBJVsm088KRAyNaSUExlpEC6p+Uv6NujQAhI2KohVKNAVnBpagnOokDooy8hr0miQOv3noshx6FA63LKcG5GoUCwKJ2josegQP77hgTKSqBA+HYxB9+fn0DLOxZGOq6eQKjuV/S3wJ1AN7ZZcWjXnECWeJxUWvKbQK4HxHWaEZtAIPZA9TM1mkD5r5RFMF2ZQCRWJTWXiZhAwMqW+G66l0AvVJ41vO+WQAU9Rg6CKZZApOCWLMJnlUChpZrOfKqUQHeAstKw8ZNAW7owxFs9k0Dq3y/oeY2SQAjrm0oG4pFAUvBjy/o6kUAZ1MorUJiQQCKZmzf8849AbXgvj/a/jkDddfHJepSNQFjnsoFycYxAIJ5EmcVWi0BddB1XWkSKQINVbBojXYtAvDGvywN7jED7PlRlfqGNQFx/4bOt0I5Aao4la1UEkECa/BeRxqSQQItm9gO1SZFADu5KeyrzkUCA/POfL6GSQDEgIf7LU5NAmktd9wULlEBWyq+04saUQL2J3Rhmh5VAD5bUspJMlkCb60uwaRaXQArzodDq5JdAozAEWBS4mED+2OoC44+ZQFkf8/lRbJpAuSwjxlpNm0A2waJF9TKcQE6K86AXHZ1A5zm0QLYLnkDLYPnDw/6eQOH9Rvcw9p9AOcsaZvZ4oECAw+Yo8vigQMKF0VYBe6FAl6Heihj/oUDyF6llK4WiQMiwMIssDaNA31EboQ2Xo0AZ0G5NvyKkQMt8xzUxsKRAjnQP/1E/pUAtc7pND9ClQJ6picZVYqZA8cfaDxH2pkB6HIXTK4unQBlVR8GPIahAPRbIkSW5qEBaPisK1VGpQA9LPQCF66lAsfA1XxuGqkAQjRItfSGrQFayiJCOvatAIZqQ1zJarEB834Z+TPesQORs5De9lK1AEReL9GUyrkDI56TsJtCuQIKmE6nfba9Agtq2hrcFsEAhcEKxWVSwQKWnuTDForBA+iGVn+jwsEAb9z5csj6xQIqPVI8QjLFAg5whMvHYsUDQJlEVQiWyQNh20efwcLJARWXnPeu7skDZcW2YHgazQPXOOmx4T7NAcmOuKeaXs0D6mVlEVd+zQOytxjqzJbRAJgFWnu1qtEDx5C0b8q60QD0iOICu8bRAMXMoxxAztUDrCIccB3O1QL8luud/sbVAycQJ02nutUDQPJjTsym2QFXFSjFNY7ZAzcGcjiWbtkCBuFjwLNG2QALgMcVTBbdAODg57Yo3t0AUMinBw2e3QIr7ghnwlbdAJpx4VQLCt0BkKZ9h7eu3QCp5ZL6kE7hAuttDhhw5uECfjbVzSVy4QAC91OYgfbhAXSy46pibuED2rnk6qLe4QMjw6EVG0bhAxTTmNWvouEDi72HwD/24QGBm/hsuD7lA2bFQI8AeuUCb2r43wSu5QGL0+FMtNrlAsnYLPgE+uUBDUgmJOkO5QKaPTJbXRblApo9MltdFuUBDUgmJOkO5QLJ2Cz4BPrlAYvT4Uy02uUCb2r43wSu5QNqxUCPAHrlAYGb+Gy4PuUDi72HwD/24QMU05jVr6LhAyPDoRUbRuED2rnk6qLe4QF0suOqYm7hAAL3U5iB9uECfjbVzSVy4QLrbQ4YcObhAKnlkvqQTuEBkKZ9h7eu3QCaceFUCwrdAivuCGfCVt0ATMinBw2e3QDg4Oe2KN7dAAuAxxVMFt0CBuFjwLNG2QM3BnI4lm7ZAU8VKMU1jtkDQPJjTsym2QMnECdNp7rVAvyW653+xtUDrCIccB3O1QDFzKMcQM7VAPSI4gK7xtEDy5C0b8q60QCYBVp7tarRA7K3GOrMltED5mVlEVd+zQHJjrinml7NA9c46bHhPs0DZcW2YHgazQEVl5z3ru7JA13bR5/BwskDPJlEVQiWyQIWcITLx2LFAio9UjxCMsUAb9z5csj6xQPkhlZ/o8LBAo6e5MMWisEAicEKxWVSwQILatoa3BbBAgqYTqd9tr0DI56TsJtCuQBAXi/RlMq5A5GzkN72UrUB834Z+TPesQCGakNcyWqxAVrKIkI69q0AOjRItfSGrQLDwNV8bhqpAD0s9AIXrqUBaPisK1VGpQD0WyJEluahAGVVHwY8hqEB5HIXTK4unQPHH2g8R9qZAnqmJxlVipkAtc7pND9ClQI50D/9RP6VAyHzHNTGwpEAZ0G5NvyKkQN9RG6ENl6NAyLAwiywNo0DyF6llK4WiQJOh3ooY/6FAwoXRVgF7oUCAw+Yo8vigQDnLGmb2eKBA4f1G9zD2n0DJYPnDw/6eQOc5tEC2C55ATorzoBcdnUA2waJF9TKcQLksI8ZaTZtAWR/z+VFsmkAB2eoC44+ZQKMwBFgUuJhACvOh0Orkl0Cb60uwaRaXQAyW1LKSTJZAwIndGGaHlUBWyq+04saUQJpLXfcFC5RAMSAh/stTk0B9/POfL6GSQA7uSnsq85FAi2b2A7VJkUCa/BeRxqSQQGqOJWtVBJBAWH/hs63QjkD7PlRlfqGNQLwxr8sDe4xAg1VsGiNdi0C8Ma/LA3uMQJgIlSKPpI1ARIzUPQ7XjkACz/aATgmQQB04I8qqq5BAgAQjH6hSkUA+0SGoUf6RQK7LLYKxrpJAGaKdsNBjk0A4/XoOtx2UQGzn+j9r3JRA+9YNpPKflUCEXRFGUWiWQDPFrc+JNZdAUyTqep0HmED5qoEEjN6YQE0ghZ5TuplAtLFT4/CamkBPWfbIXoCbQAg96ZSWapxAyHpe0I9ZnUC43wU9QE2eQNcJZcqbRZ9A47TlRUohoEAFxHZXDaKgQNVpmTkOJaFAd4zgEEOqoUBzRigDoTGiQJSOaTQcu6JALrb8w6dGo0BhyE/KNdSjQJymFVe3Y6RAE4rybxz1pECYWKoPVIilQPH71CVMHaZAzaYcl/GzpkC5qAk+MEynQE4kX+zy5adA9qYLbSOBqEDdSbCGqh2pQKamwP5vu6lAzIk9nVpaqkAf5wsxUPqqQGcs6ZQ1m6tAdaH9tO48rECiFQ2VXt+sQDioRVdngq1AaQSsQ+olrkBp8iPQx8muQIamE6nfba9Ac95PXQgJsED4qj6dHFuwQIylK1kbrbBAuHxhBfP+sECGUWDLkVCxQGt34Y/lobFAr0oc+dvysUDoaEl1YkOyQO9cYUFmk7JAb5YTcNTiskAcTvLwmTGzQJDBz5ejf7NA3v5IJN7Ms0AoRnpJNhm0QDnZ2LWYZLRA8uQtG/KutEBoB642L/i0QJ3PKNk8QLVA/3BL7weHtUD9xfGJfcy1QDGhgOaKELZAMVVEdx1TtkAdR87rIpS2QHJQTDmJ07ZACanUoj4Rt0DnCqHBMU23QG++M41Rh7dAMj9hY42/t0AkLzkQ1fW3QItYydUYKrhAoY21c0lcuEAvSJ8uWIy4QAIDWNc2urhABGPZ0dfluEBgZv4bLg+5QGL0+FMtNrlAZlF/vslauUA6J61M+Hy5QFYClKGunLlADll3F+O5uUBTabDEjNS5QPZ0NoCj7LlAoSLI5R8CukAUC7NZ+xS6QAO+NgwwJbpA09CA/LgyukCW0T/7kT26QB9Ey6y3RbpAxxrfiidLukC+aunl3026QL5q6eXfTbpAxxrfiidLukAfRMust0W6QJbRP/uRPbpA0tCA/LgyukAEvjYMMCW6QBQLs1n7FLpAoSLI5R8CukD2dDaAo+y5QFNpsMSM1LlADll3F+O5uUBWApShrpy5QDonrUz4fLlAZlF/vslauUBi9PhTLTa5QGBm/hsuD7lABGPZ0dfluEACA1jXNrq4QC9Iny5YjLhAn421c0lcuECKWMnVGCq4QCQvORDV9bdAMj9hY42/t0BvvjONUYe3QOYKocExTbdACanUoj4Rt0ByUEw5idO2QB1HzusilLZAMVVEdx1TtkAxoYDmihC2QPzF8Yl9zLVA/3BL7weHtUCdzyjZPEC1QGgHrjYv+LRA8eQtG/KutEA42di1mGS0QCtGekk2GbRA3v5IJN7Ms0CQwc+Xo3+zQBxO8vCZMbNAbpYTcNTiskDvXGFBZpOyQOhoSXViQ7JAr0oc+dvysUBrd+GP5aGxQIVRYMuRULFAuXxhBfP+sECMpStZG62wQPiqPp0cW7BAc95PXQgJsECCphOp322vQGfyI9DHya5AaQSsQ+olrkA4qEVXZ4KtQKIVDZVe36xAdaH9tO48rEBlLOmUNZurQB/nCzFQ+qpAzIk9nVpaqkCmpsD+b7upQNlJsIaqHalA86YLbSOBqEBOJF/s8uWnQLmoCT4wTKdAzaYcl/GzpkDx+9QlTB2mQJVYqg9UiKVAE4rybxz1pECcphVXt2OkQGHIT8o11KNALrb8w6dGo0CSjmk0HLuiQHNGKAOhMaJAd4zgEEOqoUDVaZk5DiWhQAXEdlcNoqBA47TlRUohoEDXCWXKm0WfQLjfBT1ATZ5AyHpe0I9ZnUAIPemUlmqcQExZ9shegJtAu7FT4/CamkBNIIWeU7qZQPmqgQSM3phAUyTqep0HmEAxxa3PiTWXQIldEUZRaJZA+9YNpPKflUBs5/o/a9yUQDj9eg63HZRAGaKdsNBjk0Cyyy2Csa6SQD7RIahR/pFAgAQjH6hSkUAdOCPKqquQQP7O9oBOCZBAQIzUPQ7XjkCYCJUij6SNQLwxr8sDe4xAnHng6qmdjUB4mgnAEdOOQJzZuFrkCJBAl10f5vWskEDBHlUay1WRQHZ7+pdwA5JAtcwW+fG1kkDSBu7BWW2TQJOm0VGxKZRAdVX20wDrlECmCVgwT7GVQF66tvyhfJZAwBC2bf1Ml0CwxipIZCKYQA+ooNLX/JhAcGckx1fcmUAdrFxF4sCaQP/s/cRzqptAANGkCAeZnEBr6iIRlYydQFS2SREVhZ5AzdM/YnyCn0B+MzY8X0KgQLFJgmzmxaBAHXIjiMtLoUBLLjhUBdShQG1fu5CJXqJA7LPJ9EzrokBF7VQrQ3qjQDtnStBeC6RAuh4ybpGepEAARkt8yzOlQI09K138yqVAOo3jXRJkpkB4N7O1+v6mQLt5R4ahm6dAjcCP3PE5qEBkRCiy1dmoQDZtXu81e6lAfb/RbfodqkCetLP7CcKqQCJ8qF9KZ6tAvDlKXaANrEBO50+677SsQIKRWEQbXa1ADzFb1wQGrkCz7Lpkja+uQFMV//qUWa9AVtkWZ/0BsECrfGOgTlewQKHBr/asrLBAm1Jr2AYCsUDQ3JJaSlexQEZdYj5lrLFAfQFQ90QBskDHSE2x1lWyQFnUS1cHqrJADhYDmsP9skBS0fP291CzQEgmpr+Qo7NAf6UeIXr1s0AMs4YroEa0QDFKBNrulrRAc/+8GlLmtEC07v/WtTS1QOUUkvsFgrVAcmoYgS7OtUDi65p0Gxm2QEKaGwC5YrZAsFw8c/OqtkBij+5Lt/G2QGf0Jj/xNrdAWqWQQY56t0AnlTmQe7y3QPUkM7mm/LdAtkchpP06uECmrLKabne4QLZq/FDosbhAv6yz7VnquEAx6T8SsyC5QFk/oOLjVLlAGKgeDd2GuUDgwMvRj7a5QH4Uvgnu47lAQecPLuoOukCusZZedze6QIqfT2iJXbpASJd8yxSBukB/gG3BDqK6QEm28UFtwLpAiMxtCCfcukCiDJKYM/W6QMxOrkKLC7tAWhmgJycfu0CvNVg8ATC7QFA09UwUPrtAnaRw/1tJu0D9Et3V1FG7QFwvMzB8V7tABs+sTVBau0AGz6xNUFq7QFwvMzB8V7tA/RLd1dRRu0CdpHD/W0m7QFA09UwUPrtArzVYPAEwu0BaGaAnJx+7QMxOrkKLC7tAogySmDP1ukCIzG0IJ9y6QEm28UFtwLpAf4BtwQ6iukBIl3zLFIG6QIqfT2iJXbpArrGWXnc3ukBB5w8u6g66QH4Uvgnu47lA4MDL0Y+2uUAYqB4N3Ya5QFg/oOLjVLlAMek/ErMguUC/rLPtWeq4QLZq/FDosbhApqyymm53uEC1RyGk/Tq4QPQkM7mm/LdAJ5U5kHu8t0BapZBBjnq3QGf0Jj/xNrdAX4/uS7fxtkCvXDxz86q2QEOaGwC5YrZA4uuadBsZtkByahiBLs61QOQUkvsFgrVAs+7/1rU0tUB1/7waUua0QDFKBNrulrRADLOGK6BGtEB9pR4hevWzQEgmpr+Qo7NAVNHz9vdQs0AOFgOaw/2yQFnUS1cHqrJAxkhNsdZVskB7AVD3RAGyQEddYj5lrLFA0NySWkpXsUCbUmvYBgKxQKHBr/asrLBAqHxjoE5XsEBV2RZn/QGwQFMV//qUWa9As+y6ZI2vrkAPMVvXBAauQH6RWEQbXa1ATudPuu+0rEC8OUpdoA2sQCJ8qF9KZ6tAnrSz+wnCqkB7v9Ft+h2qQDVtXu81e6lAZEQostXZqECNwI/c8TmoQLt5R4ahm6dAeDeztfr+pkA4jeNdEmSmQI09K138yqVAAEZLfMszpUC6HjJukZ6kQDtnStBeC6RAQu1UK0N6o0Dss8n0TOuiQG1fu5CJXqJASy44VAXUoUAdciOIy0uhQK5JgmzmxaBAfjM2PF9CoEDN0z9ifIKfQFS2SREVhZ5Aa+oiEZWMnUD90KQIB5mcQALt/cRzqptAHaxcReLAmkBwZyTHV9yZQA+ooNLX/JhArcYqSGQimEDCELZt/UyXQF66tvyhfJZApglYME+xlUB1VfbTAOuUQJGm0VGxKZRA0wbuwVltk0C1zBb58bWSQHZ7+pdwA5JAwR5VGstVkUCWXR/m9ayQQJnZuFrkCJBAeJoJwBHTjkCceeDqqZ2NQLGA4j68xI5Arb5lYxcDkEBRel2XpqiQQJTkaMwaU5FAGSMWIoICkkD9LdW26baSQG2hRJhdcJNASEVws+gulEAasgrFlPKUQErcq0lqu5VAXqsebnCJlkBuGsj/rFyXQLSxMl0kNZhARXXJZtkSmUBNqs1vzfWZQK8Tky8A3ppAPH0Os2/Lm0BynMJOGL6cQDF0F5H0tZ1As4YoNf2ynkDMNRYWKbWfQORdc5E2XqBASJSBKV7koEBqYq7NA22hQDiUI/Ie+KFA+ZgJAKaFokBccTtRjhWjQF/2ZizMp6NA1z6fwVI8pEDCwmYnFNOkQLeuNlgBbKVAqaeIMAoHpkCCBmhtHaSmQOtUj6soQ6dAu5AWZxjkp0CEcbb714aoQGKcpKVRK6lAn10Mg27RqUA+JSeWFnmqQJCk98cwIqtAfQaq66LMq0DZU5vCUXisQHOnCQEhJa1AgWRuU/PSrUAjLYNkqoGuQLLd8eMmMa9AulavjUjhr0A2MAAZ90iwQCm5E996obBAw9PcIh76sECbUUwGz1KxQKlSx0h7q7FAcsTETBAEskB0cLgde1yyQGlxSXaotLJAIaXRxoQMs0BxbyM8/GOzQCviksb6urNAJx8/IWwRtEDHi5jZO2e0QGAxIFdVvLRAQmxc46MQtUA90/6xEmS1QJoMN+mMtrVAtxIuqv0HtkBOO6UZUFi2QMontGhvp7ZARZyg3Ub1tkBDFcvcwUG3QL7SqvHLjLdAMvHT11DWt0DuDwKEPB64QH/uIS17ZLhABVpUVfmouEDituTSo+u4QC5rLdlnLLlAU2tkATNruUChK0pT86e5QOs/tU2X4rlAjf307g0bukAZhAW9RlG6QKylj80xhbpAc0Gvzb+2ukBDwXoJ4uW6QPKNRnOKErtAz3Wfqqs8u0AxLPcCOWS7QMg5/okmibtAbummDWmru0DY9cwh9sq7QMz4fSXE57tAZ9zeR8oBvEBI0qqMABm8QBqbSNBfLbxAVTJzy+E+vEAxPnMWgU28QHzy5is5WbxAnmUWawZivECgqdIZ5me8QGlP3mXWarxAaU/eZdZqvECgqdIZ5me8QJ5lFmsGYrxAfPLmKzlZvEAxPnMWgU28QFUyc8vhPrxAGptI0F8tvEBI0qqMABm8QGfc3kfKAbxAzPh9JcTnu0DY9cwh9sq7QG7ppg1pq7tAyDn+iSaJu0AxLPcCOWS7QM91n6qrPLtA8o1Gc4oSu0BDwXoJ4uW6QHNBr82/trpArKWPzTGFukAZhAW9RlG6QIv99O4NG7pA6z+1TZfiuUChK0pT86e5QFNrZAEza7lALGst2WcsuUDituTSo+u4QAdaVFX5qLhAf+4hLXtkuEDuDwKEPB64QDLx09dQ1rdAvtKq8cuMt0BDFcvcwUG3QEWcoN1G9bZAyie0aG+ntkBNO6UZUFi2QLcSLqr9B7ZAmgw36Yy2tUA90/6xEmS1QEJsXOOjELVAXzEgV1W8tEDFi5jZO2e0QCgfPyFsEbRAK+KSxvq6s0BxbyM8/GOzQCCl0caEDLNAaHFJdqi0skB2cLgde1yyQHLExEwQBLJAqVLHSHursUCbUUwGz1KxQMLT3CIe+rBAKbkT33qhsEA2MAAZ90iwQLpWr41I4a9Ast3x4yYxr0AgLYNkqoGuQH9kblPz0q1Ac6cJASElrUDZU5vCUXisQH0GquuizKtAkKT3xzAiq0A+JSeWFnmqQJ9dDINu0alAYpykpVErqUCEcbb714aoQLuQFmcY5KdA6FSPqyhDp0CCBmhtHaSmQKmniDAKB6ZAt642WAFspUDCwmYnFNOkQNY+n8FSPKRAX/ZmLMyno0BccTtRjhWjQPmYCQCmhaJAOJQj8h74oUBoYq7NA22hQEiUgSle5KBA5F1zkTZeoEDMNRYWKbWfQLOGKDX9sp5AKXQXkfS1nUB1nMJOGL6cQDx9DrNvy5tArxOTLwDemkBNqs1vzfWZQEV1yWbZEplAuLEyXSQ1mEBuGsj/rFyXQF6rHm5wiZZAStyrSWq7lUAYsgrFlPKUQEtFcLPoLpRAbaFEmF1wk0D9LdW26baSQBkjFiKCApJAkeRozBpTkUBMel2XpqiQQK2+ZWMXA5BAsYDiPrzEjkBCcY3l2u+PQIwJfTXBnpBAqrD56plKkUDeC8Y2h/uRQHVRvcGXsZJAyO/YKdlsk0DtveTxVy2UQGZXJHEf85RAz2Xzwjm+lUBCAGu2r46WQCypFr6IZJdAg83D38o/mECL/nakeiCZQABukgibBppA8Hw5bC3ymkDVbv2DMeObQJeL30ml2ZxADSy17oTVnUAAVfrLytaeQF6jH1Zv3Z9AAzGwh7R0oEAd1pY9Vv2gQHvAHQmWiKFAxVCeG2wWokAEAC2Wz6aiQP0wuYS2OaNAyleX2RXPo0CYl3tp4WakQHLU6ucLAaVA7Q4o5IadpUAFsaPGQjymQD4/8s4u3aZAwKZPEjmAp0AKILR6TiWoQL9Xf8ZazKhAMEK+iEh1qUDpqw8qASCqQLpBK+pszKpAuWwO4nJ6q0Br/NEG+SmsQK4wKy3k2qxA1UiaDRiNrUCoS0hJd0CuQHhGlW/j9K5AWchXBD2qr0BT8GbDMTCwQGC0n7yai7BAc26oNEjnsECgwYJ8KEOxQEiMN3Qpn7FAVlgEkDj7sUD799zdQleyQKObPws1s7JAJmlZa/sOs0DvVnn9gWqzQDDJznO0xbNAyCtxOn4gtEBwgK1+ynq0QEOXljaE1LRAFWjUKJYttUCExK706oW1QNNeTxpt3bVA5ec2Awc0tkA+z+AKo4m2QPT7kIcr3rZA26NG04oxt0AxOM9Uq4O3QOA09Ih31LdADni+C9ojuEBOpcmhvXG4QJv4oUENvrhAzdImHbQIuUAWM+yqnVG5QHE/la+1mLlA7/AhR+jduUCg8CnuISG6QKSu/opPYrpAUb6udl6hukAiieSFPN66QGd1mhHYGLtAzq6e/x9Ru0CR0+DKA4e7QI/kg4tzurtAKvWu/l/ru0CYPBeOuhm8QP1SPld1RbxAbZJfMoNuvED6xQe515S8QFqHUkxnuLxAYubIGifZvEAiNN0lDfe8QJkNAEcQEr1ALghLNCgqvUAHq72ETT+9QLesCbR5Ub1A27vrJadgvUCLag4p0Wy9QLoodfnzdb1A3I5twgx8vUDekQWgGX+9QN6RBaAZf71A3I5twgx8vUC6KHX583W9QItqDinRbL1A2rvrJadgvUC4rAm0eVG9QAervYRNP71ALghLNCgqvUCZDQBHEBK9QCI03SUN97xAYubIGifZvEBah1JMZ7i8QPrFB7nXlLxAbZJfMoNuvED9Uj5XdUW8QJc8F466GbxAKvWu/l/ru0CP5IOLc7q7QJHT4MoDh7tAzK6e/x9Ru0BndZoR2Bi7QCKJ5IU83rpAUb6udl6hukCkrv6KT2K6QJ/wKe4hIbpA7/AhR+jduUBzP5WvtZi5QBYz7KqdUblAzdImHbQIuUCb+KFBDb64QE6lyaG9cbhADni+C9ojuEDgNPSId9S3QDE4z1Srg7dA2qNG04oxt0D0+5CHK962QD7P4AqjibZA5ec2Awc0tkDTXk8abd21QILErvTqhbVAFGjUKJYttUBEl5Y2hNS0QHCArX7KerRAyCtxOn4gtEAuyc5ztMWzQO1Wef2BarNAJ2lZa/sOs0Cjmz8LNbOyQPv33N1CV7JAVlgEkDj7sUBGjDd0KZ+xQKDBgnwoQ7FAc26oNEjnsEBgtJ+8mouwQFPwZsMxMLBAV8hXBD2qr0B0RpVv4/SuQKhLSEl3QK5A1UiaDRiNrUCuMCst5NqsQGv80Qb5KaxAt2wO4nJ6q0C6QSvqbMyqQOmrDyoBIKpAMEK+iEh1qUC/V3/GWsyoQAcgtHpOJahAwKZPEjmAp0A+P/LOLt2mQAWxo8ZCPKZA7Q4o5IadpUBv1OrnCwGlQJiXe2nhZqRAyleX2RXPo0D9MLmEtjmjQAQALZbPpqJAw1CeG2wWokB7wB0JloihQB3Wlj1W/aBAAzGwh7R0oEBeox9Wb92fQPhU+svK1p5AESy17oTVnUCXi99JpdmcQNVu/YMx45tA8Hw5bC3ymkAAbpIImwaaQI3+dqR6IJlAg83D38o/mEAsqRa+iGSXQEIAa7avjpZAzGXzwjm+lUBoVyRxH/OUQO295PFXLZRAyO/YKdlsk0B1Ub3Bl7GSQNsLxjaH+5FApbD56plKkUCMCX01wZ6QQEJxjeXa749Aaxoitk+PkEDaoNUFUTyRQDAO2N2G7pFAOvn0dQGmkkAHUwEC0GKTQF8uDqEAJZRA7nKCTKDslEDjLiXHurmVQGqmIoxajJZAKakWvohkl0AqGicWTUKYQHX0OdOtJZlA629Sqa8OmkB7OyGxVf2aQAEN1Feh8ZtA1woxT5LrnEAnzgp+JuudQA3wGfFZ8J5AXj1JzCb7n0BB5kCewoWgQAgkArW1EKFAS2WutWaeoUCXVX+czi6iQNrGylDlwaJAwHqMn6FXo0ACu1c2+e+jQBQ4t57giqRAQYgBOksopUCWfag9K8ilQBNgCbBxaqZA7+jDZQ4Pp0CepZ3/77WnQNYs9+gDX6hAYEzYVjYKqUCbDZhHcrepQO8eJYOhZqpANtvym6wXq0DTzI7wesqrQNIo4q3yfqxAgFgi0vg0rUBlO3MwceytQH5bPXU+pa5AY9c5K0Jfr0BTpppgLg2wQB5HRcg2a7BArLgqcqnJsEAOu64AdSixQJfEW5eHh7FA2ciO387msUCy+HwNOEayQB1IkuWvpbJAJD4nwiIFs0AjTIyZfGSzQGyhaASpw7NAxyhqRJMitEBHFkRLJoG0QMIl+cFM37RAmGRuEPE8tUASHkNl/Zm1QNM+6r1b9rVAskMB7/VRtkD3ieCstay2QPmaYJSEBrdA9tPPM0xft0CklBMU9ra3QO3r78FrDbhAZopw15ZiuEAUlm0FYba4QMvSJh20CLlAMm7vGXpZuUCGnuQqnai5QJ8nqbwH9rlA38Ifg6RBukAwVB6DXou6QPnIExwh07pAZ3WaEdgYu0ACwfCUb1y7QPj0UU7UnbtAogUpZvPcu0CXPBeOuhm8QMW5yAkYVLxAidiQt/qLvEAnocgYUsG8QI2P6VkO9LxA/h1fWiAkvUC3rAm0eVG9QNqObcIMfL1ABzmJqcyjvUBOxk1crci9QCBFtaKj6r1AkH5yH6UJvkAsLzZVqCW+QDHxhaukPr5AjGMhc5JUvkClaPLpame+QF2phT4od75Aod0Ik8WDvkDJssz/Po2+QK+ASJWRk75AGFmeXbuWvkAYWZ5du5a+QK+ASJWRk75AybLM/z6NvkCh3QiTxYO+QFuphT4od75Apmjy6WpnvkCMYyFzklS+QDHxhaukPr5ALC82VaglvkCQfnIfpQm+QCBFtaKj6r1ATsZNXK3IvUAHOYmpzKO9QNqObcIMfL1At6wJtHlRvUD9HV9aICS9QI2P6VkO9LxAJ6HIGFLBvECJ2JC3+ou8QMO5yAkYVLxAlzwXjroZvECiBSlm89y7QPj0UU7UnbtAAsHwlG9cu0BmdZoR2Bi7QPbIExwh07pAMlQeg16LukDfwh+DpEG6QJ8nqbwH9rlAgp7kKp2ouUAybu8Zelm5QM3SJh20CLlAFJZtBWG2uEBminDXlmK4QO3r78FrDbhAopQTFPa2t0D3088zTF+3QPmaYJSEBrdA94ngrLWstkCxQwHv9VG2QNI+6r1b9rVAFB5DZf2ZtUCYZG4Q8Ty1QMIl+cFM37RARxZESyaBtEDGKGpEkyK0QG6haASpw7NAI0yMmXxks0AkPifCIgWzQB1IkuWvpbJAsvh8DThGskDXyI7fzuaxQJfEW5eHh7FADruuAHUosUCsuCpyqcmwQB5HRcg2a7BAUqaaYC4NsEBj1zkrQl+vQH5bPXU+pa5AZTtzMHHsrUCAWCLS+DStQNIo4q3yfqxA08yO8HrKq0A22/KbrBerQO8eJYOhZqpAmw2YR3K3qUBeTNhWNgqpQNYs9+gDX6hAnqWd/++1p0Dv6MNlDg+nQBNgCbBxaqZAkn2oPSvIpUBBiAE6SyilQBQ4t57giqRAArtXNvnvo0DAeoyfoVejQNjGylDlwaJAl1V/nM4uokBLZa61Zp6hQAgkArW1EKFAQeZAnsKFoEBYPUnMJvufQBHwGfFZ8J5AJ84KfibrnUDXCjFPkuucQAEN1Feh8ZtAezshsVX9mkDtb1Kprw6aQHX0OdOtJZlAKhonFk1CmEApqRa+iGSXQGamIoxajJZA5S4lx7q5lUDucoJMoOyUQF8uDqEAJZRAB1MBAtBik0A4+fR1AaaSQDAO2N2G7pFA2qDVBVE8kUBrGiK2T4+QQEUkoXhOKJFA0pvKKo7bkUCPQ3R8MpSSQGDmPztMUpNAuN92J+sVlEBCqKHiHd+UQMdmBd7xrZVAFpERSXOClkBuGsj/rFyXQJIYK3moPJhA7zC7tW0imUBjgBIuAw6aQM8MqMFt/5pAyyPIpbD2m0B3WM5UzfOcQHYXrn3D9p1AZAbX85D/nkAZTMHPGAegQLA1PLdPkaBA+ZOrImkeoUA31bf4X66hQDwqoA0uQaJAvC7PHMzWokDneM3CMW+jQLvsmHdVCqRAZJ1niSyopEDc79wXq0ilQE6Ttw/E66VAa7/+JmmRpkCx/bTZijmnQLuQFmcY5KdAsFRpz/+QqEC8tGPSLUCpQEQMMO6N8alAhH4RXwqlqkAL/a4fjFqrQA/dCOr6EaxA8vwcOT3LrEDJFj1LOIatQI1yGiXQQq5AqrqJlecAr0BpQQE6YMCvQHfF6UGNQLBAKbkT33qhsEBeXlcK6AKxQOqzjU3DZLFARrupqvrGsUBZOTGgeymyQA2lEy4zjLJAdE7e2g3vskCnf0y591GzQGMOMm7ctLNABou+NqcXtEBg7xbvQnq0QCJlQxma3LRAl3Ju5JY+tUAjk3I0I6C1QIP5sqkoAbZALPM7qZBhtkCrHydlRMG2QBVsP+UsILdA2oHgDzN+t0CYGg2zP9u3QN5ut407N7hA3702WQ+SuEDituTSo+u4QNdb3cXhQ7lA1sbbFLKauUCFEi7E/e+5QNd/ugOuQ7pAjNIPOayVukBCwXoJ4uW6QBM+GmQ5NLtAyEnsi5yAu0DY9cwh9sq7QHMwYS4xE7xAevLmKzlZvEDiaOQP+py8QOK5r1Rg3rxAJBPJAlkdvUCOvwC60Vm9QKcaY7q4k71A7lPk7PzKvUBcFsbrjf+9QD1PsQpcMb5AY3t+XlhgvkD3EqfEdIy+QOzhWuqjtb5AalU0U9nbvkDJBYdfCf++QMAHRFIpH79AgtZvVi88v0BH9CWEEla/QJCsJuXKbL9A+rXreFGAv0A1xkA4oJC/QDaCXRiynb9AFY9+DYOnv0C04/sMEK6/QHrZ2g5Xsb9AetnaDlexv0C04/sMEK6/QBWPfg2Dp79ANoJdGLKdv0AyxkA4oJC/QPq163hRgL9AkKwm5cpsv0BH9CWEEla/QILWb1YvPL9AwAdEUikfv0DJBYdfCf++QGpVNFPZ275A7OFa6qO1vkD3EqfEdIy+QGN7fl5YYL5APU+xClwxvkBcFsbrjf+9QO5T5Oz8yr1ApxpjuriTvUCOvwC60Vm9QCITyQJZHb1A4rmvVGDevEDiaOQP+py8QHry5is5WbxAcTBhLjETvEDY9cwh9sq7QMhJ7IucgLtAEz4aZDk0u0BCwXoJ4uW6QIzSDzmslbpA13+6A65DukCHEi7E/e+5QNbG2xSymrlA11vdxeFDuUDituTSo+u4QN+9NlkPkrhA3263jTs3uECYGg2zP9u3QNqB4A8zfrdAE2w/5Swgt0CpHydlRMG2QCzzO6mQYbZAg/myqSgBtkAjk3I0I6C1QJVybuSWPrVAIGVDGZrctEBh7xbvQnq0QAaLvjanF7RAYw4ybty0s0Cnf0y591GzQHRO3toN77JACqUTLjOMskBZOTGgeymyQEa7qar6xrFA6rONTcNksUBdXlcK6AKxQCi5E996obBAd8XpQY1AsEBpQQE6YMCvQKq6iZXnAK9AinIaJdBCrkDIFj1LOIatQPL8HDk9y6xAD90I6voRrEAL/a4fjFqrQIR+EV8KpapAQAww7o3xqUC8tGPSLUCpQLBUac//kKhAu5AWZxjkp0Cx/bTZijmnQGm//iZpkaZATpO3D8TrpUDc79wXq0ilQGSdZ4ksqKRAu+yYd1UKpEDkeM3CMW+jQLwuzxzM1qJAPCqgDS5BokA31bf4X66hQPmTqyJpHqFArjU8t0+RoEAZTMHPGAegQGQG1/OQ/55AdheufcP2nUB3WM5UzfOcQMsjyKWw9ptAzwyowW3/mkBjgBIuAw6aQO8wu7VtIplAkhgreag8mEBnGsj/rFyXQBaREUlzgpZAx2YF3vGtlUBCqKHiHd+UQLjfdifrFZRAYOY/O0xSk0CNQ3R8MpSSQNKbyiqO25FARSSheE4okUDu9OMmsMKRQIuXebc8fJJAWW5Qbl47k0BjEDywJgCUQMkXQMulypRAuwuL5OqalUCSZFbmA3GWQMAQtm39TJdAJ1ZiuOIumEBNW4eSvRaZQJAPpkSWBJpAVI6SgXP4mkCWeJxUWvKbQCwY7g9O8pxAJXAvO1D4nUDgpnqCYASfQKO611I+C6BA2b4ZNFCXoEDGzJbAYiahQG4nJcZxuKFAmduL/XdNokCwloMDb+WiQEiMEVJPgKNAHpBDOhAepEAxflTep76kQOz4PywLYqVAg2zM2C0IpkBSJxJbArGmQG8xhuh5XKdAxGCPcYQKqEB486ueELuoQGHALc4LbqlABsySEmIjqkCzyH8x/tqqQOm5YaPJlKtA3527k6xQrECkpCTijQ6tQA4a+yNTzq1A7b/PpuCPrkDd54xzGVOvQC8ULqnvC7BAHoimZwlvsEBeXt+fydKwQFzaRmQfN7FAwXGDMvmbsUB9AVD3RAGyQCmbuhLwZrJANoLFXOfMskBRpmkqFzOzQDSd+VJrmbNAoNHjNc//s0AYUdLALWa0QCVUJnZxzLRAyVDNc4QytUBJGW16UJi1QJk95PS+/bVAQ5obALlitkBKtSVzJ8e2QLtAqOfyKrdAoNOLwgOOt0CbpO08QvC3QPzOTm2WUbhAtmr8UOixuEAbgqvVHxG5QFi2Q+Mkb7lAeSzTZd/LuUDVKaZXNye6QEmXfMsUgbpAfXfX9l/ZukCvNVg8ATC7QCOQKzbhhLtAwsN5wOjXu0AEhtUDASm8QCxGo38TeLxAGSFyFArFvEA96T8Ozw+9QAKhoS5NWL1AecfJtm+evUB43mVxIuK9QFKeTLxRI75All32kephvkAxS7mS2p2+QCc3ww0Q175AhMjKCXoNv0DXJ3JNCEG/QApTVWercb9AHIK+tVSfv0DMO/tt9sm/QFz2TKOD8b9AdDC4JvgKwEA0XFunmBvAQBRq1jyeKsBAHPIlSwQ4wECeFlizxkPAQNEwqdXhTcBAgkhgk1JWwEAMAGpQFl3AQOXMsPQqYsBAVIQx7Y5lwECtdMssQWfAQK10yyxBZ8BAVIQx7Y5lwEDlzLD0KmLAQAwAalAWXcBAgUhgk1JWwEDSMKnV4U3AQJ4WWLPGQ8BAHPIlSwQ4wEAUatY8nirAQDRcW6eYG8BAdDC4JvgKwEBc9kyjg/G/QMw7+232yb9AHIK+tVSfv0AKU1Vnq3G/QNMnck0IQb9AhMjKCXoNv0AnN8MNENe+QDFLuZLanb5AlF32kephvkBSnky8USO+QHjeZXEi4r1AecfJtm+evUACoaEuTVi9QD3pPw7PD71AFyFyFArFvEAsRqN/E3i8QASG1QMBKbxAwsN5wOjXu0AgkCs24YS7QK81WDwBMLtAf3fX9l/ZukBJl3zLFIG6QNUpplc3J7pAeSzTZd/LuUBYtkPjJG+5QB6Cq9UfEblAtmr8UOixuED8zk5tllG4QJqk7TxC8LdAoNOLwgOOt0C9QKjn8iq3QEq1JXMnx7ZAQ5obALlitkCYPeT0vv21QEgZbXpQmLVAylDNc4QytUAlVCZ2ccy0QBhR0sAtZrRAoNHjNc//s0AwnflSa5mzQFCmaSoXM7NANoLFXOfMskApm7oS8GayQH0BUPdEAbJAv3GDMvmbsUBc2kZkHzexQF5e35/J0rBAHoimZwlvsEAvFC6p7wuwQNvnjHMZU69A67/PpuCPrkAOGvsjU86tQKSkJOKNDq1A3527k6xQrEDpuWGjyZSrQLHIfzH+2qpABsySEmIjqkBhwC3OC26pQHjzq54Qu6hAxGCPcYQKqEBsMYboeVynQFInElsCsaZAg2zM2C0IpkDs+D8sC2KlQDF+VN6nvqRAHZBDOhAepEBIjBFST4CjQLCWgwNv5aJAmduL/XdNokBuJyXGcbihQMXMlsBiJqFA3L4ZNFCXoECjutdSPgugQOCmeoJgBJ9AJXAvO1D4nUAoGO4PTvKcQJl4nFRa8ptAVI6SgXP4mkCQD6ZElgSaQE1bh5K9FplAJFZiuOIumEDCELZt/UyXQJJkVuYDcZZAuwuL5OqalUDJF0DLpcqUQGAQPLAmAJRAWG5Qbl47k0CLl3m3PHySQO704yawwpFAt12eJDhekkBbJl+WHR6TQKyupBHJ45NA5JWUk0yvlEDB5Pr4uICVQO4pp+sdWJZAM8Wtz4k1l0DtIpiwCRmYQIQijy6pAplAVFaLa3LymUCuOpf4beiaQPrpL8Oi5JtA1zbRAhbnnEBcb7omy++dQMtg+cPD/p5Adb7kwf8JoEBxoioJvpegQL4q9IaaKKFAW09Q+5G8oUBCulYPoFOiQJOflU2/7aJA+E7VGumKo0Bt6DivFSukQJKYww88zqRAv7RJCFJ0pUDx+9QlTB2mQLAog7EdyaZAYN/lq7h3p0Bx3erIDSmoQKkfU2wM3ahAXIC/pqKTqUBmElkzvUyqQDQ6G3ZHCKtA5zvFeivGq0BspHj0UYasQA6bCT6iSK1A0MoFWwINrkD4LHb5VtOuQAaTX3SDm69AK66C67QysEA4pnhwdZiwQLl8YQXz/rBABWTkxRxmsUCW8TEw4c2xQM4InCguNrJA9t2T/fCeskDb8A1sFgizQBaTS6SKcbNAVEEJTznbs0AByRCTDUW0QPHkLRvyrrRAfKyDHNEYtUCk4EBdlIK1QE3TsDsl7LVAQVWmtWxVtkChyD1wU762QLon87/BJrdALoMIsZ+Ot0AkLzkQ1fW3QKGNtXNJXLhAoxxjROTBuECvKVzHjCa5QK9JqicqirlA9nQ2gKPsuUC8aunl3026QLbG9nHGrbpAhf5MTD4Mu0DbSyS2Lmm7QGFbphR/xLtAaXCo+xYevEDriXE43nW8QMP2hdy8y7xApK1xSJsfvUDpqIo2YnG9QJd3pMX6wL1AZiuug04OvkDlxzN4R1m+QJpYvC7Qob5AiNv9wNPnvkDQOuDgPSu/QFKjSOL6a79AtZ6mxPepv0Aidjw8IuW/QFJDjl20DsBALq3qPF0pwEA4ROO/g0LAQB5JjFUgWsBA+RYp3CtwwEC51sKkn4TAQLa5iHZ1l8BAiVj3kaeowEBc+cSzMLjAQBKpkBcMxsBA+DxSejXSwEAofokcqdzAQLTtKsRj5cBAHb9IvmLswEBI13bgo/HAQPfO6Ikl9cBAZypJpOb2wEBnKkmk5vbAQPfO6Ikl9cBASNd24KPxwEAdv0i+YuzAQLPtKsRj5cBAKH6JHKncwED4PFJ6NdLAQBKpkBcMxsBAXPnEszC4wECJWPeRp6jAQLa5iHZ1l8BAudbCpJ+EwED5FincK3DAQB5JjFUgWsBAOETjv4NCwEAureo8XSnAQFJDjl20DsBAInY8PCLlv0C1nqbE96m/QFCjSOL6a79Azjrg4D0rv0CI2/3A0+e+QJpYvC7Qob5A5cczeEdZvkBkK66DTg6+QJd3pMX6wL1A6qiKNmJxvUCkrXFImx+9QMP2hdy8y7xA64lxON51vEBncKj7Fh68QGJbphR/xLtA20skti5pu0CF/kxMPgy7QLbG9nHGrbpAvGrp5d9NukD2dDaAo+y5QK9JqicqirlArylcx4wmuUCjHGNE5MG4QJ+NtXNJXLhAJS85ENX1t0Augwixn463QLon87/BJrdAocg9cFO+tkBBVaa1bFW2QE/TsDsl7LVApOBAXZSCtUB8rIMc0Ri1QPHkLRvyrrRAAMkQkw1FtEBTQQlPOduzQBaTS6SKcbNA2/ANbBYIs0D23ZP98J6yQM4InCguNrJAk/ExMOHNsUAFZOTFHGaxQLl8YQXz/rBAOKZ4cHWYsEAqroLrtDKwQAKTX3SDm69A+Cx2+VbTrkDQygVbAg2uQA6bCT6iSK1AbKR49FGGrEDmO8V6K8arQDQ6G3ZHCKtAZhJZM71MqkBcgL+mopOpQKkfU2wM3ahAb93qyA0pqEBg3+WruHenQLAog7EdyaZA8fvUJUwdpkC/tEkIUnSlQJCYww88zqRAbeg4rxUrpED4TtUa6YqjQJOflU2/7aJAQrpWD6BTokBZT1D7kbyhQMAq9IaaKKFAcaIqCb6XoEB1vuTB/wmgQMtg+cPD/p5AXG+6JsvvnUDXNtECFuecQPrpL8Oi5JtArjqX+G3omkBUVotrcvKZQIAijy6pAplA7SKYsAkZmEAzxa3PiTWXQO4pp+sdWJZAweT6+LiAlUDklZSTTK+UQKuupBHJ45NAWyZflh0ek0C3XZ4kOF6SQE6Fqeqm+pJAAJaiqO7Ak0BVhO6bLY2UQGH85lp2X5VALVP0Udo3lkCe60uwaRaXQO3ckVQz+5dAd/houUTmmECyyPzhqdeZQFqbkUZtz5pA1RsnwZfNm0BZbjp6MNKcQHgitdU83Z1A57EWYMDunkCYSvNdXgOgQLCjvseYkqBA1WmZOQ4loUDc4QBwvLqhQEO6Vg+gU6JAJ369m7TvokAI80Vx9I6jQMMJdbxYMaRAQAwqc9nWpEDJquxNbX+lQM9/qsEJK6ZAQI3r+aLZpkB8HIXTK4unQHpI0teVP6hAH1F5ONH2qEBap8TLzLCpQBdqlgl2bapATc78CLksq0Cbpm1+gO6rQCvyrrq1sqxAngZyqkB5rUC6jabWB0KuQNEtimXwDK9A/Ep5HN7Zr0AicEKxWVSwQBl96KGovLBAV3DfusslsUCLvvItso+xQDAB7YZK+rFAwSjlroJlskAXAvXvR9GyQGU5WfmGPbNATbn64yuqs0Br9mA3Ihe0QI5oDO9UhLRAPyI4gK7xtEDnJQHgGF+1QP3F8Yl9zLVAFQvvhsU5tkDcyIV02aa2QGq4lIyhE7dAMJ1QrQWAt0BkKZ9h7eu3QPgGxek/V7hAoxxjROTBuECc2r43wSu5QGoQUVu9lLlAI4aWIb/8uUCWTh3irGO6QGCGyeNsybpAr/VLZ+Utu0Cpz8Sx/JC7QCGUjBeZ8rtAPeUcB6FSvEDe9BIU+7C8QAgERQKODb1Aw0nk0EBovUCXd6TF+sC9QCn34XejF75Av+e/2yJsvkD10jZNYb6+QDgGDZtHDr9ApnqxEb9bv0DrNvKFsaa/QEgeh18J779ACBe10VgawEAHH/v+yjvAQEy5YmbRW8BA5FYklGJ6wEC2uYh2dZfAQOTuY2IBs8BAJDljF/7MwECz7SrEY+XAQC9kQQor/MBAMTrEAU0RwUAqTuU8wyTBQDv6LMuHNsFAPT9/PJVGwUCzueGj5lTBQMdlAJp3YcFA+WRvP0RswUDjJqg+SXXBQB+HwM2DfMFACqTar/GBwUAZZUw2kYXBQFbbfUFhh8FAVtt9QWGHwUAZZUw2kYXBQAqk2q/xgcFAH4fAzYN8wUDjJqg+SXXBQPlkbz9EbMFAx2UAmndhwUCzueGj5lTBQD0/fzyVRsFAO/osy4c2wUAqTuU8wyTBQDE6xAFNEcFAL2RBCiv8wECz7SrEY+XAQCQ5Yxf+zMBA4+5jYgGzwEC2uYh2dZfAQORWJJRiesBATLliZtFbwEAGH/v+yjvAQAYXtdFYGsBASB6HXwnvv0DrNvKFsaa/QKZ6sRG/W79ANgYNm0cOv0D10jZNYb6+QL/nv9sibL5AKffhd6MXvkCXd6TF+sC9QMNJ5NBAaL1ACARFAo4NvUDg9BIU+7C8QD3lHAehUrxAIZSMF5nyu0Cpz8Sx/JC7QK71S2flLbtAYobJ42zJukCWTh3irGO6QCOGliG//LlAaRBRW72UuUCb2r43wSu5QKQcY0TkwbhA+AbF6T9XuEBkKZ9h7eu3QC6dUK0FgLdAaLiUjKETt0DfyIV02aa2QBUL74bFObZA/cXxiX3MtUDnJQHgGF+1QD0iOICu8bRAi2gM71SEtEBr9mA3Ihe0QE25+uMrqrNAZTlZ+YY9s0AWAvXvR9GyQMEo5a6CZbJAMAHthkr6sUCLvvItso+xQFdw37rLJbFAGH3ooai8sEAhcEKxWVSwQPxKeRze2a9A0S2KZfAMr0C6jabWB0KuQJ4GcqpAea1AKPKuurWyrECbpm1+gO6rQE3O/Ai5LKtAF2qWCXZtqkBap8TLzLCpQBtReTjR9qhAekjS15U/qEB8HIXTK4unQECN6/mi2aZAz3+qwQkrpkDHquxNbX+lQEAMKnPZ1qRAwwl1vFgxpEAI80Vx9I6jQCd+vZu076JAQbpWD6BTokDf4QBwvLqhQNVpmTkOJaFAsKO+x5iSoECYSvNdXgOgQOSxFmDA7p5AgCK11TzdnUBZbjp6MNKcQNUbJ8GXzZtAWpuRRm3PmkCyyPzhqdeZQHz4aLlE5phA7dyRVDP7l0Ce60uwaRaXQC1T9FHaN5ZAXPzmWnZflUBThO6bLY2UQACWoqjuwJNAToWp6qb6kkAeqZMpupeTQBPEDupqZJRAbJNdP0Q3lUDF465ZWRCWQCxUnjW875ZAj1xTiH3Vl0DTp4KrrMGYQGY7XYlXtJlAFGZ5iIqtmkAL7MF3UK2bQNZceHqys5xAr+5X9LfAnUCBpOZ1ZtSeQHnkAqnB7p9Au/7dnuWHoEBsNcJrwRuhQEh1Zv3ysqFAmNuL/XdNokDqs8n0TOuiQCePJkJtjKNAF+MEE9MwpEA4Gmtbd9ikQLr8rs5Rg6VA0FSM2FgxpkD+o66WgeKmQI6qtdK/lqdAqme8/AVOqEDjFWomRQipQBh+lP5sxalArsl6zWuFqkDVw59xLkirQLs5Sl2gDaxAX+GxlKvVrEDE396sOKCtQFGwQcsuba5AVtEIpnM8r0BempzC9QawQN0DR6K8cLBAvvgRK3/bsEDrt/liLUexQHi8Dp+2s7FAAIIGhgkhskDIxzcTFI+yQA0WA5rD/bJADv6nyQRts0DKQIexw9yzQOe50cXrTLRAUZuj5Ge9tEDLNItbIi61QD0veu0En7VApc8f2fgPtkD7gKrf5oC2QGCP7ku38bZA9Knv+VFit0Dya8pentK3QKTZ+pCDQrhAtGr8UOixuEAx6T8SsyC5QGUccwTKjrlAUegVHRP8uUAKPlghdGi6QMHvO7DS07pAUDT1TBQ+u0BaYoRpHqe7QPQqg3HWDrxAMl8f1SF1vEBkEz0U5tm8QOi+uckIPb1Ad8fJtm+evUBBvGnOAP69QEBf3ECiW75Aj3ouhzq3vkBWZLlusBC/QFP+nCTrZ79AG+4pQdK8v0CIYJrppgfAQI1VpTWjL8BAgUhgk1JWwEC9i0rdqXvAQPI+Dz+en8BAPJC+OiXCwEDSy+WtNOPAQIjFgtbCAsFAvzrPV8YgwUBs4eA+Nj3BQCHyGgcKWMFA8RZunjlxwUDlx2NpvYjBQNo+8kaOnsFA3VAWlKWywUBHoTAv/cTBQLHLI3uP1cFAn0wxYlfkwUDAHZNYUPHBQFUp0F52/MFA6ejJA8YFwkBstYFmPA3CQECClDfXEsJAbPFrupQWwkCI5CPGcxjCQIjkI8ZzGMJAbPFrupQWwkBAgpQ31xLCQGy1gWY8DcJA6ejJA8YFwkBVKdBedvzBQMAdk1hQ8cFAn0wxYlfkwUCxyyN7j9XBQEehMC/9xMFA3VAWlKWywUDaPvJGjp7BQOXHY2m9iMFA8RZunjlxwUAh8hoHCljBQGzh4D42PcFAvzrPV8YgwUCIxYLWwgLBQNLL5a0048BAPJC+OiXCwEDyPg8/np/AQL2LSt2pe8BAgUhgk1JWwECNVaU1oy/AQIdgmummB8BAG+4pQdK8v0BU/pwk62e/QFZkuW6wEL9Aj3ouhzq3vkBAX9xAolu+QD+8ac4A/r1AecfJtm+evUDovrnJCD29QGQTPRTm2bxAMF8f1SF1vEDzKoNx1g68QFpihGkep7tAUDT1TBQ+u0DB7zuw0tO6QAg+WCF0aLpAT+gVHRP8uUBlHHMEyo65QDHpPxKzILlAtGr8UOixuECi2fqQg0K4QO9ryl6e0rdA9qnv+VFit0Bgj+5Lt/G2QPuAqt/mgLZApc8f2fgPtkA8L3rtBJ+1QMg0i1siLrVAUZuj5Ge9tEDnudHF60y0QMpAh7HD3LNADP6nyQRts0AMFgOaw/2yQMjHNxMUj7JAAIIGhgkhskB4vA6ftrOxQOq3+WItR7FAvPgRK3/bsEDdA0eivHCwQF6anML1BrBAVtEIpnM8r0BRsEHLLm2uQMLf3qw4oK1AX+GxlKvVrEC7OUpdoA2sQNXDn3EuSKtArsl6zWuFqkAVfpT+bMWpQOMVaiZFCKlAqme8/AVOqECOqrXSv5anQP6jrpaB4qZAzVSM2FgxpkC6/K7OUYOlQDgaa1t32KRAF+MEE9MwpEAnjyZCbYyjQOezyfRM66JAmtuL/XdNokBIdWb98rKhQGw1wmvBG6FAu/7dnuWHoEB15AKpwe6fQImk5nVm1J5Ar+5X9LfAnUDWXHh6srOcQAvswXdQrZtAFGZ5iIqtmkBtO12JV7SZQNOngquswZhAj1xTiH3Vl0AsVJ41vO+WQL7jrllZEJZAaZNdP0Q3lUATxA7qamSUQB6pkym6l5NATEik8Cw1lEBM5q2ZSgiVQHRNE1XC4ZVAPPo17afBlkBLiTzvDaiXQH7+kZYFlZhAR3FGuJ6ImUAA9Fyu54KaQLUQE0Ptg5tAP7UunLqLnEBC418mWZqdQODqw4DQr55AK2SYaCbMn0BdP5ZSr3egQDzND3q9DKFA5Tf+ej2loUA8KqANLkGiQP4078iM4KJA4VmnGVaDo0DQnZw5hSmkQMLCZicU06RA21Brnvt/pUDnFk4PMzCmQBFE0Jiw46ZAEC8mAWmap0CqysuvT1SoQECr36dWEalAoF0Mg27RqUA5pAdthpSqQAv9rh+MWqtA8JfI32sjrECoom96EO+sQCWGMkNjva1Abl7pEkyOrkB7nUpHsWGvQCi0oeG7G7BAlmoMeMGHsEB0Yatf2vSwQBNFyNb2YrFAi6b7YgbSsUDskmTT90GyQHf1TUO5srJAbdhCHTgks0D5TZIeYZazQKl9Q1sgCbRAtwN6QmF8tECBfkqjDvC0QD3T/rESZLVAwF7JDVfYtUCW8eXGxEy2QKsfJ2VEwbZA+BTu7r01t0CEyIrwGKq3QO4PAoQ8HrhA4b02WQ+SuEBun3K+dwW5QEfWS6lbeLlAg7niv6DquUCGE3RiLFy6QPxCO7XjzLpAz3Wfqqs8u0Bt6aYNaau7QEjSqowAGbxAt0ZGxFaFvEA4R3pKUPC8QJC/ALrRWb1A+CHIvb/BvUD4B5Ec/ye+QPgSp8R0jL5A9Bqu1wXvvkA5kny2l0+/QLTj+wwQrr9AtroDbyoFwEDucKFHJjLAQMb1b/ruXcBAT1GmLniIwECPGGHOtbHAQNxhVgyc2cBA44ZyaR8AwUDM+lm6NCXBQIuFzCzRSMFAIkPmTOpqwUAs1joKdovBQBhRx7xqqsFAbXC3Kb/HwUAh2vqHauPBQEUzp4Rk/cFAqPwjR6UVwkC9SR11JSzCQPWJOjbeQMJAl8SWN8lTwkC+0Peu4GTCQMk/wl0fdMJAed6nk4CBwkB74Q4xAI3CQAwEMKmalsJA7RLqA02ewkD9kknfFKTCQBhpw3Dwp8JAwJ8hht6pwkDAnyGG3qnCQBhpw3Dwp8JA/ZJJ3xSkwkDtEuoDTZ7CQAwEMKmalsJAfOEOMQCNwkB53qeTgIHCQMk/wl0fdMJAvtD3ruBkwkCXxJY3yVPCQPWJOjbeQMJAvUkddSUswkCo/CNHpRXCQEUzp4Rk/cFAIdr6h2rjwUBscLcpv8fBQBhRx7xqqsFALNY6CnaLwUAiQ+ZM6mrBQIuFzCzRSMFAyvpZujQlwUDjhnJpHwDBQNxhVgyc2cBAjxhhzrWxwEBPUaYueIjAQMT1b/ruXcBA7nChRyYywEC2ugNvKgXAQLTj+wwQrr9ANZJ8tpdPv0D0Gq7XBe++QPgSp8R0jL5A+AeRHP8nvkD4Ici9v8G9QI6/ALrRWb1AN0d6SlDwvEC5RkbEVoW8QEjSqowAGbxAbemmDWmru0DNdZ+qqzy7QPxCO7XjzLpAiRN0YixcukCDueK/oOq5QEfWS6lbeLlAbp9yvncFuUDfvTZZD5K4QO8PAoQ8HrhAhMiK8Biqt0D4FO7uvTW3QKsfJ2VEwbZAk/HlxsRMtkC/XskNV9i1QD3T/rESZLVAgX5Kow7wtEC3A3pCYXy0QKd9Q1sgCbRA+U2SHmGWs0Bt2EIdOCSzQHf1TUO5srJA7JJk0/dBskCIpvtiBtKxQBFFyNb2YrFAdGGrX9r0sECWagx4wYewQCi0oeG7G7BAe51KR7Fhr0BqXukSTI6uQCWGMkNjva1AqKJvehDvrEDwl8jfayOsQAv9rh+MWqtANqQHbYaUqkCgXQyDbtGpQECr36dWEalAqsrLr09UqEAQLyYBaZqnQA5E0Jiw46ZA5xZODzMwpkDbUGue+3+lQMLCZicU06RA0J2cOYUppEDfWacZVoOjQAE178iM4KJAPCqgDS5BokDlN/56PaWhQDzND3q9DKFAWz+WUq93oEAxZJhoJsyfQODqw4DQr55AQuNfJlmanUA/tS6cuoucQLAQE0Ptg5tABPRcrueCmkBHcUa4noiZQH7+kZYFlZhAS4k87w2ol0A5+jXtp8GWQHFNE1XC4ZVATOatmUoIlUBMSKTwLDWUQPJQQ9m30pRAVCn2ZkOslUBqpiKMWoyWQH2WdK0Rc5dAA7uz6HtgmEC4N6P/qlSZQIp4wUKvT5pAFMD0e5dRm0CWGTHZcFqcQG3sJNdGap1AbO35KyOBnkCToDiyDZ+fQMmG7ikGYqBAR9jVehH4oEBQB2uxqZGhQJVVf5zOLqJAhzJW6n7PokCGwR4fuHOjQHl1tYt2G6RAzxO2RLXGpEDSfuYZbnWlQG2uAo6ZJ6ZAQT/yzi7dpkAX+W+uI5anQCKgK5tsUqhAFU9umvwRqUBme0lCxdSpQGKgWLS2mqpASWEdmb9jq0BSvv0bzS+sQAy86+fK/qxASJi9JKPQrUCBWz11PqWuQCBB9vWDfK9ArwpjniwrsECYIZwsUZmwQMjw1+qgCLFASM6yXAx5sUBL7p5Fg+qxQKqGvar0XLJAJa8n1U7QskCTZKhUf0SzQA7L6AJzubNAsH4PBxYvtEA0c9PZU6W0QAWRAkoXHLVAD+t7gUqTtUDBEp0K1wq2QPq4IdalgrZAI3J0QZ/6tkBtGm8dq3K3QIz9iLWw6rdAaIpw15ZiuECeAQ7bQ9q4QBYz7KqdUblA1wUEzYnIuUDgLOdr7T66QMMURmCttLpA7b/MOq4pu0D59FFO1J27QHHQU7oDEbxAyn28dSCDvECOj+lZDvS8QB0n8C2xY71Az9cXsuzRvUAz8YWrpD6+QN+fEvC8qb5AJR1BchkTv0AG81NNnnq/QHosdtEv4L9A4RD5R9khwEABN7ezhVLAQBO/FMgPgsBASwkWVGqwwEDwfbVfiN3AQAUo6DFdCcFACSmSVtwzwUBjI2ek+VzBQJ69skKphMFAz2cFr9+qwUCxl8HCkc/BQKS9hbi08sFAY0ZvMT4UwkB5ETM6JDTCQGXcB1BdUsJA0TxfZeBuwkAj4mnmpInCQGX3Y72iosJAz6GmVtK5wkCqvnukLM/CQPIrsSKr4sJARxLp2Uf0wkCc1KRi/QPDQGp5COjGEcNAP5NUKqAdw0DQ4RSBhSfDQPkZAt1zL8NAvHmVyWg1w0AtBU1uYjnDQBiCn49fO8NAGIKfj187w0AtBU1uYjnDQLx5lcloNcNA+RkC3XMvw0DQ4RSBhSfDQD+TVCqgHcNAankI6MYRw0Cc1KRi/QPDQEcS6dlH9MJA8CuxIqviwkCqvnukLM/CQM+hplbSucJAZfdjvaKiwkAj4mnmpInCQNE8X2XgbsJAZdwHUF1SwkB5ETM6JDTCQGNGbzE+FMJApL2FuLTywUCxl8HCkc/BQM5nBa/fqsFAnr2yQqmEwUBjI2ek+VzBQAkpklbcM8FABSjoMV0JwUDwfbVfiN3AQEwJFlRqsMBAE78UyA+CwEABN7ezhVLAQOEQ+UfZIcBAeix20S/gv0AI81NNnnq/QCUdQXIZE79A358S8LypvkAz8YWrpD6+QM7XF7Ls0b1AHSfwLbFjvUCOj+lZDvS8QMp9vHUgg7xAcdBTugMRvED49FFO1J27QO+/zDquKbtAwxRGYK20ukDgLOdr7T66QNUFBM2JyLlAFDPsqp1RuUCgAQ7bQ9q4QGiKcNeWYrhAjP2ItbDqt0BtGm8dq3K3QCNydEGf+rZA+rgh1qWCtkDBEp0K1wq2QA/re4FKk7VABZECShcctUAzc9PZU6W0QK9+DwcWL7RADsvoAnO5s0CTZKhUf0SzQCWvJ9VO0LJAqoa9qvRcskBJ7p5Fg+qxQEjOslwMebFAyPDX6qAIsUCYIZwsUZmwQK8KY54sK7BAHEH29YN8r0CBWz11PqWuQEiYvSSj0K1ADLzr58r+rEBSvv0bzS+sQEVhHZm/Y6tAYqBYtLaaqkBme0lCxdSpQBVPbpr8EalAIqArm2xSqEAU+W+uI5anQEE/8s4u3aZAba4CjpknpkDSfuYZbnWlQM8TtkS1xqRAdnW1i3YbpECHwR4fuHOjQIcyVup+z6JAlVV/nM4uokBQB2uxqZGhQEbY1XoR+KBAy4buKQZioECToDiyDZ+fQGzt+SsjgZ5Abewk10ZqnUCRGTHZcFqcQBfA9HuXUZtAinjBQq9PmkC4N6P/qlSZQAO7s+h7YJhAepZ0rRFzl0BqpiKMWoyWQFQp9mZDrJVA8lBD2bfSlEChFKo2EXCVQPjjbKMIUJZA/4M0Hb02l0Buj8aiQySYQPJwXuKvGJlAjiztIxQUmkCgsTgzgRabQFhD50kGIJxAqhKE+bAwnUC9q4oVjUieQFpbh52kZ59A35St0/9GoEAJPtkk0t2gQLbrXkNLeKFAxVCeG2wWokBuCfV6NLiiQDttrgWjXaNA9Bo1LbUGpEC1uo4mZ7OkQNmGKuGzY6VATzsL/pQXpkB4EVXHAs+mQGtwSCj0iadAkfGxpV5IqEBgTNhWNgqpQBql8N5tz6lAnp0hZ/aXqkBJYR2Zv2OrQOa2Wpq3MqxAae70B8sErUBQQTrz5NmtQMj2797usa5AtU1TvdCMr0As7G53ODWwQArL6SBapbBAu1hQ+b4WsUDaLIbWV4mxQGvcIscU/bFAEMXnE+VxskDLJ6dBt+eyQMdMnhN5XrNAGyFEjhfWs0Czco36fk60QFWgp+max7RApUEqOVZBtUA+978Xm7u1QAk9RgpTNrZAocBj8WaxtkBnZJQPvyy3QJW8qQ9DqLdADni+C9ojuEAFypqUap+4QFiMh7naGrlA43WNEBCWuUBCYx2/7xC6QDJUHoNei7pATGVdvEAFu0CVs1t2en67QPC/dXLv9rtAb5JfMoNuvEDqifACGeW8QAp0OQeUWr1ABzzfQ9fOvUBLNLSqxUG+QEm5iSZCs75A9qgzpy8jv0At7bYtcZG/QMMdnNjp/b9AhoUveD40wEBt6fn5hmjAQC78rFLAm8BA2Okai9zNwEA8SDTazf7AQD9tT6uGLsFAYyNnpPlcwUACvkysGYrBQHOMyfDZtcFAk6yr7C3gwUBiQbptCQnCQEoajZpgMMJAruJD+CdWwkDc/xhwVHrCQFxVzFTbnMJAijziZ7K9wkDmFLPez9zCQODtR2cq+sJApOkALbkVw0D3GQLdcy/DQNK8Y6pSR8NAnOUiUk5dw0Abys8eYHHDQHoW9+uBg8NA8tpDKa6Tw0CL1lfd36HDQL0VWKgSrsNAxxAsxkK4w0BErG0QbcDDQMq2CACPxsNA3reIrqbKw0BQHxTXsszDQFAfFNeyzMNA3reIrqbKw0DKtggAj8bDQESsbRBtwMNAxxAsxkK4w0C9FVioEq7DQIvWV93focNA8tpDKa6Tw0B6FvfrgYPDQBvKzx5gccNAnOUiUk5dw0DSvGOqUkfDQPcZAt1zL8NApOkALbkVw0Dg7UdnKvrCQOYUs97P3MJAijziZ7K9wkBcVcxU25zCQNz/GHBUesJAruJD+CdWwkBKGo2aYDDCQGJBum0JCcJAk6yr7C3gwUBzjMnw2bXBQAK+TKwZisFAYiNnpPlcwUA/bU+rhi7BQDxINNrN/sBA2Okai9zNwEAt/KxSwJvAQG3p+fmGaMBAhoUveD40wEDDHZzY6f2/QC3tti1xkb9A9agzpy8jv0BHuYkmQrO+QE40tKrFQb5ABzzfQ9fOvUAKdDkHlFq9QOeJ8AIZ5bxAbZJfMoNuvEDxv3Vy7/a7QJWzW3Z6frtATGVdvEAFu0AyVB6DXou6QEBjHb/vELpA5XWNEBCWuUBYjIe52hq5QAXKmpRqn7hADni+C9ojuECSvKkPQ6i3QGZklA+/LLdAocBj8WaxtkAJPUYKUza2QD73vxebu7VApUEqOVZBtUBSoKfpmse0QLNyjfp+TrRAGyFEjhfWs0DHTJ4TeV6zQMknp0G357JAEMXnE+VxskBr3CLHFP2xQNoshtZXibFAu1hQ+b4WsUAKy+kgWqWwQCnsbnc4NbBAtU1TvdCMr0DI9u/e7rGuQFBBOvPk2a1Aae70B8sErUDjtlqatzKsQElhHZm/Y6tAnp0hZ/aXqkAapfDebc+pQGBM2FY2CqlAjvGxpV5IqEBrcEgo9ImnQHgRVccCz6ZATzsL/pQXpkDZhirhs2OlQLK6jiZns6RA9ho1LbUGpEA7ba4Fo12jQG4J9Xo0uKJAxVCeG2wWokC2615DS3ihQAo+2STS3aBA35St0/9GoEBaW4edpGefQL2rihWNSJ5AphKE+bAwnUBdQ+dJBiCcQKCxODOBFptAjiztIxQUmkDycF7irxiZQGyPxqJDJJhA/IM0Hb02l0D442yjCFCWQKEUqjYRcJVAl+W8Se0MlkBq5Z14S/OWQGwJrQKY4JdAnwRPgOjUmECA5b8vUdCZQAu5s97k0ppAmcjV07Tcm0CcXDO40O2cQPd+n4BGBp5A68IdVyImn0AgTzFCtyagQCIuvKwZvqBADhXMjDtZoUA4lCPyHvihQFHp48/EmqJAEDP48SxBo0AyobvyVeujQIw/4zA9maRAKBa0xd5KpUD6bY57NQCmQKYY18Q6uaZABaFHs+Z1p0BMS67vLzaoQDbEJrIL+qhAVVDUum3BqUDeNSZLSIyqQAv9rh+MWqtAMvyWaigsrECedbLOCgGtQP9VQ1sf2a1AAGJuiFC0rkCQWWs0h5KvQCOju1DVObBAxOhHOtCrsEB0Dn9aJh+xQAmXW+bIk7FAuMbLRKgJskDQnr8PtICyQOVXqRXb+LJAvGhyWwtys0Dx3+YeMuyzQMWLmNk7Z7RA0xw7RBTjtEBtH3papl+1QJRTSV/c3LVA35Sv4Z9atkBdKwzC2di2QMID1jdyV7dAMPHT11DWt0BmvcyaXFW4QGxtreR71LhA98EjjJRTuUClmqrii9K5QBmEBb1GUbpAGlkofKnPukDGgIcWmE27QNj1zCH2yrtAE+ft3KZHvEBgZpw6jcO8QOJDEOyLPr1ATdwhbIW4vUA9T7EKXDG+QA5CVPjxqL5AwAdEUikfv0BHvoUu5JO/QJjWIlSCA8BAJHkvdjY8wEAOJwSj/3PAQC5WzxXPqsBAMurCJZbgwECPwYtMRhXBQIuFzCzRSMFAb7yXmCh7wUDBEOWXPqzBQHi3/W4F3MFAfNnbpG8KwkCC4ngJcDfCQDKYBrz5YsJAe+EOMQCNwkB0LXY4d7XCQA91XANT3MJAY+HYKYgBw0DoMoywCyXDQJYbBg7TRsNAv9b5L9Rmw0ASZj6ABYXDQHH6luldocNA7DFA3NS7w0Di+T5SYtTDQJwMbtP+6sNAAy1HeaP/w0DNcGXySRLEQMsZvoXsIsRAnbGNFYYxxECDT/chEj7EQNMmVMuMSMRAy7Qx1PJQxEBSHv2iQVfEQG2JWkN3W8RAfHonZ5JdxEB8eidnkl3EQG2JWkN3W8RAUh79okFXxEDLtDHU8lDEQNMmVMuMSMRAg0/3IRI+xECdsY0VhjHEQMsZvoXsIsRAzXBl8kkSxEADLUd5o//DQJsMbtP+6sNA4vk+UmLUw0DsMUDc1LvDQHH6luldocNAEmY+gAWFw0C+1vkv1GbDQJYbBg7TRsNA6DKMsAslw0Bj4dgpiAHDQA91XANT3MJAdC12OHe1wkB74Q4xAI3CQDKYBrz5YsJAguJ4CXA3wkB82dukbwrCQHe3/W4F3MFAwhDllz6swUBvvJeYKHvBQIuFzCzRSMFAjsGLTEYVwUAw6sIlluDAQC5WzxXPqsBADicEo/9zwEAkeS92NjzAQJfWIlSCA8BAQ76FLuSTv0DBB0RSKR+/QA5CVPjxqL5APU+xClwxvkBM3CFshbi9QOFDEOyLPr1AYGacOo3DvEAT5+3cpke8QNj1zCH2yrtAxoCHFphNu0AYWSh8qc+6QBmEBb1GUbpApZqq4ovSuUD3wSOMlFO5QGxtreR71LhAZb3MmlxVuEAv8dPXUNa3QMID1jdyV7dAXSsMwtnYtkDflK/hn1q2QJNTSV/c3LVAbB96WqZftUDTHDtEFOO0QMWLmNk7Z7RA8d/mHjLss0C7aHJbC3KzQOVXqRXb+LJA0J6/D7SAskC4xstEqAmyQAmXW+bIk7FAdA5/WiYfsUDD6Ec60KuwQCOju1DVObBAkFlrNIeSr0AAYm6IULSuQP9VQ1sf2a1AmXWyzgoBrUAy/JZqKCysQAv9rh+MWqtA3jUmS0iMqkBVUNS6bcGpQDPEJrIL+qhATEuu7y82qEAFoUez5nWnQKYY18Q6uaZA+m2OezUApkAlFrTF3kqlQI8/4zA9maRAMqG78lXro0AQM/jxLEGjQFHp48/EmqJANpQj8h74oUAPFcyMO1mhQCIuvKwZvqBAIE8xQrcmoEDrwh1XIiafQPR+n4BGBp5AoFwzuNDtnECZyNXTtNybQAu5s97k0ppAgOW/L1HQmUCcBE+A6NSYQGgJrQKY4JdAauWdeEvzlkCX5bxJ7QyWQBhY5Hj+qJZAUC48IruVl0AhViU1l4mYQCLn3OKohJlAFFHl+ASHmkArpgjKvpCbQAaUOBfooZxAZVBZ+JC6nUD2UwXFx9qeQEAmrH5MAaBAZxxomQeZoEDTEKp4mTShQEsuOFQF1KFA61psSk13okAnoiBVch6jQGCEzz50yaNATeTwl1F4pEDibZysByulQJVuenqS4aVA0ywMp+ybpkDo21R2D1qnQAtR7MHyG6hAXJ+E8IzhqEAcuevt0qqpQJUlkiO4d6pA18OfcS5Iq0BYc58oJhysQGZTygOO86xADhr7I1POrUBUylELYayuQJXPj5mhja9A5RyahP44sECiwa/2rKywQHj2QpjOIbFAu4z7CVWYsUDRkSAYMRCyQH17OrtSibJAYZooGakDs0B2NayGIn+zQA5ra4ms+7NAEqpt2jN5tEBbSRNppPe0QCxyiV7pdrVAtj+7Ie32tUBLn8BbmXe2QPAjy/zW+LZAWqWQQY56t0D1JDO5pvy3QDkVpUsHf7hAVr+IQJYBuUD/IYlGOYS5QJxCKnvVBrpAVIcOc0+JukDMTq5Ciwu7QOyXfodsjbtA9iqDcdYOvEAqVUjNq4+8QD3pPw7PD71A/dl8WSKPvUD5aciQhw2+QGiSC17gir5A4e4GPw4Hv0DNKFOR8oG/QNmPo55u+79A6iCi1LE5wEBrf2Z82XTAQHPCgPMer8BAEAls9nLowEC+Os9XxiDBQCLyGgcKWMFAec8uFy+OwUBQJQLFJsPBQPzhS37i9sFAT4wl6FMpwkBdIKXlbFrCQK+TaZ4fisJArcUVhV64wkBNorVdHOXCQJVBCURMEMNA8NaxseE5w0DYTjyE0GHDQMCIBQMNiMNAAC705Iusw0C3PARWQs/DQGl3oPwl8MNAMQfG/iwPxECGvu4GTizEQIuOvkiAR8RADedwhbtgxEAx4wIQ+HfEQBVRF9EujcRA5NGRSlmgxEAmgeaacbHEQGrGG4BywMRAMyp8WlfNxEBGP/YuHNjEQGnrKKm94MRA5ZUaHTnnxEAg/5mIjOvEQHXCR5S27cRAdcJHlLbtxEAg/5mIjOvEQOWVGh0558RAaesoqb3gxEBGP/YuHNjEQDMqfFpXzcRAasYbgHLAxEAmgeaacbHEQOTRkUpZoMRAFVEX0S6NxEAw4wIQ+HfEQA3ncIW7YMRAi46+SIBHxECGvu4GTizEQDAHxv4sD8RAaXeg/CXww0C3PARWQs/DQAAu9OSLrMNAwIgFAw2Iw0DYTjyE0GHDQPDWsbHhOcNAlUEJREwQw0BNorVdHOXCQK3FFYVeuMJArZNpnh+KwkBdIKXlbFrCQFCMJehTKcJA/OFLfuL2wUBQJQLFJsPBQHnPLhcvjsFAIfIaBwpYwUC/Os9XxiDBQBAJbPZy6MBAc8KA8x6vwEBrf2Z82XTAQOkgotSxOcBA2Y+jnm77v0DNKFOR8oG/QOHuBj8OB79AaJILXuCKvkD4aciQhw2+QP7ZfFkij71APek/Ds8PvUAqVUjNq4+8QPQqg3HWDrxA6pd+h2yNu0DOTq5Ciwu7QFSHDnNPibpAnEIqe9UGukD/IYlGOYS5QFS/iECWAblAOBWlSwd/uED1JDO5pvy3QFqlkEGOerdA8CPL/Nb4tkBJn8BbmXe2QLU/uyHt9rVALHKJXul2tUBbSRNppPe0QBKqbdozebRAC2triaz7s0B0NayGIn+zQGGaKBmpA7NAfXs6u1KJskDRkSAYMRCyQLuM+wlVmLFAd/ZCmM4hsUCiwa/2rKywQOUcmoT+OLBAlc+PmaGNr0BUylELYayuQAsa+yNTzq1AZlPKA47zrEBYc58oJhysQNfDn3EuSKtAlSWSI7h3qkAbuevt0qqpQFyfhPCM4ahAC1HswfIbqEDo21R2D1qnQNMsDKfsm6ZAkW56epLhpUDkbZysByulQE3k8JdReKRAYITPPnTJo0AnoiBVch6jQOpabEpNd6JATi44VAXUoUDTEKp4mTShQGccaJkHmaBAQCasfkwBoED0UwXFx9qeQGlQWfiQup1ABpQ4F+ihnEArpgjKvpCbQBRR5fgEh5pAH+fc4qiEmUAcViU1l4mYQFAuPCK7lZdAGFjkeP6olkAMT7WL9UOXQNo8OSwFN5hAvtEE7GQxmUBzQBmUKzOaQENdPIBuPJtA3q1dh0FNnEAoPdjjtmWdQPPSnhvfhZ5Aochg6Mitn0AbI9uPwG6gQI+gsU2JCqFAdozgEEOqoUAili8n8U2iQFeZdb2V9aJAw0g51DGho0DDIIc0xVCkQKeWBWVOBKVAh5xQn8q7pUDhrqXFNXemQMa36ViKNqdAOyMSb8H5p0DVh/qp0sCoQDlIsC60i6lAyYk9nVpaqkBKzvwIuSyrQKtlfvHAAqxAoM0IPGLcrECQ67wti7mtQFnbZmYomq5AotMD3CR+r0AqroLrtDKwQOjjrHfvp7BAL8UgBbUesUBKVnys95axQKiXHayoELJA2GNVaLiLskDa8A1sFgizQAus52mxhbNAk+POPXcEtECMaAzvVIS0QNII07I2BbVA/XBL7weHtUCmsx8/swm2QP9dh3UijbZACKnUoj4Rt0CJ+4IZ8JW3QK2TxnMeG7hAY8+cmbCguECsKVzHjCa5QDigwpSYrLlA0NCA/LgyukANuj9k0ri6QEOlHqXIPrtAX1umFH/Eu0BFYS6O2Em8QMqUsHy3zrxAeiAH5f1SvUAIW5Bwjda9QOPHM3hHWb5AehHDDw3bvkCmerERv1u/QMDtGys+279Avb0NdLUswECA5S3gEmvAQIlY95GnqMBAs+0qxGPlwECInd26NyHBQChNKMoTXMFA5EjnXOiVwUAlb4X7pc7BQKv1zlI9BsJA45/HOp88wkDxLIC9vHHCQCq35h2HpcJAQrWN3u/XwkCpR2XI6AjDQNt5YvFjOMNA6iAQw1Nmw0DnBAUBq5LDQMILO89cvcNAsidDuFzmw0Bn21Gzng3EQFg5ICoXM8RAcFqd/rpWxEDJYmyQf3jEQAVJK8JamMRA9rV+/kK2xEDndt88L9LEQGAkJgYX7MRAFcrRePIDxUAHigZNuhnFQIFlQdhnLcVARYm+EPU+xUDCr4+QXE7FQH5jYJiZW8VAuSXmEahmxUCTuPqRhG/FQPUIX1osdsVAJ3MlW516xUBkXMIz1nzFQGRcwjPWfMVAJ3MlW516xUD1CF9aLHbFQJO4+pGEb8VAuSXmEahmxUB+Y2CYmVvFQMKvj5BcTsVARYm+EPU+xUCBZUHYZy3FQAeKBk26GcVAFcrRePIDxUBgJCYGF+zEQOd23zwv0sRA9rV+/kK2xEAFSSvCWpjEQMhibJB/eMRAcFqd/rpWxEBYOSAqFzPEQGfbUbOeDcRAsidDuFzmw0DCCzvPXL3DQOcEBQGrksNA6iAQw1Nmw0DbeWLxYzjDQKhHZcjoCMNAQbWN3u/XwkAqt+Ydh6XCQPEsgL28ccJA45/HOp88wkCr9c5SPQbCQCVvhfulzsFA5UjnXOiVwUAoTSjKE1zBQIid3bo3IcFAs+0qxGPlwECIWPeRp6jAQIDlLeASa8BAvb0NdLUswEDA7RsrPtu/QKJ6sRG/W79AehHDDw3bvkDlxzN4R1m+QAhbkHCN1r1AeiAH5f1SvUDJlLB8t868QEFhLo7YSbxAYVumFH/Eu0BDpR6lyD67QA26P2TSuLpA0NCA/LgyukA3oMKUmKy5QKwpXMeMJrlAY8+cmbCguECtk8ZzHhu4QIn7ghnwlbdABqnUoj4Rt0D8XYd1Io22QKazHz+zCbZA/XBL7weHtUDSCNOyNgW1QItoDO9UhLRAk+POPXcEtEALrOdpsYWzQNrwDWwWCLNA2GNVaLiLskColx2sqBCyQEZWfKz3lrFAL8UgBbUesUDo46x376ewQCquguu0MrBAotMD3CR+r0BV22ZmKJquQJDrvC2Lua1AoM0IPGLcrECrZX7xwAKsQErO/Ai5LKtAxYk9nVpaqkA5SLAutIupQNWH+qnSwKhAOyMSb8H5p0DGt+lYijanQN2upcU1d6ZAiZxQn8q7pUCnlgVlTgSlQMMghzTFUKRAw0g51DGho0BXmXW9lfWiQCSWLyfxTaJAdozgEEOqoUCPoLFNiQqhQBsj24/AbqBAnchg6Mitn0D50p4b34WeQCg92OO2ZZ1A3q1dh0FNnEBDXTyAbjybQG9AGZQrM5pAutEE7GQxmUDaPDksBTeYQAxPtYv1Q5dAREYv6oHdl0CwD5i01daYQLLI/OGp15lAu4e/0RXgmkD3i5xsL/CbQNmCcwwLCJ1A8qjsY7snnkAKwAdmUU+fQLG40RZuP6BAvySGcjTboEDChdFWAXuhQNVQ1UPZHqJAQjgnnb/GokBzJPmdtnKjQBnQbk2/IqRAPwwqc9nWpECh2xaMA4+lQFS5gL86S6ZAyXx61HoLp0BGZKInvs+nQB/fS6H9l6hA67gYrDBkqUAdSAssTTSqQDQ6G3ZHCKtAmohWSBLgq0BTCJjCnrusQOfl3F/cmq1AAjVC8Lh9rkAAiLOTIGSvQA2kqdr+JrBAoqDSg5ydsEBMw8HA3BWxQI2+8i2yj7FAsjxAiA4LskDleaSs4oeyQNlxbZgeBrNAC6znabGFs0C1b4JhiQa0QI3ib+OTiLRAuUvDeb0LtUCZZg/X8Y+1QMBfhtkbFbZA0MGcjiWbtkD9PzA3+CG3QGvxMkx8qbdAmjLbg5kxuEADA1jXNrq4QEdSCYk6Q7lAIU07K4rMuUD3VGOnCla6QEnm3EWg37pA3Eskti5pu0AhlIwXmfK7QKnXbQLCe7xAqnfIkYsEvUCplVlt14y9QKafHNSGFL5AtWg1p3qbvkDA4z11kyG/QO028oWxpr9AccAac1oVwEDrpzS6vlbAQLa5iHZ1l8BAQMDee27XwEC1hxiamRbBQLS54aPmVMFA2LJ3dUWSwUAob4X7pc7BQMGNDzr4CcJACFJsUyxEwkA5cUOPMn3CQPJnkWH7tMJAIgKqcXfrwkAdszWhlyDDQIxRJRNNVMNAFcWXMomGw0DnMK25PbfDQLUnQ7hc5sNAWnqVmtgTxEBWO78vpD/EQFWdF7CyacRATWNmw/eRxECQrOuGZ7jEQHv+NpP23MRAuYjJAZr/xEB5v39yRyDFQEiJvhD1PsVAgGNgmJlbxUD3CF9aLHbFQHBSNkGljsVABTf91PykxUBcBDI/LLnFQKgaN04ty8VAQK99ePraxUBzUVzfjujFQH4oj1Hm88VAQh5gTf38xUAwaXUC0QPGQMMnRVNfCMZAMAEt1qYKxkAwAS3WpgrGQMMnRVNfCMZAMGl1AtEDxkBCHmBN/fzFQH4oj1Hm88VAc1Fc347oxUBAr314+trFQKgaN04ty8VAXAQyPyy5xUAFN/3U/KTFQHBSNkGljsVA9whfWix2xUCAY2CYmVvFQEiJvhD1PsVAd79/ckcgxUC3iMkBmv/EQHv+NpP23MRAkKzrhme4xEBNY2bD95HEQFWdF7CyacRAVju/L6Q/xEBaepWa2BPEQLUnQ7hc5sNA5zCtuT23w0AUxZcyiYbDQIxRJRNNVMNAHrM1oZcgw0AiAqpxd+vCQPJnkWH7tMJAOHFDjzJ9wkAGUmxTLETCQMKNDzr4CcJAKG+F+6XOwUDYsnd1RZLBQLO54aPmVMFAs4cYmpkWwUBBwN57btfAQLa5iHZ1l8BA66c0ur5WwEBwwBpzWhXAQOs28oWxpr9AwOM9dZMhv0C1aDWnepu+QKafHNSGFL5AqJVZbdeMvUCod8iRiwS9QKnXbQLCe7xAIZSMF5nyu0DcSyS2Lmm7QEnm3EWg37pA9lRjpwpWukAfTTsrisy5QEdSCYk6Q7lAAwNY1za6uECaMtuDmTG4QGnxMkx8qbdA/D8wN/ght0DQwZyOJZu2QMBfhtkbFbZAmWYP1/GPtUC3S8N5vQu1QIzib+OTiLRAtW+CYYkGtEALrOdpsYWzQNlxbZgeBrNA5XmkrOKHskCyPECIDguyQI2+8i2yj7FATMPBwNwVsUCioNKDnJ2wQA2kqdr+JrBA+oezkyBkr0ACNULwuH2uQOfl3F/cmq1AUwiYwp67rECaiFZIEuCrQDE6G3ZHCKtAHUgLLE00qkDruBisMGSpQB/fS6H9l6hARmSiJ77Pp0DGfHrUegunQFe5gL86S6ZAodsWjAOPpUA/DCpz2dakQBnQbk2/IqRAciT5nbZyo0BDOCedv8aiQNVQ1UPZHqJAwoXRVgF7oUC/JIZyNNugQK+40RZuP6BADcAHZlFPn0DyqOxjuyeeQNmCcwwLCJ1A94ucbC/wm0C3h7/RFeCaQK/I/OGp15lAsA+YtNXWmEBERi/qgd2XQCbLUN9RdZhAEjO5sNd0mUCC+yCdDXyaQNHhl5gLi5tABpQ4F+ihnECv7lf0t8CdQFwwj1mO555Ao7rXUj4LoECAt9YpyaagQOxyynBuRqFAORPK2zPqoUA3BJgHHpKiQEHfWG0wPqNA0AxwVm3uo0B3K4vQ1aKkQJx65aFpW6VAb7LMPScYpkDB2HC5C9mmQKLACMESnqdAu/pUjTZnqECeDIvZbzSpQJ/Nstm1BapAuMh/Mf7aqkAae7DrPLSrQNw2/XFkkaxALFighWVyrUC3WYE4L1euQOIpDOeuP69AFvdeGegVsEBhErh+vo2wQHxmtbJOB7FA6Pci4YuCsUCwQ1FRaP+xQKAwYWXVfbJADRYDmsP9skB2NayGIn+zQDbFRd7gAbRAPWdYcOyFtEDbnrYqMgu1QCqNqBuekbVA4uuadBsZtkBC61KNlKG2QL1AqOfyKrdAKFrGMx+1t0AwTPVUAUC4QMiy6maAy7hAeFiiw4JXuUCAFL4J7uO5QCjqayOncLpAYwvRTZL9ukBH+Pcgk4q7QF2LP5iMF7xARlhIG2GkvEDdWF2H8jC9QHt6VDkivb1AaDTjF9FIvkAC6WKe39O+QCRsAOgtXr9AlaVRu5vnv0Ae8iVLBDjAQL6LSt2pe8BAIOQUHa6+wEBbqSiCAAHBQJfGbHmQQsFAQ1zJa02DwUBSJQLFJsPBQMZuqfoLAsJA/aUnk+w/wkCAZNMsuHzCQK7FFYVeuMJAY7qWf8/ywkD7+mwt+yvDQLgmTdTRY8NAN5Kz9UOaw0C4PARWQs/DQJldnAO+AsRAD/nQXag0xEAe7NUb82TEQA/liFOQk8RAa8YbgHLAxEAh/5mIjOvEQBFzRMbRFMVAi6O/CjY8xUBD3w+mrWHFQCxdX2wthcVA0USKu6qmxUDvyWyAG8bFQEun7zt248VAf27PB7L+xUBFTxubxhfGQNAoaE6sLsZAgOq0H1xDxkDSfv21z1XGQFizeWQBZsZAH8uFLexzxkBcpTLFi3/GQJ6ge5PciMZAAqMgttuPxkCR8SICh5TGQLrD4wTdlsZAusPjBN2WxkCR8SICh5TGQAKjILbbj8ZAnqB7k9yIxkBcpTLFi3/GQB/LhS3sc8ZAWLN5ZAFmxkDSfv21z1XGQIDqtB9cQ8ZAzyhoTqwuxkBFTxubxhfGQH9uzwey/sVAS6fvO3bjxUDvyWyAG8bFQNBEiruqpsVALF1fbC2FxUBD3w+mrWHFQIujvwo2PMVAEXNExtEUxUAg/5mIjOvEQGrGG4BywMRAD+WIU5CTxEAe7NUb82TEQA/50F2oNMRAmV2cA74CxEC3PARWQs/DQDeSs/VDmsNAuCZN1NFjw0D7+mwt+yvDQGO6ln/P8sJArsUVhV64wkCBZNMsuHzCQP2lJ5PsP8JAxm6p+gsCwkBQJQLFJsPBQEFcyWtNg8FAl8ZseZBCwUBbqSiCAAHBQCDkFB2uvsBAvYtK3al7wEAc8iVLBDjAQJWlUbub579AJGwA6C1ev0AC6WKe39O+QGU04xfRSL5AeHpUOSK9vUDgWF2H8jC9QEZYSBthpLxAXYs/mIwXvEBH+Pcgk4q7QGIL0U2S/bpAJuprI6dwukCAFL4J7uO5QHhYosOCV7lAyLLqZoDLuEAvTPVUAUC4QCZaxjMftbdAvUCo5/Iqt0BC61KNlKG2QOLrmnQbGbZAKo2oG56RtUDZnrYqMgu1QD1nWHDshbRANsVF3uABtEB2NayGIn+zQA0WA5rD/bJAnzBhZdV9skCwQ1FRaP+xQOj3IuGLgrFAfGa1sk4HsUBhErh+vo2wQBb3XhnoFbBA4ikM564/r0C3WYE4L1euQCxYoIVlcq1A3Db9cWSRrEAVe7DrPLSrQLjIfzH+2qpAn82y2bUFqkCeDIvZbzSpQLv6VI02Z6hAn8AIwRKep0DE2HC5C9mmQG+yzD0nGKZAnHrloWlbpUB3K4vQ1aKkQM8McFZt7qNARN9YbTA+o0A3BJgHHpKiQDkTytsz6qFA7HLKcG5GoUB+t9YpyaagQKW611I+C6BAXDCPWY7nnkCv7lf0t8CdQAaUOBfooZxAz+GXmAuLm0B6+yCdDXyaQBIzubDXdJlAJstQ31F1mEA01rreEguZQO+h1TW1EJpA0+pPujYem0BlAOPyrzOcQBk7JN03UZ1AX0kc1ON2nkBoj7h2x6SfQA+iEkd6baBAPc0Per0MoUAj8qc8NLChQNIZ3mXkV6JACUeyrtIDo0BnJY2lArSjQBhZ0qF2aKRAULKity8hpUBsu9erLd6lQARFQuhun6ZA4rk1cPBkp0A9JGrVrS6oQOflPi2h/KhA6DVoBsPOqUCHfhFfCqWqQMC3fptsf6tA/9E2fd1drEBvNMEaT0CtQJ84ANixJq5Ai2oyX/QQr0A7KKSaA/+vQCKDjVdleLBAFBCCexnzsEArGTf/kW+xQNEE7L/B7bFASrztsJptskB0Tt7aDe+yQLtoclsLcrNAIBioZYL2s0C2A3pCYXy0QOIMElKVA7VATvh9DQuMtUACdegIrhW2QHuFWPZooLZAePn4qCUst0AyTukYzbi3QILumGdHRrhAbm2t5HvUuED18nMTUWO5QCWv3bCs8rlA5b8GunOCukDxjUZzihK7QMo6yG/UortAR06pmTQzvEBgZpw6jcO8QNU+DQXAU71AGPrCHa7jvUCHKP0lOHO+QEmfB0Y+Ar9AMsZAOKCQv0CNzUaqHg/AQC4hG056VcBAEMwSY1KbwEAy6sIlluDAQMr6Wbo0JcFAeKVBMx1pwUDAEOWXPqzBQAQimOuH7sFAqtibNOgvwkD10TuDTnDCQKbhAPmpr8JAPY30z+ntwkAaHPFh/SrDQL/W+S/UZsNAcfqW6V2hw0BO1TB0itrDQM1wZfJJEsRA0yZUy4xIxEDGdtqxQ33EQKxtvatfsMRAfPW6GNLhxED+ZH65jBHFQLSyc7aBP8VAFbp0pqNrxUCGE0yV5ZXFQB4UCQo7vsVA96IgDZjkxUAmrlYu8QjGQMQpbIo7K8ZA9aaN0GxLxkBouH5He2nGQDaEftJdhcZARBHi9QufxkAJD2HbfbbGQOsKElasy8ZADT0T5pDexkDJT927Je/GQPzAPbtl/cZAMrr2fUwJx0CqfAJW1hLHQPq/eE8AGsdAO6UUMsgex0AuJVqCLCHHQC4lWoIsIcdAO6UUMsgex0D6v3hPABrHQKp8AlbWEsdAMrr2fUwJx0D8wD27Zf3GQMlP3bsl78ZADT0T5pDexkDrChJWrMvGQAkPYdt9tsZARBHi9QufxkA2hH7SXYXGQGi4fkd7acZA9aaN0GxLxkDEKWyKOyvGQCWuVi7xCMZA96IgDZjkxUAeFAkKO77FQIYTTJXllcVAFbp0pqNrxUC0snO2gT/FQP5kfrmMEcVAfPW6GNLhxECsbb2rX7DEQMZ22rFDfcRA0iZUy4xIxEDOcGXySRLEQE7VMHSK2sNAcfqW6V2hw0C+1vkv1GbDQBoc8WH9KsNAPo30z+ntwkCm4QD5qa/CQPXRO4NOcMJAqdibNOgvwkADIpjrh+7BQMIQ5Zc+rMFAeKVBMx1pwUDK+lm6NCXBQDDqwiWW4MBAD8wSY1KbwEAuIRtOelXAQI3NRqoeD8BAMsZAOKCQv0BInwdGPgK/QIUo/SU4c75AGfrCHa7jvUDVPg0FwFO9QGBmnDqNw7xAR06pmTQzvEDHOshv1KK7QO+NRnOKErtA5b8GunOCukAlr92wrPK5QPXycxNRY7lAbG2t5HvUuECB7phnR0a4QDJO6RjNuLdAePn4qCUst0B7hVj2aKC2QAJ16AiuFbZATfh9DQuMtUDiDBJSlQO1QLYDekJhfLRAIBioZYL2s0C7aHJbC3KzQHNO3toN77JASrztsJptskDRBOy/we2xQCsZN/+Rb7FAFBCCexnzsEAhg41XZXiwQDsopJoD/69Ai2oyX/QQr0CfOADYsSauQG80wRpPQK1A+tE2fd1drEDAt36bbH+rQId+EV8KpapA6DVoBsPOqUDn5T4tofyoQDokatWtLqhA5Lk1cPBkp0AERULobp+mQGy716st3qVAULKity8hpUAYWdKhdmikQGkljaUCtKNACUeyrtIDo0DSGd5l5FeiQCPypzw0sKFAPM0Per0MoUARohJHem2gQGiPuHbHpJ9AX0kc1ON2nkAZOyTdN1GdQGEA4/KvM5xAz+pPujYem0DvodU1tRCaQDTWut4SC5lAjM4UzXGemUCoElfEF6qaQMQuljvLvZtAl4vfSaXZnEAvHBN0vf2dQBMl5ZIpKp9Ag5tc3H4voED8rrILJs6gQNOW9nIScaFASHsiI0sYokDqBJcV1sOiQIbBHh+4c6NA+cwP4/QnpEC3/ZTGjuCkQO0OKOSGnaVA5XZG/9xepkB3xWp4jySnQD2OVEGb7qdATQKp0fu8qECydfYbq4+pQPAeJYOhZqpAcmZf0NVBq0DxHXwpPSGsQGnu9AfLBK1AZTtzMHHsrUBGn/2qH9iuQF8B0LvEx69AxQx0bqZdsEDn/idcUdmwQHgLmJHXVrFA7cbYjCzWsUD799zdQleyQJk1RCUM2rJAx0yeE3les0AQMidpeeSzQLoE//X7a7RA/2fhmu70tECyL19KPn+1QL0SnQrXCrZA1MaZ96OXtkDElP1FjyW3QGYedUaCtLdAT7OYaWVEuEDnM2FEINW4QJUgK5WZZrlAbw5ISbf4uUAyVB6DXou6QLZY1qBzHrtAgIGUQ9qxu0D9Uj5XdUW8QGHmyBon2bxAimoOKdFsvUDp9SeCVAC+QK+ASJWRk75AiG8VS2gmv0AnqXgQuLi/QDji8/AvJcBA2biNK59twEAj7JjXmLXAQModm+4L/cBAPeuDSudDwUABvkysGYrBQLCXwcKRz8FAYUZvMT4UwkBURLOXDVjCQAFe6ZfumsJA5hSz3s/cwkA+k1QqoB3DQJzlIlJOXcNAgRP/Tcmbw0A6l9k9ANnDQOCfOXHiFMRA53bDbl9PxED/U7n7ZojEQEHgcSPpv8RAiaK/Ptb1xEB/jET7HirFQB/hrGK0XMVAjbLM4YeNxUCkPptPi7zFQKx+B/Sw6cVAHVChjusUxkCFsRJdLj7GQNqnZCFtZcZAqn0LKJyKxkBaLrZNsK3GQFj03ASfzsZAShkLW17txkDkUuD95AnHQCUmxj8qJMdA3PxVHCY8x0CSzmw80VHHQBZ26fkkZcdAggcTYxt2x0Djt6Q9r4THQO0mfQnckMdAsxzvAp6ax0CRELIk8qHHQAMTcSnWpsdAjfr2jEipx0CN+vaMSKnHQAMTcSnWpsdAkRCyJPKhx0CzHO8CnprHQO0mfQnckMdA47ekPa+Ex0CCBxNjG3bHQBZ26fkkZcdAks5sPNFRx0Db/FUcJjzHQCUmxj8qJMdA5FLg/eQJx0BKGQtbXu3GQFj03ASfzsZAWi62TbCtxkCqfQsonIrGQNqnZCFtZcZAhbESXS4+xkAdUKGO6xTGQKx+B/Sw6cVAoz6bT4u8xUCNsszhh43FQB/hrGK0XMVAf4xE+x4qxUCJor8+1vXEQEHgcSPpv8RAAFS5+2aIxEDndsNuX0/EQOCfOXHiFMRAOpfZPQDZw0CBE/9NyZvDQJzlIlJOXcNAPpNUKqAdw0DmFLPez9zCQABe6ZfumsJAUkSzlw1YwkBhRm8xPhTCQLCXwcKRz8FAAb5MrBmKwUA864NK50PBQMkdm+4L/cBAJOyY15i1wEDZuI0rn23AQDji8/AvJcBAI6l4ELi4v0CGbxVLaCa/QLOASJWRk75A6fUnglQAvkCKag4p0Wy9QGHmyBon2bxA/FI+V3VFvEB9gZRD2rG7QLZY1qBzHrtAMlQeg16LukBvDkhJt/i5QJUgK5WZZrlA5TNhRCDVuEBPs5hpZUS4QGYedUaCtLdAxJT9RY8lt0DRxpn3o5e2QL0SnQrXCrZAsi9fSj5/tUD/Z+Ga7vS0QLoE//X7a7RAEDInaXnks0DFTJ4TeV6zQJk1RCUM2rJA+/fc3UJXskDtxtiMLNaxQHgLmJHXVrFA5f4nXFHZsEDFDHRupl2wQF8B0LvEx69ARp/9qh/YrkBlO3MwceytQGTu9AfLBK1A8R18KT0hrEByZl/Q1UGrQPAeJYOhZqpAsnX2G6uPqUBKAqnR+7yoQECOVEGb7qdAd8VqeI8kp0Dldkb/3F6mQO0OKOSGnaVAt/2Uxo7gpED9zA/j9CekQIbBHh+4c6NA6gSXFdbDokBIeyIjSxiiQNGW9nIScaFA/q6yCybOoECDm1zcfi+gQBMl5ZIpKp9ALxwTdL39nUCUi99JpdmcQMAuljvLvZtAqBJXxBeqmkCMzhTNcZ6ZQMd83EobL5pA4X+1lahAm0CRGTHZcFqcQPGrCbqNfJ1ArSrtQRennkAKHOzEI9qfQAp5YOPjiqBA8oj/7wotoUA/xZxRj9OhQBoRGUF4fqJAHQCR2csto0Be5hYLj+GjQAbXi43FmaRA6gWh03FWpUBNOwv+lBemQD0/8s4u3aZA7U+mnT2np0Bn36VKvnWoQHD1/TOsSKlA6asPKgEgqkDKTcVktfuqQGmpQXm/26tA+CcUUBTArECfM/wbp6itQEFkRlFpla5AOtDNnUqGr0Af3dVwnD2wQL7TTxQQurBAddgcUnU4sUDGUGhTwLixQESTpk/kOrJAgIDpitO+skCTZKhUf0SzQPIz/wbYy7NApvxoBs1UtEDCJfnBTN+0QO7TFrREa7VAQYG9Y6H4tUAlikVmToe2QPEft2E2F7dAkrypD0Oot0Cf2bFAXTq4QP5PXuBszbhAN2XG+VhhuUCfJ6m8B/a5QDBUHoNei7pAp5fY10Ehu0DmkPh8lbe7QH2Nb3M8TrxA54nwAhnlvEDajm3CDHy9QCkUH6H4Er5A3Z8S8LypvkDRZj1sOUC/QORCD0lN1r9AN/HAnes1wECm0s/CWoDAQHSXPgFjysBAQyRQGfMTwUBiI2ek+VzBQLPfnRtlpcFAqXyL3iPtwUB2ETM6JDTCQNv/GHBUesJASbR6vaK/wkCb1KRi/QPDQNG8Y6pSR8NAiQaK8ZCJw0Ddt4iupsrDQO+ZFHmCCsRA+x3UERNJxEAAIhFqR4bEQAnUaasOwsRAX+R7P1j8xEDULIXXEzXFQObr9HMxbMVAgbDoa6GhxUDvE5B0VNXFQB5lcqg7B8ZAyXGRjkg3xkDap2QhbWXGQJnap9WbkcZAhg35oMe7xkD9v0AA5OPGQORS4P3kCcdA4UKiN78tx0BJF2jkZ0/HQOMOktnUbsdAKsAckPyLx0ADE3Ep1qbHQOUs43NZv8dA/B7d7n7Vx0AeX7LOP+nHQFxQGQCW+sdAel5IK3wJyECZcLS27RXIQPW5bsnmH8hAfDQgTWQnyEBDV6HvYyzIQFriLCTkLshAWuIsJOQuyEBDV6HvYyzIQHw0IE1kJ8hA9bluyeYfyECZcLS27RXIQHpeSCt8CchAXFAZAJb6x0AeX7LOP+nHQPwe3e5+1cdA5Szjc1m/x0ADE3Ep1qbHQCrAHJD8i8dA4w6S2dRux0BJF2jkZ0/HQOBCoje/LcdA5FLg/eQJx0D9v0AA5OPGQIYN+aDHu8ZAmdqn1ZuRxkDZp2QhbWXGQMlxkY5IN8ZAHmVyqDsHxkDvE5B0VNXFQIGw6GuhocVA5uv0czFsxUDULIXXEzXFQGHkez9Y/MRACdRpqw7CxEAAIhFqR4bEQPsd1BETScRA7pkUeYIKxEDet4iupsrDQIkGivGQicNA0bxjqlJHw0CZ1KRi/QPDQEi0er2iv8JA3P8YcFR6wkB2ETM6JDTCQKl8i94j7cFAs9+dG2WlwUBgI2ek+VzBQEMkUBnzE8FAdJc+AWPKwECm0s/CWoDAQDfxwJ3rNcBA4kIPSU3Wv0DTZj1sOUC/QN2fEvC8qb5AKRQfofgSvkDajm3CDHy9QOWJ8AIZ5bxAeo1vczxOvEDmkPh8lbe7QKeX2NdBIbtAMFQeg16LukCdJ6m8B/a5QDNlxvlYYblA/k9e4GzNuECf2bFAXTq4QJK8qQ9DqLdA8B+3YTYXt0AjikVmToe2QEGBvWOh+LVA7tMWtERrtUDCJfnBTN+0QKb8aAbNVLRA8TP/BtjLs0CTZKhUf0SzQICA6YrTvrJARJOmT+Q6skDGUGhTwLixQHPYHFJ1OLFAvtNPFBC6sEAf3dVwnD2wQDrQzZ1Khq9AQWRGUWmVrkCcM/wbp6itQPgnFFAUwKxAaalBeb/bq0DKTcVktfuqQOmrDyoBIKpAbfX9M6xIqUBq36VKvnWoQO1Ppp09p6dAPT/yzi7dpkBNOwv+lBemQOgFodNxVqVACteLjcWZpEBe5hYLj+GjQB0AkdnLLaNAGhEZQXh+okA+xZxRj9OhQPWI/+8KLaFACnlg4+OKoEAKHOzEI9qfQK0q7UEXp55A6asJuo18nUCPGTHZcFqcQOF/tZWoQJtAx3zcShsvmkAsJUcBvLyaQN9we+wQ1JtAd1jOVM3znEA4ea5pCxyeQImrzrbjTJ9A2qiChDZDoEBIlIEpXuSgQC6h+EjyiaFAS0IDWfszokCN1JK5gOKiQCuzyqaIlaNAT3xyKxhNpEDe64cTMwmlQH7z+d7byaVAv/OWtBOPpkAkMThV2linQA/PNA8uJ6hANsQmsgv6qECdXQyDbtGpQOf+0DBQrapAAeFHyaiNq0AxmaOubnKsQGkzdY2WW61AcKI9UxNJrkBcNpwl1jqvQHxXEi1nGLBALa1zt3SVsECXwNqBiRSxQGcUFmqalbFAS3hHWZsYskDLQL5Bf52yQG3YQh04JLNA+gjY67ass0DAJfay6za0QHIERH3FwrRAY3LRWjJQtUCXjtZhH9+1QK8n+694b7ZASu4obCkBt0Cj+erIG5S3QEHFXAc5KLhAi3Oqemm9uED4wSOMlFO5QIK54r+g6rlA5r8GunOCukC3RYRE8hq7QALiiFUAtLtAMT5zFoFNvEBoxV3rVue8QC2ZOntjgb1ATNp+uIcbvkDs4Vrqo7W+QDmSfLaXT79AsnJYK0Lpv0AX7HrlQEHAQPLyHEuajcBA3GFWDJzZwEDM+lm6NCXBQEkpHrhScMFAk9fmQOS6wUDl8gBv1wTCQHZCrEIaTsJADAQwqZqWwkAGkxaERt7CQOoyjLALJcNAB+3cDthqw0CKSg2Kma/DQF+QiR8+88NADwLn5rM1xEB1k7IZ6XbEQChXSBvMtsRAkuGugEv1xEC+xXEYVjLFQHpCdvLabcVARivFZ8mnxUDvEUUiEeDFQM+yXySiFsZA9qaN0GxLxkAaZcPwYX7GQMGjur1yr8ZADj0T5pDexkCRxkaVrgvHQK4lanq+NsdAlIO4zrNfx0DwIeNbgobHQAy0IYIeq8dA5wX/PX3Nx0BA5d0tlO3HQHdtMpdZC8hABwlsa8QmyEDfroxMzD/IQDQaapFpVshAUvWVSZVqyECdLepASXzIQJTmtgKAi8hA88OP3DSYyEBCh7bgY6LIQF9DIegJqshAPLAalCSvyEAgcntPsrHIQCBye0+yschAPLAalCSvyEBfQyHoCarIQEKHtuBjoshA88OP3DSYyECU5rYCgIvIQJ0t6kBJfMhAUvWVSZVqyEA0GmqRaVbIQN+ujEzMP8hABglsa8QmyEB3bTKXWQvIQEDl3S2U7cdA5wX/PX3Nx0ALtCGCHqvHQPAh41uChsdAlIO4zrNfx0CuJWp6vjbHQJHGRpWuC8dADj0T5pDexkDAo7q9cq/GQBplw/BhfsZA9qaN0GxLxkDPsl8kohbGQO8RRSIR4MVARCvFZ8mnxUB7Qnby2m3FQL7FcRhWMsVAkuGugEv1xEAoV0gbzLbEQHWTshnpdsRAEQLn5rM1xEBfkIkfPvPDQIpKDYqZr8NABu3cDthqw0DoMoywCyXDQAeTFoRG3sJADAQwqZqWwkB2QqxCGk7CQOXyAG/XBMJAktfmQOS6wUBKKR64UnDBQMz6Wbo0JcFA3GFWDJzZwEDy8hxLmo3AQBbseuVAQcBAtnJYK0Lpv0A5kny2l0+/QOzhWuqjtb5ATNp+uIcbvkApmTp7Y4G9QGfFXetW57xAMT5zFoFNvEAC4ohVALS7QLdFhETyGrtA5b8GunOCukCAueK/oOq5QPjBI4yUU7lAi3Oqemm9uEBBxVwHOSi4QKH56sgblLdASO4obCkBt0CvJ/uveG+2QJeO1mEf37VAY3LRWjJQtUByBER9xcK0QL4l9rLrNrRA+gjY67ass0Bt2EIdOCSzQMtAvkF/nbJAS3hHWZsYskBmFBZqmpWxQJfA2oGJFLFALa1zt3SVsEB8VxItZxiwQFw2nCXWOq9Aa6I9UxNJrkBpM3WNllutQDGZo65ucqxAAeFHyaiNq0Dn/tAwUK2qQJpdDINu0alAOcQmsgv6qEAPzzQPLieoQCQxOFXaWKdAv/OWtBOPpkB78/ne28mlQOHrhxMzCaVAT3xyKxhNpEArs8qmiJWjQI3UkrmA4qJASEIDWfszokAxofhI8omhQEiUgSle5KBA2qiChDZDoECJq86240yfQDZ5rmkLHJ5AcljOVM3znEDfcHvsENSbQCwlRwG8vJpA93jT8ABHm0D4wgxm+mOcQK5HoM6GiZ1Addhm4cC3nkB55AKpwe6fQNm+GTRQl6BAHAf/Prk7oUC9W9+kpeShQDUEmAcekqJAlLE97SlEo0BbCDKyz/qjQNzNT3sUtqRA0043KPx1pUC12MRFiTqmQGtcuwC9A6dApImtGJfRp0Ds4S/TFaSoQDZtXu81e6lAiNvAmfJWqkDx+ZdgRTerQFhznygmHKxA8N5OIosFrUAoH6W/aPOtQAoLiaqx5a5AKUrKu1bcr0CHl2Z5o2uwQGMb9rY367BA49HMsd1ssUA0uCUOivCxQGHInXYwdrJADhYDmsP9skCbjpcpNYezQDzSy9d1ErRARWR2V3WftEDLNItbIi61QCREV5dqvrVAgtpDvzpQtkDegiSKfuO2QDmoErMgeLdA8l/Z+woOuEAmk/MvJqW4QDBcHihaPblAbQyBzo3WuUAo6msjp3C6QM9OrkKLC7tAW2KEaR6nu0D8Qxz9Q0O8QFf/sZHe37xASjxB8s98vUAtI8so+Rm+QJF6Loc6t75A942PsHNUv0Bc9kyjg/G/QK7zvmEkR8BA7xb7clCVwEDUy+WtNOPAQBEELH+/MMFAG4bZHd99wUBYp86RgcrBQG3xa7qUFsJAgXdwVQZiwkDNbQcGxKzCQPFjAVy79sJArVM129k/w0DBiAUDDYjDQLg8BFZCz8NA2pmzYWcVxECItFzGaVrEQKjo+D43nsRAausoqb3gxED6xjQN6yHFQEPfD6atYcVA2wtc6fOfxUASxGaPrNzFQEVPG5vGF8ZAWuTkYTFRxkCeoHuT3IjGQIk/l0G4vsZAjYKC57TyxkDwQYpxwyTHQNItQ0TVVMdA/lihQ9yCx0C5vdzZyq7HQI8HHv6T2MdAKgzvOisAyEBEgGq0hCXIQIScJi6VSMhANpHWEFJpyED+1Z5vsYfIQOGUGA2qo8hAU6UAYDO9yEDOxI6XRdTIQO31cZ/Z6MhAwi1vI+n6yEAfuJ+SbgrJQBn/TCJlF8lAvqdn0MghyUBqPZhllinJQIju53bLLslA7ScAZ2YxyUDtJwBnZjHJQIju53bLLslAaj2YZZYpyUC+p2fQyCHJQBn/TCJlF8lAH7ifkm4KyUDCLW8j6frIQO31cZ/Z6MhAzsSOl0XUyEBTpQBgM73IQOGUGA2qo8hA/tWeb7GHyEA2kdYQUmnIQIScJi6VSMhAQ4BqtIQlyEAqDO86KwDIQI8HHv6T2MdAub3c2cqux0D+WKFD3ILHQNEtQ0TVVMdA8EGKccMkx0CNgoLntPLGQIk/l0G4vsZAnqB7k9yIxkBa5ORhMVHGQEVPG5vGF8ZAEsRmj6zcxUDbC1zp85/FQEPfD6atYcVA+MY0DeshxUBp6yipveDEQKno+D43nsRAiLRcxmlaxEDambNhZxXEQLc8BFZCz8NAwYgFAw2Iw0CtUzXb2T/DQPFjAVy79sJAzW0HBsSswkCBd3BVBmLCQGzxa7qUFsJAWafOkYHKwUAbhtkd333BQBEELH+/MMFA0svlrTTjwEDuFvtyUJXAQK/zvmEkR8BAXPZMo4Pxv0D3jY+wc1S/QJF6Loc6t75ALCPLKPkZvkBIPEHyz3y9QFf/sZHe37xA/EMc/UNDvEBbYoRpHqe7QMxOrkKLC7tAJuprI6dwukBtDIHOjda5QDBcHihaPblAJpPzLyaluEDyX9n7Cg64QDioErMgeLdA3oIkin7jtkCC2kO/OlC2QCREV5dqvrVAyzSLWyIutUBCZHZXdZ+0QDzSy9d1ErRAm46XKTWHs0AOFgOaw/2yQGHInXYwdrJAMbglDorwsUDj0cyx3WyxQGMb9rY367BAh5dmeaNrsEApSsq7VtyvQAYLiaqx5a5AKB+lv2jzrUDw3k4iiwWtQFhznygmHKxA8fmXYEU3q0CF28CZ8laqQDltXu81e6lA7OEv0xWkqECkia0Yl9GnQGtcuwC9A6dAs9jERYk6pkDWTjco/HWlQNzNT3sUtqRAWwgyss/6o0CUsT3tKUSjQDMEmAcekqJAv1vfpKXkoUAcB/8+uTuhQNm+GTRQl6BAeeQCqcHun0Bv2GbhwLeeQKtHoM6GiZ1A+MIMZvpjnED3eNPwAEebQNUbJ8GXzZtAV4/GTQ/wnEAIU9kbRBueQArAB2ZRT59A/3pBWShGoEDuqGfbLOmgQMNksh3BkKFAILqa/+48okCTn5VNv+2iQCM+17I5o6NAotEjq2RdpEAmnLd0RRylQOyxTwLg36VATKdd7TaopkCoaXBoS3WnQBXF3DEdR6hA20mwhqodqUAEcPkV8PipQAr6b/To2KpAVrKIkI69q0Cisv+m2KasQOls5De9lK1AZ68yfDCHrkCm0wPcJH6vQDybsXLFPLBAGX3ooai8sEAc9z5csj6xQOyipQnYwrFAh0ZMFg5JskAWAvXvR9GyQDCduAN4W7NAErJAvI/ns0BtQnyAf3W0QNMI07I2BbVA2pzbsKOWtUDQPJjTsym2QKHIPXBTvrZAmyyI2W1Ut0BkKZ9h7eu3QHsQjly7hLhA2rFQI8AeuUAOWXcX47m5QPZUY6cKVrpAWx8dUxzzukCpz8Sx/JC7QAkXnXePL7xAypSwfLfOvECA3xDEVm69QGQrroNODr5AewDGLH+uvkCo++Z0yE6/QEgeh18J779ATNsUJJBHwEC1uYh2dZfAQGdePT0j58BAO/osy4c2wUAYZUw2kYXBQJKu5l0t1MFA1rcy8UkiwkCPwh921G/CQAmqVVC6vMJAqkdlyOgIw0CMUSUTTVTDQAXSN1nUnsNAOCm0vmvow0DnXvFqADHEQMpibJB/eMRAcbTFdNa+xEAWytF48gPFQFBvtyDBR8VAwDkXHDCKxUCnGjdOLcvFQC4BLdamCsZAhnEDF4tIxkAc6tK/yITGQK3oytNOv8ZAaV4lsgz4xkBkY/8d8i7HQJn/EUbvY8dAselFzPSWx0AfKh3N88fHQPuj7ebd9sdAI5znQKUjyEBWcuORPE7IQNDf8SaXdshAUjKq6aicyEB3IjJmZsDIQKkP+9DE4chAeJswDLoAyUAd0dSsPB3JQII8hv9DN8lAoY3sDMhOyUBDosidwWPJQK4PpT4qdslAH4gkQ/yFyUD9vOvIMpPJQImlJLrJnclArlqZz72lyUB8A2WSDKvJQHeZOV20rclAd5k5XbStyUB8A2WSDKvJQK5amc+9pclAiaUkusmdyUD9vOvIMpPJQB+IJEP8hclArg+lPip2yUBDosidwWPJQKGN7AzITslAgjyG/0M3yUAd0dSsPB3JQHibMAy6AMlAqQ/70MThyEB3IjJmZsDIQFIyqumonMhA0N/xJpd2yEBWcuORPE7IQCOc50ClI8hA+6Pt5t32x0AfKh3N88fHQLHpRcz0lsdAmf8RRu9jx0BkY/8d8i7HQGleJbIM+MZArOjK006/xkAb6tK/yITGQIdxAxeLSMZALgEt1qYKxkCnGjdOLcvFQL85FxwwisVAUG+3IMFHxUAWytF48gPFQHG0xXTWvsRAymJskH94xEDnXvFqADHEQDcptL5r6MNABtI3WdSew0CMUSUTTVTDQKpHZcjoCMNACapVULq8wkCOwh921G/CQNa3MvFJIsJAkq7mXS3UwUAYZUw2kYXBQDr6LMuHNsFAZ149PSPnwEC2uYh2dZfAQEzbFCSQR8BASB6HXwnvv0Co++Z0yE6/QHoAxix/rr5AYyuug04OvkCA3xDEVm69QMqUsHy3zrxACRedd48vvECpz8Sx/JC7QFkfHVMc87pA9lRjpwpWukAOWXcX47m5QNqxUCPAHrlAexCOXLuEuEBjKZ9h7eu3QJssiNltVLdAocg9cFO+tkDQPJjTsym2QNqc27CjlrVA0gjTsjYFtUBtQnyAf3W0QBKyQLyP57NAMJ24A3hbs0AWAvXvR9GyQIVGTBYOSbJA7KKlCdjCsUAc9z5csj6xQBl96KGovLBAPJuxcsU8sECi0wPcJH6vQGevMnwwh65A6WzkN72UrUCisv+m2KasQFayiJCOvatAB/pv9OjYqkAJcPkV8PipQNtJsIaqHalAFcXcMR1HqECoaXBoS3WnQEqnXe02qKZA77FPAuDfpUAmnLd0RRylQKLRI6tkXaRAIz7Xsjmjo0CSn5VNv+2iQCO6mv/uPKJAw2SyHcGQoUDuqGfbLOmgQP96QVkoRqBABsAHZlFPn0ACU9kbRBueQFePxk0P8JxA1RsnwZfNm0BEKc4RL1CcQL9JCvH6d51AoQ8cHq2onkBE/ZBTYeKfQLCjvseYkqBAPOZg+5o4oUCHlRNcQuOhQLpFr/eYkqJALrb8w6dGo0CdOTWQdv+jQCb3kPYLvaRAyarsTW1/pUCD2JCbnkamQPyqJIWiEqdA7vbWQnrjp0A9FsiRJbmoQFyAv6aik6lAGDE4Ie5yqkCKEs/+AlerQCq6Ho/aP6xAetwTaGwtrUC/48Varh+uQA4Y32iUFq9Ac95PXQgJsEB7u8PKCYmwQEUX2KlFC7FAi77yLbKPsUDPwEGNRBayQPbdk/3wnrJAeSOfsaops0BnvLrWY7azQADJEJMNRbRAxd5MBJjVtECUmMs+8me1QNFfT00K/LVAslM+Mc2RtkCn6mzjJim3QCeceFUCwrdAn421c0lcuEAy5rEn5fe4QGkQUVu9lLlA0tCA/LgyukDKs4kBvtG6QK/s+22xcbtA7lQ5WHcSvEBRypzv8rO8QHq6PoMGVr1AMzVWiZP4vUCzaDWnepu+QCTz37mbPr9Aafs439Xhv0A3ROO/g0LAQAeKgywHlMBAs+0qxGPlwEA7+izLhzbBQFXbfUFhh8FAZMbt6N3XwUCtZ6JL6yfCQJFpy8J2d8JA3PKOfW3GwkDmwSqIvBTDQHdVRtNQYsNAiWByOxevw0DDldGQ/PrDQIqo5p7tRcRAMzaDNNePxEDLINMrptjEQHe/f3JHIMVAuiXmEahmxUBKpFs3tavFQHiKezxc78VA7Bd5r4oxxkCTenBbLnLGQBSlsVA1scZAyL7/7I3uxkCW5r/jJirHQJf/EUbvY8dAdD/Oitabx0BQPGKWzNHHQItCiMLBBchAFsnT5aY3yEA+7g1bbWfIQH3+XAgHlchAdyIyZmbAyEClcfiFfunIQHnLgBhDEMlAAwEmdKg0yUD6BaWao1bJQK4PpT4qdslA/bzryDKTyUB2mTldtK3JQMaIy96mxclAf+V99ALbyUA4X44Mwu3JQKfn+V/e/clAI0R09VILykDdIfejGxbKQKrU5hQ1HspA+jTLxZwjykA3XpsJUSbKQDdemwlRJspA+jTLxZwjykCq1OYUNR7KQN0h96MbFspAI0R09VILykCn5/lf3v3JQDhfjgzC7clAf+V99ALbyUDGiMvepsXJQHaZOV20rclA/bzryDKTyUCuD6U+KnbJQPoFpZqjVslAAwEmdKg0yUB5y4AYQxDJQKVx+IV+6chAdyIyZmbAyEB9/lwIB5XIQD7uDVttZ8hAFcnT5aY3yECKQojCwQXIQFA8YpbM0cdAdD/Oitabx0CX/xFG72PHQJXmv+MmKsdAyL7/7I3uxkAVpbFQNbHGQJN6cFsucsZA7Bd5r4oxxkB3ins8XO/FQEmkWze1q8VAuiXmEahmxUB3v39yRyDFQMsg0yum2MRAMjaDNNePxECKqOae7UXEQMSV0ZD8+sNAiWByOxevw0B3VUbTUGLDQObBKoi8FMNA2/KOfW3GwkCSacvCdnfCQK1nokvrJ8JAZMbt6N3XwUBV231BYYfBQDr6LMuHNsFAtO0qxGPlwEAHioMsB5TAQDdE47+DQsBAafs439Xhv0Ai89+5mz6/QK9oNad6m75AMzVWiZP4vUB6uj6DBla9QFHKnO/ys7xA7VQ5WHcSvECs7PttsXG7QMqziQG+0bpA0tCA/LgyukBpEFFbvZS5QDHmsSfl97hAno21c0lcuEAnnHhVAsK3QKfqbOMmKbdAslM+Mc2RtkDRX09NCvy1QJGYyz7yZ7VAxd5MBJjVtEAAyRCTDUW0QGe8utZjtrNAeSOfsaops0D03ZP98J6yQM/AQY1EFrJAi77yLbKPsUBFF9ipRQuxQHu7w8oJibBAcd5PXQgJsEAOGN9olBavQL/jxVquH65AetwTaGwtrUAquh6P2j+sQIYSz/4CV6tAHTE4Ie5yqkBcgL+mopOpQD0WyJEluahA7vbWQnrjp0D8qiSFohKnQIbYkJueRqZAyarsTW1/pUAm95D2C72kQJ05NZB2/6NAKrb8w6dGo0C9Ra/3mJKiQIeVE1xC46FAPOZg+5o4oUCwo77HmJKgQD/9kFNh4p9AnQ8cHq2onkC/SQrx+nedQEQpzhEvUJxANYRvy3bOnECdbcLzafudQOrMaRtrMZ9Ad79PPEs4oEC41bI+g9ygQGdOJt1phaFAhHuGYAozokCsloMDb+WiQAvp3OOgnKNAiomg86dYpEBgMXnqihmlQAL5EzdP36VA5Byo8PippkCDMKvIinmnQKlnvPwFTqhAqdjRSGonqUCbzbLZtQWqQDVnyj/l6KpA8PddYvPQq0DxmTJz2b2sQNyVreKOr61AGjp7VAmmrkDDw8eUPKGvQCP4CkeNULBAW17fn8nSsEDP3JJaSlexQEyZ1n4F3rFAKpu6EvBmskAAJ3gX/vGyQHQ1rIYif7NAnB4HUE8OtEBEZHZXdZ+0QMlQzXOEMrVAgOXwbWvHtUByVIsAGF62QK/7Sth29rZAk46wlHOQt0CiyW/J+Cu4QFi5ZQDwyLhARkMnvEFnuUCaQip71Qa6QOIni7uRp7pAnaRw/1tJu0Aqgg7SGOy7QCpVSM2rj7xAKU70n/czvUCF9L0U3ti9QBUiqBlAfr5AKB4tyP0jv0DMO/tt9sm/QBzyJUsEOMBAxDzpCQmLwECKAKAF+N3AQBEELH+/MMFAQVzJa02DwUCyyyN7j9XBQFL3rR1zJ8JA9bM3i+V4wkBsdcDJ08nCQF+ugrQqGsNApLc0A9dpw0AGoHtRxbjDQBsRjCbiBsRAA0T1/BlUxEDk0ZFKWaDEQCD/mYiM68RAIffSO6A1xUDxR9b8gH7FQO7JbIAbxsVAcQD4n1wMxkBY5ORhMVHGQJDxIgKHlMZAgDya+krWxkCqRJsLaxbHQNEtQ0TVVMdAxwHPCniRx0DzmdgkQszHQBHRd78iBchAoaNCdwk8yEDU7yZg5nDIQOGUGA2qo8hAzcSOl0XUyEAbdMumqgLJQIbu53bLLslAWbmh35pYyUA5EONaDIDJQOxyAgsUpclAcee0wKbHyUAgxa4AuufJQB4S7whEBcpAMbWx1TsgykCK+QQmmTjKQGEh/39UTspAGgaRNGdhykCgCfNiy3HKQL7jqft7f8pA/h8hw3SKykD7a9lTspLKQJcjKSAymMpADteNc/KaykAO141z8prKQJcjKSAymMpA+2vZU7KSykD+HyHDdIrKQL7jqft7f8pAoAnzYstxykAaBpE0Z2HKQGEh/39UTspAivkEJpk4ykAxtbHVOyDKQB4S7whEBcpAIMWuALrnyUBx57TApsfJQOxyAgsUpclAORDjWgyAyUBZuaHfmljJQIbu53bLLslAG3TLpqoCyUDNxI6XRdTIQN+UGA2qo8hA0+8mYOZwyECho0J3CTzIQBHRd78iBchA85nYJELMx0DHAc8KeJHHQNAtQ0TVVMdAqkSbC2sWx0CAPJr6StbGQJDxIgKHlMZAWOTkYTFRxkBwAPifXAzGQO/JbIAbxsVA8UfW/IB+xUAh99I7oDXFQCD/mYiM68RA49GRSlmgxEADRPX8GVTEQBsRjCbiBsRABqB7UcW4w0CjtzQD12nDQF6ugrQqGsNAbXXAydPJwkD1szeL5XjCQFL3rR1zJ8JAscsje4/VwUBAXMlrTYPBQBEELH+/MMFAigCgBfjdwEDEPOkJCYvAQBzyJUsEOMBAyjv7bfbJv0AmHi3I/SO/QBUiqBlAfr5AhfS9FN7YvUApTvSf9zO9QClVSM2rj7xAKIIO0hjsu0CdpHD/W0m7QOIni7uRp7pAmkIqe9UGukBEQye8QWe5QFa5ZQDwyLhAoslvyfgruECTjrCUc5C3QK/7Sth29rZAclSLABhetkB/5fBta8e1QMlQzXOEMrVARGR2V3WftECcHgdQTw60QHQ1rIYif7NA/iZ4F/7xskAqm7oS8GayQEyZ1n4F3rFAz9ySWkpXsUBbXt+fydKwQCH4CkeNULBAw8PHlDyhr0AaOntUCaauQNyVreKOr61A8Zkyc9m9rEDs911i89CrQDlnyj/l6KpAm82y2bUFqkCp2NFIaiepQKlnvPwFTqhAgTCryIp5p0DnHKjw+KmmQAL5EzdP36VAYDF56ooZpUCKiaDzp1ikQAnp3OOgnKNAr5aDA2/lokCEe4ZgCjOiQGdOJt1phaFAuNWyPoPcoEB1v088SzigQOjMaRtrMZ9AnW3C82n7nUA1hG/Lds6cQMPTBXEgSJ1AJQnspAp6nkDMNRYWKbWfQAty8jjMfKBAXX8FzbkjoUD1G2zDac+hQNmLq5Tnf6JA3eunpj01o0Bv+aA9de+jQO2DM22WrqRA6S9pCahypUC/h+CXrzumQLOjF0GxCadAEPzjwa/cp0AKOiJdrLSoQFsYqc2mkalAPpiKOJ1zqkAK/a4fjFqrQFol1VRuRqxAnPQD7Tw3rUBUlHg07yyuQKddHaN6J69AqZ7KaGkTsEAsrXO3dJWwQHVaaxvXGbFAIap4dIegsUBZOTGgeymyQGlxSXaotLJAUVVRxQFCs0DaQ+NPetGzQFHdScoDY7RA6Aui2I72tEBQ+H0NC4y1QHN4DelmI7ZAAEbQ2I+8tkDCA9Y3cle3QJXNj0/587dA4b02WQ+SuEDLfcp/nTG5QKiaquKL0rlAx/vMmMF0ukB+cJO0JBi7QHflQUiavLtAnGUWawZivECzmgM/TAi9QFoPDvdNr71Axf5L3uxWvkDLBYdfCf++QBWPfg2Dp79A1KvkVRwowEDX9SkchHzAQH++vHrn0MBAzPpZujQlwUDV1O/QWXnBQARHh2dEzcFA/Sxz4OEgwkDJP8JdH3TCQFg18cfpxsJAqP/Z1C0Zw0AG7dwO2GrDQOwxQNzUu8NAHy7ChhAMxEBtiVpDd1vEQBESJjr1qcRAlxZ5jnb3xEADyBNn50PFQLIGdPYzj8VAdtU/g0jZxUDWisNwESLGQGi4fkd7acZAwaO6vXKvxkBpFCXA5PPGQK4lanq+NsdAHbvHX+13x0CMKpUzX7fHQDWnuREC9cdACPYLd8QwyEBS9ZVJlWrIQEKHtuBjoshA7nkcDSDYyEB0FpUgugvJQHwUqfUiPclA+ccC90tsyUCBe5gmJ5nJQBkLliSnw8lAvfgANr/ryUCyXRJLYxHKQOBJQgWINMpA/VMAvSJVykBbUxWHKXPKQG91qjmTjspA3B3ycFenykAnQG+Tbr3KQAMl2NXR0MpAa9ORPnvhykDYncGoZe/KQAOf8saM+spAPD5NJe0Cy0D5IV8rhAjLQIBHch1QC8tAgEdyHVALy0D5IV8rhAjLQDw+TSXtAstAA5/yxoz6ykDYncGoZe/KQGvTkT574cpAAyXY1dHQykAnQG+Tbr3KQNwd8nBXp8pAbnWqOZOOykBbUxWHKXPKQP1TAL0iVcpA4ElCBYg0ykCyXRJLYxHKQLv4ADa/68lAGQuWJKfDyUCBe5gmJ5nJQPnHAvdLbMlAfBSp9SI9yUBzFpUgugvJQO15HA0g2MhAQoe24GOiyEBS9ZVJlWrIQAj2C3fEMMhANKe5EQL1x0CMKpUzX7fHQB27x1/td8dAriVqer42x0BpFCXA5PPGQMCjur1yr8ZAZ7h+R3tpxkDXisNwESLGQHbVP4NI2cVAsgZ09jOPxUACyBNn50PFQJUWeY5298RAERImOvWpxEBtiVpDd1vEQB8uwoYQDMRA7DFA3NS7w0AG7dwO2GrDQKr/2dQtGcNAWDXxx+nGwkDJP8JdH3TCQP0sc+DhIMJAA0eHZ0TNwUDW1O/QWXnBQMz6Wbo0JcFAf768eufQwEDX9SkchHzAQNOr5FUcKMBAFI9+DYOnv0DLBYdfCf++QMX+S97sVr5AWg8O902vvUCwmgM/TAi9QJtlFmsGYrxAd+VBSJq8u0B+cJO0JBi7QMf7zJjBdLpApZqq4ovSuUDLfcp/nTG5QOG9NlkPkrhAlc2PT/nzt0DCA9Y3cle3QABG0NiPvLZAcHgN6WYjtkBQ+H0NC4y1QOgLotiO9rRAUd1JygNjtEDaQ+NPetGzQFBVUcUBQrNAaXFJdqi0skBZOTGgeymyQCGqeHSHoLFAdVprG9cZsUAqrXO3dJWwQKmeymhpE7BAp10do3onr0BUlHg07yyuQJz0A+08N61AViXVVG5GrEAM/a4fjFqrQD6Yijidc6pAWxipzaaRqUAKOiJdrLSoQA7848Gv3KdAtqMXQbEJp0C/h+CXrzumQOkvaQmocqVA7YMzbZaupEBs+aA9de+jQN/rp6Y9NaNA2YurlOd/okD1G2zDac+hQF1/Bc25I6FACXLyOMx8oEDJNRYWKbWfQCUJ7KQKep5Aw9MFcSBInUBz7Kpw37ydQBM8rlKN855AOCUiEsoZoECa0pGCiL6gQF0/FqEPaKFAxVCeG2wWokBLLWuYqcmiQBri1abSgaNAAVAQsPA+pEBx1OrnCwGlQJZ9qD0ryKVAnuzrTFSUpkBlWcdOi2WnQFF0+grTO6hAICZpySwXqUC9atZDmPepQO247pcT3apAcZatOZvHq0DEHSrmKbesQEBX1pa4q61Af1s9dT6lrkACP0zPsKOvQBnkGIaBU7BAhnPwUJPXsEBY6aCFBV6xQNnIjt/O5rFAEcXnE+VxskBsQOTNPP+yQFYYd6vJjrNAyCtxOn4gtEBo4B32S7S0QEa5XUUjSrVAx9tDefPhtUD4IjvMqnu2QPEft2E2F7dAZh51RoK0t0Au+FBxeVO4QB8wscQF9LhA43WNEBCWuUAMWBIVgDm6QCKJ5IU83rpA9rYFDiuEu0ASilxUMCu8QJn14AAw07xA3I5twgx8vUAuLzZVqCW+QIyr44njz75ABvNTTZ56v0CPtH7Y2xLAQG7p+fmGaMBA6VZGRj++wEBEJFAZ8xPBQLk4MnWQacFAPInuBwW/wUBhRm8xPhTCQPCUzgkpacJAiTziZ7K9wkBpeQjoxhHDQGHhMvNSZcNAxxAsxkK4w0DwmRR5ggrEQC56Ewf+W8RAKiE2VqGsxEBh5Hs/WPzEQJCHCJcOS8VAFFV5NLCYxUBCFlj7KOXFQFMUp+NkMMZAHSaBAlB6xkCLrsiS1sLGQOVS4P3kCcdASxdo5GdPx0Aqe/kmTJPHQP0e3e5+1cdAm3C0tu0VyEC/0xFThlTIQGa5+fo2kchA8BlHUO7LyEBPzO1nmwTJQBc/FdItO8lAzicGopVvyUD70OV1w6HJQN3HOX6o0clAbMguhTb/yUB35531XyrKQGghy+EXU8pAO57YCVJ5ykAoKurhAp3KQAuV9JcfvspALuE0GZ7cykBgZEsXdfjKQAY89wycEctA6bVuQgsoy0C7k1HRuzvLQCZWMqinTMtADga0jclay0BzPjojHWbLQHGHKeeebstAuGK2Nkx0y0ALu0FPI3fLQAu7QU8jd8tAuGK2Nkx0y0Bxhynnnm7LQHM+OiMdZstADga0jclay0AnVjKop0zLQLuTUdG7O8tA6bVuQgsoy0AGPPcMnBHLQGBkSxd1+MpALuE0GZ7cykALlfSXH77KQCgq6uECncpAO57YCVJ5ykBoIcvhF1PKQHfnnfVfKspAbMguhTb/yUDdxzl+qNHJQPvQ5XXDoclAzScGopVvyUAVPxXSLTvJQE/M7WebBMlA8BlHUO7LyEBmufn6NpHIQL7TEVOGVMhAmXC0tu0VyED+Ht3uftXHQCp7+SZMk8dASxdo5GdPx0DkUuD95AnHQIuuyJLWwsZAHSaBAlB6xkBTFKfjZDDGQEIWWPso5cVAElV5NLCYxUCQhwiXDkvFQGHkez9Y/MRAKiE2VqGsxEAuehMH/lvEQO+ZFHmCCsRAxRAsxkK4w0Bi4TLzUmXDQGl5COjGEcNAiTziZ7K9wkDvlM4JKWnCQGFGbzE+FMJAPonuBwW/wUC5ODJ1kGnBQEQkUBnzE8FA6VZGRj++wEBt6fn5hmjAQI+0ftjbEsBABvNTTZ56v0CMq+OJ48++QC4vNlWoJb5A245twgx8vUCY9eAAMNO8QBKKXFQwK7xA9rYFDiuEu0AiieSFPN66QAtYEhWAObpA4XWNEBCWuUAfMLHEBfS4QC74UHF5U7hAZh51RoK0t0DxH7dhNhe3QPciO8yqe7ZAx9tDefPhtUBGuV1FI0q1QGjgHfZLtLRAyCtxOn4gtEBTGHeryY6zQGxA5M08/7JAEcXnE+VxskDZyI7fzuaxQFjpoIUFXrFAhHPwUJPXsEAZ5BiGgVOwQAI/TM+wo69Af1s9dT6lrkBAV9aWuKutQMEdKuYpt6xAdJatOZvHq0DtuO6XE92qQL1q1kOY96lAICZpySwXqUBRdPoK0zuoQGhZx06LZadAnuzrTFSUpkCWfag9K8ilQHHU6ucLAaVA/k8QsPA+pEAd4tWm0oGjQEsta5ipyaJAxVCeG2wWokBdPxahD2ihQJjSkYKIvqBANiUiEsoZoEATPK5SjfOeQHPsqnDfvJ1AlA6Cc2ksnkBgW4edpGefQM/DN+MtVqBAHNaWPVb9oEBlxIM3WamhQBsmfK5DWqJAeNVydCEQo0A6d1xA/cqjQBY4t57giqRAB1gX4tNPpUA7d8IT3hmmQL7tY+QE6aZAWsjknEy9p0CcT3IPuJaoQDBCvohIdalAqCmEwf1YqkByZl/Q1UGrQFC+/RvNL6xAfV66Td4irUDnX61EAhuuQDbwOwkwGK9AVaaaYC4NsEBmXkTSvZCwQLtYUPm+FrFARow3dCmfsUBya5vb8ymyQDwYD74Tt7JAythKnH1Gs0Cadc/lJNizQLoE//X7a7RAY3mwEfQBtUAUHkNl/Zm1QOXnNgMHNLZAv1RO4/7PtkBjQz7i0W23QO3r78FrDbhAjdFYKreuuEAWM+yqnVG5QJ8nqbwH9rlAADfIxNybukC02woYA0O7QCn1rv5f67tA+sUHudeUvEAFq72ETT+9QCJFtaKj6r1AGFmeXbuWvkCYMCoRdUO/QJLK6DGw8L9A5dXlqiVPwEAIUKYeEqbAQModm+4L/cBAk7SFNAFUwUDOZwWv36rBQM4qZceUAcJAVESzlw1YwkBRlSDxNq7CQJzUpGL9A8NADOLkP01Zw0C7FVioEq7DQJMzqY45AsRAznBPwK1VxEAQwFvtWqjEQHlidrAs+sRAkIcIlw5LxUDNlI0p7JrFQK5+B/Sw6cVAynGRjkg3xkB44gumnoPGQFj03ASfzsZAuArAmzUYx0AxNZ+KTmDHQAQTcSnWpsdAp7IVEbnrx0Bb4iwk5C7IQHRa4JdEcMhAJCKc/MevyECEjK9GXO3IQDQt0dbvKMlA1ymAgnFiyUD1WD2c0JnJQCGulvv8zslA3Yf/BOcBykCvjHCxfzLKQFbiyZW4YMpAxazy6YOMykC66LCP1LXKQC7hNBme3MpAP65Tz9QAy0BZX2y3bSLLQPap85heQctAdjGiAp5dy0ALu0FPI3fLQOfiFarmjctA+izdEuGhy0CUk2dhDLPLQO0AwEhjwctAtW3mWeHMy0DTrRgGg9XLQKhFqKBF28tAdvRbYCfey0B29FtgJ97LQKhFqKBF28tA060YBoPVy0C1beZZ4czLQO0AwEhjwctAlJNnYQyzy0D6LN0S4aHLQOfiFarmjctAC7tBTyN3y0B2MaICnl3LQPap85heQctAWV9st20iy0A/rlPP1ADLQC7hNBme3MpAueiwj9S1ykDFrPLpg4zKQFbiyZW4YMpAr4xwsX8yykDdh/8E5wHKQCCulvv8zslA9Fg9nNCZyUDXKYCCcWLJQDQt0dbvKMlAhIyvRlztyEAiIpz8x6/IQHRa4JdEcMhAW+IsJOQuyECnshURuevHQAQTcSnWpsdAMDWfik5gx0C3CsCbNRjHQFr03ASfzsZAeOILpp6DxkDKcZGOSDfGQKx+B/Sw6cVAzJSNKeyaxUCQhwiXDkvFQHlidrAs+sRAEMBb7VqoxEDMcE/ArVXEQJMzqY45AsRAvRVYqBKuw0AM4uQ/TVnDQJzUpGL9A8NAUJUg8TauwkBTRLOXDVjCQNAqZceUAcJAzmcFr9+qwUCTtIU0AVTBQModm+4L/cBAB1CmHhKmwEDk1eWqJU/AQJLK6DGw8L9AmDAqEXVDv0AYWZ5du5a+QCBFtaKj6r1ABKu9hE0/vUD6xQe515S8QCn1rv5f67tAtNsKGANDu0D+NsjE3Ju6QJ0nqbwH9rlAFjPsqp1RuUCN0Vgqt664QO3r78FrDbhAY0M+4tFtt0C8VE7j/s+2QOXnNgMHNLZAFB5DZf2ZtUBjebAR9AG1QLoE//X7a7RAlnXP5STYs0DK2EqcfUazQDwYD74Tt7JAcmub2/MpskBGjDd0KZ+xQLlYUPm+FrFAZl5E0r2QsEBVpppgLg2wQDbwOwkwGK9A51+tRAIbrkB6XrpN3iKtQFO+/RvNL6xAcmZf0NVBq0CoKYTB/ViqQDBCvohIdalAm09yD7iWqEBdyOScTL2nQL7tY+QE6aZAO3fCE94ZpkAHWBfi00+lQBM4t57giqRAPXdcQP3Ko0B41XJ0IRCjQBsmfK5DWqJAZcSDN1mpoUAb1pY9Vv2gQM3DN+MtVqBAYFuHnaRnn0CUDoJzaSyeQFveTKx2lp5A7OAWygXWn0DawEEemY+gQGpNMfwMOaFAIeoqiWznoUBR6ePPxJqiQKSJ2sshU6NAZS+sWY4QpEDCwmYnFNOkQLTs3qS7mqVAeUkV9ItnpkCy/bTZijmnQCdutq28EKhAHSUxTCTtqEDnNWgGw86pQLutHJSYtapAZ9cxBaOhq0C3Rq+z3pKsQJXGLDZGia1AzGK0UtKErkC/2ibyeYWvQGZqFwqZRbBAvpXn4fbKsECbUUwGz1KxQM2hSfgY3bFA9bdzL8tpskDlV6kV2/iyQAbyOQM9irNAlzB9O+QdtEDEjuHpwrO0QJNjdx/KS7VA35j90OnltUCSDnXVEIK2QBNsP+UsILdAod7NmSrAt0Cj+eNt9WG4QG2fcr53BblAQYQOzJqquUAZhAW9RlG6QM+kFaBi+bpAxzrIb9Siu0AwPnMWgU28QApy4nJM+bxAFo6pXRmmvUDSJyCvyVO+QEifB0Y+Ar9AetnaDlexv0BQiuOFeTDAQE5Rpi54iMBAMurCJZbgwED57giowTjBQCJ7UJDokMFAEDkPXfjowUD1iTo23kDCQFCjdPOGmMJAJzuCIt/vwkCWGwYO00bDQB+2f8ROncNAXpCJHz7zw0DTJlTLjEjEQIymWU4mncRARaVGEfbwxEACyBNn50PFQIUTTJXllcVAqW973NvmxUCDt8CAtTbGQDaEftJdhcZAZrclN8DSxkA7pRQyyB7HQHqchW1hacdAeG2Hw3eyx0B/d/pG9/nHQN+ujEzMP8hA5/yuc+ODyEDtTn6vKcbIQFehmk+MBslAqVDmCPlEyUAU/Cf+XYHJQClLicipu8lArfPsf8vzyUAMbBbDsinKQOnLnb9PXcpAbnWqOZOOykAnQG+Tbr3KQAYBY9TT6cpAU3IwsLUTy0DgqViNBzvLQC98g4u9X8tA2155icyBy0A7lcIqKqHLQK+t59zMvctA4ZVP3KvXy0ARz7c4v+7LQJ6RQ9n/AsxAMvgegGcUzEBQlrPN8CLMQJ4sbEOXLsxAEn0FRlc3zECCk2ofLj3MQLAqGwAaQMxAsCobABpAzECCk2ofLj3MQBJ9BUZXN8xAnixsQ5cuzEBQlrPN8CLMQDL4HoBnFMxAnpFD2f8CzEARz7c4v+7LQOGVT9yr18tAr63n3My9y0A7lcIqKqHLQNteeYnMgctAL3yDi71fy0DgqViNBzvLQFNyMLC1E8tABQFj1NPpykAnQG+Tbr3KQG51qjmTjspA6cudv09dykALbBbDsinKQKvz7H/L88lAKUuJyKm7yUAU/Cf+XYHJQKlQ5gj5RMlAV6GaT4wGyUDtTn6vKcbIQOf8rnPjg8hA366MTMw/yEB/d/pG9/nHQHhth8N3ssdAeZyFbWFpx0A8pRQyyB7HQGa3JTfA0sZANoR+0l2FxkCCt8CAtTbGQKdve9zb5sVAhxNMleWVxUACyBNn50PFQEWlRhH28MRAjKZZTiadxEDSJlTLjEjEQF+QiR8+88NAH7Z/xE6dw0CWGwYO00bDQCU7giLf78JAT6N084aYwkD2iTo23kDCQBA5D1346MFAIntQkOiQwUD57giowTjBQDDqwiWW4MBATVGmLniIwEBQiuOFeTDAQHrZ2g5Xsb9ASJ8HRj4Cv0DRJyCvyVO+QBSOqV0Zpr1ACnLickz5vEAwPnMWgU28QMc6yG/UortAzKQVoGL5ukAXhAW9RlG6QEGEDsyaqrlAbZ9yvncFuUCj+eNt9WG4QKHezZkqwLdAEmw/5Swgt0CSDnXVEIK2QN+Y/dDp5bVAk2N3H8pLtUDEjuHpwrO0QJQwfTvkHbRABvI5Az2Ks0DlV6kV2/iyQPW3cy/LabJAzaFJ+BjdsUCZUUwGz1KxQL6V5+H2yrBAZmoXCplFsEC/2ibyeYWvQMxitFLShK5AksYsNkaJrUC7Rq+z3pKsQGfXMQWjoatAu60clJi1qkDnNWgGw86pQBwlMUwk7ahAKm62rbwQqECy/bTZijmnQHlJFfSLZ6ZAtOzepLuapUC/wmYnFNOkQGgvrFmOEKRApInayyFTo0BR6ePPxJqiQCHqKols56FAaE0x/Aw5oUDZwEEemY+gQOzgFsoF1p9AW95MrHaWnkBRTTckwvqeQP3ShYg0H6BArkmCbObFoEBFrpXphXGhQJROGjghIqJA9diIjcXXokATnakMf5KjQIppt7VYUqRAbX59VlwXpUCSbnp6kuGlQE8nElsCsaZARq7Zz7GFp0AweAc/pV+oQAKIE47fPqlABMySEmIjqkD6bVmDLA2rQFUC8Ok8/KtAr7JnlI/wrEAsppkHH+qtQLcI3vHj6K5A4SZHHtXsr0A2jza083qwQJ5Sa9gGArFA2a4FaZyLsUDlDS7LqxeyQOquNlcrprJAzQhIVBA3s0DZQ3r0TsqzQFyaYVHaX7RAW0kTaaT3tEApjagbnpG1QFPzRCm3LbZARRKlMN7LtkBheDquAGy3QPBf2fsKDrhAtmr8UOixuEB3WKLDgle5QA9WyUnD/rlA4ieLu5GnukD+Et3V1FG7QMMC9j1y/btAJwBdhU6qvEADoaEuTVi9QGKkv7JQB75AkXouhzq3vkBU/pwk62e/QFWULAehDMBAVIQx7Y5lwEAg5BQdrr7AQGeB+AHtF8FA8RZunjlxwUBYp86RgcrBQC/Y4R2yI8JAf2TTLLh8wkCcenRXgNXCQKKWxuv2LcNAgCnN8weGw0BnG6M8n93DQA/50F2oNMRAMl3gwA6LxEBq6yipveDEQCH30jugNcVAmLkLiKGJxUARxGaPrNzFQM4oaE6sLsZAW6UyxYt/xkBE7FQANs/GQOoCsSGWHcdAcoJ4aZdqx0BKaTg/JbbHQCoM7zorAMhAg5wmLpVIyEAXpA4tT4/IQM3EjpdF1MhAGf9MImUXyUBZuaHfmljJQHi/c0jUl8lAfnP2RP/UyUAybkQ1ChDKQCza0PnjSMpAwOOp+3t/ykDyrIY0wrPKQLhOmzan5cpAwo4tNBwVy0C3FOUGE0LLQCAR0jZ+bMtA1XQlAVGUy0AGCJZef7nLQCXlbQn+28tAXxQ8g8L7y0BpQSYawxjMQJDF1u32MsxAyoMD9FVKzEB4W4r82F7MQMVAILV5cMxA9FWQrDJ/zEANsIhV/4rMQPDC8gjck8xAnsPVB8aZzEBWpMF8u5zMQFakwXy7nMxAnsPVB8aZzEDwwvII3JPMQA2wiFX/isxA9FWQrDJ/zEDFQCC1eXDMQHhbivzYXsxAyoMD9FVKzECQxdbt9jLMQGlBJhrDGMxAXhQ8g8L7y0Al5W0J/tvLQAYIll5/uctA1XQlAVGUy0AgEdI2fmzLQLcU5QYTQstAwo4tNBwVy0C4Tps2p+XKQPKshjTCs8pAvuOp+3t/ykAs2tD540jKQDJuRDUKEMpAfnP2RP/UyUB4v3NI1JfJQFm5od+aWMlAGP9MImUXyUDOxI6XRdTIQBekDi1Pj8hAg5wmLpVIyEApDO86KwDIQElpOD8ltsdAdIJ4aZdqx0DqArEhlh3HQETsVAA2z8ZAWqUyxYt/xkDOKGhOrC7GQBLEZo+s3MVAmLkLiKGJxUAh99I7oDXFQGnrKKm94MRAMl3gwA6LxEAP+dBdqDTEQGcbozyf3cNAgCnN8weGw0Chlsbr9i3DQJt6dFeA1cJAgGTTLLh8wkAv2OEdsiPCQFinzpGBysFA8RZunjlxwUBngfgB7RfBQB/kFB2uvsBAVIQx7Y5lwEBVlCwHoQzAQFT+nCTrZ79Aj3ouhzq3vkBipL+yUAe+QAOhoS5NWL1AJwBdhU6qvEDDAvY9cv27QP0S3dXUUbtA4SeLu5GnukAPVslJw/65QHdYosOCV7lAtmr8UOixuEDwX9n7Cg64QF94Oq4AbLdARRKlMN7LtkBT80Qpty22QCmNqBuekbVAW0kTaaT3tEBZmmFR2l+0QNlDevROyrNAzQhIVBA3s0DqrjZXK6ayQOUNLsurF7JA1q4FaZyLsUCeUmvYBgKxQDaPNrTzerBA4SZHHtXsr0C3CN7x4+iuQCmmmQcf6q1AsrJnlI/wrEBVAvDpPPyrQPptWYMsDatABMySEmIjqkD/hxOO3z6pQDN4Bz+lX6hARq7Zz7GFp0BPJxJbArGmQJJuenqS4aVAbH59VlwXpUCLabe1WFKkQBOdqQx/kqNA9diIjcXXokCUTho4ISKiQEOulemFcaFArEmCbObFoED90oWINB+gQFFNNyTC+p5A8tpnBQpZn0AIkF/2RFCgQIDD5ijy+KBAxfr485umoUD5Sje7UFmiQJJNTdwdEaNAi0Xyng/Oo0C1tdskMZCkQN/8qlmMV6VA1u/f4ikkpkDxx9oPEfamQOgV+MlHzadAC73RhNKpqEA2SLAutIupQBsxOCHucqpAY/JeEoBfq0A89bMFaFGsQAybCT6iSK1AmcuKLylFrkD5jUly9UavQA2kqdr+JrBAjaUrWRutsED0KfaQyTWxQLvOQNgBwbFAoQYEertOskBR8S+x7N6yQBaTS6SKcbNAtW+CYYkGtEDnaSbb2520QL+hq+RzN7VAst4jMELTtUB/3j5MNnG2QAmp1KI+EbdAVcn+d0izt0D3BsXpP1e4QOPvYfAP/bhAojEjX6KkuUC+aunl3026QC3BShOw+LpAmClbV/mku0A85RwHoVK8QH5Rm2CLAb1A8rSxj5uxvUA3Qn+zs2K+QOIRieS0FL9AhFmKO3/Hv0BdVHnseD3AQLa5iHZ1l8BASNd24KPxwECB3+Nf8kvBQO25ocBOpsFARJ8baqYAwkBUqQ5l5lrCQPFnkWH7tMJAPUhovdEOw0BJWKSKVWjDQLyuiZZywcNAUny6cBQaxEAQjaNyJnLEQP2/JseTycRAeb9/ckcgxUD2CF9aLHbFQKgaN04ty8VA8Ga3DzUfxkCUenBbLnLGQMaRnPEDxMZAY6sHn6AUx0CZ/xFG72PHQEyZx+fascdAVK8HrU7+x0ApPLbvNUnIQNU48kN8kshA7MlKgQ3ayEBEnO3L1R/JQEWiyJ3BY8lAsFqZz72lyUB8xuOht+XJQPo0y8WcI8pAvBPHZVtfykBj+y0u4pjKQHdCkVUg0MpAiXTjpAUFy0BMJmR/gjfLQJq9S+qHZ8tAXugxlAeVy0B3pSnc87/LQD7vjdg/6MtA2Eh6Xd8NzECZpOoCxzDMQIdTfirsUMxASOvZBEVuzED6UKSWyIjMQAFcG71uoMxA1ss8MjC1zEB0loCQBsfMQPbiIVbs1cxAtVP059zhzECJlcOT1OrMQCh+O5LQ8MxA91hXCM/zzED3WFcIz/PMQCh+O5LQ8MxAiZXDk9TqzEC1U/Tn3OHMQPbiIVbs1cxAdJaAkAbHzEDWyzwyMLXMQAFcG71uoMxA+lCklsiIzEBI69kERW7MQIdTfirsUMxAmaTqAscwzEDYSHpd3w3MQD7vjdg/6MtAd6Up3PO/y0Bc6DGUB5XLQJq9S+qHZ8tATCZkf4I3y0CJdOOkBQXLQHZCkVUg0MpAY/stLuKYykC8E8dlW1/KQPo0y8WcI8pAfMbjobflyUCuWpnPvaXJQEOiyJ3BY8lARJzty9UfyUDsyUqBDdrIQNU48kN8kshAKDy27zVJyEBTrwetTv7HQE2Zx+fascdAmf8RRu9jx0BjqwefoBTHQMWRnPEDxMZAk3pwWy5yxkDzZrcPNR/GQKgaN04ty8VA9ghfWix2xUB3v39yRyDFQP2/JseTycRAEY2jciZyxEBSfLpwFBrEQLyuiZZywcNASFikilVow0A8SGi90Q7DQPNnkWH7tMJAVKkOZeZawkBEnxtqpgDCQO25ocBOpsFAf9/jX/JLwUBH13bgo/HAQLa5iHZ1l8BAXVR57Hg9wECEWYo7f8e/QN4RieS0FL9ANkJ/s7NivkDytLGPm7G9QH5Rm2CLAb1APOUcB6FSvECXKVtX+aS7QCrBShOw+LpAvmrp5d9NukCiMSNfoqS5QOPvYfAP/bhA9wbF6T9XuEBSyf53SLO3QAmp1KI+EbdAf94+TDZxtkCy3iMwQtO1QL+hq+RzN7VA5Wkm29udtEC1b4JhiQa0QBaTS6SKcbNAUfEvsezeskChBgR6u06yQLnOQNgBwbFA9Cn2kMk1sUCNpStZG62wQA2kqdr+JrBA+Y1JcvVGr0CWy4ovKUWuQA+bCT6iSK1APPWzBWhRrEBj8l4SgF+rQBsxOCHucqpANUiwLrSLqUAOvdGE0qmoQOgV+MlHzadA8cfaDxH2pkDW79/iKSSmQN38qlmMV6VAt7XbJDGQpECLRfKeD86jQJJNTdwdEaNA+Uo3u1BZokDD+vjzm6ahQH7D5ijy+KBACJBf9kRQoEDy2mcFClmfQBOa4+IPsZ9AUjsEshN+oEC+KvSGmiihQOBkC/Ur2KFAGWxSiNaMokAutvzDp0ajQGDnPBKsBaRAsFUKtO7JpEAdhOGweZOlQJ6picZVYqZAybfpWIo2p0DSrvdhHRCoQNlhzWET76hAzBzuTm/TqUDZ5MiGMr2qQG5Ng75crKtA/xMZ9OugrEDk5dxf3JqtQFvbZmYomq5ALVH9isier0AicEKxWVSwQGgegsPu27BABmTkxRxmsUCvShz52/KxQFpHr48jgrJAwqEeqekTs0D8YHpNI6izQDDRY2nEPrRAa5SFyr/XtEDrCIccB3O1QDGhgOaKELZAHJb2iDqwtkCCIV88BFK3QCQvORDV9bdAXSy46pibuEBFUgmJOkO5QPZ0NoCj7LlArgqqPryXukD/wFcObES7QCGUjBeZ8rtANvVoZCiivEB8IAfl/VK9QN5TT3T8BL5AwSF73QW4vkBSo0ji+mu/QKDo7qBdEMBAguUt4BJrwEATqZAXDMbAQIqd3bo3IcFAH4fAzYN8wUBkxu3o3dfBQFghmT8zM8JAx2M+pXCOwkCB4rmTgunCQKOorjFVRMNABtI3WdSew0DbUuKe6/jDQPQp7FiGUsRAdbrFpo+rxEAWytF48gPFQIBjYJiZW8VApKDgr2+yxUDDJ0VTXwjGQMnulghTXcZAFaWxUDWxxkB18iSw8APHQKKMNbhvVcdAYPr4D52lx0CmtIZ9Y/THQNkzOe+tQchAPFj5hGeNyECjgo6Ze9fIQESc7cvVH8lAGzuBCGJmyUB8A2WSDKvJQDpfjgzC7clAq5/cgm8uykAsoQpzAm3KQHwNfNVoqcpAmWXgJZHjykBnDKZrahvLQI+gN0LkUMtAiQ7+4O6Dy0Db4iEje7TLQJ6IBo964stA2Eh6Xd8NzEDFDJaAnDbMQKAWSKqlXMxAoBqFUu9/zEABXBu9bqDMQAmwI/8ZvsxArooMBOjYzEAofjuS0PDMQAnfQU/MBc1AZIqhw9QXzUC6GR9e5CbNQMIhn3b2Ms1AmWuMUAc8zUDObcUcFELNQICgD/saRc1AgKAP+xpFzUDObcUcFELNQJlrjFAHPM1AwiGfdvYyzUC6GR9e5CbNQGSKocPUF81ACd9BT8wFzUAofjuS0PDMQK6KDATo2MxACbAj/xm+zEABXBu9bqDMQKAahVLvf8xAoBZIqqVczEDFDJaAnDbMQNhIel3fDcxAnIgGj3riy0Db4iEje7TLQIkO/uDug8tAj6A3QuRQy0BmDKZrahvLQJll4CWR48pAfA181WipykAsoQpzAm3KQKuf3IJvLspAOl+ODMLtyUB8A2WSDKvJQB07gQhiZslARJzty9UfyUCjgo6Ze9fIQDxY+YRnjchA2TM5761ByECmtIZ9Y/THQGD6+A+dpcdAoow1uG9Vx0B08iSw8APHQBSlsVA1scZAyu6WCFNdxkDDJ0VTXwjGQKSg4K9vssVAf2NgmJlbxUAVytF48gPFQHa6xaaPq8RA9CnsWIZSxEDbUuKe6/jDQAXSN1nUnsNAoqiuMVVEw0CC4rmTgunCQMdjPqVwjsJAWCGZPzMzwkBkxu3o3dfBQB+HwM2DfMFAiJ3dujchwUATqZAXDMbAQILlLeASa8BAoOjuoF0QwEBQo0ji+mu/QL8he90FuL5A3lNPdPwEvkB8IAfl/VK9QDb1aGQoorxAIZSMF5nyu0D8wFcObES7QK4Kqj68l7pA9nQ2gKPsuUBFUgmJOkO5QF0suOqYm7hAIy85ENX1t0CCIV88BFK3QByW9og6sLZAMaGA5ooQtkDrCIccB3O1QGiUhcq/17RAMNFjacQ+tED8YHpNI6izQMKhHqnpE7NAWkevjyOCskCrShz52/KxQAZk5MUcZrFAaB6Cw+7bsEAicEKxWVSwQC1R/YrInq9AV9tmZiiarkDn5dxf3JqtQP8TGfTroKxAbk2Dvlysq0DZ5MiGMr2qQMoc7k5v06lA3GHNYRPvqEDSrvdhHRCoQMm36ViKNqdAnqmJxlVipkAahOGweZOlQLNVCrTuyaRAYOc8EqwFpEAutvzDp0ajQBlsUojWjKJA3WQL9SvYoUC8KvSGmiihQFI7BLITfqBAE5rj4g+xn0BCJqx+TAGgQEyk6iiCqKBAYJoFuL9UoUCr67PYFAaiQHA2azyQvKJAmLEiiT94o0AZzf1ILzmkQLD059lq/6RAjT0rXfzKpUDTLAyn7JumQIsldS5DcqdArGe8/AVOqEC334+dOS+pQL1VEg/hFapAyNI1sv0Bq0CdVV87j/OrQGAoYKOT6qxASVrRGAfnrUC7CN7x4+iuQNFBiZ4i8K9ARTC+zVx+sEB8ZrWyTgexQEcGjDbgkrFAAIIGhgkhskCgmwS9wbGyQJhZnuH+RLNASpCr37Xas0CxI7yE2nK0QJMCh3xfDbVAhrTVTTaqtUBoJfJXT0m2QJsknNCZ6rZAo9OLwgOOt0Dr/oUMejO4QMkUB2Ho2rhAASKJRjmEuUBu6GgYVi+6QIvMbQgn3LpASfj3IJOKu0AIr9dHgDq8QPdl0EHT67xAecfJtm+evUA0VrA2OFK+QOHuBj8OB79AH+4pQdK8v0DqIKLUsTnAQO8W+3JQlcBAsINWuDPxwECfUlXrSU3BQPhdXeGAqcFA6ejJA8YFwkCBd3BVBmLCQEdQeHguvsJAX66CtCoaw0B0ZSH95nXDQD90mfhO0cNAhr7uBk4sxEBy5DVJz4bEQGrrKKm94MRAuiz74AM6xUDQv2iDjJLFQMVZ/QNC6sVA42GOvw5BxkC5w+ME3ZbGQKHSih2X68ZAUGHOVic/x0DHAc8KeJHHQJY3tqlz4sdACz//wgQyyECA6c8OFoDIQHrvW3eSzMhAGf9MImUXyUD1til6eWDJQLurtTe7p8lAQIpEaxbtyUAQX/qFdzDKQKAJ82LLccpAmuJKUP+wykBIowIYAe7KQACouAi/KMtA0Lcx/idhy0A4katpK5fLQKCW81m5ystAXxQ8g8L7y0C1vqpGOCrMQBsvm7kMVsxA9FWQrDJ/zEAWCNCxnaXMQNoFpCNCycxAcBQ8KhXqzEDMAC3BDAjNQOuliLwfI81AX1aLzUU7zUBoUtuGd1DNQDJAV2CuYs1AN+twuuRxzUBp4RHhFX7NQMbYBw4+h81A1h33alqNzUA+o9ESaZDNQD6j0RJpkM1A1h33alqNzUDG2AcOPofNQGnhEeEVfs1AN+twuuRxzUAyQFdgrmLNQGhS24Z3UM1AX1aLzUU7zUDrpYi8HyPNQMwALcEMCM1AcBQ8KhXqzEDaBaQjQsnMQBYI0LGdpcxA9FWQrDJ/zEAZL5u5DFbMQLW+qkY4KsxAXxQ8g8L7y0CglvNZucrLQDiRq2krl8tA0Lcx/idhy0AAqLgIvyjLQEijAhgB7spAmuJKUP+wykCgCfNiy3HKQA5f+oV3MMpAPopEaxbtyUC7q7U3u6fJQPW2KXp5YMlAGf9MImUXyUB471t3kszIQH7pzw4WgMhADD//wgQyyECWN7apc+LHQMcBzwp4kcdAT2HOVic/x0Cg0oodl+vGQLrD4wTdlsZA42GOvw5BxkDFWf0DQurFQNC/aIOMksVAuSz74AM6xUBr6yipveDEQHLkNUnPhsRAhr7uBk4sxEA+dJn4TtHDQHNlIf3mdcNAYK6CtCoaw0BHUHh4Lr7CQIF3cFUGYsJA6ejJA8YFwkD4XV3hgKnBQJxSVetJTcFAsINWuDPxwEDvFvtyUJXAQOogotSxOcBAHe4pQdK8v0Df7gY/Dge/QDRWsDY4Ur5AecfJtm+evUD3ZdBB0+u8QAWv10eAOrxAR/j3IJOKu0CLzG0IJ9y6QG7oaBhWL7pAASKJRjmEuUDJFAdh6Nq4QOf+hQx6M7hAo9OLwgOOt0CbJJzQmeq2QGgl8ldPSbZAhrTVTTaqtUCPAod8Xw21QLEjvITacrRASpCr37Xas0CYWZ7h/kSzQKCbBL3BsbJA/oEGhgkhskBHBow24JKxQHxmtbJOB7FARTC+zVx+sEDRQYmeIvCvQLcI3vHj6K5ATlrRGAfnrUBgKGCjk+qsQJ1VXzuP86tAyNI1sv0Bq0C8VRIP4RWqQLzfj505L6lArGe8/AVOqECLJXUuQ3KnQNMsDKfsm6ZAij0rXfzKpUCz9OfZav+kQBnN/UgvOaRAmLEiiT94o0BwNms8kLyiQKnrs9gUBqJAXZoFuL9UoUBMpOoogqigQEImrH5MAaBAIE8xQrcmoEAC7IzUc8+gQGOcow5EfaFApEjRwTcwokBoMOXBXeiiQIXRvtTDpaNAGlnSoXZopEAvFJ6hgTClQHm/Gg3v/aVAw/swzcfQpkCHjj5qE6mnQIZxtvvXhqhAjAvnFxpqqUDsO/LD3FKqQIQrA2QhQatAhxjOq+c0rEA6i2aPLS6tQFOUeDTvLK5Ast3x4yYxr0DMuhN+Zh2wQDmpwvHrpLBA/kvq/R0vsUDy0xLL9buxQNd+tXNrS7JAD+Do/nXdskC8aHJbC3KzQKd9Q1sgCbRA6Exor6iitECXcm7klj61QJNTSV/c3LVAOea5Wml9tkAVbD/lLCC3QHtklt8UxbdAY77K+w1suECbCOK8AxW5QOkRInfgv7lASBf4UI1sukC3RYRE8hq7QNj1zCH2yrtASqSckX58vED/Pw0ZcC+9QBj6wh2u471AFVDY6hqZvkA1kny2l0+/QJjWIlSCA8BAsb8acKBfwEBkQDk/FbzAQJx/2VXPGMFAUdUs0bx1wUCh0SBcy9LBQKnYmzToL8JAe+EOMQCNwkDsn1rG/+nCQJYbBg7TRsNABXDEzGWjw0AFLUd5o//DQG2JWkN3W8RAKFdIG8y2xED+ZH65jBHFQBa6dKaja8VAEdjPQvvExUAj9LrPfR3GQObcdXcVdcZA6woSVqzLxkAuJVqCLCHHQHMQ3xaAdcdAVHIlO5HIx0B3Ze4sShrIQFD1lUmVashAedSBF125yEBXoZpPjAbJQDnyyeYNUslAM0t3F82byUCtDv5qtePJQAxsFsOyKcpA+EcrY7FtykAVFpf5na/KQNadwahl78pAsKoYEPYsy0Bcs91UPWjLQDuVwioqoctA4ZVP3KvXy0Bt+AxTsgvMQIKTah8uPcxA0/lfgBBszEAu8L9qS5jMQJ4aOpDRwcxAcvwFZpbozEA6njIrjgzNQCNolu6tLc1ANv5alOtLzUAtLyHbPWfNQGRNuWCcf81AKJNspv+UzUAugdQUYafNQIB1Pf+6ts1AHwySpgjDzUDoLs07RszNQGIR8eFw0s1AHK2Br4bVzUAcrYGvhtXNQGIR8eFw0s1A6C7NO0bMzUAfDJKmCMPNQIB1Pf+6ts1ALoHUFGGnzUAok2ym/5TNQGRNuWCcf81ALS8h2z1nzUA1/lqU60vNQCNolu6tLc1AOp4yK44MzUBy/AVmlujMQJ4aOpDRwcxALvC/akuYzEDT+V+AEGzMQIKTah8uPcxAbfgMU7ILzEDhlU/cq9fLQDuVwioqoctAW7PdVD1oy0CwqhgQ9izLQNadwahl78pAFRaX+Z2vykD4RytjsW3KQAtsFsOyKcpArQ7+arXjyUAzS3cXzZvJQDnyyeYNUslAV6GaT4wGyUB31IEXXbnIQFL1lUmVashAd2XuLEoayEBUciU7kcjHQHMQ3xaAdcdALSVagiwhx0DtChJWrMvGQObcdXcVdcZAI/S6z30dxkAP2M9C+8TFQBW6dKaja8VA/2R+uYwRxUAoV0gbzLbEQG2JWkN3W8RAAy1HeaP/w0ADcMTMZaPDQJcbBg7TRsNA7J9axv/pwkB74Q4xAI3CQKnYmzToL8JAoNEgXMvSwUBR1SzRvHXBQJx/2VXPGMFAZEA5PxW8wECxvxpwoF/AQJfWIlSCA8BANZJ8tpdPv0AVUNjqGpm+QBj6wh2u471A/z8NGXAvvUBJpJyRfny8QNT1zCH2yrtAt0WERPIau0BIF/hQjWy6QOkRInfgv7lAmwjivAMVuUBgvsr7DWy4QHtklt8UxbdAFWw/5Swgt0A55rlaaX22QJNTSV/c3LVAk3Ju5JY+tUDoTGivqKK0QKd9Q1sgCbRAvGhyWwtys0AP4Oj+dd2yQNR+tXNrS7JA8tMSy/W7sUD+S+r9HS+xQDmpwvHrpLBAzLoTfmYdsECu3fHjJjGvQFaUeDTvLK5AOotmjy0urUCHGM6r5zSsQIQrA2QhQatA6jvyw9xSqkCPC+cXGmqpQIZxtvvXhqhAh44+ahOpp0DD+zDNx9CmQHa/Gg3v/aVAMhSeoYEwpUAaWdKhdmikQIXRvtTDpaNAaDDlwV3ookCiSNHBNzCiQGGcow5EfaFAAuyM1HPPoEAgTzFCtyagQLmK9emuSKBAAYdXWs7yoEB3Wr0fDKKhQAQSxyx4VqJAd9VydCEQo0DJV5fZFc+jQCmeRR5ik6RA7aYb0xFdpUDw5JFGLyymQGTqTXTDAKdA/ACF9NXap0CVyXnrbLqoQC1VIPmMn6lAcXn0KDmKqkC3bA7icnqrQDz4gdc5cKxAPskU+YtrrUDXm1hkZWyuQHIjNlbAcq9AA9p6jko/sEDLYmkF7cewQPm6k7RBU7FAYJcetkHhsUAQxecT5XGyQCQ+J8IiBbNAuFJ2mvCas0AIQkNXQzO0QFKCt48OzrRA7tMWtERrtUC9Ep0K1wq2QPeJ4Ky1rLZA8Vi+hc9Qt0D6O9ZPEve3QAXKmpRqn7hAbvD6q8NJuUCfJ6m8B/a5QIKHBL0fpLpAFImndPNTu0CM4p9+aQW8QFqHUkxnuLxAimoOKdFsvUD2M1A+iiK+QF6kuJh02b5ALe22LXGRv0A44vPwLyXAQBO/FMgPgsBAhHiyCEffwEDVM4UixDzBQBSrIA11msFAdoHkTEf4wUCu4kP4J1bCQEb4Yr0DtMJAaXkI6MYRw0DzUuFnXW/DQFAfFNeyzMNAgt8hgbIpxEABIhFqR4bEQJJ/4FVc4sRAtBM90Ns9xUAUVXk0sJjFQMpywLXD8sVAWx6CZwBMxkAKbxJGUKTGQChTeT+d+8ZAk85sPNFRx0AEE3Ep1qbHQF1QGQCW+sdAQO9j0PpMyEAJwSzK7p3IQIOMr0Zc7chAFT8V0i07yUB17wU1TofJQN3HOX6o0clAE9wCDCgaykBW4smVuGDKQMG9dzVGpcpAh8XFcL3nykDptW5CCyjLQHM+OiMdZstA+izdEuGhy0CoRaigRdvLQDTu//M5EsxAyu2W1K1GzEDPomaykXjMQPA0X63Wp8xAdnPKnG7UzEClPlwWTP7MQLmN63RiJc1AxVrP3qVJzUBh+dpLC2vNQAOd9YqIic1AaRdJRxSlzUCtHgQNpr3NQJy1rE02081AMJ7/Y77lzUASD1qXOPXNQPg3qx6gAc5AQnbrIvEKzkCRchfBKBHOQCC5rQtFFM5AILmtC0UUzkCRchfBKBHOQEJ26yLxCs5A+DerHqABzkASD1qXOPXNQDGe/2O+5c1AnLWsTTbTzUCtHgQNpr3NQGkXSUcUpc1AA531ioiJzUBf+dpLC2vNQMVaz96lSc1AuY3rdGIlzUClPlwWTP7MQHRzypxu1MxA7jRfrdanzEDPomaykXjMQMrtltStRsxANO7/8zkSzECmRaigRdvLQPos3RLhoctAcz46Ix1my0DptW5CCyjLQIfFxXC958pAv713NUalykBU4smVuGDKQBPcAgwoGspA3cc5fqjRyUB17wU1TofJQBU/FdItO8lAgYyvRlztyEALwSzK7p3IQEDvY9D6TMhAXVAZAJb6x0ADE3Ep1qbHQJLObDzRUcdAKFN5P537xkAKbxJGUKTGQFsegmcATMZAyXLAtcPyxUASVXk0sJjFQLUTPdDbPcVAkn/gVVzixEABIhFqR4bEQIHfIYGyKcRATx8U17LMw0D1UuFnXW/DQGl5COjGEcNARvhivQO0wkCu4kP4J1bCQHWB5ExH+MFAE6sgDXWawUDVM4UixDzBQIR4sghH38BAE78UyA+CwEA34vPwLyXAQCntti1xkb9AXqS4mHTZvkD2M1A+iiK+QIpqDinRbL1AWIdSTGe4vECJ4p9+aQW8QBSJp3TzU7tAgocEvR+kukCfJ6m8B/a5QG7w+qvDSblAAsqalGqfuED6O9ZPEve3QPFYvoXPULdA94ngrLWstkC9Ep0K1wq2QOzTFrREa7VAUoK3jw7OtEAIQkNXQzO0QLhSdprwmrNAJD4nwiIFs0APxecT5XGyQGCXHrZB4bFA+bqTtEFTsUDLYmkF7cewQAPaeo5KP7BAbyM2VsByr0Dbm1hkZWyuQD7JFPmLa61APPiB1zlwrEC3bA7icnqrQHF59Cg5iqpAMFUg+YyfqUCVyXnrbLqoQPwAhfTV2qdAZOpNdMMAp0Dt5JFGLyymQO+mG9MRXaVAKZ5FHmKTpEDJV5fZFc+jQHfVcnQhEKNAAhLHLHhWokB0Wr0fDKKhQAGHV1rO8qBAuYr16a5IoEB50JxWHGegQDYqXal5EqFA1aiP4f7CoUD796APvHiiQDw0fkLAM6NAOXzwdhn0o0Biqt+G1LmkQGrShRj9hKVAd4mdjZ1VpkBmZ5XyviunQE6T0+1oB6hA4okUr6HoqEAZpfDebc+pQDc9lI7Qu6pAtoW2J8utq0DRi9tcXaWsQJb27RmFoq1Afls9dT6lrkASI+6gg62vQMQMdG6mXbBAc26oNEjnsEDJss88oXOxQMvzKpSqArJA4J+3NVyUskBvhcYErSizQI2x+ceSv7NAQImvJAJZtEACaOGa7vS0QA/re4FKk7VA5ec2Awc0tkDC3PIbFNe2QB50oZZgfLdAD3i+C9ojuED+T17gbM24QMPa1kUEeblASigHOoomukCiQUKI59W6QJLT4MoDh7tA5C99bcU5vEAUtNyvEe68QAc5ianMo71AIsAcTtlavkAlHUFyGRO/QBHkZNFtzL9AazITCltDwEBMf7pr6KDAQDxINNrN/sBAYyNnpPlcwUCMvTSgWbvBQAFpcy/bGcJAdpo/RWt4wkBZ3KNr9tbCQLx5lcloNcNA8tpDKa6Tw0AKR7j+sfHDQOh2w25fT8RAKiE2VqGsxEBvYWFRYgnFQCWa28OMZcVAsy6G4ArBxUB+M9CxxhvGQCT0MSKqdcZAWvTcBJ/OxkCt15sejybHQGJm3S5kfcdA77Ll+AfTx0B9NCBNZCfIQAx/jRJjeshA8BlHUO7LyECP0RM38BvJQKPBBitTaslA0DkjzQG3yUDfh/8E5wHKQGugYAruSspADpLIbgKSykAfpvEmENfKQBIPMJQDGstADwa0jclay0DnP6ZpT5nLQNStGAaD1ctA6I7F0VIPzEDK7ZbUrUbMQCfB8LeDe8xAtQW4zsStzED2TREdYt3MQMNt0V9NCs1AvhabE3k0zUArbqR72FvNQIbcH6hfgM1AgJNDfAOizUAvh+uzucDNQJHb0eh43M1AFA9alzj1zUBCdusi8QrOQOLq19mbHc5A9eHL+DItzkAmcMWtsTnOQMsZkBoUQ85AGKTDVldJzkB+dkRxeUzOQH52RHF5TM5AGKTDVldJzkDLGZAaFEPOQCZwxa2xOc5A9eHL+DItzkDi6tfZmx3OQEJ26yLxCs5AFA9alzj1zUCR29HoeNzNQC+H67O5wM1AgJNDfAOizUCG3B+oX4DNQCtupHvYW81AvhabE3k0zUDDbdFfTQrNQPZNER1i3cxAtQW4zsStzEAnwfC3g3vMQMrtltStRsxA6I7F0VIPzEDTrRgGg9XLQOc/pmlPmctADwa0jclay0ASDzCUAxrLQB+m8SYQ18pADpLIbgKSykBtoGAK7krKQN+H/wTnAcpA0DkjzQG3yUChwQYrU2rJQI/REzfwG8lA8BlHUO7LyEAMf40SY3rIQH00IE1kJ8hA7bLl+AfTx0BhZt0uZH3HQK7Xmx6PJsdAWvTcBJ/OxkAk9DEiqnXGQH0z0LHGG8ZAsS6G4ArBxUAmmtvDjGXFQG9hYVFiCcVAKiE2VqGsxEDndsNuX0/EQAlHuP6x8cNA89pDKa6Tw0C8eZXJaDXDQFnco2v21sJAdpo/RWt4wkAAaXMv2xnCQIu9NKBZu8FAYyNnpPlcwUA8SDTazf7AQEx/umvooMBAaTITCltDwEAP5GTRbcy/QCUdQXIZE79AIsAcTtlavkAHOYmpzKO9QBK03K8R7rxA4S99bcU5vECS0+DKA4e7QKJBQojn1bpASigHOoomukDD2tZFBHm5QPtPXuBszbhAD3i+C9ojuEAedKGWYHy3QMLc8hsU17ZA5ec2Awc0tkAM63uBSpO1QAJo4Zru9LRAQImvJAJZtECNsfnHkr+zQG+FxgStKLNA3Z+3NVyUskDL8yqUqgKyQMmyzzyhc7FAc26oNEjnsEDEDHRupl2wQAwj7qCDra9AgVs9dT6lrkCW9u0ZhaKtQNGL21xdpaxAtoW2J8utq0A0PZSO0LuqQByl8N5tz6lA4okUr6HoqEBOk9PtaAeoQGZnlfK+K6dAc4mdjZ1VpkBu0oUY/YSlQGKq34bUuaRAOXzwdhn0o0A8NH5CwDOjQPr3oA+8eKJA1KiP4f7CoUA2Kl2peRKhQHnQnFYcZ6BA5+KyteqBoEDFzKAVYC6hQAwxCcgF4KFA3W+Z9+uWokCiidrLIVOjQJ59cVi1FKRAcKhGjLPbpECBzZ0gKKilQI/iKIgdeqZA8xwg3pxRp0A9JGrVrS6oQECr36dWEalAxQm2BZz5qUA0whwFgeeqQLUpGhIH26tAu6yz3i3UrECBZG5T89KtQFflNIBT165AulavjUjhr0Ahg41XZXiwQF5eVwroArFA95NMbyaQsUBfVlOIGSCyQHf1TUO5srJAvxKpdPxHs0C6UFHS2N+zQGHvFu9CerRAqqqFNi4XtUCaDDfpjLa1QE07pRlQWLZABBuEqWf8tkCGZqZHwqK3QHEjdG5NS7hAQJX3YvX1uED9iIU0paK5QBmEBb1GUbpALgzeocIBu0AE4ohVALS7QKCp0hnmZ7xAJBPJAlkdvUBdLFr6PNS9QPgSp8R0jL5AuckLBeJFv0DmvO6hMgDAQMb1b/ruXcBAZEA5PxW8wEAaO7oglBrBQNbU79BZecFAwkwMCFTYwUCD4ngJcDfCQAsEMKmalsJAUX9uUcD1wkDo9bkIzVTDQIWJOniss8NAznBl8kkSxEDV3PV5kHDEQAhSMclqzsRA0FF0WcMrxUC+7gNrhIjFQPeiIA2Y5MVALYBWJug/xkCUkgZ9XprGQGkUJcDk88ZAetYnkGRMx0BcDCCIx6PHQIB3+kb3+cdALb3geN1OyEBBh7bgY6LIQG7nrGF09MhAq1DmCPlEyUCkWiUX3JPJQIVngAoI4clAbC0UqGcsykDnEq8F5nXKQCdAb5NuvcpAPD5NJe0Cy0B++oz8TUbLQF8FD9F9h8tASOt72mnGy0CgkUPZ/wLMQIKTah8uPcxAzq8fmeN0zECedRPVD6rMQOp8jAyj3MxAOp4yK44MzUDgxovWwjnNQG82JXUzZM1AnCVkNdOLzUBgD/kTlrDNQGIR8eFw0s1AwhlhSlnxzUCd3KbXRQ3OQBnUO/gtJs5AYdkWAwo8zkDeM5k7007OQIdNBNWDXs5AqI919RZrzkALQma4iHTOQOOerTDWes5AaqgDav19zkBqqANq/X3OQOOerTDWes5AC0JmuIh0zkCoj3X1FmvOQIdNBNWDXs5A3jOZO9NOzkBh2RYDCjzOQBnUO/gtJs5Andym10UNzkDCGWFKWfHNQGIR8eFw0s1AYA/5E5awzUCcJWQ104vNQG82JXUzZM1A4MaL1sI5zUA5njIrjgzNQOp8jAyj3MxAnnUT1Q+qzEDOrx+Z43TMQIKTah8uPcxAnpFD2f8CzEBI63vaacbLQF8FD9F9h8tAfvqM/E1Gy0A7Pk0l7QLLQCZAb5NuvcpA6BKvBeZ1ykBsLRSoZyzKQIVngAoI4clApFolF9yTyUCpUOYI+UTJQG7nrGF09MhAQYe24GOiyEAtveB43U7IQH93+kb3+cdAWwwgiMejx0B71ieQZEzHQGkUJcDk88ZAlJIGfV6axkAsgFYm6D/GQPaiIA2Y5MVAv+4Da4SIxUDQUXRZwyvFQAhSMclqzsRA1Nz1eZBwxEDNcGXySRLEQIeJOniss8NA6PW5CM1Uw0BRf25RwPXCQAsEMKmalsJAguJ4CXA3wkDCTAwIVNjBQNbU79BZecFAGju6IJQawUBkQDk/FbzAQMT1b/ruXcBA5LzuoTIAwEC5yQsF4kW/QPgSp8R0jL5AXSxa+jzUvUAiE8kCWR29QJ6p0hnmZ7xABOKIVQC0u0AuDN6hwgG7QBmEBb1GUbpA/YiFNKWiuUA+lfdi9fW4QHEjdG5NS7hAhmamR8Kit0AEG4SpZ/y2QE07pRlQWLZAlww36Yy2tUCqqoU2Lhe1QGHvFu9CerRAulBR0tjfs0C/Eql0/EezQHT1TUO5srJAX1ZTiBkgskD3k0xvJpCxQF5eVwroArFAIYONV2V4sEC2Vq+NSOGvQFnlNIBT165AgWRuU/PSrUC7rLPeLdSsQLUpGhIH26tAMMIcBYHnqkDICbYFnPmpQECr36dWEalAPSRq1a0uqEDzHCDenFGnQIziKIgdeqZAg82dICiopUBwqEaMs9ukQJ59cVi1FKRAoonayyFTo0Dbb5n365aiQAkxCcgF4KFAxcygFWAuoUDn4rK16oGgQGccaJkHmaBA7nLKcG5GoUAKsX7eDPmhQLX01CPzsKJAJyaOfTBuo0AY4wQT0zCkQAFHPeXn+KRAt0jlvXrGpUDl0k8elpmmQIsldS5DcqdAfHMDrIlQqEChDIvZbzSpQH2/0W36HapA+21ZgywNq0AcHSaIBwKsQNkK0C2L/KxAtJDuWbX8rUDKzOgWggKvQGCanML1BrBA8aqY5nSPsEBajqWIuRqxQGCEirC9qLFApFljVno5skA2gsVc58yyQFCuRov7YrNAD2triaz7s0AzSgTa7pa0QLfu/9a1NLVAZTi4rfPUtUBLn8BbmXe2QD+fO6yWHLdAvd28NdrDt0Aud71YUW24QJydpz7oGLlAn2l+2YnGuUBIbibkH3a6QKlLU+OSJ7tA4h8eJ8rau0AqVUjNq4+8QAnlLcQcRr1AQbxpzgD+vUCRei6HOre+QA1TVWercb9AASyS5ZkWwEBtf2Z82XTAQDaT0ZOD08BAgTIGxIYywUBvbRMm0ZHBQMAdk1hQ8cFAkpmyhPFQwkCyX5RjobDCQJVBCURMEMNAmUafEN5vw0C3PARWQs/DQMaiuUlkLsRAF1EX0S6NxEAg/5mIjOvEQCN/estnScVA0ESKu6qmxUCciVFJPwPGQHUgazwPX8ZAlswZPAS6xkDYshLYBxTHQJBDeJEDbcdAxMQA5ODEx0AQcUNPiRvIQNbvJmDmcMhAHb9ruuHEyEAZ/0wiZRfJQCbrMYZaaMlA1StqCKy3yUAeEu8IRAXKQN20Iy8NUcpADteNc/KaykBHcIEp3+LKQACouAi/KMtAIhHSNn5sy0CF9K5QCa7LQHOAq3NN7ctAtb6qRjgqzEBURPACuGTMQFekwXy7nMxAjMrJKzLSzEDkgzgzDAXNQMqfmGk6Nc1AMkBXYK5izUDWHfdqWo3NQOK56qUxtc1AGa8Q/SfazUAzkc0xMvzNQIwKv+BFG85AviwEh1k3zkDjMReHZFDOQPg3NS1fZs5ARs9Qs0J5zkDYhoxECYnOQMj2OgCulc5ARx9i/CyfzkBeTMBHg6XOQBkJUeuuqM5AGQlR666ozkBeTMBHg6XOQEcfYvwsn85AyPY6AK6VzkDYhoxECYnOQEfPULNCec5A+Dc1LV9mzkDjMReHZFDOQL4sBIdZN85AjAq/4EUbzkAzkc0xMvzNQBmvEP0n2s1A4rnqpTG1zUDWHfdqWo3NQDJAV2CuYs1Ayp+YaTo1zUDkgzgzDAXNQIzKySsy0sxAV6TBfLuczEBURPACuGTMQLW+qkY4KsxAc4Crc03ty0CF9K5QCa7LQCIR0jZ+bMtAAKi4CL8oy0BFcIEp3+LKQBDXjXPymspA3bQjLw1RykAeEu8IRAXKQNMragist8lAJusxhlpoyUAZ/0wiZRfJQB2/a7rhxMhA1u8mYOZwyEAPcUNPiRvIQMPEAOTgxMdAkUN4kQNtx0DYshLYBxTHQJbMGTwEusZAdCBrPA9fxkCbiVFJPwPGQNFEiruqpsVAI396y2dJxUAg/5mIjOvEQBVRF9EujcRAw6K5SWQuxEC4PARWQs/DQJlGnxDeb8NAlUEJREwQw0CyX5RjobDCQJGZsoTxUMJAvx2TWFDxwUBvbRMm0ZHBQIEyBsSGMsFANpPRk4PTwEBrf2Z82XTAQP8rkuWZFsBADVNVZ6txv0CRei6HOre+QEG8ac4A/r1ACOUtxBxGvUApVUjNq4+8QOIfHifK2rtAqUtT45Inu0BIbibkH3a6QJ9pftmJxrlAmp2nPugYuUAud71YUW24QL3dvDXaw7dAP587rJYct0BLn8BbmXe2QGI4uK3z1LVAt+7/1rU0tUAzSgTa7pa0QA9ra4ms+7NAUK5Gi/tis0A1gsVc58yyQKRZY1Z6ObJAYISKsL2osUBajqWIuRqxQPGqmOZ0j7BAXZqcwvUGsEDQzOgWggKvQLSQ7lm1/K1A2QrQLYv8rEAcHSaIBwKsQPptWYMsDatAf7/RbfodqkChDIvZbzSpQHxzA6yJUKhAiyV1LkNyp0Di0k8elpmmQLlI5b16xqVAAUc95ef4pEAY4wQT0zCkQCcmjn0wbqNAsvTUI/OwokAHsX7eDPmhQO5yynBuRqFAZxxomQeZoEC5E60NY6ygQOtXHyCUWqFA9kyG3gIOokBCOCedv8aiQHpIiKrZhKNA/tyFPl9IpED8jE5pXRGlQOyxTwLg36VAzaYcl/GzpkCBVltam42nQCkZwRLlbKhAXD4rCtVRqUBc/N78bzyqQE3O/Ai5LKtAXZcznrEirEC0JMBtWR6tQL/jxVquH65AoNUNa6wmr0A4eRzcphmwQKWnuTDForBAZLjaPqwusUA3n1AHVr2xQKQGBHq7TrJAb5YTcNTiskDtJVSml3mzQKNzObj6ErRA8uQtG/KutEC6sl8acU21QMnECdNp7rVAslM+Mc2RtkA5ODntije3QFSZP4mR37dA3GsSUM6JuEBi9PhTLTa5QBkxaG6Z5LlAhcJLQPyUukAPk/QyPke7QA0isXlG+7tA3vQSFPuwvEDFSeTQQGi9QDy70FH7IL5AfBHDDw3bvkD9CPpfV5a/QC6t6jxdKcBApOitvgqIwEBnXj09I+fAQD8/fzyVRsFA7bmhwE6mwUCs9c5SPQbCQM+jOwZOZsJA3PKOfW3GwkAyZaLwhybDQBXFlzKJhsNAtCdDuFzmw0CMqOae7UXEQB8/PbMmpcRAFsrRePIDxUA6JZ8xO2LFQDXb9eXqv8VAi8GjbOscxkDji1lzJnnGQI8lSoeF1MZAZGP/HfIux0C+Zl+eVYjHQLzT3WmZ4MdAFsnT5aY3yEA8WPmEZ43IQKkP+9DE4chABQEmdKg0yUAfiCRD/IXJQLD3xUaq1clA+jTLxZwjykBUNLJOvm/KQB02esH5ucpAWZZaWToCy0A9+GW2a0jLQPyTE+d5jMtAYm6ocVHOy0DYSHpd3w3MQHMkBjwRS8xAGkTUMdWFzEAJsCP/Gb7MQPdYVwjP88xAuhkfXuQmzUBB/FbFSlfNQGRRl77zhM1A0lpwjdGvzUCnekw/19fNQNEU9LH4/M1ADoyumSofzkBHBfyGYj7OQErh4+uWWs5ASCbUIL9zzkBwXg5p04nOQObAnvbMnM5A1Mza7aWszkB502RoWbnOQHpFsnfjws5AgvESJ0HJzkARvTd9cMzOQBG9N31wzM5AgvESJ0HJzkB6RbJ348LOQHnTZGhZuc5A1Mza7aWszkDmwJ72zJzOQHBeDmnTic5ASCbUIL9zzkBK4ePrllrOQEcF/IZiPs5ADoyumSofzkDRFPSx+PzNQKd6TD/X181A0lpwjdGvzUBjUZe+84TNQEH8VsVKV81AuhkfXuQmzUD3WFcIz/PMQAmwI/8ZvsxAGETUMdWFzEBxJAY8EUvMQNhIel3fDcxAYm6ocVHOy0D8kxPneYzLQDv4ZbZrSMtAWJZaWToCy0AfNnrB+bnKQFQ0sk6+b8pA+jTLxZwjykCu98VGqtXJQB6IJEP8hclABwEmdKg0yUCpD/vQxOHIQDxY+YRnjchAFsnT5aY3yEC8091pmeDHQMBmX55ViMdAZGP/HfIux0CPJUqHhdTGQOKLWXMmecZAisGjbOscxkA22/Xl6r/FQDolnzE7YsVAFsrRePIDxUAePz2zJqXEQIqo5p7tRcRAtSdDuFzmw0AVxZcyiYbDQDJlovCHJsNA3PKOfW3GwkDOozsGTmbCQKv1zlI9BsJA7bmhwE6mwUA/P388lUbBQGdePT0j58BAo+itvgqIwEAtreo8XSnAQP0I+l9Xlr9AfBHDDw3bvkA8u9BR+yC+QMNJ5NBAaL1A3fQSFPuwvEANIrF5Rvu7QA+T9DI+R7tAhcJLQPyUukAZMWhumeS5QF/0+FMtNrlA3GsSUM6JuEBUmT+Jkd+3QDk4Oe2KN7dAslM+Mc2RtkDHxAnTae61QLqyXxpxTbVA8uQtG/KutECjczm4+hK0QO0lVKaXebNAbpYTcNTiskCkBgR6u06yQDefUAdWvbFAZLjaPqwusUClp7kwxaKwQDZ5HNymGbBAptUNa6wmr0C/48Varh+uQLQkwG1ZHq1AXZcznrEirEBNzvwIuSyrQF/83vxvPKpAXD4rCtVRqUApGcES5WyoQIFWW1qbjadAyqYcl/GzpkDvsU8C4N+lQPyMTmldEaVA/tyFPl9IpEB6SIiq2YSjQD44J52/xqJA9EyG3gIOokDrVx8glFqhQLkTrQ1jrKBAw0KLqu+7oEAQQJovw2qhQNNQ1UPZHqJAYyq8SkLYokDfURuhDZejQOGcEYxJW6RATFr8JwMlpUAO8FNXRvSlQLAog7EdyaZA+NTDcZKjp0DBywtmrIOoQIGwFd5xaalAgkORmudUqkApUYe8EEarQHWh/bTuPKxAyY3nNIE5rUD+HXAdxjuuQBPCqnC5Q69Aq/NboaoosEA0ZLXVSLKwQBz3PlyyPrFAlvExMOHNsUCRzeA6zl+yQPUD0E1x9LJAEx4xHcGLs0DtrcY6syW0QN21NxE8wrRABuvY305htUCiGfK23QK2QNzIhXTZprZA5gqhwTFNt0AkLzkQ1fW3QGXPnJmwoLhAkGx9XbBNuUAhhpYhv/y5QLbG9nHGrbpAO4rvoa5gu0C+pa7NXhW8QMP2hdy8y7xAudjjg62DvUDXMf9KFD2+QAZXOY/T975Ag483icyzv0DXwlqpbzjAQLa5iHZ1l8BAZipJpOb2wEAY8zOmsVbBQFXUsW/EtsFAQs60eAwXwkCSacvCdnfCQEK1jd7v18JA3nli8WM4w0Bw2pq7vpjDQNtS4p7r+MNAxLoApdVYxECQrOuGZ7jEQNxoJLSLF8VA9whfWix2xUANjm9tM9TFQO0Xea+KMcZAC01buRuOxkB8vlkD0OnGQCTW+O2QRMdAbKMLy0eex0D7o+3m3fbHQFdy45E8TshA5BOdKU2kyEBec9Qi+fjIQBBsAhMqTMlAiaUkusmdyUA8X44Mwu3JQJcvvjz9O8pAAaMyxWWIykCAlDdy5tLKQGcMpmtqG8tA1WiQPt1hy0AckNTmKqbLQD/vjdg/6MtA8AxhCQkozEBohpr5c2XMQAJcG71uoMxArooMBOjYzEDCClQjzw7NQNBtxRwUQs1A+HoIp6dyzUBeVDA1e6DNQNzf/f2Ay81A9GHIAqzzzUC1cgcW8BjOQOexeeFBO85ASuHj65ZazkBHUWSe5XbOQLXVVkklkM5A6sTFKE6mzkB502RoWbnOQITxEidByc5AUKTgeQDWzkBfrphuk9/OQDUyyQ335c5AktdLXCnpzkCS10tcKenOQDUyyQ335c5AX66YbpPfzkBQpOB5ANbOQILxEidByc5AedNkaFm5zkDqxMUoTqbOQLXVVkklkM5AR1FknuV2zkBK4ePrllrOQOexeeFBO85AtXIHFvAYzkD0YcgCrPPNQNzf/f2Ay81AXlQwNXugzUD4eginp3LNQNBtxRwUQs1AwgpUI88OzUCuigwE6NjMQAFcG71uoMxAZoaa+XNlzEDwDGEJCSjMQD/vjdg/6MtAHJDU5iqmy0DTaJA+3WHLQGYMpmtqG8tAgZQ3cubSykABozLFZYjKQJcvvjz9O8pAOl+ODMLtyUCHpSS6yZ3JQBBsAhMqTMlAXnPUIvn4yEDkE50pTaTIQFZy45E8TshA+qPt5t32x0BuowvLR57HQCTW+O2QRMdAfL5ZA9DpxkAKTVu5G47GQOwXea+KMcZADo5vbTPUxUD3CF9aLHbFQNxoJLSLF8VAj6zrhme4xEDDugCl1VjEQNxS4p7r+MNAcNqau76Yw0DeeWLxYzjDQEK1jd7v18JAkWnLwnZ3wkBCzrR4DBfCQFXUsW/EtsFAGPMzprFWwUBmKkmk5vbAQLW5iHZ1l8BA18JaqW84wECDjzeJzLO/QAZXOY/T975A1zH/ShQ9vkC42OODrYO9QMH2hdy8y7xAvqWuzV4VvEA7iu+hrmC7QLbG9nHGrbpAIYaWIb/8uUCPbH1dsE25QGXPnJmwoLhAJC85ENX1t0DmCqHBMU23QNzIhXTZprZAnxnytt0CtkAG69jfTmG1QN21NxE8wrRA7a3GOrMltEATHjEdwYuzQPID0E1x9LJAkc3gOs5fskCW8TEw4c2xQBz3PlyyPrFANGS11UiysECp81uhqiiwQBjCqnC5Q69A/h1wHcY7rkDJjec0gTmtQHWh/bTuPKxAJlGHvBBGq0CGQ5Ga51SqQIGwFd5xaalAwcsLZqyDqED41MNxkqOnQK0og7EdyaZAEfBTV0b0pUBMWvwnAyWlQOGcEYxJW6RA31EboQ2Xo0BgKrxKQtiiQNBQ1UPZHqJAEECaL8NqoUDDQouq77ugQK0onaOix6BAfTcFYvB2oUCvaABdhCuiQK+WgwNv5aJAPcMYvb+ko0BtudjYhGmkQAJGS3zLM6VA6tk3kp8DpkDC2HC5C9mmQDw/pDMZtKdAF7M81M+UqEA5bV7vNXupQCbJC0lQZ6pAipd9BCJZq0DfnbuTrFCsQLbxgafvTa1AIRqAH+lQrkBRFf/6lFmvQFvF/aT2M7BAKMlgD/W9sEBkyAvAwEqxQGbZAq5T2rFACcqjvaZsskBSybq6sQGzQDGd+VJrmbNALQjYEMkztECc7ONWv9C0QNOch1tBcLVAH6RMJUEStkBIKqGHr7a2QH7iJSB8XbdAsD+KVJUGuEC4avxQ6LG4QOUyMgdhX7lAQecPLuoOukBJtvFBbcC6QI7bm4XSc7tABYbVAwEpvEBV/7GR3t+8QPQ0i9FPmL1AM1awNjhSvkCEyMoJeg2/QM47+232yb9AnhZYs8ZDwEC3UxvvDqPAQIjFgtbCAsFAYZLh0NBiwUBSJQLFJsPBQC/Y4R2yI8JA6MjHz1+EwkBNorVdHOXCQBbYMN/TRcNA9oxiBnKmw0AbEYwm4gbEQJaezToPZ8RATrE87ePGxED0EEeeSibFQC5dX2wthcVAS6fvO3bjxUDkYY6/DkHGQBKtcYDgncZATscc59T5xkDSLUNE1VTHQLm93NnKrsdA7+9l5J4HyEAWFkekOl/IQIBOXWeHtchAILifkm4KyUAgR9ur2V3JQK51f2Oyr8lAW+x1nuL/yUBjIf9/VE7KQBDXjXPymspAuE6bNqflykBY+G3iXS7LQChezPUBdctABwiWXn+5y0BfFDyDwvvLQNJKE0y4O8xAbHl5LE55zEBL/scrcrTMQGR2De4S7cxA66WIvB8jzUDyz96NiFbNQMfYBw4+h81A4rnqpTG1zUDf/aSCVeDNQNkveJycCM5ApmJYvfotzkDjMReHZFDOQK3gJnnPb85AiX/x9TGMzkBeTMBHg6XOQH/ML6W7u85AqnAtNdTOzkAP5nsSx97OQEiNu06P685A4Of09Cj1zkCJJ6MLkfvOQGZlPZbF/s5AZmU9lsX+zkCJJ6MLkfvOQODn9PQo9c5ASI27To/rzkAP5nsSx97OQKpwLTXUzs5Af8wvpbu7zkBeTMBHg6XOQIl/8fUxjM5AreAmec9vzkDjMReHZFDOQKZiWL36Lc5A2S94nJwIzkDf/aSCVeDNQOK56qUxtc1AxtgHDj6HzUDyz96NiFbNQOuliLwfI81AZHYN7hLtzEBL/scrcrTMQGx5eSxOecxA0koTTLg7zEBfFDyDwvvLQAcIll5/uctAJ17M9QF1y0BY+G3iXS7LQLhOmzan5cpAENeNc/KaykBjIf9/VE7KQFvsdZ7i/8lArnV/Y7KvyUAgR9ur2V3JQCC4n5JuCslAgE5dZ4e1yEAVFkekOl/IQOzvZeSeB8hAur3c2cqux0DSLUNE1VTHQE7HHOfU+cZAEa1xgOCdxkDjYY6/DkHGQEyn7zt248VALl1fbC2FxUD0EEeeSibFQE2xPO3jxsRAlZ7NOg9nxEAcEYwm4gbEQPaMYgZypsNAFtgw39NFw0BNorVdHOXCQOjIx89fhMJALtjhHbIjwkBSJQLFJsPBQGGS4dDQYsFAiMWC1sICwUC1UxvvDqPAQJ0WWLPGQ8BAzjv7bfbJv0CEyMoJeg2/QDNWsDY4Ur5A8jSL0U+YvUBT/7GR3t+8QAWG1QMBKbxAjtubhdJzu0BJtvFBbcC6QEHnDy7qDrpA5DIyB2FfuUC4avxQ6LG4QLA/ilSVBrhAfuIlIHxdt0BIKqGHr7a2QB2kTCVBErZA05yHW0FwtUCc7ONWv9C0QC0I2BDJM7RAMZ35UmuZs0BRybq6sQGzQAnKo72mbLJAZtkCrlPasUBkyAvAwEqxQCjJYA/1vbBAWMX9pPYzsEBVFf/6lFmvQCEagB/pUK5AtvGBp+9NrUDfnbuTrFCsQIqXfQQiWatAKckLSVBnqkA5bV7vNXupQBezPNTPlKhAPD+kMxm0p0C/2HC5C9mmQO7ZN5KfA6ZAAkZLfMszpUBtudjYhGmkQD3DGL2/pKNArJaDA2/lokCtaABdhCuiQH03BWLwdqFArSido6LHoEAC7IzUc8+gQFy9+j0Tf6FASkIDWfszokAuNkOcPO6iQBvEcXbmraNAcTpSPQdzpED4SIwcrD2lQNWhdAThDaZAEUTQmLDjpkB7IJ0fJL+nQMEv629DoKhAsm/R4BSHqUA+mIo4nXOqQLKrxZvfZatA/9E2fd1drEBlM3WNllutQBzDMqsIX65ACB7b0y9or0AZZlMKgzuwQNspGL7BxbBAnFFMBs9SsUA1MiTXpOKxQNPkrRE8dbJAuS7jfYwKs0DbIh7FjKKzQJ4k92wyPbRACtyS0nHatEALjmYmPnq1QIEneWiJHLZAqx8nZUTBtkCZJW+yXmi3QEtVza3GEbhAi3Oqemm9uEBTa2QBM2u5QIv99O4NG7pA/EI7tePMukDISeyLnIC7QC27LnIfNrxAZxPlMFLtvEAXjqldGaa9QGN7fl5YYL5AXEA1bvEbv0AbzY2hxdi/QPXrh3ZaS8BALlbPFc+qwEDw7OOSrwrBQCJD5kzqasFAO08yIm3LwUC8SR11JSzCQHzhDjEAjcJAPY30z+ntwkDPeQ1gzk7DQIpKDYqZr8NAqZmTlzYQxEDV3PV5kHDEQFUKWdGR0MRABxQY9CQwxUCyBnT2M4/FQKBXirKo7cVA9qaN0GxLxkDE+zzPaajGQMA/lQyJBMdAk4O4zrNfx0C5WgZN07nHQK1mYLnQEshAU/WVSZVqyEAAZvFACsHIQNvb4fkYFslAN5u776ppyUApS4nIqbvJQKcz6F7/C8pAAHXpy5VaykDcHfJwV6fKQGrykwEv8spA4qlYjQc7y0DcXnmJzIHLQEbre9ppxstA1+qv3csIzEBLJYVy30jMQGMutQOShsxAoBo6kNHBzECUPgy0jPrMQLsKobCyMM1AbzYldTNkzUAqk2ym/5TNQB8MkqYIw81AY4ZCnEDuzUByiq15mhbOQGHZFgMKPM5Ah00E1YNezkBqqANq/X3OQJI1BCBtms5AWXNAPcqzzkAYQLT0DMrOQA1aHGou3c5A4VN8tSjtzkBTdSjm9vnOQMFXUQWVA89Az2gPGAAKz0Df2OwgNg3PQN/Y7CA2Dc9Az2gPGAAKz0DBV1EFlQPPQFN1KOb2+c5A4VN8tSjtzkANWhxqLt3OQBhAtPQMys5AWXNAPcqzzkCSNQQgbZrOQGqoA2r9fc5Ah00E1YNezkBh2RYDCjzOQHKKrXmaFs5AY4ZCnEDuzUAfDJKmCMPNQCiTbKb/lM1AbzYldTNkzUC7CqGwsjDNQJQ+DLSM+sxAoBo6kNHBzEBjLrUDkobMQEslhXLfSMxA1+qv3csIzEBG63vaacbLQNteeYnMgctA4KlYjQc7y0Bq8pMBL/LKQNwd8nBXp8pAAHXpy5VaykCnM+he/wvKQClLicipu8lAOJu776ppyUDb2+H5GBbJQABm8UAKwchAUPWVSZVqyECrZmC50BLIQLpaBk3TucdAk4O4zrNfx0DAP5UMiQTHQMP7PM9pqMZA9aaN0GxLxkCgV4qyqO3FQLIGdPYzj8VABxQY9CQwxUBVClnRkdDEQNPc9XmQcMRAqpmTlzYQxECKSg2Kma/DQM95DWDOTsNAPY30z+ntwkB74Q4xAI3CQLtJHXUlLMJAO08yIm3LwUAiQ+ZM6mrBQPDs45KvCsFALlbPFc+qwED064d2WkvAQBvNjaHF2L9AXEA1bvEbv0Bje35eWGC+QBaOqV0Zpr1AZhPlMFLtvEAtuy5yHza8QMhJ7IucgLtA/EI7tePMukCL/fTuDRu6QFFrZAEza7lAi3Oqemm9uEBLVc2txhG4QJklb7JeaLdAqx8nZUTBtkB+J3loiRy2QAuOZiY+erVACtyS0nHatECeJPdsMj20QNsiHsWMorNAti7jfYwKs0DT5K0RPHWyQDUyJNek4rFAnFFMBs9SsUDbKRi+wcWwQBZmUwqDO7BADB7b0y9or0AcwzKrCF+uQGUzdY2WW61A/9E2fd1drECxq8Wb32WrQECYijidc6pAsm/R4BSHqUDBL+tvQ6CoQHsgnR8kv6dADkTQmLDjpkDXoXQE4Q2mQPhIjBysPaVAcTpSPQdzpEAbxHF25q2jQCs2Q5w87qJASEIDWfszokBcvfo9E3+hQALsjNRzz6BA3kCFyl3ToEAHTLkXJoOhQAmveVE4OKJABGw48qTyokCVg0Rse7KjQMevtxjKd6RAu6NKJp5CpUBmqhmIAxOmQL7tY+QE6aZAbhlQg6vEp0CgcsE9/6WoQGTdSGwGjalAIKM91sV5qkBVIAqhQGyrQELMuD94ZKxAFlLOYmxirUDDrn3oGmauQDJ7Q81/b69ABdp6jko/sECsuCpyqcmwQHsLmJHXVrFA2siO387msUCUm3Q7iHmyQCdpWWv7DrNA56hqFh+ns0DJNNC/6EG0QMMl+cFM37RAtS9fSj5/tUA1zcZVryG2QDFhAq2QxrZAZUM+4tFtt0CzddtOYRe4QLmC3hEsw7hAh8H3Dh5xuUCf8CnuISG6QPnIExwh07pAktPgygOHu0DsbuXzsDy8QI6P6VkO9LxAKV4ljACtvUCmaPLpame+QPaoM6cvI79Aeix20S/gv0Dl1eWqJU/AQOrwr4OwrsBAAXdkU6cOwUDeQgl1+G7BQLGXwcKRz8FAShqNmmAwwkA8NWLjUZHCQFuvohJS8sJAW/PoMU1Tw0D+PSzlLrTDQOGfOXHiFMRAr3Z/wlJ1xEB8uSh0atXEQNUshdcTNcVAV0y7+ziUxUDKcsC1w/LFQJWGk6idUMZAWy62TbCtxkDkUuD95AnHQBd26fkkZcdA5izjc1m/x0D30l+YaxjIQHZa4JdEcMhAh+pjsM3GyECP0RM38BvJQM4nBqKVb8lAEVoRkqfByUCVs6rcDxLKQFbiyZW4YMpArVnLGYytykBgZEsXdfjKQPap85heQctAGuI0DzSIy0C3beZZ4czLQOiOxdFSD8xA0v/NUXVPzECytGVANo3MQOWmVZiDyMxAQ52J8UsBzUBDApGJfjfNQGH52ksLa81AZQuo2eKbzUCB7KuR9snNQBIPWpc49c1A4urX2ZsdzkDLGZAaFEPOQLqoYfOVZc5Arj1n3BaFzkBj+VExjaHOQAZFVDbwus5AQQmZHDjRzkBzHEQGXuTOQDYJ+Qlc9M5AIqTlNS0Bz0AYQE6SzQrPQLqqmSM6Ec9Asnbb63AUz0CydtvrcBTPQLqqmSM6Ec9AGEBOks0Kz0AipOU1LQHPQDYJ+Qlc9M5AcxxEBl7kzkBBCZkcONHOQAZFVDbwus5AY/lRMY2hzkCsPWfcFoXOQLqoYfOVZc5AyxmQGhRDzkDi6tfZmx3OQBIPWpc49c1AgeyrkfbJzUBlC6jZ4pvNQGH52ksLa81AQwKRiX43zUBDnYnxSwHNQOWmVZiDyMxAsrRlQDaNzEDS/81RdU/MQOiOxdFSD8xAt23mWeHMy0AY4jQPNIjLQPap85heQctAYGRLF3X4ykCtWcsZjK3KQFbiyZW4YMpAk7Oq3A8SykARWhGSp8HJQNAnBqKVb8lAj9ETN/AbyUCH6mOwzcbIQHRa4JdEcMhA9NJfmGsYyEDnLONzWb/HQBd26fkkZcdA5FLg/eQJx0BaLrZNsK3GQJOGk6idUMZAy3LAtcPyxUBXTLv7OJTFQNUshdcTNcVAerkodGrVxECsdn/CUnXEQOKfOXHiFMRA/j0s5S60w0Bb8+gxTVPDQFuvohJS8sJAOzVi41GRwkBJGo2aYDDCQLGXwcKRz8FA3kIJdfhuwUABd2RTpw7BQOnwr4OwrsBA5NXlqiVPwEB6LHbRL+C/QPaoM6cvI79Apmjy6WpnvkAmXiWMAK29QIuP6VkO9LxA7G7l87A8vECS0+DKA4e7QPnIExwh07pAn/Ap7iEhukCEwfcOHnG5QLmC3hEsw7hAs3XbTmEXuEBlQz7i0W23QDFhAq2QxrZAMs3GVa8htkC1L19KPn+1QMMl+cFM37RAyTTQv+hBtEDnqGoWH6ezQCVpWWv7DrNAlJt0O4h5skDayI7fzuaxQHsLmJHXVrFArLgqcqnJsEAD2nqOSj+wQDZ7Q81/b69Aw6596BpmrkAWUs5ibGKtQELMuD94ZKxAUSAKoUBsq0Ajoz3WxXmqQGTdSGwGjalAoHLBPf+lqEBuGVCDq8SnQLvtY+QE6aZAaaoZiAMTpkC7o0omnkKlQMevtxjKd6RAlYNEbHuyo0ADbDjypPKiQAaveVE4OKJAB0y5FyaDoUDeQIXKXdOgQN5Ahcpd06BAB0y5FyaDoUAJr3lRODiiQARsOPKk8qJAlYNEbHuyo0DHr7cYynekQLujSiaeQqVAZqoZiAMTpkC+7WPkBOmmQG4ZUIOrxKdAoHLBPf+lqEBk3UhsBo2pQCCjPdbFeapAVSAKoUBsq0BCzLg/eGSsQBZSzmJsYq1Aw6596BpmrkAye0PNf2+vQAXaeo5KP7BArLgqcqnJsEB7C5iR11axQNrIjt/O5rFAlJt0O4h5skAnaVlr+w6zQOeoahYfp7NAyTTQv+hBtEDDJfnBTN+0QLUvX0o+f7VANc3GVa8htkAxYQKtkMa2QGVDPuLRbbdAs3XbTmEXuEC5gt4RLMO4QIfB9w4ecblAn/Ap7iEhukD5yBMcIdO6QJLT4MoDh7tA7G7l87A8vECOj+lZDvS8QCleJYwArb1Apmjy6WpnvkD2qDOnLyO/QHosdtEv4L9A5dXlqiVPwEDq8K+DsK7AQAF3ZFOnDsFA3kIJdfhuwUCxl8HCkc/BQEoajZpgMMJAPDVi41GRwkBbr6ISUvLCQFvz6DFNU8NA/j0s5S60w0Dhnzlx4hTEQK92f8JSdcRAfLkodGrVxEDVLIXXEzXFQFdMu/s4lMVAynLAtcPyxUCVhpOonVDGQFsutk2wrcZA5FLg/eQJx0AXdun5JGXHQOYs43NZv8dA99JfmGsYyEB2WuCXRHDIQIfqY7DNxshAj9ETN/AbyUDOJwailW/JQBFaEZKnwclAlbOq3A8SykBW4smVuGDKQK1ZyxmMrcpAYGRLF3X4ykD2qfOYXkHLQBriNA80iMtAt23mWeHMy0DojsXRUg/MQNL/zVF1T8xAsrRlQDaNzEDlplWYg8jMQEOdifFLAc1AQwKRiX43zUBh+dpLC2vNQGULqNnim81AgeyrkfbJzUASD1qXOPXNQOLq19mbHc5AyxmQGhRDzkC6qGHzlWXOQK49Z9wWhc5AY/lRMY2hzkAGRVQ28LrOQEEJmRw40c5AcxxEBl7kzkA2CfkJXPTOQCKk5TUtAc9AGEBOks0Kz0C6qpkjOhHPQLJ22+twFM9Asnbb63AUz0C6qpkjOhHPQBhATpLNCs9AIqTlNS0Bz0A2CfkJXPTOQHMcRAZe5M5AQQmZHDjRzkAGRVQ28LrOQGP5UTGNoc5ArD1n3BaFzkC6qGHzlWXOQMsZkBoUQ85A4urX2ZsdzkASD1qXOPXNQIHsq5H2yc1AZQuo2eKbzUBh+dpLC2vNQEMCkYl+N81AQ52J8UsBzUDlplWYg8jMQLK0ZUA2jcxA0v/NUXVPzEDojsXRUg/MQLdt5lnhzMtAGOI0DzSIy0D2qfOYXkHLQGBkSxd1+MpArVnLGYytykBW4smVuGDKQJOzqtwPEspAEVoRkqfByUDQJwailW/JQI/REzfwG8lAh+pjsM3GyEB0WuCXRHDIQPTSX5hrGMhA5yzjc1m/x0AXdun5JGXHQORS4P3kCcdAWi62TbCtxkCThpOonVDGQMtywLXD8sVAV0y7+ziUxUDVLIXXEzXFQHq5KHRq1cRArHZ/wlJ1xEDinzlx4hTEQP49LOUutMNAW/PoMU1Tw0Bbr6ISUvLCQDs1YuNRkcJASRqNmmAwwkCxl8HCkc/BQN5CCXX4bsFAAXdkU6cOwUDp8K+DsK7AQOTV5aolT8BAeix20S/gv0D2qDOnLyO/QKZo8ulqZ75AJl4ljACtvUCLj+lZDvS8QOxu5fOwPLxAktPgygOHu0D5yBMcIdO6QJ/wKe4hIbpAhMH3Dh5xuUC5gt4RLMO4QLN1205hF7hAZUM+4tFtt0AxYQKtkMa2QDLNxlWvIbZAtS9fSj5/tUDDJfnBTN+0QMk00L/oQbRA56hqFh+ns0AlaVlr+w6zQJSbdDuIebJA2siO387msUB7C5iR11axQKy4KnKpybBAA9p6jko/sEA2e0PNf2+vQMOufegaZq5AFlLOYmxirUBCzLg/eGSsQFEgCqFAbKtAI6M91sV5qkBk3UhsBo2pQKBywT3/pahAbhlQg6vEp0C77WPkBOmmQGmqGYgDE6ZAu6NKJp5CpUDHr7cYynekQJWDRGx7sqNAA2w48qTyokAGr3lRODiiQAdMuRcmg6FA3kCFyl3ToEAC7IzUc8+gQFy9+j0Tf6FASkIDWfszokAuNkOcPO6iQBvEcXbmraNAcTpSPQdzpED4SIwcrD2lQNWhdAThDaZAEUTQmLDjpkB7IJ0fJL+nQMEv629DoKhAsm/R4BSHqUA+mIo4nXOqQLKrxZvfZatA/9E2fd1drEBlM3WNllutQBzDMqsIX65ACB7b0y9or0AZZlMKgzuwQNspGL7BxbBAnFFMBs9SsUA1MiTXpOKxQNPkrRE8dbJAuS7jfYwKs0DbIh7FjKKzQJ4k92wyPbRACtyS0nHatEALjmYmPnq1QIEneWiJHLZAqx8nZUTBtkCZJW+yXmi3QEtVza3GEbhAi3Oqemm9uEBTa2QBM2u5QIv99O4NG7pA/EI7tePMukDISeyLnIC7QC27LnIfNrxAZxPlMFLtvEAXjqldGaa9QGN7fl5YYL5AXEA1bvEbv0AbzY2hxdi/QPXrh3ZaS8BALlbPFc+qwEDw7OOSrwrBQCJD5kzqasFAO08yIm3LwUC8SR11JSzCQHzhDjEAjcJAPY30z+ntwkDPeQ1gzk7DQIpKDYqZr8NAqZmTlzYQxEDV3PV5kHDEQFUKWdGR0MRABxQY9CQwxUCyBnT2M4/FQKBXirKo7cVA9qaN0GxLxkDE+zzPaajGQMA/lQyJBMdAk4O4zrNfx0C5WgZN07nHQK1mYLnQEshAU/WVSZVqyEAAZvFACsHIQNvb4fkYFslAN5u776ppyUApS4nIqbvJQKcz6F7/C8pAAHXpy5VaykDcHfJwV6fKQGrykwEv8spA4qlYjQc7y0DcXnmJzIHLQEbre9ppxstA1+qv3csIzEBLJYVy30jMQGMutQOShsxAoBo6kNHBzECUPgy0jPrMQLsKobCyMM1AbzYldTNkzUAqk2ym/5TNQB8MkqYIw81AY4ZCnEDuzUByiq15mhbOQGHZFgMKPM5Ah00E1YNezkBqqANq/X3OQJI1BCBtms5AWXNAPcqzzkAYQLT0DMrOQA1aHGou3c5A4VN8tSjtzkBTdSjm9vnOQMFXUQWVA89Az2gPGAAKz0Df2OwgNg3PQN/Y7CA2Dc9Az2gPGAAKz0DBV1EFlQPPQFN1KOb2+c5A4VN8tSjtzkANWhxqLt3OQBhAtPQMys5AWXNAPcqzzkCSNQQgbZrOQGqoA2r9fc5Ah00E1YNezkBh2RYDCjzOQHKKrXmaFs5AY4ZCnEDuzUAfDJKmCMPNQCiTbKb/lM1AbzYldTNkzUC7CqGwsjDNQJQ+DLSM+sxAoBo6kNHBzEBjLrUDkobMQEslhXLfSMxA1+qv3csIzEBG63vaacbLQNteeYnMgctA4KlYjQc7y0Bq8pMBL/LKQNwd8nBXp8pAAHXpy5VaykCnM+he/wvKQClLicipu8lAOJu776ppyUDb2+H5GBbJQABm8UAKwchAUPWVSZVqyECrZmC50BLIQLpaBk3TucdAk4O4zrNfx0DAP5UMiQTHQMP7PM9pqMZA9aaN0GxLxkCgV4qyqO3FQLIGdPYzj8VABxQY9CQwxUBVClnRkdDEQNPc9XmQcMRAqpmTlzYQxECKSg2Kma/DQM95DWDOTsNAPY30z+ntwkB74Q4xAI3CQLtJHXUlLMJAO08yIm3LwUAiQ+ZM6mrBQPDs45KvCsFALlbPFc+qwED064d2WkvAQBvNjaHF2L9AXEA1bvEbv0Bje35eWGC+QBaOqV0Zpr1AZhPlMFLtvEAtuy5yHza8QMhJ7IucgLtA/EI7tePMukCL/fTuDRu6QFFrZAEza7lAi3Oqemm9uEBLVc2txhG4QJklb7JeaLdAqx8nZUTBtkB+J3loiRy2QAuOZiY+erVACtyS0nHatECeJPdsMj20QNsiHsWMorNAti7jfYwKs0DT5K0RPHWyQDUyJNek4rFAnFFMBs9SsUDbKRi+wcWwQBZmUwqDO7BADB7b0y9or0AcwzKrCF+uQGUzdY2WW61A/9E2fd1drECxq8Wb32WrQECYijidc6pAsm/R4BSHqUDBL+tvQ6CoQHsgnR8kv6dADkTQmLDjpkDXoXQE4Q2mQPhIjBysPaVAcTpSPQdzpEAbxHF25q2jQCs2Q5w87qJASEIDWfszokBcvfo9E3+hQALsjNRzz6BArSido6LHoEB9NwVi8HahQK9oAF2EK6JAr5aDA2/lokA9wxi9v6SjQG252NiEaaRAAkZLfMszpUDq2TeSnwOmQMLYcLkL2aZAPD+kMxm0p0AXszzUz5SoQDltXu81e6lAJskLSVBnqkCKl30EIlmrQN+du5OsUKxAtvGBp+9NrUAhGoAf6VCuQFEV//qUWa9AW8X9pPYzsEAoyWAP9b2wQGTIC8DASrFAZtkCrlPasUAJyqO9pmyyQFLJurqxAbNAMZ35UmuZs0AtCNgQyTO0QJzs41a/0LRA05yHW0FwtUAfpEwlQRK2QEgqoYevtrZAfuIlIHxdt0CwP4pUlQa4QLhq/FDosbhA5TIyB2FfuUBB5w8u6g66QEm28UFtwLpAjtubhdJzu0AFhtUDASm8QFX/sZHe37xA9DSL0U+YvUAzVrA2OFK+QITIygl6Db9Azjv7bfbJv0CeFlizxkPAQLdTG+8Oo8BAiMWC1sICwUBhkuHQ0GLBQFIlAsUmw8FAL9jhHbIjwkDoyMfPX4TCQE2itV0c5cJAFtgw39NFw0D2jGIGcqbDQBsRjCbiBsRAlp7NOg9nxEBOsTzt48bEQPQQR55KJsVALl1fbC2FxUBLp+87duPFQORhjr8OQcZAEq1xgOCdxkBOxxzn1PnGQNItQ0TVVMdAub3c2cqux0Dv72XkngfIQBYWR6Q6X8hAgE5dZ4e1yEAguJ+SbgrJQCBH26vZXclArnV/Y7KvyUBb7HWe4v/JQGMh/39UTspAENeNc/KaykC4Tps2p+XKQFj4beJdLstAKF7M9QF1y0AHCJZef7nLQF8UPIPC+8tA0koTTLg7zEBseXksTnnMQEv+xytytMxAZHYN7hLtzEDrpYi8HyPNQPLP3o2IVs1Ax9gHDj6HzUDiueqlMbXNQN/9pIJV4M1A2S94nJwIzkCmYli9+i3OQOMxF4dkUM5AreAmec9vzkCJf/H1MYzOQF5MwEeDpc5Af8wvpbu7zkCqcC011M7OQA/mexLH3s5ASI27To/rzkDg5/T0KPXOQIknowuR+85AZmU9lsX+zkBmZT2Wxf7OQIknowuR+85A4Of09Cj1zkBIjbtOj+vOQA/mexLH3s5AqnAtNdTOzkB/zC+lu7vOQF5MwEeDpc5AiX/x9TGMzkCt4CZ5z2/OQOMxF4dkUM5ApmJYvfotzkDZL3icnAjOQN/9pIJV4M1A4rnqpTG1zUDG2AcOPofNQPLP3o2IVs1A66WIvB8jzUBkdg3uEu3MQEv+xytytMxAbHl5LE55zEDSShNMuDvMQF8UPIPC+8tABwiWXn+5y0AnXsz1AXXLQFj4beJdLstAuE6bNqflykAQ141z8prKQGMh/39UTspAW+x1nuL/yUCudX9jsq/JQCBH26vZXclAILifkm4KyUCATl1nh7XIQBUWR6Q6X8hA7O9l5J4HyEC7vdzZyq7HQNMtQ0TVVMdAT8cc59T5xkASrXGA4J3GQORhjr8OQcZATafvO3bjxUAuXV9sLYXFQPUQR55KJsVATrE87ePGxECWns06D2fEQB0RjCbiBsRA94xiBnKmw0AX2DDf00XDQE6itV0c5cJA6cjHz1+EwkAv2OEdsiPCQFMlAsUmw8FAYpLh0NBiwUCIxYLWwgLBQLZTG+8Oo8BAnhZYs8ZDwEDQO/tt9sm/QIbIygl6Db9ANVawNjhSvkDzNIvRT5i9QFT/sZHe37xABobVAwEpvECP25uF0nO7QEq28UFtwLpAQucPLuoOukDlMjIHYV+5QLhq/FDosbhAsD+KVJUGuEB+4iUgfF23QEgqoYevtrZAHaRMJUEStkDTnIdbQXC1QJzs41a/0LRALQjYEMkztEAxnflSa5mzQFHJurqxAbNACcqjvaZsskBm2QKuU9qxQGTIC8DASrFAKMlgD/W9sEBYxf2k9jOwQFUV//qUWa9AIRqAH+lQrkC28YGn702tQN+du5OsUKxAipd9BCJZq0ApyQtJUGeqQDltXu81e6lAF7M81M+UqEA8P6QzGbSnQL/YcLkL2aZA7tk3kp8DpkACRkt8yzOlQG252NiEaaRAPcMYvb+ko0CsloMDb+WiQK1oAF2EK6JAfTcFYvB2oUCtKJ2josegQMNCi6rvu6BAEECaL8NqoUDTUNVD2R6iQGMqvEpC2KJA31EboQ2Xo0DhnBGMSVukQExa/CcDJaVADvBTV0b0pUCwKIOxHcmmQPjUw3GSo6dAwcsLZqyDqECBsBXecWmpQIJDkZrnVKpAKVGHvBBGq0B1of207jysQMmN5zSBOa1A/h1wHcY7rkATwqpwuUOvQKvzW6GqKLBANGS11UiysEAc9z5csj6xQJbxMTDhzbFAkc3gOs5fskD1A9BNcfSyQBMeMR3Bi7NA7a3GOrMltEDdtTcRPMK0QAbr2N9OYbVAohnytt0CtkDcyIV02aa2QOYKocExTbdAJC85ENX1t0Blz5yZsKC4QJBsfV2wTblAIYaWIb/8uUC2xvZxxq26QDuK76GuYLtAvqWuzV4VvEDD9oXcvMu8QLnY44Otg71A1zH/ShQ9vkAGVzmP0/e+QIOPN4nMs79A18JaqW84wEC2uYh2dZfAQGYqSaTm9sBAGPMzprFWwUBV1LFvxLbBQELOtHgMF8JAkmnLwnZ3wkBCtY3e79fCQN55YvFjOMNAcNqau76Yw0DbUuKe6/jDQMS6AKXVWMRAkKzrhme4xEDcaCS0ixfFQPcIX1osdsVADY5vbTPUxUDtF3mvijHGQAtNW7kbjsZAfL5ZA9DpxkAk1vjtkETHQGyjC8tHnsdA+6Pt5t32x0BXcuORPE7IQOQTnSlNpMhAXnPUIvn4yEAQbAITKkzJQImlJLrJnclAPF+ODMLtyUCXL748/TvKQAGjMsVliMpAgJQ3cubSykBnDKZrahvLQNVokD7dYctAHJDU5iqmy0A/743YP+jLQPAMYQkJKMxAaIaa+XNlzEACXBu9bqDMQK6KDATo2MxAwgpUI88OzUDQbcUcFELNQPh6CKencs1AXlQwNXugzUDc3/39gMvNQPRhyAKs881AtXIHFvAYzkDnsXnhQTvOQErh4+uWWs5AR1FknuV2zkC11VZJJZDOQOrExShOps5AedNkaFm5zkCE8RInQcnOQFCk4HkA1s5AX66YbpPfzkA1MskN9+XOQJLXS1wp6c5AktdLXCnpzkA1MskN9+XOQF+umG6T385AUKTgeQDWzkCC8RInQcnOQHnTZGhZuc5A6sTFKE6mzkC11VZJJZDOQEdRZJ7lds5ASuHj65ZazkDnsXnhQTvOQLVyBxbwGM5A9GHIAqzzzUDc3/39gMvNQF5UMDV7oM1A+HoIp6dyzUDQbcUcFELNQMIKVCPPDs1ArooMBOjYzEABXBu9bqDMQGaGmvlzZcxA8AxhCQkozEA/743YP+jLQB2Q1OYqpstA1GiQPt1hy0BmDKZrahvLQIKUN3Lm0spAA6MyxWWIykCZL748/TvKQDxfjgzC7clAiqUkusmdyUAUbAITKkzJQGFz1CL5+MhA6ROdKU2kyEBccuORPE7IQAGk7ebd9sdAdqMLy0eex0At1vjtkETHQIa+WQPQ6cZAFE1buRuOxkD5F3mvijHGQBuOb20z1MVABQlfWix2xUDraCS0ixfFQJ+s64ZnuMRA1LoApdVYxEDtUuKe6/jDQILamru+mMNA8Hli8WM4w0BUtY3e79fCQKRpy8J2d8JAVM60eAwXwkBo1LFvxLbBQCnzM6axVsFAdipJpOb2wEDEuYh2dZfAQOXCWqlvOMBAno83icyzv0AfVzmP0/e+QO0x/0oUPb5Azdjjg62DvUDT9oXcvMu8QM6lrs1eFbxASYrvoa5gu0DDxvZxxq26QCyGliG//LlAmGx9XbBNuUBtz5yZsKC4QCsvORDV9bdA6wqhwTFNt0DgyIV02aa2QKMZ8rbdArZACevY305htUDftTcRPMK0QO+txjqzJbRAFB4xHcGLs0DzA9BNcfSyQJLN4DrOX7JAl/ExMOHNsUAc9z5csj6xQDRktdVIsrBAqfNboaoosEAYwqpwuUOvQP4dcB3GO65AyY3nNIE5rUB1of207jysQCZRh7wQRqtAhkORmudUqkCBsBXecWmpQMHLC2asg6hA+NTDcZKjp0CtKIOxHcmmQBHwU1dG9KVATFr8JwMlpUDhnBGMSVukQN9RG6ENl6NAYCq8SkLYokDQUNVD2R6iQBBAmi/DaqFAw0KLqu+7oEC7E60NY6ygQOtXHyCUWqFA9kyG3gIOokBCOCedv8aiQHpIiKrZhKNA/tyFPl9IpED8jE5pXRGlQOyxTwLg36VAzaYcl/GzpkCBVltam42nQCkZwRLlbKhAXD4rCtVRqUBc/N78bzyqQE3O/Ai5LKtAXZcznrEirEC0JMBtWR6tQL/jxVquH65AoNUNa6wmr0A4eRzcphmwQKWnuTDForBAZLjaPqwusUA3n1AHVr2xQKQGBHq7TrJAb5YTcNTiskDtJVSml3mzQKNzObj6ErRA8uQtG/KutEC6sl8acU21QMnECdNp7rVAslM+Mc2RtkA5ODntije3QFSZP4mR37dA3GsSUM6JuEBi9PhTLTa5QBkxaG6Z5LlAhcJLQPyUukAPk/QyPke7QA0isXlG+7tA3vQSFPuwvEDFSeTQQGi9QDy70FH7IL5AfBHDDw3bvkD9CPpfV5a/QC6t6jxdKcBApOitvgqIwEBnXj09I+fAQD8/fzyVRsFA7bmhwE6mwUCs9c5SPQbCQM+jOwZOZsJA3PKOfW3GwkAyZaLwhybDQBXFlzKJhsNAtCdDuFzmw0CMqOae7UXEQB8/PbMmpcRAFsrRePIDxUA6JZ8xO2LFQDbb9eXqv8VAi8GjbOscxkDji1lzJnnGQI8lSoeF1MZAZWP/HfIux0C+Zl+eVYjHQL3T3WmZ4MdAFsnT5aY3yEA8WPmEZ43IQKoP+9DE4chABQEmdKg0yUAfiCRD/IXJQLH3xUaq1clA+jTLxZwjykBUNLJOvm/KQB82esH5ucpAWZZaWToCy0A9+GW2a0jLQP2TE+d5jMtAZG6ocVHOy0DYSHpd3w3MQHMkBjwRS8xAGkTUMdWFzEAJsCP/Gb7MQPdYVwjP88xAuxkfXuQmzUBB/FbFSlfNQGRRl77zhM1A1FpwjdGvzUCpekw/19fNQNEU9LH4/M1AD4yumSofzkBHBfyGYj7OQErh4+uWWs5ASCbUIL9zzkBwXg5p04nOQObAnvbMnM5A1sza7aWszkB502RoWbnOQHpFsnfjws5AhPESJ0HJzkATvTd9cMzOQBO9N31wzM5AhPESJ0HJzkB6RbJ348LOQHnTZGhZuc5A1sza7aWszkDmwJ72zJzOQHBeDmnTic5ASCbUIL9zzkBK4ePrllrOQEcF/IZiPs5AD4yumSofzkDRFPSx+PzNQKl6TD/X181A1FpwjdGvzUBlUZe+84TNQEL8VsVKV81AvBkfXuQmzUD4WFcIz/PMQAuwI/8ZvsxAG0TUMdWFzEB3JAY8EUvMQN1Iel3fDcxAam6ocVHOy0AElBPneYzLQEX4ZbZrSMtAZZZaWToCy0AwNnrB+bnKQGo0sk6+b8pAFDXLxZwjykDR98VGqtXJQEaIJEP8hclAOAEmdKg0yUDkD/vQxOHIQIFY+YRnjchAZ8nT5aY3yEAa1N1pmeDHQCxnX55ViMdA4GP/HfIux0AZJkqHhdTGQH2MWXMmecZANcKjbOscxkDx2/Xl6r/FQAMmnzE7YsVA7srRePIDxUACQD2zJqXEQHmp5p7tRcRArShDuFzmw0AVxpcyiYbDQDZmovCHJsNA4vOOfW3GwkDUpDsGTmbCQK32zlI9BsJA6rqhwE6mwUAzQH88lUbBQFFfPT0j58BAgemtvgqIwED+reo8XSnAQIAK+l9Xlr9A4RLDDw3bvkCAvNBR+yC+QOhK5NBAaL1A4/USFPuwvED0IrF5Rvu7QNmT9DI+R7tANMNLQPyUukCuMWhumeS5QN70+FMtNrlAR2wSUM6JuECsmT+Jkd+3QIM4Oe2KN7dA7lM+Mc2RtkD3xAnTae61QOCyXxpxTbVAEOUtG/KutEC7czm4+hK0QP8lVKaXebNAfJYTcNTiskCuBgR6u06yQD6fUAdWvbFAabjaPqwusUCpp7kwxaKwQDl5HNymGbBAqtUNa6wmr0DC48Varh+uQLYkwG1ZHq1AX5cznrEirEBOzvwIuSyrQGD83vxvPKpAXT4rCtVRqUApGcES5WyoQIFWW1qbjadAyqYcl/GzpkDvsU8C4N+lQPyMTmldEaVA/tyFPl9IpEB6SIiq2YSjQD44J52/xqJA9EyG3gIOokDrVx8glFqhQLsTrQ1jrKBAZxxomQeZoEDucspwbkahQAqxft4M+aFAtfTUI/OwokAnJo59MG6jQBjjBBPTMKRAAUc95ef4pEC3SOW9esalQOXSTx6WmaZAiyV1LkNyp0B8cwOsiVCoQKEMi9lvNKlAfb/RbfodqkD7bVmDLA2rQBwdJogHAqxA2QrQLYv8rEC0kO5ZtfytQMrM6BaCAq9AYJqcwvUGsEDxqpjmdI+wQFqOpYi5GrFAYISKsL2osUCkWWNWejmyQDaCxVznzLJAUK5Gi/tis0APa2uJrPuzQDNKBNrulrRAt+7/1rU0tUBlOLit89S1QEufwFuZd7ZAP587rJYct0C/3bw12sO3QC53vVhRbbhAnp2nPugYuUChaX7Zica5QEhuJuQfdrpAq0tT45Inu0DiHx4nytq7QCpVSM2rj7xAC+UtxBxGvUBCvGnOAP69QJN6Loc6t75AD1NVZ6txv0ABLJLlmRbAQG1/ZnzZdMBANpPRk4PTwECBMgbEhjLBQG9tEybRkcFAwB2TWFDxwUCSmbKE8VDCQLJflGOhsMJAlUEJREwQw0CZRp8Q3m/DQLc8BFZCz8NAxqK5SWQuxEAXURfRLo3EQCH/mYiM68RAI396y2dJxUDQRIq7qqbFQJyJUUk/A8ZAdSBrPA9fxkCWzBk8BLrGQNiyEtgHFMdAkEN4kQNtx0DExADk4MTHQBBxQ0+JG8hA1u8mYOZwyEAdv2u64cTIQBn/TCJlF8lAJ+sxhlpoyUDVK2oIrLfJQB4S7whEBcpA37QjLw1RykAQ141z8prKQEdwgSnf4spAAqi4CL8oy0AiEdI2fmzLQIX0rlAJrstAc4Crc03ty0C1vqpGOCrMQFVE8AK4ZMxAV6TBfLuczECMyskrMtLMQOSDODMMBc1Ay5+YaTo1zUAzQFdgrmLNQNgd92pajc1A4rnqpTG1zUAZrxD9J9rNQDORzTEy/M1AjQq/4EUbzkDALASHWTfOQOMxF4dkUM5A+Tc1LV9mzkBHz1CzQnnOQNiGjEQJic5AyPY6AK6VzkBHH2L8LJ/OQF5MwEeDpc5AGwlR666ozkAbCVHrrqjOQF5MwEeDpc5ARx9i/CyfzkDI9joArpXOQNiGjEQJic5AR89Qs0J5zkD5NzUtX2bOQOMxF4dkUM5AwSwEh1k3zkCNCr/gRRvOQDSRzTEy/M1AG68Q/SfazUDlueqlMbXNQNwd92pajc1AOkBXYK5izUDTn5hpOjXNQPGDODMMBc1AnsrJKzLSzEBwpMF8u5zMQHVE8AK4ZMxA4r6qRjgqzECvgKtzTe3LQNX0rlAJrstAixHSNn5sy0CHqLgIvyjLQPVwgSnf4spA7teNc/KaykD2tSMvDVHKQHoT7whEBcpAgS1qCKy3yUAx7TGGWmjJQJMBTSJlF8lAEMJruuHEyEBV8yZg5nDIQCh1Q0+JG8hAhckA5ODEx0AJSXiRA23HQBC5EtgHFMdAltMZPAS6xkBCKGs8D1/GQDiSUUk/A8ZAOU6Ku6qmxUBPiXrLZ0nFQAUKmoiM68RAoFwX0S6NxEDgrrlJZC7EQEtJBFZCz8NAh1OfEN5vw0C+TglETBDDQPZslGOhsMJAy6ayhPFQwkDQKpNYUPHBQDN6EybRkcFA3T4GxIYywUAMn9GTg9PAQKWKZnzZdMBAijaS5ZkWwECmZlVnq3G/QJiMLoc6t75ArMxpzgD+vUDV8y3EHEa9QGBiSM2rj7xAjyseJ8rau0DhVVPjkie7QCB3JuQfdrpANXF+2YnGuUALpKc+6Bi5QJZ8vVhRbbhAPeK8NdrDt0Dyojuslhy3QE+iwFuZd7ZA0Tq4rfPUtUCp8P/WtTS1QLxLBNrulrRAQ2xriaz7s0A/r0aL+2KzQOyCxVznzLJAL1pjVno5skDJhIqwvaixQKmOpYi5GrFAKquY5nSPsECHmpzC9QawQA3N6BaCAq9A35DuWbX8rUD3CtAti/ysQDEdJogHAqxACW5ZgywNq0CKv9Ft+h2qQKgMi9lvNKlAgHMDrIlQqECOJXUuQ3KnQOTSTx6WmaZAukjlvXrGpUACRz3l5/ikQBnjBBPTMKRAJyaOfTBuo0Cy9NQj87CiQAexft4M+aFA7nLKcG5GoUBnHGiZB5mgQOfisrXqgaBAxcygFWAuoUAMMQnIBeChQN1vmffrlqJAoonayyFTo0CefXFYtRSkQHCoRoyz26RAgc2dICiopUCP4iiIHXqmQPMcIN6cUadAPSRq1a0uqEBAq9+nVhGpQMUJtgWc+alANMIcBYHnqkC1KRoSB9urQLuss94t1KxAgWRuU/PSrUBX5TSAU9euQLpWr41I4a9AIYONV2V4sEBeXlcK6AKxQPeTTG8mkLFAX1ZTiBkgskB39U1DubKyQL8SqXT8R7NAulBR0tjfs0Bh7xbvQnq0QKqqhTYuF7VAmgw36Yy2tUBNO6UZUFi2QAQbhKln/LZAhmamR8Kit0BxI3RuTUu4QECV92L19bhA/YiFNKWiuUAZhAW9RlG6QC4M3qHCAbtABOKIVQC0u0CgqdIZ5me8QCQTyQJZHb1AXSxa+jzUvUD4EqfEdIy+QLnJCwXiRb9A5rzuoTIAwEDG9W/67l3AQGRAOT8VvMBAGju6IJQawUDW1O/QWXnBQMJMDAhU2MFAg+J4CXA3wkALBDCpmpbCQFF/blHA9cJA6PW5CM1Uw0CFiTp4rLPDQM5wZfJJEsRA1dz1eZBwxEAIUjHJas7EQNBRdFnDK8VAvu4Da4SIxUD3oiANmOTFQC2AViboP8ZAlJIGfV6axkBpFCXA5PPGQHrWJ5BkTMdAXAwgiMejx0CAd/pG9/nHQC294HjdTshAQYe24GOiyEBu56xhdPTIQKtQ5gj5RMlApFolF9yTyUCFZ4AKCOHJQGwtFKhnLMpA5xKvBeZ1ykAnQG+Tbr3KQDw+TSXtAstAfvqM/E1Gy0BfBQ/RfYfLQEjre9ppxstAoJFD2f8CzECCk2ofLj3MQM6vH5njdMxAnnUT1Q+qzEDqfIwMo9zMQDqeMiuODM1A4MaL1sI5zUBvNiV1M2TNQJwlZDXTi81AYA/5E5awzUBiEfHhcNLNQMIZYUpZ8c1Andym10UNzkAZ1Dv4LSbOQGHZFgMKPM5A3jOZO9NOzkCHTQTVg17OQKiPdfUWa85AC0JmuIh0zkDjnq0w1nrOQGqoA2r9fc5AaqgDav19zkDjnq0w1nrOQAtCZriIdM5AqY919RZrzkCITQTVg17OQOAzmTvTTs5AZNkWAwo8zkAd1Dv4LSbOQKTcptdFDc5AzhlhSlnxzUBzEfHhcNLNQHgP+ROWsM1AwSVkNdOLzUCjNiV1M2TNQCvHi9bCOc1ApZ4yK44MzUCBfYwMo9zMQHB2E9UPqsxA8LAfmeN0zEANlWofLj3MQLOTQ9n/AsxAEe572mnGy0AOCQ/RfYfLQFL/jPxNRstAf0RNJe0Cy0AxSG+Tbr3KQCIdrwXmdcpASjoUqGcsykCMd4AKCOHJQGhuJRfck8lAyWjmCPlEyUCXBK1hdPTIQCOqtuBjoshAfebgeN1OyEDvp/pG9/nHQJNEIIjHo8dAFBcokGRMx0DiXSXA5PPGQFDlBn1emsZAZdxWJug/xkC6CCENmOTFQOtdBGuEiMVACcp0WcMrxUC90jHJas7EQDtl9nmQcMRA6P9l8kkSxEAoHjt4rLPDQLiOugjNVMNA3BpvUcD1wkDEoDCpmpbCQNZ+eQlwN8JAIecMCFTYwUC8a/DQWXnBQCDNuiCUGsFAR8w5PxW8wEBuenD67l3AQHA576EyAMBAOrEMBeJFv0D456fEdIy+QFzuWvo81L1ADcLJAlkdvUC/RdMZ5me8QPlriVUAtLtA24TeocIBu0CY7AW9RlG6QJLihTSlorlAROH3YvX1uEBPY3RuTUu4QKKbpkfCordAvkaEqWf8tkDxXqUZUFi2QFkpN+mMtrVAocGFNi4XtUCKARfvQnq0QPFeUdLY37NAwx2pdPxHs0Dn/U1DubKyQMlcU4gZILJAyphMbyaQsUD1YVcK6AKxQMaFjVdleLBAklqvjUjhr0Ai6DSAU9euQH5mblPz0q1AJK6z3i3UrECyKhoSB9urQN/CHAWB56pAQAq2BZz5qUCSq9+nVhGpQHQkatWtLqhAGB0g3pxRp0Ck4iiIHXqmQJPNnSAoqKVAeqhGjLPbpECkfXFYtRSkQKaJ2sshU6NA3m+Z9+uWokALMQnIBeChQMbMoBVgLqFA6OKyteqBoEB50JxWHGegQDYqXal5EqFA1aiP4f7CoUD796APvHiiQDw0fkLAM6NAOXzwdhn0o0Biqt+G1LmkQGrShRj9hKVAd4mdjZ1VpkBmZ5XyviunQE6T0+1oB6hA4okUr6HoqEAZpfDebc+pQDc9lI7Qu6pAtoW2J8utq0DRi9tcXaWsQJb27RmFoq1Afls9dT6lrkASI+6gg62vQMQMdG6mXbBAc26oNEjnsEDJss88oXOxQMvzKpSqArJA4J+3NVyUskBvhcYErSizQI2x+ceSv7NAQImvJAJZtEACaOGa7vS0QA/re4FKk7VA5ec2Awc0tkDC3PIbFNe2QB50oZZgfLdAD3i+C9ojuED+T17gbM24QMPa1kUEeblASigHOoomukCiQUKI59W6QJLT4MoDh7tA5C99bcU5vEAUtNyvEe68QAc5ianMo71AIsAcTtlavkAlHUFyGRO/QBHkZNFtzL9AazITCltDwEBMf7pr6KDAQDxINNrN/sBAYyNnpPlcwUCMvTSgWbvBQAFpcy/bGcJAdpo/RWt4wkBZ3KNr9tbCQLx5lcloNcNA8tpDKa6Tw0AKR7j+sfHDQOh2w25fT8RAKiE2VqGsxEBvYWFRYgnFQCWa28OMZcVAsy6G4ArBxUB+M9CxxhvGQCT0MSKqdcZAWvTcBJ/OxkCt15sejybHQGJm3S5kfcdA77Ll+AfTx0B9NCBNZCfIQAx/jRJjeshA8BlHUO7LyECP0RM38BvJQKPBBitTaslA0DkjzQG3yUDfh/8E5wHKQGugYAruSspADpLIbgKSykAfpvEmENfKQBIPMJQDGstADwa0jclay0DnP6ZpT5nLQNStGAaD1ctA6I7F0VIPzEDK7ZbUrUbMQCfB8LeDe8xAtQW4zsStzED2TREdYt3MQMNt0V9NCs1AvhabE3k0zUArbqR72FvNQIbcH6hfgM1AgJNDfAOizUAvh+uzucDNQJHb0eh43M1AFA9alzj1zUBCdusi8QrOQOLq19mbHc5A9eHL+DItzkAmcMWtsTnOQMsZkBoUQ85AGaTDVldJzkB/dkRxeUzOQIB2RHF5TM5AHKTDVldJzkDQGZAaFEPOQC9wxa2xOc5AA+LL+DItzkD46tfZmx3OQGV26yLxCs5ASA9alzj1zUDh29HoeNzNQKiH67O5wM1ANZRDfAOizUCS3R+oX4DNQLNvpHvYW81A9hibE3k0zUDzcNFfTQrNQHxSER1i3cxAEQy4zsStzEACyvC3g3vMQP35ltStRsxAjZ/F0VIPzEBOxBgGg9XLQPZdpmlPmctA1i20jclay0AwQzCUAxrLQLjp8SYQ18pA2ujIbgKSykDBDmEK7krKQLQSAAXnAcpAwuYjzQG3yUDmlgcrU2rJQOrVFDfwG8lAlFRIUO7LyEB6944SY3rIQE/yIU1kJ8hAoL3n+AfTx0AMxd8uZH3HQL2Qnh6PJsdAOA3gBJ/OxkDscDUiqnXGQKwW1LHGG8ZA33iK4ArBxUDOSeDDjGXFQMZyZlFiCcVAC447VqGsxEDVNsluX0/EQE9Pvv6x8cNA1x5KKa6Tw0DM6pvJaDXDQNNqqmv21sJAszVGRWt4wkD5/3kv2xnCQFk/O6BZu8FAw39tpPlcwUAFcDrazf7AQN9kwGvooMBABMoYCltDwEAcZG/Rbcy/QGDfSnIZE79AoLolTtlavkB/ZpGpzKO9QKMT5K8R7rxAscSDbcU5vEBMpObKA4e7QN9XR4jn1bpA9Y8LOoomukBxodpFBHm5QFWEYeBszbhAPCnBC9ojuEBGsaOWYHy3QKK09BsU17ZAe2g4Awc0tkBZIX2BSpO1QNpf4pru9LRAOE2wJAJZtEDxSvrHkr+zQEz8xgStKLNACvu3NVyUskAIOSuUqgKyQNbmzzyhc7FAL5WoNEjnsEBOKXRupl2wQKxM7qCDra9AkHk9dT6lrkARDO4ZhaKtQASb21xdpaxAW5C2J8utq0CVRJSO0LuqQC2q8N5tz6lAU40Ur6HoqECfldPtaAeoQPBolfK+K6dAeIqdjZ1VpkAY04UY/YSlQNCq34bUuaRAgHzwdhn0o0BpNH5CwDOjQBb4oA+8eKJA5aiP4f7CoUBBKl2peRKhQH/QnFYcZ6BAuYr16a5IoEACh1dazvKgQHhavR8MoqFABRLHLHhWokB31XJ0IRCjQMpXl9kVz6NAK55FHmKTpEDuphvTEV2lQPLkkUYvLKZAZupNdMMAp0D9AIX01dqnQJXJeetsuqhAL1Ug+YyfqUB1efQoOYqqQLlsDuJyeqtAPviB1zlwrEBAyRT5i2utQNmbWGRlbK5AdCM2VsByr0AE2nqOSj+wQMxiaQXtx7BA+7qTtEFTsUBglx62QeGxQBHF5xPlcbJAJD4nwiIFs0C5Unaa8JqzQAlCQ1dDM7RAU4K3jw7OtEDw0xa0RGu1QMASnQrXCrZA94ngrLWstkDyWL6Fz1C3QPw71k8S97dABcqalGqfuEBw8Pqrw0m5QJ8nqbwH9rlAgocEvR+kukAUiad081O7QIzin35pBbxAW4dSTGe4vECLag4p0Wy9QPczUD6KIr5AYKS4mHTZvkAt7bYtcZG/QDni8/AvJcBAE78UyA+CwECEeLIIR9/AQNczhSLEPMFAFqsgDXWawUB3geRMR/jBQK7iQ/gnVsJAR/hivQO0wkBqeQjoxhHDQPVS4Wddb8NAUR8U17LMw0CD3yGBsinEQAIiEWpHhsRAk3/gVVzixEC1Ez3Q2z3FQBRVeTSwmMVAy3LAtcPyxUBcHoJnAEzGQApvEkZQpMZAKFN5P537xkCTzmw80VHHQAUTcSnWpsdAXVAZAJb6x0BB72PQ+kzIQAvBLMrunchAhIyvRlztyEAXPxXSLTvJQHfvBTVOh8lA3cc5fqjRyUAT3AIMKBrKQFbiyZW4YMpAwb13NUalykCJxcVwvefKQOu1bkILKMtAdD46Ix1my0D7LN0S4aHLQKlFqKBF28tANe7/8zkSzEDK7ZbUrUbMQNCiZrKReMxA8DRfrdanzEB2c8qcbtTMQKU+XBZM/sxAu43rdGIlzUDGWs/epUnNQGH52ksLa81ABZ31ioiJzUBqF0lHFKXNQK4eBA2mvc1AnbWsTTbTzUAynv9jvuXNQBYPWpc49c1A/DerHqABzkBHdusi8QrOQJhyF8EoEc5ALLmtC0UUzkA0ua0LRRTOQLJyF8EoEc5AeXbrIvEKzkBQOKseoAHOQJ0PWpc49c1AC5//Y77lzUDttqxNNtPNQLUgBA2mvc1AgBpJRxSlzUCuofWKiInNQFgA20sLa81AE2XP3qVJzUDQnOt0YiXNQIJUXBZM/sxA1ZLKnG7UzECBYV+t1qfMQHvhZrKReMxAB0WX1K1GzEBuZgD0ORLMQKzpqKBF28tAegreEuGhy0CYZjsjHWbLQN49cEILKMtAEsfHcL3nykDXV3o1RqXKQJo5zZW4YMpAORsHDCgaykDbHz9+qNHJQI+XDDVOh8lAiXQd0i07yUDqkblGXO3IQF3dOMrunchAXmxy0PpMyEA6eSoAlvrHQGIxhSnWpsdAYSiEPNFRx0CfJ5Q/nfvGQIjzMEZQpMZAV3ukZwBMxkDDwOa1w/LFQOiZozSwmMVAckBr0Ns9xUDUbhJWXOLEQDmXRmpHhsRAFodagbIpxEC4j0/XsszDQMoOH2hdb8NAX/JH6MYRw0ADk6O9A7TCQC77hPgnVsJA8G8lTUf4wUD/yGANdZrBQO/gwyLEPMFAcB/vCEffwECP2U7ID4LAQHr8KvEvJcBAr2MeLnGRv0CYzBiZdNm+QAasqD6KIr5AZf5eKdFsvUBgLptMZ7i8QMK74H5pBbxAKNbgdPNTu0AOpza9H6S6QASP1LwH9rlAkyUgrMNJuUBLXbqUap+4QLjC8E8S97dAfGjUhc9Qt0CQs/Kstay2QEfgqwrXCrZAbsUitERrtUBsDMGPDs60QP3MSldDM7RALjp8mvCas0BX0SvCIgWzQHtH6xPlcbJAn0EhtkHhsUDdu5W0QVOxQHvgagXtx7BAN/N7jko/sECavTdWwHKvQP/DWWRlbK5A55wV+YtrrUAAjoLXOXCsQJ7VDuJyeqtALcL0KDmKqkAfhyD5jJ+pQILreetsuqhAzxeF9NXap0CZ+U10wwCnQPXukUYvLKZAeq0b0xFdpUBkokUeYpOkQH1al9kVz6NALddydCEQo0AWE8cseFaiQCFbvR8MoqFAa4dXWs7yoED5ivXprkigQCBPMUK3JqBABeyM1HPPoEBknKMORH2hQKZI0cE3MKJAaTDlwV3ookCG0b7Uw6WjQBtZ0qF2aKRAMRSeoYEwpUB6vxoN7/2lQMb7MM3H0KZAiY4+ahOpp0CGcbb714aoQI8L5xcaaqlA7Dvyw9xSqkCHKwNkIUGrQIkYzqvnNKxAO4tmjy0urUBUlHg07yyuQLTd8eMmMa9AzboTfmYdsEA6qcLx66SwQP9L6v0dL7FA8tMSy/W7sUDYfrVza0uyQBHg6P513bJAvmhyWwtys0CpfUNbIAm0QOlMaK+oorRAl3Ju5JY+tUCUU0lf3Ny1QDrmuVppfbZAFWw/5Swgt0B8ZJbfFMW3QGO+yvsNbLhAnAjivAMVuUDpESJ34L+5QEoX+FCNbLpAuUWERPIau0DY9cwh9sq7QEqknJF+fLxAAUANGXAvvUAZ+sIdruO9QBVQ2Ooamb5AOZJ8tpdPv0CZ1iJUggPAQLK/GnCgX8BAZEA5PxW8wECcf9lVzxjBQFHVLNG8dcFAotEgXMvSwUCq2Js06C/CQHzhDjEAjcJA7J9axv/pwkCWGwYO00bDQAVwxMxlo8NABi1HeaP/w0BtiVpDd1vEQChXSBvMtsRA/2R+uYwRxUAXunSmo2vFQBHYz0L7xMVAI/S6z30dxkDn3HV3FXXGQO0KElasy8ZALiVagiwhx0B0EN8WgHXHQFRyJTuRyMdAeGXuLEoayEBS9ZVJlWrIQHnUgRdduchAWKGaT4wGyUA68snmDVLJQDVLdxfNm8lArQ7+arXjyUAMbBbDsinKQPlHK2OxbcpAFRaX+Z2vykDYncGoZe/KQLCqGBD2LMtAXbPdVD1oy0A9lcIqKqHLQOOVT9yr18tAbfgMU7ILzECEk2ofLj3MQNP5X4AQbMxALvC/akuYzECgGjqQ0cHMQHL8BWaW6MxAOp4yK44MzUAlaJburS3NQDn+WpTrS81AMC8h2z1nzUBpTblgnH/NQC+TbKb/lM1ANoHUFGGnzUCOdT3/urbNQDYMkqYIw81ADy/NO0bMzUClEfHhcNLNQIytga+G1c1A1q2Br4bVzUCPEvHhcNLNQM8wzTtGzM1ALA+SpgjDzUBYej3/urbNQMqI1BRhp81AAJ9spv+UzUCgX7lgnH/NQPlKIds9Z81AJyhblOtLzUDPppburS3NQOr6MiuODM1AKYQGZpbozEBX3zqQ0cHMQHMKwWpLmMxAyIphgBBszEBZx2wfLj3MQFMJEFOyC8xAjc9T3KvXy0DhWMgqKqHLQEZ85VQ9aMtAIBMjEPYsy0BJZM+oZe/KQIAiqfmdr8pA5LBCY7FtykARezTDsinKQOxDJGu148lAUV+nF82byUBX1gXnDVLJQH585E+MBslA8/3bF125yECL6wJKlWrIQCjBcC1KGshA1NW/O5HIx0BgE5QXgHXHQMY8LIMsIcdA328DV6zLxkCIb4h4FXXGQF0g8NB9HcZAZnooRPvExUBkB/Gno2vFQJvWHbuMEcVAv5wJHcy2xEApgjtFd1vEQLzoRHuj/8NAKTnbzmWjw0DeiTEQ00bDQDKzlcj/6cJA7iNUMwCNwkCmhuU26C/CQHsFaV7L0sFAwrRt07x1wUCjaA1YzxjBQFrzWkEVvMBAh4QlcqBfwECBmxJWggPAQOpyH7qXT79AR3U57hqZvkBj894gruO9QBA54htwL71Ank8qlH58vEBrahQk9sq7QHTSh0byGrtAYA+7Uo1sukBqlah44L+5QEHMML4DFblAStXm/A1suEAiDoXgFMW3QDDoBeYsILdAoE9dW2l9tkC4gs5f3Ny1QJnn2eSWPrVA+yC+r6iitEDgWodbIAm0QJuHp1sLcrNAlgkS/3XdskAbEtVza0uyQEXOKsv1u7FAgVL8/R0vsUBWE9Dx66SwQMecHX5mHbBA/UcA5CYxr0Cz/II07yyuQIX7bY8tLq1A6VvTq+c0rEBH2wZkIUGrQFLK9MPcUqpAxMzoFxpqqUDForf714aoQN9bP2oTqadAhIQxzcfQpkCdGRsN7/2lQAdPnqGBMKVAHn/SoXZopEDV6b7Uw6WjQM4/5cFd6KJASFLRwTcwokBeoqMORH2hQLLvjNRzz6BAXFExQrcmoEBCJqx+TAGgQEyk6iiCqKBAYZoFuL9UoUCt67PYFAaiQHI2azyQvKJAmbEiiT94o0Aazf1ILzmkQLH059lq/6RAjz0rXfzKpUDULAyn7JumQI0ldS5DcqdArWe8/AVOqEC634+dOS+pQL9VEg/hFapAydI1sv0Bq0CfVV87j/OrQGIoYKOT6qxAS1rRGAfnrUC8CN7x4+iuQNFBiZ4i8K9ARjC+zVx+sEB9ZrWyTgexQEkGjDbgkrFAAIIGhgkhskChmwS9wbGyQJlZnuH+RLNAS5Cr37Xas0CyI7yE2nK0QJMCh3xfDbVAh7TVTTaqtUBoJfJXT0m2QJwknNCZ6rZAo9OLwgOOt0Dr/oUMejO4QMsUB2Ho2rhAAiKJRjmEuUBv6GgYVi+6QI3MbQgn3LpASvj3IJOKu0AIr9dHgDq8QPdl0EHT67xAesfJtm+evUA2VrA2OFK+QOPuBj8OB79AH+4pQdK8v0DrIKLUsTnAQPEW+3JQlcBAsINWuDPxwECfUlXrSU3BQPhdXeGAqcFA6ejJA8YFwkCBd3BVBmLCQEhQeHguvsJAYK6CtCoaw0B2ZSH95nXDQEB0mfhO0cNAh77uBk4sxEBz5DVJz4bEQGvrKKm94MRAuyz74AM6xUDSv2iDjJLFQMdZ/QNC6sVA5GGOvw5BxkC6w+ME3ZbGQKHSih2X68ZAUGHOVic/x0DIAc8KeJHHQJY3tqlz4sdADD//wgQyyECC6c8OFoDIQHrvW3eSzMhAGf9MImUXyUD1til6eWDJQLyrtTe7p8lAQIpEaxbtyUAQX/qFdzDKQKIJ82LLccpAm+JKUP+wykBIowIYAe7KQAKouAi/KMtA0rcx/idhy0A5katpK5fLQKKW81m5ystAYBQ8g8L7y0C3vqpGOCrMQBsvm7kMVsxA91WQrDJ/zEAZCNCxnaXMQN4FpCNCycxAdhQ8KhXqzEDUAC3BDAjNQPiliLwfI81AdVaLzUU7zUCPUtuGd1DNQHNAV2CuYs1Ap+twuuRxzUAq4hHhFX7NQA3aBw4+h81A+h/3alqNzUDQptESaZDNQCSp0RJpkM1Afif3alqNzUBq6AcOPofNQHv6EeEVfs1A/xJxuuRxzUC2fldgrmLNQKqz24Z3UM1AJOyLzUU7zUA+iom8HyPNQGRZLsEMCM1ASRc+KhXqzEBW/6YjQsnMQAlj1LGdpcxAC6aWrDJ/zEALPqS5DFbMQLuct0Y4KsxAeixOg8L7y0DkxgxaucrLQIJHzmkrl8tA2hJh/idhy0CGnPgIvyjLQKgkWBgB7spAqQ28UP+wykAYUIdjy3HKQC6xuoZ3MMpAtns7bBbtyUBHkO84u6fJQK+ytHt5YMlALgY5JGUXyUDVsLp5kszIQHWgtBEWgMhAg2h+xgQyyECBKOWtc+LHQCteww94kcdA+XSdXCc/x0AIz0gkl+vGQMjoogzdlsZAxxleyA5BxkAjUukNQurFQDwMeI6MksVAkX8v7QM6xUAx8n22veDEQD7UoFfPhsRAPRteFk4sxECjGvUIT9HDQJfcSg7ndcNA3cBVxioaw0BQ6cuKLr7CQGm7F2gGYsJA33yVFsYFwkBqzxz0gKnBQKGM2P1JTcFArD9vyjPxwEBSNn6EUJXAQP7eaOWxOcBAP8r7YNK8v0BrceZcDge/QH3Uc1I4Ur5AoQBV0G+evUCWUhRZ0+u8QHHS0VyAOrxAYUaxM5OKu0DJO/kYJ9y6QMPJ4SZWL7pAbFkRUzmEuUCGS8Vr6Nq4QLjloxV6M7hAvoc0ygOOt0AcxfrWmeq2QHyiMF1PSbZA39wbUjaqtUBwz/l/Xw21QHZAfYfacrRAuxfZ4bXas0BZwVLj/kSzQErFVr7BsbJAIukJhwkhskDqAlE34JKxQGd8SbNOB7FAymQszlx+sEA+oyufIvCvQPJ1VPLj6K5A8NomGQfnrUDYRJ2jk+qsQNGSijuP86tADRxUsv0Bq0DVVScP4RWqQAtKnp05L6lAWTPG/AVOqEB2vHsuQ3KnQDeQEKfsm6ZAJCIuXfzKpUAG2OnZav+kQFwF/0gvOaRAT3kjiT94o0DjtGs8kLyiQOs6tNgUBqJAi8sFuL9UoUCAwuoogqigQKA4rH5MAaBAE5rj4g+xn0BSOwSyE36gQL4q9IaaKKFA4GQL9SvYoUAZbFKI1oyiQC62/MOnRqNAYOc8EqwFpECwVQq07smkQB2E4bB5k6VAnqmJxlVipkDJt+lYijanQNKu92EdEKhA2WHNYRPvqEDMHO5Ob9OpQNnkyIYyvapAbk2Dvlysq0D/Exn066CsQOTl3F/cmq1AW9tmZiiarkAtUf2KyJ6vQCJwQrFZVLBAaB6Cw+7bsEAGZOTFHGaxQK9KHPnb8rFAWkevjyOCskDCoR6p6ROzQPxgek0jqLNAMNFjacQ+tEBrlIXKv9e0QOsIhxwHc7VAMaGA5ooQtkAclvaIOrC2QIIhXzwEUrdAJC85ENX1t0BdLLjqmJu4QEVSCYk6Q7lA9nQ2gKPsuUCuCqo+vJe6QP/AVw5sRLtAIZSMF5nyu0A29WhkKKK8QHwgB+X9Ur1A3lNPdPwEvkDBIXvdBbi+QFKjSOL6a79AoOjuoF0QwECC5S3gEmvAQBOpkBcMxsBAip3dujchwUAfh8DNg3zBQGTG7ejd18FAWCGZPzMzwkDHYz6lcI7CQIHiuZOC6cJAo6iuMVVEw0AG0jdZ1J7DQNtS4p7r+MNA9CnsWIZSxEB1usWmj6vEQBbK0XjyA8VAgGNgmJlbxUCkoOCvb7LFQMMnRVNfCMZAye6WCFNdxkAVpbFQNbHGQHXyJLDwA8dAoow1uG9Vx0Bg+vgPnaXHQKa0hn1j9MdA2TM5761ByEA8WPmEZ43IQKOCjpl718hARJzty9UfyUAbO4EIYmbJQHwDZZIMq8lAOl+ODMLtyUCrn9yCby7KQCyhCnMCbcpAfA181WipykCZZeAlkePKQGcMpmtqG8tAj6A3QuRQy0CJDv7g7oPLQNziISN7tMtAn4gGj3riy0DaSHpd3w3MQMkMloCcNsxApxZIqqVczECuGoVS73/MQBtcG71uoMxAOLAj/xm+zEADiwwE6NjMQMJ+O5LQ8MxAGeBBT8wFzUBBjKHD1BfNQPgcH17kJs1AVSefdvYyzUAadYxQBzzNQNV9xRwUQs1AQrsP+xpFzUC6zA/7GkXNQCy2xRwUQs1A0+CMUAc8zUC73Z929jLNQB9EIF7kJs1ATl+jw9QXzUCDuERPzAXNQJThP5LQ8MxAZzsTBOjYzEDyyC3/Gb7MQA1yKr1uoMxAzmqbUu9/zEBawmiqpVzMQM5nxYCcNsxATjy+Xd8NzECqDmePeuLLQHieqSN7tMtABQK74e6Dy0DbBDxD5FDLQBpJCW1qG8tAyyfAJ5HjykA6eP3XaKnKQAePW3YCbcpAY+g0h28uykAZEDESwu3JQCZ0oZkMq8lAReSzEWJmyUAWkoDX1R/JQG1y+ad718hApujAlmeNyEAWqe0ErkHIQEO/wZdj9MdAnp9aL52lx0DOImDdb1XHQC86uNvwA8dABhlFgzWxxkAudbNCU13GQNViXpVfCMZAIStO+m+yxUD/UlfrmVvFQOjYXtTyA8VAS3zICpCrxEDmqBPFhlLEQIBlqxLs+MNA7mbt09Sew0A6KWyyVUTDQJOwbxmD6cJAt1O4LnGOwkCWsobLMzPCQNC963Xe18FAGXdjWoR8wUDg1rxFOCHBQNMIUZ8MxsBA7vWLYxNrwEDP18ceXhDAQEGp+tD7a79AmMqSvQa4vkDfD5RE/QS+QGr+pKT+Ur1A1DfvEimivEBkk+i0mfK7QJKlzJpsRLtAERTGuryXukC3jMbso+y5QDOzC+c6Q7lAYNpOO5mbuEDQ55xU1fW3QERQ03UEUrdAl7S+uDqwtkCqSNcNixC2QK7WljwHc7VA5+Nj5L/XtEB/NA1+xD60QFas0F0jqLNAdVHotekTs0AgAJiZI4KyQKkytgDc8rFAehWqyxxmsUD2+tjH7tuwQM0jfbRZVLBAfGm/j8ier0CKO99pKJquQAVLXmLcmq1ApIDj9eugrEDNqMe/XKyrQNkVrIcyvapAdqWLT2/TqUCchDliE++oQBQqQWIdEKhAIiYbWYo2p0ColKrGVWKmQJw397B5k6VAWH8YtO7JpEDGDUYSrAWkQE+QAsSnRqNAoSBWiNaMokBitw31K9ihQKCb9YaaKKFA6B0FshN+oECireTiD7GfQPLaZwUKWZ9ACJBf9kRQoECAw+Yo8vigQMX6+PObpqFA+Uo3u1BZokCSTU3cHRGjQItF8p4PzqNAtbXbJDGQpEDf/KpZjFelQNbv3+IpJKZA8cfaDxH2pkDoFfjJR82nQAu90YTSqahANkiwLrSLqUAbMTgh7nKqQGPyXhKAX6tAPPWzBWhRrEAMmwk+okitQJnLii8pRa5A+Y1JcvVGr0ANpKna/iawQI2lK1kbrbBA9Cn2kMk1sUC7zkDYAcGxQKEGBHq7TrJAUfEvsezeskAWk0ukinGzQLVvgmGJBrRA52km29udtEC/oavkcze1QLLeIzBC07VAf94+TDZxtkAJqdSiPhG3QFXJ/ndIs7dA9wbF6T9XuEDj72HwD/24QKIxI1+ipLlAvmrp5d9NukAtwUoTsPi6QJgpW1f5pLtAPOUcB6FSvEB+UZtgiwG9QPK0sY+bsb1AN0J/s7NivkDiEYnktBS/QIRZijt/x79AXVR57Hg9wEC2uYh2dZfAQEjXduCj8cBAgd/jX/JLwUDtuaHATqbBQESfG2qmAMJAVKkOZeZawkDxZ5Fh+7TCQD1IaL3RDsNASVikilVow0C8romWcsHDQFJ8unAUGsRAEI2jciZyxED9vybHk8nEQHm/f3JHIMVA9ghfWix2xUCoGjdOLcvFQPBmtw81H8ZAlHpwWy5yxkDGkZzxA8TGQGOrB5+gFMdAmf8RRu9jx0BMmcfn2rHHQFSvB61O/sdAKTy27zVJyEDVOPJDfJLIQOzJSoEN2shARJzty9UfyUBFosidwWPJQLBamc+9pclAfMbjobflyUD6NMvFnCPKQLwTx2VbX8pAY/stLuKYykB4QpFVINDKQIp046QFBctATiZkf4I3y0CdvUvqh2fLQGboMZQHlctAhaUp3PO/y0Ba743YP+jLQAxJel3fDcxA+KTqAscwzEA3VH4q7FDMQIvs2QRFbsxAQ1OklsiIzEAaYBu9bqDMQBzTPDIwtcxAOKOAkAbHzEAp+SFW7NXMQOl59Ofc4cxAoNbDk9TqzEDv6zuS0PDMQEEQWAjP88xA6odYCM/zzEDcbT2S0PDMQHu4xpPU6sxAQVv559zhzEDX3ilW7NXMQFYijZAGx8xAe1BQMjC1zEAGazm9bqDMQIAk0pbIiMxA9hQfBUVuzEAUqeUq7FDMQOR6gwPHMMxAPxFaXt8NzEB1TdLZP+jLQNEV+93zv8tA+Q7HlgeVy0Cvde3th2fLQNRkcoSCN8tAiQrbqwUFy0AqgBJfINDKQO4lBDvimMpA3orwdltfykB4DYLcnCPKQOKApr+35clAxD4z9r2lyUAkJ1nPwWPJQAwn7grWH8lAK/SR0A3ayECawLOmfJLIQHi9fmk2SchA4lWzQU/+x0CGHHOb27HHQA50BR3wY8dA3QObnaEUx0DKDBYcBcTGQGWr3bUvcsZAEgPCnTYfxkBOLvcSL8vFQNuiLFgudsVALXvGqkkgxUDIyz06lsnEQOXSrB8pcsRAjm+LVRcaxEC75p+vdcHDQGOVJ9NYaMNALsw6L9UOw0B9t271/rTCQJnqtxLqWsJAV+iPKKoAwkD011+GUqbBQKZ5MiP2S8FAN2Cvl6fxwEAkcGEYeZfAQBOkSnB8PcBAoCeO94XHv0AzYoJHuxS/QF8vcrK5Yr5AK1FBIqGxvUAT4xuBkAG9QI4zirKlUrxAgmo1jf2ku0Af+F3Vs/i6QBDwAzjjTbpA+pfARqWkuUAHmE90Ev24QMNvxRFCV7hAkhpwTEqzt0BDMF4sQBG3QKNKiJM3cbZAzRGYPUPTtUBoAUjAdDe1QBTBVozcnbRA6sEI74kGtEBmuDIUi3GzQPx2xwjt3rJAE57jvbtOskDMiFEMAsGxQKzOf7jJNbFAk6HkdhutsEDmPMjw/iawQDkM4ZL1Rq9A8tVPRylFrkCn6zJPokitQCz+9xFoUaxAf6sMG4Bfq0AhXkwn7nKqQHhU5zK0i6lAhG22h9KpqED8Z+/LR82nQH1dLRER9qZA52nB4ykkpkD+oT9ajFelQAi4PCUxkKRAFvIwnw/Oo0AwY3XcHRGjQAusULtQWaJA/+II9JumoUA7ovAo8vigQBKgZfZEUKBAcjpvBQpZn0BXTTckwvqeQP3ShYg0H6BAsUmCbObFoEBGrpXphXGhQJZOGjghIqJA9tiIjcXXokATnakMf5KjQItpt7VYUqRAb359VlwXpUCVbnp6kuGlQFEnElsCsaZAR67Zz7GFp0AxeAc/pV+oQAOIE47fPqlABsySEmIjqkD7bVmDLA2rQFgC8Ok8/KtAsbJnlI/wrEAvppkHH+qtQLsI3vHj6K5A4yZHHtXsr0A3jza083qwQJ5Sa9gGArFA2a4FaZyLsUDmDS7LqxeyQOuuNlcrprJAzghIVBA3s0DaQ3r0TsqzQF2aYVHaX7RAXUkTaaT3tEAqjagbnpG1QFTzRCm3LbZARxKlMN7LtkBjeDquAGy3QPJf2fsKDrhAtmr8UOixuEB4WKLDgle5QA9WyUnD/rlA4ieLu5GnukD+Et3V1FG7QMQC9j1y/btAKQBdhU6qvEADoaEuTVi9QGSkv7JQB75Ak3ouhzq3vkBU/pwk62e/QFWULAehDMBAVIQx7Y5lwEAg5BQdrr7AQGmB+AHtF8FA8hZunjlxwUBZp86RgcrBQC/Y4R2yI8JAgGTTLLh8wkCdenRXgNXCQKOWxuv2LcNAgSnN8weGw0BoG6M8n93DQA/50F2oNMRAM13gwA6LxEBr6yipveDEQCL30jugNcVAmbkLiKGJxUASxGaPrNzFQNAoaE6sLsZAXKUyxYt/xkBF7FQANs/GQOoCsSGWHcdAdIJ4aZdqx0BLaTg/JbbHQCoM7zorAMhAhJwmLpVIyEAZpA4tT4/IQM7EjpdF1MhAGf9MImUXyUBauaHfmljJQHq/c0jUl8lAgHP2RP/UyUA1bkQ1ChDKQDDa0PnjSMpAwuOp+3t/ykD4rIY0wrPKQMROmzan5cpA244tNBwVy0DmFOUGE0LLQHwR0jZ+bMtAgHUlAVGUy0BJCZZef7nLQH7nbQn+28tAshg8g8L7y0BQSSYawxjMQOLT1u32MsxAbp0D9FVKzEDxiIr82F7MQKOQILV5cMxAy+CQrDJ/zED9nolV/4rMQAda9Ajck8xAM3LYB8aZzECwHsZ8u5zMQBoLyXy7nMxA8d/hB8aZzEDjYAYJ3JPMQOgkqFX/isxAN0XCrDJ/zEA5uW61eXDMQIRuBP3YXsxAmoO/9FVKzEBcY/Xu9jLMQAPU1hvDGMxAxV/ChcL7y0AWzSkN/tvLQEOpDWR/uctA/y8SCVGUy0D0HDFCfmzLQLMwDBcTQstAQmfkShwVy0AiCzpWp+XKQK30GWDCs8pAS2EcN3x/ykAt4xlK5EjKQGv4mqAKEMpAYuMG0//UyUByaJYC1ZfJQKsiD9GbWMlA8jZMWGYXyUBwTpkhR9TIQNLz5BxRj8hA9LPPl5dIyECLvJ00LgDIQLgfEeEotsdAIF4zzZtqx0A+WhVimx3HQGBUjTg8z8ZAzfj6D5N/xkCy0xnFtC7GQLiX6ki23MVA6YC7l6yJxUDBs1ewrDXFQEzEZIvL4MRA75X0Eh6LxEARjVAauTTEQH6pAVax3cNAEK0XVBuGw0AxCbB0Cy7DQMMOvOKV1cJA5OIEjc58wkBRH2sfySPCQDzWX/yYysFA6POUNlFxwUAApuOKBBjBQPZ2aFrFvsBAEhDWpKVlwECL9AADtwzAQEy8T0MVaL9AORj7eGK3vkB7YPMydge+QLY77ghwWL1AX8lKlm6qvECGMKdyj/27QJNlMivvUbtAUrzBPKmnukC8IK8O2P65QBXfge6UV7lAqvhgDPixuEB5UUt4GA64QG+5DyAMbLdAHw39zefLtkCOc0Eovy22QBcZ77CkkbVA4KGcxqn3tEB+1Zel3l+0QCuZoWlSyrNAvBErEBM3s0CjnQx7LaayQAInsHOtF7JALgaprp2LsUCpPrTPBwKxQFJHHG70erBANpP3Mtbsr0A5rLW95OiuQNv+Q5wf6q1A30u9/4/wrEBSFKc2PfyrQPb/oLksDatA1sKXOGIjqkA8V3Co3z6pQIwLIFGlX6hAqKcl3LGFp0BbzFdjArGmQB+o/H+S4aVAWy4fWlwXpUCWJRa4WFKkQD+aMQ5/kqNAVY2DjsXXokDuCbk4ISKiQK8r+emFcaFA9gTAbObFoEATvquINB+gQI5qZSTC+p5AW95MrHaWnkDs4BbKBdafQNrAQR6Zj6BAbE0x/Aw5oUAi6iqJbOehQFTp48/EmqJApYnayyFTo0BmL6xZjhCkQMPCZicU06RAt+zepLuapUB7SRX0i2emQLT9tNmKOadAKW62rbwQqEAfJTFMJO2oQOg1aAbDzqlAvK0clJi1qkBr1zEFo6GrQLhGr7PekqxAl8YsNkaJrUDPYrRS0oSuQMHaJvJ5ha9AZ2oXCplFsEC/lefh9sqwQJxRTAbPUrFAzqFJ+BjdsUD1t3Mvy2myQOdXqRXb+LJAB/I5Az2Ks0CYMH075B20QMaO4enCs7RAk2N3H8pLtUDfmP3Q6eW1QJQOddUQgrZAFWw/5Swgt0Ci3s2ZKsC3QKb54231YbhAbp9yvncFuUBChA7Mmqq5QBmEBb1GUbpA0aQVoGL5ukDKOshv1KK7QDE+cxaBTbxAC3Lickz5vEAXjqldGaa9QNQnIK/JU75ASZ8HRj4Cv0B82doOV7G/QFGK44V5MMBAT1GmLniIwEAz6sIlluDAQPruCKjBOMFAJHtQkOiQwUAROQ9d+OjBQPWJOjbeQMJAUaN084aYwkAoO4Ii3+/CQJcbBg7TRsNAH7Z/xE6dw0BfkIkfPvPDQNQmVMuMSMRAjaZZTiadxEBGpUYR9vDEQAPIE2fnQ8VAhxNMleWVxUCqb3vc2+bFQIS3wIC1NsZAN4R+0l2FxkBntyU3wNLGQD6lFDLIHsdAfJyFbWFpx0B5bYfDd7LHQIB3+kb3+cdA366MTMw/yEDn/K5z44PIQO9Ofq8pxshAWqGaT4wGyUCsUOYI+UTJQBf8J/5dgclALUuJyKm7yUC28+x/y/PJQB1sFsOyKcpAD8ydv09dykC1dao5k47KQK9Ab5NuvcpAEgJj1NPpykBUdDCwtRPLQK+tWI0HO8tAWoODi71fy0A5bHmJzIHLQOutwioqoctA0trn3My9y0CV50/cq9fLQHZhuDi/7stAVZVE2f8CzEBGwCCAZxTMQDCvts3wIsxAKoFxQ5cuzEDgkQ5GVzfMQITkeR8uPcxAZb00ABpAzECIb0UAGkDMQDK9rx8uPcxA+oR1Rlc3zEDV0R9Ely7MQHnC0M7wIsxAuxvfgWcUzEDhufzb/wLMQCt16Ty/7stAvW204qvXy0AKEY7mzL3LQAaFLTkqoctAR3nMnsyBy0DyqLyqvV/LQAeWmroHO8tARDMh8bUTy0D/SKIw1OnKQGxfJxVvvcpAhNo+7pOOykBot3i4UF3KQFUDlha0KcpAU7RtSs3zyUDcDYktrLvJQA0+eSlhgclA7XPnL/1EyUD+bWCykQbJQD+B3JkwxshAaXcFPuyDyEAwdjxc1z/IQLh4Yw4F+sdA9cZvwYiyx0CwOs0rdmnHQM7tnEPhHsdAVPTcNN7SxkANx4lXgYXGQOm0zCXfNsZA+rpMMgznxUDWLrgeHZbFQLlqnZImRMVAk+6mMj3xxEAMF0yYdZ3EQDW0AkrkSMRAcqj3s53zw0DOtE0htp3DQN482rVBR8NAg71QaFTwwkD3m8f8AZnCQAh3fP9dQcJARMi7v3vpwUDHu89KbpHBQF3N3GZIOcFAicqXjRzhwEDE6sfm/IjAQP0kkEL7MMBAuvwHJ1Kyv0BC2ynRLgO/QL2O2s2tVL5ARpCnh++mvUCvaG19E/q8QOHI/TY4TrxA986TOnuju0AD0E0D+fm6QLE92fjMUbpAjuNvaBGruUAUFjd/3wW5QE3ZAkZPYrhAY7BxnnfAt0CXp0pBbiC3QOXg/r1HgrZA3sYqexfmtUAlAPG370u1QD8ACo7hs7RAgh1m9PwdtED/wETCUIqzQGTnqLLq+LJA0hsZaNdpskANyJ5wIt2xQHe+/UnWUrFAe/ggZvzKsEBdhrwvnUWwQJYzTR6Aha9APgHV3taErkDN+DCHSYmtQNaoqRjhkqxATANPu6Shq0BtLRnKmbWqQGxliN/DzqlAcA+/4iTtqECnsw4VvRCoQEnS7h+LOadA4PxSI4xnpkA1m1TEu5qlQHchJDwU06RApzI1Z44QpEDOJ5nUIVOjQFaqe9XEmqJAXWu1jGznoUA5e2n+DDmhQCRMoh+Zj6BAuvnHywXWn0D+OFStdpaeQJgOgnNpLJ5AYFuHnaRnn0DRwzfjLVagQB3Wlj1W/aBAZsSDN1mpoUAcJnyuQ1qiQHnVcnQhEKNAO3dcQP3Ko0AXOLee4IqkQAlYF+LTT6VAPXfCE94ZpkC/7WPkBOmmQFzI5JxMvadAnk9yD7iWqEAyQr6ISHWpQKwphMH9WKpAdGZf0NVBq0BSvv0bzS+sQH9euk3eIq1A51+tRAIbrkA48DsJMBivQFammmAuDbBAZ15E0r2QsEC9WFD5vhaxQEiMN3Qpn7FAc2ub2/MpskA+GA++E7eyQMzYSpx9RrNAmnXP5STYs0C7BP/1+2u0QGV5sBH0AbVAFR5DZf2ZtUDn5zYDBzS2QMBUTuP+z7ZAZUM+4tFtt0Dv6+/Baw24QI7RWCq3rrhAGDPsqp1RuUCgJ6m8B/a5QAE3yMTcm7pAt9sKGANDu0Ar9a7+X+u7QP7FB7nXlLxACKu9hE0/vUAkRbWio+q9QBpZnl27lr5AmjAqEXVDv0CUyugxsPC/QOXV5aolT8BACVCmHhKmwEDLHZvuC/3AQJS0hTQBVMFAz2cFr9+qwUDQKmXHlAHCQFZEs5cNWMJAUpUg8TauwkCd1KRi/QPDQA3i5D9NWcNAvRVYqBKuw0CUM6mOOQLEQM9wT8CtVcRAEcBb7VqoxEB5YnawLPrEQJCHCJcOS8VAz5SNKeyaxUCvfgf0sOnFQMxxkY5IN8ZAeuILpp6DxkBb9NwEn87GQLoKwJs1GMdAMjWfik5gx0AGE3Ep1qbHQKiyFRG568dAXOIsJOQuyEB3WuCXRHDIQCcinPzHr8hAiYyvRlztyEBALdHW7yjJQO4pgIJxYslAIlk9nNCZyUB9rpb7/M7JQJaI/wTnAcpAG45wsX8yykAg5cmVuGDKQDGy8umDjMpAIvOwj9S1ykAA9TQZntzKQJrTU8/UAMtACKVst20iy0CrKvSYXkHLQNAcowKeXctAD2VDTyN3y0BP3hiq5o3LQDt34hLhoctA091wYQyzy0B7J9BIY8HLQFY5AlrhzMtA3QhIBoPVy0BaJPigRdvLQEVP4WAn3stAbl84YSfey0C37hCiRdvLQK/hYAiD1ctAsjePXeHMy0CaFI9OY8HLQH93iGoMs8tAr5wQIeGhy0D1mPS/5o3LQLdOmXAjd8tA5Gv0NJ5dy0CjoiLkXkHLQBu6nyZuIstA7FklctUAy0DKfzUFn9zKQApPVeLVtcpAQUj8yoWMykC33zo6u2DKQPTNGV+DMspAhk+xFuwBykBx4PTlA8/JQOHuLPPZmclApbcU/31iyUCOR49dACnJQMzZ4+1x7chAg/RvEuSvyEAeQL2naHDIQAys6voRL8hAUXtcv/Lrx0B2pa0DHqfHQPmv5iWnYMdArJYKx6EYx0CZ+xi+Ic/GQDTAtAo7hMZAvxCuxwE4xkBaO70diurFQGemxjbom8VAGhwGMjBMxUDr4H4ZdvvEQDKNBdnNqcRAru0nN0tXxEAfnB7QAQTEQGPF1BIFsMNAlsfuP2hbw0BLy5JqPgbDQAiNknqasMJAbLl2L49awkA00tUjLwTCQI4/VdCMrcFAyLW0jbpWwUBW+1KVyv/AQImTtv/OqMBAp8LKwNlRwEDjJF1D+fW/QFjlR3CSSL9Ah9i4t6GbvkBKyBU0Se+9QHnohU+qQ71AH3iHp+WYvEAKgKjwGu+7QIG8pNtoRrtAPWYI/eyeukCkgkG4w/i5QNm3xS4IVLlA1j+oM9SwuED1a7FDQA+4QIlyxYFjb7dAm/Qvt1PRtkCFG0BXJTW2QKHqh4XrmrVAYj4IHrgCtUD9TZi+m2y0QJKu6NCl2LNAQ3CblORGs0C/bAkpZbeyQJPibJYzKrJABx5I1lqfsUCSA/ra5BaxQIpciJbakLBAJhq4AEQNsEAppiw5UBivQIAHNPsZG65AC9AOme8irUCkQXaY2S+sQDao/LzeQatAxyP9EQRZqkB6wvr0THWpQNM0iSC7lqhAki7Nt069p0AKKZhSBummQL35GgrfGaZAYokkhtRPpUAkxN0K4YqkQBhS8Yb9yqNAonUMoiEQo0BqQabLQ1qiQCPh+klZqaFA77EpSVb9oEBlKWbqLVagQBrPWaakZ59AslvfeGksnkBz7Kpw37ydQBM8rlKN855AOCUiEsoZoECa0pGCiL6gQF0/FqEPaKFAxVCeG2wWokBLLWuYqcmiQBri1abSgaNAAVAQsPA+pEBx1OrnCwGlQJZ9qD0ryKVAnuzrTFSUpkBlWcdOi2WnQFF0+grTO6hAICZpySwXqUC9atZDmPepQO247pcT3apAcZatOZvHq0DEHSrmKbesQEBX1pa4q61Af1s9dT6lrkACP0zPsKOvQBnkGIaBU7BAhnPwUJPXsEBY6aCFBV6xQNnIjt/O5rFAEcXnE+VxskBsQOTNPP+yQFYYd6vJjrNAyCtxOn4gtEBo4B32S7S0QEa5XUUjSrVAx9tDefPhtUD4IjvMqnu2QPEft2E2F7dAZh51RoK0t0Au+FBxeVO4QB8wscQF9LhA43WNEBCWuUAMWBIVgDm6QCKJ5IU83rpA9rYFDiuEu0ASilxUMCu8QJn14AAw07xA3I5twgx8vUAuLzZVqCW+QIyr44njz75ABvNTTZ56v0CPtH7Y2xLAQG7p+fmGaMBA6VZGRj++wEBEJFAZ8xPBQLk4MnWQacFAPInuBwW/wUBhRm8xPhTCQPCUzgkpacJAiTziZ7K9wkBpeQjoxhHDQGHhMvNSZcNAxxAsxkK4w0DwmRR5ggrEQC56Ewf+W8RAKiE2VqGsxEBh5Hs/WPzEQJCHCJcOS8VAFFV5NLCYxUBCFlj7KOXFQFMUp+NkMMZAHSaBAlB6xkCLrsiS1sLGQOVS4P3kCcdATBdo5GdPx0Are/kmTJPHQAAf3e5+1cdAoXC0tu0VyEDL0xFThlTIQH+5+fo2kchAJBpHUO7LyEC5zO1nmwTJQO4/FdItO8lAgikGopVvyUBj1OV1w6HJQJ/OOX6o0clAr9UuhTb/yUA6AZ71XyrKQPVSy+EXU8pAkvzYCVJ5ykD52+rhAp3KQNLg9ZcfvspAA0Y3GZ7cykD3xE8XdfjKQHoo/wycEctA2eh8Qgsoy0D9w2rRuzvLQC2SXqinTMtAwuwAjslay0Cal74jHWbLQHwDC+iebstACLAyOEx0y0CRs7xRI3fLQBFBW1Mjd8tAOq1rPUx0y0BrOAfynm7LQDnIpjQdZstAfMRcqclay0Cre6nTp0zLQFjG7xS8O8tA6RORqgsoy0DXirmrnBHLQIxc5gZ2+MpAJLExf5/cykCfa3CpIb7KQPQ2LukFncpA5XmTbVZ5ykDAmj4uHlPKQDkBFuhoKspATSYSGkP/yUBDevYButHJQFXd5JjboclAKfypj7ZvyUAElZFKWjvJQERjgdzWBMlAcIwJAT3MyEBowQsVnpHIQGIUkQ0MVchAj0dkbJkWyEB4lg0yWdbHQFT138xelMdAwQ7oBL5Qx0ALebvkigvHQGHXYZ/ZxMZAhFbXc758xkBI0/OOTTPGQN7fzeya6MVAD0b1OrqcxUDhNhW9vk/FQDO7qjW7AcVAHNV41MGyxECKzjss5GLEQN81zjAzEsRAm5t9Pr/Aw0AAFLkqmG7DQAnAmV3NG8NABKsT823IwkCh+vLhiHTCQNF4NyYtIMJACpL262nLwUA51ba3TnbBQCAgQInrIMFAuHUj9lDLwEAtNME5kHXAQPD4STm7H8BAx1Ud9siTv0CjnrciPui+QNeG/fP8PL5Aggm56CySvUBf7j+h9ee8QBJ12HV+PrxA7VRPC+6Vu0C06bnrae66QC2tvSgWSLpAc4q2CxWjuUDeItXWhv+4QJ6j7ZiJXbhAfktQFDm9t0BR58O3rh63QDn/r6cBgrZAVQXA1EbntUDZ69EckU61QART2HLxt7RAYkJzCncjtEAzOlWEL5GzQPljBRknAbNAdNghwGhzskAnSN5S/uexQHASDqnwXrFApXuKsEfYsEAZVS9/ClSwQPFt7b9+pK9A2F3et9elrkCpfsJ/KaytQPpe+j58t6xA3ai7rdbHq0CreioWPt2qQBGns1S296lA3TmT2EEXqUARQDKl4TuoQGxbzFSVZadAmt+bHFuUpkDDU6PSL8ilQJ0+DfUOAaVAXlIGs/I+pEBwEun204GjQM9ci3GqyaJAP1J8pmwWokADewL5D2ihQIyHrbmIvqBAwrRTNMoZoEBv5a98jfOeQD3sNYrfvJ1Aw9MFcSBInUAlCeykCnqeQMw1FhYptZ9AC3LyOMx8oEBdfwXNuSOhQPUbbMNpz6FA2YurlOd/okDd66emPTWjQG/5oD1176NA7YMzbZaupEDpL2kJqHKlQL+H4JevO6ZAs6MXQbEJp0AQ/OPBr9ynQAo6Il2stKhAWxipzaaRqUA+mIo4nXOqQAr9rh+MWqtAWiXVVG5GrECc9APtPDetQFSUeDTvLK5Ap10do3onr0CpnspoaROwQCytc7d0lbBAdVprG9cZsUAhqnh0h6CxQFk5MaB7KbJAaXFJdqi0skBRVVHFAUKzQNpD40960bNAUd1JygNjtEDoC6LYjva0QFD4fQ0LjLVAc3gN6WYjtkAARtDYj7y2QMID1jdyV7dAlc2PT/nzt0DhvTZZD5K4QMt9yn+dMblAqJqq4ovSuUDH+8yYwXS6QH5wk7QkGLtAd+VBSJq8u0CcZRZrBmK8QLOaAz9MCL1AWg8O902vvUDF/kve7Fa+QMsFh18J/75AFY9+DYOnv0DUq+RVHCjAQNf1KRyEfMBAf768eufQwEDM+lm6NCXBQNXU79BZecFABEeHZ0TNwUD9LHPg4SDCQMk/wl0fdMJAWDXxx+nGwkCo/9nULRnDQAbt3A7YasNA7DFA3NS7w0AfLsKGEAzEQG2JWkN3W8RAERImOvWpxECXFnmOdvfEQAPIE2fnQ8VAsgZ09jOPxUB21T+DSNnFQNaKw3ARIsZAaLh+R3tpxkDCo7q9cq/GQGoUJcDk88ZAsyVqer42x0Aou8df7XfHQKQqlTNft8dAZ6e5EQL1x0Bz9gt3xDDIQDD2lUmVashADIm24GOiyECXfRwNINjIQNsdlSC6C8lATiOp9SI9yUBa5QL3S2zJQCm1mCYnmclAHXuWJKfDyUAt0AE2v+vJQOD3E0tjEcpA+U5FBYg0ykB79gW9IlXKQMy7H4cpc8pAe329OZOOykAUkRRxV6fKQPr7rJNuvcpAd6hF1tHQykCKJVI/e+HKQNL2D6pl78pAAgoyyYz6ykBJmCEp7QLLQNCX1DGECMtAM/o6KFALy0D8WUUvUAvLQMZ+iUiECMtAuVuLVO0Cy0Dz87MSjfrKQKf2AiFm78pAwfGL+3vhykA3qdT70tDKQM1TL1hwvcpAsfQwI1qnykA9VWlLl47KQH6chpsvc8pAVkIRuytVykAr8+wvlTTKQBR3xmB2EcpAgzOMmNrryUAQtfwKzsPJQNlEO9pdmclA3rM0HZhsyUA3x23miz3JQEGwmUpJDMlAi9kTZuHYyEC+/RBgZqPIQMjsFWrra8hAT5AGuoQyyEA3Y/d8R/fHQICC4cBJusdAgbh4U6J7x0D0LLWUaDvHQGewLjy0+cZAq1gwEZ22xkBNpGyWOnLGQJKSaaujLMZA6xMGJ+7lxUDrX8RvLp7FQEpjrhd3VcVAzU+OgtgLxUC3FrGdYMHEQHhPW7AadsRAiMlrSw8qxEDCGVBdRN3DQMPFdW29j8NA54Hf/3tBw0CoiqQegPLCQI0KGwTJosJAt7OK3VVSwkAZy8qbJgHCQBQYY8U8r8FAX0ThPJxcwUB9STjuSwnBQAWbOFdWtcBAuTxt4clgwECXUsAGuQvAQE3A7Ht0bL9AVxT/X8/AvkBhM+91vRS+QA4QMZZ+aL1AxZkoKVa8vEDKfBN2iRC8QA9p7uddZbtAXVFTYhe7ukB5kZC99hG6QDhM43w4arlAtJdPzBPEuEDoEpbNuR+4QBq1zzVVfbdARBTHNwrdtkDIz6Cy9j62QFMfEJkyo7VApbVQg9AJtUB4yGhd3nK0QDN9qyNm3rNAeTDdoG5Ms0AJrHIj/LyyQKXO4CERMLJAWKGNyK6lsUAxk3Ju1R2xQGfcs++EmLBAYeM877wVsEAx1IwD+iqvQKrMEIuJL65AhASR1Cc5rUClDRFb1EesQN7yxJyOW6tAFEVy+FV0qkBjj7+FKZKpQAngmewHtahACg7APu/cp0BX9YTV3AmnQJUJATXNO6ZAfbM99btypUCOF2Kxo66kQDexjfx976NAoe7TW0M1o0BBBq5E63+iQHvcLh9sz6FAp81JS7sjoUAhUIsozXygQCvnaj8qtZ9ALFWOWwt6nkDizBPgIEidQDiEb8t2zpxAnW3C82n7nUDwzGkbazGfQHe/TzxLOKBAutWyPoPcoEBpTibdaYWhQId7hmAKM6JArZaDA2/lokAN6dzjoJyjQIyJoPOnWKRAYTF56ooZpUAE+RM3T9+lQOYcqPD4qaZAhDCryIp5p0CsZ7z8BU6oQK7Y0UhqJ6lAn82y2bUFqkA3Z8o/5eiqQPP3XWLz0KtA85kyc9m9rEDfla3ijq+tQBw6e1QJpq5AycPHlDyhr0Ak+ApHjVCwQFxe35/J0rBA0tySWkpXsUBNmdZ+Bd6xQCubuhLwZrJAAid4F/7xskB2NayGIn+zQJ0eB1BPDrRARWR2V3WftEDMUM1zhDK1QIPl8G1rx7VAdFSLABhetkCx+0rYdva2QJWOsJRzkLdAo8lvyfgruEBbuWUA8Mi4QEZDJ7xBZ7lAnkIqe9UGukDkJ4u7kae6QJ+kcP9bSbtALIIO0hjsu0AsVUjNq4+8QCtO9J/3M71AhvS9FN7YvUAWIqgZQH6+QCgeLcj9I79Azjv7bfbJv0Ae8iVLBDjAQMQ86QkJi8BAigCgBfjdwEASBCx/vzDBQERcyWtNg8FAs8sje4/VwUBV960dcyfCQPazN4vleMJAbXXAydPJwkBgroK0KhrDQKW3NAPXacNACKB7UcW4w0AbEYwm4gbEQAVE9fwZVMRA5dGRSlmgxEAh/5mIjOvEQCL30jugNcVA80fW/IB+xUDwyWyAG8bFQHQA+J9cDMZAX+TkYTFRxkCc8SICh5TGQJY8mvpK1sZA1kSbC2sWx0AxLkNE1VTHQJICzwp4kcdAm5vYJELMx0CE1He/IgXIQL+qQncJPMhAXf4mYOZwyEBBshgNqqPIQKT/jpdF1MhAvejLpqoCyUBt0+h2yy7JQAx2o9+aWMlAgGfmWgyAyUBNzwgLFKXJQJ7kwMCmx8lAwiPFALrnyUDPYxgJRAXKQPlC/dU7IMpAY72NJpk4ykDANfSAVE7KQGTJQzZnYcpAioruZctxykBuO9kAfH/KQCOBDcx0ispAG14NY7KSykB5Ss05MpjKQCOrXZ7ymspAKgBRuvKaykA/NvKTMpjKQPFuZg+zkspAEqbf73WKykC9HxLZfX/KQDqqLVHOccpASmGtw2thykB3UWSFW07KQI0aQtqjOMpA1cxe/UsgykB5Hu4rXAXKQF8ixLPd58lA6i4UBtvHyUDM7f/OX6XJQI0lYhJ5gMlAn/T3TTVZyUA0q52gpC/JQM+CvfXYA8lAfE1MM+bVyED1ZcVn4qXIQOAdjPTlc8hA8j/9rwtAyEBIn2b5cArIQOPILLg108dAxVjGPnyax0BTQQwKaWDHQOMU2lUiJcdAad8/gc/oxkDI+LM+mKvGQCgZ0I+jbcZAqzkjkBYvxkCZlVUXE/DFQG0m+j+2sMVAEdCH5RZxxUBOSJIwRDHFQE1850tE8cRAZcQhXxOxxEBZ1ArronDEQH3fe6HZL8RAl2cWzZPuw0D1GlpVpKzDQJZCo2HWacNAuUAuku8lw0AsDUC6suDCQChHG/vimcJAB3uVFUdRwkAigv/ArAbCQCPcg9LrucFAQb6tAOlqwUBMKacTmBnBQDrQoVv9xcBAyA4hUy5wwEABQ3JhURjAQDSMh4I5fb9A4h4nPanGvkDLRIIZkQ2+QGBqfAChUr1A4UyS/JKWvECjqaZvJNq7QMqDUoYPHrtABUIFRQVjukAiKA16qKm5QDjsDMqJ8rhAXI2m9CQ+uECSh3dX34y3QBdN558H37ZAAaBWitY0tkCDbQaAcI61QC8cDt3n67RAuzzmpD9NtED7s99tbrKzQGRRelFhG7NA6/bct/6HskDq1pDeKPixQNHO+wTAa7FAg0n+MqTisEDmztmWtlywQJTwTv20s69Aw8Pe7euzrkAir8A25LmtQM3AwFB2xaxAwBLvuIDWq0DNcoRv5+yqQKt+/kuTCKpAXUOEO3EpqUDbazV6cU+oQB07rtOGeqdAkEEY86WqpkC7h8LHxN+lQOQAiQDaGaVAuS5LntxYpEBSL0ecw5yjQDx6SqyF5aJAmeUxBBkzokBNbww6c4WhQIQvRyyJ3KBAQvB/8044oEAOIs23bzGfQHGRzshs+51A7wlRhHjOnEBIKc4RL1CcQL9JCvH6d51ApQ8cHq2onkBE/ZBTYeKfQLCjvseYkqBAPuZg+5o4oUCJlRNcQuOhQL1Fr/eYkqJALrb8w6dGo0CdOTWQdv+jQCf3kPYLvaRAy6rsTW1/pUCE2JCbnkamQP6qJIWiEqdA8vbWQnrjp0BAFsiRJbmoQF+Av6aik6lAGzE4Ie5yqkCOEs/+AlerQCu6Ho/aP6xAfNwTaGwtrUDB48Varh+uQBIY32iUFq9AdN5PXQgJsEB7u8PKCYmwQEcX2KlFC7FAi77yLbKPsUDQwEGNRBayQPfdk/3wnrJAeyOfsaops0BpvLrWY7azQAPJEJMNRbRAx95MBJjVtECVmMs+8me1QNRfT00K/LVAslM+Mc2RtkCn6mzjJim3QCmceFUCwrdAoo21c0lcuEAz5rEn5fe4QGwQUVu9lLlA1dCA/LgyukDMs4kBvtG6QLLs+22xcbtA8lQ5WHcSvEBSypzv8rO8QH26PoMGVr1ANjVWiZP4vUC1aDWnepu+QCjz37mbPr9Ab/s439Xhv0A5ROO/g0LAQAiKgywHlMBAtO0qxGPlwEA7+izLhzbBQFfbfUFhh8FAZsbt6N3XwUCvZ6JL6yfCQJJpy8J2d8JA3vKOfW3GwkDpwSqIvBTDQHhVRtNQYsNAi2ByOxevw0DEldGQ/PrDQI2o5p7tRcRANDaDNNePxEDPINMrptjEQHq/f3JHIMVAvyXmEahmxUBSpFs3tavFQImKezxc78VAEBh5r4oxxkDeenBbLnLGQLelsVA1scZAIMD/7I3uxkBu6b/jJirHQJUFEkbvY8dA8kvOitabx0AVVmKWzNHHQDJ3iMLBBchAlTPU5aY3yECEww5bbWfIQEulXggHlchAN2A1ZmbAyECpvf6FfunIQM3njBhDEMlA1g89dKg0yUCde9Cao1bJQIkm9j4qdslAz4SByTKTyUDVektetK3JQLVNu+CmxclAfk329wLbyUDpX7YSwu3JQEOVyWre/clAG9g/CFMLykD78E/EGxbKQGQFA0w1HspACRG+Ip0jykBlbcykUSbKQF9MHgpSJspA6zuDaZ4jykD4mcS8Nx7KQMCKJ+YfFspAzo8KuFkLykAZ2Ij/6P3JQJV5TJPS7clAeFL/ZxzbyUBUuhSszcXJQL9F7uzurclAYUqaR4qTyUAxeY6nq3bJQPbLuhVhV8lAMHsMGrs1yUDeSd4wzRHJQFm7ylSu68hAqBTHm3nDyEC4VkrkTpnIQOcNg4xTbchAASBLKrM/yECzP8A2oBDIQFwDY5xU4MdAlIazEhKvx0CnzOMuIn3HQAm78Q7WSsdAcorog4UYx0Bn9smhjebGQMvRPqBOtcZAhh8R/yiFxkDhZ7rseVbGQKqjyvuWKcZABND3RMn+xUCiHjMmSNbFQOmksOEzsMVAE7SKcJCMxUBOTYjpQGvFQFNAhOMDTMVAMOo0OnEuxUDK0liS+RHFQJ4tB+fn9cRAXBJ4TWXZxEDainL4frvEQK28HFsum8RAQnN3H2N3xECOszp7Dk/EQBY1KUovIcRAA58aO97sw0Cf6BJQWbHDQOpVx/MNbsNA7RWO+KAiw0Cb7PX0887CQArHtJ4nc8JAw0aA+ZoPwkDqZRJo56TBQFHKBOXZM8FAKkhh2mm9wEBX7YM1rkLAQCGIINyiib9Aht4mgQqKvkAjl6Kv7Yi9QHBhDBiIiLxArZ9zgOSKu0CLA0l9zpG6QDtSRpTInrlAvzad3wazuEDLpkX5bc+3QIIrN7WV9LZACIduAc8itkDV7aYlLFq1QOQGcpKKmrRAOCT4dZ3js0BuPPxg+DSzQNrp3mQZjrJAAwQmN3LusUAiBZcMcFWxQGlT3QGCwrBAUZNwBx41sEDkGpbAiFmvQEKpWKwDUq5AJ9onpeFSrUCeC8Ajc1usQGtpCE4ja6tAq/yWBnaBqkDBJJxfBZ6pQGzhsb1+wKhAu/D45p/op0DyXi8rNBanQHmoHcMRSaZAcGSFeReBpUAokPOlKr6kQEFye3o1AKRAKMo7oCVHo0D6D1Ub65KiQAwQRW1346FAqkUR7Lw4oUAWHe1ErpKgQKw1oEN84p9AzVr71L2onkDj5VA1BXidQNBl/E81UJxA2RsnwZfNm0Bcj8ZND/CcQAhT2RtEG55ADcAHZlFPn0ABe0FZKEagQPCoZ9ss6aBAxWSyHcGQoUAhupr/7jyiQJWflU2/7aJAJT7Xsjmjo0Ci0SOrZF2kQCict3RFHKVA7rFPAuDfpUBNp13tNqimQKppcGhLdadAGMXcMR1HqEDdSbCGqh2pQAdw+RXw+KlAC/pv9OjYqkBYsoiQjr2rQKSy/6bYpqxA6mzkN72UrUBorzJ8MIeuQKjTA9wkfq9APZuxcsU8sEAZfeihqLywQBz3PlyyPrFA7aKlCdjCsUCJRkwWDkmyQBcC9e9H0bJAMZ24A3hbs0AUskC8j+ezQG5CfIB/dbRA1gjTsjYFtUDbnNuwo5a1QNM8mNOzKbZApMg9cFO+tkCdLIjZbVS3QGcpn2Ht67dAfhCOXLuEuEDcsVAjwB65QA9ZdxfjublA+VRjpwpWukBcHx1THPO6QKzPxLH8kLtAChedd48vvEDMlLB8t868QIPfEMRWbr1AaCuug04OvkB9AMYsf66+QKz75nTITr9ASR6HXwnvv0BO2xQkkEfAQLa5iHZ1l8BAal49PSPnwEA7+izLhzbBQBplTDaRhcFAk67mXS3UwUDYtzLxSSLCQJLCH3bUb8JADKpVULq8wkCrR2XI6AjDQI1RJRNNVMNAB9I3WdSew0A5KbS+a+jDQOpe8WoAMcRAzWJskH94xEB4tMV01r7EQCHK0XjyA8VAaG+3IMFHxUDyORccMIrFQBcbN04ty8VAIwIt1qYKxkCXcwMXi0jGQIju0r/IhMZAGPLK006/xkA7ciWyDPjGQLaM/x3yLsdA4VQSRu9jx0D0l0bM9JbHQKKKHs3zx8dA6mXw5t32x0CVE+1ApSPIQMIs7pE8TshAhrcGJ5d2yEBLSNLpqJzIQJl0fmZmwMhAKOmK0cThyECkAj0NugDJQAmWxK48HclAs8UQA0Q3yUD1iFUTyE7JQJk7RanBY8lAo5UFUyp2yUBud+1m/IXJQCjsIQczk8lAteI1JcqdyUCWDgOGvqXJQO1PDcYNq8lAoqPnXratyUBiPkWut63JQPnhpv8Rq8lAL9XvmcalyUCkOqPS153JQGM7HSlJk8lA+mjNbB+GyUAJ2UfyYHbJQNlM69sVZMlAnFLQe0hPyUA2RqPVBTjJQKdl0kdeHslAj4vuY2YCyUBiTwj+N+TIQPPY73nzw8hA/Ak+W8GhyECH1aAZ1H3IQLS1vzVqWMhAcs33g9AxyEBShhOZZArIQCvwHTqX4sdAVQTso+66x0BIuqhxCJTHQHdVuNyabsdA7YwfBXVLx0BFShPqfSvHQCJfcrixD8dAN5y2Gh35xkDkgDdF1ujGQJW0sZPz38ZAIp5fsn/fxkAh7dh8a+jGQJG/WvV9+8ZABMWA9EIZx0CXnehu+UHHQMKvnWWCdcdAe9nDwFGzx0BDUgJrYvrHQMfDvAEvSchAe2TxTbCdyEClWsp5YvXIQKlb4JhRTclAmVOHoS2iyUCFAlBsZfDJQMAUGb9HNMpAVaRs3yhqykCeQP2xio7KQLT4kRdFnspAhUv0DKyWykC8hjMasXXKQD7Q3Nf9OcpAZQuIuwXjyUAmZDXwDXHJQGlyCa4q5chALrqVQDJByECo/UGipofHQI2ERzaXu8ZAR9LrqnzgxUDjNeRgEfrEQJIiYdUoDMRAUW6xeYgaw0AFxDQixCjCQP3QI88fOsFADpBEEHhRwEDFenhsY+K+QCXdXexhNr1A55x/Ra+hu0ANO7ljEya6QMxv5+5txLhAVld+mtF8t0DPZ7+dpE62QB137bjDOLVAg4Qgb6U5tEDcNRGAe0+zQEaJqyNReLJAaPt0BSWysUDmtbV0/vqwQK3WW6f9ULBAsdVPhs5kr0AGpU9AVzuuQOwqXsHUIq1AqNdZH+YYrEBWoFPzhhurQOy5jNUIKapAcQjS0QpAqUCicnrRb1+oQA2/GsNUhqdAtA3lEwe0pkAyFk/f++elQBjPOxHIIaVALcSBlhlhpEAAQ0efsaWjQJGWq+Vf76JAXd+C4P49okCYaEvEcJGhQGvytjKd6aBA3wcCem9GoEDxvsmPqk+fQIPlym57G55AV/FKSTHwnED/nxVrrM2bQPd40/AAR5tA+MIMZvpjnECuR6DOhomdQHXYZuHAt55AeeQCqcHun0DZvhk0UJegQBwH/z65O6FAvVvfpKXkoUA1BJgHHpKiQJSxPe0pRKNAWwgyss/6o0DczU97FLakQNNONyj8daVAtdjERYk6pkBrXLsAvQOnQKSJrRiX0adA7OEv0xWkqEA2bV7vNXupQIjbwJnyVqpA8fmXYEU3q0BYc58oJhysQPDeTiKLBa1AKB+lv2jzrUAKC4mqseWuQClKyrtW3K9Ah5dmeaNrsEBjG/a2N+uwQOPRzLHdbLFANLglDorwsUBhyJ12MHayQA4WA5rD/bJAm46XKTWHs0A80svXdRK0QEVkdld1n7RAyzSLWyIutUAkRFeXar61QILaQ786ULZA3oIkin7jtkA5qBKzIHi3QPJf2fsKDrhAJpPzLyaluEAwXB4oWj25QG0Mgc6N1rlAKOprI6dwukDPTq5Ciwu7QFtihGkep7tA/EMc/UNDvEBX/7GR3t+8QEo8QfLPfL1ALSPLKPkZvkCRei6HOre+QPeNj7BzVL9AXPZMo4Pxv0Cu875hJEfAQO8W+3JQlcBA1MvlrTTjwEARBCx/vzDBQBuG2R3ffcFAWKfOkYHKwUBt8Wu6lBbCQIF3cFUGYsJAzW0HBsSswkDxYwFcu/bCQK1TNdvZP8NAwogFAw2Iw0C7PARWQs/DQN+Zs2FnFcRAlbRcxmlaxEDG6Pg+N57EQK3rKKm94MRAkcc0DeshxUCR4A+mrWHFQLkOXOnzn8VASspmj6zcxUCiXBubxhfGQMkA5WExUcZAgNx7k9yIxkBmvJdBuL7GQEqEg+e08sZAm1CMccMkx0A4V0dE1VTHQIauqUPcgsdATkPt2cqux0ArdD7+k9jHQH8KLjsrAMhAd6fjtIQlyEB1Rw0vlUjIQH9UiRJSachAyQrKcrGHyEBy9/ISqqPIQE6CtGozvchAR2HuqkXUyEBMdinC2ejIQGJOBWHp+shAETfH/m4KyUA1Z1PeZRfJQI/N/xPKIclAfcLojJgpyUD2pMAYzy7JQCGNhHdsMclAmqwbbXAxyUBPKrjd2y7JQIG64/awKclAQC+EavMhyUAPDd/CqBfJQLFUvNjYCslAXBY9d477yEB2abk72OnIQGoX38LJ1chAi+kYN32/yEARVKBWFafIQGRh/QjAjMhADEV5m7lwyED/Cli5UFPIQFXmoi7rNMhA1C7yeQsWyEASgxkiV/fHQNFpL6+d2cdAYRHiCuC9x0BuzcDqV6XHQEGKR8F+kcdAkGpFihOEx0DFtwOgHn/HQAHo2qTyhMdA7ocgdimYx0Duv6MXnLvHQA5Sc5hU8sdAvrjlH3k/yEApMLygL6bIQHBzGiF6KclAJIPbFgzMyUAXDlICGpDKQPGBFisld8tAfOc2HMaBzEDVoYgkea/NQL5umKBw/s5An+usjLg10ECcwaed3fjQQOgURKSDxdFAaNyCc8qX0kDayGyIKGvTQF6b0kCJOtRADWlKr3UA1UAwwqCRRrfVQNvt/h5dWdZAeKbXsF/h1kBT93HIdkrXQKHwVLKGkNdAm2kLE2Kw10BFic8A8qfXQMTKAO9QdtdAkI+VjtYb10BEgEnPE5rWQGqR0ki/89VAx1CNaJMs1UAKLC62IEnUQO/izkOXTtNAlYp324pC0kD1OoCttSrRQEBtHSe9DNBAWRWza/jbzUAoNpxBq6bLQJGfqbkggslAWLR00311x0CdbMnfY4bFQBovASTruMNATsAyh7APwkD9xFb78ovAQOF1IId5W75A/jMxCynou0BfZ9ZqZLq5QGBp4p9ozbdAke484KQbtkB0f+v5FZ+0QBVMU9WUUbNApFBxeRYtskAuWjUr3SuxQByG3kObSLBAdtwKNBL9rkAkudKq35KtQIBEQIhWS6xAAh8xpEkgq0AaK61LkwyqQO7Ru1b7C6lA8HglGBobqEDvbeiDOjenQOysqEs9XqZAoB5CIX6OpUAdQ6LVu8akQG+TKqgDBqRAT8cw0Z9Lo0Dyr8oeCZeiQOC3wFrb56FA9WyFH8w9oUD0ZqC8o5igQBZGPJtv8J9AhGSxXM64nkBry+kDLoqdQGKd+xphZJxA6rbRZD9Hm0AsJUcBvLyaQN9we+wQ1JtAd1jOVM3znEA4ea5pCxyeQImrzrbjTJ9A2qiChDZDoEBIlIEpXuSgQC6h+EjyiaFAS0IDWfszokCN1JK5gOKiQCuzyqaIlaNAT3xyKxhNpEDe64cTMwmlQH7z+d7byaVAv/OWtBOPpkAkMThV2linQA/PNA8uJ6hANsQmsgv6qECdXQyDbtGpQOf+0DBQrapAAeFHyaiNq0AxmaOubnKsQGkzdY2WW61AcKI9UxNJrkBcNpwl1jqvQHxXEi1nGLBALa1zt3SVsECXwNqBiRSxQGcUFmqalbFAS3hHWZsYskDLQL5Bf52yQG3YQh04JLNA+gjY67ass0DAJfay6za0QHIERH3FwrRAY3LRWjJQtUCXjtZhH9+1QK8n+694b7ZASu4obCkBt0Cj+erIG5S3QEHFXAc5KLhAi3Oqemm9uED4wSOMlFO5QIK54r+g6rlA5r8GunOCukC3RYRE8hq7QALiiFUAtLtAMT5zFoFNvEBoxV3rVue8QC2ZOntjgb1ATNp+uIcbvkDs4Vrqo7W+QDmSfLaXT79AsnJYK0Lpv0AX7HrlQEHAQPLyHEuajcBA3GFWDJzZwEDM+lm6NCXBQEkpHrhScMFAk9fmQOS6wUDl8gBv1wTCQHZCrEIaTsJADQQwqZqWwkAHkxaERt7CQO0yjLALJcNADu3cDthqw0CZSg2Kma/DQIOQiR8+88NAYQLn5rM1xEAvlLIZ6XbEQMlYSBvMtsRALOWugEv1xEClzXEYVjLFQKNTdvLabcVAJ1DFZ8mnxUBlYEUiEeDFQBFYYCSiFsZAjP+O0GxLxkBkLMbwYX7GQDdRwL1yr8ZAQLke5pDexkB9xl2VrgvHQBu+l3q+NsdA3P4Rz7Nfx0Dy+ZBcgobHQAUNcIMeq8dAa5l7QH3Nx0AWt40ylO3HQEQf8Z9ZC8hAAyWTe8QmyEDC6RVqzD/IQOIx4cZpVshASeRkqZVqyEA/IeDqSXzIQJlhMC2Bi8hAT8504zaYyEBNYL1dZ6LIQKc8mdkPqshA6TQ2mi6vyEAiBvsLw7HIQKJaMvnNschAfmad11GvyEB2lbw5U6rIQM4bbXLZoshA3Lg/fu+YyEDVzrZLpYzIQCeWX4IRfshA3dJN8FNtyEDHzn/NmFrIQGAPbwwdRshA3YKO9TMwyEBFxUdPThnIQAB0WVMDAshAH4kNqxvrx0CTKRGbntXHQDZtJGvhwsdA7fPu6pi0x0Didy+67KzHQMx+gq6LrsdAxLwdVcC8x0D9smYmhNvHQPDYV5KPD8hAecZ2oGReyECLeBGBUc7IQCXipy5oZslAVqWmLmguykC6ZPGwly7LQFrmV82Jb8xASKG9d9D5zUAXoD77mdXPQIROHq4dBdFAjTPsa9VO0kAqNb/b98nTQINf0ldHd9VAMShx5/1V10AnS+YyjmPZQP3zHQhym9tAJ3YT+gv33UBphmSP0DbgQOkXxHI3euFA34Vwu2+/4kB/P3SObv/jQEWRDnuhMuVAGb7MbjNR5kDzY6gaW1PnQGfPqqmuMehAJ99E93fl6ECIJ24aBGnpQMwAsyjpt+lADXXojT3P6UAtvdczva3pQFso8+fZU+lAlHw12rXD6ED7MYmXCAHoQIHggmDwEOdAlizUELP55UC3ikLXcsLkQIHrfKvbcuNA14Uds84S4kBW+nKgEKrgQGCPWBv/f95A2Guu/6e220AnnnNe3wPZQHvkSBN3cdZA6Ap8dioH1EAxZg74lsrRQH50VP+dfs9AUiSwBAXOy0Ao0o3tb4PIQHTnsRQgnMVAPfusTR0Tw0AZfNXJyOHAQP4o6V3RAL5AqvOoS0zNukDEKvtZ8xe4QK47gNcG0LVAF8VX753ls0CQFB3HBkqyQEV8c+8C8LBAkD34e8qXr0CSRk2oLaetQLQximUS/atAYjfQzjWLqkCFkDyB50WpQDJ5+lK5I6hAu1r/3Swdp0CI3eCwYyymQBtbOW3VTKVAGFFYyg17pECx0NZkc7SjQPEjV3gX96JAeizaEo5BokBYBuH3zZKhQDn8rzoX6qBA5agFiN9GoEDcX8A9hlGfQMzrphrzHp5Av50Ex5r1nECuY19dLNWbQF/Gg1tovZpAynzcShsvmkDkf7WVqECbQJYZMdlwWpxA8asJuo18nUCvKu1BF6eeQA4c7MQj2p9ADXlg4+OKoEDziP/vCi2hQEHFnFGP06FAGhEZQXh+okAfAJHZyy2jQF7mFguP4aNACdeLjcWZpEDrBaHTcValQE87C/6UF6ZAPz/yzi7dpkDwT6adPaenQGrfpUq+dahAc/X9M6xIqUDpqw8qASCqQM1NxWS1+6pAaalBeb/bq0D7JxRQFMCsQKEz/BunqK1AQ2RGUWmVrkA80M2dSoavQCDd1XCcPbBAvtNPFBC6sEB22BxSdTixQMdQaFPAuLFARpOmT+Q6skCDgOmK076yQJVkqFR/RLNA8zP/BtjLs0Cm/GgGzVS0QMMl+cFM37RA8NMWtERrtUBEgb1jofi1QCaKRWZOh7ZA8h+3YTYXt0CVvKkPQ6i3QKHZsUBdOrhAAVBe4GzNuEA3Zcb5WGG5QKAnqbwH9rlAMlQeg16LukCol9jXQSG7QOiQ+HyVt7tAgI1vczxOvEDqifACGeW8QNyObcIMfL1ALBQfofgSvkDhnxLwvKm+QNNmPWw5QL9A6kIPSU3Wv0A58cCd6zXAQKjSz8JagMBAd5c+AWPKwEBEJFAZ8xPBQGMjZ6T5XMFAtd+dG2WlwUCrfIveI+3BQHoRMzokNMJA3/8YcFR6wkBStHq9or/CQK7UpGL9A8NA+bxjqlJHw0DmBorxkInDQK64iK6mysNAx5sUeYIKxEAVItQRE0nEQBYrEWpHhsRA9Odpqw7CxECdD3w/WPzEQMSJhdcTNcVAn7H1czFsxUDzUOproaHFQEV4k3RU1cVAfmV5qDsHxkBgwJ+OSDfGQNyYgSFtZcZAlc/h1ZuRxkDg8muhx7vGQAs8IgHk48ZAimSW/+QJx0CXyOw6vy3HQAAzrOpnT8dAv3th5dRux0BJCSam/IvHQIciJVLWpsdAZLdQvlm/x0CLOJd1f9XHQHTIH8BA6cdA0wZirJf6x0Dzl2gbfwnIQCd0RNLyFchAdzTFk+8fyECa+hJHcyfIQNex9jF9LMhAMGmuUA4vyEBiomLZKS/IQLqK/v7VLMhAcMimDh0oyEBwY6YMDyHIQGbjrgHEF8hAR1neN18MyECRLQ64E//HQNbDBGsq8MdAqzJIVgrgx0DTF9R/Q8/HQJvZSxSdvsdA+OrfdCevx0CpmWHQUqLHQJ5HT9gKmsdAPrmb+NeYx0At/fEwBqLHQA4+FELRucdA/eINTZXlx0Bx53xCAizIQOOjtZhPlchApz1GuGwryUB+bcl2KfrJQC/TVudQD8tAJ/Bl3a96zED6dq7g/03OQKGyb5RXTtBAvELuWL+90UCE92Fd+H/TQM1wQBPCn9VAD0fWIl4n2EBrj0BA/B/bQPjPv/wRkd5Aulr8ktI/4UCr0jLlyHbjQG5VMKBr7OVA5dBmpnyd6ECCp0q8QYTrQC5dMUVemO5AFNThsWXn8EA04ifA+YzyQCLhgyT6NPRA/tfF5YPW9UDC4yg7CWj3QOAUam6o3/hAkIcpo44z+kBvFrRRYVr7QIvcqWKoS/xAQ52uaDIA/UD4SQ+HbHL9QL6mcC2onv1AU4UT6UmD/UA6p7gO3iD9QJo/I8wRevxA3QopHZGT+0DnixYCzHP6QByBDwGnIvlAi1f8TByp90CdLEPH0xD2QAW4Jme4Y/RAa3nkYJGr8kD/cVG7pPHwQFXHM+fPfO5AupNw9YMy60BrZDvEwBDoQPW54C9AIeVAbN1+fRFr4kAmU8xGYuXfQBb4tdd3dNtAjQ1Ob22D10ABHdWZxw7UQO42XLA9ENFA9f+12eX+zEDixjWTTKXIQE4Yrqei/sRAb0p/TGH1wUAFSQjDzOi+QDUcY2s+z7pAjE6bPQN5t0Crt2M6sMS0QO/yROrOlLJAipp3AerPsEAvkkeF1MCuQOvWwzqjaKxALYfC5MF5qkD+WoPGZdyoQE1oQsqnfadAwnhzUrtOpkDxoIX6M0SlQEuXGjpfVaRAG8DeNLR7o0CIANkAWrKiQOunjkfD9aFAxQ+PRV1DoUAkqNe1T5mgQFueXSGW7J9AOzbUL8WynkACrA/B34OdQAE1eaX7XpxAk1rf03JDm0DEmniazTCaQI/OFM1xnplAqxJXxBeqmkDELpY7y72bQJqL30ml2ZxAMhwTdL39nUATJeWSKSqfQIObXNx+L6BA/q6yCybOoEDWlvZyEnGhQEx7IiNLGKJA7ASXFdbDokCHwR4fuHOjQP3MD+P0J6RAuf2Uxo7gpEDvDijkhp2lQOZ2Rv/cXqZAd8VqeI8kp0BAjlRBm+6nQE4CqdH7vKhAtnX2G6uPqUDyHiWDoWaqQHVmX9DVQatA8h18KT0hrEBs7vQHywStQGg7czBx7K1ASp/9qh/YrkBjAdC7xMevQMYMdG6mXbBA6f4nXFHZsEB7C5iR11axQO3G2Iws1rFA/Pfc3UJXskCaNUQlDNqyQMpMnhN5XrNAETInaXnks0C7BP/1+2u0QABo4Zru9LRAtS9fSj5/tUDBEp0K1wq2QNXGmfejl7ZAx5T9RY8lt0BnHnVGgrS3QFKzmGllRLhA6jNhRCDVuECYICuVmWa5QHIOSEm3+LlAM1Qeg16LukC3WNagcx67QIOBlEPasbtA/1I+V3VFvEBi5sgaJ9m8QI1qDinRbL1A7PUnglQAvkCzgEiVkZO+QIpvFUtoJr9AKal4ELi4v0A54vPwLyXAQNu4jSufbcBAJuyY15i1wEDLHZvuC/3AQD/rg0rnQ8FABL5MrBmKwUC1l8HCkc/BQGpGbzE+FMJAZkSzlw1YwkAoXumX7prCQEIVs97P3MJAEZRUKqAdw0B65yJSTl3DQLoX/03Jm8NAqKDZPQDZw0DHtDlx4hTEQLukw25fT8RAe7e5+2aIxEATtnIj6b/EQHVpwT7W9cRAs0pI+x4qxUAVr7RitFzFQKzO3OGHjcVA+im8T4u8xUBAFkr0sOnFQOuqJo/rFMZAfg8bXi4+xkCyemsjbWXGQKp0+yucisZAiMNIVbCtxkAm5EcTn87GQOjHN3Ze7cZASIOUMOUJx0Dj822dKiTHQLvNlscmPMdAawZsctJRx0DzOmslJ2XHQHJbhjwfdsdAjgM7ALaEx0AncRjK55DHQARRzDyymsdAOSZVmhSix0DHgQFIEKfHQCwi8ZapqcdA26N/8eipx0AdhQ+b3KfHQCEs30Cbo8dAfDGtsEedx0AIFpolFpXHQKbsQ71Ti8dAkORaznCAx0AEYdoFD3XHQALtaV4UasdAzOxPMsRgx0BnA/nN31rHQE/9Nf/PWsdAOUtWGdljx0DQVkG7WnrHQGx+/EMcpMdA3uRdPKbox0AW79oDqFHIQIFzxrdn68hALzPMkzjFyUAgPMv18fHKQGcWfdFeiMxA3+0J3ZqjzkBcAi4mqLHQQPuTwWrjddJAA8ogptmy1EA5sMNj237XQOTd+62+8dpAQgk+rTck30BxOQA8exfiQHjbacTEFOVAnBxya4SU6EAcQ65wSZ/sQFqptbJqnfBAJWztG6M080BQJG4nJBT2QP/mQuYvOPlA3O4Tkiya/EB99rlEPBgAQUgvJKEw9wFBWNDEeiHiA0GlJ3xH6s8FQQAHEUxQtgdBXd1mTFSKCUFWksSAlkALQXSFljrIzQxBa3iwPiUnDkHNOZzY7UIPQSD/qhRtDBBB7HQgpD9REEGXTKm+z20QQXQoEA8wYRBBlJwOqrArEEFh54Ijtp0PQWrLeEG9mg5ByaVmct1VDUEBIKEVKtgLQcmlOQf2KwpBaadP/FtcCEGOw77gw3QGQRBt7oRsgARBx1FlJQCKAkH/Yd0dOZsAQYWNtCQ1ef1AhEHAVH7q+UAaAWGafJX2QL7IYYxNgvNAwuRv5hi28ECCH027lmbsQIPhlF7S8+dAxpUli+AP5EBn1i4hhLPgQKozJ/M3qttA0C8Md9rS1kDtSQ4ptMjSQFBoLO765c5Ai+7g2sVyyUBi33RYkwnFQPUyr2y1f8FAAnsuI2pdvUA/oQ1sUem4QEPGFIuFaLVAh6YIf1KpskBewXnqTIKwQHk0vNsEo61AhES5mSH3qkACiliLbdWoQKQqpirZG6dA3rL+VBuwpUDY3xlxMn6kQF4FO5oYd6NACPx6equPokB3cZZHxb+hQNYJdVCCAaFAmbHKea1QoEC6lltim1SfQER9WxCdGJ5A5bcuSn3qnEA+6B6/PsibQO3KGTCDsJpAIeaAHlmimUA31rreEguZQPKh1TW1EJpA1+pPujYem0BpAOPyrzOcQBw7JN03UZ1AY0kc1ON2nkBqj7h2x6SfQBGiEkd6baBAP80Per0MoUAk8qc8NLChQNMZ3mXkV6JACkeyrtIDo0BoJY2lArSjQBpZ0qF2aKRAU7Kity8hpUBvu9erLd6lQAhFQuhun6ZA47k1cPBkp0A/JGrVrS6oQOnlPi2h/KhA6zVoBsPOqUCIfhFfCqWqQMS3fptsf6tAANI2fd1drEBwNMEaT0CtQKI4ANixJq5AjWoyX/QQr0A9KKSaA/+vQCSDjVdleLBAFhCCexnzsEAtGTf/kW+xQNIE7L/B7bFAS7ztsJptskB1Tt7aDe+yQL5oclsLcrNAIxioZYL2s0C5A3pCYXy0QOUMElKVA7VAUPh9DQuMtUAFdegIrhW2QH2FWPZooLZAe/n4qCUst0A1TukYzbi3QITumGdHRrhAcW2t5HvUuED28nMTUWO5QCWv3bCs8rlA6L8GunOCukD0jUZzihK7QMw6yG/UortASU6pmTQzvEBkZpw6jcO8QNg+DQXAU71AG/rCHa7jvUCKKP0lOHO+QE2fB0Y+Ar9ANcZAOKCQv0CPzUaqHg/AQC8hG056VcBAEcwSY1KbwEA16sIlluDAQM/6Wbo0JcFAgaVBMx1pwUDREOWXPqzBQCgimOuH7sFA/9ibNOgvwkC20juDTnDCQGDjAPmpr8JAKZH0z+ntwkD4JPFh/SrDQJLq+S/UZsNAWCaX6V2hw0CUNTF0itrDQM9BZvJJEsRAC+hVy4xIxECPMt6xQ33EQNJKxatfsMRAJ1vLGNLhxEC0PaC5jBHFQGXcuLaBP8VAwKIAp6NrxUCTQGSW5ZXFQGiCNAw7vsVAIa1iEZjkxUDGZZw28QjGQNgXVZo7K8ZArD/Y7mxLxkD0l5aAe2nGQGmtBT1ehcZA5NSmugyfxkD94S1Df7bGQDRwXuGuy8ZAPpgvdZXexkDskkfSLe/GQLoGLe9z/cZAFAP/LmUJx0BKrJ3UABPHQAKOlbVIGsdA9DqyTUIfx0A/s+5i+CHHQK2Q2X19IsdAkHLyle8gx0AsSqh1fR3HQDiDEohuGMdAMImb/C0Sx0DLGFNzWgvHQH0vGrfbBMdA5iQjZwAAx0CSdZ3Spf7GQJhiuqdsA8dA9F81Zv0Rx0BzkgS0Xy/HQIXPdqpnYsdAN8mk1zu0x0A21+3k9TDIQHc8Inde6MhAkog50sLuyUDm4aT6313LQKqhw3DbVc1AlAzeQz3+z0Ca6rsgbcPRQBoFHd9LFNRAdp3fp/YS10ClFIcwguXaQJyILEeptt9APnAtvaLa4kCYj987sYnmQOzO5DNvAutAQoaLrmMv8EASlCQQulvzQH2Ysr1MEfdABeeWQhdZ+0AwAkuckRwAQVJjQMPT2QJBSDPcCxjjBUFKl9jybjQJQcmGoCjoxgxBsVeaKjJIEEE33gjLxUESQYiU6GH3RxRBRFb0mytRFkFECpLpolIYQV4yKk/PQBpBxO61Zr0PHEHpHqzBi7MdQcTzEWTqIB9BvTT3gM0mIEGESFcQdZggQYsAvakM4iBBoVZIwVkBIUEPBWHAYvUgQSDGkoJ7viBB5iqPJUFeIEG1knHuCq8fQYLxi99WXB5BHIMwUe7NHEERa/cXqQ4bQc2/S/wwKhlBr2IO54AsF0FHrheWaCEVQd5qu7YbFBNBc47N/NEOEUFbfVRj+DQOQX7ZSOUgfQpBz+20JtwBB0GygMv5r8sDQRgaDBoG4ABBGYqQ8tOC/EBBgwzzvt/3QKWvxwyU0vNAj3BajLdT8EDO77zBFbLqQDGanFGCreVAP1hnRz6A4UDSTbKKgCDcQJzNKRPyh9ZAqtkhnUMG0kBtKhyJOt3MQC8Y/aQpMcdAc9RsNRHBwkDI9rv4up6+QGv9htqqT7lAk5saS+g9tUBI2ciPHSKyQED+m3J/ha9AssJvSzDkq0D9lYJEvBipQICgvUzp66ZAW+WwPLAzpUByGLqcg9CjQJ+BOwEDq6JAVRzdoRWyoUDjOiqSYtmgQN9wxMYaGKBAPSYatxDQnkBBa5XPrYmdQJ5POWQTV5xAJdcO8Cs0m0BVBKQCMh6aQO1mrmtGE5lAJstQ31F1mEASM7mw13SZQIL7IJ0NfJpA0eGXmAuLm0AGlDgX6KGcQK/uV/S3wJ1AXDCPWY7nnkCjutdSPgugQIC31inJpqBA7HLKcG5GoUA5E8rbM+qhQDcEmAcekqJAQd9YbTA+o0DQDHBWbe6jQHcri9DVoqRAnHrloWlbpUBvssw9JximQMHYcLkL2aZAosAIwRKep0C7+lSNNmeoQJ4Mi9lvNKlAn82y2bUFqkC4yH8x/tqqQBp7sOs8tKtA3Db9cWSRrEAsWKCFZXKtQLdZgTgvV65A4ikM564/r0AW914Z6BWwQGESuH6+jbBAfGa1sk4HsUDo9yLhi4KxQLBDUVFo/7FAoDBhZdV9skANFgOaw/2yQHY1rIYif7NANsVF3uABtEA9Z1hw7IW0QNuetioyC7VAKo2oG56RtUDi65p0Gxm2QELrUo2UobZAvUCo5/Iqt0AoWsYzH7W3QDBM9VQBQLhAyLLqZoDLuEB4WKLDgle5QIAUvgnu47lAKOprI6dwukBjC9FNkv26QEf49yCTirtAXYs/mIwXvEBGWEgbYaS8QN1YXYfyML1Ae3pUOSK9vUBoNOMX0Ui+QALpYp7f075AJGwA6C1ev0CVpVG7m+e/QB/yJUsEOMBAwItK3al7wEAl5BQdrr7AQGepKIIAAcFAs8ZseZBCwUCFXMlrTYPBQO4lAsUmw8FAM3Cp+gsCwkBHqSeT7D/CQANs0yy4fMJAqtYVhV64wkBm4JZ/z/LCQDBPbS37K8NAZ99N1NFjw0AsI7X1Q5rDQH2aB1ZCz8NALIejA74CxEAaD+BdqDTEQPhg9RvzZMRAidPJU5CTxEA8daCAcsDEQExmpomM68RAYvFdyNEUxUBWL+kONjzFQPAEO66tYcVAnwU+fC2FxUB41Q/aqqbFQFNQibobxsVAQ/J2qXbjxUCWzSzUsv7FQJUdlxTIF8ZApf+mAK8uxkAXpSoBYUPGQLLa/XTYVcZAr2Vj6BBmxkDJ9r9sB3TGQAG2jSO7f8ZAFbQmGS6JxkCiiDmaZpDGQJSxA0NxlcZAnSfbI2SYxkDL4aV9Y5nGQHawf82omMZA8zMgJI2WxkAYD60emJPGQGSFH0aVkMZASdijIbKOxkBfgZTmp4/GQIMlvWH0lcZANUtZcCalxkB/kDsUQ8LGQJ25E8ZI9MZAOZvxAddEx0Du3hP6/8DHQKtnsa5JeshAYQKlI+KHyUCf6hvRBwjLQG9th4GjIc1AogsXtQUD0ECfXBQucPnRQKZAUMT2mdRAjQDp5HQS2ECc4rygd5ncQF0POw9dN+FAO/wl9KHt5EAcoiy4g5jpQK1NLTfvZO9A682m+3BB80Cutj1vDJL3QKSlkzEkvfxAN6NYSDdtAUG0ABQ3k/8EQX+FUKxCHglBldl+PA/PDUFJCbLZC4oRQZOvWU+AdRRB8MdVFh6mF0GAMIrVPBUbQRQ1j2omuR5Ba2uM5YZCIUEUTqt3lzQjQacAa6uNKSVBxOpT8BkXJ0G7h/i1JvIoQTrVBiU9rypB0P2VovdCLEEB6wQYfKItQV4ITfX2wy5BqQKEYQ+fL0ERZ+yQphYwQQuScrg0NTBBLcCnokIqMEEd78NGQewvQZOofsW1NC9B3M4TREszLkG/QLNRdu8sQd0NLWNbcitB1hqL32DGKUEOi5WStvYnQY941RraDiZBUOsksB8aJEFaMzfZRSMiQWh4PWwZNCBBu2EmWVuqHEHkMWFLVRsZQZ4DRGZkxhVBzCIENbWzEkGqkUpS8dAPQYreP8Q+zgpB7zgvu1lfBkFnAye4NIACQbAAmiMGU/5Ay7tCAx+j+EDc+1MKENrzQMpsaezXvu9AvHVFZXE06UAQ+day4uPjQGhJ750wPd9ApqqMbhtz2EDV3x3i+xvTQBBSEcbq5s1AX1OsAex8x0B7Ruj5yZXCQLA6pjQMvL1ANoT4bmQiuEDv5WqFNvCzQGxi/ZHOzbBAJ8KspQvtrEC8t6SuxWqpQNeIeMArxKZAekrmIri8pECjahmXlSejQCVKwhT846FABc4wJkHaoEARbw5iCvOfQFWJrDTLa55At2YAvjgOnUB/OCRb786bQNxlp2stpppAAH3slreOmUDzT92tDYWYQERGL+qB3ZdAsA+YtNXWmECyyPzhqdeZQLuHv9EV4JpA94ucbC/wm0DZgnMMCwidQPKo7GO7J55ACsAHZlFPn0CxuNEWbj+gQL8khnI026BAwoXRVgF7oUDVUNVD2R6iQEI4J52/xqJAcyT5nbZyo0AZ0G5NvyKkQD8MKnPZ1qRAodsWjAOPpUBUuYC/OkumQMl8etR6C6dARmSiJ77Pp0Af30uh/ZeoQOu4GKwwZKlAHUgLLE00qkA0Oht2RwirQJqIVkgS4KtAUwiYwp67rEDn5dxf3JqtQAI1QvC4fa5AAIizkyBkr0ANpKna/iawQKKg0oOcnbBATMPBwNwVsUCNvvItso+xQLI8QIgOC7JA5XmkrOKHskDZcW2YHgazQAus52mxhbNAtW+CYYkGtECN4m/jk4i0QLlLw3m9C7VAmWYP1/GPtUDAX4bZGxW2QNDBnI4lm7ZA/T8wN/ght0Br8TJMfKm3QJoy24OZMbhAAwNY1za6uEBHUgmJOkO5QCFNOyuKzLlA91RjpwpWukBJ5txFoN+6QNxLJLYuabtAIZSMF5nyu0Cp120Cwnu8QKp3yJGLBL1AqZVZbdeMvUCmnxzUhhS+QLVoNad6m75AweM9dZMhv0DvNvKFsaa/QHXAGnNaFcBA9Kc0ur5WwEDKuYh2dZfAQHHA3ntu18BAKYgYmpkWwUDGuuGj5lTBQFi1d3VFksFA63SF+6XOwUDqmg86+AnCQMlvbFMsRMJAzrNDjzJ9wkBz+5Fh+7TCQKNFq3F368JAeXE4oZcgw0AfNysTTVTDQPhQpDKJhsNAFZ7HuT23w0D2QXq4XObDQBg4B5vYE8RAUqenMKQ/xEBQx+2xsmnEQITrE8f3kcRAYzM2jme4xEBSE4ah9tzEQPsglh2a/8RAJ9f2p0cgxUAl4Yl29T7FQEUSPViaW8VA7thbwC12xUD1InTWp47FQOAsGY4BpcVAwbLiyzS5xUBlU0ugPMvFQGxrIKYV28VAnN/tmb7oxUCx92dLOfTFQNlD9hqM/cVAwEFlTsQExkD1qkur+QnGQO/YfPdTDcZAF8tXRBMPxkB5HfRFnA/GQEG+mnCKD8ZAyxYNM8oPxkCuSGVnvhHGQEaUQwF1F8ZArqUqFfAjxkAN0gqLiTvGQNYkLBV5ZMZAKk6pQYWnxkBTcSCG6RDHQEcMa8F7scdAY7QMkxugyEA/+FO4dPvJQESXYfQa7MtAF2uJdgGnzkAAhOBqJDjRQHiDcqIqz9NAx12sPolO10B/I1QWnvjbQNOVVj/cDuFAvW1KJbEO5UC23nflnDPqQHVJnbnJXvBAbvVJFix69EAOP1g6TZP5QOqVfQ801P9AuPKgpje0A0GGG00gwz0IQQkbmWiAmw1BbLNFcwPwEUFLDeP6NY0VQRXJHw1pqhlBqAIWrndJHkEc2wd4KLQhQf6mGlcrgCRBomkdfu+CJ0E+MqQ787MqQWpVTiYACC5Bzm11iKO4MEE0YsiH0W8yQeTfvReCIDRByDXR0//ANUG741wkQEc3QaMKlYpHqThBlWMzupTdOUGzYHFWjNs6QaIy7bXemztBjz0aI+EYPEEHqV+q1E48QXlTzaMVPDxBYXS6rjDhO0GW9KOo20A7QerRHx3TXzpBQz/2lZ5EOUG6m+LkP/c3QUTNkdbSgDZBuOZ7nCPrNEGP6yKSQkAzQZgiwNAbijFBxEHdrDCkL0EZHz3lmkEsQaurqqB7+yhBJxnQ9VveJUHkVB9+GfQiQdyu7uDcQyBBQwTe8mOkG0Fnqa2Ed0IXQVU2i2T6YRNBRyofZr/+D0HQiFkxhSgKQTMya2BEMAVBDWLzMCgCAUHH2yjYlhH7QAflNxSbXPVAo5hMVWm68EByoSXZawTqQIm0hUCmHORAOFH8FS/z3kAF8KRZvr7XQNJT5Q2ANNJAxbSfP2T5y0BHE12qZZzFQN2cmIAk2sBAOK5n1tyjukBToBuB5G21QBx59YodmrFAL685VniXrUCHrRwxR3ipQJArpu+kbKZAhBFeeAsmpEDLjE/5EWuiQGXI1DZIEqFAG4j9eUn8n0AfPAyWtzOeQI/FI/TrrZxAu8MWGgJXm0D063f5cyGaQAiZfdkoBJlAJJPddRH5l0AQT7WL9UOXQN48OSwFN5hAwdEE7GQxmUB2QBmUKzOaQEZdPIBuPJtA4a1dh0FNnEAsPdjjtmWdQPnSnhvfhZ5Apchg6Mitn0AeI9uPwG6gQJGgsU2JCqFAeYzgEEOqoUAkli8n8U2iQFmZdb2V9aJAxEg51DGho0DFIIc0xVCkQKmWBWVOBKVAiZxQn8q7pUDhrqXFNXemQMm36ViKNqdAPCMSb8H5p0DYh/qp0sCoQDlIsC60i6lAzIk9nVpaqkBNzvwIuSyrQK1lfvHAAqxApM0IPGLcrECV67wti7mtQF3bZmYomq5AptMD3CR+r0ArroLrtDKwQOnjrHfvp7BAMMUgBbUesUBMVnys95axQKuXHayoELJA22NVaLiLskDd8A1sFgizQAys52mxhbNAluPOPXcEtECPaAzvVIS0QNMI07I2BbVAAHFL7weHtUCpsx8/swm2QABeh3UijbZACanUoj4Rt0CM+4IZ8JW3QLCTxnMeG7hAZc+cmbCguECxKVzHjCa5QDygwpSYrLlA09CA/LgyukAQuj9k0ri6QEalHqXIPrtAYlumFH/Eu0BIYS6O2Em8QMyUsHy3zrxAfSAH5f1SvUAMW5Bwjda9QOjHM3hHWb5AgBHDDw3bvkC0erERv1u/QNztGys+279A370NdLUswEDQ5S3gEmvAQEVZ95GnqMBAbO8qxGPlwECJod26NyHBQGNWKMoTXMFA8l3nXOiVwUC/noX7pc7BQCxgz1I9BsJA1YvIOp88wkBlMoK9vHHCQJca6x2HpcJA0SOX3u/XwkANWXnI6AjDQLS+jPFjOMNAvkNow1Nmw0B18roBq5LDQGvNrtBcvcNAii0zu1zmw0Ai1DO5ng3EQDK3yTUXM8RAwWqAFbtWxECvT+O8f3jEQLWorxdbmMRAo2FQoUO2xEAaIcFvMNLEQOgkv0IZ7MRAdAl4mvYDxUAS9PvawRnFQOthC4V1LcVAiXkSkg0/xUBHrDsJiE7FQHE53O/lW8VAMr8HyixnxUCRZX37aHDFQL/z7oCxd8VAjap1si19xUCdtK8PHoHFQDuygYPpg8VAqobuIDGGxUA1vq4c7YjFQHlo18CWjcVAOLE5UGSWxUC8khRKnabFQH/pCToPw8VAxw5QMK3yxUBBBW4JZj/GQHV23ac/t8ZA09qC6sZtx0AE/rck5X3IQCk2pq8rDMpAK6XnRqRJzEDA/U2eMHfPQF1n1Se+9NFAElHHorwG1UDRX3XVpzbZQFclVHzL2t5ABY+0jqUu40A26q+7Sx/oQEmTtl6+i+5A1TSP0p9m80C7AHUjDKX4QOcScnyHOv9A+C1vLf+yA0FE2Fw0VLUIQfKe0/wXxw5B7NO534wFE0GmkOvaR1EXQVijgvKaVRxBPaGI+UoPIUEoLsvAKVokQfGwsYvlDChBqkU6MNclLEGQtAbS2U8wQTMgR2KTuDJBBjIom0pGNUFgwFrPB/A3QUc6Fq2/qjpBQNpu14hpPUGvz6Wf+A5AQUw6DLo4XEFBR4ta33yUQkEi/ftGya9DQbO3geKDpkRBO4tnh8pxRUFyMfhRxAtGQWS3Pgbpb0ZBrKdQsDmbRkHMRfuoZoxGQVLHs13gQ0ZBTswnsNHDRUHqixBSBBBFQeLwLQmxLURBL3rAIj8jQ0FsjGtv9/dBQZGu+9Gvs0BBTRMgYum8PkFNrR/oagA8QW5wYVHxQDlBi3NeJDeMNkHGPHCeP+4zQZTZdScRcTFBKr+uEx85LkEaiN7E6OwpQUfLE+HEBCZBnBayNx6EIkHwDXPm8tUeQQMtAkj/bBlBwrulVSfDFEEd/sUD0coQQcZsLzBA6ApBBofHLvBbBUG6Lx7Ts80AQboIa0ViNvpAgvZbVo9H9ECGoW6fVCXvQMFyrJfEwudAdPv8Q6gH4kDWfc+ae0LbQJIK/XarktRAJ++7qswVz0DjhVGbmpbHQGrMOsIVDcJAFhuX4L78u0ArKCMrlBS2QL9n+Cs+zbFA+QsoIJdrrUAKrlT26fKoQFjNpdrdsqVAImNaMKJPo0DUiOWs8oahQGBkH/SUKaBAC1LS5ZQsnkC7HTvM6WucQCV17+pi8ZpAmMl3cWunmUA2CXxKhH+YQBYG1tIKcJdAGljkeP6olkBULjwiu5WXQCRWJTWXiZhAJefc4qiEmUAXUeX4BIeaQC6mCMq+kJtACpQ4F+ihnEBpUFn4kLqdQPtTBcXH2p5AQiasfkwBoEBqHGiZB5mgQNQQqniZNKFATi44VAXUoUDtWmxKTXeiQCmiIFVyHqNAYYTPPnTJo0BP5PCXUXikQORtnKwHK6VAlW56epLhpUDULAyn7JumQOrbVHYPWqdAD1HswfIbqEBen4TwjOGoQCC56+3SqqlAmCWSI7h3qkDXw59xLkirQFxznygmHKxAa1PKA47zrEARGvsjU86tQFjKUQthrK5Amc+PmaGNr0DmHJqE/jiwQKPBr/asrLBAefZCmM4hsUC9jPsJVZixQNSRIBgxELJAf3s6u1KJskBimigZqQOzQHg1rIYif7NAD2triaz7s0AUqm3aM3m0QF1JE2mk97RALnKJXul2tUC3P7sh7fa1QE6fwFuZd7ZA8yPL/Nb4tkBdpZBBjnq3QPgkM7mm/LdAPBWlSwd/uEBZv4hAlgG5QAIiiUY5hLlAn0Iqe9UGukBWhw5zT4m6QM9OrkKLC7tA75d+h2yNu0D5KoNx1g68QCxVSM2rj7xAQOk/Ds8PvUAD2nxZIo+9QAJqyJCHDb5Ae5ILXuCKvkAN7wY/Dge/QDApU5Hygb9Av5Cjnm77v0D+IaLUsTnAQO+BZnzZdMBASsiA8x6vwECIFmz2cujAQIBZz1fGIMFApDcbBwpYwUAGay8XL47BQOh9A8Umw8FAudVOfuL2wUAS9SvoUynCQNDmsuVsWsJA0+KGnh+KwkCDgVOFXrjCQExbNl4c5cJAOPYSRUwQw0AoytCz4TnDQACjhojQYcNAKwGdCw2Iw0DjfPz1i6zDQCtlcXdCz8NAXDiRPSbww0Cy0qt7LQ/EQLzKuvROLMRAwc7xCIJHxEBPL7jJvmDEQEcZtRj+d8RAlN2i2TmNxEC6IHhDbaDEQI5HF2WVscRAYWyG/bHAxEAgWLrZxs3EQPpIEwXe2MRAATqtQQvixED8Zsd3cenEQFlVhR5L78RAZYegFPfzxECDn4//C/jEQPJaBh91/MRACIRYnpwCxUD6HefZqAzFQHWI7tbTHcVA/218VeY6xUCs5dRr4mrFQLToAW/st8VAumyb6IMwxkBHu2I+IenGQGmzZRxP/sdAEUwyH1iXyUAlSuv5oOnLQOg/lo7EPM9AsIL8mcD30UCMieDbvT7VQFyk6VHmwtlAkmZ0HRvp30AmqbZPsRfkQBfMWhBfmOlAaL9IRzBq8EBXZlV1pB31QPtam6W5J/tA2JOwOJBpAUGH0idg1DkGQTQZUhecMgxBfj3can7CEUHljqfX6jEWQQ1tGYT+gBtBKXf4+vzjIEHGgszPSY4kQXkKQIA0yChBIM2j8KeXLUEmzfBOZ38xQfD24DCffTRBqOpYCp7CN0HBjrnck0c7QazwS+CQAj9BeKcKGD5zQUH0tT04mnFDQUacpQvvckVB/nIRCbBsR0GBALYYhlNJQQWz8p62G0tBfDKYopi5TEHrJoflESJOQWR6DbwUS09BvWIgdQsWUEEep8/xPF9QQRIpcr/uflBByLNNvit0UEHsz6wERj9QQVhF/oWlw09Bf0D1KCy9TkG42ORGwHJNQe19oQy87UtBZB/QA8M4SkH2qfa+Rl9IQSchQW8IbUZBQxdw7J5tREH2xS7sB2xCQTt7i+RJckBBsxkDBFUSPUGD+bS79285QXJ7b84BCTZBJod+us/lMkFkauzSsAswQTPtFslH+ipBN7fsoFh0JkHWZEFvboEiQW3FVF0iNB5BA65NIKRoGEFfWLUbOIkTQenzFhXB+Q5BsRiTRh9UCEEgmxQQX+8CQVFimiizN/1AaX1uEBhb9kAQgu+NmPnwQHRclu2HmulAexg+YlYz40AMBFd9Na7cQHK6AtHRYNVArkd1CPnkz0ArY/I5huTHQIeGUFXXDMJAw4G1zeiiu0BeL/jm84u1QFQ1jVHcL7FAkplJrqElrEAwQ4UIOLKnQHXkZ1xlf6RAUVga+GMsokCvjr0EPXSgQLBShs7MTJ5ArZ0fDUFCnEDtsDZkeJqaQJEyGn73NZlAd7kmtpz/l0BxD5+cYOmWQJrlvEntDJZAbeWdeEvzlkBuCa0CmOCXQKIET4Do1JhAheW/L1HQmUAPubPe5NKaQJzI1dO03JtAoFwzuNDtnED8fp+ARgaeQO/CHVciJp9AIU8xQrcmoEAkLrysGb6gQA8VzIw7WaFAOpQj8h74oUBU6ePPxJqiQBIz+PEsQaNAM6G78lXro0CPP+MwPZmkQCsWtMXeSqVA/m2OezUApkCpGNfEOrmmQAehR7PmdadAT0uu7y82qEA5xCayC/qoQFpQ1LptwalA4jUmS0iMqkAP/a4fjFqrQDb8lmooLKxAoXWyzgoBrUACVkNbH9mtQAZibohQtK5AkllrNIeSr0Alo7tQ1TmwQMboRzrQq7BAdw5/WiYfsUALl1vmyJOxQLvGy0SoCbJA056/D7SAskDpV6kV2/iyQL9oclsLcrNA89/mHjLss0DIi5jZO2e0QNYcO0QU47RAcB96WqZftUCXU0lf3Ny1QOKUr+GfWrZAYCsMwtnYtkDFA9Y3cle3QDPx09dQ1rdAab3MmlxVuEBvba3ke9S4QPrBI4yUU7lAqJqq4ovSuUAbhAW9RlG6QB1ZKHypz7pAyoCHFphNu0Db9cwh9sq7QBfn7dymR7xAaGacOo3DvEDtQxDsiz69QGbcIWyFuL1Ad0+xClwxvkCQQlT48ai+QPMIRFIpH79AH8GFLuSTv0Dw2SJUggPAQO6AL3Y2PMBABTkEo/9zwEAwf88Vz6rAQORGwyWW4MBA/ZCMTEYVwUAVUc4s0UjBQESsm5goe8FA2pztlz6swUBKFhBvBdzBQJPvAqVvCsJARjbLCXA3wkDYQbK8+WLCQNk4cTIAjcJAhT9KO3e1wkBMLBUJU9zCQCwQTjWIAcNAaQtDxwslw0BC0Jk600bDQHhglIbUZsNA1DPOJgaFw0CXa7YmX6HDQBjZ9jHXu8NApsR+rWbUw0AbOmrfBuvDQBI9DTCy/8NAvSvjlGQSxED3p09AHCPEQBes4cDaMcRAeXPV0qY+xEBSna5Kj0nEQKypH7WvUsRAtFL6lTdaxEBRSZKedWDEQAccH8/oZcRAKybxS1prxEAGFITOA3LEQM1pvxTIe8RAstDzloSLxEA2p4AthqXEQATLGzEt0MRAxHg1ANEUxUD/gBCa9oDFQMr+cfvxJ8ZAvz9hxA0lx0B+AmbpV57IQHxAOhk0yMpAszRBKNTpzUAub3iQWTHRQApqo6STWNRAtwmbmAi92ECiFpE+zMjeQMBi8GsygeNAvfVOl/AI6UDCGaFtfTHwQBbnraAxBvVAsjG6DvpM+0CvwvLoYK4BQfNk+KeRzAZBeGGgn/E4DUGCGuScY5gSQXVvzKTDehdB72gDcoRlHUFIFLPhRT0iQafxXIQYbSZB8r9UYbRQK0EVJAsl7HkwQav1FDM0rzNBByZ1CqRJN0HsMMNyn0c7QT9/R7H+oz9BFvJW+9UqQkGcyjZvs6dEQcxf/P7bP0dBzWHcN47oSUH5yxUcN5VMQXT6l0DFN09BdS7kjIzgUEGX5u8yxxBSQcltxDPMJFNBjJu7XDQVVEFzVS+QS9tUQcW2jgdgcVVBjJN+1gfTVUFRdBQQWP1VQZ5LBc0J71VBVOFBg4qoVUHBCTSL9itVQV1wnTT+fFRB21MgSregU0FHStY0Xp1SQZaexPsKelFBcvXqB18+UEGH1bayYeRNQVhhe2Z1OktBWvQ8eqGNSEEwxRSDROtFQWnuEkoRX0NBnat3EcvyQEGzckWTQVw9QbmxPGdLLTlBFKuuX8hfNUFnQjNcDPcxQRnumbI35i1B9jtpt2WiKEFcR3XlrBgkQVEYZCbOOyBBGSqtqq74GUGN9xPcPJMUQaB7ScoyJRBBz6+1mDgaCUFDUPdxZlYDQUG9o557iP1A9rZHZLJd9kBoQOirK8/wQIvfm52eGOlA0GpR0Iah4kAB28qUSY7bQOITcyc2WNRAV1KCc2YUzkCbX+GRMFnGQCNvEtl2w8BAyKVsO1uFuUBiHEi7r9GzQChKCj2Zja9ABkZbjcrUqUDhzxzUI8alQFJmDB+Z4KJAgoEPcDTIoEDkhoUqenieQLnsZ59oH5xAU6xueWRHmkAlaRPfeMaYQH7swxZ/gJdAcVlIo8lilkChFKo2EXCVQPjjbKMIUJZA/4M0Hb02l0Buj8aiQySYQPJwXuKvGJlAjiztIxQUmkCgsTgzgRabQFhD50kGIJxAqhKE+bAwnUC9q4oVjUieQFpbh52kZ59A35St0/9GoEAJPtkk0t2gQLbrXkNLeKFAxVCeG2wWokBuCfV6NLiiQDttrgWjXaNA9Bo1LbUGpEC1uo4mZ7OkQNmGKuGzY6VATzsL/pQXpkB4EVXHAs+mQGtwSCj0iadAkfGxpV5IqEBgTNhWNgqpQBql8N5tz6lAnp0hZ/aXqkBJYR2Zv2OrQOa2Wpq3MqxAae70B8sErUBQQTrz5NmtQMj2797usa5AtU1TvdCMr0As7G53ODWwQArL6SBapbBAu1hQ+b4WsUDaLIbWV4mxQGvcIscU/bFAEMXnE+VxskDLJ6dBt+eyQMdMnhN5XrNAGyFEjhfWs0Czco36fk60QFWgp+max7RApUEqOVZBtUA+978Xm7u1QAk9RgpTNrZAocBj8WaxtkBnZJQPvyy3QJW8qQ9DqLdADni+C9ojuEAFypqUap+4QFiMh7naGrlA43WNEBCWuUBCYx2/7xC6QDJUHoNei7pATWVdvEAFu0CXs1t2en67QPS/dXLv9rtAeZJfMoNuvEAEivACGeW8QEl0OQeUWr1AojzfQ9fOvUC+NbSqxUG+QL68iSZCs75AGbEzpy8jv0AhALctcZG/QH1JnNjp/b9Ac7cveD40wEBLWvr5hmjAQMT4rVLAm8BAbBkdi9zNwEB3Eznazf7AQK/VWauGLsFAA4J9pPlcwUBrVnysGYrBQGzMLfHZtcFAOrV87S3gwUCzvGlvCQnCQN3N/p1gMMJArng7/ydWwkA/vQx+VHrCQMsTdXDbnMJAa0gqnrK9wkByKyhI0NzCQOF2GjIr+sJA7xMqr7oVw0DKNdi0di/DQLADbvhXR8NA8xWVHlhdw0DStp0JcnHDQOJm2Vqig8NAs0nUR+iTw0CN3mn3RqLDQLWJ+bfHrsNAt7v4i325w0C76xnLisLDQI+CpvQpysNAQCNwVrvQw0BZ/Kbo2dbDQHsdmMJ63cNAkUIU6hvmw0AEDt8LCfPDQAUDoPu+B8RAByicvnkpxECXnjpn/F/EQHtw0iKmtsRAu16xc+w9xUCBDX1qVw3GQMzgpGQhRsdATOiXxJ8WyUA1IeRonL7LQLiHrDzHlM9AwoTiXbGG0kBh004TImHWQKL6UWYXvttA4rvd8l2P4UBuPkHybpPmQPYH74WQUe1ABIYfH84j80CHZl/q7gb5QCYxE85gVgBBnqZNhI4/BUEzbY4epXsLQd4JkKRYpxFB9mslF6iBFkFT6QI0m3QcQWPL3uq/1CFBXT7nY84kJkHmv+PnKT4rQUvODMI5mTBBfEcrSfwHNEGaQAh7KvA3QRyDR3uGUzxBsBNNJg2YQEFdD0Nvzz9DQbdtyQKCG0ZBxRZpZxMjSUEhQ94s4UtMQX8Y827SiE9B5XSNsktlUUEnSCJMBwBTQfyMItFmi1RBYWBKQeT9VUEp3+btB05XQV4YYQzOclhBRhKp4wxkWUEP2HdP1RpaQfFMdWXHkVpBQ9XJm1XFWkFAtLbe8bNaQSHP+XYhXlpBA3OpXXbGWUEmwN50bvFYQQxLgOw65VdB/HGDtnOpVkHrWGYyvEZVQWAJNwpfxlNBI5brjecxUkH719yqvpJQQebcavCh401B2GQxmISuSkG/f6ALZJRHQabjJaIjoURBQglvfh7eQUFcP/osPaQ+QZFLETXnAjpBF1dDZUjcNUF2FqwwZjAyQS4n2e/E9y1BZSr+cVlxKEGXTnGNaL0jQeQrgYtGkh9BB162tH0AGUFMXnE495sTQZfTa/Dsdw5BxczK5JRzB0FoumTobeMBQdiuIOIcDvtAYrowNVlL9EAWtUrZ2TjuQEskRYk5XOZAt5jIYRl24ECtFyDskCnYQJWhO7oiudFA5+/CtmUSykDTIMSvZk/DQDtyf+eJ8rxA9amWfyMUtkCXLcx7iTqxQKWm72ifoatAUDuqYDDUpkBVFpQ5o2+jQKhXxlX+A6FAqYMiaOeEnkD1hr+5deibQFnnoj5n55lAECiQb6lOmECOnrah+fuWQBcLk7We2JVA8lBD2bfSlEBUKfZmQ6yVQGqmIoxajJZAfZZ0rRFzl0ADu7Poe2CYQLg3o/+qVJlAinjBQq9PmkAUwPR7l1GbQJYZMdlwWpxAbewk10ZqnUBs7fkrI4GeQJOgOLINn59AyYbuKQZioEBH2NV6EfigQFAHa7GpkaFAlVV/nM4uokCHMlbqfs+iQIbBHh+4c6NAeXW1i3YbpEDPE7ZEtcakQNJ+5hludaVAba4CjpknpkBBP/LOLt2mQBf5b64jlqdAIqArm2xSqEAVT26a/BGpQGZ7SULF1KlAYqBYtLaaqkBJYR2Zv2OrQFK+/RvNL6xADLzr58r+rEBImL0ko9CtQIFbPXU+pa5AIEH29YN8r0CvCmOeLCuwQJghnCxRmbBAyPDX6qAIsUBIzrJcDHmxQEvunkWD6rFAqoa9qvRcskAlryfVTtCyQJNkqFR/RLNADsvoAnO5s0Cwfg8HFi+0QDRz09lTpbRABZECShcctUAP63uBSpO1QMESnQrXCrZA+rgh1qWCtkAjcnRBn/q2QG0abx2rcrdAjP2ItbDqt0BoinDXlmK4QJ4BDttD2rhAFjPsqp1RuUDXBQTNici5QOEs52vtPrpAxRRGYK20ukDyv8w6rim7QAT1UU7UnbtAjtBTugMRvEARfrx1IIO8QDqQ6VkO9LxAuyjwLbFjvUCn2xey7NG9QD76haukPr5A87QS8LypvkDETUFyGRO/QA5iVE2eer9Adyd30S/gv0C5KfpH2SHAQDGlubOFUsBAnRMayA+CwEDZmyFUarDAQEtdzl+I3cBAtBMdMl0JwUB0oAFX3DPBQF+PT6X5XMFA0H+SRKmEwUDcwdmy36rBQL+8gMqRz8FA+hsJyLTywUDHQTBQPhTCQELkjXYkNMJAiI1JxV1SwkA2MeNG4W7CQDXPx5OmicJAM2mp5qWiwkD8GaM82LnCQBITl4k3z8JAgGyyDr/iwkDx98Xpa/TCQBBS6gE+BMNAFe08izkSw0DgnxJ8aR7DQFMP4X7jKMNAqbReNM4xw0ALFlACaznDQKVjU0ElQMNANNcHbqlGw0CgR7IiCE7DQHVgXyPqV8NAdQCtxtxmw0Ck/ryXwH7DQDHhg0VnpcNATbbv2nHjw0Dxs4TMhEXEQKKGH4Ts3cRAURued9LGxUAqDVIQKCXHQG/xxwhxLMlAzPEpeZkjzECnze2pgTXQQNMqcwn5QdNAq25tC7iM10CcduX4WoXdQFKUw7m/3eJAevVjg6Ny6ECWvdIQHfPvQEFxLCWN9fRA/wFEXfiB+0DpWULbxAECQXQfzq33dwdB66GUDQJnDkEIRezWRo0TQRDxomLI8hhB5C3cZ1WQH0GFMBVi7ckjQVwSxb2elShBc26soyNBLkE15hMGC3AyQWlManguQTZBtTHEs1OZOkGXUQ01b3o/QVHTP2gpcUJBIF5N0QFlRUFLMyZNmpJIQXqSIEf68EtBW35ssk50T0GuJSXCA4dRQSdCHDCPVlNBpJtdkEMfVUEdfdDx49ZWQc1KzIvZclhBeQ5cgZ3oWUEEuB3RKS5bQfWAVfFqOlxB7o+XH6sFXUEpHWl+8IldQa36Nb9Hw11BGuBBQ/avXUFmgQo8kFBdQbR/BUDxp1xBQQlr2Be7W0HgpqKQ5pBaQYwPBtrOMVlBjZ9lf2unV0E7A9xNEfxVQRQ2J/RcOlRB4vyJ5cRsUkEfB8NVNZ1QQfMTx4J2qU1BSpttE4Q2SkEFdMQ1y+5GQf2B5Qaz3ENBAPzr78cHQUEwZ6Q5quk8QQzn7ng2TDhBENcBqzo3NEErLgM5+KYwQQGy2dVhKStBbVlmH9ruJUHcrCyUb4khQeF+WXAkxRtB0inJF2DGFUH27c2pRukQQZD7PcmlBQpBzcmxBZLWA0EMlR4IZ/v9QJb1D4bLd/ZAbTmfmTK18EB8v0vxIa7oQL/+ac6PIOJAOM2hwoqG2kAyLUbXlGDTQKAHP/Z1WsxAzMuArFjbxEBhtKu3OQC/QItEfSOvZ7dAbEWB/oENskAJntCLOZisQB5POAnnVKdA1KiUtFWio0BwS7F6BQShQH77bjmwRJ5AWkJ8H8qAm0BztZs2r2iZQIjiG62Yw5dAGH4WS3FrlkBQiUkJ+EaVQFBIpPAsNZRATOatmUoIlUB2TRNVwuGVQDz6Ne2nwZZAS4k87w2ol0CA/pGWBZWYQEtxRrieiJlAAPRcrueCmkC1EBND7YObQD+1Lpy6i5xAQuNfJlmanUDg6sOA0K+eQCtkmGgmzJ9AXT+WUq93oEA/zQ96vQyhQOc3/no9paFAPSqgDS5BokD+NO/IjOCiQORZpxlWg6NA0J2cOYUppEDDwmYnFNOkQNtQa577f6VA6hZODzMwpkARRNCYsOOmQBAvJgFpmqdArcrLr09UqEBAq9+nVhGpQKBdDINu0alAOaQHbYaUqkAL/a4fjFqrQPKXyN9rI6xArKJvehDvrEAphjJDY72tQHBe6RJMjq5Af51KR7Fhr0AptKHhuxuwQJhqDHjBh7BAdmGrX9r0sEATRcjW9mKxQIum+2IG0rFA7JJk0/dBskB49U1DubKyQG7YQh04JLNA/E2SHmGWs0CpfUNbIAm0QLcDekJhfLRAhX5Kow7wtEA90/6xEmS1QMJeyQ1X2LVAlvHlxsRMtkCsHydlRMG2QPoU7u69NbdAhciK8Biqt0DvDwKEPB64QOO9NlkPkrhAcJ9yvncFuUBJ1kupW3i5QIe54r+g6rlAjhN0YixcukAKQzu148y6QO91n6qrPLtAuOmmDWmru0D60qqMABm8QFxIRsRWhbxAIUt6SlDwvEDAyAC60Vm9QGA3yL2/wb1AVzmRHP8nvkCzg6fEdIy+QMkZr9cF775Af8x+tpdPv0AW0wANEK6/QBYkCW8qBcBAtjCtRyYywEBVNon67l3AQNEL3C54iMBAnkPSzrWxwEAzWkINnNnAQBecWWsfAMFASEw9vjQlwUAr8ak00UjBQHdCplzqasFA7gJ0KXaLwUAkBQ76aqrBQF9lw6C/x8FA1SvwbGvjwUAFMJM4Zv3BQFE+xHyoFcJAex4ncisswkBHUepF6UDCQOf4c3HdU8JAOeLESwVlwkD1hJb5YHTCQK+34/b0gcJAk+CZlcyNwkDCStT+/ZfCQKMKXI2woMJAJeW3wiaowkC08Tuwza7CQKLByYJUtcJAbXgeBdC8wkArB1t378bCQHlxbSJK1sJAirJnqs/uwkD9ShRnaBbDQECSowDXVcNAqJFHMfG5w0CDq568SlXEQLfM7yZzQsVA8hLHA+ymxkA2vkEkArfIQDvwIYq2ustAoTglxvEJ0EC52lbC4iLTQHdj6HkBf9dAfCxXOp6P3UBXqS3eQ/PiQJ6eO5NTnuhAG4E6fD8e8EBKaMhc6y31QPs+ggcj1PtAdo4rzZQ7AkFbktuNPMcHQY3qRap90Q5BWfYiwZTTE0GNmrs/PU4ZQaxVIJzaAiBBsfoSgE4UJEGtfkJ6xvIoQXnwC/Z8tC5BoHJeQqy2MkHJS+Uhv5Y2QTOe84Pj/zpBhh88iBX0P0Hg+CE+j7hCQW/13Bn0t0VBaxKExPrxSEH+Zz+Zh11MQXeUOlSZ7k9Bg+oHgDPLUUHdNhXb06FTQTCprm+CcVVB7I0ySdovV0EJeFA8G9JYQd4QpUeVTVpB4Xr7PBuYW0Hy2GMZdqhcQZtpQvjRdl1BfAfEoB39XUEJZKFTVjdeQQpp+q+6I15BPhEyKuHCXUEctq2DsBddQUU9L8o6J1xBg3NGcX34WkE6q3LpCpRZQdw8x4ajA1hBmoWadsRRVkGQydXgM4lUQdFjfRyRtFJB8LHFJO/dUEHLy66q/BxOQR4wfQWSnEpBdUWx2glIR0FLABLv8ylEQe/xqyv6SUFB14to8PRZPUH8whCifKo4QTdXqpCRhTRBOjtrgmbnMEGK56nIRZIrQULKl/FXQyZB2rWnCMjMIUHWUVrGWy8cQeqe1q06GRZBJwrfSzApEUG2cz12HmcKQfO4+9YAIARBFWo8l6Jo/kCB/BEV6cf2QLMX1sAL7/BAcP+/PSsA6UC5ExYUdVniQP+Ukhg709pAiOJRwDuS00BHx2Ye4JbMQMVLJhcv/MRApKxXLmUbv0Ciwi9bc2i3QDhFK2iP/LFAb5uifzlfrECw44DfbA2nQDid7ZRXUqNAcKd0O5OvoEBCZvPiVpidQDnNmOuT1JpAyIr94u2+mEAcx+DdwB2XQMrZlqljypVAK0AXdjOrlEAeqZMpupeTQBPEDupqZJRAbJNdP0Q3lUDF465ZWRCWQCxUnjW875ZAj1xTiH3Vl0DTp4KrrMGYQGY7XYlXtJlAFGZ5iIqtmkAL7MF3UK2bQNZceHqys5xAr+5X9LfAnUCBpOZ1ZtSeQHnkAqnB7p9Au/7dnuWHoEBsNcJrwRuhQEh1Zv3ysqFAmNuL/XdNokDqs8n0TOuiQCePJkJtjKNAF+MEE9MwpEA4Gmtbd9ikQLr8rs5Rg6VA0FSM2FgxpkD+o66WgeKmQI6qtdK/lqdAqme8/AVOqEDjFWomRQipQBh+lP5sxalArsl6zWuFqkDVw59xLkirQLs5Sl2gDaxAX+GxlKvVrEDE396sOKCtQFGwQcsuba5AVtEIpnM8r0BempzC9QawQN0DR6K8cLBAvvgRK3/bsEDrt/liLUexQHi8Dp+2s7FAAIIGhgkhskDIxzcTFI+yQA0WA5rD/bJADv6nyQRts0DKQIexw9yzQOe50cXrTLRAUZuj5Ge9tEDLNItbIi61QD0veu0En7VApc8f2fgPtkD7gKrf5oC2QGCP7ku38bZA9Knv+VFit0Dya8pentK3QKTZ+pCDQrhAtWr8UOixuEAz6T8SsyC5QGoccwTKjrlAXOgVHRP8uUAlPlghdGi6QAPwO7DS07pA8jT1TBQ+u0DfY4RpHqe7QJIug3HWDrxAtWcf1SF1vEA6Jz0U5tm8QKvsuckIPb1A9i/Ktm+evUB8qGrOAP69QOpv3kCiW75Awg0zhzq3vkDwbMNusBC/QALHsiTrZ79A9L9YQdK8v0CML8zppgfAQPU+DjajL8BAnAk7lFJWwECpFw7fqXvAQM3yqUKen8BAEBcJQiXCwEA+oX+8NOPAQC/JdPPCAsFAHHmdkMYgwUDAZD2tNj3BQK/+W9sKWMFAeVWMMjtxwUBGeBJjwIjBQK1oI9STnsFAJ3su1a+ywUBTf0rvD8XBQM1jIGyx1cFAUKukNJTkwUDAQQc+vPHBQEzv5dkz/cFAW2fSbA8HwkC2zjtScw/CQC5GlhedFsJA9r2lxfEcwkD/c4O0EyPCQNB/vnYDKsJAY7341VAzwkASbmy9YkHCQL7laFrfV8JA2BoVwkB8wkAgUk0YprbCQJSB0n/1EsNAj5ko62eiw0CSSmr4nH3EQFQI2uxZx8VAJNLIAhuwx0Bd92mooHrKQCXMfN6hgc5AIawBGGQf0kBYU9KShynWQPpMvnlHyNtA1RF6uGfB4UDPlLibRQLnQBVkefrQEe5AWDI8n96580DUvWxlteP5QDoiXQOd8gBB0D13j5cWBkEkQGixQJ0MQQ/coYrnZhJBM4b6BCx7F0GRdCZ1IrUdQdpHhS4CoCJBSQmR7YEjJ0HAe+K8q3ksQZZjMUB5WjFBthOk5ibyNEEghLvx5Qg5QWAXC3CNoD1B3YE+BIhbQUEcpaz17SJEQWQ0xZquIEdBnwqNa1hMSkE3w1tcyppNQebcKM4nf1BBlUrPDHEzUkGL3Rg2SuFTQTEHiXgQf1VBD1WOc8wCV0FQcJ/ClWJYQfWM80j9lFlBIaJOH3iRWkFuHzWUxFBbQYD9u8BCzVtBVBGBzjoDXEFjc/klDPFbQfIPvEFCl1tB5v3uso34WkGW6rrToRlaQchTNor5AFlBZiBoLYe2V0E7sILxVENWQZHM1RwcsVRBGqE6ndkJU0HAuJtkZldRQSigHY0yRk9BpCaJ/+3qS0FgMcZy56tIQcNgx8KPlUVBqXoucrGxQkE8hpxHZwdAQapacYpoNjtB6kcCYW7eNkHRPhrF5QYzQVav6PyQWC9BEhoDr3uQKUFP/AQ9qqQkQYLAXL9tgSBBJhg1wxMjGkEM1Qvij34UQc9PW4hc1Q9BjCZhkuJ9CEG0irKi5qsCQbKx2LcAOPxAxG7VkYMl9UAHuhY3Q3PvQPI0JWaBOudAk0h+JpYP4UBX/OUdDvfYQEaP69u1PNJARBvYIk+vykByMk73DqHDQBhdZtXwLL1A4o11scQGtkDrJ6tgL/2wQI05kiaw6KpA1Q0TIaL0pUCLbE8UxHmiQLXMJyfoAqBAHsGNNy57nEBsUVaj+uCZQNKmtJN36JdA4RIt7zRclkC8wM7LWhiVQIZlQVAkBZRAUYWp6qb6kkAFlqKo7sCTQFiE7pstjZRAYfzmWnZflUAzU/RR2jeWQKHrS7BpFpdA8NyRVDP7l0B8+Gi5ROaYQLjI/OGp15lAYZuRRm3PmkDcGyfBl82bQFluOnow0pxAgCK11TzdnUDnsRZgwO6eQJpK811eA6BAs6O+x5iSoEDXaZk5DiWhQN/hAHC8uqFARrpWD6BTokApfr2btO+iQAnzRXH0jqNAxQl1vFgxpEBDDCpz2dakQMyq7E1tf6VA0n+qwQkrpkBDjev5otmmQH8chdMri6dAfEjS15U/qEAiUXk40faoQF2nxMvMsKlAG2qWCXZtqkBSzvwIuSyrQKCmbX6A7qtALvKuurWyrEChBnKqQHmtQL6NptYHQq5A0y2KZfAMr0ACS3kc3tmvQCVwQrFZVLBAHH3ooai8sEBZcN+6yyWxQI6+8i2yj7FAMgHthkr6sUDEKOWugmWyQBoC9e9H0bJAaDlZ+YY9s0BPufrjK6qzQG32YDciF7RAkWgM71SEtEBCIjiArvG0QOolAeAYX7VA/8XxiX3MtUAZC++GxTm2QODIhXTZprZAbbiUjKETt0AznVCtBYC3QGgpn2Ht67dA/QbF6T9XuECqHGNE5MG4QKjavjfBK7lAhBBRW72UuUBehpYhv/y5QCJPHeKsY7pAr4fJ42zJukDD+Etn5S27QOLWxLH8kLtA76SMF5nyu0D9Cx0HoVK8QFZNExT7sLxAAsxFAo4NvUBJCebQQGi9QANXqMX6wL1AdnXqd6MXvkBXWNLbImy+QNB0Xk1hvr5AVFlhm0cOv0B1F2MSv1u/QCmPZIexpr9AypKDYgnvv0DkJMLUWBrAQM0bJwXLO8BAu76+ctFbwEC6zqSsYnrAQE2FnqZ1l8BAD0XPvwGzwEBgvA7L/szAQJtsPxpl5cBACSQCjy38wEAV4Mi0URHBQL3f/+rLJMFAvP5jqpc2wUCWsZj3sUbBQHEFCiAaVcFAXdwn79JhwUBGDvij5GzBQAVX8RVgdsFAf6ifsWN+wUA/sTJJI4XBQO07eyz0isFAA8s0o1+QwUDXwojKPpbBQFqOiQzkncFAWglvAFipwUAwFOCOsbvBQLCD0sWT2cFA7Z+u494JwkBdHNjEpVbCQAsf5fB8zsJAnGxO0DyGw0CYELK8VJvEQIjyyxnQNsZADtYYsjCRyEBHDo8zQffLQO3nHlb/Z9BAJrkUeNfR00AmdGI7FZLYQNQdbZckG99AtNO6gRD/40ADUwAFKfjpQIcPUNwr9PBAiucu60Ir9kA9bzNfmfH8QHYV2JF40gJBEucAfl1YCEFTXsqIw0YPQajnLLjh7xNBHClHTPw0GUHjmnFWSJcfQb4cyzWrnSNBfJo0vAQiKEF23wqgTmgtQY/IOCSavjFBF+QZZpw0NUGooP3WvBc5QSTcEMc+Zj1BkXBQTEkNQUE3YPO1dZVDQQAowe1+REZBcx2ESPkQSUFZRqGeSu9LQUj6Rpri0U5BHd7NL8rUUEFndgLYBzNSQbzYgpI6e1NBZ8YzW/+kVEGrEW/XWahVQSWyh9kOflZBO4Gu3/kfV0GFlYgPWIlXQcm2bbIDt1dBzemDJZynV0FsRZt6l1tXQelDBo881VZBZc4lAoYYVkGtamQQ8CpVQc+OWMQ0E1RBwCMpD/vYUkEGTNgTfoRRQYTrHjoyHlBBfBPa59pcTUGm9vEcL3pKQQn4CwHNokdB4RXuClPjREHvIkwrSUZCQa4y5Djypz9BY0va4MwkO0FgW1u1xQo3Qfq9aZ1zXTNBlG3ebNscMEHbpdPbAowqQUggDK4MpyVBrA77VIp8IUGPHFbupPcbQRU9qaHWJRZBUeiOEedeEUEWkE8ggP0KQQyjHY42xgRBlJjQKkOx/0DEvnLyY/f3QFmbLLQy+vFA7i6k/H7F6kBCwIians7jQMOiDNPDKd1AHgbTsyRn1UBfDPXxyWXPQBN4OJziF8dAi/Upb4EawUCGv+crdaO5QPJAXFzSjbNAnQLB3vqDrkCoESJSFHioQEey1ekPN6RAUsJk7bo1oUB1LxzuxyGeQK3mw9N3BZtAOjPfcHa1mEDmJ6ZzGu+WQOl0q9AlhZVAvreWDj9ZlEBeIfIYRVeTQLddniQ4XpJAWyZflh0ek0CsrqQRyeOTQOSVlJNMr5RAweT6+LiAlUDuKafrHViWQDPFrc+JNZdA7SKYsAkZmECEIo8uqQKZQFRWi2ty8plArjqX+G3omkD66S/DouSbQNc20QIW55xAXG+6JsvvnUDLYPnDw/6eQHW+5MH/CaBAcaIqCb6XoEC+KvSGmiihQFtPUPuRvKFAQrpWD6BTokCTn5VNv+2iQPhO1RrpiqNAbeg4rxUrpECSmMMPPM6kQL+0SQhSdKVA8fvUJUwdpkCwKIOxHcmmQGDf5au4d6dAcd3qyA0pqECpH1NsDN2oQFyAv6aik6lAZhJZM71MqkA0Oht2RwirQOc7xXorxqtAbKR49FGGrEAOmwk+okitQNDKBVsCDa5A+Cx2+VbTrkAGk190g5uvQCuuguu0MrBAOKZ4cHWYsEC5fGEF8/6wQAVk5MUcZrFAlvExMOHNsUDOCJwoLjayQPbdk/3wnrJA2/ANbBYIs0AWk0ukinGzQFRBCU8527NAAckQkw1FtEDx5C0b8q60QHysgxzRGLVApOBAXZSCtUBN07A7Jey1QEFVprVsVbZAocg9cFO+tkC6J/O/wSa3QC+DCLGfjrdAJy85ENX1t0CojbVzSVy4QLUcY0TkwbhA2ylcx4wmuUAZSqonKoq5QPV1NoCj7LlAGm3p5d9NukBIzPZxxq26QH8LTUw+DLtAzGkkti5pu0DAn6YUf8S7QPgKqfsWHrxAz+NyON51vEAK9YjcvMu8QDQ+eEibH71AlOmYNmJxvUCZGcPF+sC9QKtY74NODr5AARC9eEdZvkCNmNov0KG+QPG5TMPT575Ai6CX5T0rv0A6EtPr+mu/QOO9wdf3qb9AicscYiLlv0B/2biCtA7AQBeDH4VdKcBAkH3CSoRCwEAsh/NdIVrAQMIWgs4tcMBAJ42bRqOEwEADfw8sfJfAQJkGitazqMBAQH+76Ea4wEDcCeHiM8bAQC2wRRJ80sBAnJlgFSXdwEDWolBKO+bAQD6M8qnV7cBAuAFy0hv0wEBHbH1gT/nAQFZZnTfa/cBAmZ8CDGQCwUCBx5Vv8gfBQDl5dd8XEMFA7Fh65DcdwUBYm5BU6DLBQHysEyp6VsFA+BpLNrePwUCTBaoZ5enBQLXfST4hdcJAbwWByCxIw0APHfEiwoLEQGqNDmGPUMZApo0QavDsyEA7EF/JgKfMQJ4bDgrL9NBAoq6G+lOe1ECAuJCOzKjZQJrW9vIuQuBAeeYMRZPe5EAKbX32vv/qQPzD+KP8hvFAVroSJajC9kBpHun/WXv9QLovF9UOAgNBhi0slxFdCEFIlj3tywEPQexZYnpokxNBfq3ETFiCGEHYObCO+GkeQbxHpySgsiJBRKfy2inGJkHzb6xeZHkrQV6UhAByaTBBFtR2m4hqM0GPhyFPnr42QWljLsZmYTpB1Ri3105LPkFUj8YKpThBQby8bjZkYkNBDUQIOu2ZRUH0VoQ6xNRHQfBD84IuB0pB9RAAJpAkTEFJYSOQ3h9OQeffa8ki7E9BYymeRoK+UEEwyQ8bq2NRQZ2M4nPM4FFBBiZPPDgyUkHoRkWzf1VSQTpC60mSSVJBuDW7Q8sOUkHrVfMk7aZRQcBND0ELFVFBkEGw+GJdUEG4memgTgpPQWHcxtCEJE1BJAFv1yEWS0ENoKSSN+xIQfzk2cmos0ZBL/5bAK54REEz2A/QbEZCQf+tHiWmJkBBFU9Hi/tCPEFwuuxIt3o4QUJNT3rL/TRBsQOfhB/SMUE2CFxS8/QtQej/Gku77ShB9kvZYfqJJEH+GrSbYsEgQY2NPULRERtBjx6BTVenFUEjxD+1jScRQb/7yWkV7ApBX9ylvtPtBEFa9iWWWh8AQXZWfvV0n/hASKfNOLKl8kD+C7vPUQfsQChVQ6FN7ORAG7GH2bsQ30AQvYlzD/nWQLnUsArm9dBAA6ZauFMTyUD7D9mvLaHCQDOXJP9U8rtAkUXRMIxFtUAyucvDmISwQKRJga+eS6pAyqGRTnCGpUBBGqSzkCSiQAFWkNzPdJ9Aexc7aJP2m0AJHkuHf2KZQCa7wpKMbZdAJHgAYTHklUDSMCe0cqOUQByoVejXk5NAtLZvaM6lkkDy9OMmsMKRQIyXebc8fJJAX25Qbl47k0BmEDywJgCUQMwXQMulypRAwQuL5OqalUCYZFbmA3GWQMIQtm39TJdAK1ZiuOIumEBQW4eSvRaZQJQPpkSWBJpAV46SgXP4mkCZeJxUWvKbQC8Y7g9O8pxALHAvO1D4nUDopnqCYASfQKe611I+C6BA3L4ZNFCXoEDKzJbAYiahQHAnJcZxuKFAnNuL/XdNokCyloMDb+WiQE6MEVJPgKNAIZBDOhAepEA0flTep76kQPL4PywLYqVAh2zM2C0IpkBUJxJbArGmQHIxhuh5XKdAx2CPcYQKqEB886ueELuoQGfALc4LbqlADMySEmIjqkC5yH8x/tqqQOy5YaPJlKtA4527k6xQrECppCTijQ6tQBUa+yNTzq1A87/PpuCPrkDi54xzGVOvQDEULqnvC7BAIIimZwlvsEBgXt+fydKwQGDaRmQfN7FAw3GDMvmbsUB+AVD3RAGyQC2buhLwZrJAOYLFXOfMskBWpmkqFzOzQDWd+VJrmbNApNHjNc//s0AaUdLALWa0QClUJnZxzLRAzVDNc4QytUBNGW16UJi1QJw95PS+/bVAR5obALlitkBOtSVzJ8e2QMJAqOfyKrdAq9OLwgOOt0CspO08QvC3QB7PTm2WUbhABmv8UOixuEDWgqvVHxG5QAm4Q+Mkb7lAazDTZd/LuUADM6ZXNye6QG+sfMsUgbpAw6fX9l/ZukDLolg8ATC7QEWELDbhhLtAmOB7wOjXu0AdKNoDASm8QElVrX8TeLxAt7+HFArFvEAZ6W0Ozw+9QHCEAi9NWL1Awc2Tt2+evUDg4QZzIuK9QDXBoL9RI75A7SSymOphvkAGRDWg2p2+QPuGfigQ175Axd1APnoNv0Cb+V2zCEG/QODJWiuscb9ATMn0Klafv0BTcGkt+cm/QPaHzcOI8b9Al8Pi4vwKwEAJRNtPoRvAQLKzEumtKsBAf8T5YCA4wECt69qF+EPAQDe+V1Q5TsBAVuI8r+pWwEDHNJcYHF7AQFgZk/XoY8BADbLPJ39owEDzlxkiKWzAQFy7ABxdb8BAoMG+sNNywEA7BHoUqXfAQKy7ECmNf8BAxiWTIQiNwEBUyt8V26PAQNb58eOFycBA6BDy9P0FwUBnkODTo2TBQEUO1siH9cFAfYFukg/PwkBSnEB1EBDEQDQfsKVw4sVA6/Cr42B+yEApKEM8Oi7MQL+8UMKBqdBA7+HMxso01EDxhE7eIQjZQJhGqzhsht9AJD83bKYU5EAe/vn7+sHpQAG66QlhkfBA76befKNO9UASOpVOYVP7QK9YpMWvcAFBNQSJs10gBkFQ9QjqPt8LQQcU7H2fahFB+6dGVSGVFUH1VlP7LIIaQYFfNCdmISBB4EaKBGlyI0FtZsvcwzgnQdJvMs8pditB1fq541oUMEFVxjRWK6UyQe8OSq8taDVB8kQFwpVVOEG5JSxyHGM7QchigVMZhD5BaGveC+DUQEGKMsUvwWFCQfDGCPLJ30NBUWijF8ZFRUHaVis8j4pGQYmNcPxupUdBFyLJtoGOSEFCOdXREz9JQRabBovzsUlBDEPB3LHjSUFct+4QztJJQfUJjfzIf0lBQVLQjB7tSEGl1SwZJh9IQW0aDK7bG0dBfzIjEpbqRUH2GuuBrpNEQcH/PugfIENBH/HPqiOZQUEBTb7z0QdAQckyY4SV6TxBLQP1HtjPOUHzLaEzMNA2QfL6KxMb9jNBw9eslaNKMUG/pjzfsqgtQUHUUajOLilBKQwjGIUrJUHwh2d8254hQUIDfE4hCx1BpoX8W5CzF0GcQ8JNbScTQeE+XlUVqQ5BIYHm4JdOCEFrYfgxRxcDQXLJUOSIt/1AcZQSrlXt9kDk5bUE4orxQNmjatnao+pA4JJfNisX5ECtn4rTtyHeQANi9Kj4gNZAW+ZK5gfG0EDhq1KTCQbJQB2bM6aavsJAV3mIa+FRvEDDT+3zoa21QN8CVnJa5rBAq+zsXzP1qkAMje/4axKmQDcp7NxvlKJAAMMoNwYSoED31ZrYfH6cQBa4a330y5lAC4lhJkXAl0DyoVZfdyaWQNh1yCco2pRA0kyzIaPCk0CoevU4U8+SQPL49iU29ZFASCSheE4okUDSm8oqjtuRQJJDdHwylJJAY+Y/O0xSk0C433Yn6xWUQEWooeId35RAymYF3vGtlUAWkRFJc4KWQG4ayP+sXJdAkhgreag8mEDvMLu1bSKZQGeAEi4DDppAzwyowW3/mkDOI8ilsPabQHxYzlTN85xAeheufcP2nUBmBtfzkP+eQBlMwc8YB6BAszU8t0+RoED7k6siaR6hQDrVt/hfrqFAPSqgDS5BokC+Ls8czNaiQOl4zcIxb6NAvOyYd1UKpEBlnWeJLKikQN3v3BerSKVAT5O3D8TrpUBuv/4maZGmQLL9tNmKOadAvpAWZxjkp0CzVGnP/5CoQL60Y9ItQKlARQww7o3xqUCHfhFfCqWqQAz9rh+MWqtAEN0I6voRrED1/Bw5PcusQMsWPUs4hq1AkHIaJdBCrkCtuomV5wCvQGtBATpgwK9AesXpQY1AsEAruRPfeqGwQGBeVwroArFA6rONTcNksUBJu6mq+saxQFo5MaB7KbJADqUTLjOMskB1Tt7aDe+yQKt/TLn3UbNAZA4ybty0s0AJi742pxe0QGPvFu9CerRAJWVDGZrctECXcm7klj61QCWTcjQjoLVAh/myqSgBtkAu8zupkGG2QLIfJ2VEwbZAH2w/5Swgt0DxgeAPM363QMsaDbM/27dAVW+3jTs3uED3vjZZD5K4QG655NKj67hAwWHdxeFDuUB41NsUspq5QKAxLsT977lAJca6A65DukDgbxA5rJW6QMgdfAni5bpAbzodZDk0u0BExfKLnIC7QInk2iH2yrtANdV+LjETvECmYiUsOVm8QOiZZhD6nLxAs3a8VWDevEBoOO4EWR29QB+cV77RWb1AGqwTw7iTvUAIZB7+/Mq9QMHjlA2O/71A9cNfTFwxvkDZH9HcWGC+QJfEKbV1jL5AOmerr6W1vkB0hwah3Nu+QJ+O2XkP/75Ato8KezQfv0A0zq2JQzy/QHYQ47Y2Vr9AU1kIHAttv0Aynd09woC/QDKLmERkkb9AeWtffwOfv0B6Cm7kwam/QPTFGJPZsb9AwZ6K0qm3v0DBINypyru/QBHV9Acqv79A4mOMkDbDv0Au52aUHcq/QH4kTIgj179AJEn6fSDvv0BFeJxYlgzAQBmq9AvGL8BAoEZ+dHVowECUPZz9/8DAQI7A8CfWR8FAF2YuR9gQwkAlyrN5CDfDQEJFd7Se3sRAisgtl4Y3x0Ap4LJWSYDKQCDwX/BdCc9Aaj6zV2ec0kAkx3VZCsfWQPR9XGT8UtxAW6sTTY3P4UBLzBzBH47mQAmnSkoip+xA3xcCPRAz8kAZJOft7w/3QBl+nqmpGP1AbBtRW3E/AkEG4XqZB7sGQfhDxjrNGAxBC6du66Q4EUFNnvzDOe0UQR/T+L4NMxlB3F/9Jx0QHkENtQF3TMMhQRmG0f0HyiRBaj9FWVgYKEGEp6WzWacrQekp3U3/bC9BVJICCAWuMUEicLLHFLIzQaInj50luTVBdeJYN4y4N0HcJXZk0KQ5QQHHtk0VcjtBul/O8Y8UPUFjuF2rBYE+QVv253dLrT9B2OYxGF9IQEHtkrD8VZJAQQ3FOPRTskBBLzt2FmGnQEETL99s0HFAQfj20so7E0BB7OqGxt4cP0FGAm8Ojc49QaAjJPL3RDxBZwQxFeKKOkGPE7F93qs4QXiRzLjQszZBlupafnGuNEG/UZmk3qYyQeXWtO87pzBBMToDYtFwLUHbjv7RmMMpQSz6k791UiZBnOFIHt0lI0GaTQnMLUMgQdSTsM7bWRtBuRrUxEHGFkGsAnusW8cSQQLKWHc3qw5BX1HBVuzNCEHNnQlXaN8DQT4do43JjP9Ahaa8kxLS+ECxBZGY7VvzQGaXyFZR9O1AQgu6GoEA50DM+eSpLozhQKDa3G86odpARNylj1oh1EC2jeSRIWLOQE7VLl7v88ZAyfr2mIBqwUAA1CYxMqe6QGhIj/nxqLRAkvxycC5MsEBzZ5oEj0aqQLdbVaCktaVAEUNjRGJookDA6HXIBQKgQFWnaSx+fZxAAUTdUDnbmUATj+KNedeXQPktXmIjQZZAizl4kxD2lECgwBTAyd6TQEvQFmZe65JAWiPHmhkRkkCAtROU3UiRQGsaIrZPj5BA2qDVBVE8kUAwDtjdhu6RQDr59HUBppJAB1MBAtBik0BfLg6hACWUQO5ygkyg7JRA4y4lx7q5lUBqpiKMWoyWQCmpFr6IZJdAKhonFk1CmEB19DnTrSWZQOtvUqmvDppAezshsVX9mkABDdRXofGbQNcKMU+S65xAJ84KfibrnUAN8BnxWfCeQF49Scwm+59AQeZAnsKFoEAIJAK1tRChQEtlrrVmnqFAl1V/nM4uokDaxspQ5cGiQMB6jJ+hV6NAArtXNvnvo0AUOLee4IqkQEGIATpLKKVAln2oPSvIpUATYAmwcWqmQO/ow2UOD6dAnqWd/++1p0DWLPfoA1+oQGBM2FY2CqlAmw2YR3K3qUDvHiWDoWaqQDbb8pusF6tA08yO8HrKq0DSKOKt8n6sQIBYItL4NK1AZTtzMHHsrUB+Wz11PqWuQGPXOStCX69AU6aaYC4NsEAeR0XINmuwQKy4KnKpybBADruuAHUosUCXxFuXh4exQNnIjt/O5rFAsvh8DThGskAdSJLlr6WyQCQ+J8IiBbNAI0yMmXxks0BsoWgEqcOzQMcoakSTIrRARxZESyaBtEDCJfnBTN+0QJhkbhDxPLVAEx5DZf2ZtUDVPuq9W/a1QLZDAe/1UbZAAorgrLWstkAWm2CUhAa3QDrUzzNMX7dARpUTFPa2t0Br7e/Baw24QN6NcNeWYrhAF55tBWG2uEAY5SYdtAi5QJCX7xl6WblAGPvkKp2ouUC09Km8B/a5QKSEIYOkQbpAryQig16LukC7+xscIdO6QOPmqxHYGLtAo34VlW9cu0DnkJ5O1J27QAwox2bz3LtAdV9aj7oZvEAaZVYMGFS8QMbbrbz6i7xApqnrIlLBvEBXWM5tDvS8QMNSBYEgJL1AD9le/nlRvUAO4fNPDXy9QGUtSLTNo71AR50DTq/IvUAxUgg6p+q9QMf4eLCrCb5AuyEmOLQlvkAhX2T4uT6+QE7tVTy4VL5AnS9uRa1nvkCwOhObm3e+QJnnER2MhL5AoyUyQZGOvkB4Up4VzJW+QBejDOdzmr5Adj3IyOGcvkAeLOW8oZ2+QIohu+OLnb5APxvD8uidvkCgwHNCpqC+QIFUGQyfqL5Ak4cC8gG6vkBj3YOb29q+QBiuNvXQE79Aj4mVXhVxv0C5w5I/1QHAQFxMPit8ccBAoVms+WUXwUDdAN/L5AjCQIUGZ60tYsNAIWhdfw9IxUD8OWgT5unHQGUzRXu/g8tAL6acj1Aw0EA+D7T7Z27TQC8DpdP5s9dA1A+Q8m9D3UAX5BzkMDXiQAmEsaDcwOZAgGiBCp527EA+xILnk8bxQPgJVQZ0H/ZAHjjCzTZk+0DsZANBj9kAQXalFfSElARBunDO/+jvCEGRA0GdN/YNQZ/kETA+1xFBpHgz2aUNFUGtbIka45wYQT2ko0RcgBxBHb2C1vpXIEE8ltDW7Y8iQbpWD8U74CRBwA+GJks/J0HHc7H64qEpQRgErep0+ytBJfH+hIE+LkEokxNyiS4wQSi4+Q+kJDFB5/AmGvX6MUEILYvlgKsyQYbVDFwyMTNBVVWiBxmIM0HawrJKmq0zQVhq3GuSoDNBzBUKLGNhM0GncWTi7vEyQTyqmHWAVTJBbVME3qGQMUGHfVcK5KgwQW5XEtw3SS9BoO+lNjIVLUGjOKoNtcMqQXLQNeGLYihB9vSM6sv+JUGcv6IVZKQjQSXPlHjFXSFBZtW1v01nHkF7aXrux1kaQQ055W3tnBZBOrQKWhA3E0FsFxAqKSsQQVQeMfl38gpBkx7xB6I9BkEdqWjM7C4CQa+OE3kLdf1A0bCxd0el90C4PvyaztDyQLKpO+5ssu1AWmHRsEZB50DuvoShchXiQN/UVpUc9dtACTCOHMeC1UCYbsiOpYDQQGynmHCSTclAeJPHmGFww0AoFYKCFwi+QIiuVnp4ardAwYPUHnaBskAIKEblh8StQOB8+3qRcqhA3uYaUAWMpECEiIs6t66hQPL2RX3rIZ9A1w3SxFX4m0BzCBpP3JCZQGIBrn3isZdAjyt/o1cylkAkhHAnUvWUQH41fze15pNAlOEz0Kz4kkA4f9lR0iGSQDNTufPSW5FAeKJOYHiikEBMcY3l2u+PQI4JfTXBnpBArLD56plKkUDhC8Y2h/uRQHhRvcGXsZJAye/YKdlsk0DvveTxVy2UQGhXJHEf85RA0mXzwjm+lUBFAGu2r46WQC+pFr6IZJdAhs3D38o/mECN/nakeiCZQANukgibBppA83w5bC3ymkDabv2DMeObQJ6L30ml2ZxAESy17oTVnUAEVfrLytaeQGKjH1Zv3Z9ABzGwh7R0oEAf1pY9Vv2gQH/AHQmWiKFAxlCeG2wWokAFAC2Wz6aiQAExuYS2OaNAzVeX2RXPo0Cal3tp4WakQHXU6ucLAaVA8Q4o5IadpUAIsaPGQjymQEE/8s4u3aZAxaZPEjmAp0AOILR6TiWoQMRXf8ZazKhANUK+iEh1qUDwqw8qASCqQMBBK+pszKpAvGwO4nJ6q0Bx/NEG+SmsQLEwKy3k2qxA20iaDRiNrUCqS0hJd0CuQHxGlW/j9K5AXchXBD2qr0BV8GbDMTCwQGS0n7yai7BAdG6oNEjnsECkwYJ8KEOxQEmMN3Qpn7FAWVgEkDj7sUD999zdQleyQKWbPws1s7JAKWlZa/sOs0DzVnn9gWqzQDLJznO0xbNAzCtxOn4gtEB0gK1+ynq0QEaXljaE1LRAGmjUKJYttUCKxK706oW1QN5eTxpt3bVA+Oc2Awc0tkBkz+AKo4m2QE/8kIcr3rZArKRG04oxt0ATOs9Uq4O3QDM59Ih31LdA5oG+C9ojuECLu8mhvXG4QFwqokENvrhAAUEnHbQIuUDDJO2qnVG5QCJMl6+1mLlAn1gmR+jduUDzTzPuISG6QFBsEotPYrpA2+fXdl6hukBlgDmGPN66QIQUSBLYGLtAceb9ACBRu0AbKaDNA4e7QBM19pBzurtAIlFfCWDru0DaZ9uiuhm8QNS4Ln91RbxA1SpqfoNuvEDCb1pI2JS8QIEjvldouLxAlSe9CCnZvECAvBStEPe8QPFd+akWEr1AQUkgpjMqvUDCbSrSYT+9QFHlbludUb1ANRbMIeVgvUAQSvLVO229QNeqMbipdr1AdvJfSj99vUAxhZ1sGYG9QGwH5o9ngr1AZ2g37nSBvUBe884Stn69QMZWlHHcer1AFTOrXvJ2vUDPrR1ognS9QGjEoOLNdb1Ah58cYhd+vUCLwAzLBpK9QK0Mm5YtuL1AxeOjqbL5vUB2OHuTLWO+QF8sR/S4Bb9Abffl50L4v0CPICUqkKzAQGXxM0jyp8FA8x4+3LwHw0AsRMR6N+zEQFqbNnW0fcdAoLXXv8rtykBKTC/me3jPQEtFa+aUstJA0TWTxJyD1kAR9UuEHV/bQGyBS2BaveBA2Wfa7JWI5EAsEmN6pzDpQOKcyM8Z1u5ARlaBF7nM8kC6uSft28z2QEPYfExZeftA0FftILtuAEEzA4/BYoADQWgAr6oG8wZBGGh0ChzFCkFNF/OhsfEOQTnU1ZwIuBFBKlnHzMIZFEH3QAhNp5UWQRnWunNlIRlBVFVgEe6wG0Hp6AApwzYeQa14GNMxUiBBZPv8lGd1IUG4953xjX0iQa2Kl0iLYyNBH7fwvPEgJEFK5xw6S7AkQfUi+h9cDSVBDoIwJ1g1JUGcpBHkBSclQVrfOnPO4iRBD2gZOLhqJEGEM1ALTcIjQRZIdaRt7iJBDtIkTxX1IUEoCvH6Ed0gQdmjJLdqWx9BraNSHwjdHEES/9Q+z00aQeYKJ0XPuxdB7q3WHtszFUHc/EBlK8ESQUOxNWgdbRBBLp11xx9+DEHjEjnft3gIQQnB0BLO0ARB1qTdupOJAUFu2SLRGkb9QHwMepsoNfhAfE9imsPW80BuMKO1Nx7wQLGBgIBp+elAypWcyH7E5EBZEThTAH3gQEhWjQuxBdpAunSGSRxv1EAKsLAH8PvPQP9V0+UR/8hATHgq4SmOw0CSQF972Le+QK49rnWWTbhAqE0SGUxws0DU2N4s3IyvQN98vZ2CD6pAQNmsNMj1pUBEwu2W1+WiQOjb6wRfmqBAyUW5Sz29nUDcOkG8+hWbQAbrUOFLBJlAiIYPZUtdl0Bb/eCHAQKWQDzT/elZ3JRAwg99Lsfck0COzSXYdfiSQJm5Dk/yJ5JAif2ndilmkUA9Bd8Kr6+QQDisCrs4ApBAsYDiPrzEjkCtvmVjFwOQQFF6XZemqJBAlORozBpTkUAZIxYiggKSQP0t1bbptpJAbaFEmF1wk0BIRXCz6C6UQBqyCsWU8pRAStyrSWq7lUBeqx5ucImWQG4ayP+sXJdAtLEyXSQ1mEBFdclm2RKZQE2qzW/N9ZlArxOTLwDemkA8fQ6zb8ubQHKcwk4YvpxAMXQXkfS1nUCzhig1/bKeQMw1FhYptZ9A5F1zkTZeoEBIlIEpXuSgQGpirs0DbaFAOJQj8h74oUD5mAkApoWiQFxxO1GOFaNAX/ZmLMyno0DXPp/BUjykQMLCZicU06RAt642WAFspUCpp4gwCgemQIIGaG0dpKZA61SPqyhDp0C7kBZnGOSnQIRxtvvXhqhAYpykpVErqUCfXQyDbtGpQD4lJ5YWeapAkKT3xzAiq0B9BqrrosyrQNlTm8JReKxAc6cJASElrUCBZG5T89KtQCMtg2Sqga5Ast3x4yYxr0C6Vq+NSOGvQDYwABn3SLBAKbkT33qhsEDD09wiHvqwQJtRTAbPUrFAqVLHSHursUByxMRMEASyQHRwuB17XLJAaXFJdqi0skAhpdHGhAyzQHFvIzz8Y7NAK+KSxvq6s0AnHz8hbBG0QMiLmNk7Z7RAYTEgV1W8tEBEbFzjoxC1QEXT/rESZLVArAw36Yy2tUDiEi6q/Qe2QLM7pRlQWLZAtSi0aG+ntkBinqDdRvW2QBYay9zBQbdApd2q8cuMt0CYCdTXUNa3QP1FAoQ8HrhAD2UiLXtkuEBuW1VV+ai4QCLg5tKj67hATwQy2WcsuUC1Gm4BM2u5QHRdXlPzp7lAVO/eTZfiuUDLK0rvDRu6QMHTsb1GUbpA9LXozjGFukBwUlvQv7a6QFc+uQ7i5bpACbp2fYoSu0Apqje+qzy7QAC0RSg5ZLtA2xNP0CaJu0BY99mQaau7QLLbIxT3yrtAM9ae4MXnu0Cb0gFqzQG8QAKIEyoGGbxA5NwyxmktvEAV6nNJ8z68QGmiaH+fTbxAyV/zgW1ZvECgoaCVX2K8QNTUCn18aLxAp3ILftFrvEAiLpRsdWy8QJj+1DCNarxA2UjUalJmvEC0hdIOHWC8QFGhZB1xWLxAnxEE8RFQvEARQmkAHUi8QDsRrWYuQrxAh58X+pFAvEBFPrEuhEa8QAJx82KGWLxAb5Y0bsp8vECJuxk+ubu8QJ4rDOGXIL1APwd1YU26vUDo8swoSpy+QA3QuB2P379Avp30nOfRwEAvskfwUAjCQO2d821bq8NAiPmFZHvYxUDrfVocurLIQE2QJLoFY8xAzOSsWCKM0EDfCX6Wi4PTQKdujC+YNNdAVk0CiRm+20CIbugkAKDgQKBU+Nwb7eNAObIeLJrV50CgxGdnHWfsQPNzs9Ra1vBAJg5lP+nW80AmBMwLlzb3QGilynPh8/pAz25Jne8J/0CcG3bqGrgBQVivYk4eDQRBkgRBe8p7BkFRutiuAPoIQfKxjgPsewtBU3g1qU/0DUHohpZKeCoQQZFLzWqLRxFBLputTBBKEkHv5J2YDysTQeA6TIA65BNBiB00VjVwFEF/0RD52MoUQdbn7rlm8RRBfEtLNKviFEGI6FCvDZ8UQSeflfWKKBRBb1yS/5uCE0G2eqszCrISQSsIDz20vBFBzvhqdUepEEHXnHgA5f0OQT4RXewrigxBMhR0te8FCkGl41Mt/H4HQSVS3dDmAQVBpg0afLKZAkH/Cx+sj08AQWwM27xzVfxA64DlROFg+EC4YJCZEsj0QOJJggsqjvFAlZMtxVhm7UB/w7ev/2joQEfrHw7qGuRAAY/cV6Fv4ECEBxgWOrHaQGVKdSRejNVAFDXgz51Q0UCIWSDi/LzLQPH9MeEzMMZACH/cBKbDwUCTtLvgGYu8QNlrV9YMFLdAcVtiWE7WskCLHgFBGiOvQMbNqDZgIKpAiZuWfJNMpkDDiXeB1WCjQFFimlnZJKFA7bpveRnZnkC0v0ry2iucQFIqETA0DppAtMxAB0lZmECLvhcXT/CWQCI8kvU3vpVAl5n6q86zlEBEFdDxOcaTQNpymbLT7ZJABclj2EYlkkAv7uCV5WiRQOZ1DB8stpBAFz+gnWULkEDj5TsL1s6OQKJ54OqpnY1AgJoJwBHTjkCg2bha5AiQQJtdH+b1rJBAxB5VGstVkUB8e/qXcAOSQLrMFvnxtZJA1wbuwVltk0CYptFRsSmUQHpV9tMA65RArAlYME+xlUBjurb8oXyWQMUQtm39TJdAtsYqSGQimEAVqKDS1/yYQHZnJMdX3JlAJKxcReLAmkAG7f3Ec6qbQAjRpAgHmZxAc+oiEZWMnUBctkkRFYWeQNXTP2J8gp9AgjM2PF9CoEC0SYJs5sWgQCFyI4jLS6FAUC44VAXUoUBxX7uQiV6iQPGzyfRM66JASe1UK0N6o0BBZ0rQXgukQMAeMm6RnqRABUZLfMszpUCUPStd/MqlQECN410SZKZAfjeztfr+pkDAeUeGoZunQJTAj9zxOahAa0QostXZqEA+bV7vNXupQIK/0W36HapApLSz+wnCqkApfKhfSmerQMQ5Sl2gDaxAVedPuu+0rECJkVhEG12tQBYxW9cEBq5Au+y6ZI2vrkBdFf/6lFmvQFrZFmf9AbBArnxjoE5XsECmwa/2rKywQKBSa9gGArFA1NySWkpXsUBJXWI+ZayxQIABUPdEAbJAzEhNsdZVskBe1EtXB6qyQBQWA5rD/bJAV9Hz9vdQs0BNJqa/kKOzQIWlHiF69bNAEbOGK6BGtEA7SgTa7pa0QID/vBpS5rRAy+7/1rU0tUAYFZL7BYK1QOFqGIEuzrVA2uyadBsZtkBwnBsAuWK2QJhhPHPzqrZAVZruS7fxtkClDCc/8Ta3QH7akEGOerdAfAg6kHu8t0DUHDS5pvy3QBFXI6T9OrhAYgO3mm53uEC0dgVR6LG4QFRZxu1Z6rhA8xFmErMguUBxcO3i41S5QOE8uQ3dhrlAVzP+0o+2uUB4fBcM7uO5QP1OoDLqDrpAkthdZ3c3ukBBDgZ5iV26QPWV/OoUgbpAzccz/A6iukAPzoGubcC6QEXe8M4n3LpAGRPp/zT1ukD39pvGjQu7QEC67p0rH7tAacFkEgkwu0AdsnPsIT67QBBQenFzSbtArLCpx/xRu0Bo0gWPv1e7QFn5z8nAWrtAsuvqOQpbu0AGY+xnrFi7QL3GfpzBU7tATLBWLnJMu0DDsw+n+kK7QESjKWi0N7tADKbhpiEru0ClF43I/R27QOUh1F5TEbtAcjY2N5kGu0Ajrdcc2P+6QC0GPAXb/7pAojbyW2sKu0Dm31vvmiS7QDRIn5AcVbtAozTHuKuku0CHlKdkgh68QGST+sva0LxAh6OEmXjNvUBAtZjgMiq/QCdoHKe6gMBA1RIuFVa5wUA7JV7zRVHDQDXrlEORXcVAkxmcxM/1x0B3SJlD3zPLQKStoAthM89Aj5NV8HsI0kDYOlznoPTUQCbHXpbGa9hAltj3uCZ63EAe2luq1pTgQFPYV0KDQONAyC0mO1NB5kC9qrZf7ZXpQA5aTkX7Oe1A5x9OFuuS8ECmsEL+KafyQFYZ1GFe0vRAZKxSt3cL90CgGw3n3Ef5QBxVa2Cye/tAlDbLyjia/UD81+PjQJb/QIQypp1XsQBBda7RboR5AUFegBtrAB4CQa8oKuz+mQJBsqmFvMfpAkEA0TuX5QoDQWg40l9F/AJByyLH6UO+AkFZgJRZqVICQXZW2HGSvAFBSMaPYEkAAUF9xqC9ECMAQVVfKZnIVf5A1ABsSmc8/EC4GLI/Ngf6QJ8cKoM+w/dAawPj5Nx89UD1towlWD/zQDl1mkSOFPFA9Xq7x3YJ7kD+P02CtSzqQAs+sABBnOZAF6ZbDhNe40CRHj0s+3TgQNrAC4f8wdtAW7hB05A/10AgpG0kT1rTQP1you8NB9BAMbUjhJFxykAGSv8c6MLFQM6YuVxm5cFAkFbOILN5vUAuziC08ly4QDiubFgSQ7RARu60pHv/sEDBNLlOvtWsQJLDPnyKxqhAirYpfb6XpUDhoEktVxmjQD4/3eX6I6FAlWHtJNcvn0B6eh3u4recQAlLcreduJpARjorRo8TmUCqnCLKhrGXQLLpbzcagZZAjFYqiWF1lUCLLNf46oSUQMlPhd7iqJNAaAGAsmjckkDzDKJEChySQPqbOm5eZZFASAdZE7m2kEArJ6EL8w6QQOX+L8KC2o5A9VmtTDCijUC/Ma/LA3uMQJ0IlSKPpI1ASIzUPQ7XjkACz/aATgmQQCA4I8qqq5BAgwQjH6hSkUBA0SGoUf6RQLHLLYKxrpJAG6KdsNBjk0A6/XoOtx2UQG/n+j9r3JRA+9YNpPKflUCGXRFGUWiWQDPFrc+JNZdAViTqep0HmED7qoEEjN6YQFAghZ5TuplAt7FT4/CamkBTWfbIXoCbQAg96ZSWapxAy3pe0I9ZnUC43wU9QE2eQNsJZcqbRZ9A5bTlRUohoEAHxHZXDaKgQNdpmTkOJaFAeYzgEEOqoUB1RigDoTGiQJaOaTQcu6JALrb8w6dGo0BkyE/KNdSjQJ6mFVe3Y6RAForybxz1pECZWKoPVIilQPT71CVMHaZAzqYcl/GzpkC7qAk+MEynQFEkX+zy5adA9qYLbSOBqEDdSbCGqh2pQKemwP5vu6lAzYk9nVpaqkAi5wsxUPqqQGos6ZQ1m6tAeKH9tO48rECjFQ2VXt+sQD2oRVdngq1AawSsQ+olrkBt8iPQx8muQIimE6nfba9Add5PXQgJsED6qj6dHFuwQI6lK1kbrbBAunxhBfP+sECIUWDLkVCxQGx34Y/lobFAsUoc+dvysUDraEl1YkOyQPBcYUFmk7JAcpYTcNTiskAeTvLwmTGzQJPBz5ejf7NA4/5IJN7Ms0AvRnpJNhm0QETZ2LWYZLRAB+UtG/KutECVB642L/i0QAHQKNk8QLVA4nFL7weHtUD9x/GJfcy1QK2lgOaKELZAHF9Edx1TtkDZXM7rIpS2QJ9/TDmJ07ZAbQ7Voj4Rt0Cd4qHBMU23QMiENY1Rh7dAj/JkY42/t0Cm0kAQ1fW3QHT02NUYKrhA6SDVc0lcuEBzg94uWIy4QDRd1dc2urhAZ2TP0tfluEApVtwdLg+5QDAnkFctNrlAo2lVxclauUDZu49Z+Hy5QCWynrmunLlAK7ffQ+O5uUBI+eMVjdS5QPhsMxOk7LlAoFIu7SACukAy6/Us/RS6QGv/yUAzJbpADm0Qj74yukCkrGKSmz26QE5hqQPIRbpANx2xGUNLukAG+fvoDU66QG7sLPMrTrpA4y2b+6NLukArvsM+gUa6QD/+yjTVPrpAntZdFLo0ukAfXCtbVii6QIGKzbPhGbpAgqrLpasJukC3Z1qSJPi5QH8LyJXp5blAx1BX99PTuUDDh8jbDMO5QNhf7ewltblAk38+lDesuUByro84Bau5QNifcKAntblAfdbNJD3PuUCBJPK8Hv+5QDVLKBwYTLpACgGqHCC/ukCinFaUDWO7QJlcpH7DRLxAnQnOPU5zvUAo02616v++QGn/Bar3fsBAQwXfekfBwUCLyosHN1LDQB0mH/eBPcVAdJhMG+KOx0AJnPEJiFHKQHg9DXZ5j81AJSpj2Wyo0EA8Do/Fkc3SQJNsrywvONVAHKY6Yi3n10CBgOC4AtfaQMAEDYFvAd5ADOUsJaqu4EBImkmmVG/iQPTGqDdOO+RAycr0pewJ5kAPwcrrfdHnQJ43qKiVh+lAiwc362sh60BWkAj2SJTsQKgg11P41e1Aou9Hmzzd7kDwEanHPKLvQO4qwQ9yD/BAzIR0JJcn8EDkxcIurRjwQIGW43UBxu9ATC53GQ8Q70D8kYwanBTuQOsXC3Ou2uxAcyzFieJq60DWqKG3A8/pQCNLf9KaEehAbGMZ4Xk95kD87QPmS13kQFYX4/Que+JA9iQ7nV2g4EDzVmWG1qndQPIy9swqP9pA6JMUgVQL10ChVphfBxbUQHz5vGEoZNFAXmSADgvwzUAeu6FBSKPJQDkzwsQ73sVAitF2hwqawkBDWSHaKZu/QJE5B1tt3LpAJT6NOOjgtkDEbwgdHpGzQHwk/YYA1rBAhPiWMFIzrUCtFDlmu4+pQHnOExfHnKZAOq3dWVA6pEATCiS+kEyiQPIL7/z5u6BAOiXqpNXpnkDn//AXmc6cQGr0Q0RJDJtA0PJ2rEaOmUAia2rma0SYQPDI1WhCIpdAgcmKCk0elkAiY/eyajGVQO+rdYxRVpRARNz1giGJk0DU1VDkC8eSQA1WrnYNDpJA03cmMLhckUCdqMfOCbKQQIQ3BstMDZBAL5T73ALcjkCzXS1hmqeNQP1k36HdfIxAg1VsGiNdi0C8Ma/LA3uMQPs+VGV+oY1AXH/hs63QjkBqjiVrVQSQQJr8F5HGpJBAi2b2A7VJkUAO7kp7KvORQID8858voZJAMSAh/stTk0CaS133BQuUQFbKr7TixpRAvYndGGaHlUAPltSykkyWQJvrS7BpFpdACvOh0Orkl0CjMARYFLiYQP7Y6gLjj5lAWR/z+VFsmkC5LCPGWk2bQDbBokX1MpxATorzoBcdnUDnObRAtgueQMtg+cPD/p5A4f1G9zD2n0A5yxpm9nigQIDD5ijy+KBAwoXRVgF7oUCXod6KGP+hQPIXqWUrhaJAyLAwiywNo0DfURuhDZejQBnQbk2/IqRAy3zHNTGwpECOdA//UT+lQC1zuk0P0KVAnqmJxlVipkDxx9oPEfamQHochdMri6dAGVVHwY8hqEA9FsiRJbmoQFo+KwrVUalAD0s9AIXrqUCx8DVfG4aqQBCNEi19IatAVrKIkI69q0AhmpDXMlqsQHzfhn5M96xA5GzkN72UrUARF4v0ZTKuQMjnpOwm0K5AgqYTqd9tr0CC2raGtwWwQCFwQrFZVLBApae5MMWisED6IZWf6PCwQBv3PlyyPrFAio9UjxCMsUCDnCEy8dixQNAmURVCJbJA2HbR5/BwskBFZec967uyQNpxbZgeBrNA9s46bHhPs0B1Y64p5pezQACaWURV37NA/K3GOrMltEBLAVae7Wq0QEblLRvyrrRA+yI4gK7xtEDcdCjHEDO1QJ4MhxwHc7VA3C2653+xtUBn1gnTae61QK5imNOzKbZA5hVLMU1jtkCAa52OJZu2QFcaWvAs0bZAZbo0xVMFt0C2DD/tije3QDj9NMHDZ7dAkJmaGfCVt0AAbqdVAsK3QMQL+2Ht67dALfwWv6QTuEABL5uHHDm4QPQ4Q3ZJXLhAY8ak6yB9uEDu+rLzmJu4QKbTD0uot7hAfDM9ZEbRuEBk0cxsa+i4QMB0w1IQ/bhA/qiEyi4PuUDl4s1VwR65QH/FkkzDK7lAq3X66DA2uUCE/11YBz65QNE8DNREQ7lARL3XxehFuUAeGyv+80W5QPB3sANpQ7lA6eCkh0w+uUBL7NoNpja5QEsrVtyALLlA+6laTO0fuUBm5r+dAhG5QB9dHnXh/7hAABikNbfsuEDWnFBvwte4QORyAaFYwbhAMpajke2puEDJzSmDHJK4QIXeSXqzerhAamHixMBkuEBPtZPLolG4QAPUBQ8aQ7hAngOo9Fw7uEC6CrO4LD24QI984HzqS7hABZIEAKtruECMHcoYR6G4QI+bt55m8rhALGcYDYNluUAgZ+Tq3gG6QHzqk/Juz7pAdlxzJrLWu0C2dBSBdiC9QH4x/9CItb5AyMhSxydPwEDVAPwKKXHBQAZAGsjXw8JA79Y2dEVJxEDwoMCZOQLGQH5BU+fo7cdAYcFGcrQJykCkwTHn9lDMQKR8iljlvM5A7L7OaESi0ECCSXZhau7RQPn3G2VuPNNAMzgLLBWF1EBOP8c0mMDVQJr/IZLs5tZAYvM+axPw10D23anxb9TYQEDpj9odjdlAIQaoDEMU2kBvPM1CV2XaQN97IOBcfdpAiGccFwdb2kACXALAyv7ZQAON5LHYatlAo8ROAwKj2EAYFUIgiKzXQLUt8P/bjdZAtyc311BO1UAzaBdXx/XTQBtoIsxWjNJAzjolTPkZ0UC/GlYnf0zPQJbiAbAgcMxAPs57euuqyUAmItzd9AbHQKjx4FMtjMRActQg4VhAwkAoib92IifAQD+sPD6LhLxAoSZK85EjuUCEcHSChyi2QJLu049RjrNACAuGxCNOsUBavMJJHsCuQPp2DQMHd6tA+3x0ZX2vqEAQox+VTlimQA99e1gkYaRA8Djoyue6okDk1bhs/1ehQGIgWMptLKBAWTJGS61bnkBe1YVT4aacQBkvZ7nSK5tA0Y7euoDemUDOSARXPLWYQPv29aFTqJdAuokG0b+xlkBnEjxd2cyVQI/HWEAU9pRAByBGO8UqlEBuifJD8GiTQP9fBqcfr5JADqY7DkP8kUD7OQBslU+RQHvsoL2IqJBAi+20nLYGkEDmYfpcqdOOQDlyhDtYo41Anf/x2CZ8jECAymgV1F2LQGB0HVdaRIpAJZ5EmcVWi0Bg57KBcnGMQOZ18cl6lI1Ab3gvj/a/jkAlmZs3/POPQBzUyitQmJBAVPBjy/o6kUAQ65tKBuKRQOzfL+h5jZJAXLowxFs9k0B9gLLSsPGTQKSlms58qpRAqOCWLMJnlUAIPUYOgimWQDNUnjW875ZAw8qW+G66l0AnViU1l4mYQACwlEUwXZlAJ/ZA9TM1mkCzB8R1mhGbQJt4nFRa8ptAOrZZcWjXnEC07lf0t8CdQM87FkY6rp5A/HYxB9+fn0D/+4YEykqgQLEonaOix6BA73LKcG5GoUDu956LIcehQOyjLyGvSaJAWHBpagnOokALSNiqIVSjQL+n5S/o26NAytaSUExlpEAVVbJtPPCkQKvXo/KlfKVAueSVVnUKpkDn0k8elpmmQLKeht7yKadA37K+PnW7p0CvZ7z8BU6oQGCfhPCM4ahAlIXuEPF1qUCfE8d4GAuqQHiUhmzooKpA9vmXYEU3q0DPaDEAE86rQDrzvDQ0ZaxA4ArQLYv8rECcwa9p+ZOtQPl/X75fK65AZmU3Y57CrkBXFf/6lFmvQNhBiZ4i8K9AH+rl8xJDsEBjErh+vo2wQPgha88C2LBAevZCmM4hsUDQp4NkEGuxQHy8Dp+2s7FAFeAtma/7sUDGnoeR6UKyQH97OrtSibJAcIsaRdnOskCsmA1haxOzQFaogUv3VrNAQZ35UmuZs0BpkKvftdqzQLlbLHvFGrRATboj2IhZtEB5SwTa7pa0QM+zwpzm0rRAlwiHfF8NtUDxp1MdSUa1QAeZnHKTfbVAWY3Kxi6ztUDUnaTCC+e1QP7km3QbGbZAbiL0V09JtkD7pMRbmXe2QFHQzOnro7ZAeLMX7TnOtkD6UWrYdva2QNiAeKyWHLdAApPc/Y1At0DQmM76UWK3QCbEmHDYgbdA2MLH0Beft0DP0xc2B7q3QF5pImme0rdA5+3U5NXot0AfocDapvy3QMPUXjcLDrhAw/V1pv0cuEDocuWXeSm4QCFXREV7M7hAnTL1uP86uEAOAqDXBEC4QNkacG2JQrhA01kKQY1CuED0A/ouEUC4QFX+XFEXO7hAih/uOKMzuEBlUjg+uim4QDBkxPNjHbhAOKlyxKoOuEBGFtnLnP23QLJBS/lM6rdAKEfokNTUt0A8JVAgVb23QEZ0+P36o7dAUvvaaQCJt0BVxp9jsWy3QA1OjURwT7dAuK6HIbsxt0C2ymDqMRS3QB3mCSed97ZAh9+bGPXctkBX7v7jaMW2QMNVZUdlsrZA4pbxNJqltkDpJf2G/qC2QCaw3uHQprZAg24PwZS5tkBg6AqoCty2QHVKM4AiEbdAVk61Wedbt0APu6ERZL+3QLCMisyAPrhAdk/lwNnbuEAIrUJxkJm5QPWQxSkZebpAs1q8Rwd7u0CEVw102568QDLuknXX4r1AK+HSg9tDv0Ah8Kl9qF7AQHVdXfuSJMFAyZnESu7vwUA1E0vTV7zCQF2nbYfmhMNApQZBWlJExEDFHwKJJPXEQEiCnoHukcVAQnrsgoQVxkDNJ2aWOHvGQBVN0EQSv8ZAWnUScf/dxkCQXKoZ+9XGQBKlDl0npsZAufIu9NhOxkCYoPBVk9HFQHHxjcj1MMVAQ0mZsZpwxEDzWUJj65TDQMArxWDrosJAfWB7jf6fwUDUEZ/prZHAQLymaMnc+r5AltaZ3NnQvEC9vEiuxK66QCuiDq/hnLhA4zYEgBiitkBnjdgT2sO0QL8eNIAbBrNA952CNWNrsUAkk0DXyumvQCj8pgtYRa1A4/4F/ovnqkC6OzIe9cyoQGYsgjn58KZAFriaQDdOpUDBNjaT396jQPqLdOD/nKJADfKIBcGCoUDRtmSHloqgQI0JB3zAXp9AoN+5Av/YnUCDXHhAw3ucQKGXYEsDQJtA/fl998YfmkBtMPq5FBaZQLrmXZ3YHphAEczEKsg2l0Cfo4SQRVuWQEBFj7ZDipVAo0iEZizClEAsx3s3yQGUQKlF+I4vSJNAHCQ6wa+UkkCauYApx+aRQDgYiPMUPpFApJsnP1GakEBFAGiDjPaPQDbBqBaWwY5AMkryO3+VjUDapKIbFHKMQBNKi9woV4tAy1T/spZEikBZUutA9TCJQIUd12EjOIpA8o2amDxHi0DQHgmRWV6MQJ6af2uRfY1AKvhUo/mkjkDxECX1pdSPQML4gSJUhpBAI5VUQogmkUDOktFM9sqRQAWR0SGkc5JAO355gZYgk0DQP5P/0NGTQJA0DfdVh5RAh+OpfSZBlUA/XOlXQv+VQDz6Ne2nwZZAhWRePFSIl0CwwWbQQlOYQO0wu7VtIplATarNb831mUAKcCnvWM2aQH88BogFqZtAlE9l6caInEBpbsIUj2ydQK/NYlZOVJ5AuLxLPvM/n0B9XfVMtRegQLA1PLdPkaBAPM0Per0MoUAuofhI8omhQMQSV+3gCKJAah43RXuJokCi55ZCsgujQFPNI+t1j6NAnn1xWLUUpEB8P664XpukQOJi109fI6VAN35weaOspUBE0r+qFjemQFPbkXWjwqZA/sCFizNPp0AR/OPBr9ynQOgtABYAa6hANsQmsgv6qEDYoRbzuImpQAegBm7tGapA21M2942qqkDkGgmpfjurQH0GquuizKtA/9E2fd1drECoom96EO+sQD7j6GcdgK1A0B+8O+UQrkB/WbRnSKGuQLLd8eMmMa9AaUEBOmDAr0D4WzDIaSewQIVKN9svbrBAyLJdmHG0sEDD09wiHvqwQB5mYoUkP7FAnmm8uHODsUBGu6mq+saxQLnGy0SoCbJA2X61c2tLskAPpRMuM4yyQGpF6nvuy7JAwC7jfYwKs0DTEql0/EezQObhSsgthLNAYOCiDxC/s0CU47wXk/izQNMUN+umMLRAzY+Y2TtntEDjKpl+Qpy0QHS1Vcmrz7RAePlrA2kBtUCO0/nXazG1QPC9elqmX7VA9zh/DQuMtUC7jjnpjLa1QJGH22Ef37VAqsPAbbYFtkAqlWGLRiq2QDpoCsfETLZA3whUwCZttkCIcVmvYou2QOJNqGlvp7ZAwRfqZkTBtkBIyUTF2di2QOq9c00o7rZAjc2bdikBt0AeWuFp1xG3QMOHzAUtILdAwf2P4SUst0AXfVJQvjW3QHrUrGTzPLdAwDem9MJBt0AAPJueK0S3QHuwqs8sRLdAArOCzMZBt0C2dbu9+jy3QM7lV8HKNbdA79iJAzost0AhQXnhTCC3QOI2ixkJErdAdm95DXYBt0B3Hmobne62QLa4EBSK2bZA7lmV1EvCtkCKUWsL9ai2QI9pLC+djbZADZa/rWFwtkC2TEBYZ1G2QOk0/gzcMLZAs/g+nPgOtkCBevrdAuy1QJKqgOZPyLVACXbzPUaktUCW3hrzX4C1QE/L/1UsXbVAWqztGlE7tUCMU1Wcihu1QG+3Meuq/rRA36XXW5fltEAXXF9CRNG0QOvUwZ+uwrRAvt6AmNO6tECEL6qvpbq0QMDOmuz/wrRAE8w6RZfUtEDnhEPe6u+0QFFCBuszFbVA0H6MKFZEtUCS8qkW0ny1QGpnjia6vbVAwbUqFKwFtkAvVG6Cz1K2QI3kXbjaorZAMdtyBx7ztkBXAd/2lUC3QCcihtIDiLdAh7GuuQvGt0CvKjzMVve3QMzOA6q3GLhAEAkDKk8nuEBkyF4IryC4QA2QN1D4ArhA+h9le/PMt0Br9kejIH63QGRrr6O+FrdAk1ITsMiXtkA1fguG6gK2QN99ww5sWrVAXRRO1RWhtED1rmEsENqzQOmcvSm/CLNATYIbu50wskAT/64HGlWxQPuA4RV1ebBAETA1nk5Br0Cjrk4LlpqtQJ0HmT4bA6xA/LDFC09+qkBIIuwStQ6pQGoW4/rrtadANo2IJL90pkCBeI2CP0ulQAcriiLhOKRAkWsOCJs8o0A/dI83B1WiQIS1ySmBgKFAYjnvS0G9oEAPO/6hdAmgQPcjgRmgxp5AdLr8KD6SnUD3pJTOnHKcQGs1EOfkZJtAenN9WZVmmkAIFDc3hHWZQJnvSbrbj5hADfEjWBS0l0AAH5X77OCWQMn4hExiFZZAU3lau6VQlUDCA67WFJKUQM4PyUYx2ZNAk8i+pZklk0AJsXJNA3eSQE8mth41zZFARxotNQMokUDQGPBxS4eQQC3+iYPl1Y9A6vpJBMaljkDLzCPSEn6NQEKZJayqXoxAGgG3625Hi0DUCTpLQjiKQIKz0wwIMYlAf/td1jgjiEBFTrz0ZB+JQGg13l8nI4pAPEVsu5cui0Cn0SIwzEGMQCN4VFPZXI1AeRtIDtJ/jkDrc4CFx6qPQLv6/X/kbpBA5TI+53EMkUAGB3OZEa6RQKd+4yPIU5JAVqkL9Jj9kkCJ/qFLhquTQPjlyjSRXZRAqIeDdrkTlUCPLU2J/c2VQHCmIoxajJZATzfBOcxOl0COwE7eTBWYQALMZk3V35hAcEGY2FyumUDUf11G2YCaQNyRmMk+V5tAkCSd+X8xnECazdHKjQ+dQEYO8odX8Z1ACFX6y8rWnkArDMd807+fQNPDN+MtVqBAAq+yCybOoEBxNLCOxUehQNyoj+H+wqFAfRaCl8M/okD2HUphBL6iQGe8cA2xPaNAnAryiLi+o0CTxmTgCEGkQMMxn0GPxKRAK4Tb/TdJpUAv5V2M7s6lQHuJnY2dVaZARD/yzi7dpkBrWcdOi2WnQEaOVEGb7qdAFADdFUZ4qECKRHR8cgKpQGjdSGwGjalAfC9zKucXqkADn0dR+aKqQKwQKtggLqtAx6bgG0G5q0DHKGPnPESsQDobJH32zqxApiXQoE9ZrUAQ/H+hKeOtQOGbWGRlbK5AgEaVb+P0rkAmQfb1g3yvQHyAR3GTAbBACgZ38lVEsED5Psw+eYawQNBiaQXtx7BAzfDX6qAIsUCVBrCPhEixQJ3EW5eHh7FATPLyrpnFsUDO8yqUqgKyQCMGVxyqPrJAnJt0O4h5skCzmz8LNbOyQPg0StKg67JAON8TC7wis0CBHhtrd1izQBaO5enDjLNAAbT5x5K/s0CWG8aV1fCzQH02cTp+ILRAxoiN+n5OtECHra1+ynq0QGXO09lTpbRA7Ti4jw7OtED90eKa7vS0QLtAk3LoGbVAushzEPE8tUBt7xL2/V21QLYzIDIFfbVAPFNoZf2ZtUBV2o3H3bS1QPUPeyuezbVAir6KAzfktUB79GVlofi1QGWtlQ3XCrZAOojIYtIatkD1Zs54jii2QLVPThMHNLZAbnc+qDg9tkCLcCtiIES2QOqcYiK8SLZAouwdgwpLtkCrfNzZCku2QHrNJTq9SLZA5RkNeSJEtkCb3+gxPD22QGDO2MwMNLZATYjih5cotkBmoqOD4Bq2QJW709TsCrZAVDURnML4tUCB1LAlaeS1QFhKfBPpzbVAcSxqkky1tUDQqVSen5q1QCafeVXwfbVAXHoKXU9ftUAeuS9X0D61QFZRj2mKHLVAW2iQ0Zj4tEB3vjuBG9O0QHAGv7w3rLRA4jFcrRiEtEBdDB3b71q0QFe1SHv1MLRAQ/K1fmgGtECOuSJJjtuzQAJfPPqxsLNAorCDMiOGs0Dqdi1CNFyzQEHk37Y3M7NAjI/WRn0Ls0AWIlskTuWyQG/cGNPowLJAHM+yqHyeskCL++gxJX6yQNSH7MPlX7JAF5KHjKVDskAu7rJ5LCmyQBTGkVAhELJAbtB1Qwn4sUCiQw9GSeCxQNIOl0YpyLFApV7PU9musUCc5TqUeJOxQI95uM0ddbFAHSEYGeFSsUDlzb4+5iuxQDZ5TyNn/7BAQV1CoL3MsEAjAxImbJOwQM7WuZQkU7BAjZve0swLsECHtgukAXuvQM2HE7cj0a5Akff8ZAYbrkDrzFuMCFqtQJaA3bXRj6xAtyWOYD++q0Dym6KBUOeqQJ2FkYEQDapAho6q9oIxqUAC0p07kVaoQBczA8v6fadAQHr7BUmppkBiS1vCxtmlQGCjWbN7EKVAq2GufCtOpEDp11sIWJOjQOgDWY5G4KJApv+CpAY1okBCFnmkepGhQNlxsbpg9aBANBR6A1xgoEAkT8ho+qOfQPDxd96Uk55Az5Kk94uOnUDqmTeJ55OcQJNgrBq7optALicL4iu6mkAC+A6KdNmZQHeuOxPn/5hAX41dK+0smEDWoa9YB2CXQAcJwlDLmJZAzhFOyeHWlUCy7HMEBBqVQNsXG0z5YZRADBy0gpSuk0C5j1rjsf+SQFZQ5QA1VZJA7lkSCwevkUBIs61aFQ2RQO7XLEFQb5BA8RvoKlSrj0AmOg7sLICOQAzf33ATXY1AIFW/+/BBjEBuDXLLri6LQJ5QM681I4pA3k3rvm0fiUBC9qMuPiOIQGQxR11jG4dAeL1aIssMiEB/KgxGdgWJQDfmoGl7BYpA4Oafw+8Mi0AJ5V8I5xuMQKyWclJzMo1A1HP6CqVQjkAbJfnRinaPQOOmUrMYUpBA33frx9HskEAaFU0CdYuRQFlIfKoFLpJA4uSE6YXUkkDSRi6+9n6TQO295PFXLZRAKMjgDajflECsJJVQ5JWVQPjjbKMIUJZADrHikA8Ol0C0nvo68s+XQMXLJ1KolZhAizKnDChfmUBL71geZiyaQH87IbFV/ZpA0kLaXejRm0Dn198lDqqcQIzlPW21hZ1A7EeK9cpknkCBf3LZOUefQAG2gsR1FqBADXlg4+OKoEADjbVS2gChQLjrXkNLeKFAbyJ2DSjxoUAl14MwYWuiQIcnJVTm5qJAIJQmSaZjo0Be5hYLj+GjQN84VMKNYKRAuf2Uxo7gpEBwkO6hfWGlQLOOWhRF46VAJt67F89lpkC/7WPkBOmmQFJmGPbObKdAjCGZERXxp0Bs36VKvnWoQPHRggqx+qhAprT6FtN/qUCRwtyZCQWqQHZ59Cg5iqpA17R4zkUPq0BVR+8RE5SrQMjUgQGEGKxAYUzAO3ucrEAtAM352h+tQJj27RmFoq1ArLN+KlskrkCBWz11PqWuQDu17QoQJa9AAj9Mz7Cjr0Dzl6XCgBCwQFN6yW1xTrBAYbSfvJqLsEDNYmkF7cewQGx/q6dYA7FAIgPTEs49sUD4m+jMPXexQEv/T3mYr7FA3ciO387msUA6xRby0RyyQPJ0D9WSUbJANYoa5QKFskCKGA++E7eyQG4op0G357JAll4bnt8Ws0BbZ6hUf0SzQNHb+T+JcLNAb152mvCas0AcuWgEqcOzQGHWAYqm6rNAv4Ivqd0PtEB7+kNXQzO0QP5iagbNVLRAIW7kqnB0tEC7iA3AJJK0QP4dIE3grbRA2aa56ZrHtEBDcRrCTN+0QJdJHpvu9LRAuHrr1XkItUB59lVz6Bm1QPPt9BY1KbVALrzpCVs2tUDv01c9VkG1QIl5jkwjSrVAlY7mfr9QtUD1vVjJKFW1QP4W089dV7VArdlY5l1XtUDqGvwRKVW1QBtGxwnAULVAIp+0NyRKtUA5/tu5V0G1QHYuC2RdNrVAZI0LwjgptUDHZ+ca7hm1QAZIknWCCLVAZZ9nn/v0tEANzQA1YN+0QHqe6623x7RA1jLJawqutEDlF07NYZK0QExKekXIdLRAww8ld0lVtEDNXKBU8jO0QLfYvULRELRAOyHjPfbrs0BluB3/csWzQHrXTx5bnbNA18+qLcRzs0AovszJxUizQMyiF5l5HLNAk41WNPvuskDJJqXyZ8CyQOqX8ZLekLJACe13vn5gskC6vVZhaC+yQJ0M39i6/bFARAd5+pPLsUCXU8H5DpmxQFA1ojhDZrFA9x9MEEMzsUBqm6mlGgCxQD6gxt7OzLBApqgvkFyZsEDnfCL5t2WwQFnNQKPMMbBAsvRXbPv6r0AMPUCSTZGvQPekNmk6Jq9ATxvPuWO5rkB6wWnJZkquQKxbZ1vh2K1AtUdmCndkrUBKzxOq1uysQHjYX1y/caxAgNHIBQXzq0BR3EnUk3CrQAedy5py6qpA9P651sNgqkCxteRMxdOpQI9VA0TOQ6lADb/Xe0yxqED2O8kVwByoQP6wC7W2hqdAk+uTJ8bvpkClH3rthlimQHg07fGOwaVA8IAWwGwrpUDFEHFwo5akQImAtHmnA6RAk/lSfdxyo0DlqnYUlOSiQHESApENWaJAdVWgl3bQoUCgGExt7EqhQFERQsx9yKBAJ/ANEi1JoEDeZ7Ez5ZmfQC9URzV+p55Ae/Kaz/u6nUBKQmb0LdScQK5ELWHh8ptACaXhe+IWm0D47MKG/z+aQIZaYDIKbplAU1cnndigmEApyXDVRdiXQGDOxvUxFJdAbLKR84FUlkAkGgU3H5mVQOcZkxD34ZRAn/neHPoulECg0pakG4CTQFdOGwJR1ZJAJLOuE5EukkCPdi6+04uRQCPRLYIR7ZBA0N2kI0NSkEDIHIfGwnaPQE0cgI/JUI5Amnsv6ooyjUAlejYf9huMQE5mWlH5DItAo9WPZoEFikA8AzT9eQWJQNLXmGrNDIhARiKKwGQbh0D64/9xrBmGQKSXBsyPAIdAqrbugmXuh0AHv5g7Q+OIQKtv9D8934lAnnyUaGbiikDgyiAG0OyLQBgltMqJ/oxA8+sys6EXjkAe0KjwIziPQPsU3mgNMJBAHQAjVsfHkEAUI4/jQmORQBcjFiKCApJAm8llBYalkkD+GUtZTkyTQNeFUrfZ9pNATuOrfCWllECj5FrALVeVQJTlvEntDJZAHvJsh13GlkBz8Y6GdoOXQFXhiuouRJhADgZB5XsImUCA5b8vUdCZQKvMhAOhm5pAh4BPFFxqm0BelJGKcTycQJmwgf7OEZ1AMt3ac2DqnUAho09WEMaeQGOPuHbHpJ9A2qiChDZDoEBoq3tRc7WgQJ8u1h0MKaFAa4z/FfKdoUAExOGXFRSiQKUR8jNmi6JABkeyrtIDo0Df86YCSX2jQJolxGK296NAcDpSPQdzpEBC9Us/J++kQLSuNlgBbKVAeSt1vn/ppUB4SRX0i2emQLJcGMwO5qZA4rk1cPBkp0C7kBZnGOSnQL/ZCZttY6hA+rwuYdbiqECXdxOBOGKpQChmxjx54alADHpWWX1gqkBpAMAnKd+qQIpCQo5gXatAsykaEgfbq0Dvs53h/1esQLmss94t1KxA/8OiqXNPrUDjxzKss8mtQIpyGiXQQq5AMe2zM6u6rkCu3fHjJjGvQLKKjjolpq9Aii+3IMQMsEBkahcKmUWwQIBKbXaCfbBAxrJdmHG0sECHJaG+V+qwQHUOf1omH7FAm1FMBs9SsUAAHOmLQ4WxQJ3mOet1trFAIJOXYFjmsUCPhDJr3RSyQDuTZNP3QbJA8LztsJptskCMdhdxuZeyQE+MutxHwLJArokjHjrnskBcsNHGhAyzQLOYDNUcMLNAYqtMufdRs0CvvXJbC3KzQDU2yx9OkLNADkDZ67ass0AMtuYqPcezQLmWVdLY37NA4PyvZYL2s0CYx3P6Mgu0QDVRlzvkHbRAps7EbJAutEAaM0ptMj20QO2/u7rFSbRAN8NHc0ZUtEDrc7pXsVy0QJ5gMc0DY7RA2o1+3jtntECdNTw9WGm0QO4nk0JYabRAnSS37ztntEBINx7uA2O0QO06eo+xXLRAZz1+zUZUtEDRjXxJxkm0QPvN7UszPbRAzE/1w5EutEA1LPtG5h20QPuEeBA2C7RAIsgVAof2s0BQ4Tyk39+zQCkmQSdHx7NAk187ZcWss0B+XbDkYpCzQNC8CtwocrNADrzbNSFSs0C8RrqVVjCzQLNmcl3UDLNAkIsKsqbnskC2LfF/2sCyQC06b319mLJAn/FGKp5uskB2hTnLS0OyQD0hD2CWFrJAQG61ko7osUDKTiCeRbmxQMP21ivNiLFAmu6BJzdXsUDczGaIlSSxQG6+gRH68LBAY+vSCXa8sEC+BnDvGYewQPW85Cj1ULBAxXJOuRUasEA1qJr4D8WvQJ8Zhd6sVK9AReaSGhPjrkBSCayFT3CuQAgCvvlq/K1A+dP0q2qHrUBLytbDUBGtQHBr4isdmqxAPGW5k84hrECDF4GXY6irQA3bX/zbLatADLVE7zmyqkCgb8oxgzWqQOnEPSHCt6lAMiuphQY5qUAIty4aZrmoQHtkp8T8OKhAbOgReOy3p0BFT1TDXDanQO5lqhN6tKZAKDFKt3QypkBFutywf7ClQPSgD2/PLqVA5SWNfJitpEAfvxA8Di2kQL49OsJhraNA8AB428Auo0BJMEFIVbGiQBraTzVENaJAmOEE8a26oUDjwP7arUGhQOs5fodayqBAnGKtDcZUoED+i6zs/MGfQPIIGIAc3p5A4NpE3Pn9nUCd/8MxnyGdQNrt+O0SSZxATXFRtFh0m0D/Yo41cqOaQA4zqOBf1plAoyUybCENmUAMqNg5tkeYQKlBnJcdhpdAywe641bIlkCBAtuYYQ6WQHilP0g9WJVAVmVLh+mllEADGTjVZfeTQHm88HyxTJNAK1Y6dsulkkD8X31IsgKSQPwdwfBjY5FAA9fFy93HkEDv+qaEHDCQQDsRFhA4OI9AzrRD964XjkD7KQ1zkv6MQAp7B57V7ItAwLph/GniikCqxcmDP9+JQOlGBqdE44hAMrZuZGbuh0DPuYlWkACHQKaXOcasGYZA/4CVHUUehUCdqBb75fqFQBnJjy8q3oZAXq2qaSbIh0CDB4sM7riIQBA4YRqTsIlA2xndHiavikA1MI0ZtrSLQIcgN2hQwYxAkOU2sQDVjUBoqvLN0O+OQKDZuFrkCJBAwJWSM3edkECJDPnqojWRQFAKxmlo0ZFAMF4YfsdwkkCfEWrRvhOTQCZf595LupNAGMQO6mpklEBhnaL1FhKVQNDN9LpJw5VAV/OUoft3lkDasWm3IzCXQK6SPam365dAu+rHu6uqmEASIzrF8myZQLKiWSd+MppAUXMuyj37mkCKjU4XIMebQAuEzfURlpxA8AfYxv5nnUAqewJj0DyeQLR4URhvFJ9AfeQCqcHun0Dv246l1mWgQO0sZ9SK1aBA73LKcG5GoUB0JyXGcbihQLNoAF2EK6JAz9Hh/JSfokAdpZyukRSjQPuzFb9niqNA/iN7wgMBpEBR5PCXUXikQBZVsm088KRAQlCpxa5opUCZbnp6kuGlQIYMBsXQWqZAojpdQlLUpkDMayn6/k2nQI5YhWW+x6dAFzRFdndBqEB886ueELuoQKEMi9lvNKlAibbJsnqtqUBMWlBQFiaqQHGKVHsnnqpA9H0BqpIVq0B6tXgJPIyrQCMdJogHAqxApKpi4Nh2rEBmKGCjk+qsQIaRWEQbXa1AERr7I1POrUBDuRCcHj6uQFzKUQthrK5AAhxm4f0Yr0ChjQir2IOvQOcmRx7V7K9AxzNsk+spsEBEMj95YVywQGMSuH6+jbBALclgD/W9sECkHmHK9+ywQGGOpYi5GrFA97f5Yi1HsUDIbRK4RnKxQOdxgzL5m7FAAvWczjjEsUDc8izg+eqxQAyTIBgxELJAtsIBitMzskCdTU2x1lWyQN3RnXYwdrJATAGoNNeUskAEvwS9wbGyQJHFxVznzLJA26PR4D/mskDmAgSaw/2yQB5OD2FrE7NAzAEdmjAns0DoECo4DTmzQIkDHcD7SLNAL6OTS/dWs0CbQWaL+2KzQMDi3skEbbNA2dOi7A91s0AtgU12GnuzQLKsu4cif7NA/4EG4SaBs0AYbC7iJoGzQPsJdosif7NAkipufRp7s0ADXLT4D3WzQIJXZt0EbbNA/2pNqvtis0DO9MV791azQDUNaAr8SLNAy4t3qQ05s0A/oSJFMSezQOYkl2BsE7NAvVL3E8X9skBU2DYKQuayQG146H7qzLJA9vkCPMaxskA8P6GX3ZSyQPwDvXE5drJAGKrdMeNVskDQmazE5DOyQEcmV5lIELJAQfuanhnrsUBEek4/Y8SxQIAWK14xnLFAvv6VUJBysUBA1BzYjEexQIyUWho0G7FAewf+lpPtsEApjrgbub6wQM4987WyjrBAZSpJoo5dsECODPA5WyuwQM1p1LxN8K9A1c0lyP+Hr0DAx5j46B2vQHCGj0Alsq5Am3kI+89ErkDdmW/KA9atQE64oX/aZa1AByJIC230rEDOIEJ704GsQJGrKwUlDqxAUDg9HniZq0CrSs6f4iOrQLRKxvZ5rapAEAxUW1M2qkDsC3QNhL6pQEM0NpIhRqlAEjZo7UHNqECjIlXT+1OoQKR1sc5m2qdAps6GV5tgp0DH2fXYsuamQEyB2aTHbKZAkEGh1fTypUCDxfsfVnmlQBv+CZcHAKVA4tm0ZiWHpEBuSlKIyw6kQH5s/3UVl6NASJD04B0go0BYb6Ru/qmiQAFvwX/PNKJAgw9fA6jAoUDDDmpXnU2hQDfetjbD26BAFgUBtCtroEC6iO+AzvefQDM90HcJHJ9AVgZ/GCNDnkCaeAh0M22dQLOy5x5QmpxA0OVlcIzKm0Bf3qK/+f2aQLeMnZunNJpA0Xdu/KNumUCEg7ds+6uYQGWJBSu57JdAhRJ3Q+cwl0ACSWuijniWQCKxRCG3w5VAPJdvjmcSlUCuCeKxpWSUQBOWOU92upNA5h15Jt0Tk0A9wD303HCSQCHmEnJ30ZFAcotfV601kUBaIz1bfp2QQOPsZDfpCJBAjiWIWNfvjkBsH2MMBdWNQILoY0dTwYxA0c1X+be0i0Bq4dZUJ6+KQFiOoeCTsIlAl4IQiu64iECfS1e4JsiHQNSmYGAq3oZAyMsSGeb6hUCsJdEvRR6FQPoKffJXKYRAu0fD/vn7hEB1vUxl8tSFQDpy5ORUtIZAz0rU/zOah0D1UnDnoIaIQN18g2ereYlAp6ap0WFzikAVOaPo0HOLQLwxr8sDe4xAk+X44QOJjUCTOifG2J2OQCKEGzKIuY9Ag0h39QpukEDGap3WwQKRQEt34YzompFAHwFC0X02kkCr4CE8f9WSQHX/VDzpd5NAOv16DrcdlEBZyq+04saUQB9amu5kc5VAppDhMTUjlkDsiA+jSdaWQClD6w6XjJdAFbZQ5BBGmECEIo8uqQKZQAplVZBQwplADNYzP/aEmkCeFrv/h0qbQF3tPiLyEpxAwBREgB/enEBykp96+audQIbdTfhnfJ5ACsAHZlFPn0A+QE1bTRKgQFI7BLITfqBAimC7uOzqoEDyLPa2yFihQFcm8zuXx6FAJybiIEc3okAEL4iLxqeiQBXgUfECGaNA+E7VGumKo0C4xMMnZf2jQK+KS5NicKRABKTpOMzjpEDg/KpZjFelQOZE3KGMy6VAklQnL7Y/pkDNphyX8bOmQCAZJ+4mKKdAJc3nzj2cp0DSrvdhHRCoQMPLC2asg6hAIFF5ONH2qECBsBXecWmpQGIXbwx026lAZxJZM71MqkDc5MiGMr2qQE/O/Ai5LKtAaizplDWbq0AiHubojAisQNcHmLGjdKxAoxUNlV7frEAPmwk+okitQA71fGdTsK1AtF0Y6FYWrkDD7wC+kXquQF3slRrp3K5AEi5EbkI9r0AGk190g5uvQPEL+z6S969ArPNboaoosEAkcEKxWVSwQJ+2ov3JfrBA7eOsd++nsEATFABZvs+wQPfaQykr9rBAG+GmwyobsUBZ9z5csj6xQKQCR4W3YLFALjE3NDCBsUCH/rPGEqCxQNmiUAdWvbFAhKMhMvHYsUD+Vxz52/KxQMpVQIgOC7JAWdiHiYEhskBGX5woLjayQKbkTBYOSbJAVDfDixtaskAMMnZNUWmyQIK21q2qdrJAKYW1jyOCskCcPWBouIuyQIAJdEFmk7JAkatkuiqZskCg57YJBJ2yQMp17f3wnrJA4fMn/vCeskAbjXMKBJ2yQH5YzbsqmbJAXLzWQ2aTskDsdzxsuIuyQNZL0ZUjgrJAlpddt6p2skD9oSVcUWmyQOGkKKIbWrJA6hMbOA5JskC/7R5bLjayQN4uPdSBIbJAlauj9Q4LskAtn6qX3PKxQOwSpRXy2LFAGdN+Sle9sUAf7CmNFKCxQB+V3KwygbFAp/se7bpgsUCemqYBtz6xQBe3+gkxG7FAZ2jbjDP2sECvZ2Jzyc+wQLYH0wP+p7BAkHkN3Nx+sED6PpnrcVSwQMS7O23JKLBALxolwN/3r0BxxFsA5JuvQLgzW325Pa9AE4fYcnrdrkCX85lkQXuuQM9zlwwpF65ARBv1SEyxrUBa8j4KxkmtQH//XEKx4KxAOQq+1Ch2rEA7ozaIRwqsQKyTBvsnnatAy2RgmeQuq0ADrK2Wl7+qQHHQoOlaT6pAQef0SkjeqUBH14k2eWypQECtWu4G+qhASKCifgqHqEBdJWfCnBOoQBE6jmfWn6dAKxmq8c8rp0DKjre6obemQMoKMfFjQ6ZAPIsLky7PpUBMNG9lGVulQJaGPuk756RAc8e+TK1zpEDJpuxahACkQMGSNGnXjaNA1NtiRLwbo0Aw1KodSKqiQE9InXiPOaJA3ZrPGqbJoUAjf9D9nlqhQMjW2UOM7KBAgj99L39/oEA+ClceiBOgQKqtSw1tUZ9A3Hr+7jF+nkCpB3w2eq2dQJ3Iandf35xAPpBdj/kTnED65HWyXkubQEtA1nijhZpAKqcv7NrCmUDVBd+UFgOZQCS+OYZmRphArgXSadmMl0BdE6CJfNaWQNy7GtlbI5ZAlQ1g/YFzlUDRrZxU+MaUQGXM5/zGHZRA0pjK2vR3k0Bel6afh9WSQEh3J9CDNpJATXXkyuyakUC9DkzPxAKRQN256wQNbpBAaEY6Bou5j0DV8Day2p2OQPx5+ywFiY1AjQUeqAR7jEDNG/V50XOLQE5tgDBic4pAsR3JpKt5iUCnY6AOoYaIQNsFpBg0modAO5Vx9FS0hkB39fJu8tSFQIaZsAT6+4RApK4X9lcphEAeGVwvCTuDQNvAWpDxA4RAGx2BY+XShEBW3DZ+96eFQM2b/4c5g4ZAb/n35rtkh0DohTWsjUyIQBbaFIC8OolAWZGBjlQvikB3Y0RzYCqLQMgNZCbpK4xAACim6PUzjUBzaD0wjEKOQDY7s5WvV49AtHKN4LA5kEA3X84r0cqQQLsltHQ3X5FASyMOcOH2kUAW5dm2y5GSQDn/A77xL5NA4OB6zk3Rk0AjaJv92HWUQPH4/iWLHZVAG9Sy4FrIlUDsXuB+PXaWQOH37QMnJ5dAxNofIArbl0BydMAr2JGYQFJd1yKBS5lA0gF2ofMHmkB3x6DgHMeaQDA/27PoiJtA6a1dh0FNnEB55/leEBSdQIMitdU83Z1ArA8cHq2onkCJG1YDRnafQEEsfnX1IqBAkw7c676LoEBUdla2b/WgQLNg2Hj3X6FA0qcqLEXLoUAqJuIgRzeiQBccuALro6JAmE1N3B0Ro0C6A1gbzH6jQHXPPJXh7KNA6JwRjElbpEC3VQq07smkQIr/TTm7OKVAQPEyxpinpUCTZuCJcBamQDpmUz8rhaZAYZvENLHzpkAucGxT6mGnQE1koie+z6dAOElU6RM9qEATvdGE0qmoQILu56PgFalAj2ZJtySBqUAUSz0AheupQIxDkZrnVKpA4OTIhjK9qkApRoW0SySrQDkhHw0ZiqtAo6ZtfoDuq0BB9bMFaFGsQDPyrrq1sqxATg+92k8SrUBbZBnUHHCtQN1ZI1EDzK1AcQSsQ+olrkAFNULwuH2uQAAtdvlW065Aq9UNa6wmr0ChUCLFoXevQLqyHwcgxq9Aed5PXQgJsEB2Nwz/ri2wQAGuq0f5ULBATWDh6txysEBTtyz2T5OwQGRktdVIsrBAZRQAWb7PsEAsnXi3p+uwQAGCzpT8BbFAm8cgBbUesUCALvaQyTWxQOwK/zgzS7FAURWeeetesUCcszVO7HCxQOZjNzQwgbFAIxvzLbKPsUCKliTFbZyxQMnMPA1fp7FArdtlpYKwsUCgAEC61bexQEddVgdWvbFAIn5K2AHBsUChzrUJ2MKxQE9dwAnYwrFAo4ps2AHBsUB6dpcHVr2xQEk6rrrVt7FARDkYpoKwsUDiC1cOX6exQD7I3MZtnLFA7KWZMLKPsUD4N0I4MIGxQMqyT1TscLFAhOy7gutesUBH+3pGM0uxQGmDtKTJNbFA4O6+IbUesUC74t69/AWxQB9WzfGn67BAu6wGq77PsEBMI+VHSbKwQIC2iJNQk7BArnSOwd1ysEAQ5Jhp+lCwQFrXqoKwLbBAwbpVXgoJsED6PnhHJcavQJxD0pSod69Ado36KbUmr0DAU2MXYtOuQPGyZe3Gfa5AeS+rsPslrkBD01HOGMytQLe81A83cK1Az37Gjm8SrUDlhW6o27KsQKCDXvGUUaxAzksYKbXuq0DyH98tVoqrQM260PCRJKtAMCBiaoK9qkCyBFqPQVWqQFNtXkbp66lAlwglXpOBqUAxAk6EWRapQBs06DxVqqhARkuU2p89qEDpiDN3UtCnQAQYB+2FYqdAs0Mf0FL0pkBS3/Zn0YWmQHhRF6kZF6ZASA+lLkOopUD8vbozZTmlQBoigoyWyqRAsLYEn+1bpEApRLlbgO2jQBMH3zVkf6NAQeTAG64Ro0Ap6AJvcqSiQCY6If3EN6JA3GdJ+LjLoUDmcbXwYGChQF2Yq87O9aBArhk/zROMoEBzpOV1QCOgQMP51znJdp9Ajj2WvR6pnkBEb608nt2dQK6XbQdjFJ1AeDoy+IZNnEDYUQd0IombQLGRYGxMx5pAfAK0YRoImkD73MxmoEuZQA57sSTxkZhAulH+3h3bl0AJbp94NieXQPki2XhJdpZAufWWEGTIlUAfAP0fkh2VQJTQOzzedZRA1TyptVHRk0CHyCGe9C+TQBZdts/NkZJAvVyp8+L2kUAx2LyJOF+RQNQd0u/RypBAyCvZabE5kEB05BlUsFePQEfD77KMQo5AxRx2QfYzjUCwjCJi6SuMQLObDZtgKotAKCa8qFQvikDM7zKRvDqJQKmgRLeNTIhAUaoK7rtkh0DgCHqMOYOGQNpqBYH3p4VA3PY+ZeXShEBonWyR8QOEQCegAjAJO4NA/hxz53ZTgkCD1FH96xKDQMkNSrsj2INAVQH5EzCjhEDEJkvaIXSFQLM65K4IS4ZApoNr7fInh0AvEceZ7QqIQJcpUU0E9IhAdo0TJEHjiUDmpxSqrNiKQAEqw8hN1ItA5PKMtCnWjEDGf67aQ96NQC5zSM+d7I5AY4bknZsAkEB/1tvmBo6QQBNc+JKOHpFANy0wZC+ykUAGaSUG5UiSQKB+mAaq4pJAHPsvznd/k0CFRJ2ZRh+UQFehJXMNwpRAqOCWLMJnlUDI465ZWRCWQCEx/UrGu5ZA5pdFCftpl0C1xGpR6BqYQLR555B9zphAJefc4qiEmUBhZbwNVz2aQFeOkoFz+JpAAWr5Vui1m0CoELdOnnWcQGrNDdJ8N51AoW3C82n7nUAUBN1xSsGeQOP7J7gBiZ9AuXK48TgpoEA++MbivY6gQMdEFXX/9KBAc4cuzuxboUAnhYN2dMOhQLNoAF2EK6JAYG8I2wmUokB7Ude48fyiQAf7RzIoZqNAcNz/+5jPo0Aczf1ILzmkQHori9DVoqRAs5aN1HYMpUDYTjco/HWlQAb5EzdP36VAhDVvDFlIpkBUJxJbArGmQPq+VIUzGadAi01/pdSAp0C7mXiWzeenQK9nvPwFTqhAlxyWT2WzqEBV4pri0hepQDttXu81e6lAYEZdn3XdqUBFQRcWeT6qQHGKVHsnnqpAfoiPBWj8qkCPl30EIlmrQB17sOs8tKtAvzlKXaANrEA687w0NGWsQJUikJHguqxAp6Qk4o0OrUA7x3DuJGCtQOCVreKOr61AuJDuWbX8rUC89JxogkeuQPO/z6bgj65AkqJ5OrvVrkAEHGbh/RivQFsV//qUWa9AzmPUkW2Xr0Dru95kddKvQEvhO3hNBbBAJYmAu+YfsEAcHZqE/jiwQIr4CkeNULBAk3dD5YtmsECckDa083qwQPUUuH6+jbBAADeiiOaesEB4GsCRZq6wQJxbe9g5vLBAvKNKHFzIsEDnjd+fydKwQGFLEit/27BA26aJDHrisEAuNR4buOewQAS097Y367BA38hjyvfssEBLhmXK9+ywQI1Q/bY367BAtu8oG7jnsEBO0ZsMeuKwQLKwLyt/27BA/xEOoMnSsECzL5McXMiwQJMv69g5vLBATKZqkmausEBDpKOJ5p6wQKC2OIC+jbBASndvtvN6sEDYc4Toi2awQOBdwkuNULBAhJ5ei/44sECoih3F5h+wQGKUwIVNBbBA6uGBinXSr0CPf7LFbZevQImfwUGVWa9A+Fj2QP4Yr0DDST26u9WuQMYH6U/hj65A33ErRoNHrkBqbU15tvytQLu1qlOQr61Axot3wyZgrUA6T1YwkA6tQJ1dw3DjuqxA0f1dvzdlrECLoBWwpA2sQGZPQyVCtKtAfb63RChZq0DACMdsb/yqQN6dWykwnqpAqUAaKYM+qkBRE6Eygd2pQBWF6xlDe6lAXXfkteEXqUAKGi/WdbOoQGXULTkYTqhATx1NguHnp0AkgJYw6oCnQDBSjpVKGadADO9czBqxpkAu10KxckimQM/jVdlp36VAMAqFihd2pUA88d+zkgylQMzrH+bxoqRAGblwTEs5pECspXiltM+jQKkpoTxDZqNARMSi4wv9okA2bFjsIpSiQM9N4CKcK6JADZUQyIrDoUB2kEeMAVyhQG+CnooS9aBA0fiFRM+OoEAhitGdSCmgQLj3brIdiZ9ATGyOKmPBnkAZUa+Tf/udQDEP2ouPN51A7mEnXK51nED3T1n29bWbQO4bTvN++JpAyIJCkmA9mkDo2de4sISZQGly0vODzphAtvyEeO0amEDWV94m/2mXQCYhEIzJu5ZAXlrF5VsQlkB2cuElxGeVQL/awPYOwpRAkP70v0cflECS7nWreH+TQNBXRKuq4pJA2XN2f+VIkkCYkKq8L7KRQDag2dKOHpFA+AKEFAeOkEDOdTK+mwCQQA+Uifyd7I5AE5gP+kPejUA1GBfKKdaMQA4xZtdN1ItAxEjts6zYikDwI6IqQeOJQGzEo1EE9IhAFUOZnO0KiEATGT7v8ieHQHmkDrAIS4ZA8BYI2yF0hUCHbW8UMKOEQGaIk7sj2INA1/Z+/esSg0Dbjo7ndlOCQD2TMDC5coFAGQuzVgIpgkDIGuCAx+SCQJL8OsUZpoNAbUBeKAlthEDE10eLpDmFQLK0ipn5C4ZAKTRwtxTkhkAC/hPwAMKHQGNzhePHpYhA+C36tHGPiUBgdR35BH+KQDLuiKSGdItAtRtz+vlvjEBVnaB7YHGNQA5XpdW5eI5Aj/OC0gOGj0DAMVkknUyQQPEU04Ur2ZBAcrNp7qhokUAc1acuEPuRQNvQCABbkJJAYV1x/oEok0BS4AeifMOTQEk2czlBYZRAaNuG5MQBlUC1RGOP+6SVQEIbEe7XSpZAauWdeEvzlkAdfsBnRp6XQN6HC7K3S5hAs8+zCY37mECHVPDasq2ZQLNg+UoUYppAMdarN5sYm0CIetU3MNGbQD+1Lpy6i5xAw9MFcSBInUD3fp+ARgaeQCKjT1YQxp5AB5lNQmCHn0Ag9CKvCyWgQHe/VckKh6BAZ91kzpzpoEAqDcyKsEyhQCPypzw0sKFABMThlxUUokCwdLvKQXiiQHGcu4Kl3KJAEDP48SxBo0CE0b7Uw6WjQLvsmHdVCqRAES6qvcxupEC/wmYnFNOkQLYvn9kVN6VAt+zepLuapUB3vxoN7/2lQGeGq1GZYKZAU9uRdaPCpkA6sP5H9iOnQLbEHG16hKdAu5AWZxjkp0BWAlSfuEKoQL0v629DoKhA5+U+LaH8qEDKxcUvulepQGVw9N12salA5hJFtr8JqkANelZZfWCqQLutHJSYtapA4fMcavoIq0AK/a4fjFqrQGDkPEQ3qqtA/5l7vOX3q0ATQJXMgUOsQHz6PiL2jKxAuayz3i3UrEAyJI2gFBmtQGQzdY2WW61AzU+oW6CbrUAAVkNbH9mtQCsvVn8BFK5AQDC1ZjVMrkAkLYNkqoGuQAhibohQtK5A6YGaphjkrkCoajJf9BCvQJM2nCXWOq9A5p1KR7Fhr0CF2ybyeYWvQB6Mjjolpq9AqUfhIKnDr0BPAZqW/N2vQBqK8IIX9a9A6PJ/Y3kEsED6O7cgxAywQAy0ymhpE7BA8XsSLWcYsECk8aHhuxuwQHchFH5mHbBAf2QUfmYdsEDSyaLhuxuwQEEZFC1nGLBA32/NaGkTsEBsqLsgxAywQOXyhmN5BLBAtl8Ggxf1r0B6qbuW/N2vQPWbFCGpw69AbgbcOiWmr0C8npryeYWvQMrW9UexYa9AuuqWJtY6r0CAzp1g9BCvQJPwo6gY5K5AdRJTi1C0rkBPvpRoqoGuQF0iX2w1TK5AS1ckhwEUrkCjTellH9mtQE7QCWqgm61AojavoJZbrUDdh/+5FBmtQIP1CgAu1KxA5LB9TfaMrECiPBwEgkOsQNh0EAPm96tAmKANnTeqq0DF9lGOjFqrQB0WjPL6CKtAbAWrOpm1qkDDY58ifmCqQNB/FKfACapAnRgo+3exqUDpiyd+u1epQAAwWbGi/KhAfILYLUWgqEAXs4uaukKoQIveOKIa5KdAYgnB6XyEp0D6loYG+SOnQGiWBHWmwqZAZtKbj5xgpkDrHpqF8v2lQE3rf1K/mqVAFLKHtRk3pUBVe3IpGNOkQN9RnNzQbqRAE0hbqVkKpEDseKsOyKWjQNRTKikxQaNANXJjrKncokASMXHcRXiiQFJI84cZFKJAapddAjiwoUD2U6EetEyhQDqvMiqg6aBAu91s6A2HoEAoL1aODiWgQHUpi31lh59ALCTVDRXGnkBbS3C2SgaeQFJ7ZSkkSJ1AQ6VB3b2LnEAEkjoJM9GbQEGPFKKdGJtAU5jFVxZimkA+2tGTtK2ZQB3gXHiO+5hANELq37hLmEA+WchdR56XQFA5Hz9M85ZArwuejNhKlkDKwMAM/KSVQEz/p0bFAZVA6SN9hUFhlEDrFlzcfMOTQDqsvCqCKJNAMS9VIVuQkkA+qG9HEPuRQEVSqwCpaJFAYKAjkyvZkEDIHfYtnUyQQPq9QOADho9A3Vde37l4jkDOAHCCYHGNQAj4K//5b4xAGLrGp4Z0i0CCVFH7BH+KQBZ/dbZxj4lAmA2C5MeliEAGhbrwAMKHQB/i3LcU5IZAcevQmfkLhkDjv3SLpDmFQB2veigJbYRAtc5MxRmmg0B/KeuAx+SCQNrVuVYCKYJAhrQ0MLlygUDTD3JT4piAQA/GbKVHRoFAsxYCguT4gUC/nl0qybCCQI8OHtsEboNA/Dp+u6UwhECRC2XMuPiEQGr+ZddJxoVA1Ga8XWOZhkAB9UuHDnKHQIl5sRFTUIhAhTVvPzc0iUBiYUDHvx2KQOfmn8PvDItAE5WOosgBjED5WaUVSvyMQC9IgAJy/I1ADWKPczwCj0DRJq3E0QaQQG4aIrZPj5BA3pVuH5MakUDQQGcIlqiRQNqxN2lROZJAR5aHJL3MkkAMUwEC0GKTQO2wQKl/+5NAnA4wncCWlEDAdto3hjSVQNPTuKbC1JVAulKA52Z3lkBP1HfFYhyXQAYYWtekw5dAmgzKfRptmED4cF7irxiZQOqlSfdPxplAWEGid+R1mkDNnlDoVSebQN9MpZmL2ptANdabqWuPnEAe/swG20WdQDocE3S9/Z1AmNLijPW2nkCd4lnKZHGfQAK2gsR1FqBABzGwh7R0oEDgQIXKXdOgQP/GWyVgMqFAVQdrsamRoUB0InYNKPGhQP681GLIUKJA5J/UanewokB81XJ0IRCjQCx/amqyb6NAzleX2RXPo0DTjqn3Ni6kQDNhKKoAjaRAoI7AjV3rpEArhNv9N0mlQEfRexx6pqVAxjlb2g0DpkDsdkb/3F6mQOd6sjLRuaZAac6GBNQTp0BVZhj2zmynQHQZUIOrxKdAaqr3K1MbqEC7Kih9r3CoQEZP1BqqxKhAJSZpySwXqUDgeX93IWipQKUNmEdyt6lAlsLcmQkFqkBSn+AV0lCqQGagWLS2mqpACivHyKLiqkDv8hMLgiirQFggCqFAbKtAvIW2J8utq0Bwup+8Du2rQHP80Qb5KaxASsy4P3hkrEBkTMA7e5ysQAmJuHLx0axAcu70B8sErUCJWCLS+DStQB1SzmJsYq1A4EiaDRiNrUC9rxXv7rStQGZBOvPk2a1ACtKF2+77rUAgYK1EAhuuQEdZ5asVN65AhlC7cyBQrkDnr33oGmauQPs9LkT+eK5AhKL8scSIrkAsakZRaZWuQOxfGjjonq5Aa2w9dT6lrkANhq8RaqiuQHiYrxFqqK5A1Kc9dT6lrkCB0Ro46J6uQH4qR1Fpla5Autn9scSIrkBzKjBE/niuQPevgOgaZq5AdfC/cyBQrkDdZuyrFTeuQIYFuEQCG65AKbqV2+77rUBnyFHz5NmtQKEiOO/utK1ArjfMDRiNrUBM+BVjbGKtQGgfiNL4NK1AKQ2ECMsErUAYxX9z8dGsQJzc0jx7nKxAXF4vQXhkrEDp2ssI+SmsQMMNRL8O7atAWKc1K8utq0AG8p6lQGyrQCsoBRGCKKtA72xo0KLiqkABcAu+tpqqQMHWFCLSUKpAkJIQqQkFqkD9VFdacrepQMhWYo4haKlAd6YR5SwXqUC/Les7qsSoQG+TWKSvcKhAuA/qWVMbqECHNKS4q8SnQMWQXjPPbKdAgfU4StQTp0D0/SyB0bmmQB5PwVbdXqZAwdLjOg4DpkAA+++FeqalQL/g5W84SaVAOdHWB17rpECknYsrAY2kQLi9aH83LqRAnBKUZhbPo0Cr1F/7sm+jQMj0/QciEKNAlfh+/3ewokD3GR/3yFCiQEQz5J8o8aFAisSOQKqRoUA7IOCvYDKhQFqQN09e06BAmQWIBbV0oECJoac6dhagQBhV9KVlcZ9AXGbuVva2nkBI8Rgsvv2dQHhouazbRZ1AR6a1PWyPnED9f4IcjNqbQH5FyVpWJ5tAfGzC2uR1mkAQIkNMUMaZQPsAeyqwGJlA9rVeuhptmEA177sJpcOXQMCR8u5iHJdAMNROCWd3lkAMjf/BwtSVQMK4o02GNJVABPhprsCWlEBzi7y2f/uTQNgadAzQYpNAt2WLLL3MkkBbz01vUTmSQIKS+gyWqJFAm0fWIpMakUAtTKS4T4+QQJaDgcbRBpBAeK8zdjwCj0Dap2MEcvyNQHdc+xZK/IxAbyN+o8gBjEBqAkbE7wyLQMRmsse/HYpAkbC8Pzc0iUCWmOURU1CIQK2qbocOcodAsEjTXWOZhkBn7XTXScaFQHKxbsy4+IRApWaEu6UwhEC19iHbBG6DQJsRYCrJsIJAp5sDguT4gUD6tG2lR0aBQBuhclPimIBATsbsC/6Lf0DMNPwiyWqAQGX96YCIFIFANI9ikkzDgUA+bWrSI3eCQArUZrQbMINABd8ElEDug0BHBxKlnbGEQDWgT+M8eoVA8FlLAidIhkBhMUddYxuHQMSOO+f384dAxaj+GunRiEAAkJzrObWJQDyO67TrnYpAH8VoLP6Li0DLMGlSb3+MQKBiq2M7eI1A+nBWy1x2jkBjtnIVzHmPQFqI9PA/QZBAXa0KbDbIkEA4bnzNwlGRQPaxDF/d3ZFAydGMXX1skkBQqQv0mP2SQKCwbTclkZNAryx0IhYnlECRYTmSXr+UQNCJJ0PwWZVAtyhwzrv2lUCKGQmosJWWQAGENB29NpdAF56YU87Zl0A83utI0H6YQHX0OdOtJZlAQZDFoVDOmUDjoYo+oXiaQD1pZBCHJJtAz0LaXejRm0DLvJVQqoCcQKoShPmwMJ1Aur2kVd/hnUAcVYZTF5SeQIF/ctk5R59AXj1JzCb7n0DeqYWL3legQCWPiVltsqBAqEV9WC4NoUBePxahD2ihQNWoj+H+wqFASs4aY+kdokD996APvHiiQCrM1Hdj06JAHwCR2csto0CQ3oEm4YejQF7mFguP4aNA4YK59cA6pEApnkUeYpOkQJyOwI1d66RAuKNKJp5CpUC5WkerDpmlQGwKuMmZ7qVAaZ/EICpDpkDrzW1KqpamQL7tY+QE6aZAh4f9mCQ6p0BocEgo9ImnQLAqMHFe2KdACiC0ek4lqEC2Kih9r3CoQJXJeetsuqhAhkR0fHICqUBy9f0zrEipQGLdSGwGjalAGqXw3m3PqUAvJQCuzw+qQGqT2GwZTqpAdXn0KDmKqkCBpIByHcSqQMxNxWS1+6pAM9FZrvAwq0BHYR2Zv2OrQFVH7xETlKtAl2EhsNzBq0Bqup+8Du2rQB9AyDicFaxA39bt5Hg7rECZM4JGmV6sQNko4q3yfqxAZ0zAO3ucrEDQHSrmKbesQEgbJH32zqxAbXrZrtnjrEDihVwLzfWsQNju9AfLBK1AFbL5Ac8QrUDIgjRB1RmtQEoCzfnaH61AB2K6Td4irUBXZLpN3iKtQL4JzfnaH61ACZE0QdUZrUA2yvkBzxCtQOQV9QfLBK1ArcNcC831rEDK2tmu2eOsQNSvJH32zqxAWwAr5im3rEBaosE7e5ysQMIn5K3yfqxASieFRplerEBcKfLkeDusQPSDzjicFaxAxLeovA7tq0CjJi6w3MGrQFA8ARITlKtAp2A2mb9jq0AeRHyu8DCrQO1M9GS1+6pA5xzAch3EqkDjVEkpOYqqQNfiSG0ZTqpA4kuTrs8PqkD6ga/fbc+pQJjvPW0GjalAzng1NaxIqUCyQfx9cgKpQMYVYu1suqhAhlKCf69wqEB4OZN9TiWoQOWKqHRe2KdA7EJvLPSJp0BgRuidJDqnQGW7J+oE6aZAqbQeUaqWpkC6u3QoKkOmQJWodtKZ7qVAtBEgtQ6ZpUBfeUQxnkKlQP4x3Zld66RAMsWAK2KTpECVdwgEwTqkQJNOaBqP4aNA4MW9NuGHo0C/KJnqyy2jQP1GhYlj06JA7f/QIbx4okC63p116R2iQNnCNvT+wqFAa06xsw9ooUAjktxqLg2hQEYsf2ttsqBAvczmnN5XoECzm5XtJvufQMSaBvk5R59A7t0rcReUnkBTWjJx3+GdQP643RKxMJ1AnYKsZ6qAnEBEsKty6NGbQNlg+SKHJJtAUPX1TqF4mkBvWyKwUM6ZQJzZqd+tJZlAjjuVU9B+mEBu06RcztmXQOxaziS9NpdAcV1brrCVlkBkeKTTu/aVQLNmZUfwWZVAJn2llV6/lEAG8S8lFieUQA7+ljklkZNAHsK89Zj9kkAra9xefWySQKohDmDd3ZFAjew/zsJRkUDjo51sNsiQQP3mYfE/QZBArdwTFsx5j0BZ+MvLXHaOQFQ9AGQ7eI1AqNalUm9/jEBnrpMs/ouLQLmcCbXrnYpAV2ex6zm1iUAc9wwb6dGIQG1HRef384dAgbtNXWMbh0DOtE8CJ0iGQCx/UuM8eoVA8+YTpZ2xhEDqFAaUQO6DQD2aZ7QbMINAu+pq0iN3gkDZ3WKSTMOBQC0u6oCIFIFAx1L8IslqgEDC6uwL/ot/QAqxBkMt9H1Apx3l6xwtf0DH8ENzuzeAQGqLZ0Ss3YBAJCYwqW6IgUAwLiFnDziCQInzJTqa7IJAmfw6xRmmg0CBmBKDl2SEQEY2vrYbKIVAKWJmXK3whUD6nhsaUr6GQFKiyjAOkYdAGcRebeRoiEDltR0a1kWJQO/TR/DiJ4pA7ZYICgkPi0DK28LURPuLQI/cxAOR7IxAJdJvg+bijUA7S99sPN6OQG5OHPqH3o9Aly90Pd5xkECjORal5faQQFLpC+JRfpFAf159nhkIkkCXQ3R8MpSSQK5WFhKRIpNAwQtP5iizk0D9wO1t7EWUQLvSPQnN2pRAeqsdArtxlUCitZmKpQqWQJLXD7x6pZZAM+HflidCl0B0Ca0CmOCXQIdNNM+2gJhA9jC7tW0imUC0BRpbpcWZQNmGZFJFappAAy8zIDQQm0CFTY8+V7ebQCdzgyGTX5xAyWBRPMsInUDPME4H4rKdQB/+ZAa5XZ5A3NM/0DAJn0DaNRYWKbWfQCcKEFbAMKBAfL9VyQqHoEBLdel/Yt2gQI2t6LS1M6FANaH4SPKJoUASMQnIBeChQHI+YW/dNaJArBHyM2aLokADNe/IjOCiQOPrp6Y9NaNAuDCfEWWJo0AM6N4h79yjQAW9gsrHL6RAHuN24dqBpEDKwmYnFNOkQOhi109fI6VA7y9pCahypUA4kzwG2sClQN2hdAThDaZAugLT1qhZpkCIBmhtHaSmQHHMUd4q7aZAmTCFbr00p0ACKZuawXqnQIIgnR8kv6dAFM/KA9IBqEBfAlSfuEKoQPjBAKXFgahAeDfCKue+qEA+xCayC/qoQKm0qzAiM6lAlwvnFxpqqUBV8INd456pQKZdDINu0alA/8h6nawBqkABl45cjy+qQOBT3hEJW6pAA82itwyEqkDjUzb3jaqqQEehQy+BzqpAogKgedvvqkAVs8ywkg6rQFt7G3WdKqtA0fJyMfNDq0AW/a4fjFqrQEtkmkxhbqtAzrd+m2x/q0AW4UfJqI2rQDEtOW8RmatAl9cxBaOhq0DHc3/jWqerQNDkPEQ3qqtAFOU8RDeqq0ChdH/jWqerQDnZMQWjoatA9C85bxGZq0CQ5UfJqI2rQOK+fptsf6tAVW+aTGFuq0AbDq8fjFqrQMUMczHzQ6tAiKIbdZ0qq0Cc7cywkg6rQDVZoHnb76pACiBEL4HOqkChCzf3jaqqQKfUo7cMhKpAZMrfEQlbqkCppZBcjy+qQCSmfZ2sAapA/U8Qg27RqUCuUold456pQBRR7hcaaqlAaW21MCIzqUAnojOyC/qoQDcT0yrnvqhAuJ8WpcWBqED6FXCfuEKoQFh/7gPSAahABgnKHyS/p0AgGtOawXqnQAUtym69NKdA7AOm3irtpkBqzc1tHaSmQOXFTNeoWaZAMdcEBeENpkCQpuUG2sClQA1tLQqocqVA+dy4UF8jpUB3OmcoFNOkQFOsl+LagaRAuaXEy8cvpECjIUIj79yjQGY9IxNliaNAgpFLqD01o0CpdrDKjOCiQMkwzjVmi6JAF8RUcd01okBc/w/KBeChQGYMDkvyiaFA/psHt7UzoUCrhAyCYt2gQKdtd8sKh6BApd8qWMAwoECjqTMaKbWfQFdCO9QwCZ9AgJY1CrldnkDhWOwK4rKdQLfftj/LCJ1AMYyrJJNfnEBOynZBV7ebQBta2CI0EJtA3RfHVEVqmkA1ATtdpcWZQOq+nLdtIplA/ojZ0LaAmEDbzBkEmOCXQNSRGJgnQpdA3zIZvXqllkCFoniLpQqWQAsR1wK7cZVApXXWCc3alEDmJ2pu7EWUQNFqs+Yos5NA6YFmEpEik0A3p7N8MpSSQKf8rp4ZCJJA/1sy4lF+kUDmtzOl5faQQCiVij3ecZBA4vo9+ofej0CSWvhsPN6OQHNIgoPm4o1Af1PSA5HsjEB1lMzURPuLQKWJDwoJD4tAdr5M8OInikBqJyEa1kWJQFcnYW3kaIhA6UXMMA6Rh0AXvBwaUr6GQPUhZ1yt8IVAALa+thsohUCy7BKDl2SEQI4zO8UZpoNAChcmOprsgkDkRCFnDziCQIU0MKluiIFAa5RnRKzdgEBa9kNzuzeAQIUk5escLX9AN7UGQy30fUBBeoPEVmp8QAVKpOMzk31AvDs/if/EfkCqSn+J1f9/QC3GPf3noYBASE+xi4NIgUAjhr2RyPOBQCKnhCbBo4JA8GIWSHZYg0AN4uLM7xGEQOetO1U00IRALC/sPEmThUCOvfOMMluGQKaDa+3yJ4dAOLmil4v5h0B88XtI/M+IQEVsFjNDq4lADIbO81yLikCAhaCDRHCLQEUh+SvzWYxAxyv/emBIjUBG3GE4gjuOQJgtt1pMM49A+eC6ftgXkEAZ1MorUJiQQPSgcVkEG5FASbEHMuufkUAPx8Ph+SaSQPJ/kJMksJJAX25Qbl47k0Cnz5WSmciTQL240hjHV5RAbl4GENfolED65Ot8uHuVQMjjrllZEJZAxoUplqamlkAq5q8YjD6XQFv6a7/015dA8gZNYspymEDaRY3V9Q6ZQIAG0OxerJlATTHafuxKmkCgseZphOqaQNXhl5gLi5tAIKiGB2YsnEA4hG/Lds6cQFZb/RcgcZ1AelsxR0MUnkB32GbhwLeeQCeM8aV4W59ALSpUlEn/n0AIXgb7iFGgQBHgebRXo6BAxkQVdf/0oEDucspwbkahQNzI7JaSl6FAIkdymFnooUDv+HLusDiiQPCs4+CFiKJA+diIjcXXokA7Sx7vXCajQFkWsOQ4dKNAbPIgOUbBo0C7G9qqcQ2kQI6JoPOnWKRAeyuL0NWipECLshUK6OukQARGS3zLM6VAuGAEH216pUAC9TIOur+lQO7ZN5KfA6ZAiWw8KAtGpkCCPIuK6oamQK6L4rgrxqZAb1y7AL0Dp0C9w38FjT+nQIcwq8iKeadAtlvPsaWxp0C7mXiWzeenQA9R7MHyG6hAr2e8/AVOqEDGjCqU+H2oQGVbVmG8q6hA824x0EPXqECNojTmgQCpQLHY0UhqJ6lAMdGdQ/FLqUBmwC3OC26pQE2KpJGvjalAI7nr7dKqqUAcfpT+bMWpQGJGXZ913alANKxYcOXyqUCgzbLZtQWqQMNVEg/hFapACsySEmIjqkCGBVa3NC6qQKneqqNVNqpAbrDHUsI7qkBPQRcWeT6qQFdBFxZ5PqpAhbDHUsI7qkDV3qqjVTaqQNEFVrc0LqpAgsySEmIjqkCAVhIP4RWqQMfOstm1BapA/K1YcOXyqUAZSV2fdd2pQDWClP5sxalAQL/r7dKqqUBbk6SRr42pQKnNLc4LbqlAauSdQ/FLqUBE9NFIaiepQLvJNOaBAKlAC6Yx0EPXqEAWqFZhvKuoQHf2KpT4fahA3/e8/AVOqEDKE+3B8huoQBOeeZbN56dASbTQsaWxp0D+86zIinmnQFANggWNP6dAVEy+AL0Dp0BsR+a4K8amQCfvj4rqhqZAqkZCKAtGpkBiET+SnwOmQFbEOw66v6VAUAYPH216pUDTAlh8yzOlQHTIJAro66RAVtuc0NWipEDYELXzp1ikQAWy8apxDaRApcY7OUbBo0AQTM7kOHSjQPz3P+9cJqNA7QGujcXXokDwRAzhhYiiQB7fnu6wOKJAQkahmFnooUBulx6XkpehQC20/nBuRqFAcYpLdf/0oEASrbG0V6OgQMkpP/uIUaBA0J7GlEn/n0DjtmOmeFufQH+U1+HAt55ABo+fR0MUnkDO/2cYIHGdQIat1ct2zpxArornB2YsnED+1vKYC4ubQI46O2qE6ppA9vcnf+xKmkAh3RbtXqyZQN4kzdX1DplAoQmGYspymEBtWp6/9NeXQM322xiMPpdAK65PlqamlkClmc9ZWRCWQEGnB324e5VAZLAdENfolECtHeYYx1eUQEXHpZKZyJNA3nFdbl47k0Dn/5qTJLCSQP0pzOH5JpJA2lIOMuufkUC50XZZBBuRQL3ZzitQmJBAzva9ftgXkEAr3btaTDOPQA9iZTiCO45A48oBe2BIjUCwD/sr81mMQBPuoYNEcItAaorP81yLikBXJhczQ6uJQCR1fEj8z4hAcBWjl4v5h0CUw2vt8ieHQHbp84wyW4ZA/0zsPEmThUD3wTtVNNCEQGrv4szvEYRAv2sWSHZYg0DmrIQmwaOCQNqJvZHI84FAqFGxi4NIgUCuxz3956GAQIVMf4nV/39A4zw/if/EfkC9SqTjM5N9QLB6g8RWanxAJ+KmTXXuekA084Oz0Qd8QCMBqzelKX1AJi09OgpUfkBLPZN0GYd/QPE79e50YYBA5lr0R8gDgUBVuINVkKqBQAQie53VVYJADQGDjZ8Fg0DkD1dt9LmDQExqH1HZcoRAI27pC1IwhUAKJkoiYfKFQHo0NL0HuYZAUWwLnUWEh0CFdAANGVSIQLj9vtZ+KIlAYjJ5NnIBikB6JFvP7N6KQFsNcaDmwItAED4L+lWnjEBAn6pzL5KNQLyWgOJlgY5AwBeNUOp0j0BKwzL6VTaQQM551xRMtJBAHAErNU00kUAuS0ckTraRQC6Q0rRCOpJA7ofVwB3AkkBPzwMo0UeTQNrges5N0ZNA9ND7m4NclECuwqN7YemUQJ/JJlzVd5VA6qeQMMwHlkDxjI7xMZmWQLGqRJ/xK5dANCSyQ/W/l0Dkf6X1JVWYQO1sQ9xr65hA+0ohM66CmUAZgfRO0xqaQC5J16LAs5pAuywjxlpNm0BAA+F6heebQLDTzbQjgpxATorzoBcdnUAdAtStQridQO9sJJSFU55A57EWYMDunkA85C170omfQD5ATVtNEqBAfVQNq3tfoEC5E60NY6ygQIDD5ijy+KBAhZSBbRdFoUDCZLIdwZChQH29sVPd26FAztyDCFomokADaO8aJXCiQC4zn1YsuaJAvFtre10Bo0Djx8VEpkijQAjzRXH0jqNAYchPyjXUo0ByKdErWBikQOGcEYxJW6RANYWPA/icpECDJObUUd2kQCWct3RFHKVAewSWkcFZpUArquYbtZWlQC5zuk0P0KVATGeWsr8IpkCQVCcvtj+mQOGJ2wjjdKZATKdd7TaopkBAjev5otmmQCmChMIYCadAybfpWIo2p0AlcGxT6mGnQHwchdMri6dA5+4ujEKyp0BwegPIItenQDsjEm/B+adAGktvDBQaqECRVHfTEDioQK7HwaSuU6hAKRnBEuVsqEDBywtmrIOoQBzfS6H9l6hAC73RhNKpqEA/FsiRJbmoQFliBg3yxahABPx/ATTQqEAYGE5C6NeoQKofU2wM3ahA7T12557fqEDuPXbnnt+oQKwfU2wM3ahAHRhOQujXqEAM/H8BNNCoQGViBg3yxahAURbIkSW5qEAovdGE0qmoQEjfS6H9l6hABMwLZqyDqECNGcES5WyoQELIwaSuU6hAblV30xA4qEBfTG8MFBqoQBElEm/B+adAEn0DyCLXp0Cl8i6MQrKnQMAhhdMri6dAeHdsU+php0DhwelYijanQO+PhMIYCadA2p/r+aLZpkArwF3tNqimQMuq2wjjdKZAsH8nL7Y/pkA7n5ayvwimQAC7uk0P0KVAdgXnG7WVpUBcd5aRwVmlQD8ruHRFHKVA+9Tm1FHdpEChXJAD+JykQDqhEoxJW6RA6mDSK1gYpEBEOVHKNdSjQIWjR3H0jqNA3r3HRKZIo0CEnG17XQGjQDvDoVYsuaJAvEryGiVwokBBFIcIWiaiQChKtVPd26FAZUW2HcGQoUD8xYVtF0WhQLVA6yjy+KBAp9WxDWOsoEBFUhKre1+gQFxvUltNEqBAOo04e9KJn0CQiyFgwO6eQLdbL5SFU55A0unerUK4nUD8Tv6gFx2dQHBa2LQjgpxA+TLreoXnm0Di7izGWk2bQEuK4KLAs5pASTH9TtMamkAdXikzroKZQMjaStxr65hAGUSs9SVVmEAIPrhD9b+XQMEcSp/xK5dAxVyT8TGZlkBw3ZQwzAeWQLBuKlzVd5VAjOKme2HplEC8d/6bg1yUQBobfc5N0ZNAjqkFKNFHk0BhDtfAHcCSQGfO07RCOpJA6UtIJE62kUAvzis1TTSRQPUb2BRMtJBAN0Iz+lU2kEB03I1Q6nSPQJYtgeJlgY5A1RGrcy+SjUAzlAv6VaeMQHZNcaDmwItAtFNbz+zeikDRVHk2cgGKQJUWv9Z+KIlAS4YADRlUiEDleAudRYSHQEg9NL0HuYZAJixKImHyhUBUcukLUjCFQCZtH1HZcoRAzhFXbfS5g0BUAoONnwWDQNYie53VVYJA4biDVZCqgUBBW/RHyAOBQCs89e50YYBAlj2TdBmHf0BULT06ClR+QDsBqzelKX1ARfODs9EHfEAx4qZNde56QNJNUmV6gHlAyAkxS+eKekDdDrdFWJ17QES8mE7mt3xAt2gzz6jafUAeka2GtQV/QAY0+DeQHIBAs9rE0326gECczsKoq1yBQJhCqL8gA4JA6vXYCuOtgkAEynhZ91yDQLF4nEphEIRAwp+hQCPIhEAekbdUPoSFQE+KokqyRIZAFSTDhH0Jh0DE8Wv4nNKHQGxojyIMoIhAJT7Q/MRxiUCBg/7yv0eKQDDBC9nzIYtAeGWA4VUAjECAxHyU2eKMQKXdT8dwyY1ANP6tlAu0jkBQNpFVmKKPQBK0Zs2BSpBAksGwE5zFkEBjnsd1j0KRQBwnYYBPwZFAjPUn085BkkD1Y4sf/8OSQFPPAyjRR5NAm9jOvzTNk0BcJifLGFSUQHDn+j9r3JRA0hAkJxlmlUCQBSWeDvGVQI4JbNk2fZZAR4wfJ3wKl0AUAnXyx5iXQBSok8cCKJhAqjAEWBS4mEDy9a1/40iZQArrYUpW2plAYR/z+VFsmkC+PdwMu/6aQPYGcUV1kZtAhluasWMknEAR+hqzaLecQAmrWghmSp1AgyK11TzdnUBFc0mvzW+eQId/RqP4AZ9AUGawRJ2Tn0BCQE1bTRKgQNaK6NtnWqBACcR2Vw2ioEDzqGfbLOmgQI/kuVW1L6FAlSCTm5V1oUDi4QBwvLqhQJuh3ooY/6FAMmrdn5hCokD3F6llK4WiQEU4J52/xqJAaGDLGEQHo0AytvzDp0ajQH9IiKrZhKNAJr0bAMnBo0C6xMMnZf2jQLqyabudN6RAs4pLk2JwpECzyGnNo6ekQIgk5tRR3aRA/4xOaV0RpUBkmc+lt0OlQMW0SQhSdKVAzE9EeB6jpUAzc7pND9ClQPsdvFcX+6VA2+/f4ikkpkBZuYC/OkumQPSnwkc+cKZAl+VbZSmTpkDQphyX8bOmQHnLMvaM0qZAr2AlO/LupkAwgoTCGAmnQKNKSpH4IKdAzrfpWIo2p0Aanwh7x0mnQJ4J4gyqWqdAfItO2ixpp0CvaXBoS3WnQHKiAfgBf6dAUy9Ch02Gp0CAHIXTK4unQIhWW1qbjadAiFZbWpuNp0CAHIXTK4unQFMvQodNhqdAcqIB+AF/p0CwaXBoS3WnQH6LTtosaadAoQniDKpap0Adnwh7x0mnQNS36ViKNqdArEpKkfggp0A6goTCGAmnQMJgJTvy7qZAlssy9ozSpkD5phyX8bOmQNDlW2Upk6ZASKjCRz5wpkDPuYC/OkumQH/w3+IpJKZA3B68Vxf7pUBmdLpND9ClQGpRRHgeo6VA8LZJCFJ0pUBDnM+lt0OlQMKQTmldEaVAaCnm1FHdpED3zmnNo6ekQKmSS5NicKRAv7xpu503pEA00cMnZf2jQIvMGwDJwaNASVuIqtmEo0DnzPzDp0ajQJJ7yxhEB6NAclgnnb/GokCuPallK4WiQPqV3Z+YQqJA6dPeihj/oUAaGwFwvLqhQAJhk5uVdaFAYCy6VbUvoUAz+GfbLOmgQJ8ad1cNoqBAdujo22daoEB+pE1bTRKgQMQ6sUSdk59Aa15Ho/gBn0DKWkqvzW+eQIgQttU83Z1ATZ1bCGZKnUAt7huzaLecQABPm7FjJJxAZvdxRXWRm0DGKN0Mu/6aQNMC9PlRbJpA7cRiSlbamUCPxK5/40iZQKTyBFgUuJhAX1yUxwIomED1p3Xyx5iXQFwjICd8CpdAx5Fs2TZ9lkAkfyWeDvGVQEJ8JCcZZpVAbEX7P2vclEC+dyfLGFSUQF8ez780zZNAgwoEKNFHk0CxlYsf/8OSQOkeKNPOQZJAKUlhgE/BkUAkusd1j0KRQPbXsBOcxZBA9cVmzYFKkECYUpFVmKKPQFkUrpQLtI5AzO5Px3DJjUCk0XyU2eKMQHZvgOFVAIxAtMgL2fMhi0AYif7yv0eKQERC0PzEcYlAZ2uPIgygiEDz82v4nNKHQKElw4R9CYdAZ4uiSrJEhkDjkbdUPoSFQEqgoUAjyIRAEXmcSmEQhEBDynhZ91yDQBX22ArjrYJAtUKovyADgkCuzsKoq1yBQMPaxNN9uoBADjT4N5AcgEAoka2GtQV/QL5oM8+o2n1ARLyYTua3fEDYDrdFWJ17QMoJMUvninpA001SZXqAeUBcQUDkTiB4QNsmgpFcHHlAK/gOof8fekCvvbSzTyt7QJz9gu9iPnxAyTpQ501ZfUCQ6RqCI3x+QBL8U+L0pn9ArOKQpuhsgECPRdUIYwqBQGpYOzjvq4FAJHd9wZFRgkCTw60RTvuCQKL3PGomqYNAKlov1RtbhEAQ9YgZLhGFQAVV+q9by4VAm0HXt6GJhkDe+WDs+0uHQFCZbZpkEohAd1l2ltTciEBFbBYzQ6uJQFUsBDimfYpAtFiO2fFTi0BjAaewGC6MQJCxhbMLDI1AyULqLrrtjUB4mgnAEdOOQLBeLU/+u49A2bmHBTVUkEA35nyyHsyQQDZl2YavRZFA5Qef+dnAkUC2oryfjz2SQCX2zSvBu5JAXG5Qbl47k0ChzU9WVryTQBqSjfKWPpRAUqElcw3ClEATebIrpkaVQFjW8pVMzJVAnXHyVOtSlkBpGbc4bNqWQLAbc0K4YpdAp5I9qbfrl0Amy1DfUXWYQNmZzpdt/5hAbxEKzfCJmUA7p1XHwBSaQEVtVCTCn5pAlqHM3tgqm0D+aflW6LWbQHsrWVvTQJxAKoP1MXzLnEDXfiGixFWdQJZLqv6N351AKSp2MLlonkCHFI3BJvGeQFUchui2eJ9AKSpUlEn/n0B+MzY8X0KgQFkfoIx6hKBAsUmCbObFoEC4sl+CkgahQO1yynBuRqFAaU4m3WmFoUAlhYN2dMOhQGHyjfx9AKJAWXCMRnY8okDsWmxKTXeiQLX01CPzsKJAvV0+G1jpokCEugetbCCjQI8ciJAhVqNA97MVv2eKo0BZy/56ML2jQNAMcFZt7qNAHpBDOhAepEDXNrRsC0ykQE/k8JdReKRAeSuL0NWipEA8Hb2bi8ukQKn1gfVm8qRAb359VlwXpUARGK65YDqlQJ165aFpW6VAtGAEH216pUAYdvXSYZelQGMLZPY+sqVAjz0rXfzKpUCVbnp6kuGlQPQerGT69aVAg2zM2C0IpkBvssw9JximQKX/YafhJaZA0VSM2FgxpkC22MRFiTqmQLhw0RZwQaZAh2w8KAtGpkCBNW8MWUimQIE1bwxZSKZAh2w8KAtGpkC4cNEWcEGmQLbYxEWJOqZA0VSM2FgxpkCl/2Gn4SWmQG+yzD0nGKZAg2zM2C0IpkD0Hqxk+vWlQJZuenqS4aVAjj0rXfzKpUBlC2T2PrKlQBp29dJhl6VAt2AEH216pUCgeuWhaVulQBgYrrlgOqVAeX59VlwXpUC39YH1ZvKkQE4dvZuLy6RAkiuL0NWipEBw5PCXUXikQAM3tGwLTKRAWZBDOhAepEAcDXBWbe6jQLvL/nowvaNAd7QVv2eKo0AxHYiQIVajQFC7B61sIKNAu14+G1jpokDv9dQj87CiQGtcbEpNd6JAJ3KMRnY8okCL9I38fQCiQLaHg3Z0w6FAaVEm3WmFoUBodspwbkahQLq2X4KSBqFAP06CbObFoEB7JKCMeoSgQDY5NjxfQqBAyDZUlEn/n0AfKobotnifQHEjjcEm8Z5AIDp2MLlonkB+XKr+jd+dQJWQIaLEVZ1AmpX1MXzLnEBwPllb00CcQEl9+VbotZtAB7XM3tgqm0CogFQkwp+aQF+6VcfAFJpAJyQKzfCJmUD2q86Xbf+YQIDcUN9RdZhAG6M9qbfrl0AgK3NCuGKXQMUntzhs2pZA037yVOtSlkBh4vKVTMyVQOqDsiumRpVAAKslcw3ClEComo3ylj6UQB3VT1ZWvJNA2HRQbl47k0Cz+80rwbuSQG6nvJ+PPZJA2wuf+dnAkUCBaNmGr0WRQO3ofLIezJBAD7yHBTVUkEBCYi1P/ruPQFGdCcAR045ACkXqLrrtjUBTs4WzCwyNQMECp7AYLoxAwFmO2fFTi0AiLQQ4pn2KQN5sFjNDq4lA6Vl2ltTciECkmW2aZBKIQBj6YOz7S4dAy0HXt6GJhkAkVfqvW8uFQCb1iBkuEYVAOlov1RtbhECr9zxqJqmDQKDDrRFO+4JAKXd9wZFRgkBtWDs476uBQJFF1QhjCoFAreKQpuhsgEAc/FPi9KZ/QJHpGoIjfH5AyjpQ501ZfUCd/YLvYj58QKq9tLNPK3tAKPgOof8fekDbJoKRXBx5QFxBQOROIHhAEjLnf9PNdkDJWQX1ELx3QKJ3gmd5sXhAPAOuLCOueUAyl9ozI7J6QKHcOu+MvXtAr+2bPHLQfECAiQpO4+p9QJkKcZLuDH9AL1AeT1AbgEAsawwKArSAQMx66MaQUIFAl6Ozwv/wgUBqVzkfUZWCQLG+6deFPYNAJlvotp3pg0Awq1dKl5mEQJi36tlvTYVAC5LFXCMFhkAr4bVvrMCGQPelzEsEgIdAQ25ivSJDiEAAKY8b/gmJQDLJHkCL1IlA9NULgL2iikA77oikhnSLQMQnouTWSYxAEgh/35wijUBbpk2Xxf6NQDtL32w83o5Af6H+G+vAj0Dgn0PcXFOQQCUAI1bHx5BAbp/UWqc9kUAi2KNz7rSRQNcMIlSNLZJAQdzJ2nOnkkCuVhYSkSKTQLObEDLTnpNABgBWoicclEBWkZj8epqUQEqAmw+5GZVAnqes4syZlUALFJy5oBqWQAEZMhkenJZAoiUkzC0el0CVMYjot6CXQIk7xtWjI5hAGvQGU9immEBQTx5+OyqZQJFU8NqyrZlAMCNOWyMxmkAKvkhncbSaQJHO9uWAN5tARSyqRjW6m0BllJGKcTycQHycwk4YvpxA+Yqn1gs/nUDpY8wWLr+dQCQcBsBgPp5A1ozuSoW8nkAsa68DfTmfQNo1FhYptZ9AgV31TLUXoEA9x8BPEVSgQOHAQR6Zj6BA43ZxTD3KoEB4sPt97gOhQLkG3GydPKFAw5AG8Dp0oUB9AxgCuKqhQBMxCcgF4KFADMThlxUUokCEBWb/2EaiQLd0u8pBeKJAM/D/CkKookDALs8czNaiQA5Hsq7SA6NA/gl1x0gvo0Ci+1zMIVmjQMfCPYdRgaNAZfZmLMyno0AbQ2dghsyjQHb5oD1176NAbi+sWY4QpEAHvYLKxy+kQFR8cisYTaRAIVnSoXZopEAg43bh2oGkQJU/4zA9maRA9YMzbZaupEBgsr0N4MGkQMrCZicU06RA4lepby3ipEBM9Us/J++kQP/ExJT9+aRAPTRJFq0CpUDm64cTMwmlQJzlC4eNDaVALZ1HF7sPpUAtnUcXuw+lQJzlC4eNDaVA5uuHEzMJpUA9NEkWrQKlQP/ExJT9+aRATPVLPyfvpEDiV6lvLeKkQMrCZicU06RAYLK9DeDBpED1gzNtlq6kQJQ/4zA9maRAION24dqBpEAhWdKhdmikQFR8cisYTaRABb2CyscvpEBvL6xZjhCkQHf5oD1176NAHENnYIbMo0Bm9mYszKejQMnCPYdRgaNApPtczCFZo0ABCnXHSC+jQBJHsq7SA6NAxi7PHMzWokA68P8KQqiiQMB0u8pBeKJAkAVm/9hGokAbxOGXFRSiQCUxCcgF4KFAlAMYAriqoUDekAbwOnShQNoG3GydPKFAoLD7fe4DoUATd3FMPcqgQBnBQR6Zj6BAe8fATxFUoEDOXfVMtRegQIQ2FhYptZ9A6muvA305n0Crje5KhbyeQA4dBsBgPp5A6WTMFi6/nUAPjKfWCz+dQKadwk4YvpxAn5WRinE8nECMLapGNbqbQOnP9uWAN5tAa79IZ3G0mkCYJE5bIzGaQPtV8NqyrZlAtlAefjsqmUB79QZT2KaYQOU8xtWjI5hA5zKI6Legl0DlJiTMLR6XQDAaMhkenJZAKxWcuaAalkCpqKzizJmVQECBmw+5GZVANpKY/HqalEDMAFaiJxyUQGWcEDLTnpNATVcWEpEik0DM3Mnac6eSQFANIlSNLZJAidijc+60kUDEn9Rapz2RQG8AI1bHx5BAHaBD3FxTkEDkof4b68CPQI1L32w83o5AlqZNl8X+jUBHCH/fnCKNQO4nouTWSYxAXO6IpIZ0i0AO1guAvaKKQEDJHkCL1IlAECmPG/4JiUBObmK9IkOIQP+lzEsEgIdAMeG1b6zAhkAMksVcIwWGQJu36tlvTYVAMqtXSpeZhEAoW+i2nemDQLK+6deFPYNAa1c5H1GVgkCYo7PC//CBQMx66MaQUIFALGsMCgK0gEAvUB5PUBuAQI8KcZLuDH9AgIkKTuPqfUCv7Zs8ctB8QKHcOu+MvXtAMpfaMyOyekA8A64sI655QJ93gmd5sXhAyVkF9RC8d0ASMud/0812QJ0WI1fhiHVAgEJn/ttpdkCXSlZ/m1F3QA/IAvE0QHhAb51vGLw1eUARk7ZSQzJ6QMVWDn/bNXtArnq86JNAfEDNnQAxelJ9QAtwBjmaa35AVcbsC/6Lf0C1Nnjk1lmAQP/u5MZX8YBAWK+msIOMgUCDwS6PWyuCQHomoC/fzYJAq8KzNA10g0AukN4M4x2EQARdwuhcy4RAE7DxsXV8hUAufg8CJzGGQJdfUxpp6YZArPd62zKlh0C3ODG+eWSIQI4g9MsxJ4lA3HOBmE3tiUCu4NI7vraKQLLKsUxzg4tAxNXq21pTjEBHDSlwYSaNQCxIgAJy/I1A4SKu+3XVjkD9mRgyVbGPQDJ8SPT6R5BAr7bwZp64kEB+m5V+hiqRQGtvjf+jnZFA6Mf75eYRkkDmBklnPoeSQFapC/SY/ZJA/CNlOuR0k0DowNMoDe2TQDWjevH/ZZRAKMjgDajflEDViSdD8FmVQNPTuKbC1JVA+uNsowhQlkBTGCf/qsuWQM/x6OCRR5dABhha16TDl0CGzcPfyj+YQNvnfW3qu5hAaADLcek3mUBoNiFkrbOZQM983EobL5pAqxJXxBeqmkBAaWQQhySbQJZgKhpNnptAoGtUgk0XnEA11pupa4+cQLYToLuKBp1A9KsJuo18nUBBDvKHV/GdQOxHivXKZJ5ABFX6y8rWnkCEf3LZOUefQFADaP36tZ9Aw/l6mngRoEDhlK3T/0agQHnsRtmEe6BAd5nue/muoEDBtky0T+GgQDcqXal5EqFAeT++tmlCoUDXlvZyEnGhQE9lrrVmnqFASQDYnVnKoUDOsMOX3vShQEvOGmPpHaJABCm+GG5FokAo14MwYWuiQFGG0Ia3j6JA6YQIYmayokAtzNR3Y9OiQAdsOPKk8qJAe9VydCEQo0A/n6sf0CujQNqBZJeoRaNAPm2uBaNdo0CIwR4fuHOjQJPegSbhh6NAzmpI8Beao0Ag4azlVqqjQJEmjweZuKNAWBwE8dnEo0DNV5fZFc+jQCVhPZdJ16NA7BH1n3Ldo0Bh5hYLj+GjQIlPUZKd46NAiU9Rkp3jo0Bh5hYLj+GjQOwR9Z9y3aNAJWE9l0nXo0DNV5fZFc+jQFgcBPHZxKNAkSaPB5m4o0Ag4azlVqqjQM5qSPAXmqNAk96BJuGHo0CHwR4fuHOjQD5trgWjXaNA2oFkl6hFo0A/n6sf0CujQHnVcnQhEKNAB2w48qTyokAtzNR3Y9OiQOmECGJmsqJAUYbQhrePokAo14MwYWuiQAQpvhhuRaJAS84aY+kdokDOsMOX3vShQEkA2J1ZyqFAT2WutWaeoUDXlvZyEnGhQHo/vrZpQqFAOCpdqXkSoUDCtky0T+GgQHmZ7nv5rqBAeexG2YR7oEDjlK3T/0agQMb5epp4EaBAVgNo/fq1n0CMf3LZOUefQAlV+svK1p5A+keK9cpknkBNDvKHV/GdQACsCbqNfJ1AxBOgu4oGnUBE1pupa4+cQLFrVIJNF5xAqGAqGk2em0BUaWQQhySbQMASV8QXqppA4HzcShsvmkB/NiFkrbOZQH8Ay3HpN5lA8+d9beq7mECezcPfyj+YQBsYWtekw5dA5fHo4JFHl0BqGCf/qsuWQBDkbKMIUJZA6NO4psLUlUDmiSdD8FmVQDvI4A2o35RAR6N68f9llED4wNMoDe2TQAwkZTrkdJNAYKkL9Jj9kkDvBklnPoeSQPLH++XmEZJAdW+N/6OdkUCGm5V+hiqRQLW28GaeuJBANXxI9PpHkEAHmhgyVbGPQOgirvt11Y5AMkiAAnL8jUBNDSlwYSaNQMHV6ttaU4xAtsqxTHODi0Cx4NI7vraKQN5zgZhN7YlAkCD0yzEniUCxODG+eWSIQK33etsypYdAmF9TGmnphkAvfg8CJzGGQBOw8bF1fIVAAl3C6FzLhEAukN4M4x2EQKvCszQNdINAeiagL9/NgkCDwS6PWyuCQFivprCDjIFA/+7kxlfxgEC1Nnjk1lmAQFXG7Av+i39AC3AGOZprfkDFnQAxelJ9QK56vOiTQHxAxVYOf9s1e0ARk7ZSQzJ6QG+dbxi8NXlAD8gC8TRAeECUSlZ/m1F3QIBCZ/7baXZAnRYjV+GIdUAvUM5/SlF0QKRJ0+ONJXVAFTqYMDQAdkAWlwdMUeF2QOqXF933yHdAwvUsNzm3eEDe5l5FJax5QJM6qHXKp3pAxgESpDWqe0Cmr+QFcrN8QNUZ7RSJw31A+jHjeoLafkBwwAD9Y/h/QOdl67OYjoBAp1q4PXYkgUCOMupryr2BQBqV9/STWoJAx5d/bND6gkAmzkQ6fJ6DQIDNdpGSRYRADVBSaA3whECRKiBw5Z2FQPBHmw0ST4ZA5tfFUYkDh0BH0DXzP7uHQNvL4EcpdohAezVvPzc0iUBzih5eWvWJQOJTOriBuYpAoEMz7pqAi0BAplspkkqMQEMZUBlSF41ALyoT8sPmjUBSMOJqz7iOQHBayb1ajY9AUUP+UyUykECKCX01wZ6QQOEyPudxDJFAITmfkSd7kUCEg0uj0eqRQKwTd9NeW5JAQ5aHJL3MkkCG7Czn2T6TQEL56b2hsZNAXy4OoQAllECTCCDj4ZiUQDxVuDUwDZVA/crNrtWBlUC1KHDOu/aVQJi48YTLa5ZAfL19Oe3glkBp+RnRCFaXQL8jEbYFy5dAgc3D38o/mECH2tzaPrSYQMVe5tFHKJlAJlk7lsubmUDtb1Kprw6aQMZ/XUbZgJpA8Hw5bC3ymkDi1qnnkGKbQMpC2l3o0ZtAHochVxhAnECWnP9JBa2cQLA2UaaTGJ1ALIay4KeCnUAnzgp+JuudQEsuOh/0UZ5Ai9LijPW2nkBJjUbDDxqfQNy4Mf4ne59AChzsxCPan0BfOBR7dBugQLaK9emuSKBAAzGwh7R0oEDphk3qeJ+gQCeIGevvyKBAQbRerA3xoECEnwqfxhehQK1yN4gPPaFAQKWWht1goUAFTLkXJoOhQF9mMh3fo6FA1aiP4f7CoUBjWiUdfOChQEf0qfpN/KFAxFCeG2wWokCUVX+czi6iQAEpvhhuRaJAGyZ8rkNaokBf7AcCSW2iQBoRGUF4fqJAiCXIJcyNokAh80D5P5uiQAQALZbPpqJA4J/UanewokBtCfV6NLiiQPMdSmEEvqJA2sbKUOXBokDqBJcV1sOiQOoElxXWw6JA2sbKUOXBokDzHUphBL6iQG0J9Xo0uKJA4J/UanewokAEAC2Wz6aiQCHzQPk/m6JAiCXIJcyNokAaERlBeH6iQF/sBwJJbaJAGSZ8rkNaokABKb4YbkWiQJRVf5zOLqJAxFCeG2wWokBG9Kn6TfyhQGNaJR184KFA1aiP4f7CoUBfZjId36OhQAVMuRcmg6FAQKWWht1goUCtcjeIDz2hQISfCp/GF6FAQbRerA3xoEAniBnr78igQOmGTep4n6BAAzGwh7R0oEC5ivXprkigQF84FHt0G6BAChzsxCPan0DXuDH+J3ufQEmNRsMPGp9AkdLijPW2nkBLLjof9FGeQCfOCn4m651AJ4ay4KeCnUCxNlGmkxidQJec/0kFrZxAH4chVxhAnEDLQtpd6NGbQODWqeeQYptA7nw5bC3ymkDKf11G2YCaQO5vUqmvDppAJ1k7lsubmUDGXubRRyiZQIja3No+tJhAhM3D38o/mEDAIxG2BcuXQGv5GdEIVpdAfr19Oe3glkCXuPGEy2uWQLcocM679pVA/srNrtWBlUA9Vbg1MA2VQJQIIOPhmJRAXS4OoQAllEBA+em9obGTQIfsLOfZPpNARJaHJL3MkkCtE3fTXluSQIWDS6PR6pFAHzmfkSd7kUDiMj7ncQyRQIsJfTXBnpBAUkP+UyUykEBwWsm9Wo2PQE0w4mrPuI5AMCoT8sPmjUBEGVAZUheNQECmWymSSoxAoEMz7pqAi0DfUzq4gbmKQHOKHl5a9YlAezVvPzc0iUDby+BHKXaIQEfQNfM/u4dA5NfFUYkDh0DwR5sNEk+GQJEqIHDlnYVADVBSaA3whECAzXaRkkWEQCLORDp8noNAyJd/bND6gkAalff0k1qCQI4y6mvKvYFAp1q4PXYkgUDnZeuzmI6AQHbAAP1j+H9A+jHjeoLafkDVGe0UicN9QKav5AVys3xAwwESpDWqe0CWOqh1yqd6QN7mXkUlrHlAwvUsNzm3eEDqlxfd98h3QBSXB0xR4XZADzqYMDQAdkCkSdPjjSV1QC9Qzn9KUXRAlb98lNomc0B0aXcc8O5zQGgkmL4KvXRAzayCPD2RdUB2gTMrmWt2QKtvkd8uTHdA4h3iWg0zeECGzCw3QiB5QAYCl5PZE3pAJVDHAN4Ne0C41FptWA58QIqEehJQFX1AFbadYMoifkC5wIfsyjZ/QJZtR66pKIBAhFkdqzG5gEB9vSQ2/EyBQGA0lQYH5IFAu2X+uE5+gkBHhBHHzhuDQIxzvH+BvINAGU+e/19ghECLDt0pYgeFQCH7Y6F+sYVAYZ+SwqpehkBkxWOd2g6HQAj+E/AAwodAwglPIg94iEBgUutA9TCJQLF1Ovqh7IlAqqj1mgKrikB1fMwLA2yLQEBInM+NL4xAVS1WAoz1jEAgVplY5b2NQEK1BiCAiI5AhSZTQEFVj0BKNY4eBhKQQL6CQpxhepBACUlNe6PjkEBdz8Rwu02RQH/TUIeYuJFA/pkVIikkkkDf0AgAW5CSQMW6sD8b/ZJANc1NY1Zqk0CgoG5V+NeTQP3A7W3sRZRA255Ydx20lEDajr60dSKVQK5z5ufekJVARVzpV0L/lUD/CzDYiG2WQLAQ0c+a25ZAqLZMQWBJl0AG2aPSwLaXQIY7xtWjI5hAh8pUUfCPmEC5z7MJjfuYQCHdaIpgZplAjOW/L1HQmUCDsbIwRTmaQMKaDakioZpAhDXMo88Hm0CwUKglMm2bQJN61Tcw0ZtAbwDj8q8znEC9LL6Jl5ScQH9YzlTN85xAJDsk3TdRnUDEvrXnvaydQP5+n4BGBp5AH/5kBrldnkC7hig1/bKeQCyh0zH7BZ9Ag/kolZtWn0Bwj7h2x6SfQAoLr3do8J9AqYy8ZrQcoECj4Bmm2T+gQCRbcbiZYaBA7OKyteqBoEDtTxMUw6CgQCYuvKwZvqBAWidRwOXZoEC780f7HvSgQEHND3q9DKFAYn8FzbkjoUBwTTH8DDmhQDANzIqwTKFAnPiIep5eoUCd4aFO0W6hQGicow5EfaFANKH4SPKJoUBzEzAV2JShQHCM/xXynaFA6zf+ej2loUB8AxgCuKqhQDvVt/hfrqFAKPKnPDSwoUAo8qc8NLChQDvVt/hfrqFAfAMYAriqoUDrN/56PaWhQHCM/xXynaFAcxMwFdiUoUA0ofhI8omhQGicow5EfaFAneGhTtFuoUCc+Ih6nl6hQC4NzIqwTKFAcE0x/Aw5oUBifwXNuSOhQEHND3q9DKFAuvNH+x70oEBaJ1HA5dmgQCYuvKwZvqBA7U8TFMOgoEDs4rK16oGgQCJbcbiZYaBAo+AZptk/oECpjLxmtBygQAoLr3do8J9AcI+4dsekn0CD+SiVm1afQCyh0zH7BZ9Av4YoNf2ynkAf/mQGuV2eQP5+n4BGBp5Awb61572snUAkOyTdN1GdQIJYzlTN85xAvSy+iZeUnEBvAOPyrzOcQI561Tcw0ZtAsFCoJTJtm0CENcyjzwebQMKaDakioZpAg7GyMEU5mkCI5b8vUdCZQCHdaIpgZplAu8+zCY37mECHylRR8I+YQIY7xtWjI5hABtmj0sC2l0CotkxBYEmXQLMQ0c+a25ZA/wsw2IhtlkBFXOlXQv+VQK5z5ufekJVA2o6+tHUilUDbnlh3HbSUQP3A7W3sRZRAoKBuVfjXk0A1zU1jVmqTQMW6sD8b/ZJA39AIAFuQkkD+mRUiKSSSQH/TUIeYuJFAXc/EcLtNkUAJSU17o+OQQL6CQpxhepBASjWOHgYSkECFJlNAQVWPQEK1BiCAiI5AIFaZWOW9jUBRLVYCjPWMQEBInM+NL4xAdXzMCwNsi0CqqPWaAquKQLF1Ovqh7IlAXlLrQPUwiUDCCU8iD3iIQAj+E/AAwodAZMVjndoOh0Bhn5LCql6GQB77Y6F+sYVAiw7dKWIHhUAZT57/X2CEQIxzvH+BvINAR4QRx84bg0C7Zf64Tn6CQGM0lQYH5IFAfb0kNvxMgUCEWR2rMbmAQJZtR66pKIBAt8CH7Mo2f0Aatp1gyiJ+QIqEehJQFX1AuNRabVgOfEAlUMcA3g17QAMCl5PZE3pAicwsN0IgeUDiHeJaDTN4QKtvkd8uTHdAdoEzK5lrdkDLrII8PZF1QGgkmL4KvXRAdGl3HPDuc0CVv3yU2iZzQDj4lkFXCXJAUY5h88XFckC85bMA4IdzQJBMkxO3T3RAYfDfulsddUD5GAhY3fB1QB8SoAxKynZAvlTpp66pd0Dx9VOUFo94QFfUBcWLenlAnWlzoxZsekBEjBb9vWN7QLHOT/GGYXxA7YF/33RlfUCas2NViW9+QGrJyP3Df39AzE3NRxFLgEAwFLJeUNmAQKcTphKcaoFA/XLOIPD+gUBs+PIsR5aCQBILY7qaMINAVyk2JePNg0ByFu+bF26EQBD1iBkuEYVA3HL1Xxu3hUCyDxPz0l+GQJNrIhRHC4dAs1/BvWi5h0AbenKgJ2qIQHA+tx9yHYlA9VPDTzXTiUAPhs7zXIuKQCQ0C33TRYtApX1GCoICjECFIDdoUMGMQJmjfxIlgo1AtAJoNeVEjkCxqFKwdAmPQPYT8Bi2z49APAaaX8VLkED1awdZabCQQPArdmK2FZFA1Tz9Spt7kUAN65tKBuKRQAZpJQblSJJA8n+QkySwkkDi9qp+sReTQBz7L853f5NAcIdACWPnk0DQezw9Xk+UQKrH+gNUt5RAKbxeii4flUBzTEiX14aVQL203JI47pVAMrMkjjpVlkAgMf1KxruWQNbvVkTEIZdA/IHBthyHl0Cqkj2pt+uXQMo0UvZ8T5hAvbFgVVSymEDUDDJkJRSZQBIzubDXdJlAOpMEw1LUmUCvolknfjKaQMGfdHhBj5pAoLHmaYTqmkCqWozSLkSbQEkKFrconJtAmXicVFrym0AdWDorrEacQATRpAgHmZxAJCW8ElTpnEBqzQ3SfDedQGpYQTxrg51Auk1pvgnNnUB6WzFHQxSeQEQb41ADWZ5AY8g66zWbnkD7UwXFx9qeQGBcgTWmF59Aeqp8Rb9Rn0Df+ye4AYmfQOEImxNdvZ9AfeQCqcHun0C4gzpOkA6gQBPIMPY1JKBAeb9PPEs4oED++4YEykqgQKjt4qmsW6BA8aZrAe5qoEDqjsdciXigQFofoIx6hKBAPvjG4r2OoEDcvhk0UJegQHBsI9ounqBAEeB5tFejoECCt9YpyaagQE+k6iiCqKBAT6TqKIKooECCt9YpyaagQBHgebRXo6BAcGwj2i6eoEDcvhk0UJegQD74xuK9jqBAWh+gjHqEoEDqjsdciXigQPGmawHuaqBAqO3iqaxboED++4YEykqgQHm/TzxLOKBAE8gw9jUkoEC4gzpOkA6gQH3kAqnB7p9A3wibE129n0Df+ye4AYmfQHqqfEW/UZ9AYFyBNaYXn0D7UwXFx9qeQGPIOus1m55ARBvjUANZnkB6WzFHQxSeQLpNab4JzZ1AalhBPGuDnUBnzQ3SfDedQCQlvBJU6ZxABNGkCAeZnEAdWDorrEacQJl4nFRa8ptASQoWtyicm0CqWozSLkSbQKCx5mmE6ppAwZ90eEGPmkCvolknfjKaQDeTBMNS1JlAFjO5sNd0mUDUDDJkJRSZQL2xYFVUsphAyjRS9nxPmECqkj2pt+uXQPyBwbYch5dA1u9WRMQhl0AgMf1KxruWQC+zJI46VZZAu7TckjjulUBzTEiX14aVQCm8XoouH5VAqsf6A1S3lEDQezw9Xk+UQHCHQAlj55NAGvsvznd/k0Di9qp+sReTQPJ/kJMksJJABmklBuVIkkAN65tKBuKRQNM8/Uqbe5FA8Ct2YrYVkUD1awdZabCQQDwGml/FS5BA8hPwGLbPj0CxqFKwdAmPQLQCaDXlRI5AmaN/EiWCjUCFIDdoUMGMQKV9RgqCAoxAJDQLfdNFi0APhs7zXIuKQPVTw08104lAcD63H3IdiUAbenKgJ2qIQLNfwb1ouYdAk2siFEcLh0CyDxPz0l+GQNxy9V8bt4VAEPWIGS4RhUByFu+bF26EQFcpNiXjzYNAEgtjupowg0Bs+PIsR5aCQP1yziDw/oFApBOmEpxqgUA0FLJeUNmAQMxNzUcRS4BAasnI/cN/f0Cas2NViW9+QOuBf990ZX1At85P8YZhfEBEjBb9vWN7QJ1pc6MWbHpAV9QFxYt6eUDx9VOUFo94QMRU6aeuqXdAHxKgDErKdkD5GAhY3fB1QGHw37pbHXVAi0yTE7dPdEC55bMA4IdzQFGOYfPFxXJAOPiWQVcJckC4YB/RgPhwQA/v+BjNqXFAEtew+W5gckBI3hcSdxxzQBbLlPb03XNAxXHsH/ekdEAiDvDZinF1QJvZGzK8Q3ZA/j0w5pUbd0Ctb9BSIfl3QB2hMWJm3HhAqGHmemvFeUAxFdJuNbR6QHHFUGrHqHtAl9uf4yKjfEALlZSKR6N9QAFErTgzqX5Ax5+K4eG0f0D4Se/BJmOAQBYPbw237oBAuvAhyBx9gUBNkHjXUQ6CQCRqHQtPooJABUL4Fgw5g0C7OpWNf9KDQAlQ9tqeboRAitPVP14NhUCebmDNsK6FQLgHbWGIUoZAkr44o9X4hkBnAa0AiKGHQOiFNayNTIhAa7Irm9P5iEDvvtyERamJQL+KL+LNWopA1NHu7VUOi0D8FbylxcOLQMYxr8sDe4xAACim6PUzjUCAWUhPgO6NQG3cvx+Gqo5AwTwrTOlnj0B1uuRORROQQJu4cN0kc5BAYveyloLTkEAgASs1TTSRQDMF7exylZFATyMOcOH2kUAu3m3zhViSQDPD2zNNupJAVguYeyMck0AGsS2o9H2TQGEspDCs35NAU74GLDVBlED36D5YeqKUQINrPyFmA5VAkM98qOJjlUCBTrDM2cOVQKqQ4TE1I5ZAcIOzSd6BlkDAQfBbvt+WQFrKT4++PJdAFwJ18seYl0CYRRyFw/OXQDSWdkGaTZhAejmsJTWmmEDwcYE9ff2YQB3KF6xbU5lABULGtbmnmUAXigLKgPqZQHBVVY2aS5pAwbFT4/CamkC1Opf4beiaQPfsrkz8M5tAU04CvIZ9m0BGmKCJ+MSbQLqO9Wg9CpxA6a1dh0FNnEAaYpOV8Y2cQI4H79A6zJxA44JzDAsInUD9WKG5UEGdQMdJCvH6d51AeZKfevmrnUCIIrXVPN2dQO45tEC2C55AVRh4wFc3nkAcmU8nFGCeQATTnhvfhZ5ArA8cHq2onkBssqOPc8ieQKHrnrYo5Z5A2GD5w8P+nkACP6LXPBWfQNp9lQSNKJ9A825qVK44n0DfCWXKm0WfQBXAB2ZRT59A5v0jJcxVn0D+2mcFClmfQP7aZwUKWZ9A5v0jJcxVn0AVwAdmUU+fQN8JZcqbRZ9A825qVK44n0DafZUEjSifQAI/otc8FZ9A2GD5w8P+nkCh6562KOWeQGyyo49zyJ5ArA8cHq2onkAE054b34WeQByZTycUYJ5AVRh4wFc3nkDuObRAtgueQIMitdU83Z1AeZKfevmrnUDHSQrx+nedQP1YoblQQZ1A44JzDAsInUCOB+/QOsycQBpik5XxjZxA6a1dh0FNnEC6jvVoPQqcQEaYoIn4xJtAUE4CvIZ9m0D37K5M/DObQLU6l/ht6JpAwbFT4/CamkBwVVWNmkuaQBOKAsqA+plABULGtbmnmUAdyhesW1OZQPBxgT19/ZhAejmsJTWmmEAylnZBmk2YQJtFHIXD85dAFwJ18seYl0Bayk+PvjyXQMBB8Fu+35ZAcIOzSd6BlkCqkOExNSOWQIFOsMzZw5VAkM98qOJjlUCDaz8hZgOVQPToPlh6opRAU74GLDVBlEBhLKQwrN+TQAaxLaj0fZNAVguYeyMck0Avw9szTbqSQCzebfOFWJJATyMOcOH2kUAzBe3scpWRQCABKzVNNJFAYPeyloLTkECbuHDdJHOQQHW65E5FE5BAwTwrTOlnj0Bt3L8fhqqOQHtZSE+A7o1A/Cem6PUzjUDGMa/LA3uMQPwVvKXFw4tA1NHu7VUOi0C/ii/izVqKQOy+3IRFqYlAa7Irm9P5iEDohTWsjUyIQGcBrQCIoYdAkr44o9X4hkCyB21hiFKGQJ5uYM2wroVAitPVP14NhUAJUPbanm6EQLs6lY1/0oNAAUL4Fgw5g0Akah0LT6KCQE2QeNdRDoJAuvAhyBx9gUAWD28Nt+6AQPdJ78EmY4BAx5+K4eG0f0ABRK04M6l+QAuVlIpHo31Al9uf4yKjfEBxxVBqx6h7QDEV0m41tHpAqGHmemvFeUAdoTFiZtx4QK1v0FIh+XdA+D0w5pUbd0Cb2RsyvEN2QCIO8NmKcXVAxXHsH/ekdEAWy5T29N1zQEjeFxJ3HHNAD9ew+W5gckAP7/gYzalxQLhgH9GA+HBAkBXvaCXob0DuuWIyvppwQIIe62xtRnFA3bbTAzD3cUAh3G2cFK1yQP2KadEoaHNAXYONInkodEChlmDkEO50QCrlzS/6uHVAPDDO0T2JdkCqxiA74153QHPsHnDwOXhAwvO0+GkaeUCmjIzQUgB6QFkYdFes63pAmw8PQnbce0DlwtuKrtJ8QL3tmmNRzn1A3r0lJ1nPfkCQDb9LvtV/QHtT9qq7cIBA97fyZTz5gEDrr9CUWoSBQB4LzGoOEoJAHmodC0+igkDkPBuEEjWDQAj+xMpNyoNA/ci+tvRhhEC7R8P++fuEQE/MkTVPmIVAKjxex+Q2hkA9P8j3qdeGQNPpXuCMeodAFdi1b3ofiEBaaxBpXsaIQL+Mp2Qjb4lAogaO0LIZikAxLjfy9MWKQBU5o+jQc4tAbzg0rywjjEAiSi4h7dOMQKsl5f31hY1ATLeY7Sk5jkD7BwKHau2OQEo2kVWYoo9AIGQucEkskECUDuFYnIeQQBUi268z45BAXftiyv0+kUBLd+GM6JqRQEsjDnDh9pFAtIVvhtVSkkCyyy2Csa6SQMzkNbthCpNAjs+qNdJlk0AFlqKo7sCTQD01LIWiG5RAH2ib/dh1lECpDBcNfc+UQKSaZn95KJVAxOT6+LiAlUBEIS7/JdiVQDj9tgCrLpZAukZKXjKElkDWhWZzptiWQLSqRJ/xK5dApcnoTf59l0Ams00Bt86XQAEPploGHphAU3+tI9drmECmMARYFLiYQIcijy6pAplAT13XIoFLmUCgOGL+h5KZQLjI/OGp15lAHIH0TtMamkBDFzcw8VuaQLuxU+PwmppAAXdXQcDXmkB5mn+nTRKbQKEWu/+HSptAU1n2yF6Am0ANQSsfwrObQP3pL8Oi5JtAYO0+IvISnEAJ3zNdoj6cQGQCd0+mZ5xAEmKTlfGNnEAMrHKTeLGcQFluOnow0pxAXI/GTQ/wnEBzHr3pCwudQCTgNwYeI51AdkEAPD44nUAGq1oIZkqdQMt6XtCPWZ1ALD3Y47ZlnUD3EbR/126dQAB/7s/udJ1AwkkK8fp3nUDCSQrx+nedQAB/7s/udJ1A9xG0f9dunUAsPdjjtmWdQMt6XtCPWZ1ABqtaCGZKnUB2QQA8PjidQCTgNwYeI51Acx696QsLnUBcj8ZND/CcQFluOnow0pxADKxyk3ixnEASYpOV8Y2cQGQCd0+mZ5xACd8zXaI+nEBd7T4i8hKcQP3pL8Oi5JtADUErH8Kzm0BTWfbIXoCbQKEWu/+HSptAeZp/p00Sm0ABd1dBwNeaQLuxU+PwmppAQxc3MPFbmkAcgfRO0xqaQLbI/OGp15lAoDhi/oeSmUBPXdcigUuZQIcijy6pAplApjAEWBS4mEBTf60j12uYQAEPploGHphAJrNNAbfOl0ClyehN/n2XQLSqRJ/xK5dA1IVmc6bYlkC7RkpeMoSWQDj9tgCrLpZARCEu/yXYlUDE5Pr4uICVQKSaZn95KJVAqQwXDX3PlEAfaJv92HWUQD01LIWiG5RAA5aiqO7Ak0CNz6o10mWTQMzkNbthCpNAssstgrGukkC0hW+G1VKSQEsjDnDh9pFAS3fhjOiakUBc+2LK/T6RQBUi268z45BAlA7hWJyHkEAgZC5wSSyQQEo2kVWYoo9A9QcCh2rtjkBMt5jtKTmOQKsl5f31hY1AIkouIe3TjEBqODSvLCOMQBU5o+jQc4tAMS438vTFikCiBo7QshmKQL+Mp2Qjb4lAWmsQaV7GiEAV2LVveh+IQNPpXuCMeodAPT/I96nXhkAqPF7H5DaGQE/MkTVPmIVAu0fD/vn7hED9yL629GGEQAj+xMpNyoNA5DwbhBI1g0Aeah0LT6KCQB4LzGoOEoJA66/QlFqEgUD3t/JlPPmAQHtT9qq7cIBAkA2/S77Vf0DbvSUnWc9+QMbtmmNRzn1A5cLbiq7SfECbDw9Cdtx7QFkYdFes63pAo4yM0FIAekDK87T4aRp5QHPsHnDwOXhAqsYgO+Ned0A8MM7RPYl2QCrlzS/6uHVAp5Zg5BDudEBdg40ieSh0QP2KadEoaHNAIdxtnBStckDZttMDMPdxQH0e62xtRnFA7rliMr6acECQFe9oJehvQPMJEheI921ALuZdzJowb0BWFrFwjDlwQGcIpNeP33BAJchkXGWKcUB98eTFGTpyQAlEYNG47nJA+T4EI02oc0AS+5I24GZ0QA3KClB6KnVAyX1cbCLzdUBQjjoy3sB2QJOmC+Oxk3dA12kLTKBreEAgh6S3qkh5QDtuD9/QKnpAOi5B3BASe0BxNDYcZ/57QCnIpFHO73xA8TsjaD/mfUCi4s13seF+QCrfeLkZ4n9AE/S8vbVzgEAyB4sLzPiAQMDAT3NHgIFAmZcnnh4KgkBo+PIsR5aCQKhikLS1JINAIKuFul21g0Ca3R2yMUiEQM0LAfoi3YRAviZL2iF0hUBMyCaDHQ2GQMOW8AsEqIZAZqnncsJEh0A6DW+dROOHQGU85Fh1g4hAPQcOXD4liUDbFidJiMiJQCXUhrA6bYpAQRzrEzwTi0BmxmTqcbqLQFmT6KTAYoxAjrGFswsMjUB/jkKLNbaNQGQ4oKwfYY5APhvEqqoMj0D+aEcztriPQNp/VYuQMpBAcRC3qOSIkEDY5uIKRt+QQIUM+eqiNZFACiCXJ+mLkUAM65tKBuKRQF5oNI/nN5JA6t8v6HmNkkCcfpgGquKSQAGSjWBkN5NAglFcOJWLk0CN49OjKN+TQEUS0ZMKMpRAXev92yaElEAfUME6adWUQEBHWmG9JZVAv7Ai/A51lUDKzfS6ScOVQMHjrllZEJZA8BjQqClclkDAhSmWpqaWQCxUnjW875ZAGqrtyVY3l0CZAoHNYn2XQCeFOfvMwZdAitk2V4IEmEB86pE3cEWYQCMCBk2EhJhA0aeCq6zBmEAPqKDS1/yYQG+29LX0NZlACiM6xfJsmUCDLVD0waGZQDSTBMNS1JlAjQ+mRJYEmkCpolknfjKaQHWULbv8XZpAFFHl+ASHmkAUZnmIiq2aQNoWR8eB0ZpA7THrzd/ymkCrB8R1mhGbQMmdFl6oLZtA9HjT8ABHm0D4l/dmnF2bQPh/hsxzcZtAOoEaBIGCm0ArpgjKvpCbQEYKFrconJtAGKa8Qrukm0D/7P3Ec6qbQA7swXdQrZtADuzBd1Ctm0D/7P3Ec6qbQBimvEK7pJtARgoWtyicm0ArpgjKvpCbQDqBGgSBgptA+H+GzHNxm0D4l/dmnF2bQPR40/AAR5tAyZ0WXqgtm0CrB8R1mhGbQO0x683f8ppA2hZHx4HRmkAUZnmIiq2aQBRR5fgEh5pAcpQtu/xdmkCpolknfjKaQI0PpkSWBJpANJMEw1LUmUCDLVD0waGZQAojOsXybJlAb7b0tfQ1mUAPqKDS1/yYQNGngquswZhAIwIGTYSEmEB56pE3cEWYQIrZNleCBJhAJ4U5+8zBl0CZAoHNYn2XQBqq7clWN5dALFSeNbzvlkDAhSmWpqaWQPAY0KgpXJZAweOuWVkQlkDKzfS6ScOVQLuwIvwOdZVAQ0daYb0llUAfUME6adWUQF3r/dsmhJRARRLRkwoylECN49OjKN+TQIJRXDiVi5NAAZKNYGQ3k0CcfpgGquKSQObfL+h5jZJAW2g0j+c3kkAM65tKBuKRQAoglyfpi5FAhQz56qI1kUDY5uIKRt+QQHEQt6jkiJBA2X9Vi5AykED+aEcztriPQD4bxKqqDI9AZDigrB9hjkB/jkKLNbaNQImxhbMLDI1AWZPopMBijEBmxmTqcbqLQEEc6xM8E4tAIdSGsDptikDbFidJiMiJQD0HDlw+JYlAZTzkWHWDiEA6DW+dROOHQGap53LCRIdAw5bwCwSohkBMyCaDHQ2GQL4mS9ohdIVAzQsB+iLdhECa3R2yMUiEQCCrhbpdtYNAqGKQtLUkg0Bo+PIsR5aCQJmXJ54eCoJAwMBPc0eAgUAyB4sLzPiAQBP0vL21c4BAKt94uRnif0Ci4s13seF+QPE7I2g/5n1AJMikUc7vfEB5NDYcZ/57QDouQdwQEntAO24P39AqekAgh6S3qkh5QNNpC0yga3hAmKYL47GTd0BQjjoy3sB2QMl9XGwi83VADcoKUHoqdUAS+5I24GZ0QP4+BCNNqHNACURg0bjuckB98eTFGTpyQCXIZFxlinFAYwik14/fcEBWFrFwjDlwQC7mXcyaMG9A8wkSF4j3bUDVbYRRkB5sQJ91cMtVRG1AXvRe+vFybkAl6ERogKpvQJZ71HKNdXBAn9+NtmwacUC1x0ID6cNxQKIBLVUMcnJAY1hhkt8kc0AVZWl8atxzQGMg66GzmHRAU8pnUMBZdUD3CRyGlB92QGNsC+Qy6nZAHalBoJy5d0D6TFR40Y14QEWdL6TPZnlASLE5yZNEekA/49btGCd7QLjUWm1YDnxAElZx7En6fECAiQpO4+p9QIib1agY4H5A72FVPdzZf0BwD002D2yAQArF1ddm7YBANQ3XR+twgUCOLGfPkfaBQLtl/rhOfoJA11zCTRUIg0C940PT15ODQJ37s4mHIYRAg6SUqhSxhEC/2ulnbkKFQOXj7uuC1YVAi8lTWT9qhkCrlwbMjwCHQNCmi1pfmIdA4OfnF5gxiEBq0B8WI8yIQI0qTWnoZ4lAVKxNK88EikDx1QuAvaKKQDAvY5qYQYtAZpGgwUThi0DgvJ5XpYGMQAwIf9+cIo1A9YL9BA3EjUCydF+k1mWOQB+g+tLZB49ACEZT6PWpj0AgMOfDBCaQQBaMelX5dpBAIgAjVsfHkED7D0gpXRiRQHqzae6oaJFAf9NQh5i4kUB/Xn2eGQiSQG0Pz60ZV5JAo8llBYalkkB+NbbSS/OSQKkUzydYQJNAAJLLApiMk0CfoG5V+NeTQGJP4wxmIpRA0sqdGc5rlEDbnlh3HbSUQECkKTVB+5RAjeOpfSZBlUCwmCufuoWVQOdm+RPryJVAobWZiqUKlkBGGxHu10qWQGSrHm5wiZZAJvJsh13GlkAdYLILjgGXQDrmuynxOpdAJYNcdXZyl0BRiTzvDaiXQNRugwyo25dAAAdXvjUNmECXGCt5qDyYQL5a3DvyaZhAg/6RlgWVmEDnCmGx1b2YQOb0rFJW5JhAFAZB5XsImUBJTx5+OyqZQOwV+uGKSZlAId1oimBmmUD3Y7Kqs4CZQEsrSzR8mJlAjlTw2rKtmUAP6mIYUcCZQIjlvy9R0JlAkI5yMK7dmUCgEr/4Y+iZQEKC4zdv8JlAVKrNb831mUAfjWT2fPiZQB+NZPZ8+JlAVKrNb831mUBCguM3b/CZQKASv/hj6JlAkI5yMK7dmUCI5b8vUdCZQA/qYhhRwJlAjlTw2rKtmUBLK0s0fJiZQPdjsqqzgJlAId1oimBmmUDsFfrhikmZQElPHn47KplAFAZB5XsImUDm9KxSVuSYQOQKYbHVvZhAg/6RlgWVmEC+Wtw78mmYQJcYK3moPJhAAAdXvjUNmEDUboMMqNuXQFGJPO8NqJdAJYNcdXZyl0A65rsp8TqXQB1gsguOAZdAI/Jsh13GlkBkqx5ucImWQEYbEe7XSpZAobWZiqUKlkDnZvkT68iVQLCYK5+6hZVAjeOpfSZBlUBApCk1QfuUQNueWHcdtJRA0sqdGc5rlEBgT+MMZiKUQKCgblX415NAAJLLApiMk0CpFM8nWECTQH41ttJL85JAo8llBYalkkBtD8+tGVeSQH9efZ4ZCJJAf9NQh5i4kUB3s2nuqGiRQPkPSCldGJFAIgAjVsfHkEAWjHpV+XaQQCAw58MEJpBACEZT6PWpj0AfoPrS2QePQK90X6TWZY5A9YL9BA3EjUAMCH/fnCKNQOC8nlelgYxAZpGgwUThi0AtL2OamEGLQPHVC4C9oopAVKxNK88EikCNKk1p6GeJQGfQHxYjzIhA4OfnF5gxiEDQpotaX5iHQKuXBsyPAIdAi8lTWT9qhkDl4+7rgtWFQL/a6WduQoVAg6SUqhSxhECd+7OJhyGEQL3jQ9PXk4NA11zCTRUIg0C7Zf64Tn6CQI4sZ8+R9oFANQ3XR+twgUAKxdXXZu2AQHAPTTYPbIBA72FVPdzZf0CIm9WoGOB+QICJCk7j6n1AElZx7En6fEC41FptWA58QDvj1u0YJ3tAT7E5yZNEekBFnS+kz2Z5QPpMVHjRjXhAHalBoJy5d0BgbAvkMup2QPwJHIaUH3ZAU8pnUMBZdUBjIOuhs5h0QBVlaXxq3HNAY1hhkt8kc0ClAS1VDHJyQLXHQgPpw3FAn9+NtmwacUCWe9RyjXVwQB3oRGiAqm9AVPRe+vFybkCfdXDLVURtQNVthFGQHmxAscfKIp5cakCHlF7lBnBrQP1kw+64i2xAJe5FEM6vbUB2Alx9XtxuQMaycljACHBA6FkiqaSncECj5i+N5UpxQPHwS1yL8nFAY/HkW52eckAdXrSxIU9zQMmoYVYdBHRAAGFECJS9dECl/04+iHt1QM0bLBv7PXZAHf+XYOwEd0AovwBjWtB3QI4pd/1BoHhA3fH6hZ50eUC8qSzCaU16QJ0dcNybKntAK7mJWSsMfEDNl8EODfJ8QLLclhg03H1A7NwN0pHKfkDIiqPMFb1/QLU2eOTWWYBAe6AC2CLXgEDxkcXGY1aBQIB5WMWN14FAHJX39JNagkAwpNWBaN+CQLWq4aH8ZYNAAd8ElEDug0ARotyfI3iEQHci9BWUA4VAsgaBUH+QhUAsMqa00R6GQLZrP7R2roZAOFo40Fg/h0Co9nCbYdGHQLQ4Mb55ZIhAomUt+oj4iEB5CBwvdo2JQGg13l8nI4pA51M6uIG5ikC9QCmTaVCLQAAttYHC54tAzjBpUm9/jEBJGVAZUheNQGSHgDhMr41AUQQ0aT5HjkANPWbFCN+OQBsl+dGKdo9AzyatxNEGkEDjplKzGFKQQH1UnzgJnZBAgBhxJJLnkEBmuw8ZojGRQCQ5n5Ene5FArBHD6BDEkUCZRW9fTAySQKJ+4yPIU5JAP7bMWHKakkBwgYkcOeCSQO//jJAKJZNAOUfc4NRok0CG/qFLhquTQOXA0ygN7ZNA7b3k8VctlECy94BJVWyUQEFnTAP0qZRA8T2hKyPmlEAJbEgP0iCVQNKJJ0PwWZVA/znfq22RlUBHGVWFOseVQFVQJGpH+5VA6eLvWoUtlkAz4JHF5V2WQG2mIoxajJZAN33TC9a4lkB54JcjS+OWQBLvmDqtC5dA5Y5uRvAxl0Bt+RnRCFaXQNeJvf7rd5dAqc4Nk4+Xl0BxDnj26bSXQLGe+jryz5dAj6CrIKDol0Du7OoZ7P6XQOszPE/PEphAcY/GokMkmEA/CHezQzOYQIPNw9/KP5hAhCIOSNVJmEBXS6HQX1GYQPcHTSNoVphAXnWasOxYmEBedZqw7FiYQPcHTSNoVphAV0uh0F9RmECEIg5I1UmYQIPNw9/KP5hAPwh3s0MzmEBxj8aiQySYQOszPE/PEphA7uzqGez+l0CPoKsgoOiXQLGe+jryz5dAcQ549um0l0Cpzg2Tj5eXQNeJvf7rd5dAbfkZ0QhWl0Dijm5G8DGXQBLvmDqtC5dAeeCXI0vjlkA3fdML1riWQG2mIoxajJZAM+CRxeVdlkDp4u9ahS2WQFVQJGpH+5VARxlVhTrHlUD/Od+rbZGVQNCJJ0PwWZVACWxID9IglUDxPaErI+aUQEFnTAP0qZRAsveASVVslEDqveTxVy2UQOXA0ygN7ZNAhv6hS4ark0A5R9zg1GiTQO//jJAKJZNAbYGJHDngkkBAtsxYcpqSQKJ+4yPIU5JAmUVvX0wMkkCsEcPoEMSRQCQ5n5Ene5FAZrsPGaIxkUCAGHEkkueQQH1UnzgJnZBA46ZSsxhSkEDOJq3E0QaQQBsl+dGKdo9ADT1mxQjfjkBRBDRpPkeOQGSHgDhMr41ARxlQGVIXjUDLMGlSb3+MQAAttYHC54tAvUApk2lQi0DnUzq4gbmKQGY13l8nI4pAeQgcL3aNiUCiZS36iPiIQLQ4Mb55ZIhAqPZwm2HRh0A1WjjQWD+HQLRrP7R2roZALDKmtNEehkCyBoFQf5CFQHci9BWUA4VAEaLcnyN4hEAA3wSUQO6DQLWq4aH8ZYNAMKTVgWjfgkAclff0k1qCQIB5WMWN14FA7JHFxmNWgUB7oALYIteAQLU2eOTWWYBAyIqjzBW9f0Ds3A3Skcp+QKnclhg03H1AzZfBDg3yfEAruYlZKwx8QJ0dcNybKntAvKkswmlNekDa8fqFnnR5QI4pd/1BoHhAKL8AY1rQd0Ad/5dg7AR3QM0bLBv7PXZApf9OPoh7dUAAYUQIlL10QMmoYVYdBHRAHV60sSFPc0Bj8eRbnZ5yQO3wS1yL8nFAo+YvjeVKcUDoWSKppKdwQMaycljACHBAdgJcfV7cbkAl7kUQzq9tQP1kw+64i2xAh5Re5QZwa0Cxx8oinlxqQAIna/MLsWhAmFCywAGzaUBCuxBvurxqQMWSFC1OzmtAvlStpdPnbECDdR7nXwluQGSfzEkGM29AugF6K2wycEBCaavXcs9wQMjJ+fidcHFAPNBpUfMVckByTwGJd79yQO0nYCEubXNAS0V/aRkfdEBC055xOtV0QED/bP+Qj3VA9sZughtOdkDferQI1xB3QHe64zO/13dAkcegLs6ieEB4H2Gi/HF5QEtQsa1BRXpALwL42pIce0AnJMAX5Pd7QMcblKwn13xAxL1zNU66fUCMs+6aRqF+QF3G7Av+i39ArakW/C89gEB7d8MFK7aAQIz69xTkMIFA8jksNk6tgUCKwS6PWyuCQIzbbl79qoJArPi6+iMsg0A9rHbTvq6DQG1iS3G8MoRAPbJWdwq4hEC35NiklT6FQHL+ZddJxoVA/EebDRJPhkDg/Vpq2NiGQCR5jziGY4dARMZ27wPvh0DoQnc3OXuIQJ15fe8MCIlA6Q/jMmWViUBwNd5fJyOKQCqceB44sYpAUZgMaHs/i0B6nUaP1M2LQBzjqEgmXIxAVJCOs1LqjECvYqtjO3iNQExaBGvBBY5AY4pdZMWSjkBYxRh+Jx+PQPNzgIXHqo9A4sA8ecIakEBNc8t5n1+QQPd5RD3qo5BAhxhxJJLnkECDm5V+hiqRQBhUH5C2bJFACwdzmRGukUA7Dtjdhu6RQGBIfKoFLpJA0tGMXX1skkApY19t3amSQJ0XqG8V5pJACUW3IBUhk0AC+7pqzFqTQFut/2wrk5NAzoArgyLKk0BCpm9Mov+TQD8rq7KbM5RAOqN68f9llECgDjCdwJaUQOZprqnPxZRAcFckcR/zlEBHZKG6oh6VQPh3gcBMSJVAqxSqNhFwlUC0JJVQ5JWVQPAuJce6uZVAyOo+3onblUBeUCRqR/uVQIdnjdTpGJZA9UJ7IWg0lkChwcHzuU2WQJPhRJHXZJZAk6Hm5rl5lkB1piKMWoyWQAMQVcaznJZAtSWqi8CqlkCqv7SFfLaWQLWPqRPkv5ZAMa89TPTGlkBZGCf/qsuWQJf1PbYGzpZAl/U9tgbOlkBZGCf/qsuWQDGvPUz0xpZAtY+pE+S/lkCqv7SFfLaWQLUlqovAqpZAAxBVxrOclkB1piKMWoyWQJOh5ua5eZZAk+FEkddklkChwcHzuU2WQPVCeyFoNJZAh2eN1OkYlkBeUCRqR/uVQMjqPt6J25VA7S4lx7q5lUC0JJVQ5JWVQKsUqjYRcJVA+HeBwExIlUBHZKG6oh6VQHBXJHEf85RA5mmuqc/FlECgDjCdwJaUQDqjevH/ZZRAPyurspszlEBApm9Mov+TQM6AK4MiypNAW63/bCuTk0AC+7pqzFqTQAlFtyAVIZNAnReobxXmkkApY19t3amSQNLRjF19bJJAYEh8qgUukkA7Dtjdhu6RQAkHc5kRrpFAGlQfkLZskUCDm5V+hiqRQIcYcSSS55BA93lEPeqjkEBNc8t5n1+QQOLAPHnCGpBA83OAhceqj0BYxRh+Jx+PQF+KXWTFko5ASVoEa8EFjkCvYqtjO3iNQFSQjrNS6oxAHOOoSCZcjEB6nUaP1M2LQFGYDGh7P4tAJ5x4HjixikBwNd5fJyOKQOkP4zJllYlAnXl97wwIiUDoQnc3OXuIQEHGdu8D74dAJHmPOIZjh0Dg/Vpq2NiGQPxHmw0ST4ZAb/5l10nGhUC35NiklT6FQD2yVncKuIRAbWJLcbwyhEA9rHbTvq6DQKz4uvojLINAjNtuXv2qgkCKwS6PWyuCQPI5LDZOrYFAjPr3FOQwgUB7d8MFK7aAQK2pFvwvPYBAXcbsC/6Lf0CMs+6aRqF+QMS9czVOun1AxxuUrCfXfEAnJMAX5Pd7QC8C+NqSHHtAS1CxrUFFekB4H2Gi/HF5QJHHoC7OonhAdLrjM7/Xd0DkerQI1xB3QPbGboIbTnZAQP9s/5CPdUBC055xOtV0QEhFf2kZH3RA8SdgIS5tc0ByTwGJd79yQDzQaVHzFXJAyMn5+J1wcUBCaavXcs9wQL8BeitsMnBAZJ/MSQYzb0CDdR7nXwluQL5UraXT52xAvpIULU7Oa0BCuxBvurxqQJhQssABs2lAAidr8wuxaEA/hDV5LxtnQPSNKiCVDGhABuxtFT4FaUBXOhL6QAVqQPzLbgSzDGtAfRmu6KcbbEAXMTnBMTJtQG6wDfdgUG5AQ2gMKkR2b0DeracM9FFwQKAsy8Wr7HBA5vbsm02LcUAPeArX3C1yQGOpKqBb1HJA4qoS9sp+c0DSRi+iKi10QNdEvC1533RAiJQy17OVdUCqdAaI1k92QKPSvsrbDXdAGS1vwbzPd0CyTJ0ccZV4QOAmnBLvXnlArzZlVyssekAfifkUGf16QAeiU+Sp0XtAUj/zxs2pfEAu1wshc4V9QPV8XrSGZH5A9Z3Hm/NGf0BtYsSjURaAQPIiK72+ioBAMjGYI7QAgUDLiQcIJHiBQJOjs8L/8IFAavRH0zdrgkDNTobhu+aCQHXKYb56Y4NA6qaRZWLhg0AXT57/X2CEQPtZauRf4IRA0RU5nk1hhUDN2DPtE+OFQP/9bsucZYZAdRxvcdHohkB/rC5bmmyHQFPyo03f8IdA7aXGXId1iEApcBTyePqIQInyktOZf4lAUaxNK88EikDoq02P/YmKQOqWCAoJD4tAki9EI9WTi0DWGWvpRBiMQJ4/T/s6nIxAhdFVkpkfjUCEgAiNQqKNQKkuB3oXJI5ALvhUo/mkjkBGHPsZyiSPQEn2+8Fpo49ADPJHr1wQkEBq01LPTE6QQLG/z5R1i5BAIAAjVsfHkEBjpvRyMgORQGyf1FqnPZFAllrukxZ3kUCbDMjBcK+RQIJ/Caym5pFArU1GRakckkDfVcexaVGSQK4pT07ZhJJA/i3Vtum2kkC5HzPNjOeSQB+swL+0FpNAb83YD1REk0BtoUSYXXCTQIl3h5PEmpNAVeAHonzDk0DxlxHQeeqTQL43rJuwD5RAv7JC+hUzlEBMuhden1SUQARGg7tCdJRAf5v1jfaRlEDfVbzcsa2UQEcVhj9sx5RARaih4h3flEDXrvWKv/SUQEzmrZlKCJVARICbD7kZlUCoG0aQBSmVQNotq2QrNpVAiuOpfSZBlUBjuxl280mVQM1ZipSPUJVAjVKrzPhUlUCo5FrALVeVQKjkWsAtV5VAjVKrzPhUlUDNWYqUj1CVQGO7GXbzSZVAiuOpfSZBlUDaLatkKzaVQKgbRpAFKZVARICbD7kZlUBM5q2ZSgiVQNeu9Yq/9JRARaih4h3flEBHFYY/bMeUQN9VvNyxrZRAf5v1jfaRlEAERoO7QnSUQEq6F16fVJRAv7JC+hUzlEC+N6ybsA+UQPGXEdB56pNAVeAHonzDk0CJd4eTxJqTQG2hRJhdcJNAb83YD1REk0AfrMC/tBaTQLkfM82M55JA/S3Vtum2kkCuKU9O2YSSQN9Vx7FpUZJArU1GRakckkCCfwmspuaRQJoMyMFwr5FAllrukxZ3kUBsn9Rapz2RQGOm9HIyA5FAIAAjVsfHkECvv8+UdYuQQG7TUs9MTpBADPJHr1wQkEBJ9vvBaaOPQEYc+xnKJI9ALvhUo/mkjkCpLgd6FySOQISACI1Coo1AhdFVkpkfjUCeP0/7OpyMQNIZa+lEGIxAki9EI9WTi0DqlggKCQ+LQOirTY/9iYpAUaxNK88EikCG8pLTmX+JQCZwFPJ4+ohA7aXGXId1iEBT8qNN3/CHQH+sLluabIdAchxvcdHohkD//W7LnGWGQM3YM+0T44VA0RU5nk1hhUD7WWrkX+CEQBRPnv9fYIRA56aRZWLhg0B1ymG+emODQM1OhuG75oJAavRH0zdrgkCTo7PC//CBQMiJBwgkeIFAMjGYI7QAgUDyIiu9voqAQG1ixKNRFoBA9Z3Hm/NGf0DufF60hmR+QC7XCyFzhX1AUj/zxs2pfEAHolPkqdF7QB+J+RQZ/XpAqjZlVyssekDgJpwS7155QLJMnRxxlXhAGS1vwbzPd0Cj0r7K2w13QKd0BojWT3ZAiJQy17OVdUDXRLwted90QNJGL6IqLXRA4qoS9sp+c0BjqSqgW9RyQA94CtfcLXJA5vbsm02LcUCgLMvFq+xwQN6tpwz0UXBAO2gMKkR2b0BusA33YFBuQBcxOcExMm1AfRmu6KcbbED8y24EswxrQFc6EvpABWpABuxtFT4FaUD0jSoglQxoQD+ENXkvG2dANnrInFqaZUAGmZ3RC3xmQKEzMF6HZGdAP9CvauJTaED87inMMEppQMvrnu6ER2pA5Cj2vu9La0BYKN6UgFdsQPPJpRxFam1AymkcQUmEbkBCIIcVl6VvQN3u3F8bZ3BARsgxMRf/cEDBd84DwZpxQH3x5MUZOnJA//BuRCHdckBN8Qkh1oNzQAJhFcg1LnRAyp4bZzzcdEAHYI7j5I11QBUy39EoQ3ZAoc38bAD8dkCP9D2OYrh3QO6LwqVEeHhAKZVTs5o7eUBuk8o/VwJ6QMXMCFdrzHpA96+GgsaZe0A5eoPEVmp8QMkB3ZMIPn1AM0uX2MYUfkAZSRvpeu5+QP/VM4gMy39Aq9Dn8TBVgEBTNEfKL8aAQDS3D090OIFAalg7OO+rgUDL9e50kCCCQGj48ixHloJAJjCewgENg0BCmzTVrYSDQJKNu0M4/YNA9F1EMI12hEB9ca4DmPCEQDop4XFDa4VAR+N9fnnmhUCk6AmCI2KGQBPJjy8q3oZAoku3mnVah0D7vlI+7daHQEYYYAN4U4hAdPF7SPzPiEAQG8TpX0yJQN8WJ0mIyIlAXXQdV1pEikB3qsmbur+KQM2uekCNOotALzCNGba0i0BjAaewGC6MQADrR0+YpoxAxcaqCRgejUDddfHJepSNQCD1lVujCY5Ax4cad3R9jkBhqvLN0O+OQMU8nhabYI9A7BPwGLbPj0BUdTxdgh6QQNe5hwU1VJBAcRC3qOSIkEBthO8Lg7yQQGUYdxwC75BAPjEN9lMgkUANTz7palCRQBITr4E5f5FAjYxajLKskUC/w78dydiRQHZ7+pdwA5JASybDsJwskkAYFFJ3QVSSQL/nIVpTepJAonONLMeekkBoLUUsksGSQJx+mAaq4pJAkVCP3QQCk0BITdBMmR+TQFluUG5eO5NAbJTI3ktVk0DSBu7BWW2TQGDiasaAg5NAHqmTKbqXk0DwUNe6/6mTQCFf595LupNApc+VkpnIk0AYu2Zt5NSTQI3j06Mo35NAbYdACWPnk0C7EpwRke2TQHeAstKw8ZNAcXkpBcHzk0BxeSkFwfOTQHeAstKw8ZNAuxKcEZHtk0Bth0AJY+eTQI3j06Mo35NAGLtmbeTUk0Clz5WSmciTQCFf595LupNA8FDXuv+pk0AeqZMpupeTQGDiasaAg5NA0gbuwVltk0BslMjeS1WTQFluUG5eO5NASE3QTJkfk0COUI/dBAKTQJx+mAaq4pJAaC1FLJLBkkCic40sx56SQL/nIVpTepJAGBRSd0FUkkBLJsOwnCySQHZ7+pdwA5JAv8O/HcnYkUCNjFqMsqyRQA4Tr4E5f5FADU8+6WpQkUA+MQ32UyCRQGUYdxwC75BAbYTvC4O8kEBxELeo5IiQQNe5hwU1VJBAVHU8XYIekEDsE/AYts+PQMU8nhabYI9AXaryzdDvjkDKhxp3dH2OQCD1lVujCY5A3XXxyXqUjUDFxqoJGB6NQADrR0+YpoxAYwGnsBgujEAvMI0ZtrSLQM2uekCNOotAc6rJm7q/ikBYdB1XWkSKQN8WJ0mIyIlAEBvE6V9MiUB08XtI/M+IQEYYYAN4U4hA+75SPu3Wh0CfS7eadVqHQBPJjy8q3oZApOgJgiNihkBH431+eeaFQDop4XFDa4VAenGuA5jwhED0XUQwjXaEQJKNu0M4/YNAQps01a2Eg0AjMJ7CAQ2DQGj48ixHloJAy/XudJAggkBqWDs476uBQDS3D090OIFAUzRHyi/GgECr0OfxMFWAQP/VM4gMy39AGUkb6XrufkAzS5fYxhR+QMkB3ZMIPn1AOXqDxFZqfED3r4aCxpl7QMXMCFdrzHpAbpPKP1cCekAplVOzmjt5QO6LwqVEeHhAj/Q9jmK4d0ChzfxsAPx2QBUy39EoQ3ZAB2CO4+SNdUDInhtnPNx0QAZhFcg1LnRATfEJIdaDc0D/8G5EId1yQH3x5MUZOnJAvHfOA8GacUBMyDExF/9wQN3u3F8bZ3BAQiCHFZelb0DKaRxBSYRuQPPJpRxFam1AXSjelIBXbEDkKPa+70trQMvrnu6ER2pA/O4pzDBKaUA40K9q4lNoQJszMF6HZGdABpmd0Qt8ZkA2esicWpplQJG5ulTcLWRA3D8Ukq0AZUCOuCyV1tllQKasOyFruWZAc5qwvH2fZ0BvqLmcH4xoQMTIq5Bgf2lAYx5Y7U55akD++Vp493lrQO5DcVNlgWxA4aLh56GPbUANIQfStKRuQPR+C82jwG9AuuJvT7lxcEDOAkGCkQZxQNLCT0/annFAIXJRb5I6ckDw+x56t9lyQNCxv91FfHNA4wDC1TgidECjL+piist0QJlIP0MzeHVAl1d+6ioodkDmF/x6Z9t2QDEl/b7dkXdAtauMIoFLeEDweNmtQwh5QO8pIQAWyHlAywkxS+eKekD9/4NPpVB7QH2zBFk8GXxAfcV6PJfkfEA2valVn7J9QHbrJ4Y8g35AYjTzNFVWf0A+pmQn5xWAQB9HpKPFgYBAGA9vDbfugECfzsKoq1yBQOYVLwGTy4FAsv4L7Fs7gkBZmR6L9KuCQCwQrE9KHYNAs0r8/UmPg0DHjEyx3wGEQNo+MuD2dIRAzbttYXrohECfrSxxVFyFQPgtu7Zu0IVAVYqiSrJEhkCDNDS9B7mGQJYRfx1XLYdAZwGtAIihh0DJIcaJgRWIQLH41nEqiYhArFp2EGn8iEDEjKdkI2+JQMHMFB4/4YlAPhiepqFSikCuuTcsMMOKQEvUE6vPMotAANwR+GShi0AMnW7L1A6MQMMxr8sDe4xAbQLBmNbljEDurEjXMU+NQP13GTz6to1Ae7/OlxQdjkDEloDiZYGOQNGxjEfT445Aen5sMUJEj0BRNpFVmKKPQOCUPsC7/o9AJGQucEkskEDeEJ1JAliQQFuAGhh8gpBAJDgjyqqrkEBg97KWgtOQQNJw3wL4+ZBAnyJY5/8ekUBmnsd1j0KRQJWhEj6cZJFAz25xMxyFkUDq7F+xBaSRQB4nYYBPwZFAp+OS2vDckUBNIw5w4faRQHR7EWsZD5JAI1/yc5ElkkA1kNK0QjqSQLEZF90mTZJAu12eJDhekkB17rJOcW2SQIkWuazNepJAESeVIEmGkkD/0cge4I+SQMQLRrCPl5JAOyT2c1WdkkCG/POfL6GSQB93eAIdo5JAH3d4Ah2jkkCG/POfL6GSQDsk9nNVnZJAxAtGsI+XkkD/0cge4I+SQBEnlSBJhpJAiRa5rM16kkB17rJOcW2SQLtdniQ4XpJAsRkX3SZNkkA1kNK0QjqSQCNf8nORJZJAdHsRaxkPkkBNIw5w4faRQKfjktrw3JFAHCdhgE/BkUDq7F+xBaSRQM9ucTMchZFAlaESPpxkkUBmnsd1j0KRQJ8iWOf/HpFA0nDfAvj5kEBg97KWgtOQQCQ4I8qqq5BAW4AaGHyCkEDcEJ1JAliQQCRkLnBJLJBA4JQ+wLv+j0BRNpFVmKKPQHp+bDFCRI9Az7GMR9PjjkDEloDiZYGOQHu/zpcUHY5A/XcZPPq2jUDurEjXMU+NQGgCwZjW5YxAxjGvywN7jEAMnW7L1A6MQADcEfhkoYtAS9QTq88yi0CuuTcsMMOKQD4YnqahUopAwcwUHj/hiUDEjKdkI2+JQKxadhBp/IhArvjWcSqJiEDJIcaJgRWIQGcBrQCIoYdAlhF/HVcth0CDNDS9B7mGQFKKokqyRIZA9S27tm7QhUCfrSxxVFyFQM27bWF66IRA2j4y4PZ0hEDEjEyx3wGEQLNK/P1Jj4NALBCsT0odg0BZmR6L9KuCQLL+C+xbO4JA4xUvAZPLgUCczsKoq1yBQBgPbw237oBAH0eko8WBgEA+pmQn5xWAQGI08zRVVn9Ac+snhjyDfkA2valVn7J9QH3FejyX5HxAfbMEWTwZfED9/4NPpVB7QMUJMUvninpA7ykhABbIeUDweNmtQwh5QLWrjCKBS3hAMSX9vt2Rd0DhF/x6Z9t2QJdXfuoqKHZAmUg/QzN4dUCjL+piist0QOMAwtU4InRAzbG/3UV8c0Dw+x56t9lyQCFyUW+SOnJA0sJPT9qecUDOAkGCkQZxQLrib0+5cXBA9H4LzaPAb0ANIQfStKRuQOGi4eehj21A7kNxU2WBbED2+Vp493lrQGMeWO1OeWpAxMirkGB/aUBvqLmcH4xoQHOasLx9n2dApqw7IWu5ZkCIuCyV1tllQNw/FJKtAGVAkbm6VNwtZEC9ket1AdViQKCtmua/mWNAQDRLt2lkZEB4UXhZETVlQE3X+hbIC2ZA5tTt/p3oZkB+qHbSoctnQCSTe/HgtGhA7FFUR2ekaUBEtoA3P5pqQKGpcYpxlmtAenNxWgWZbEDafbgAAKJtQJMxvAJlsW5AJ9nF/zXHb0C64m9PuXFwQLaZkz4MA3FAutVIjpGXcUBfYZrpRS9yQGylj90kynJA/Ypp0Shoc0AgQTf/Sgl0QFKAymyDrXRAf98S5chUdUB+wufxEP91QP1VSNZPrHZAcfMYiXhcd0D/JWWwfA94QHRhLZ1MxXhA1kzHR9d9eUCgS9dMCjl6QL2y6erR9npAsdGxABm3e0C/q/QLyXl8QOnpJCnKPn1A7jO1EwMGfkDevSUnWc9+QHpv0WCwmn9AQE4/sfUzgEA8aNu6dZuAQOZa9EfIA4FABVCrq9xsgUBk3WmUodaBQLKqKA8FQYJAWJkei/SrgkDLmNjdXBeDQAkGukcqg4NAUSfleEjvg0DqBouWoluEQMKfoUAjyIRAvv3+l7Q0hUC6otdEQKGFQOwunn2vDYZAePpBDut5hkCx+8lf2+WGQJwFSYBoUYdAohkoK3q8h0D4OMPR9yaIQADVVKTIkIhAY7Irm9P5iECGySaA/2GJQMVncvgyyYlAVpGBjlQvikASYj68SpSKQO3ta/X794pAqOczsk5ai0AnHtp5KbuLQEauj+1yGoxAuplf0xF4jEAiSi4h7dOMQOVixQfsLY1AqyXl/fWFjUA+klTL8tuNQAhX6ZPKL45Av5aA4mWBjkBgf+GzrdCOQPqpgoGLHY9AujwrTOlnj0DQ0Gimsa+PQM4q077P9I9AK3QLtZcbkEBNL2CWXjuQQJkCYCKzWZBAovZQWYx2kEAJ+Dih4ZGQQCI4I8qqq5BAeN81EuDDkEBJOJUpetqQQDaXETZy75BAx2qd1sECkUCW/4gmYxSRQKStgcBQJJFAHk1SwYUykUBd+2LK/T6RQIxm9gO1SZFAgwQjH6hSkUCTyYZX1FmRQLkltHQ3X5FAvEBXy89ikUCToRI+nGSRQJOhEj6cZJFAvEBXy89ikUC5JbR0N1+RQJPJhlfUWZFAgwQjH6hSkUCMZvYDtUmRQF37Ysr9PpFAHk1SwYUykUCkrYHAUCSRQJb/iCZjFJFAx2qd1sECkUA2lxE2cu+QQEk4lSl62pBAeN81EuDDkEAiOCPKqquQQAb4OKHhkZBAovZQWYx2kECZAmAis1mQQE0vYJZeO5BAK3QLtZcbkEDOKtO+z/SPQNDQaKaxr49AujwrTOlnj0D6qYKBix2PQGB/4bOt0I5AvJaA4mWBjkAIV+mTyi+OQD6SVMvy241AqyXl/fWFjUDlYsUH7C2NQB1KLiHt04xAuplf0xF4jEBGro/tchqMQCce2nkpu4tAqOczsk5ai0Dq7Wv1+/eKQBViPrxKlIpAVpGBjlQvikDFZ3L4MsmJQIbJJoD/YYlAY7Irm9P5iEAA1VSkyJCIQPg4w9H3JohAohkoK3q8h0CcBUmAaFGHQK77yV/b5YZAePpBDut5hkDsLp59rw2GQLqi10RAoYVAvv3+l7Q0hUC/n6FAI8iEQOcGi5aiW4RAUSfleEjvg0AJBrpHKoODQMuY2N1cF4NAVZkei/SrgkCyqigPBUGCQGTdaZSh1oFABVCrq9xsgUDmWvRHyAOBQDlo27p1m4BAPU4/sfUzgEB6b9FgsJp/QN69JSdZz35A7jO1EwMGfkDp6SQpyj59QLur9AvJeXxAsdGxABm3e0C9sunq0fZ6QKBL10wKOXpA1kzHR9d9eUBuYS2dTMV4QP8lZbB8D3hAcfMYiXhcd0D9VUjWT6x2QH7C5/EQ/3VAe98S5chUdUBSgMpsg610QCBBN/9KCXRA/Ypp0Shoc0BspY/dJMpyQFphmulFL3JAutVIjpGXcUC2mZM+DANxQLrib0+5cXBAJ9nF/zXHb0CTMbwCZbFuQNp9uAAAom1AenNxWgWZbEChqXGKcZZrQES2gDc/mmpA5lFUR2ekaUAkk3vx4LRoQH6odtKhy2dA5tTt/p3oZkBN1/oWyAtmQHhReFkRNWVAQDRLt2lkZECgrZrmv5ljQL2R63UB1WJAsRuWeBWPYUB7e17phkZiQAXc7Ed9A2NAf96KxgnGY0B8QtyDPI5kQJUrDnkkXGVAHc/rZ88vZkD70uLISQlnQOQYArme6GdARSH+59fNaECimkaG/bhpQEwWOTMWqmpAeTl96yaha0AJGZf3Mp5sQMO8vNo7oW1ASxD8QUGqbkCxxL7zQLlvQOHu3F8bZ3BAL2irN470cEAlHVLb9IRxQNkp7hJKGHJAqKLHjYeuckB4yL/bpUdzQOJWH2ec43NAivHLbmGCdEDfo+sA6iN1QHtO/fUpyHVAOb5s7BNvdkBwA6lEmRh3QD90wx2qxHdAJpGdUjVzeEA3yqt3KCR5QD/iUtlv13lAwWblevaMekCKZUYWpkR7QIM0Nhxn/ntAPcZNtSC6fEAnpKzDuHd9QEBBXeUTN35AyepydxX4fkB1KuSZn7p/QBn7EZpJP4BANMY9/eehgEB2LRM6GgWBQHRkGAHPaIFANBmNc/TMgUDO65wneDGCQHH48ixHloJAnsOtEU77gkAbjbLneGCDQMzDXkqzxYNA2AeWZOgqhEBE3Sr3ApCEQDnkn1/t9IRA5SA/n5FZhUAjkYRi2b2FQLQD2QiuIYZAbduZrPiEhkCkIGoroueGQPD8yC6TSYdA23jpNLSqh0AzEceZ7QqIQCF6cqAnaohAU6mRfErIiEBKBw5cPiWJQCVx63DrgIlAU4JC+znbiUAFblhTEjSKQBaGzvNci4pAxmbjgwLhikA/nL/h6zSLQAd6xywCh4tAN8Trzy7Xi0CMtvKLWyWMQGvnsoFycYxAAHw5PF67jEDRHtW6CQONQM8r/3pgSI1AbIwcgk6LjUDOyg9nwMuNQC/1lVujCY5AvgJoNeVEjkDWhxp3dH2OQJCqtVhAs45A7m//zzjmjkByp3KYThaPQP/s3DpzQ49AhW+eFJltj0CnZ4Zes5SPQA5pRzO2uI9A3/5+lZbZj0CrS0x1SvePQKPZuFrkCJBADvL+l4QUkEBadTxdgh6QQBMoyZTaJpBAEs8mqootkEDhf1WLkDKQQO4J5anqNZBAHrPC+5c3kEAes8L7lzeQQO4J5anqNZBA4X9Vi5AykEASzyaqii2QQBMoyZTaJpBAWnU8XYIekEAO8v6XhBSQQKPZuFrkCJBAq0tMdUr3j0Df/n6VltmPQA5pRzO2uI9Ap2eGXrOUj0CFb54UmW2PQP/s3DpzQ49AcqdymE4Wj0Dqb//POOaOQJCqtVhAs45A1ocad3R9jkC+Amg15USOQC/1lVujCY5AzsoPZ8DLjUBsjByCTouNQM8r/3pgSI1A0R7VugkDjUAAfDk8XruMQGfnsoFycYxAjLbyi1sljEA3xOvPLteLQAd6xywCh4tAP5y/4es0i0DGZuODAuGKQBaGzvNci4pABW5YUxI0ikBTgkL7OduJQCVx63DrgIlARgcOXD4liUBYqZF8SsiIQCF6cqAnaohAMxHHme0KiEDbeOk0tKqHQPD8yC6TSYdApCBqK6LnhkBt25ms+ISGQLQD2QiuIYZAIZGEYtm9hUDjID+fkVmFQDnkn1/t9IRARN0q9wKQhEDYB5Zk6CqEQMzDXkqzxYNAG42y53hgg0Cbw60RTvuCQHH48ixHloJAzuucJ3gxgkA0GY1z9MyBQHRkGAHPaIFAdC0TOhoFgUA0xj3956GAQBn7EZpJP4BAdSrkmZ+6f0DF6nJ3Ffh+QEBBXeUTN35AJ6Ssw7h3fUA9xk21ILp8QIM0Nhxn/ntAimVGFqZEe0DBZuV69ox6QD/iUtlv13lAN8qrdygkeUAmkZ1SNXN4QD90wx2qxHdAcAOpRJkYd0A5vmzsE292QHtO/fUpyHVA36PrAOojdUCK8ctuYYJ0QOJWH2ec43NAeMi/26VHc0CooseNh65yQNkp7hJKGHJAJR1S2/SEcUAraKs3jvRwQOXu3F8bZ3BAscS+80C5b0BLEPxBQapuQMO8vNo7oW1ACRmX9zKebECAOX3rJqFrQEwWOTMWqmpAoppGhv24aUBFIf7n181oQOQYArme6GdAANPiyEkJZ0Adz+tnzy9mQJUrDnkkXGVAfELcgzyOZEB73orGCcZjQAXc7Ed9A2NAe3te6YZGYkCxG5Z4FY9hQCLU2jFjW2BAw6fKCkYGYUA+B9UZTbZhQBJu62OIa2JA/dE37QYmY0ARGYSo1uVjQDvKiGYEq2RASYwsxZt1ZUByc74ep0VmQD+ENXkvG2dAIjaAdTz2Z0CQHO8+1NZoQKs1xnr7vGlA+60AOLWoakCEM1PfApprQGU0eSPkkGxAqKDZ8VaNbUBs+I9jV49uQAeZ5q7flm9A3q2nDPRRcEDn1vN0M9twQMqqSi4oZ3FA2ozkSsv1cUCiOXrLFIdyQIiw35n7GnNAsqYFhHWxc0Cs5mc3d0p0QIzi7jz05XRAFJxK9d6DdUCq3MyVKCR2QACIyCXBxnZANJ57fJdrd0C7Rok/mRJ4QLP6COKyu3hARZ0vpM9meUAGApeT2RN6QDwNKIy5wnpAWj+rOVdze0CKHQMamSV8QIKDE4Bk2XxAw4BYl52OfUC38y5oJ0V+QPCg0Nzj/H5A7QwFx7O1f0DH8ENzuzeAQF2UEvgFlYBANpHFSqjygEDMeujGkFCBQJF5WE+troFAmks6U+sMgkBt9EfTN2uCQIKldGd/yYJAtSHlRK4ng0BxlzpEsIWDQBymLehw44NAqf12ZNtAhEBXwQKl2p2EQFSSa1VZ+oRAMOS56EFWhUAh+2OhfrGFQLe0ipn5C4ZAAv5uy5xlhkD3nhsaUr6GQHPKPloDFodAg6wuW5psh0AI/hPwAMKHQOt1NfkgFohAGcRebeRoiEAQm11jNbqIQP4ojxv+CYlAkUF4CSlYiUDTXmLdoKSJQDmI941Q74lAjR3XYSM4ikBqdR35BH+KQGQ32Fbhw4pA9FVh6qQGi0D4jZqYPEeLQMNYA8WVhYtA+kijWp7Bi0DK28LURPuLQBDebEd4MoxAFKCyZyhnjEDFUq2TRZmMQIMON9rAyIxAVS1WAoz1jECJ0VWSmR+NQHukhtbcRo1AeRGj50lrjUCJfNKw1YyNQB41R/V1q41ATShzVSHHjUBwns9Tz9+NQCOaNFl49Y1Apb28uBUIjkD76zKzoReOQK0uB3oXJI5Ai7/IMXMtjkCmbCP0sTOOQBHnXtHRNo5AEede0dE2jkCmbCP0sTOOQIu/yDFzLY5ArS4HehckjkD76zKzoReOQKW9vLgVCI5AI5o0WXj1jUBwns9Tz9+NQE0oc1Uhx41AHjVH9XWrjUCJfNKw1YyNQHkRo+dJa41Ae6SG1txGjUCJ0VWSmR+NQFUtVgKM9YxAfw432sDIjEDFUq2TRZmMQBSgsmcoZ4xAEN5sR3gyjEDK28LURPuLQPpIo1qewYtAw1gDxZWFi0D4jZqYPEeLQPRVYeqkBotAZDfYVuHDikBmdR35BH+KQI0d12EjOIpAOYj3jVDviUDTXmLdoKSJQJFBeAkpWIlA+yiPG/4JiUAQm11jNbqIQBnEXm3kaIhA63U1+SAWiEAI/hPwAMKHQH+sLluabIdAd8o+WgMWh0D3nhsaUr6GQAL+bsucZYZAt7SKmfkLhkAh+2OhfrGFQDDkuehBVoVAVJJrVVn6hEBXwQKl2p2EQKn9dmTbQIRAGaYt6HDjg0BxlzpEsIWDQLUh5USuJ4NAgqV0Z3/JgkBt9EfTN2uCQJhLOlPrDIJAj3lYT62ugUDMeujGkFCBQDaRxUqo8oBAXZQS+AWVgEDF8ENzuzeAQO0MBceztX9A8KDQ3OP8fkC38y5oJ0V+QMOAWJedjn1Af4MTgGTZfECFHQMamSV8QFo/qzlXc3tAPA0ojLnCekAGApeT2RN6QEWdL6TPZnlAsfoI4rK7eEC7Rok/mRJ4QDSee3yXa3dAAIjIJcHGdkCq3MyVKCR2QA+cSvXeg3VAjOLuPPTldECs5mc3d0p0QLKmBYR1sXNAiLDfmfsac0CeOXrLFIdyQNqM5ErL9XFAyqpKLihncUDn1vN0M9twQN6tpwz0UXBAB5nmrt+Wb0Bs+I9jV49uQKig2fFWjW1AZTR5I+SQbECEM1PfApprQPutADi1qGpAqzXGevu8aUCQHO8+1NZoQCI2gHU89mdAP4Q1eS8bZ0Bsc74ep0VmQEmMLMWbdWVAO8qIZgSrZEARGYSo1uVjQP3RN+0GJmNAEm7rY4hrYkA4B9UZTbZhQMOnygpGBmFAItTaMWNbYEDuSxUDa3JeQHyW1IyBsF9AITBaCxV8YEB/rBs5wSRhQBbtc0lT0mFAU9S5N9iEYkCSzEzxWzxjQPF2/UXp+GNARoRx2Im6ZEBtZ4wORoFlQEPr5gElTWZAhw1gcCweZ0Cg0dGsYPRnQJUJ9Y/Ez2hAB1h/aVmwaUBF7YbxHpZqQFi2NzoTgWtAreXloTJxbECJ4YnFd2ZtQLfCsXPbYG5A9KL0n1Rgb0C2AXorbDJwQCXLe9kst3BA3dWX6GQ+cUBWN9XjC8hxQFz/A04YVHJAN6V8nX/ickDYq0o4NnNzQEEzyHAvBnRAawewgl2bdEBWkKuQsTJ1QIrVYaIbzHVA0Y4Mo4pndkAb/5dg7AR3QJISUostpHdAIPAstjlFeEA24JhX++d4QHgW+cpbjHlACpO2UkMyekC68fMamdl6QCWa5DxDgntAt1zJwiYsfEC6G5SsJ9d8QPevM/Uog31AcMSImAwwfkCm7QOas91+QE7G7Av+i39APa+oi2UdgEC0ZU6C/HSAQAeSaaKyzIBAp1q4PXYkgUDs2XRENXyBQIiX40rd04FAgcEuj1srgkBjAoz/nIKCQNqQqkCO2YJAB9RmtBswg0DZuMCAMYaDQFmVEZe724NA9zp+u6UwhECYnKGM24SEQMk0bItI2IRAqCA0I9gqhUARsPGxdXyFQFL5o5AMzYVAvs/YG4gchkDAUFO802qGQC8SzO/at4ZA5tfFUYkDh0BglXGkyk2HQFxinNmKlodAlvChG7bdh0B2+13WOCOIQH0ZF8D/ZohAJktd4veoiEAem9aiDumIQIcg9MsxJ4lAL7WJlU9jiUCSuEKtVp2JQM5C7j421YlA5zqd/N0KikA42IwmPj6KQAEw2JJHb4pAOY7rtOudikA4e7SkHMqKQMt2iSXN84pA9pzErPAai0BEmAxoez+LQF15R0NiYYtAoEMz7pqAi0AgOqDhG52LQGE3SWTctotAa51Gj9TNi0CjsBhS/eGLQKx5RnZQ84tADZWOosgBjEBfpaddYQ2MQO5sjhAXFoxACeVfCOcbjECq/L13zx6MQKr8vXfPHoxACeVfCOcbjEDubI4QFxaMQF+lp11hDYxADZWOosgBjECseUZ2UPOLQKOwGFL94YtAa51Gj9TNi0BhN0lk3LaLQCA6oOEbnYtAoEMz7pqAi0BdeUdDYmGLQESYDGh7P4tA9pzErPAai0DLdoklzfOKQDd7tKQcyopAOY7rtOudikABMNiSR2+KQDjYjCY+PopA5zqd/N0KikDOQu4+NtWJQJK4Qq1WnYlAL7WJlU9jiUCHIPTLMSeJQB6b1qIO6YhAJEtd4veoiEB9GRfA/2aIQHb7XdY4I4hAlvChG7bdh0BcYpzZipaHQGCVcaTKTYdA5tfFUYkDh0AvEszv2reGQMBQU7zTaoZAvs/YG4gchkBP+aOQDM2FQBOw8bF1fIVAqCA0I9gqhUDJNGyLSNiEQJicoYzbhIRA9zp+u6UwhEBZlRGXu9uDQNm4wIAxhoNAB9RmtBswg0DXkKpAjtmCQGICjP+cgoJAgcEuj1srgkCIl+NK3dOBQOzZdEQ1fIFAp1q4PXYkgUAHkmmissyAQLNlToL8dIBAPa+oi2UdgEBOxuwL/ot/QKbtA5qz3X5AcMSImAwwfkD0rzP1KIN9QLoblKwn13xAt1zJwiYsfEAlmuQ8Q4J7QLfx8xqZ2XpACpO2UkMyekB4FvnKW4x5QDbgmFf753hAIPAstjlFeECSElKLLaR3QBv/l2DsBHdA0Y4Mo4pndkCK1WGiG8x1QFaQq5CxMnVAawewgl2bdEBBM8hwLwZ0QNirSjg2c3NAN6V8nX/ickBc/wNOGFRyQFY31eMLyHFA3dWX6GQ+cUAly3vZLLdwQLYBeitsMnBA9KL0n1Rgb0C3wrFz22BuQIHhicV3Zm1AteXloTJxbEBYtjc6E4FrQEXthvEelmpAB1h/aVmwaUCVCfWPxM9oQKXR0axg9GdAhw1gcCweZ0BD6+YBJU1mQG1njA5GgWVARoRx2Im6ZED1dv1F6fhjQJLMTPFbPGNAU9S5N9iEYkAW7XNJU9JhQHqsGznBJGFAITBaCxV8YEB8ltSMgbBfQO5LFQNrcl5ABNQo6K9PXEBlm+OWdnddQASGe2sjqF5AoIwBINLhX0BHkwpZTpJgQCZhFaNNOGFAnK5TBfLiYUAH6HCNRZJiQKmODTFRRmNALOI/vxz/Y0BuYiLSrrxkQH3QecAMf2VAe6F8jzpGZkCYHMbkOhJnQGOcf/gO42dAKqfKh7a4aEDUwnbHL5NpQPsVDld3cmpAUApENIhWa0AbQNGuWz9sQHM2yFzpLG1AAhRuDycfbkCL/qLICBZvQMqycljACHBA+cj9hr+IcECQVycd+QpxQBkugU5jj3FAPNBpUfMVckBn8eRbnZ5yQFMe4qBUKXNAKZf2TQu2c0BLL4+JskR0QELTnnE61XRAihzOGpJndUANHDCQp/t1QEpAgNNnkXZASvPs3b4od0BDPnKhl8F3QN1txwrcW3hAwlriA3X3eEAvnRJ3SpR5QBeTtlJDMnpAdbqLjUXRekBsepsrNnF7QF4JxUP5EXxAsK/kBXKzfEDfNJjBglV9QIvQn+0M+H1ACYPaL/GafkA5QNxlDz5/QCLfG65G4X9AqyLbuDpCgEDF5WG3vJOAQHYunuEX5YBAsCwzfDo2gUA15GWHEoeBQId5WMWN14FAE4KDwJkngkBFbWrSI3eCQLrjhyoZxoJAccJu1WYUg0CxIhzE+WGDQDmsdtO+roNAQj7306L6g0CKzXaRkkWEQN4pHdt6j4RA0DRsi0jYhEB97WKQ6B+FQO+Ss/NHZoVA3P8H41OrhUDBRk+4+e6FQDN+DwInMYZAfZm2i8lxhkDdGeVlz7CGQGBZre4m7oZACCnC2b4ph0AieY84hmOHQJbDN4Jsm4dAsPZwm2HRh0AbqDveVQWIQFpnbyE6N4hAhhkXwP9miEDyX5igmJSIQBMnoTv3v4hALJvWog7piEB95ECH0g+JQIU1bz83NIlAluFPzTFWiUAZY7jjt3WJQApsmeu/kolAUlPbCEGtiUDra98eM8WJQCcRo9SO2olA4nOBmE3tiUBveJGjaf2JQO86nfzdCopA4hexeqYVikBoYUDHvx2KQHA13l8nI4pAVDaJl9slikBUNomX2yWKQHA13l8nI4pAaGFAx78dikDiF7F6phWKQO86nfzdCopAb3iRo2n9iUDic4GYTe2JQCcRo9SO2olA62vfHjPFiUBSU9sIQa2JQApsmeu/kolAGWO447d1iUCW4U/NMVaJQIU1bz83NIlAfeRAh9IPiUApm9aiDumIQBMnoTv3v4hA8l+YoJiUiECGGRfA/2aIQFpnbyE6N4hAG6g73lUFiECw9nCbYdGHQJbDN4Jsm4dAInmPOIZjh0AIKcLZvimHQF1Zre4m7oZA3RnlZc+whkB9mbaLyXGGQDN+DwInMYZAwUZPuPnuhUDc/wfjU6uFQO+Ss/NHZoVAfe1ikOgfhUDQNGyLSNiEQN4pHdt6j4RAiM12kZJFhEBEPvfTovqDQDmsdtO+roNAsSIcxPlhg0Bxwm7VZhSDQLrjhyoZxoJARW1q0iN3gkATgoPAmSeCQId5WMWN14FAM+RlhxKHgUCuLDN8OjaBQHYunuEX5YBAxeVht7yTgECrItu4OkKAQCLfG65G4X9AOUDcZQ8+f0AFg9ov8Zp+QIvQn+0M+H1A3zSYwYJVfUCwr+QFcrN8QF4JxUP5EXxAZ3qbKzZxe0B1uouNRdF6QBeTtlJDMnpAL50Sd0qUeUC9WuIDdfd4QN1txwrcW3hAQz5yoZfBd0BK8+zdvih3QEpAgNNnkXZADRwwkKf7dUCKHM4akmd1QELTnnE61XRASy+PibJEdEApl/ZNC7ZzQFMe4qBUKXNAZ/HkW52eckA80GlR8xVyQBkugU5jj3FAkFcnHfkKcUD5yP2Gv4hwQMqycljACHBAi/6iyAgWb0ACFG4PJx9uQHM2yFzpLG1AG0DRrls/bEBJCkQ0iFZrQAEWDld3cmpA1MJ2xy+TaUAqp8qHtrhoQGOcf/gO42dAmBzG5DoSZ0CBoXyPOkZmQH3QecAMf2VAbmIi0q68ZEAs4j+/HP9jQKmODTFRRmNAC+hwjUWSYkCcrlMF8uJhQCZhFaNNOGFAR5MKWU6SYECZjAEg0uFfQASGe2sjqF5AZZvjlnZ3XUAE1Cjor09cQEdDFbEuTVpAKejHMfZfW0BeUD8fAntcQP5Rqjtsnl1AHzBTrEzKXkDbF/Deuf5fQBrkZTfknWBA7OXqhMVAYUC7LNUqCehhQL9JUWq2k2JAC0F/ZdNDY0CDWh0SZfhjQA4FUixvsWRAJ0ueKfRuZUAEkwIs9TBmQEqbX/Vx92ZARtMd22jCZ0CBViW61pFoQNH0MOu2ZWlA/MiGNwM+akAW8iDOsxprQLkMUTm/+2tAxQnpVBrhbEB3+PNEuMptQMJHCW2KuG5AHehEaICqb0BpSfcARFBwQKombZdGzXBAcgPGAz1McUCW9pNhG81xQLpjnNnUT3JAY6kqoFvUckDom9bzoFpzQO3kwhyV4nNAqiRXbCdsdEApc3k9Rvd0QA+cSvXeg3VAsCZoBN4RdkBh77boLqF2QHfFuC+8MXdAoCtveW/Dd0A2/8x7MVZ4QAttuAbq6XhAHTqeCIB+eUD/AZeT2RN6QCmmHuPbqXpAdr9dYmtAe0AydwSza9d7QHC/tbS/bnxAW3IBjUkGfUAOcOuv6p19QD1g/eiDNX5AtEvgZPXMfkDBznq7HmR/QMM0kPre+n9AwC1uWIpIgEDs5tP8TpOAQGaLZ0Ss3YBAWvGb25AngUAyDddH63CBQCxfEe6puYFAOfKiGbsBgkAVbjoDDUmCQPSQ+teNj4JACTq6wCvVgkCMBWPp1BmDQBRVaoh3XYNA5Htg5gGgg0DnppFlYuGDQJf7s4mHIYRAFE+e/19ghEBVwQKl2p2EQPd1KJDm2YRAjpWfF3MUhUCRt+rZb02FQOPOGMXMhIVAT69KHnq6hUBgRB+JaO6FQAGXAQ+JIIZADclTJs1QhkBKO3K5Jn+GQIokii2Iq4ZA+/U+aeTVhkDsAhrbLv6GQAwAwH9bJIdA1A/o515Ih0B8NxA+LmqHQBJB60u/iYdADTyEfwinh0AC/hPwAMKHQOc4hWKg2odAUPKjTd/wh0CPYfXdtgSIQOh1NfkgFohAs4V3QRgliEDd5+cXmDGIQHZ8LJ+cO4hAPG5ivSJDiEBZvbcdKEiIQKZrnzGrSohApmufMatKiEBZvbcdKEiIQDxuYr0iQ4hAdnwsn5w7iEDd5+cXmDGIQLOFd0EYJYhA6HU1+SAWiECPYfXdtgSIQFDyo03f8IdA5ziFYqDah0AC/hPwAMKHQA08hH8Ip4dAEkHrS7+Jh0B8NxA+LmqHQNQP6OdeSIdACQDAf1skh0DsAhrbLv6GQPv1Pmnk1YZAiiSKLYirhkBKO3K5Jn+GQA3JUybNUIZAAZcBD4kghkBgRB+JaO6FQE+vSh56uoVA484YxcyEhUCPt+rZb02FQI6VnxdzFIVA93UokObZhEBVwQKl2p2EQBRPnv9fYIRAl/uziYchhEDnppFlYuGDQOR7YOYBoINAFFVqiHddg0CMBWPp1BmDQAY6usAr1YJA9pD6142PgkAVbjoDDUmCQDnyohm7AYJALF8R7qm5gUAyDddH63CBQFrxm9uQJ4FAZotnRKzdgEDs5tP8TpOAQL8tbliKSIBAvzSQ+t76f0DBznq7HmR/QLRL4GT1zH5APWD96IM1fkAOcOuv6p19QFtyAY1JBn1Aa7+1tL9ufEAydwSza9d7QHa/XWJrQHtAKaYe49upekD/AZeT2RN6QBo6ngiAfnlAC224BurpeEA2/8x7MVZ4QKArb3lvw3dAdMW4L7wxd0Bh77boLqF2QLAmaATeEXZAD5xK9d6DdUApc3k9Rvd0QKokV2wnbHRA7eTCHJXic0Dom9bzoFpzQGOpKqBb1HJAumOc2dRPckCW9pNhG81xQHIDxgM9THFAqiZtl0bNcEBpSfcARFBwQB3oRGiAqm9AwkcJbYq4bkB3+PNEuMptQMUJ6VQa4WxAuQxROb/7a0AW8iDOsxprQPzIhjcDPmpA0fQw67ZlaUCHViW61pFoQEbTHdtowmdASptf9XH3ZkAEkwIs9TBmQCJLnin0bmVAEwVSLG+xZECDWh0SZfhjQAtBf2XTQ2NAv0lRaraTYkC7LNUqCehhQPDl6oTFQGFAGuRlN+SdYEDbF/Deuf5fQB8wU6xMyl5A9lGqO2yeXUBXUD8fAntcQCnoxzH2X1tAR0MVsS5NWkBvMZWVhGlYQIOquBqPaFlAUvAuBUZvWkCW1Xg9wX1bQDdj2ywXlFxAkA+bpFyyXUBV/RHFpNheQK/GV3KAA2BAJhh4O8CeYEAff655GD5hQJCXUd6O4WFAIgzqAyiJYkD6a+9h5zRjQIinqkDP5GNAjTxHreCYZEBxShxuG1FlQKP0Nvd9DWZAWJ0vXwXOZkBxolNUrZJnQHBdLRJwW2hAKDh0V0YoaUCfr25cJ/lpQKYg0MkIzmpA4i8csN6ma0A0kZl/m4NsQErX3QAwZG1A99P7TYtIbkBF5l3MmjBvQIKvqhMlDnBA3POzpcGFcEBUyDExF/9wQCLtIOgYenFAMttwGLn2cUAGDFAr6XRyQAEg66SZ9HJAFz6iJLp1c0AwyrdlOfhzQD5Le0AFfHRAURPzqwoBdUDV7wbANYd1QOfYLbhxDnZArEOg9qiWdkCDZBAIxR93QMpU6aeuqXdAIrIVxU00eEA+7k2Hib94QAQk7lRIS3lAROJS2W/XeUDF9rsL5WN6QKncszaM8HpANQj6/0h9e0Bd4e1w/gl8QKnTd/+OlnxAEnFtl9wifUAPO22kyK59QCE9Lhw0On5Axzs/if/EfkAx1TAWC09/QK2MJZk22H9AGSzhzzAwgEAb9Ly9tXOAQB9DFqeZtoBAPAeLC8z4gED8mQFgPDqBQLF3YxXaeoFALlZ0n5S6gUDpwcF7W/mBQOlHpzgeN4JAURVjfMxzgkDM2jYMVq+CQBeqkNOq6YJAPnA367oig0CCnXagdlqDQAN/RHzOkINAz8NeSrPFg0BKoVggFvmDQNoHlmToKoRANVov1RtbhEC/HrmOoomEQB4r6xJvtoRA5NYiT3ThhECL0ruipQqFQI9UO+X2MYVAA2ZJbFxXhUA5NHQRy3qFQNVruTc4nIVAK8XR0Jm7hUBbDzti5tiFQNUx/QkV9IVAWMgmgx0NhkCYLf4p+COGQB774/+dOIZAvDrkrghLhkCYvfOMMluGQE1H154WaYZA/neymrB0hkBpnjzq/H2GQG/bmaz4hIZAqEHXt6GJhkCP3gia9ouGQI/eCJr2i4ZAqEHXt6GJhkBv25ms+ISGQGmePOr8fYZA/neymrB0hkBNR9eeFmmGQJi984wyW4ZAvDrkrghLhkAe++P/nTiGQJgt/in4I4ZAWMgmgx0NhkDVMf0JFfSFQFsPO2Lm2IVAK8XR0Jm7hUDVa7k3OJyFQDY0dBHLeoVAA2ZJbFxXhUCPVDvl9jGFQIvSu6KlCoVA5NYiT3ThhEAeK+sSb7aEQL8euY6iiYRANVov1RtbhEDaB5Zk6CqEQEqhWCAW+YNAzMNeSrPFg0ADf0R8zpCDQIKddqB2WoNAPnA367oig0AXqpDTqumCQMnaNgxWr4JAURVjfMxzgkDpR6c4HjeCQOnBwXtb+YFALlZ0n5S6gUCvd2MV2nqBQP6ZAWA8OoFAPAeLC8z4gEAfQxanmbaAQBv0vL21c4BAGSzhzzAwgECtjCWZNth/QDHVMBYLT39Axzs/if/EfkAhPS4cNDp+QAw7baTIrn1AEnFtl9wifUCp03f/jpZ8QF3h7XD+CXxANQj6/0h9e0Cm3LM2jPB6QML2uwvlY3pAROJS2W/XeUAEJO5USEt5QD7uTYeJv3hAH7IVxU00eEDKVOmnrql3QINkEAjFH3dArEOg9qiWdkDn2C24cQ52QNPvBsA1h3VATxPzqwoBdUA+S3tABXx0QDDKt2U5+HNAFz6iJLp1c0ABIOukmfRyQAMMUCvpdHJAMttwGLn2cUAi7SDoGHpxQFTIMTEX/3BA3POzpcGFcEB+r6oTJQ5wQEXmXcyaMG9A99P7TYtIbkBK190AMGRtQDSRmX+bg2xA2y8csN6ma0CmINDJCM5qQJ+vblwn+WlAKDh0V0YoaUBwXS0ScFtoQHGiU1StkmdAWJ0vXwXOZkCj9Db3fQ1mQHFKHG4bUWVAjTxHreCYZECIp6pAz+RjQPpr72HnNGNAIgzqAyiJYkCQl1HejuFhQB9/rnkYPmFAIhh4O8CeYECvxldygANgQFX9EcWk2F5AkA+bpFyyXUA3Y9ssF5RcQJbVeD3BfVtASvAuBUZvWkCDqrgaj2hZQG8xlZWEaVhArzHAY1OjVkD+9DbV1I9XQNSHIehzg1hAXeEvyEZ+WUC7TLA9YoBaQJBzl5bZiVtAyB9mj76aXEBY9vk7IbNdQEUCV/AP015Al3R4KZf6X0CCxBu74JRgQAT/K7BLMGFAugTlqo/PYUBUERnJrnJiQIywYwSqGWNAG8ZMJ4HEY0BLJKjCMnNkQJiKOiO8JWVALgKtRxncZUCio9fWRJZmQNrgbBY4VGdA7nUO4uoVaEDmI9WiU9toQOxRVEdnpGlAyKEiPBlxakCsbfBkW0FrQB8GNRYeFWxA4157D1DsbEAoqVZ23sZtQA0hB9K0pG5ACRLXB72Fb0Ap5hus7zRwQN/4Ui6BqHBAoBIug4UdcUBHYu1O7pNxQLRypWGsC3JAlC7ht6+EckB/Dbd75/5yQJ3MUwZCenNA1s784az2c0Dc9ovMFHR0QIKAZrpl8nRAHw7w2YpxdUCjy3qXbvF1QOEytaH6cXZAzqOV7hfzdkCRqMPArnR3QF1gfq2m9ndAiy3/ouZ4eEANY1fvVPt4QNxMx0fXfXlApoyM0FIAekBkYiUlrIJ6QLYVBmHHBHtAuVO9KIiGe0A784Oz0Qd8QJAxNNWGiHxAbxukCIoIfUA5eF56vYd9QPMztRMDBn5AdusnhjyDfkCp6RhXS/9+QHmSyusQen9AH+qelW7zf0CLTknPojWAQH1T9qq7cIBA1LqNjvKqgECzFFw6OOSAQNgt1IR9HIFAtlIrYbNTgUBO+PzlyomBQGu+8VO1voFA965lHGTygUCmkQnoyCSCQAkie53VVYJAXvDPZ3yFgkARsw69r7OCQMrPkmRi4IJABuhVfYcLg0DoPBuEEjWDQATKeFn3XINACwa6RyqDg0AAS5gIoKeDQAr+xMpNyoNAi6hBNynrg0AcUYJ2KAqEQLuDVjVCJ4RAdJuVqW1ChEDsBouWoluEQFBqH1HZcoRA5a27wwqIhEATN+NxMJuEQMq7gntErIRAilPxn0G7hEDCn6FAI8iEQBsdgWPl0oRA/ugDtYTbhEBIgtuJ/uGEQJlIV+BQ5oRAzbttYXrohEDNu21heuiEQJlIV+BQ5oRASILbif7hhED+6AO1hNuEQBsdgWPl0oRAwp+hQCPIhECKU/GfQbuEQMq7gntErIRAEzfjcTCbhEDlrbvDCoiEQFBqH1HZcoRA7AaLlqJbhEB0m5WpbUKEQLuDVjVCJ4RAHFGCdigKhECJqEE3KeuDQAr+xMpNyoNAAEuYCKCng0ALBrpHKoODQATKeFn3XINA6DwbhBI1g0AG6FV9hwuDQMrPkmRi4IJAEbMOva+zgkBe8M9nfIWCQAYie53VVYJAppEJ6MgkgkD3rmUcZPKBQGu+8VO1voFATvj85cqJgUC2Uiths1OBQNgt1IR9HIFAsxRcOjjkgEDUuo2O8qqAQH1T9qq7cIBAik5Jz6I1gEAk6p6VbvN/QHmSyusQen9AqekYV0v/fkB26yeGPIN+QPMztRMDBn5AOXheer2HfUBvG6QIigh9QJAxNNWGiHxAN/ODs9EHfEC2U70oiIZ7QLYVBmHHBHtAZGIlJayCekCmjIzQUgB6QNxMx0fXfXlADWNX71T7eECILf+i5nh4QF1gfq2m9ndAkajDwK50d0DOo5XuF/N2QOEytaH6cXZAoMt6l27xdUAfDvDZinF1QIKAZrpl8nRA3PaLzBR0dEDUzvzhrPZzQJ3MUwZCenNAfw23e+f+ckCULuG3r4RyQLRypWGsC3JAR2LtTu6TcUCgEi6DhR1xQN/4Ui6BqHBAKeYbrO80cEAJEtcHvYVvQA0hB9K0pG5AKKlWdt7GbUDjXnsPUOxsQB8GNRYeFWxArG3wZFtBa0DIoSI8GXFqQOxRVEdnpGlA5iPVolPbaEDudQ7i6hVoQNrgbBY4VGdAoqPX1kSWZkAuAq1HGdxlQJ2KOiO8JWVASySowjJzZEAbxkwngcRjQIywYwSqGWNAThEZya5yYkC/BOWqj89hQAT/K7BLMGFAgsQbu+CUYECXdHgpl/pfQEUCV/AP015AYPb5OyGzXUDIH2aPvppcQJBzl5bZiVtAu0ywPWKAWkBW4S/IRn5ZQM6HIehzg1hA/vQ21dSPV0CvMcBjU6NWQEzIomVC+VRAPlYEmmDUVUATjTODFrZWQCwYm6t4nldAloxkVJqNWEBsvTBgjYNZQLtMsD1igFpAIcEo0ieEW0D48vJj645cQMImAIW4oF1Am6tz/Zi5XkDASV+2lNlfQIqfWNJYgGBAZncx2nkXYUAI5PtZLrJhQBwfLiB2UGJAfHua2E/yYkACStcCuZdjQENZ7+itQGRAa3FjlintZEC8O4XPJZ1lQIkMNAmbUGZArgYEYYAHZ0CZCdiVy8FnQD/M9gBxf2hApHKjj2NAaUAqzkG9lARqQDZUDo70y2pAm6lxinGWa0AKbfe6+GNsQGet76R1NG1AljTCR9IHbkDtgfoa991uQAn7Eg3Ltm9AgL6CwRlJcEBhiVMsCrhwQAAV6vAnKHFADBY5dmOZcUCvcqVhrAtyQMXR4pjxfnJAkrVARCHzckD7imnRKGhzQA7LlPb03XNAIAAttnFUdECbL+piist0QJjXYKQpQ3VAClsFfDm7dUBEYaNKozN2QPpVSNZPrHZAsN2fUCcld0A1ucBdEZ53QGA3aBv1FnhAOfqhKLmPeEDoeNmtQwh5QNBNUmV6gHlAvgUEpEL4eUA/zNVigW96QHr5NUgb5npAzS8JsvRbe0CgY+y/8dB7QBLWxF32RHxAPbyYTua3fEAjAas3pSl9QKVH1KsWmn1ANg0TNx4JfkAljUxqn3Z+QCTIN+d94n5AWttrbJ1Mf0C7n4rh4bR/QEouwLGXDYBAk5doKLU/gEB4U/aqu3CAQG78v7ydoIBAJopfFE7PgEAGas6hv/yAQF09dZTlKIFAslIrYbNTgUCz8CHIHH2BQKuNt9oVpYFA3xUvAZPLgUAqbkcAifCBQEBur/7sE4JAiJ9SirQ1gkACInud1VWCQJgwxaNGdIJA+tjgfv6QgkBSmR6L9KuCQNm2w6MgxYJAEkQjJ3vcgkAH9Hj6/PGCQA0Bg42fBYNAxpjY3VwXg0CHbfp5LyeDQOI8G4QSNYNAgU2etAFBg0AvGkpc+UqDQI2VLWb2UoNADqk2WfZYg0D/yXhZ91yDQMm4Iin4XoNAybgiKfheg0D/yXhZ91yDQA6pNln2WINAjZUtZvZSg0AvGkpc+UqDQIFNnrQBQYNA4jwbhBI1g0CHbfp5LyeDQMaY2N1cF4NADQGDjZ8Fg0AH9Hj6/PGCQBJEIyd73IJA2bbDoyDFgkBSmR6L9KuCQPrY4H7+kIJAljDFo0Z0gkACInud1VWCQIifUoq0NYJAQG6v/uwTgkAqbkcAifCBQN8VLwGTy4FAq4232hWlgUCz8CHIHH2BQLJSK2GzU4FAXT11lOUogUAEas6hv/yAQCaKXxROz4BAbvy/vJ2ggEB4U/aqu3CAQJOXaCi1P4BASi7AsZcNgEC7n4rh4bR/QFrba2ydTH9AJMg3533ifkAljUxqn3Z+QDENEzceCX5AqEfUqxaafUAjAas3pSl9QD28mE7mt3xAEtbEXfZEfECgY+y/8dB7QM0vCbL0W3tAevk1SBvmekA/zNVigW96QLsFBKRC+HlAzU1SZXqAeUDoeNmtQwh5QDn6oSi5j3hAYDdoG/UWeEA1ucBdEZ53QLDdn1AnJXdA91VI1k+sdkBEYaNKozN2QApbBXw5u3VAmNdgpClDdUCbL+piist0QB4ALbZxVHRADsuU9vTdc0D7imnRKGhzQJK1QEQh83JAwdHimPF+ckCvcqVhrAtyQAwWOXZjmXFAABXq8CcocUBhiVMsCrhwQIC+gsEZSXBACfsSDcu2b0Dtgfoa991uQJY0wkfSB25AZ63vpHU0bUAKbfe6+GNsQJupcYpxlmtANlQOjvTLakAqzkG9lARqQKRyo49jQGlAP8z2AHF/aECZCdiVy8FnQK4GBGGAB2dAiQw0CZtQZkC8O4XPJZ1lQGtxY5Yp7WRAQ1nv6K1AZEAHStcCuZdjQHx7mthP8mJAHB8uIHZQYkAI5PtZLrJhQGJ3Mdp5F2FAjZ9Y0liAYEDASV+2lNlfQJurc/2YuV5AwiYAhbigXUD48vJj645cQCnBKNInhFtAu0ywPWKAWkBsvTBgjYNZQJaMZFSajVhAJRibq3ieV0ANjTODFrZWQD5WBJpg1FVATMiiZUL5VEDdeBww/2lTQDAbci7SNFRAJkfIYb8FVUCBfYTN2dxVQOr2RkQzulZAKxA4VNydV0C9Tzgz5IdYQM5i/qpYeFlAUvAuBUZvWkDAmnr3tmxbQNv+zo+0cFxACOynIEZ7XUBae44tcYxeQMUJ1Fc5pF9AdLnLJVBhYEAFnJHW0vNgQJXCWYOjiWFAvqBZ278iYkCbxD9vJL9iQCeK4KjMXmNAJZQ1w7IBZEDw37fCz6dkQHFKHG4bUWVAXFZ6R4z9ZUCF9uSFF61mQPwLfQ+xX2dAMywFdEsVaEBLIf7n181oQNptU0BGiWlA1+ue7oRHakCcZgr+gAhrQNXP1RAmzGtAv2iIXl6SbECf6dKyElttQANcKG0qJm5Acv8SgYvzbkBrK0p3GsNvQLXbxjddSnBATX+lkSa0cEBXj4d02R5xQC7IZFxlinFALttwGLn2cUAFuhDOwmNyQHAnO/xv0XJABAVFf60/c0B9iRmVZ65zQDU93uGJHXRAvUoCdf+MdEAiYLjOsvx0QLIL2uWNbHVAESszLnrcdUBbsDOfYEx2QDusBbspvHZAOjgFlr0rd0AZiJfeA5t3QC8WXuXjCXhA/YvCpUR4eEAnt9fODOZ4QG+Li8wiU3lAcuQl0Wy/eUBHbg/f0Cp6QILT29I0lXpALwiSbX7+ekARRy1fk2Z7QBEWUVFZzXtANWsq8rUyfECm03f/jpZ8QA9KslHK+HxA0zpQ501ZfUBVChzw/7d9QEFLl9jGFH5ApbNjVYlvfkBjw6puLsh+QGz6fIudHn9ATGwhfb5yf0BgdU6KecR/QO0oIr3bCYBAGCzhzzAwgECz0OfxMFWAQG/7J2jReIBABPkuzQebgEAiqjEWyruAQLxe9JcO24BAOweLC8z4gEDNd+6S+RSBQGGTY72OL4FATU+xi4NIgUATnyJ00F+BQBZ5UWZudYFAO0i4zlaJgUABRQeag5uBQG9YOzjvq4FALVZ0n5S6gUAYh4hOb8eBQKCsU0970oFAmtS/OLXbgUBNh4YwGuOBQDoMqeyn6IFANLaetFzsgUB7XDhiN+6BQHtcOGI37oFANLaetFzsgUA6DKnsp+iBQE2HhjAa44FAmtS/OLXbgUCgrFNPe9KBQBiHiE5vx4FALVZ0n5S6gUBvWDs476uBQAFFB5qDm4FAO0i4zlaJgUAWeVFmbnWBQBOfInTQX4FATU+xi4NIgUBhk2O9ji+BQMx37pL5FIFAOweLC8z4gEC8XvSXDtuAQCKqMRbKu4BABPkuzQebgEBv+ydo0XiAQLPQ5/EwVYBAGCzhzzAwgEDtKCK92wmAQGB1Top5xH9ASWwhfb5yf0Bs+nyLnR5/QGPDqm4uyH5ApbNjVYlvfkBBS5fYxhR+QFAKHPD/t31A0zpQ501ZfUAPSrJRyvh8QKbTd/+OlnxANWsq8rUyfEAPFlFRWc17QBZHLV+TZntALwiSbX7+ekCC09vSNJV6QEduD9/QKnpAcuQl0Wy/eUBvi4vMIlN5QCe3184M5nhA/YvCpUR4eEAvFl7l4wl4QBaIl94Dm3dAOjgFlr0rd0A7rAW7Kbx2QFuwM59gTHZAESszLnrcdUCwC9rljWx1QB5guM6y/HRAvUoCdf+MdEA1Pd7hiR10QH2JGZVnrnNAAwVFf60/c0BwJzv8b9FyQAW6EM7CY3JALttwGLn2cUAuyGRcZYpxQFePh3TZHnFASX+lkSa0cEC128Y3XUpwQGsrSncaw29Acv8SgYvzbkADXChtKiZuQJnp0rISW21Av2iIXl6SbEDVz9UQJsxrQJxmCv6ACGtA1+ue7oRHakDUbVNARolpQEsh/ufXzWhAMywFdEsVaED8C30PsV9nQIX25IUXrWZAV1Z6R4z9ZUBxShxuG1FlQPDft8LPp2RAJZQ1w7IBZEAniuCozF5jQJXEP28kv2JAvqBZ278iYkCVwlmDo4lhQAWckdbS82BAdLnLJVBhYEDFCdRXOaRfQFp7ji1xjF5ACOynIEZ7XUDb/s6PtHBcQMCaeve2bFtASvAuBUZvWkDOYv6qWHhZQL1PODPkh1hAKxA4VNydV0Dq9kZEM7pWQIF9hM3Z3FVAJkfIYb8FVUAwG3Iu0jRUQN14HDD/aVNABZyUWz70UUAe05+k0K9SQHMPjKcHcVNA/Te1+fQ3VEAJRZ0WqQRVQJ3itE0z11VACuIIsKGvVkBG/t79AI5XQCbtTJRcclhA3SfVWr5cWUBHQxWxLk1aQEAVkly0Q1tAjEWudlRAXEBSQdhaEkNdQA/Z/JTvS15AbhtM0OtaX0AwHy9jAjhgQNVPYxebxWBAnImR1zxWYUAg7Npl4+lhQAZTTGyJgGJAO6fLdSgaY0AGOmDnuLZjQMVj3fkxVmRA65P2s4n4ZECa7cPktJ1lQGxzvh6nRWZAbKU6s1LwZkCeTWiuqJ1nQPUK3tOYTWhAtPW2mxEAaUAwfkgwALVpQFBkdmxQbGpA9l2q2uwla0BIs3S0vuFrQMjA2uKtn2xAxvNX/6BfbUDRcZVVfSFuQBUz3OUm5W5AHehEaICqb0BiR1SotThwQOoPqunjnHBAsp9AdboBcUDKqkouKGdxQJb2k2EbzXFAMVRoyYEzckAsRt6RSJpyQBTohF1cAXNATmN0Sqloc0Bt8L/3GtBzQJcXSIucN3RAkZTrtxifdECm9RTEeQZ1QDe+opCpbXVAw4gnoJHUdUCVVn8eGzt2QGTvtuguoXZAH+hBlbUGd0Axnnt8l2t3QBktb8G8z3dA3x3iWg0zeECyTJ0ccZV4QOo/78DP9nhAlu1i8hBXeUAEsqVVHLZ5QAMCl5PZE3pAJzB8YzBwekA6bFKVCMt6QIv4OBxKJHtAqmntGN17e0AHolPkqdF7QIUdAxqZJXxA6AfTopN3fEA0hV6/gsd8QIWEehJQFX1A0myWq+VgfUA+7wARLqp9QC9MCkoU8X1AQGD96IM1fkCl2ugUaXd+QHMRMpOwtn5AkQDr0EfzfkCfHeXrHC1/QMHOerseZH9AyHoJ2TyYf0BAVxaoZ8l/QK9MGF6Q939AUMDwhFQRgEDIqVFNUiWAQMPwQ3O7N4BAwC1uWIpIgEDC7OPXuVeAQERKxUhFZYBAn+SggChxgEBIbZbVX3uAQOlROCDog4BA8iIrvb6KgECHjIGO4Y+AQO3m0/xOk4BAWpQS+AWVgEBalBL4BZWAQO3m0/xOk4BAh4yBjuGPgEDyIiu9voqAQOlROCDog4BASG2W1V97gECf5KCAKHGAQERKxUhFZYBAwuzj17lXgEDALW5YikiAQMPwQ3O7N4BAyKlRTVIlgEBQwPCEVBGAQK9MGF6Q939AQFcWqGfJf0DEegnZPJh/QMHOerseZH9Anx3l6xwtf0CRAOvQR/N+QHMRMpOwtn5ApdroFGl3fkBAYP3ogzV+QC9MCkoU8X1APu8AES6qfUDSbJar5WB9QIKEehJQFX1ANIVev4LHfEDoB9Oik3d8QIUdAxqZJXxAB6JT5KnRe0Cqae0Y3Xt7QIv4OBxKJHtAOmxSlQjLekAnMHxjMHB6QAMCl5PZE3pAAbKlVRy2eUCZ7WLyEFd5QOo/78DP9nhAskydHHGVeEDfHeJaDTN4QBktb8G8z3dAMZ57fJdrd0Af6EGVtQZ3QGTvtuguoXZAklZ/Hhs7dkDBiCegkdR1QDe+opCpbXVApvUUxHkGdUCRlOu3GJ90QJcXSIucN3RAbfC/9xrQc0BNY3RKqWhzQBTohF1cAXNALEbekUiackAxVGjJgTNyQJb2k2EbzXFAxqpKLihncUCyn0B1ugFxQOoPqunjnHBAYkdUqLU4cEAd6ERogKpvQBUz3OUm5W5A0XGVVX0hbkDG81f/oF9tQMjA2uKtn2xASLN0tL7ha0D2Xara7CVrQFBkdmxQbGpAMH5IMAC1aUC09babEQBpQPUK3tOYTWhAnk1orqidZ0BspTqzUvBmQGxzvh6nRWZAmu3D5LSdZUDrk/azifhkQMVj3fkxVmRABjpg57i2Y0A7p8t1KBpjQAZTTGyJgGJAIOzaZePpYUCciZHXPFZhQNhPYxebxWBAMB8vYwI4YEBuG0zQ61pfQA/Z/JTvS15ATUHYWhJDXUCURa52VEBcQEAVkly0Q1tAR0MVsS5NWkDdJ9VavlxZQCbtTJRcclhAS/7e/QCOV0AK4giwoa9WQJ3itE0z11VACUWdFqkEVUD3N7X59DdUQG8PjKcHcVNAHtOfpNCvUkAFnJRbPvRRQMrTLie8llBAmdBYBQtEUUCWKy7BkPZRQBSxv5ldrlJApv2yyYBrU0BcvW12CC5UQJTLJ58B9lRALertC3jDVUBjNJ88dpZWQOrZ71cFb1dA0BN8Gi1NWEBVovbF8zBZQJ58fhBeGlpAfawnFG8JW0CQnMM+KP5bQMZh9UGJ+FxAoMWeA5D4XUCMCLOOOP5eQDA/PoK+BGBAPSMxxyqNYEC6ux0oXBhhQNOQnq1MpmFA7EbIUPU2YkAuiE/1TcpiQDFbEGRNYGNAAHf9Ren4Y0DxDn4fFpRkQC5zQEzHMWVALL+H++7RZUAkpvosfnRmQBI9+a1kGWdATWt/F5HAZ0C5bpnM8GloQB2cb/lvFWlARzzukvnCaUABFg5Xd3JqQLPfwc3RI2tAPniMSvDWa0ALZcPuuItsQOCsgKwQQm1AArtGStv5bUAZhVhn+7JuQHq4x4BSbW9Azxyde2AUcEAn4bMKk3JwQD30pwsw0XBAtSkUGSYwcUAdLoFOY49xQLFlE03V7nFAIu2SQGlOckBEh8zkC65yQJH8SYupDXNA7ydgIS5tc0B9pZA2hcxzQHnPPAOaK3RA126nb1eKdEBPPkIbqOh0QEYZRGR2RnVAUmyEb6yjdUAfOpgwNAB2QGzHLHL3W3ZAA8Kb3t+2dkDierQI1xB3QFaStXTGaXdARj5yoZfBd0DgH54RNBh4QApuOlWFbXhAjQ0fE3XBeEDKB5oS7RN5QL2sH0XXZHlAVowF0B20eUCaWEIWqwF6QMmpLMJpTXpAuowyz0SXekDutIOTJ996QF4kqMn9JHtACBf9mbNoe0DUARKkNap7QNN73wdx6XtAFfTRblMmfEApKKIUy2B8QG9l9c/GmHxA9Lq/GjbOfEBXYmIaCQF9QL7LgKcwMX1AZuOGVZ5efUAkV9t5RIl9QHPVuDIWsX1AG3mpbQfWfUCQ0J/tDPh9QPsxqVAcF35AxlA1FSwzfkBLU++eM0x+QDbyJDsrYn5AP3u4JAx1fkCO4pqH0IR+QL9iy4NzkX5AD4PaL/GafkCSs+6aRqF+QLAKSc5xpH5AsApJznGkfkCSs+6aRqF+QA+D2i/xmn5Av2LLg3ORfkCO4pqH0IR+QD97uCQMdX5ANvIkOytifkBLU++eM0x+QMZQNRUsM35A+zGpUBwXfkCQ0J/tDPh9QBt5qW0H1n1Ac9W4MhaxfUAkV9t5RIl9QGbjhlWeXn1AucuApzAxfUBXYmIaCQF9QPS6vxo2znxAb2X1z8aYfEApKKIUy2B8QBX00W5TJnxA03vfB3Hpe0DUARKkNap7QAgX/ZmzaHtAXiSoyf0ke0DrtIOTJ996QLqMMs9El3pAyakswmlNekCaWEIWqwF6QFaMBdAdtHlAuawfRddkeUDKB5oS7RN5QI0NHxN1wXhACm46VYVteEDgH54RNBh4QEM+cqGXwXdAWJK1dMZpd0DierQI1xB3QAPCm97ftnZAbMcscvdbdkAfOpgwNAB2QFJshG+so3VARhlEZHZGdUBPPkIbqOh0QNdup29XinRAds88A5ordEB9pZA2hcxzQO8nYCEubXNAkfxJi6kNc0BEh8zkC65yQCDtkkBpTnJAsWUTTdXucUAdLoFOY49xQLUpFBkmMHFAPfSnCzDRcEAn4bMKk3JwQM8cnXtgFHBAerjHgFJtb0AZhVhn+7JuQAK7Rkrb+W1A4KyArBBCbUALZcPuuItsQD54jErw1mtAs9/BzdEja0ABFg5Xd3JqQEc87pL5wmlAFZxv+W8VaUC5bpnM8GloQE1rfxeRwGdAEj35rWQZZ0AkpvosfnRmQCa/h/vu0WVALnNATMcxZUDxDn4fFpRkQAB3/UXp+GNAMVsQZE1gY0ApiE/1TcpiQOxGyFD1NmJA05CerUymYUC6ux0oXBhhQD0jMccqjWBAMD8+gr4EYECMCLOOOP5eQKDFngOQ+F1AxmH1QYn4XECQnMM+KP5bQH2sJxRvCVtAnnx+EF4aWkBVovbF8zBZQNATfBotTVhA6tnvVwVvV0BdNJ88dpZWQC3q7Qt4w1VAlMsnnwH2VEBcvW12CC5UQKb9ssmAa1NAFLG/mV2uUkCSKy7BkPZRQJnQWAULRFFAytMuJ7yWUEDSTXoOeqBOQDLhrMhx4E9ACQeg/gSVUEDSEmlVsD5RQOYKm/dI7VFAjjcw9NugUkBrBJNKdVlTQCsZ79ofF1RAdJV9VuXZVEBILdYvzqFVQKQ/T4vhblZASFh3LyVBV0DX37J1nRhYQPoICTtN9VhACk8r0TXXWUC6GMPvVr5aQIJIEaauqltAe7PrTDmcXECVnSR58ZJdQP93aO7Pjl5AXjOeksuPX0CyQOuw7EpgQGAxazF20GBAZqokznpYYUCcrlMF8uJhQPSJbUvSb2JA5c/ZBhH/YkDfMheMopBjQC/0URp6JGRAS4Rx2Im6ZEDqv6LSwlJlQH8DZPgU7WVAIhcYG2+JZkBOtiTtvidnQIgzoQHxx2dAs26ZzPBpaEBjBemjqA1pQJhQssABs2lA7Wh0QeRZakCADMMsNwJrQLDconTgq2tAHQOM+sRWbEA+3xSUyAJtQC3uRRDOr21AQKmXPbddbkDbn5rwZAxvQLOWSQu3u29ABnyCQsY1cECfMJu54Y1wQNtLTYkc5nBA4NWX6GQ+cUBkRmKsqJZxQLFlE03V7nFAy2F17NdGckBn8eRbnZ5yQIkdySIS9nJAWglRhSJNc0CBz3SLuqNzQA5ONgjG+XNAAXweoTBPdECCqPPV5aN0QL3JpAjR93RAY8plhd1KdUCJj/iK9px1QJ4+HlMH7nVA0xssG/s9dkA6Lb8svYx2QPqlieY42nZAxPc0xVkmd0CDR1NsC3F3QAHkWq85undAuESmmtABeECgAHN8vEd4QCAd2u3pi3hApQe820XOeECShZqPvQ55QGriWrg+TXlAsaXqcreJeUCpIMFSFsR5QKwuOGpK/HlAFJO2UkMyekBGdKY08WV6QLWMMs9El3pAB8nEfy/GekBNLUFJo/J6QCcC+NqSHHtAKHdKl/FDe0ABF/2Zs2h7QM2eM77NintAzgESpDWqe0Danv614cZ7QI3sgS3J4HtAJCTAF+T3e0AxuYlZKwx8QJS1/7KYHXxAv1zJwiYsfECUx9gI0Td8QLJ6vOiTQHxA6kp8q2xGfEClNwCBWUl8QKU3AIFZSXxA6kp8q2xGfECyerzok0B8QJTH2AjRN3xAv1zJwiYsfECUtf+ymB18QDG5iVkrDHxAJCTAF+T3e0CN7IEtyeB7QNqe/rXhxntAzgESpDWqe0DNnjO+zYp7QAEX/ZmzaHtAKHdKl/FDe0AnAvjakhx7QEstQUmj8npAB8nEfy/GekC1jDLPRJd6QEZ0pjTxZXpAFJO2UkMyekCsLjhqSvx5QKkgwVIWxHlAsaXqcreJeUBq4lq4Pk15QJKFmo+9DnlAoge820XOeEAgHdrt6Yt4QKAAc3y8R3hAuESmmtABeEAB5FqvObp3QIBHU2wLcXdAxPc0xVkmd0D6pYnmONp2QDotvyy9jHZA0xssG/s9dkCdPh5TB+51QIyP+Ir2nHVAY8plhd1KdUC9yaQI0fd0QIKo89Xlo3RAAXweoTBPdEAOTjYIxvlzQIHPdIu6o3NAWglRhSJNc0CJHckiEvZyQGXx5FudnnJAy2F17NdGckCxZRNN1e5xQGRGYqyolnFA4NWX6GQ+cUDbS02JHOZwQJ8wm7nhjXBABnyCQsY1cECzlkkLt7tvQNufmvBkDG9AOamXPbddbkAt7kUQzq9tQD7fFJTIAm1AHQOM+sRWbECw3KJ04KtrQIAMwyw3AmtA52h0QeRZakCYULLAAbNpQGMF6aOoDWlAs26ZzPBpaECIM6EB8cdnQEm2JO2+J2dAIhcYG2+JZkB/A2T4FO1lQOq/otLCUmVAS4Rx2Im6ZEAr9FEaeiRkQN8yF4yikGNA5c/ZBhH/YkD0iW1L0m9iQJyuUwXy4mFAYqokznpYYUBgMWsxdtBgQLJA67DsSmBAXjOeksuPX0D/d2juz45eQI2dJHnxkl1Ae7PrTDmcXECCSBGmrqpbQLoYw+9WvlpACk8r0TXXWUD6CAk7TfVYQNffsnWdGFhASFh3LyVBV0CkP0+L4W5WQEgt1i/OoVVAbpV9VuXZVEArGe/aHxdUQGsEk0p1WVNAjjcw9NugUkDmCpv3SO1RQNISaVWwPlFACQeg/gSVUEAy4azIceBPQNJNeg56oE5A+TOAPxw/TEDG/3+/NWZNQG7Ldi8wlk5AJYI5OSfPT0BF5JdlmohQQISj1X04LlFAChYK9njYUUB3uf3VZYdSQLoYEg4IO1NAl/LKaGfzU0B3MGV8irBUQIROhZx2clVAPSIHzC85VkBpMvmuuARXQNESznwS1VdA8nDO8jyqWEDqr9ZGNoRZQMceaxr7YlpAufYtboZGW0BxasKV0S5cQGsjKCzUG11Ak5KaCIQNXkBwe/8z1QNfQNsX8N65/l9Akw80LBF/YECg75KC/gBhQHU34ysbhWFAg2fUZFwLYkC/SVFqtpNiQHczyHYcHmNAUDTmv4CqY0CuBMp01DhkQCxRs7wHyWRAfsgytglbZUDtEd92yO5lQEuPkgsxhGZAOYQ1eS8bZ0DP7he+rrNnQO8K3tOYTWhAESICstboaEBf7e1QUIVpQPFvra3sImpAwco8zpHBakBcI3LGJGFrQAVMhL2JAWxAz2su9KOibECZdXDLVURtQPTG68uA5m1AwNParQWJbkDlSaJhxCtvQBCh+Riczm9AXUdUqLU4cEDvLmvtB4pwQN3W83Qz23BAOFHzjSYscUC3izhDz3xxQJb2k2EbzXFAWgpNfvgcckD9w9L9U2xyQEP2oxobu3JAZhhs7DoJc0C0BFFvoFZzQPfmbYs4o3NAbGl3HPDuc0ARAYX5szl0QBAO+/xwg3RA0FyRDBTMdEAHbnEhihN1QErKZ1DAWXVAn4Yj0qOedUD/A38LIuJ1QKjczJUoJHZALd4jR6VkdkDu36Q6hqN2QKI5tdi54HZAKpco3y4cd0Ay41Rp1FV3QAgEC/iZjXdAnStveW/Dd0AnhqtQRfd3QBIheF0MKXhAfPdyA7ZYeEB7KEMxNIZ4QJp3gmd5sXhAsldov3jaeECz5DHxJQF5QF9ZQlp1JXlA9Ln3AlxHeUA9nS+kz2Z5QDAxeKzGg3lAnc/pRDieeUD/saVVHLZ5QLSR9olry3lAA0IQVB/eeUBplWvwMe55QDclvGie+3lAldp9lmAGekCNYhgldQ56QP8Bl5PZE3pAJYzzNYwWekAljPM1jBZ6QP8Bl5PZE3pAjWIYJXUOekCV2n2WYAZ6QDclvGie+3lAaZVr8DHueUADQhBUH955QLSR9olry3lA/7GlVRy2eUCdz+lEOJ55QDAxeKzGg3lAPZ0vpM9meUD0ufcCXEd5QF9ZQlp1JXlAs+Qx8SUBeUCuV2i/eNp4QJp3gmd5sXhAeyhDMTSGeEB893IDtlh4QBIheF0MKXhAJ4arUEX3d0CdK295b8N3QAgEC/iZjXdAMuNUadRVd0AqlyjfLhx3QKA5tdi54HZA7t+kOoajdkAt3iNHpWR2QKjczJUoJHZA/wN/CyLidUCfhiPSo551QErKZ1DAWXVAB25xIYoTdUDQXJEMFMx0QBAO+/xwg3RADQGF+bM5dEBvaXcc8O5zQPfmbYs4o3NAtARRb6BWc0BmGGzsOglzQEP2oxobu3JA/cPS/VNsckBaCk1++BxyQJb2k2EbzXFAt4s4Q898cUA4UfONJixxQOHW83Qz23BA7y5r7QeKcEBdR1SotThwQBCh+Riczm9A5UmiYcQrb0DA09qtBYluQPTG68uA5m1AmXVwy1VEbUDPay70o6JsQAVMhL2JAWxAXCNyxiRha0DByjzOkcFqQPFvra3sImpAX+3tUFCFaUARIgKy1uhoQO8K3tOYTWhAz+4Xvq6zZ0A5hDV5LxtnQEuPkgsxhGZA7RHfdsjuZUB+yDK2CVtlQCxRs7wHyWRArgTKdNQ4ZEBQNOa/gKpjQHczyHYcHmNAv0lRaraTYkCDZ9RkXAtiQHU34ysbhWFAoO+Sgv4AYUCTDzQsEX9gQNsX8N65/l9AcHv/M9UDX0CTkpoIhA1eQGsjKCzUG11AcWrCldEuXECy9i1uhkZbQM0eaxr7YlpA6q/WRjaEWUDycM7yPKpYQNESznwS1VdAaTL5rrgEV0BCIgfMLzlWQIROhZx2clVAdzBlfIqwVECX8spoZ/NTQLoYEg4IO1NAfLn91WWHUkAKFgr2eNhRQISj1X04LlFAReSXZZqIUEAbgjk5J89PQG7Ldi8wlk5Axv9/vzVmTUD5M4A/HD9MQJolqVcLB0pAi1iiF/YWS0BhzIM4Dy9MQBupyzdwT01A/JJg+jB4TkAfUSmyZ6lPQJiEvmGUcVBACKc9VcMSUUCx9S3wSLhRQBl9Y2AsYlJAjTWjt3MQU0ARYnHeI8NTQJSu/oZAelRAb3M9IMw1VUBIvijJx/VVQOr2RkQzulZA+iNy6wyDV0AN/O+jUVBYQF4Q5NL8IVlASXcmUgj4WUB+bollbNJaQLF1mLAfsVtAN2PbLBeUXEAI7KcgRntdQC0HjBaeZl5A7nlb1Q5WX0A3W3UswyRgQC6EwGV4oGBA1ekFQBweYUAkNI72op1hQOvQXNT/HmJAthqHMiWiYkDbF/52BCdjQDfezhOOrWNA4m7dhrE1ZEAMnh1aXb9kQMZYTSR/SmVAUVIzigPXZUCT1mRA1mRmQFculQ3i82ZAuK1wzRCEZ0AzLAV0SxVoQLhJuRF6p2hAuYPT14M6aUAOu5EdT85pQKZk0WXBYmpAHDdIZb/3akAqvEwJLY1rQFrALX/tImxAliwXPOO4bEBUZoIF8E5tQNHhL/r05G1A4SGnm9J6bkAX7znYaBBvQFUghxWXpW9AJ2+8HR4dcEDl7txfG2dwQJ1PzliysHBArqs349H5cEBaXhuzaEJxQDHIZFxlinFAJCujWbbRcUDZKe4SShhyQOhH8OQOXnJA754TKPOickCW08w35eZyQGswAHrTKXNAqal8Zqxrc0BubYiOXqxzQIeHeqTY63NApAZdgwkqdEAe+5I24GZ0QNyVfQFMonRA1J4bZzzcdECScJ4xoRR1QHGf73lqS3VAbnAir4iAdUCgRMyd7LN1QB8kP3eH5XVAK5yh2EoVdkAgMt/RKEN2QDm+bOwTb3ZA0RbcMf+YdkBZjjoy3sB2QO3jNQql5nZAe2cDaUgKd0A6OAWWvSt3QEisKXb6SndAOx0BkfVnd0DHhIYVpoJ3QBmIl94Dm3dAxcUYdwexd0A/dMMdqsR3QEqZmcjl1XdA7WH+J7Xkd0BXYnCpE/F3QKXH43n9+ndADcq6h28CeECG81qEZwd4QDEWXuXjCXhAMRZe5eMJeECG81qEZwd4QA3KuodvAnhApcfjef36d0BXYnCpE/F3QO1h/ie15HdASpmZyOXVd0A/dMMdqsR3QMXFGHcHsXdAGYiX3gObd0DHhIYVpoJ3QDsdAZH1Z3dASKwpdvpKd0A6OAWWvSt3QHtnA2lICndA6uM1CqXmdkBZjjoy3sB2QNEW3DH/mHZAOb5s7BNvdkAgMt/RKEN2QCucodhKFXZAHyQ/d4fldUCgRMyd7LN1QG5wIq+IgHVAcZ/veWpLdUCPcJ4xoRR1QNSeG2c83HRA3JV9AUyidEAe+5I24GZ0QKQGXYMJKnRAh4d6pNjrc0BubYiOXqxzQKmpfGasa3NAazAAetMpc0CW08w35eZyQO2eEyjzonJA6kfw5A5eckDZKe4SShhyQCQro1m20XFALshkXGWKcUBaXhuzaEJxQK6rN+PR+XBAnU/OWLKwcEDl7txfG2dwQCdvvB0eHXBAVSCHFZelb0Af7znYaBBvQOEhp5vSem5A0eEv+vTkbUBUZoIF8E5tQJYsFzzjuGxAWsAtf+0ibEAqvEwJLY1rQBw3SGW/92pApmTRZcFiakAOu5EdT85pQLOD09eDOmlAuEm5EXqnaEAzLAV0SxVoQLitcM0QhGdAVy6VDeLzZkCT1mRA1mRmQFFSM4oD12VAxlhNJH9KZUAMnh1aXb9kQOJu3YaxNWRAN97OE46tY0DbF/52BCdjQLYahzIlomJA69Bc1P8eYkAkNI72op1hQNXpBUAcHmFALoTAZXigYEA3W3UswyRgQO55W9UOVl9ALQeMFp5mXkAI7KcgRntdQDdj2ywXlFxAsXWYsB+xW0B+bollbNJaQEl3JlII+FlAXhDk0vwhWUAT/O+jUVBYQPojcusMg1dA6vZGRDO6VkBIvijJx/VVQGtzPSDMNVVAmq7+hkB6VEARYnHeI8NTQI01o7dzEFNAGX1jYCxiUkCx9S3wSLhRQAynPVXDElFAmIS+YZRxUEAfUSmyZ6lPQPySYPoweE5AFKnLN3BPTUBbzIM4Dy9MQItYohf2FktAmiWpVwsHSkA3GfilBvZHQMBgOpda8EhAWeZroDbySUCd6PE4svtKQPLnCmDjDExAeQt/hN4lTUCQPCxstkZOQH4AfBt8b09AWdtoXh9QUEAcPADEhexQQGoz7NT2jFFA5eDtFXcxUkDPSxbuCdpSQN4w4pqxhlNAW6KDJG83VEAgiGJSQuxUQKk43Z8ppVVAbYhSMSJiVkCHy37JJyNXQJZcNb806FdAy0uA80GxWEBW4S/IRn5ZQMaf4xY5T1pAz2mWKA0kW0A0YbettfxbQMT52LYj2VxAH5z/rUa5XUDVCJlQDJ1eQC55JapghF9Ax5/NB5c3YECJscaNrq5gQKyxjlVqJ2FAhP3f7byhYUAaKu4EmB1iQC9dJmjsmmJAiLBjBKoZY0CbrZrmv5ljQMKt/jwcG2RAcKSjWKydZEBCj56vXCFlQH15pt8YpmVA6643scsrZkAMZTobX7JmQJPJLUe8OWdAoAnYlcvBZ0B3h3ukdEpoQG0UkVKe02hAAaIGyC5daUAreQF8C+dpQMihIjwZcWpA/LtLNDz7akDlJ+L2V4VrQNTtjYVPD2xAenNxWgWZbEA2odZxWyJtQL20TVQzq21AlZg5IW4zbkAjM8WZ7LpuQFi+PCyPQW9AJ9nF/zXHb0DAUjiA4CVwQMD2zfWHZ3BA2vhSLoGocEBYmPHsu+hwQAAV6vAnKHFAdWlJ/LRmcUALGLjaUqRxQEQjXWjx4HFA/i3RmIAcckBspR1+8FZyQI2/w08xkHJAMAXHcTPIckB7Dbd75/5yQGEEtD8+NHNA/Ypp0Shoc0A6e/uMmJpzQGoV4B1/y3NAjx+jhc76c0BZg40ieSh0QCMALbZxVHRA+pK3a6t+dECmRkbeGad0QMkx4x6xzXRAfYBmumXydEBfgh6/LBV1QD7UPsL7NXVAfd8S5chUdUAZDvDZinF1QLk75Og4jHVAphcd9MqkdUANWwV8Obt1QObnFKN9z3VAOhpRMZHhdUCgy3qXbvF1QHvC5/EQ/3VAvYEFC3QKdkDXqoNdlBN2QOBiJBZvGnZA1WsxFQIfdkCP5JTvSyF2QI/klO9LIXZA1WsxFQIfdkDgYiQWbxp2QNeqg12UE3ZAvYEFC3QKdkB7wufxEP91QKDLepdu8XVAOhpRMZHhdUDm5xSjfc91QA1bBXw5u3VAphcd9MqkdUC5O+ToOIx1QBkO8NmKcXVAfd8S5chUdUA+1D7C+zV1QFyCHr8sFXVAfYBmumXydEDJMeMesc10QKZGRt4Zp3RA+pK3a6t+dEAjAC22cVR0QFmDjSJ5KHRAjx+jhc76c0BqFeAdf8tzQDp7+4yYmnNA+4pp0Shoc0BhBLQ/PjRzQHsNt3vn/nJAMAXHcTPIckCNv8NPMZByQGmlHX7wVnJA/i3RmIAcckBEI11o8eBxQAsYuNpSpHFAdWlJ/LRmcUAAFerwJyhxQFiY8ey76HBA2vhSLoGocEDA9s31h2dwQMBSOIDgJXBAJ9nF/zXHb0Bfvjwsj0FvQCMzxZnsum5AlZg5IW4zbkC9tE1UM6ttQDah1nFbIm1AenNxWgWZbEDU7Y2FTw9sQOUn4vZXhWtA/LtLNDz7akDBoSI8GXFqQCt5AXwL52lAAaIGyC5daUBtFJFSntNoQHeHe6R0SmhAoAnYlcvBZ0CTyS1HvDlnQAxlOhtfsmZA6643scsrZkB9eabfGKZlQEKPnq9cIWVAcKSjWKydZEDCrf48HBtkQJutmua/mWNAiLBjBKoZY0AvXSZo7JpiQBUq7gSYHWJAhP3f7byhYUCssY5VaidhQImxxo2urmBAx5/NB5c3YEAkeSWqYIRfQNUImVAMnV5AH5z/rUa5XUDE+di2I9lcQDRht621/FtAyWmWKA0kW0DGn+MWOU9aQFbhL8hGfllAy0uA80GxWECWXDW/NOhXQIfLfsknI1dAbYhSMSJiVkCpON2fKaVVQCCIYlJC7FRAW6KDJG83VEDeMOKasYZTQM9LFu4J2lJA5eDtFXcxUkBqM+zU9oxRQBw8AMSF7FBAVdtoXh9QUEB+AHwbfG9PQJA8LGy2Rk5AeQt/hN4lTUDy5wpg4wxMQJ3o8Tiy+0pAUeZroDbySUDAYDqXWvBIQDcZ+KUG9kdAY31r2uAJRkCK1t4vH/BGQFloMOtK3UdAAJPIoXnRSEC67RaPv8xJQMwBNn4vz0pApKRts9rYS0AZ2qDV0OlMQMm2tNcfAk5AcEf+4dMhT0AmA+OdeyRQQLjydxrJu1BAd7Xrh9VWUUCy5Lf1ovVRQPcg3FYymFJAWLxKd4M+U0CoWJDxlOhTQKYXvyRkllRAgxWmKu1HVUA2/F3OKv1VQA2NM4MWtlZAkQT5W6hyV0CrPscC1zJYQCd5N7GX9lhAZYQeKd69WUB0G9KtnIhaQGn+AP7DVltAD0MmTkMoXECPIKBDCP1cQChEcvD+1F1ABXy7zxGwXkAtPubCKY5fQMOfzQeXN2BAcXs+L4KpYEC8QlldyBxhQM8KJMlakWFA5ia12ykHYkCd/kAxJX5iQBNTmpo79mJAfAAnH1tvY0AuAkv/cOljQDw0S7dpZGRAP/+oAjHgZEDwyfffsVxlQIO4LJXW2WVAyepotIhXZkCpEj4hsdVmQM/gbBY4VGdAaWocLAXTZ0CBTIle/1FoQMnzKhUN0WhAtQ9NKhRQaUAJ2Rrz+c5pQI9zGUijTWpAMFQOjvTLakBxNU6/0UlrQCPHcHUex2tA8+lk871DbEDm7OAvk79sQJ7qKeCAOm1Avg4tg2m0bUCnOOVsLy1uQP4gB9K0pG5APdvt09sab0DHRMGMho9vQCLX541LAXBAW+YJ2fc5cECy4m9PuXFwQNH4Ui6BqHBAtePrzkDecEDElOms6RJxQHke62xtRnFAeOH44r14cUAB7/gYzalxQAaMGlWN2XFA7rg0IPEHckBXoRNM6zRyQAnXsPluYHJAaUBSn2+KckDGqosO4bJyQOX7Hnq32XJAdg23e+f+ckAJT3kZZiJzQDlhassoRHNAU/WhgCVkc0BHWUqkUoJzQEU3aCKnnnNAnTJnbBq5c0BeMWh9pNFzQIlKTt496HNAwHuHqd/8c0BCd46Ogw90QEELI9UjIHRA5NU2YLsudEBjLoywRTt0QLJhBee+RXRAvZmixiNOdEAeAC22cVR0QBfojcGmWHRAFAjRmsFadEAUCNGawVp0QBfojcGmWHRAHgAttnFUdEC9maLGI050QLJhBee+RXRAYy6MsEU7dEDk1TZguy50QEELI9UjIHRAQneOjoMPdEDAe4ep3/xzQIlKTt496HNAXjFofaTRc0CdMmdsGrlzQEU3aCKnnnNAR1lKpFKCc0BQ9aGAJWRzQDlhassoRHNACU95GWYic0B2Dbd75/5yQOX7Hnq32XJAxqqLDuGyckBpQFKfb4pyQAnXsPluYHJAV6ETTOs0ckDuuDQg8QdyQAaMGlWN2XFABe/4GM2pcUB44fjivXhxQHke62xtRnFAwJTprOkScUC14+vOQN5wQNb4Ui6BqHBAsuJvT7lxcEBb5gnZ9zlwQB7X541LAXBAx0TBjIaPb0A92+3T2xpvQP4gB9K0pG5ApzjlbC8tbkC2Di2DabRtQJfqKeCAOm1A5uzgL5O/bEDz6WTzvUNsQCPHcHUex2tAcTVOv9FJa0AwVA6O9MtqQJVzGUijTWpACdka8/nOaUC1D00qFFBpQMnzKhUN0WhAgUyJXv9RaEBpahwsBdNnQM/gbBY4VGdAqRI+IbHVZkDJ6mi0iFdmQIO4LJXW2WVA8Mn337FcZUA//6gCMeBkQDw0S7dpZGRALgJL/3DpY0B8ACcfW29jQBNTmpo79mJAnf5AMSV+YkDmJrXbKQdiQM8KJMlakWFAvEJZXcgcYUBxez4vgqlgQMOfzQeXN2BALT7mwimOX0AFfLvPEbBeQChEcvD+1F1AjyCgQwj9XEAPQyZOQyhcQGn+AP7DVltAdBvSrZyIWkBlhB4p3r1ZQCd5N7GX9lhAqz7HAtcyWECRBPlbqHJXQA2NM4MWtlZANvxdzir9VUB9FaYq7UdVQKoXvyRkllRAqFiQ8ZToU0BYvEp3gz5TQPcg3FYymFJAsuS39aL1UUB7teuH1VZRQLjydxrJu1BAJgPjnXskUEBwR/7h0yFPQMm2tNcfAk5AH9qg1dDpTECkpG2z2thLQMwBNn4vz0pAuu0Wj7/MSUD4ksihedFIQFloMOtK3UdAitbeLx/wRkBjfWva4AlGQJHYzW2AQERAp/ajahQURUDthzkJBu5FQKiqBx9pzkZAwM+aQ1C1R0AZhAa8zKJIQLSNOmbulklA0jlFpMORSkBYPI9HWZNLQJ8CHny6m0xA6dTps/CqTUCOlVWSA8FOQHFZ1tf43U9A77zsJuqAUEA/DXzZSxZRQIa5w1Mhr1FA7rhKTWlLUkDSxrBbIetSQL7msOlFjlNAKxtyLtI0VEBndC4lwN5UQFGjOIUIjFVAED1ouqI8VkDw1fTdhPBWQFEMyK+jp1dAw4dOkPJhWEC21M96Yx9ZQDfhVADn31lA/bMkQ2yjWkBuxN7y4GlbQA0fOkkxM1xA5j9wB0j/XECxQVp0Ds5dQBSvRltsn15ANOmNC0hzX0AzW3UswyRgQEIRTk4FkWBAv7WqW1v+YEDdHgCKtWxhQDqDqlUD3GFAKU8mhDNMYkCTArcmNL1iQKwrfZ3yLmNAHEj8mluhY0DdCREoWxRkQJksWKjch2RAObgF38r7ZEBJOSz0D3BlQKsjc3qV5GVA8z07dURZZkBTnS9fBc5mQOphQTHAQmdAQwwMaly3Z0Ae7J8VwStoQPLRr9XUn2hA29Qe6n0TaUA7qeo5ooZpQJmvblwn+WlA34/7ovJqakBZ5L4i6dtqQOoo9r7vS2tAxtZnM+u6a0CaSx0fwChsQC7VVw9TlWxAI/i6iogAbUAByqUcRWptQPD7tGBt0m1APP5mDuY4bkDyctsElJ1uQM/5plZcAG9Auji0VSRhb0Al4iqf0b9vQH6vqhMlDnBAFtW+Ijo7cEDh7txfG2dwQBVyUGu8kXBAe99vKBG7cEAe6lPDDeNwQIted7amCXFAHQ880NAucUCCFFE4gVJxQJ6+9nStdHFA66MccEuVcUAqUFZ8UbRxQCAro1m20XFAj0kGOnHtcUC/9+rFeQdyQKrsUiDIH3JAYTfL6lQ2ckBQHSVJGUtyQOZH8OQOXnJAAMqz8C9vckAHsuMqd35yQNILkeDfi3JA+GXS72WXckBYIOPJBaFyQA/993S8qHJAo6LHjYeuckAq9MVIZbJyQLxbEXNUtHJAvFsRc1S0ckAq9MVIZbJyQKOix42HrnJAD/33dLyockBYIOPJBaFyQPhl0u9ll3JA0guR4N+LckAHsuMqd35yQADKs/Avb3JA5kfw5A5eckBQHSVJGUtyQGE3y+pUNnJAquxSIMgfckC/9+rFeQdyQI9JBjpx7XFAICujWbbRcUAqUFZ8UbRxQOujHHBLlXFAnr72dK10cUCCFFE4gVJxQB0PPNDQLnFAi153tqYJcUAe6lPDDeNwQHvfbygRu3BAFXJQa7yRcEDh7txfG2dwQBrVviI6O3BAfq+qEyUOcEAl4iqf0b9vQLI4tFUkYW9Az/mmVlwAb0D8ctsElJ1uQDz+Zg7mOG5A8Pu0YG3SbUD7yaUcRWptQCP4uoqIAG1ALtVXD1OVbECaSx0fwChsQMbWZzPrumtA5Cj2vu9La0BT5L4i6dtqQN+P+6LyampAma9uXCf5aUA7qeo5ooZpQNvUHup9E2lA8tGv1dSfaEAj7J8VwStoQEMMDGpct2dA6mFBMcBCZ0BTnS9fBc5mQPM9O3VEWWZAqyNzepXkZUBJOSz0D3BlQDm4Bd/K+2RAmSxYqNyHZEDdCREoWxRkQBxI/JpboWNArCt9nfIuY0CTArcmNL1iQClPJoQzTGJAOoOqVQPcYUDdHgCKtWxhQL+1qltb/mBAQhFOTgWRYEAzW3UswyRgQDTpjQtIc19AFK9GW2yfXkCxQVp0Ds5dQOY/cAdI/1xADR86STEzXEBuxN7y4GlbQP2zJENso1pAN+FUAOffWUC21M96Yx9ZQMOHTpDyYVhAUQzIr6OnV0Dw1fTdhPBWQBA9aLqiPFZAUaM4hQiMVUBndC4lwN5UQCsbci7SNFRAueaw6UWOU0DWxrBbIetSQO64Sk1pS1JAhrnDUyGvUUA/DXzZSxZRQO+87CbqgFBAeVnW1/jdT0COlVWSA8FOQOnU6bPwqk1AnwIefLqbTEBYPI9HWZNLQNg5RaTDkUpAtI06Zu6WSUAZhAa8zKJIQMDPmkNQtUdAoaoHH2nORkDthzkJBu5FQKf2o2oUFEVAkdjNbYBAREBQoCvr35dCQIbJkLQfWkNAkzvipjciREAEqbz3OfBEQD0U2rg3xEVAlmw0xUCeRkDRAgyuY35HQFK43KetZEhAWEdNdypRSUB5diRe5ENKQA58UAjkPEtARz4NeTA8TEBNgTb4zkFNQOFw0//CTU5AOUbpKQ5gT0AYjFEPWDxQQKaSbkHTy1BAKxCRc3ZeUUD/m5RbPvRRQETa8ZQmjVJAXJAUmSkpU0DKfwi4QMhTQLGIhBFkalRAfI9bjooPVUDTlFraqbdVQOtbm162YlZApOFSPKMQV0BKxiJIYsFXQKuj9AXkdFhANhtmpRcrWUAaMcz+6uNZQBlN1JBKn1pA9PTIfiFdW0CtCYCPWR1cQFn+9yzb31xAyCWpZI2kXUAY1Y/oVWteQBiy8xAZNF9A2xfw3rn+X0BChOD/jGVgQBvVa+iMzGBAd2dcMkw0YUBIwVPEuZxhQM6IjuXDBWJA5LaHQVhvYkANIgPsY9liQAtBf2XTQ2NA9bcNoJKuY0DU9JEEjRlkQLrRZHithGRAJeNbY97vZEB+yDK2CVtlQKKEVPEYxmVA/5ICLPUwZkArHtcbh5tmQGxsnxy3BWdAEkiLOG1vZ0Dj260wkdhnQCgvzIUKQWhAvCJ1gcCoaEBsiF4/mg9pQA+nArd+dWlAFDx5xVTaaUD8yIY3Az5qQBjA3NNwoGpAeemEZYQBa0BjI3LGJGFrQKdwMOo4v2tAdhmu6KcbbEDiehcJWXZsQGf9vswzz2xArYsK+h8mbUBlyV+nBXttQG80CEbNzW1AaE0GrV8ebkC72NQjpmxuQMJHCW2KuG5AzFnS0PYBb0AbDUwn1khvQGwFouITjW9AEKH5GJzOb0DKhg7HrQZwQPFmcN6fJHBAIaMecBtBcEAWBwv+F1xwQJJ71HKNdXBAYHbPJXSNcEBvhtzexKNwQOpKCtp4uHBAkkYAy4nLcEDIJDDg8dxwQJssy8Wr7HBAx8Z5qLL6cEDvJdM3AgdxQFRNk6iWEXFAn9+NtmwacUBXT1ymgSFxQF47xkbTJnFAAfPi8V8qcUA4UfONJixxQDhR840mLHFAAfPi8V8qcUBeO8ZG0yZxQFdPXKaBIXFAn9+NtmwacUBUTZOolhFxQO8l0zcCB3FAx8Z5qLL6cECbLMvFq+xwQMgkMODx3HBAkkYAy4nLcEDqSgraeLhwQG+G3N7Eo3BAYHbPJXSNcECSe9RyjXVwQBYHC/4XXHBAIaMecBtBcEDxZnDenyRwQMqGDsetBnBAEKH5GJzOb0BsBaLiE41vQBsNTCfWSG9AzFnS0PYBb0DCRwltirhuQLvY1COmbG5AaE0GrV8ebkB0NAhGzc1tQGXJX6cFe21ArYsK+h8mbUBh/b7MM89sQOJ6FwlZdmxAfRmu6KcbbECncDDqOL9rQGMjcsYkYWtAc+mEZYQBa0AYwNzTcKBqQPzIhjcDPmpAFDx5xVTaaUAPpwK3fnVpQGaIXj+aD2lAvCJ1gcCoaEAoL8yFCkFoQOPbrTCR2GdAEkiLOG1vZ0BsbJ8ctwVnQCse1xuHm2ZABJMCLPUwZkCihFTxGMZlQH7IMrYJW2VAJeNbY97vZEC60WR4rYRkQNT0kQSNGWRA9bcNoJKuY0ALQX9l00NjQA0iA+xj2WJA5LaHQVhvYkDKiI7lwwViQEjBU8S5nGFAd2dcMkw0YUAb1WvojMxgQEKE4P+MZWBA2xfw3rn+X0AYsvMQGTRfQBjVj+hVa15AyCWpZI2kXUBZ/vcs299cQK0JgI9ZHVxA9PTIfiFdW0AZTdSQSp9aQBoxzP7q41lANhtmpRcrWUCro/QF5HRYQErGIkhiwVdApOFSPKMQV0DrW5tetmJWQNOUWtqpt1VAfI9bjooPVUCxiIQRZGpUQMp/CLhAyFNAXJAUmSkpU0BE2vGUJo1SQP+blFs+9FFALxCRc3ZeUUCmkm5B08tQQBiMUQ9YPFBAOUbpKQ5gT0DbcNP/wk1OQFOBNvjOQU1ARz4NeTA8TEAOfFAI5DxLQHl2JF7kQ0pAWEdNdypRSUBZuNynrWRIQNECDK5jfkdAlmw0xUCeRkA9FNq4N8RFQP+ovPc58ERAkDvipjciRECGyZC0H1pDQFCgK+vfl0JAmiv7HA4OQUDJ156NO8BBQN/iXV3Fd0JAM3gkQLw0Q0DUbiLeL/dDQPl4fcIuv0RAvn7pScaMRUAfIjGRAmBGQAnYuGPuOEdANXAHKpMXSEAtS1/Y+PtIQIXfc90l5klAlYpHER/WSkDd/T2k58tLQGfmbw6Bx0xA2LJM/+rITUDgl5dNI9BOQBMpzecl3U9A0YJ/YvZ3UEAInRnrNwRRQKSHKnxSk1FAFoVi8z8lUkBn8EoX+blSQJoPQpF1UVNAdQ/b56vrU0DV6Kh5kYhUQG3YengaKFVAgvMQ5TnKVUCkP0+L4W5WQEmJ9f4BFldAlgLimIq/V0DrfOR0aWtYQCHQJ3CLGVlATL42KNzJWUDBVqH6RXxaQOiJRwWyMFtAskZNJwjnW0BQHbwCL59cQEz+1f4LWV1AyUMcS4MUXkBbww3jd9FeQGgznpLLj19Arlq0fa8nYEAwbE/NCIhgQKxz2ufg6GBAzeblcSZKYUCqK+yIx6thQPKBw8exDWJA+YltS9JvYkCPdUO4FdJiQP2lfT9oNGNAMjAVpbWWY0D6dv1F6fhjQGnAsx7uWmRAbmIi0q68ZEAT2dSwFR5lQH3QecAMf2VAuuWvw33fZUAdmxlCUj9mQMK4tJBznmZAgw9x2sr8ZkCTVAIpQVpnQOiN6G2/tmdA8Eyqiy4SaEBMvTtfd2xoQDtYjcmCxWhAW9w8uTkdaUA//GI0hXNpQGwMeGJOyGlAWdRJln4bakAAhfxX/2xqQEK7EG+6vGpAwFxo7JkKa0BJCkQ0iFZrQMrWMghwoGtAqebtkDzoa0Azmhlo2S1sQLzl5aEycWxA5YGH1jSybEDIqoMrzfBsQHM2yFzpLG1Aj+GJxXdmbUCZzuJoZ51tQEJUK/qn0W1AYl8H5SkDbkDl1yJV3jFuQECplz23XW5AXkT4X6eGbkAoq/lSoqxuQBpUuIicz25Au3eTVIvvbkDbn5rwZAxvQDKciYIgJm9A1UxPILY8b0DvBRzUHlBvQAOj9J9UYG9AcrjHgFJtb0DdqgJxFHdvQBvPpGqXfW9A4xPPaNmAb0DjE89o2YBvQBvPpGqXfW9A3aoCcRR3b0ByuMeAUm1vQAOj9J9UYG9A7wUc1B5Qb0DVTE8gtjxvQDKciYIgJm9A25+a8GQMb0C7d5NUi+9uQBpUuIicz25AKKv5UqKsbkBeRPhfp4ZuQECplz23XW5A5dciVd4xbkBiXwflKQNuQEJUK/qn0W1Amc7iaGedbUCP4YnFd2ZtQHM2yFzpLG1AyKqDK83wbEDlgYfWNLJsQLzl5aEycWxAM5oZaNktbECp5u2QPOhrQMrWMghwoGtAUApENIhWa0DAXGjsmQprQEK7EG+6vGpA+oT8V/9sakBZ1EmWfhtqQHQMeGJOyGlAP/xiNIVzaUBb3Dy5OR1pQDRYjcmCxWhATL07X3dsaEDwTKqLLhJoQOiN6G2/tmdAk1QCKUFaZ0B8D3HayvxmQLy4tJBznmZAHZsZQlI/ZkC65a/Dfd9lQH3QecAMf2VAE9nUsBUeZUBuYiLSrrxkQG3Asx7uWmRA+nb9Ren4Y0AyMBWltZZjQP2lfT9oNGNAj3VDuBXSYkD5iW1L0m9iQPKBw8exDWJAqivsiMerYUDN5uVxJkphQKxz2ufg6GBAMGxPzQiIYECuWrR9rydgQGgznpLLj19AW8MN43fRXkDJQxxLgxReQEz+1f4LWV1AUB28Ai+fXECyRk0nCOdbQOiJRwWyMFtAwVah+kV8WkBMvjYo3MlZQCHQJ3CLGVlA63zkdGlrWECWAuKYir9XQEmJ9f4BFldApD9Pi+FuVkCC8xDlOcpVQG3YengaKFVA1eioeZGIVEB1D9vnq+tTQJoPQpF1UVNAZ/BKF/m5UkAWhWLzPyVSQKSHKnxSk1FACJ0Z6zcEUUDNgn9i9ndQQBopzecl3U9A4JeXTSPQTkDYskz/6shNQGfmbw6Bx0xA3f09pOfLS0CcikcRH9ZKQIXfc90l5klALUtf2Pj7SEA1cAcqkxdIQAnYuGPuOEdAJCIxkQJgRkC+fulJxoxFQPl4fcIuv0RA1G4i3i/3Q0AueCRAvDRDQN/iXV3Fd0JAydeejTvAQUCaK/scDg5BQPz/CkBcQj9AqIRonHdEQEDqHzLHquxAQDrP9u7WmUFANrXubApMQkDi/BmVUgNDQFyRTaa7v0NABlExulCBRECGSjm1G0hFQH3zozYlFEZAGamHiHTlRkDyIfqPD7xHQHrNXL36l0hAZGrZ/Dh5SUCfYxqny19KQJvESnKyS0tAJMxpY+s8TEDLVf6/cjNNQGl5NgBDL05Aud1/wVQwT0BtqNJcTxtQQPkhP9UKoVBA7GMeK1YpUUC7TzO6KbRRQI7zwtN8QVJAPtjOuUXRUkDjY7eaeWNTQK1PTI0M+FNALw5RjfGOVEBt2Hp4GihVQCjq7Qt4w1VAEEM/4vlgVkDVCAByjgBXQCNn1wwjoldAbYUv36NFWED+3nnw++pYQPL5DiQVkllA8SKtOtg6WkAzeJnULOVaQHotZnT5kFtA6IxggiM+XEBXzqhQj+xcQNlv9R8gnF1AgUYDJbhMXkCFCLOOOP5eQISW1IyBsF9AT+bPK7kxYEDaEe2bdItgQEz008dh5WBA56QD8m4/YUDke3nziZlhQGLFFEGg82FA3i1L8Z5NYkBa+ivCcqdiQGbbrx8IAWNAp+ZSKktaY0CEAPa9J7NjQCm+BHmJC2RAu4fcw1tjZEBLhHHYibpkQFacLcr+EGVAM6QFjqVmZUBhiMACabtlQFUebPkzD2ZAPQr7PfFhZkBi+Qagi7NmQMBDsvvtA2dAI96jQgNTZ0CbXxiFtqBnQGK7Avvy7GdA2DE3DaQ3aEBM4ZpetYBoQNZJUtUSyGhAYwXpo6gNaUAS6mxSY1FpQNTCdscvk2lAG8kaUfvSaUCGCrutsxBqQEbstRRHTGpArgnrPqSFakBCuxBvurxqQDyo1Hl58WpAs9/BzdEja0DWE+d6tFNrQGC2NzoTgWtAsNyidOCra0AR/9pJD9RrQHXXyZaT+WtAxNmr+2EcbEAc+M7hbzxsQBGk8ICzWWxAeT035CN0bEAEZcPuuItsQHnv1V9roGxA3oGH1jSybECQKw/VD8FsQJyjlcP3zGxAviCT8ujVbEBDFrac4NtsQFR3Uejc3mxAVHdR6NzebEBDFrac4NtsQL4gk/Lo1WxAnKOVw/fMbECQKw/VD8FsQN6Bh9Y0smxAee/VX2ugbEAEZcPuuItsQHk9N+QjdGxAEaTwgLNZbEAc+M7hbzxsQMTZq/thHGxAddfJlpP5a0AR/9pJD9RrQLDconTgq2tAYLY3OhOBa0DWE+d6tFNrQLPfwc3RI2tAPKjUeXnxakBCuxBvurxqQK4J6z6khWpARuy1FEdMakCGCrutsxBqQBvJGlH70mlA1MJ2xy+TaUAS6mxSY1FpQGkF6aOoDWlA1klS1RLIaEBM4ZpetYBoQNIxNw2kN2hAYrsC+/LsZ0ChXxiFtqBnQCPeo0IDU2dAwEOy++0DZ0Bb+Qagi7NmQD0K+z3xYWZAVR5s+TMPZkBhiMACabtlQDOkBY6lZmVAUZwtyv4QZUBLhHHYibpkQLuH3MNbY2RAKb4EeYkLZECEAPa9J7NjQKfmUipLWmNAZtuvHwgBY0Bg+ivCcqdiQN4tS/GeTWJAYsUUQaDzYUDke3nziZlhQOekA/JuP2FATPTTx2HlYEDaEe2bdItgQE/mzyu5MWBAhJbUjIGwX0CFCLOOOP5eQHlGAyW4TF5A2W/1HyCcXUBXzqhQj+xcQOiMYIIjPlxAei1mdPmQW0AzeJnULOVaQPEirTrYOlpA8vkOJBWSWUD+3nnw++pYQG2FL9+jRVhAI2fXDCOiV0DVCAByjgBXQBBDP+L5YFZAKOrtC3jDVUBt2Hp4GihVQC8OUY3xjlRArU9MjQz4U0DjY7eaeWNTQD7YzrlF0VJAjvPC03xBUkC7TzO6KbRRQOxjHitWKVFA+SE/1QqhUEBtqNJcTxtQQLndf8FUME9AaXk2AEMvTkDSVf6/cjNNQCTMaWPrPExAm8RKcrJLS0CfYxqny19KQF5q2fw4eUlAgc1cvfqXSEDyIfqPD7xHQBmph4h05UZAffOjNiUURkCGSjm1G0hFQAtRMbpQgURAXJFNpru/Q0Di/BmVUgNDQDa17mwKTEJANs/27taZQUDlHzLHquxAQKiEaJx3REBA/P8KQFxCP0DOjTm87p48QM6MUFHxyT1AYVL69PL9PkBB73HXhx1AQOtTtuKwwEBAmVZO0IBoQUAal3fWAhVCQIBnAR9BxkJAb1KguER8Q0BEMEaIFTdEQF87iDq69kRAQeUcNTi7RUBXe3uIk4RGQO/wp+HOUkdAKGQ1fOslSEBnL4oU6f1IQDqKcNrF2klAg+r+Y368SkAneeOgDaNLQPMJHs5sjkxA+Bk0apN+TUBpYOopd3NOQOl/j+0LbU9Ab65x26E1UEDzRNNPB7dQQHqPbmitOlFA4xNoPYrAUUD7UezmkkhSQOpq/3m70lJAxCq8BfdeU0A9hQeRN+1TQORnvRhufVRAdY9bjooPVUBK1C7Xe6NVQDYiB8wvOVZAGAx2OZPQVkDSoJvgkWlXQDPZhHgWBFhAFaIesAqgWEBkLcAwVz1ZQK3XTqHj21lAbI79qZZ7WkC+Pan4VRxbQGJi00UGvltA1nA7WotgXEASURcVyANdQA296nKep11A/9j8lO9LXkA15mrJm/BeQMp21pOClV9AbIdWW0EdYECnUYMevW9gQIz1i0IjwmBAX32aJWIUYUCLE7DaZ2ZhQGZYsC8iuGFAdyCus34JYkCO43a9alpiQE7qWXLTqmJASQ4ozaX6YkBwqWilzkljQJwbwLY6mGNABhmEqNblY0BUw3kVjzJkQMZfuZNQfmRALFGzvAfJZEBP0lE1oRJlQHnIMrYJW2VA4+H0Ey6iZUAsFZNH++dlQEZ7yXZeLGZANmV+/ERvZkCieypxnLBmQGClOrNS8GZASGhm71UuZ0AebvWolGpnQH/W7sH9pGdAlf4sg4DdZ0ADblCkDBRoQK6ijFOSSGhAA4RJPQJ7aEABWZSTTatoQDw1WxVm2WhAAOxtFT4FaUAduj+ByC5pQCT7ZOf4VWlAwmfIfcN6aUAZiJMnHZ1pQJ81xnr7vGlADTx5xVTaaUAXYsgSIPVpQLhcYC9VDWpA62+trewiakD4v6fp3zVqQOmbOgwpRmpAqU9EDsNTakAjViy7qV5qQJAODrPZZmpAQ2R2bFBsakAJKLM1DG9qQAkoszUMb2pAQ2R2bFBsakCQDg6z2WZqQCNWLLupXmpAqU9EDsNTakDpmzoMKUZqQPi/p+nfNWpA62+trewiakC4XGAvVQ1qQBdiyBIg9WlADTx5xVTaaUCfNcZ6+7xpQBmIkycdnWlAwmfIfcN6aUAk+2Tn+FVpQB26P4HILmlAAOxtFT4FaUA8NVsVZtloQAFZlJNNq2hAA4RJPQJ7aECuooxTkkhoQANuUKQMFGhAlf4sg4DdZ0B/1u7B/aRnQB5u9aiUamdASGhm71UuZ0BmpTqzUvBmQKJ7KnGcsGZANmV+/ERvZkBAe8l2XixmQCwVk0f752VA6eH0Ey6iZUB5yDK2CVtlQE/SUTWhEmVAJVGzvAfJZEDGX7mTUH5kQFTDeRWPMmRABhmEqNblY0CcG8C2OphjQGupaKXOSWNARA4ozaX6YkBO6lly06piQI7jdr1qWmJAdyCus34JYkBmWLAvIrhhQIsTsNpnZmFAYn2aJWIUYUCM9YtCI8JgQKdRgx69b2BAbIdWW0EdYEDKdtaTgpVfQDXmasmb8F5A/9j8lO9LXkANvepynqddQBJRFxXIA11A1nA7WotgXEBiYtNFBr5bQL49qfhVHFtAbI79qZZ7WkCt106h49tZQGQtwDBXPVlAFaIesAqgWEAz2YR4FgRYQNKgm+CRaVdAGAx2OZPQVkA2IgfMLzlWQErULtd7o1VAdY9bjooPVUDkZ70Ybn1UQD2FB5E37VNAxCq8BfdeU0Dqav95u9JSQPtR7OaSSFJA4xNoPYrAUUB6j25orTpRQPNE008Ht1BAb65x26E1UEDpf4/tC21PQGlg6il3c05A+Bk0apN+TUDzCR7ObI5MQCF546ANo0tAier+Y368SkA6inDaxdpJQGcvihTp/UhAKGQ1fOslSEDv8KfhzlJHQF17e4iThEZAQeUcNTi7RUBfO4g6uvZEQEQwRogVN0RAb1KguER8Q0CEZwEfQcZCQBqXd9YCFUJAmVZO0IBoQUDrU7bisMBAQD3vcdeHHUBAYVL69PL9PkDOjFBR8ck9QM6NObzunjxA+YVP5WouOkD0jEr98D87QCLnddaxWTxAPzXfFMd7PUDaepLBSKY+QCjSCTBN2T9Arry6cXSKQEAvx/U5lyxBQHK9xzkX00FAC9vgqft9QkA6kTSlSi1DQELwsxsJ4UNAp/4mxTqZREBdci4U4lVFQK56dykAF0ZASIArx5TcRkBr7qVEnqZHQD9BeoIZdUhACLbU3gFISUA/E0AqUR9KQBoQ25z/+kpAf+wHzAPbS0BgyqCgUr9MQB1Su03fp01AfhkGSJuUTkA2Kso9doVPQItwzQcvPVBAURjfZJ+5UEDTjCtPAThRQLH1LfBIuFFA/8ewf2k6UkB6aiJCVb5SQDkfXYf9Q1NAl0XmqVLLU0BSzagORFRUQGd0LiXA3lRAvSZbaLRqVUCBja1fDfhVQBmQB6G2hlZADDcB05oWV0BWDMivo6dXQE+7jAi6OVhAj1WAycXMWEB5QWL+rWBZQOdzn9dY9VlAwy8DsKuKWkDTHPkSiyBbQD4cYMPatltAVtPswn1NXEA1dhpaVuRcQAjspyBGe11A+PSeBi4SXkD4iOJd7qheQHc0QeRmP19AaccHznbVX0AOHYhofjVgQF0eJJjrf2BARDzV4/HJYEBoj1IMgBNhQP37c6uEXGFARuDJOu6kYUDqHmIaq+xhQIoLt5epM2JAv5HE9Nd5YkCbxD9vJL9iQArc7Ed9A2NAW38PytBGY0AKGvFSDYljQIfXeFkhymNAJcbQdfsJZECAiBNpikhkQEPm/SS9hWRAuHuf04LBZEA5uAXfyvtkQC1S3PiENGVAE0/+IaFrZUDwvPKxD6FlQG86UF7B1GVAG3ECQqcGZkCBrmzksjZmQJPWZEDWZGZA4/oBywORZkAC+Tl6LrtmQOSaSctJ42ZA+9LiyEkJZ0BrzhwRIy1nQK29IdvKTmdA4lyW/DZuZ0C1cbfuXYtnQJCkKdM2pmdAiU54eLm+Z0BpC0Be3tRnQOQYArme6GdAr8eddfT5Z0Afgm082ghoQDMsBXRLFWhAbOSPQ0QfaEApccuUwSZoQCPsnxXBK2hAaIZSOUEuaEBohlI5QS5oQCPsnxXBK2hAKXHLlMEmaEBs5I9DRB9oQDMsBXRLFWhAH4JtPNoIaECvx5119PlnQOQYArme6GdAaQtAXt7UZ0CJTnh4ub5nQJCkKdM2pmdAtXG37l2LZ0DiXJb8Nm5nQK29IdvKTmdAa84cESMtZ0D70uLISQlnQOSaSctJ42ZAAvk5ei67ZkDj+gHLA5FmQJPWZEDWZGZAga5s5LI2ZkAbcQJCpwZmQG86UF7B1GVA8LzysQ+hZUATT/4hoWtlQC1S3PiENGVAQLgF38r7ZEC4e5/TgsFkQEPm/SS9hWRAe4gTaYpIZEAlxtB1+wlkQIzXeFkhymNAChrxUg2JY0Bbfw/K0EZjQAXc7Ed9A2NAm8Q/byS/YkC/kcT013liQIoLt5epM2JA6h5iGqvsYUBC4Mk67qRhQP37c6uEXGFAaI9SDIATYUBEPNXj8clgQF0eJJjrf2BADh2IaH41YEBpxwfOdtVfQH40QeRmP19A+IjiXe6oXkD49J4GLhJeQAjspyBGe11ANXYaWlbkXEBW0+zCfU1cQD4cYMPatltA0xz5EosgW0DDLwOwq4paQOdzn9dY9VlAcUFi/q1gWUCPVYDJxcxYQE+7jAi6OVhAVgzIr6OnV0AMNwHTmhZXQBmQB6G2hlZAgY2tXw34VUC9JltotGpVQGd0LiXA3lRAUs2oDkRUVECXReapUstTQDkfXYf9Q1NAemoiQlW+UkD/x7B/aTpSQLH1LfBIuFFA04wrTwE4UUBRGN9kn7lQQItwzQcvPVBANirKPXaFT0B+GQZIm5ROQB1Su03fp01AYMqgoFK/TEB/7AfMA9tLQBoQ25z/+kpAPxNAKlEfSkAIttTeAUhJQENBeoIZdUhAa+6lRJ6mR0BIgCvHlNxGQK56dykAF0ZAWHIuFOJVRUCu/ibFOplEQELwsxsJ4UNAOpE0pUotQ0AL2+Cp+31CQHK9xzkX00FANcf1OZcsQUCuvLpxdIpAQCjSCTBN2T9A2nqSwUimPkA5Nd8Ux3s9QB3nddaxWTxA9IxK/fA/O0D5hU/lai46QCEDAvaP7TdAXvpBe4vnOEC1fmRvDOk5QHbZhEEq8jpANnMc6foCPEB+z7vNkhs9QPRKn64EPD5AgqAtimFkP0B2ardCXEpAQLZgxWmL5kBAw4KvzsOGQUBAWJ70CStCQM45b0Fh00JAYFLU8ct/Q0AsYqINSzBEQK9OVVze5ERAfrTUWYSdRUD+1YErOlpGQNhemJX7GkdA1Ivr8MLfR0AmVwkhiahIQHBQzYpFdUlAf8lsC+5FSkDQ+AXwdhpLQLeiu+3S8ktAKcJmGvPOTECfiOflxq5NQMbiHhQ8kk5AKXyZtz55T0BDgHqW3DFQQKIJhAvKqFBA/ZPqLVshUUAeByiRgptRQITRfugxF1JAvFe6BlqUUkA9RWPe6hJTQIXLaoLTklNAk5pPJwIUVECqF78kZJZUQAsNtfflGVVArb8bRXOeVUBZBu7c9iNWQN+o3L1aqlZAgfV3GYgxV0B0IN5YZ7lXQH2i7iHgQVhAHG0CXdnKWEDKZig7OVRZQGk/5Tzl3VlAI0Z1OcJnWkC+hI5mtPFaQL37oGCfe1tAK3SSM2YFXED48vJj645cQHVzpvgQGF1AyiYAhbigXUCQEUszwyheQA18u88RsF5AuUfE04Q2X0C63Mpx/LtfQIACmlAsIGBAZthhlbxhYEC/pKTanqJgQH3ySOnC4mBA5K5MhhgiYUD6hHl5j2BhQKxCMZQXnmFAlWJOuKDaYUDNtxTfGhZiQBwfLiB2UGJAEAKvuKKJYkAwZB4SkcFiQFUifckx+GJAPv5HtnUtY0AOCHDxTWFjQIbvRNyrk2NAFcZMJ4HEY0DBugTZv/NjQDVehlRaIWRAWgYNYENNZEDH9FYrbndkQErz3VXOn2RAqC7j9FfGZEADLkqZ/+pkQFPhPlW6DWVA39+iwX0uZUB1ET4DQE1lQEMjr8/3aWVAnlEYcpyEZUC8O4XPJZ1lQOqlBmuMs2VAsz+BacnHZUCIuCyV1tllQK2jwGCu6WVA5uVM6kv3ZUAPorv9qgJmQEbX+hbIC2ZAIyLMY6ASZkD6UTnFMRdmQM3FrNB6GWZAzcWs0HoZZkD6UTnFMRdmQCMizGOgEmZARtf6FsgLZkAPorv9qgJmQOblTOpL92VAraPAYK7pZUCIuCyV1tllQLM/gWnJx2VA6qUGa4yzZUC8O4XPJZ1lQJ5RGHKchGVAQyOvz/dpZUB1ET4DQE1lQN/fosF9LmVAU+E+VboNZUADLkqZ/+pkQKgu4/RXxmRASvPdVc6fZEDH9FYrbndkQFoGDWBDTWRANV6GVFohZEDBugTZv/NjQBXGTCeBxGNAhu9E3KuTY0AOCHDxTWFjQEP+R7Z1LWNAVSJ9yTH4YkAwZB4SkcFiQAsCr7iiiWJAHB8uIHZQYkDTtxTfGhZiQJViTrig2mFArEIxlBeeYUD1hHl5j2BhQOSuTIYYImFAffJI6cLiYEC/pKTanqJgQGbYYZW8YWBAewKaUCwgYECz3Mpx/LtfQLlHxNOENl9ADXy7zxGwXkCQEUszwyheQMomAIW4oF1AdXOm+BAYXUAA8/Jj645cQCt0kjNmBVxAvfugYJ97W0C+hI5mtPFaQCNGdTnCZ1pAaT/lPOXdWUDKZig7OVRZQBxtAl3ZylhAfaLuIeBBWEB0IN5YZ7lXQIH1dxmIMVdA36jcvVqqVkBZBu7c9iNWQK2/G0VznlVACw219+UZVUCqF78kZJZUQJOaTycCFFRAhctqgtOSU0A9RWPe6hJTQLxXugZalFJAhNF+6DEXUkAeByiRgptRQP2T6i1bIVFAogmEC8qoUEBDgHqW3DFQQCl8mbc+eU9AxuIeFDySTkCfiOflxq5NQCnCZhrzzkxAt6K77dLyS0DQ+AXwdhpLQH/JbAvuRUpAcFDNikV1SUAmVwkhiahIQNSL6/DC30dA0l6YlfsaR0AE1oErOlpGQH601FmEnUVAr05VXN7kREAsYqINSzBEQGBS1PHLf0NA0zlvQWHTQkBAWJ70CStCQMOCr87DhkFAtmDFaYvmQEB2ardCXEpAQIqgLYphZD9A9EqfrgQ8PkB+z7vNkhs9QDZzHOn6AjxAbtmEQSryOkC1fmRvDOk5QF76QXuL5zhAIQMC9o/tN0A=\"},\"shape\":[200,200],\"dtype\":\"float64\",\"order\":\"little\"}]]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1925\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1926\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Image\",\"id\":\"p1918\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0},\"y\":{\"type\":\"value\",\"value\":0},\"dw\":{\"type\":\"value\",\"value\":1.0},\"dh\":{\"type\":\"value\",\"value\":1.0},\"image\":{\"type\":\"field\",\"field\":\"image\"},\"color_mapper\":{\"type\":\"object\",\"name\":\"LogColorMapper\",\"id\":\"p1880\",\"attributes\":{\"palette\":[\"#440154\",\"#440255\",\"#440357\",\"#450558\",\"#45065A\",\"#45085B\",\"#46095C\",\"#460B5E\",\"#460C5F\",\"#460E61\",\"#470F62\",\"#471163\",\"#471265\",\"#471466\",\"#471567\",\"#471669\",\"#47186A\",\"#48196B\",\"#481A6C\",\"#481C6E\",\"#481D6F\",\"#481E70\",\"#482071\",\"#482172\",\"#482273\",\"#482374\",\"#472575\",\"#472676\",\"#472777\",\"#472878\",\"#472A79\",\"#472B7A\",\"#472C7B\",\"#462D7C\",\"#462F7C\",\"#46307D\",\"#46317E\",\"#45327F\",\"#45347F\",\"#453580\",\"#453681\",\"#443781\",\"#443982\",\"#433A83\",\"#433B83\",\"#433C84\",\"#423D84\",\"#423E85\",\"#424085\",\"#414186\",\"#414286\",\"#404387\",\"#404487\",\"#3F4587\",\"#3F4788\",\"#3E4888\",\"#3E4989\",\"#3D4A89\",\"#3D4B89\",\"#3D4C89\",\"#3C4D8A\",\"#3C4E8A\",\"#3B508A\",\"#3B518A\",\"#3A528B\",\"#3A538B\",\"#39548B\",\"#39558B\",\"#38568B\",\"#38578C\",\"#37588C\",\"#37598C\",\"#365A8C\",\"#365B8C\",\"#355C8C\",\"#355D8C\",\"#345E8D\",\"#345F8D\",\"#33608D\",\"#33618D\",\"#32628D\",\"#32638D\",\"#31648D\",\"#31658D\",\"#31668D\",\"#30678D\",\"#30688D\",\"#2F698D\",\"#2F6A8D\",\"#2E6B8E\",\"#2E6C8E\",\"#2E6D8E\",\"#2D6E8E\",\"#2D6F8E\",\"#2C708E\",\"#2C718E\",\"#2C728E\",\"#2B738E\",\"#2B748E\",\"#2A758E\",\"#2A768E\",\"#2A778E\",\"#29788E\",\"#29798E\",\"#287A8E\",\"#287A8E\",\"#287B8E\",\"#277C8E\",\"#277D8E\",\"#277E8E\",\"#267F8E\",\"#26808E\",\"#26818E\",\"#25828E\",\"#25838D\",\"#24848D\",\"#24858D\",\"#24868D\",\"#23878D\",\"#23888D\",\"#23898D\",\"#22898D\",\"#228A8D\",\"#228B8D\",\"#218C8D\",\"#218D8C\",\"#218E8C\",\"#208F8C\",\"#20908C\",\"#20918C\",\"#1F928C\",\"#1F938B\",\"#1F948B\",\"#1F958B\",\"#1F968B\",\"#1E978A\",\"#1E988A\",\"#1E998A\",\"#1E998A\",\"#1E9A89\",\"#1E9B89\",\"#1E9C89\",\"#1E9D88\",\"#1E9E88\",\"#1E9F88\",\"#1EA087\",\"#1FA187\",\"#1FA286\",\"#1FA386\",\"#20A485\",\"#20A585\",\"#21A685\",\"#21A784\",\"#22A784\",\"#23A883\",\"#23A982\",\"#24AA82\",\"#25AB81\",\"#26AC81\",\"#27AD80\",\"#28AE7F\",\"#29AF7F\",\"#2AB07E\",\"#2BB17D\",\"#2CB17D\",\"#2EB27C\",\"#2FB37B\",\"#30B47A\",\"#32B57A\",\"#33B679\",\"#35B778\",\"#36B877\",\"#38B976\",\"#39B976\",\"#3BBA75\",\"#3DBB74\",\"#3EBC73\",\"#40BD72\",\"#42BE71\",\"#44BE70\",\"#45BF6F\",\"#47C06E\",\"#49C16D\",\"#4BC26C\",\"#4DC26B\",\"#4FC369\",\"#51C468\",\"#53C567\",\"#55C666\",\"#57C665\",\"#59C764\",\"#5BC862\",\"#5EC961\",\"#60C960\",\"#62CA5F\",\"#64CB5D\",\"#67CC5C\",\"#69CC5B\",\"#6BCD59\",\"#6DCE58\",\"#70CE56\",\"#72CF55\",\"#74D054\",\"#77D052\",\"#79D151\",\"#7CD24F\",\"#7ED24E\",\"#81D34C\",\"#83D34B\",\"#86D449\",\"#88D547\",\"#8BD546\",\"#8DD644\",\"#90D643\",\"#92D741\",\"#95D73F\",\"#97D83E\",\"#9AD83C\",\"#9DD93A\",\"#9FD938\",\"#A2DA37\",\"#A5DA35\",\"#A7DB33\",\"#AADB32\",\"#ADDC30\",\"#AFDC2E\",\"#B2DD2C\",\"#B5DD2B\",\"#B7DD29\",\"#BADE27\",\"#BDDE26\",\"#BFDF24\",\"#C2DF22\",\"#C5DF21\",\"#C7E01F\",\"#CAE01E\",\"#CDE01D\",\"#CFE11C\",\"#D2E11B\",\"#D4E11A\",\"#D7E219\",\"#DAE218\",\"#DCE218\",\"#DFE318\",\"#E1E318\",\"#E4E318\",\"#E7E419\",\"#E9E419\",\"#ECE41A\",\"#EEE51B\",\"#F1E51C\",\"#F3E51E\",\"#F6E61F\",\"#F8E621\",\"#FAE622\",\"#FDE724\"],\"low\":1,\"high\":10000000.0}}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Image\",\"id\":\"p1920\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0},\"y\":{\"type\":\"value\",\"value\":0},\"dw\":{\"type\":\"value\",\"value\":1.0},\"dh\":{\"type\":\"value\",\"value\":1.0},\"global_alpha\":{\"type\":\"value\",\"value\":0.1},\"image\":{\"type\":\"field\",\"field\":\"image\"},\"color_mapper\":{\"id\":\"p1880\"}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Image\",\"id\":\"p1922\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0},\"y\":{\"type\":\"value\",\"value\":0},\"dw\":{\"type\":\"value\",\"value\":1.0},\"dh\":{\"type\":\"value\",\"value\":1.0},\"global_alpha\":{\"type\":\"value\",\"value\":0.2},\"image\":{\"type\":\"field\",\"field\":\"image\"},\"color_mapper\":{\"id\":\"p1880\"}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1889\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1904\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1905\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1906\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1907\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1912\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1913\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1914\"}]}},\"toolbar_location\":null,\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1899\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1900\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1901\"},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1902\"}}}],\"right\":[{\"type\":\"object\",\"name\":\"ColorBar\",\"id\":\"p1927\",\"attributes\":{\"major_label_policy\":{\"type\":\"object\",\"name\":\"NoOverlap\",\"id\":\"p1928\"},\"padding\":1,\"color_mapper\":{\"id\":\"p1880\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1894\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1895\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1896\"},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1897\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1898\",\"attributes\":{\"axis\":{\"id\":\"p1894\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1903\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1899\"}}},{\"type\":\"object\",\"name\":\"ScaleBar\",\"id\":\"p1930\",\"attributes\":{\"range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1929\",\"attributes\":{\"end\":1000}},\"dimensional\":{\"type\":\"object\",\"name\":\"MetricLength\",\"id\":\"p1931\",\"attributes\":{\"include\":null}},\"ticker\":{\"type\":\"object\",\"name\":\"FixedTicker\",\"id\":\"p1932\",\"attributes\":{\"ticks\":[],\"minor_ticks\":[]}}}},{\"type\":\"object\",\"name\":\"ScaleBar\",\"id\":\"p1934\",\"attributes\":{\"range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1933\",\"attributes\":{\"end\":1000}},\"dimensional\":{\"type\":\"object\",\"name\":\"MetricLength\",\"id\":\"p1935\",\"attributes\":{\"include\":null}},\"ticker\":{\"type\":\"object\",\"name\":\"FixedTicker\",\"id\":\"p1936\",\"attributes\":{\"ticks\":[],\"minor_ticks\":[]}}}}]}}]}};\n", + " const render_items = [{\"docid\":\"c282d1ea-4a8f-4b65-b011-116e512d7f7c\",\"roots\":{\"p1881\":\"fd087e6f-2d54-4d84-afcd-6cc165cf4207\"},\"root_ids\":[\"p1881\"]}];\n", + " void root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", + " }\n", + " if (root.Bokeh !== undefined) {\n", + " embed_document(root);\n", + " } else {\n", + " let attempts = 0;\n", + " const timer = setInterval(function(root) {\n", + " if (root.Bokeh !== undefined) {\n", + " clearInterval(timer);\n", + " embed_document(root);\n", + " } else {\n", + " attempts++;\n", + " if (attempts > 100) {\n", + " clearInterval(timer);\n", + " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", + " }\n", + " }\n", + " }, 10, root)\n", + " }\n", + "})(window);" + ], + "application/vnd.bokehjs_exec.v0+json": "" + }, + "metadata": { + "application/vnd.bokehjs_exec.v0+json": { + "id": "p1881" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "from bokeh.models import Range1d, ScaleBar\n", + "\n", + "scale_bar = ScaleBar(range=Range1d(start=0, end=1000))\n", + "plot.add_layout(scale_bar)\n", + "\n", + "show(plot)" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "id": "f419bd57-eaa4-4841-9acc-e83073b9ee3f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function embed_document(root) {\n", + " const docs_json = {\"4b2bdc0a-ebdb-4f8c-b21a-91c76ea39b38\":{\"version\":\"3.4.1\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Column\",\"id\":\"p12659\",\"attributes\":{\"children\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p12474\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p12472\",\"attributes\":{\"end\":15.0}},\"y_range\":{\"type\":\"object\",\"name\":\"FactorRange\",\"id\":\"p12473\",\"attributes\":{\"factors\":[\"EEG 0\",\"EEG 1\",\"EEG 2\",\"EEG 3\",\"EEG 4\",\"EEG 5\",\"EEG 6\",\"POS 0\",\"POS 1\",\"POS 2\"]}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12483\"},\"y_scale\":{\"type\":\"object\",\"name\":\"CategoricalScale\",\"id\":\"p12484\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p12481\"},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p12512\",\"attributes\":{\"name\":\"EEG 0\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p12501\",\"attributes\":{\"x_source\":{\"id\":\"p12472\"},\"y_source\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p2767\",\"attributes\":{\"start\":-100.58515846075288,\"end\":17.00862347650106}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12504\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12505\"},\"x_target\":{\"id\":\"p12472\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p12500\"}}},\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p12497\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p12498\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p12499\"},\"data\":{\"type\":\"map\",\"entries\":[[\"time\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAAD+xBWNiABgP/7EFY2IAHA/faeg08wAeD/+xBWNiACAPz42W7CqAIQ/faeg08wAiD+8GOb27gCMP/7EFY2IAJA/nn24npkAkj8+NluwqgCUP93u/cG7AJY/faeg08wAmD8dYEPl3QCaP7wY5vbuAJw/XNGICAABnj/+xBWNiACgP04h5xWRAKE/nn24npkAoj/u2YknogCjPz42W7CqAKQ/jZIsObMApT/d7v3BuwCmPy1Lz0rEAKc/faeg08wAqD/NA3Jc1QCpPx1gQ+XdAKo/bbwUbuYAqz+8GOb27gCsPwx1t3/3AK0/XNGICAABrj+sLVqRCAGvP/7EFY2IALA/JnN+0YyAsD9OIecVkQCxP3bPT1qVgLE/nn24npkAsj/GKyHjnYCyP+7ZiSeiALM/Fojya6aAsz8+NluwqgC0P2Xkw/SugLQ/jZIsObMAtT+1QJV9t4C1P93u/cG7ALY/BZ1mBsCAtj8tS89KxAC3P1X5N4/IgLc/faeg08wAuD+lVQkY0YC4P80DclzVALk/9bHaoNmAuT8dYEPl3QC6P0UOrCnigLo/bbwUbuYAuz+Van2y6oC7P7wY5vbuALw/5MZOO/OAvD8Mdbd/9wC9PzQjIMT7gL0/XNGICAABvj+Ef/FMBIG+P6wtWpEIAb8/1NvC1QyBvz/+xBWNiADAPxIcSq+KQMA/JnN+0YyAwD86yrLzjsDAP04h5xWRAME/YngbOJNAwT92z09alYDBP4omhHyXwME/nn24npkAwj+y1OzAm0DCP8YrIeOdgMI/2oJVBaDAwj/u2YknogDDPwIxvkmkQMM/Fojya6aAwz8q3yaOqMDDPz42W7CqAMQ/UY2P0qxAxD9l5MP0roDEP3k7+BaxwMQ/jZIsObMAxT+h6WBbtUDFP7VAlX23gMU/yZfJn7nAxT/d7v3BuwDGP/FFMuS9QMY/BZ1mBsCAxj8Z9JoowsDGPy1Lz0rEAMc/QaIDbcZAxz9V+TePyIDHP2lQbLHKwMc/faeg08wAyD+R/tT1zkDIP6VVCRjRgMg/uaw9OtPAyD/NA3Jc1QDJP+Fapn7XQMk/9bHaoNmAyT8JCQ/D28DJPx1gQ+XdAMo/Mbd3B+BAyj9FDqwp4oDKP1ll4EvkwMo/bbwUbuYAyz+BE0mQ6EDLP5VqfbLqgMs/qcGx1OzAyz+8GOb27gDMP9BvGhnxQMw/5MZOO/OAzD/4HYNd9cDMPwx1t3/3AM0/IMzroflAzT80IyDE+4DNP0h6VOb9wM0/XNGICAABzj9wKL0qAkHOP4R/8UwEgc4/mNYlbwbBzj+sLVqRCAHPP8CEjrMKQc8/1NvC1QyBzz/oMvf3DsHPP/7EFY2IANA/iPAvnokg0D8SHEqvikDQP5xHZMCLYNA/JnN+0YyA0D+wnpjijaDQPzrKsvOOwNA/xPXMBJDg0D9OIecVkQDRP9hMASeSINE/YngbOJNA0T/sozVJlGDRP3bPT1qVgNE/APtpa5ag0T+KJoR8l8DRPxRSno2Y4NE/nn24npkA0j8oqdKvmiDSP7LU7MCbQNI/PAAH0pxg0j/GKyHjnYDSP1BXO/SeoNI/2oJVBaDA0j9krm8WoeDSP+7ZiSeiANM/eAWkOKMg0z8CMb5JpEDTP4xc2FqlYNM/Fojya6aA0z+gswx9p6DTPyrfJo6owNM/tApBn6ng0z8+NluwqgDUP8dhdcGrINQ/UY2P0qxA1D/buKnjrWDUP2Xkw/SugNQ/7w/eBbCg1D95O/gWscDUPwNnEiiy4NQ/jZIsObMA1T8XvkZKtCDVP6HpYFu1QNU/KxV7bLZg1T+1QJV9t4DVPz9sr464oNU/yZfJn7nA1T9Tw+OwuuDVP93u/cG7ANY/ZxoY07wg1j/xRTLkvUDWP3txTPW+YNY/BZ1mBsCA1j+PyIAXwaDWPxn0mijCwNY/ox+1OcPg1j8tS89KxADXP7d26VvFINc/QaIDbcZA1z/LzR1+x2DXP1X5N4/IgNc/3yRSoMmg1z9pUGyxysDXP/N7hsLL4Nc/faeg08wA2D8H07rkzSDYP5H+1PXOQNg/GyrvBtBg2D+lVQkY0YDYPy+BIynSoNg/uaw9OtPA2D9D2FdL1ODYP80DclzVANk/Vy+MbdYg2T/hWqZ+10DZP2uGwI/YYNk/9bHaoNmA2T9/3fSx2qDZPwkJD8PbwNk/kzQp1Nzg2T8dYEPl3QDaP6eLXfbeINo/Mbd3B+BA2j+74pEY4WDaP0UOrCnigNo/zznGOuOg2j9ZZeBL5MDaP+OQ+lzl4No/bbwUbuYA2z/35y5/5yDbP4ETSZDoQNs/Cz9joelg2z+Van2y6oDbPx+Wl8ProNs/qcGx1OzA2z8z7cvl7eDbP7wY5vbuANw/RkQACPAg3D/QbxoZ8UDcP1qbNCryYNw/5MZOO/OA3D9u8mhM9KDcP/gdg131wNw/gkmdbvbg3D8Mdbd/9wDdP5ag0ZD4IN0/IMzroflA3T+q9wWz+mDdPzQjIMT7gN0/vk461fyg3T9IelTm/cDdP9Klbvf+4N0/XNGICAAB3j/m/KIZASHeP3AovSoCQd4/+lPXOwNh3j+Ef/FMBIHePw6rC14Fod4/mNYlbwbB3j8iAkCAB+HeP6wtWpEIAd8/Nll0ogkh3z/AhI6zCkHfP0qwqMQLYd8/1NvC1QyB3z9eB93mDaHfP+gy9/cOwd8/cl4RCRDh3z/+xBWNiADgP8PaohWJEOA/iPAvnokg4D9NBr0mijDgPxIcSq+KQOA/1zHXN4tQ4D+cR2TAi2DgP2Fd8UiMcOA/JnN+0YyA4D/riAtajZDgP7CemOKNoOA/dbQla46w4D86yrLzjsDgP//fP3yP0OA/xPXMBJDg4D+JC1qNkPDgP04h5xWRAOE/Ezd0npEQ4T/YTAEnkiDhP51ijq+SMOE/YngbOJNA4T8njqjAk1DhP+yjNUmUYOE/sbnC0ZRw4T92z09alYDhPzvl3OKVkOE/APtpa5ag4T/FEPfzlrDhP4omhHyXwOE/TzwRBZjQ4T8UUp6NmODhP9lnKxaZ8OE/nn24npkA4j9jk0UnmhDiPyip0q+aIOI/7b5fOJsw4j+y1OzAm0DiP3fqeUmcUOI/PAAH0pxg4j8BFpRanXDiP8YrIeOdgOI/i0Gua56Q4j9QVzv0nqDiPxVtyHyfsOI/2oJVBaDA4j+fmOKNoNDiP2Subxah4OI/KcT8nqHw4j/u2YknogDjP7PvFrCiEOM/eAWkOKMg4z89GzHBozDjPwIxvkmkQOM/x0ZL0qRQ4z+MXNhapWDjP1FyZeOlcOM/Fojya6aA4z/bnX/0ppDjP6CzDH2noOM/ZcmZBaiw4z8q3yaOqMDjP+/0sxap0OM/tApBn6ng4z95IM4nqvDjPz42W7CqAOQ/AkzoOKsQ5D/HYXXBqyDkP4x3AkqsMOQ/UY2P0qxA5D8WoxxbrVDkP9u4qeOtYOQ/oM42bK5w5D9l5MP0roDkPyr6UH2vkOQ/7w/eBbCg5D+0JWuOsLDkP3k7+BaxwOQ/PlGFn7HQ5D8DZxIosuDkP8h8n7Cy8OQ/jZIsObMA5T9SqLnBsxDlPxe+Rkq0IOU/3NPT0rQw5T+h6WBbtUDlP2b/7eO1UOU/KxV7bLZg5T/wKgj1tnDlP7VAlX23gOU/elYiBriQ5T8/bK+OuKDlPwSCPBe5sOU/yZfJn7nA5T+OrVYoutDlP1PD47C64OU/GNlwObvw5T/d7v3BuwDmP6IEi0q8EOY/ZxoY07wg5j8sMKVbvTDmP/FFMuS9QOY/tlu/bL5Q5j97cUz1vmDmP0CH2X2/cOY/BZ1mBsCA5j/KsvOOwJDmP4/IgBfBoOY/VN4NoMGw5j8Z9JoowsDmP94JKLHC0OY/ox+1OcPg5j9oNULCw/DmPy1Lz0rEAOc/8mBc08QQ5z+3dulbxSDnP3yMduTFMOc/QaIDbcZA5z8GuJD1xlDnP8vNHX7HYOc/kOOqBshw5z9V+TePyIDnPxoPxRfJkOc/3yRSoMmg5z+kOt8oyrDnP2lQbLHKwOc/Lmb5OcvQ5z/ze4bCy+DnP7iRE0vM8Oc/faeg08wA6D9CvS1czRDoPwfTuuTNIOg/zOhHbc4w6D+R/tT1zkDoP1YUYn7PUOg/GyrvBtBg6D/gP3yP0HDoP6VVCRjRgOg/amuWoNGQ6D8vgSMp0qDoP/SWsLHSsOg/uaw9OtPA6D9+wsrC09DoP0PYV0vU4Og/CO7k09Tw6D/NA3Jc1QDpP5IZ/+TVEOk/Vy+MbdYg6T8cRRn21jDpP+Fapn7XQOk/pnAzB9hQ6T9rhsCP2GDpPzCcTRjZcOk/9bHaoNmA6T+6x2cp2pDpP3/d9LHaoOk/RPOBOtuw6T8JCQ/D28DpP84enEvc0Ok/kzQp1Nzg6T9YSrZc3fDpPx1gQ+XdAOo/4nXQbd4Q6j+ni1323iDqP2yh6n7fMOo/Mbd3B+BA6j/2zASQ4FDqP7vikRjhYOo/gPgeoeFw6j9FDqwp4oDqPwokObLikOo/zznGOuOg6j+UT1PD47DqP1ll4EvkwOo/Hntt1OTQ6j/jkPpc5eDqP6imh+Xl8Oo/bbwUbuYA6z8y0qH25hDrP/fnLn/nIOs/vP27B+gw6z+BE0mQ6EDrP0Yp1hjpUOs/Cz9joelg6z/QVPAp6nDrP5VqfbLqgOs/WoAKO+uQ6z8flpfD66DrP+SrJEzssOs/qcGx1OzA6z9u1z5d7dDrPzPty+Xt4Os/+AJZbu7w6z+8GOb27gDsP4Euc3/vEOw/RkQACPAg7D8LWo2Q8DDsP9BvGhnxQOw/lYWnofFQ7D9amzQq8mDsPx+xwbLycOw/5MZOO/OA7D+p3NvD85DsP27yaEz0oOw/Mwj21PSw7D/4HYNd9cDsP70zEOb10Ow/gkmdbvbg7D9HXyr39vDsPwx1t3/3AO0/0YpECPgQ7T+WoNGQ+CDtP1u2Xhn5MO0/IMzroflA7T/l4Xgq+lDtP6r3BbP6YO0/bw2TO/tw7T80IyDE+4DtP/k4rUz8kO0/vk461fyg7T+DZMdd/bDtP0h6VOb9wO0/DZDhbv7Q7T/SpW73/uDtP5e7+3//8O0/XNGICAAB7j8h5xWRABHuP+b8ohkBIe4/qxIwogEx7j9wKL0qAkHuPzU+SrMCUe4/+lPXOwNh7j+/aWTEA3HuP4R/8UwEge4/SZV+1QSR7j8OqwteBaHuP9PAmOYFse4/mNYlbwbB7j9d7LL3BtHuPyICQIAH4e4/5xfNCAjx7j+sLVqRCAHvP3FD5xkJEe8/Nll0ogkh7z/7bgErCjHvP8CEjrMKQe8/hZobPAtR7z9KsKjEC2HvPw/GNU0Mce8/1NvC1QyB7z+Z8U9eDZHvP14H3eYNoe8/Ix1qbw6x7z/oMvf3DsHvP61IhIAP0e8/cl4RCRDh7z83dJ6REPHvP/7EFY2IAPA/4E9c0YgI8D/D2qIViRDwP6Vl6VmJGPA/iPAvnokg8D9qe3biiSjwP00GvSaKMPA/L5EDa4o48D8SHEqvikDwP/SmkPOKSPA/1zHXN4tQ8D+5vB18i1jwP5xHZMCLYPA/ftKqBIxo8D9hXfFIjHDwP0PoN42MePA/JnN+0YyA8D8I/sQVjYjwP+uIC1qNkPA/zRNSno2Y8D+wnpjijaDwP5Ip3yaOqPA/dbQla46w8D9XP2yvjrjwPzrKsvOOwPA/HFX5N4/I8D//3z98j9DwP+FqhsCP2PA/xPXMBJDg8D+mgBNJkOjwP4kLWo2Q8PA/a5ag0ZD48D9OIecVkQDxPzCsLVqRCPE/Ezd0npEQ8T/1wbrikRjxP9hMASeSIPE/utdHa5Io8T+dYo6vkjDxP3/t1POSOPE/YngbOJNA8T9EA2J8k0jxPyeOqMCTUPE/CRnvBJRY8T/sozVJlGDxP84ufI2UaPE/sbnC0ZRw8T+TRAkWlXjxP3bPT1qVgPE/WFqWnpWI8T875dzilZDxPx1wIyeWmPE/APtpa5ag8T/ihbCvlqjxP8UQ9/OWsPE/p5s9OJe48T+KJoR8l8DxP2yxysCXyPE/TzwRBZjQ8T8xx1dJmNjxPxRSno2Y4PE/9tzk0Zjo8T/ZZysWmfDxP7vycVqZ+PE/nn24npkA8j+ACP/imQjyP2OTRSeaEPI/RR6Ma5oY8j8oqdKvmiDyPwo0GfSaKPI/7b5fOJsw8j/PSaZ8mzjyP7LU7MCbQPI/lF8zBZxI8j936nlJnFDyP1l1wI2cWPI/PAAH0pxg8j8ei00WnWjyPwEWlFqdcPI/46Danp148j/GKyHjnYDyP6i2ZyeeiPI/i0Gua56Q8j9tzPSvnpjyP1BXO/SeoPI/MuKBOJ+o8j8Vbch8n7DyP/f3DsGfuPI/2oJVBaDA8j+8DZxJoMjyP5+Y4o2g0PI/gSMp0qDY8j9krm8WoeDyP0Y5tlqh6PI/KcT8nqHw8j8LT0PjofjyP+7ZiSeiAPM/0GTQa6II8z+z7xawohDzP5V6XfSiGPM/eAWkOKMg8z9akOp8oyjzPz0bMcGjMPM/H6Z3BaQ48z8CMb5JpEDzP+S7BI6kSPM/x0ZL0qRQ8z+p0ZEWpVjzP4xc2FqlYPM/bucen6Vo8z9RcmXjpXDzPzP9qyemePM/Fojya6aA8z/4EjmwpojzP9udf/SmkPM/vSjGOKeY8z+gswx9p6DzP4I+U8GnqPM/ZcmZBaiw8z9HVOBJqLjzPyrfJo6owPM/DGpt0qjI8z/v9LMWqdDzP9F/+lqp2PM/tApBn6ng8z+WlYfjqejzP3kgzieq8PM/W6sUbKr48z8+NluwqgD0PyDBofSqCPQ/AkzoOKsQ9D/l1i59qxj0P8dhdcGrIPQ/quy7Bawo9D+MdwJKrDD0P28CSY6sOPQ/UY2P0qxA9D80GNYWrUj0PxajHFutUPQ/+S1jn61Y9D/buKnjrWD0P75D8CeuaPQ/oM42bK5w9D+DWX2wrnj0P2Xkw/SugPQ/SG8KOa+I9D8q+lB9r5D0Pw2Fl8GvmPQ/7w/eBbCg9D/SmiRKsKj0P7Qla46wsPQ/l7Cx0rC49D95O/gWscD0P1zGPluxyPQ/PlGFn7HQ9D8h3Mvjsdj0PwNnEiiy4PQ/5vFYbLLo9D/IfJ+wsvD0P6sH5vSy+PQ/jZIsObMA9T9wHXN9swj1P1KoucGzEPU/NTMABrQY9T8XvkZKtCD1P/pIjY60KPU/3NPT0rQw9T+/XhoXtTj1P6HpYFu1QPU/hHSnn7VI9T9m/+3jtVD1P0mKNCi2WPU/KxV7bLZg9T8OoMGwtmj1P/AqCPW2cPU/07VOObd49T+1QJV9t4D1P5jL28G3iPU/elYiBriQ9T9d4WhKuJj1Pz9sr464oPU/Ivf10rio9T8EgjwXubD1P+cMg1u5uPU/yZfJn7nA9T+sIhDkucj1P46tVii60PU/cTidbLrY9T9Tw+OwuuD1PzZOKvW66PU/GNlwObvw9T/7Y7d9u/j1P93u/cG7APY/wHlEBrwI9j+iBItKvBD2P4WP0Y68GPY/ZxoY07wg9j9KpV4XvSj2PywwpVu9MPY/D7vrn7049j/xRTLkvUD2P9TQeCi+SPY/tlu/bL5Q9j+Z5gWxvlj2P3txTPW+YPY/XvySOb9o9j9Ah9l9v3D2PyMSIMK/ePY/BZ1mBsCA9j/oJ61KwIj2P8qy847AkPY/rT0608CY9j+PyIAXwaD2P3JTx1vBqPY/VN4NoMGw9j83aVTkwbj2Pxn0mijCwPY//H7hbMLI9j/eCSixwtD2P8GUbvXC2PY/ox+1OcPg9j+Gqvt9w+j2P2g1QsLD8PY/S8CIBsT49j8tS89KxAD3PxDWFY/ECPc/8mBc08QQ9z/V66IXxRj3P7d26VvFIPc/mgEwoMUo9z98jHbkxTD3P18XvSjGOPc/QaIDbcZA9z8kLUqxxkj3Pwa4kPXGUPc/6ULXOcdY9z/LzR1+x2D3P65YZMLHaPc/kOOqBshw9z9zbvFKyHj3P1X5N4/IgPc/OIR+08iI9z8aD8UXyZD3P/2ZC1zJmPc/3yRSoMmg9z/Cr5jkyaj3P6Q63yjKsPc/h8Ulbcq49z9pUGyxysD3P0zbsvXKyPc/Lmb5OcvQ9z8R8T9+y9j3P/N7hsLL4Pc/1gbNBszo9z+4kRNLzPD3P5scWo/M+Pc/faeg08wA+D9fMucXzQj4P0K9LVzNEPg/JEh0oM0Y+D8H07rkzSD4P+ldASnOKPg/zOhHbc4w+D+uc46xzjj4P5H+1PXOQPg/c4kbOs9I+D9WFGJ+z1D4PzifqMLPWPg/GyrvBtBg+D/9tDVL0Gj4P+A/fI/QcPg/wsrC09B4+D+lVQkY0YD4P4fgT1zRiPg/amuWoNGQ+D9M9tzk0Zj4Py+BIynSoPg/EQxqbdKo+D/0lrCx0rD4P9Yh9/XSuPg/uaw9OtPA+D+bN4R+08j4P37CysLT0Pg/YE0RB9TY+D9D2FdL1OD4PyVjno/U6Pg/CO7k09Tw+D/qeCsY1fj4P80DclzVAPk/r464oNUI+T+SGf/k1RD5P3SkRSnWGPk/Vy+MbdYg+T85utKx1ij5PxxFGfbWMPk//s9fOtc4+T/hWqZ+10D5P8Pl7MLXSPk/pnAzB9hQ+T+I+3lL2Fj5P2uGwI/YYPk/TREH1Nho+T8wnE0Y2XD5PxInlFzZePk/9bHaoNmA+T/XPCHl2Yj5P7rHZynakPk/nFKubdqY+T9/3fSx2qD5P2FoO/baqPk/RPOBOtuw+T8mfsh+27j5PwkJD8PbwPk/65NVB9zI+T/OHpxL3ND5P7Cp4o/c2Pk/kzQp1Nzg+T91v28Y3ej5P1hKtlzd8Pk/OtX8oN34+T8dYEPl3QD6P//qiSneCPo/4nXQbd4Q+j/EABey3hj6P6eLXfbeIPo/iRakOt8o+j9soep+3zD6P04sMcPfOPo/Mbd3B+BA+j8TQr5L4Ej6P/bMBJDgUPo/2FdL1OBY+j+74pEY4WD6P51t2FzhaPo/gPgeoeFw+j9ig2Xl4Xj6P0UOrCnigPo/J5nybeKI+j8KJDmy4pD6P+yuf/bimPo/zznGOuOg+j+xxAx/46j6P5RPU8PjsPo/dtqZB+S4+j9ZZeBL5MD6PzvwJpDkyPo/Hntt1OTQ+j8ABrQY5dj6P+OQ+lzl4Po/xRtBoeXo+j+opofl5fD6P4oxzinm+Po/bbwUbuYA+z9PR1uy5gj7PzLSofbmEPs/FF3oOucY+z/35y5/5yD7P9lydcPnKPs/vP27B+gw+z+eiAJM6Dj7P4ETSZDoQPs/Y56P1OhI+z9GKdYY6VD7Pyi0HF3pWPs/Cz9joelg+z/tyanl6Wj7P9BU8CnqcPs/st82bup4+z+Van2y6oD7P3f1w/bqiPs/WoAKO+uQ+z88C1F/65j7Px+Wl8ProPs/ASHeB+yo+z/kqyRM7LD7P8Y2a5DsuPs/qcGx1OzA+z+LTPgY7cj7P27XPl3t0Ps/UGKFoe3Y+z8z7cvl7eD7PxV4Eiru6Ps/+AJZbu7w+z/ajZ+y7vj7P7wY5vbuAPw/n6MsO+8I/D+BLnN/7xD8P2S5ucPvGPw/RkQACPAg/D8pz0ZM8Cj8PwtajZDwMPw/7uTT1PA4/D/QbxoZ8UD8P7P6YF3xSPw/lYWnofFQ/D94EO7l8Vj8P1qbNCryYPw/PSZ7bvJo/D8fscGy8nD8PwI8CPfyePw/5MZOO/OA/D/HUZV/84j8P6nc28PzkPw/jGciCPSY/D9u8mhM9KD8P1F9r5D0qPw/Mwj21PSw/D8WkzwZ9bj8P/gdg131wPw/26jJofXI/D+9MxDm9dD8P6C+Vir22Pw/gkmdbvbg/D9l1OOy9uj8P0dfKvf28Pw/KupwO/f4/D8Mdbd/9wD9P+///cP3CP0/0YpECPgQ/T+0FYtM+Bj9P5ag0ZD4IP0/eSsY1fgo/T9btl4Z+TD9Pz5BpV35OP0/IMzroflA/T8DVzLm+Uj9P+XheCr6UP0/yGy/bvpY/T+q9wWz+mD9P42CTPf6aP0/bw2TO/tw/T9SmNl/+3j9PzQjIMT7gP0/F65mCPyI/T/5OK1M/JD9P9zD85D8mP0/vk461fyg/T+h2YAZ/aj9P4Nkx139sP0/Zu8Nov24/T9IelTm/cD9PysFmyr+yP0/DZDhbv7Q/T/wGiiz/tj9P9Klbvf+4P0/tTC1O//o/T+Xu/t///D9P3pGQsT/+P0/XNGICAAB/j8/XM9MAAn+PyHnFZEAEf4/BHJc1QAZ/j/m/KIZASH+P8mH6V0BKf4/qxIwogEx/j+OnXbmATn+P3AovSoCQf4/U7MDbwJJ/j81PkqzAlH+PxjJkPcCWf4/+lPXOwNh/j/d3h2AA2n+P79pZMQDcf4/ovSqCAR5/j+Ef/FMBIH+P2cKOJEEif4/SZV+1QSR/j8sIMUZBZn+Pw6rC14Fof4/8TVSogWp/j/TwJjmBbH+P7ZL3yoGuf4/mNYlbwbB/j97YWyzBsn+P13ssvcG0f4/QHf5OwfZ/j8iAkCAB+H+PwWNhsQH6f4/5xfNCAjx/j/KohNNCPn+P6wtWpEIAf8/j7ig1QgJ/z9xQ+cZCRH/P1TOLV4JGf8/Nll0ogkh/z8Z5LrmCSn/P/tuASsKMf8/3vlHbwo5/z/AhI6zCkH/P6MP1fcKSf8/hZobPAtR/z9oJWKAC1n/P0qwqMQLYf8/LTvvCAxp/z8PxjVNDHH/P/JQfJEMef8/1NvC1QyB/z+3ZgkaDYn/P5nxT14Nkf8/fHyWog2Z/z9eB93mDaH/P0GSIysOqf8/Ix1qbw6x/z8GqLCzDrn/P+gy9/cOwf8/y709PA/J/z+tSISAD9H/P5DTysQP2f8/cl4RCRDh/z9V6VdNEOn/Pzd0npEQ8f8/Gv/k1RD5/z/+xBWNiAAAQG8KOa+IBABA4E9c0YgIAEBSlX/ziAwAQMPaohWJEABANCDGN4kUAEClZelZiRgAQBerDHyJHABAiPAvnokgAED5NVPAiSQAQGp7duKJKABA3MCZBIosAEBNBr0mijAAQL5L4EiKNABAL5EDa4o4AECh1iaNijwAQBIcSq+KQABAg2Ft0YpEAED0ppDzikgAQGbssxWLTABA1zHXN4tQAEBId/pZi1QAQLm8HXyLWABAKwJBnotcAECcR2TAi2AAQA2Nh+KLZABAftKqBIxoAEDwF84mjGwAQGFd8UiMcABA0qIUa4x0AEBD6DeNjHgAQLUtW6+MfABAJnN+0YyAAECXuKHzjIQAQAj+xBWNiABAekPoN42MAEDriAtajZAAQFzOLnyNlABAzRNSno2YAEA/WXXAjZwAQLCemOKNoABAIeS7BI6kAECSKd8mjqgAQARvAkmOrABAdbQla46wAEDm+UiNjrQAQFc/bK+OuABAyYSP0Y68AEA6yrLzjsAAQKsP1hWPxABAHFX5N4/IAECOmhxaj8wAQP/fP3yP0ABAcCVjno/UAEDhaobAj9gAQFOwqeKP3ABAxPXMBJDgAEA1O/AmkOQAQKaAE0mQ6ABAGMY2a5DsAECJC1qNkPAAQPpQfa+Q9ABAa5ag0ZD4AEDd28PzkPwAQE4h5xWRAAFAv2YKOJEEAUAwrC1akQgBQKLxUHyRDAFAEzd0npEQAUCEfJfAkRQBQPXBuuKRGAFAZwfeBJIcAUDYTAEnkiABQEmSJEmSJAFAutdHa5IoAUAsHWuNkiwBQJ1ijq+SMAFADqix0ZI0AUB/7dTzkjgBQPEy+BWTPAFAYngbOJNAAUDTvT5ak0QBQEQDYnyTSAFAtkiFnpNMAUAnjqjAk1ABQJjTy+KTVAFACRnvBJRYAUB7XhInlFwBQOyjNUmUYAFAXelYa5RkAUDOLnyNlGgBQEB0n6+UbAFAsbnC0ZRwAUAi/+XzlHQBQJNECRaVeAFABYosOJV8AUB2z09alYABQOcUc3yVhAFAWFqWnpWIAUDKn7nAlYwBQDvl3OKVkAFArCoABZaUAUAdcCMnlpgBQI+1RkmWnAFAAPtpa5agAUBxQI2NlqQBQOKFsK+WqAFAVMvT0ZasAUDFEPfzlrABQDZWGhaXtAFAp5s9OJe4AUAZ4WBal7wBQIomhHyXwAFA+2unnpfEAUBsscrAl8gBQN727eKXzAFATzwRBZjQAUDAgTQnmNQBQDHHV0mY2AFAowx7a5jcAUAUUp6NmOABQIWXwa+Y5AFA9tzk0ZjoAUBoIgj0mOwBQNlnKxaZ8AFASq1OOJn0AUC78nFamfgBQC04lXyZ/AFAnn24npkAAkAPw9vAmQQCQIAI/+KZCAJA8U0iBZoMAkBjk0UnmhACQNTYaEmaFAJARR6Ma5oYAkC2Y6+NmhwCQCip0q+aIAJAme710ZokAkAKNBn0migCQHt5PBabLAJA7b5fOJswAkBeBINamzQCQM9JpnybOAJAQI/Jnps8AkCy1OzAm0ACQCMaEOObRAJAlF8zBZxIAkAFpVYnnEwCQHfqeUmcUAJA6C+da5xUAkBZdcCNnFgCQMq646+cXAJAPAAH0pxgAkCtRSr0nGQCQB6LTRadaAJAj9BwOJ1sAkABFpRanXACQHJbt3yddAJA46Danp14AkBU5v3AnXwCQMYrIeOdgAJAN3FEBZ6EAkCotmcnnogCQBn8ikmejAJAi0Gua56QAkD8htGNnpQCQG3M9K+emAJA3hEY0p6cAkBQVzv0nqACQMGcXhafpAJAMuKBOJ+oAkCjJ6Van6wCQBVtyHyfsAJAhrLrnp+0AkD39w7Bn7gCQGg9MuOfvAJA2oJVBaDAAkBLyHgnoMQCQLwNnEmgyAJALVO/a6DMAkCfmOKNoNACQBDeBbCg1AJAgSMp0qDYAkDyaEz0oNwCQGSubxah4AJA1fOSOKHkAkBGObZaoegCQLd+2Xyh7AJAKcT8nqHwAkCaCSDBofQCQAtPQ+Oh+AJAfJRmBaL8AkDu2YknogADQF8frUmiBANA0GTQa6IIA0BBqvONogwDQLPvFrCiEANAJDU60qIUA0CVel30ohgDQAbAgBajHANAeAWkOKMgA0DpSsdaoyQDQFqQ6nyjKANAy9UNn6MsA0A9GzHBozADQK5gVOOjNANAH6Z3BaQ4A0CQ65onpDwDQAIxvkmkQANAc3bha6REA0DkuwSOpEgDQFUBKLCkTANAx0ZL0qRQA0A4jG70pFQDQKnRkRalWANAGhe1OKVcA0CMXNhapWADQP2h+3ylZANAbucen6VoA0DfLELBpWwDQFFyZeOlcANAwreIBaZ0A0Az/asnpngDQKRCz0mmfANAFojya6aAA0CHzRWOpoQDQPgSObCmiANAaVhc0qaMA0DbnX/0ppADQEzjohanlANAvSjGOKeYA0Aubulap5wDQKCzDH2noANAEfkvn6ekA0CCPlPBp6gDQPODduOnrANAZcmZBaiwA0DWDr0nqLQDQEdU4EmouANAuJkDbKi8A0Aq3yaOqMADQJskSrCoxANADGpt0qjIA0B9r5D0qMwDQO/0sxap0ANAYDrXOKnUA0DRf/paqdgDQELFHX2p3ANAtApBn6ngA0AlUGTBqeQDQJaVh+Op6ANAB9uqBarsA0B5IM4nqvADQOpl8Umq9ANAW6sUbKr4A0DM8DeOqvwDQD42W7CqAARAr3t+0qoEBEAgwaH0qggEQJEGxRarDARAAkzoOKsQBEB0kQtbqxQEQOXWLn2rGARAVhxSn6scBEDHYXXBqyAEQDmnmOOrJARAquy7BawoBEAbMt8nrCwEQIx3AkqsMARA/rwlbKw0BEBvAkmOrDgEQOBHbLCsPARAUY2P0qxABEDD0rL0rEQEQDQY1hatSARApV35OK1MBEAWoxxbrVAEQIjoP32tVARA+S1jn61YBEBqc4bBrVwEQNu4qeOtYARATf7MBa5kBEC+Q/AnrmgEQC+JE0qubARAoM42bK5wBEASFFqOrnQEQINZfbCueARA9J6g0q58BEBl5MP0roAEQNcp5xavhARASG8KOa+IBEC5tC1br4wEQCr6UH2vkARAnD90n6+UBEANhZfBr5gEQH7KuuOvnARA7w/eBbCgBEBhVQEosKQEQNKaJEqwqARAQ+BHbLCsBEC0JWuOsLAEQCZrjrCwtARAl7Cx0rC4BEAI9tT0sLwEQHk7+BaxwARA64AbObHEBEBcxj5bscgEQM0LYn2xzARAPlGFn7HQBECwlqjBsdQEQCHcy+Ox2ARAkiHvBbLcBEADZxIosuAEQHWsNUqy5ARA5vFYbLLoBEBXN3yOsuwEQMh8n7Cy8ARAOsLC0rL0BECrB+b0svgEQBxNCRez/ARAjZIsObMABUD/109bswQFQHAdc32zCAVA4WKWn7MMBUBSqLnBsxAFQMTt3OOzFAVANTMABrQYBUCmeCMotBwFQBe+Rkq0IAVAiQNqbLQkBUD6SI2OtCgFQGuOsLC0LAVA3NPT0rQwBUBOGff0tDQFQL9eGhe1OAVAMKQ9ObU8BUCh6WBbtUAFQBMvhH21RAVAhHSnn7VIBUD1ucrBtUwFQGb/7eO1UAVA2EQRBrZUBUBJijQotlgFQLrPV0q2XAVAKxV7bLZgBUCdWp6OtmQFQA6gwbC2aAVAf+Xk0rZsBUDwKgj1tnAFQGJwKxe3dAVA07VOObd4BUBE+3Fbt3wFQLVAlX23gAVAJ4a4n7eEBUCYy9vBt4gFQAkR/+O3jAVAelYiBriQBUDsm0UouJQFQF3haEq4mAVAziaMbLicBUA/bK+OuKAFQLGx0rC4pAVAIvf10rioBUCTPBn1uKwFQASCPBe5sAVAdsdfObm0BUDnDINbubgFQFhSpn25vAVAyZfJn7nABUA73ezBucQFQKwiEOS5yAVAHWgzBrrMBUCOrVYoutAFQADzeUq61AVAcTidbLrYBUDifcCOutwFQFPD47C64AVAxQgH07rkBUA2Tir1uugFQKeTTRe77AVAGNlwObvwBUCKHpRbu/QFQPtjt327+AVAbKnan7v8BUDd7v3BuwAGQE40IeS7BAZAwHlEBrwIBkAxv2covAwGQKIEi0q8EAZAE0qubLwUBkCFj9GOvBgGQPbU9LC8HAZAZxoY07wgBkDYXzv1vCQGQEqlXhe9KAZAu+qBOb0sBkAsMKVbvTAGQJ11yH29NAZAD7vrn704BkCAAA/CvTwGQPFFMuS9QAZAYotVBr5EBkDU0HgovkgGQEUWnEq+TAZAtlu/bL5QBkAnoeKOvlQGQJnmBbG+WAZACiwp075cBkB7cUz1vmAGQOy2bxe/ZAZAXvySOb9oBkDPQbZbv2wGQECH2X2/cAZAscz8n790BkAjEiDCv3gGQJRXQ+S/fAZABZ1mBsCABkB24okowIQGQOgnrUrAiAZAWW3QbMCMBkDKsvOOwJAGQDv4FrHAlAZArT0608CYBkAeg131wJwGQI/IgBfBoAZAAA6kOcGkBkByU8dbwagGQOOY6n3BrAZAVN4NoMGwBkDFIzHCwbQGQDdpVOTBuAZAqK53BsK8BkAZ9JoowsAGQIo5vkrCxAZA/H7hbMLIBkBtxASPwswGQN4JKLHC0AZAT09L08LUBkDBlG71wtgGQDLakRfD3AZAox+1OcPgBkAUZdhbw+QGQIaq+33D6AZA9+8eoMPsBkBoNULCw/AGQNl6ZeTD9AZAS8CIBsT4BkC8BawoxPwGQC1Lz0rEAAdAnpDybMQEB0AQ1hWPxAgHQIEbObHEDAdA8mBc08QQB0Bjpn/1xBQHQNXrohfFGAdARjHGOcUcB0C3dulbxSAHQCi8DH7FJAdAmgEwoMUoB0ALR1PCxSwHQHyMduTFMAdA7dGZBsY0B0BfF70oxjgHQNBc4ErGPAdAQaIDbcZAB0Cy5yaPxkQHQCQtSrHGSAdAlXJt08ZMB0AGuJD1xlAHQHf9sxfHVAdA6ULXOcdYB0BaiPpbx1wHQMvNHX7HYAdAPBNBoMdkB0CuWGTCx2gHQB+eh+THbAdAkOOqBshwB0ABKc4oyHQHQHNu8UrIeAdA5LMUbch8B0BV+TePyIAHQMY+W7HIhAdAOIR+08iIB0CpyaH1yIwHQBoPxRfJkAdAi1ToOcmUB0D9mQtcyZgHQG7fLn7JnAdA3yRSoMmgB0BQanXCyaQHQMKvmOTJqAdAM/W7BsqsB0CkOt8oyrAHQBWAAkvKtAdAh8Ulbcq4B0D4CkmPyrwHQGlQbLHKwAdA2pWP08rEB0BM27L1ysgHQL0g1hfLzAdALmb5OcvQB0Cfqxxcy9QHQBHxP37L2AdAgjZjoMvcB0Dze4bCy+AHQGTBqeTL5AdA1gbNBszoB0BHTPAozOwHQLiRE0vM8AdAKdc2bcz0B0CbHFqPzPgHQAxifbHM/AdAfaeg08wACEDu7MP1zAQIQF8y5xfNCAhA0XcKOs0MCEBCvS1czRAIQLMCUX7NFAhAJEh0oM0YCECWjZfCzRwIQAfTuuTNIAhAeBjeBs4kCEDpXQEpzigIQFujJEvOLAhAzOhHbc4wCEA9LmuPzjQIQK5zjrHOOAhAILmx0848CECR/tT1zkAIQAJE+BfPRAhAc4kbOs9ICEDlzj5cz0wIQFYUYn7PUAhAx1mFoM9UCEA4n6jCz1gIQKrky+TPXAhAGyrvBtBgCECMbxIp0GQIQP20NUvQaAhAb/pYbdBsCEDgP3yP0HAIQFGFn7HQdAhAwsrC09B4CEA0EOb10HwIQKVVCRjRgAhAFpssOtGECECH4E9c0YgIQPklc37RjAhAamuWoNGQCEDbsLnC0ZQIQEz23OTRmAhAvjsAB9KcCEAvgSMp0qAIQKDGRkvSpAhAEQxqbdKoCECDUY2P0qwIQPSWsLHSsAhAZdzT09K0CEDWIff10rgIQEhnGhjTvAhAuaw9OtPACEAq8mBc08QIQJs3hH7TyAhADX2noNPMCEB+wsrC09AIQO8H7uTT1AhAYE0RB9TYCEDSkjQp1NwIQEPYV0vU4AhAtB17bdTkCEAlY56P1OgIQJeowbHU7AhACO7k09TwCEB5Mwj21PQIQOp4KxjV+AhAXL5OOtX8CEDNA3Jc1QAJQD5JlX7VBAlAr464oNUICUAh1NvC1QwJQJIZ/+TVEAlAA18iB9YUCUB0pEUp1hgJQObpaEvWHAlAVy+MbdYgCUDIdK+P1iQJQDm60rHWKAlAq//109YsCUAcRRn21jAJQI2KPBjXNAlA/s9fOtc4CUBwFYNc1zwJQOFapn7XQAlAUqDJoNdECUDD5ezC10gJQDUrEOXXTAlApnAzB9hQCUAXtlYp2FQJQIj7eUvYWAlA+kCdbdhcCUBrhsCP2GAJQNzL47HYZAlATREH1NhoCUC/Vir22GwJQDCcTRjZcAlAoeFwOtl0CUASJ5Rc2XgJQIRst37ZfAlA9bHaoNmACUBm9/3C2YQJQNc8IeXZiAlASYJEB9qMCUC6x2cp2pAJQCsNi0valAlAnFKubdqYCUAOmNGP2pwJQH/d9LHaoAlA8CIY1NqkCUBhaDv22qgJQNOtXhjbrAlARPOBOtuwCUC1OKVc27QJQCZ+yH7buAlAmMProNu8CUAJCQ/D28AJQHpOMuXbxAlA65NVB9zICUBd2Xgp3MwJQM4enEvc0AlAP2S/bdzUCUCwqeKP3NgJQCLvBbLc3AlAkzQp1NzgCUAEekz23OQJQHW/bxjd6AlA5wSTOt3sCUBYSrZc3fAJQMmP2X7d9AlAOtX8oN34CUCsGiDD3fwJQB1gQ+XdAApAjqVmB94ECkD/6okp3ggKQHAwrUveDApA4nXQbd4QCkBTu/OP3hQKQMQAF7LeGApANUY61N4cCkCni1323iAKQBjRgBjfJApAiRakOt8oCkD6W8dc3ywKQGyh6n7fMApA3eYNod80CkBOLDHD3zgKQL9xVOXfPApAMbd3B+BACkCi/Jop4EQKQBNCvkvgSApAhIfhbeBMCkD2zASQ4FAKQGcSKLLgVApA2FdL1OBYCkBJnW724FwKQLvikRjhYApALCi1OuFkCkCdbdhc4WgKQA6z+37hbApAgPgeoeFwCkDxPULD4XQKQGKDZeXheApA08iIB+J8CkBFDqwp4oAKQLZTz0vihApAJ5nybeKICkCY3hWQ4owKQAokObLikApAe2lc1OKUCkDsrn/24pgKQF30ohjjnApAzznGOuOgCkBAf+lc46QKQLHEDH/jqApAIgowoeOsCkCUT1PD47AKQAWVduXjtApAdtqZB+S4CkDnH70p5LwKQFll4EvkwApAyqoDbuTECkA78CaQ5MgKQKw1SrLkzApAHntt1OTQCkCPwJD25NQKQAAGtBjl2ApAcUvXOuXcCkDjkPpc5eAKQFTWHX/l5ApAxRtBoeXoCkA2YWTD5ewKQKimh+Xl8ApAGeyqB+b0CkCKMc4p5vgKQPt28Uvm/ApAbbwUbuYAC0DeATiQ5gQLQE9HW7LmCAtAwIx+1OYMC0Ay0qH25hALQKMXxRjnFAtAFF3oOucYC0CFogtd5xwLQPfnLn/nIAtAaC1SoeckC0DZcnXD5ygLQEq4mOXnLAtAvP27B+gwC0AtQ98p6DQLQJ6IAkzoOAtAD84lbug8C0CBE0mQ6EALQPJYbLLoRAtAY56P1OhIC0DU47L26EwLQEYp1hjpUAtAt275OulUC0AotBxd6VgLQJn5P3/pXAtACz9joelgC0B8hIbD6WQLQO3JqeXpaAtAXg/NB+psC0DQVPAp6nALQEGaE0zqdAtAst82bup4C0AjJVqQ6nwLQJVqfbLqgAtABrCg1OqEC0B39cP26ogLQOg65xjrjAtAWoAKO+uQC0DLxS1d65QLQDwLUX/rmAtArVB0oeucC0AflpfD66ALQJDbuuXrpAtAASHeB+yoC0ByZgEq7KwLQOSrJEzssAtAVfFHbuy0C0DGNmuQ7LgLQDd8jrLsvAtAqcGx1OzAC0AaB9X27MQLQItM+BjtyAtA/JEbO+3MC0Bu1z5d7dALQN8cYn/t1AtAUGKFoe3YC0DBp6jD7dwLQDPty+Xt4AtApDLvB+7kC0AVeBIq7ugLQIa9NUzu7AtA+AJZbu7wC0BpSHyQ7vQLQNqNn7Lu+AtAS9PC1O78C0C8GOb27gAMQC5eCRnvBAxAn6MsO+8IDEAQ6U9d7wwMQIEuc3/vEAxA83OWoe8UDEBkubnD7xgMQNX+3OXvHAxARkQACPAgDEC4iSMq8CQMQCnPRkzwKAxAmhRqbvAsDEALWo2Q8DAMQH2fsLLwNAxA7uTT1PA4DEBfKvf28DwMQNBvGhnxQAxAQrU9O/FEDECz+mBd8UgMQCRAhH/xTAxAlYWnofFQDEAHy8rD8VQMQHgQ7uXxWAxA6VURCPJcDEBamzQq8mAMQMzgV0zyZAxAPSZ7bvJoDECua56Q8mwMQB+xwbLycAxAkfbk1PJ0DEACPAj38ngMQHOBKxnzfAxA5MZOO/OADEBWDHJd84QMQMdRlX/ziAxAOJe4ofOMDECp3NvD85AMQBsi/+XzlAxAjGciCPSYDED9rEUq9JwMQG7yaEz0oAxA4DeMbvSkDEBRfa+Q9KgMQMLC0rL0rAxAMwj21PSwDEClTRn39LQMQBaTPBn1uAxAh9hfO/W8DED4HYNd9cAMQGpjpn/1xAxA26jJofXIDEBM7uzD9cwMQL0zEOb10AxAL3kzCPbUDECgvlYq9tgMQBEEekz23AxAgkmdbvbgDED0jsCQ9uQMQGXU47L26AxA1hkH1fbsDEBHXyr39vAMQLmkTRn39AxAKupwO/f4DECbL5Rd9/wMQAx1t3/3AA1AfrraofcEDUDv//3D9wgNQGBFIeb3DA1A0YpECPgQDUBD0Gcq+BQNQLQVi0z4GA1AJVuubvgcDUCWoNGQ+CANQAjm9LL4JA1AeSsY1fgoDUDqcDv3+CwNQFu2Xhn5MA1AzfuBO/k0DUA+QaVd+TgNQK+GyH/5PA1AIMzroflADUCSEQ/E+UQNQANXMub5SA1AdJxVCPpMDUDl4Xgq+lANQFcnnEz6VA1AyGy/bvpYDUA5suKQ+lwNQKr3BbP6YA1AHD0p1fpkDUCNgkz3+mgNQP7Hbxn7bA1Abw2TO/twDUDhUrZd+3QNQFKY2X/7eA1Aw938oft8DUA0IyDE+4ANQKZoQ+b7hA1AF65mCPyIDUCI84kq/IwNQPk4rUz8kA1Aa37QbvyUDUDcw/OQ/JgNQE0JF7P8nA1Avk461fygDUAwlF33/KQNQKHZgBn9qA1AEh+kO/2sDUCDZMdd/bANQPWp6n/9tA1AZu8Nov24DUDXNDHE/bwNQEh6VOb9wA1Aur93CP7EDUArBZsq/sgNQJxKvkz+zA1ADZDhbv7QDUB/1QSR/tQNQPAaKLP+2A1AYWBL1f7cDUDSpW73/uANQETrkRn/5A1AtTC1O//oDUAmdthd/+wNQJe7+3//8A1ACQEfov/0DUB6RkLE//gNQOuLZeb//A1AXNGICAABDkDNFqwqAAUOQD9cz0wACQ5AsKHybgANDkAh5xWRABEOQJIsObMAFQ5ABHJc1QAZDkB1t3/3AB0OQOb8ohkBIQ5AV0LGOwElDkDJh+ldASkOQDrNDIABLQ5AqxIwogExDkAcWFPEATUOQI6dduYBOQ5A/+KZCAI9DkBwKL0qAkEOQOFt4EwCRQ5AU7MDbwJJDkDE+CaRAk0OQDU+SrMCUQ5ApoNt1QJVDkAYyZD3AlkOQIkOtBkDXQ5A+lPXOwNhDkBrmfpdA2UOQN3eHYADaQ5ATiRBogNtDkC/aWTEA3EOQDCvh+YDdQ5AovSqCAR5DkATOs4qBH0OQIR/8UwEgQ5A9cQUbwSFDkBnCjiRBIkOQNhPW7MEjQ5ASZV+1QSRDkC62qH3BJUOQCwgxRkFmQ5AnWXoOwWdDkAOqwteBaEOQH/wLoAFpQ5A8TVSogWpDkBie3XEBa0OQNPAmOYFsQ5ARAa8CAa1DkC2S98qBrkOQCeRAk0GvQ5AmNYlbwbBDkAJHEmRBsUOQHthbLMGyQ5A7KaP1QbNDkBd7LL3BtEOQM4x1hkH1Q5AQHf5OwfZDkCxvBxeB90OQCICQIAH4Q5Ak0djogflDkAFjYbEB+kOQHbSqeYH7Q5A5xfNCAjxDkBYXfAqCPUOQMqiE00I+Q5AO+g2bwj9DkCsLVqRCAEPQB1zfbMIBQ9Aj7ig1QgJD0AA/sP3CA0PQHFD5xkJEQ9A4ogKPAkVD0BUzi1eCRkPQMUTUYAJHQ9ANll0ogkhD0CnnpfECSUPQBnkuuYJKQ9AiineCAotD0D7bgErCjEPQGy0JE0KNQ9A3vlHbwo5D0BPP2uRCj0PQMCEjrMKQQ9AMcqx1QpFD0CjD9X3CkkPQBRV+BkLTQ9AhZobPAtRD0D23z5eC1UPQGglYoALWQ9A2WqFogtdD0BKsKjEC2EPQLv1y+YLZQ9ALTvvCAxpD0CegBIrDG0PQA/GNU0McQ9AgAtZbwx1D0DyUHyRDHkPQGOWn7MMfQ9A1NvC1QyBD0BFIeb3DIUPQLdmCRoNiQ9AKKwsPA2ND0CZ8U9eDZEPQAo3c4ANlQ9AfHyWog2ZD0DtwbnEDZ0PQF4H3eYNoQ9Az0wACQ6lD0BBkiMrDqkPQLLXRk0OrQ9AIx1qbw6xD0CUYo2RDrUPQAaosLMOuQ9Ad+3T1Q69D0DoMvf3DsEPQFl4GhoPxQ9Ay709PA/JD0A8A2FeD80PQK1IhIAP0Q9AHo6nog/VD0CQ08rED9kPQAEZ7uYP3Q9Acl4RCRDhD0DjozQrEOUPQFXpV00Q6Q9Axi57bxDtD0A3dJ6REPEPQKi5wbMQ9Q9AGv/k1RD5D0CLRAj4EP0PQP7EFY2IABBAt2cnnogCEEBvCjmviAQQQCitSsCIBhBA4E9c0YgIEECZ8m3iiAoQQFKVf/OIDBBACjiRBIkOEEDD2qIViRAQQHx9tCaJEhBANCDGN4kUEEDtwtdIiRYQQKVl6VmJGBBAXgj7aokaEEAXqwx8iRwQQM9NHo2JHhBAiPAvnokgEEBBk0GviSIQQPk1U8CJJBBAsthk0YkmEEBqe3biiSgQQCMeiPOJKhBA3MCZBIosEECUY6sVii4QQE0GvSaKMBBABqnON4oyEEC+S+BIijQQQHfu8VmKNhBAL5EDa4o4EEDoMxV8ijoQQKHWJo2KPBBAWXk4noo+EEASHEqvikAQQMu+W8CKQhBAg2Ft0YpEEEA8BH/iikYQQPSmkPOKSBBArUmiBItKEEBm7LMVi0wQQB6PxSaLThBA1zHXN4tQEECQ1OhIi1IQQEh3+lmLVBBAARoMa4tWEEC5vB18i1gQQHJfL42LWhBAKwJBnotcEEDjpFKvi14QQJxHZMCLYBBAVep10YtiEEANjYfii2QQQMYvmfOLZhBAftKqBIxoEEA3dbwVjGoQQPAXziaMbBBAqLrfN4xuEEBhXfFIjHAQQBoAA1qMchBA0qIUa4x0EECLRSZ8jHYQQEPoN42MeBBA/IpJnox6EEC1LVuvjHwQQG3QbMCMfhBAJnN+0YyAEEDfFZDijIIQQJe4ofOMhBBAUFuzBI2GEEAI/sQVjYgQQMGg1iaNihBAekPoN42MEEAy5vlIjY4QQOuIC1qNkBBApCsda42SEEBczi58jZQQQBVxQI2NlhBAzRNSno2YEECGtmOvjZoQQD9ZdcCNnBBA9/uG0Y2eEECwnpjijaAQQGlBqvONohBAIeS7BI6kEEDahs0VjqYQQJIp3yaOqBBAS8zwN46qEEAEbwJJjqwQQLwRFFqOrhBAdbQla46wEEAuVzd8jrIQQOb5SI2OtBBAn5xano62EEBXP2yvjrgQQBDifcCOuhBAyYSP0Y68EECBJ6Hijr4QQDrKsvOOwBBA82zEBI/CEECrD9YVj8QQQGSy5yaPxhBAHFX5N4/IEEDV9wpJj8oQQI6aHFqPzBBARj0ua4/OEED/3z98j9AQQLiCUY2P0hBAcCVjno/UEEApyHSvj9YQQOFqhsCP2BBAmg2Y0Y/aEEBTsKnij9wQQAtTu/OP3hBAxPXMBJDgEEB9mN4VkOIQQDU78CaQ5BBA7t0BOJDmEECmgBNJkOgQQF8jJVqQ6hBAGMY2a5DsEEDQaEh8kO4QQIkLWo2Q8BBAQq5rnpDyEED6UH2vkPQQQLPzjsCQ9hBAa5ag0ZD4EEAkObLikPoQQN3bw/OQ/BBAlX7VBJH+EEBOIecVkQARQAbE+CaRAhFAv2YKOJEEEUB4CRxJkQYRQDCsLVqRCBFA6U4/a5EKEUCi8VB8kQwRQFqUYo2RDhFAEzd0npEQEUDL2YWvkRIRQIR8l8CRFBFAPR+p0ZEWEUD1wbrikRgRQK5kzPORGhFAZwfeBJIcEUAfqu8Vkh4RQNhMASeSIBFAkO8SOJIiEUBJkiRJkiQRQAI1NlqSJhFAutdHa5IoEUBzell8kioRQCwda42SLBFA5L98npIuEUCdYo6vkjARQFUFoMCSMhFADqix0ZI0EUDHSsPikjYRQH/t1POSOBFAOJDmBJM6EUDxMvgVkzwRQKnVCSeTPhFAYngbOJNAEUAaGy1Jk0IRQNO9PlqTRBFAjGBQa5NGEUBEA2J8k0gRQP2lc42TShFAtkiFnpNMEUBu65avk04RQCeOqMCTUBFA3zC60ZNSEUCY08vik1QRQFF23fOTVhFACRnvBJRYEUDCuwAWlFoRQHteEieUXBFAMwEkOJReEUDsozVJlGARQKRGR1qUYhFAXelYa5RkEUAWjGp8lGYRQM4ufI2UaBFAh9GNnpRqEUBAdJ+vlGwRQPgWscCUbhFAsbnC0ZRwEUBpXNTilHIRQCL/5fOUdBFA26H3BJV2EUCTRAkWlXgRQEznGieVehFABYosOJV8EUC9LD5JlX4RQHbPT1qVgBFALnJha5WCEUDnFHN8lYQRQKC3hI2VhhFAWFqWnpWIEUAR/aevlYoRQMqfucCVjBFAgkLL0ZWOEUA75dzilZARQPOH7vOVkhFArCoABZaUEUBlzREWlpYRQB1wIyeWmBFA1hI1OJaaEUCPtUZJlpwRQEdYWFqWnhFAAPtpa5agEUC4nXt8lqIRQHFAjY2WpBFAKuOenpamEUDihbCvlqgRQJsowsCWqhFAVMvT0ZasEUAMbuXilq4RQMUQ9/OWsBFAfbMIBZeyEUA2VhoWl7QRQO/4KyeXthFAp5s9OJe4EUBgPk9Jl7oRQBnhYFqXvBFA0YNya5e+EUCKJoR8l8ARQELJlY2XwhFA+2unnpfEEUC0Drmvl8YRQGyxysCXyBFAJVTc0ZfKEUDe9u3il8wRQJaZ//OXzhFATzwRBZjQEUAH3yIWmNIRQMCBNCeY1BFAeSRGOJjWEUAxx1dJmNgRQOppaVqY2hFAowx7a5jcEUBbr4x8mN4RQBRSno2Y4BFAzPSvnpjiEUCFl8GvmOQRQD4608CY5hFA9tzk0ZjoEUCvf/bimOoRQGgiCPSY7BFAIMUZBZnuEUDZZysWmfARQJEKPSeZ8hFASq1OOJn0EUADUGBJmfYRQLvycVqZ+BFAdJWDa5n6EUAtOJV8mfwRQOXapo2Z/hFAnn24npkAEkBWIMqvmQISQA/D28CZBBJAyGXt0ZkGEkCACP/imQgSQDmrEPSZChJA8U0iBZoMEkCq8DMWmg4SQGOTRSeaEBJAGzZXOJoSEkDU2GhJmhQSQI17elqaFhJARR6Ma5oYEkD+wJ18mhoSQLZjr42aHBJAbwbBnpoeEkAoqdKvmiASQOBL5MCaIhJAme710ZokEkBSkQfjmiYSQAo0GfSaKBJAw9YqBZsqEkB7eTwWmywSQDQcTiebLhJA7b5fOJswEkClYXFJmzISQF4Eg1qbNBJAF6eUa5s2EkDPSaZ8mzgSQIjst42bOhJAQI/Jnps8EkD5Mduvmz4SQLLU7MCbQBJAanf+0ZtCEkAjGhDjm0QSQNy8IfSbRhJAlF8zBZxIEkBNAkUWnEoSQAWlViecTBJAvkdoOJxOEkB36nlJnFASQC+Ni1qcUhJA6C+da5xUEkCh0q58nFYSQFl1wI2cWBJAEhjSnpxaEkDKuuOvnFwSQINd9cCcXhJAPAAH0pxgEkD0ohjjnGISQK1FKvScZBJAZug7BZ1mEkAei00WnWgSQNctXyedahJAj9BwOJ1sEkBIc4JJnW4SQAEWlFqdcBJAubila51yEkByW7d8nXQSQCv+yI2ddhJA46Danp14EkCcQ+yvnXoSQFTm/cCdfBJADYkP0p1+EkDGKyHjnYASQH7OMvSdghJAN3FEBZ6EEkDwE1YWnoYSQKi2ZyeeiBJAYVl5OJ6KEkAZ/IpJnowSQNKenFqejhJAi0Gua56QEkBD5L98npISQPyG0Y2elBJAtSnjnp6WEkBtzPSvnpgSQCZvBsGemhJA3hEY0p6cEkCXtCnjnp4SQFBXO/SeoBJACPpMBZ+iEkDBnF4Wn6QSQHo/cCefphJAMuKBOJ+oEkDrhJNJn6oSQKMnpVqfrBJAXMq2a5+uEkAVbch8n7ASQM0P2o2fshJAhrLrnp+0EkA/Vf2vn7YSQPf3DsGfuBJAsJog0p+6EkBoPTLjn7wSQCHgQ/SfvhJA2oJVBaDAEkCSJWcWoMISQEvIeCegxBJABGuKOKDGEkC8DZxJoMgSQHWwrVqgyhJALVO/a6DMEkDm9dB8oM4SQJ+Y4o2g0BJAVzv0nqDSEkAQ3gWwoNQSQMmAF8Gg1hJAgSMp0qDYEkA6xjrjoNoSQPJoTPSg3BJAqwteBaHeEkBkrm8WoeASQBxRgSeh4hJA1fOSOKHkEkCOlqRJoeYSQEY5tlqh6BJA/9vHa6HqEkC3ftl8oewSQHAh642h7hJAKcT8nqHwEkDhZg6wofISQJoJIMGh9BJAU6wx0qH2EkALT0PjofgSQMTxVPSh+hJAfJRmBaL8EkA1N3gWov4SQO7ZiSeiABNApnybOKICE0BfH61JogQTQBfCvlqiBhNA0GTQa6IIE0CJB+J8ogoTQEGq842iDBNA+kwFn6IOE0Cz7xawohATQGuSKMGiEhNAJDU60qIUE0Dc10vjohYTQJV6XfSiGBNATh1vBaMaE0AGwIAWoxwTQL9ikiejHhNAeAWkOKMgE0AwqLVJoyITQOlKx1qjJBNAoe3Ya6MmE0BakOp8oygTQBMz/I2jKhNAy9UNn6MsE0CEeB+woy4TQD0bMcGjMBNA9b1C0qMyE0CuYFTjozQTQGYDZvSjNhNAH6Z3BaQ4E0DYSIkWpDoTQJDrmiekPBNASY6sOKQ+E0ACMb5JpEATQLrTz1qkQhNAc3bha6REE0ArGfN8pEYTQOS7BI6kSBNAnV4Wn6RKE0BVASiwpEwTQA6kOcGkThNAx0ZL0qRQE0B/6VzjpFITQDiMbvSkVBNA8C6ABaVWE0Cp0ZEWpVgTQGJ0oyelWhNAGhe1OKVcE0DTucZJpV4TQIxc2FqlYBNARP/pa6ViE0D9oft8pWQTQLVEDY6lZhNAbucen6VoE0AnijCwpWoTQN8sQsGlbBNAmM9T0qVuE0BRcmXjpXATQAkVd/SlchNAwreIBaZ0E0B6WpoWpnYTQDP9qyemeBNA7J+9OKZ6E0CkQs9JpnwTQF3l4FqmfhNAFojya6aAE0DOKgR9poITQIfNFY6mhBNAP3Ann6aGE0D4EjmwpogTQLG1SsGmihNAaVhc0qaME0Ai+23jpo4TQNudf/SmkBNAk0CRBaeSE0BM46IWp5QTQASGtCenlhNAvSjGOKeYE0B2y9dJp5oTQC5u6VqnnBNA5xD7a6eeE0Cgswx9p6ATQFhWHo6nohNAEfkvn6ekE0DJm0Gwp6YTQII+U8GnqBNAO+Fk0qeqE0Dzg3bjp6wTQKwmiPSnrhNAZcmZBaiwE0AdbKsWqLITQNYOvSeotBNAjrHOOKi2E0BHVOBJqLgTQAD38VqouhNAuJkDbKi8E0BxPBV9qL4TQCrfJo6owBNA4oE4n6jCE0CbJEqwqMQTQFPHW8GoxhNADGpt0qjIE0DFDH/jqMoTQH2vkPSozBNANlKiBanOE0Dv9LMWqdATQKeXxSep0hNAYDrXOKnUE0AY3ehJqdYTQNF/+lqp2BNAiiIMbKnaE0BCxR19qdwTQPtnL46p3hNAtApBn6ngE0BsrVKwqeITQCVQZMGp5BNA3fJ10qnmE0CWlYfjqegTQE84mfSp6hNAB9uqBarsE0DAfbwWqu4TQHkgzieq8BNAMcPfOKryE0DqZfFJqvQTQKIIA1uq9hNAW6sUbKr4E0AUTiZ9qvoTQMzwN46q/BNAhZNJn6r+E0A+NluwqgAUQPbYbMGqAhRAr3t+0qoEFEBnHpDjqgYUQCDBofSqCBRA2WOzBasKFECRBsUWqwwUQEqp1ierDhRAAkzoOKsQFEC77vlJqxIUQHSRC1urFBRALDQdbKsWFEDl1i59qxgUQJ55QI6rGhRAVhxSn6scFEAPv2Owqx4UQMdhdcGrIBRAgASH0qsiFEA5p5jjqyQUQPFJqvSrJhRAquy7BawoFEBjj80WrCoUQBsy3yesLBRA1NTwOKwuFECMdwJKrDAUQEUaFFusMhRA/rwlbKw0FEC2Xzd9rDYUQG8CSY6sOBRAKKVan6w6FEDgR2ywrDwUQJnqfcGsPhRAUY2P0qxAFEAKMKHjrEIUQMPSsvSsRBRAe3XEBa1GFEA0GNYWrUgUQO265yetShRApV35OK1MFEBeAAtKrU4UQBajHFutUBRAz0UubK1SFECI6D99rVQUQECLUY6tVhRA+S1jn61YFECy0HSwrVoUQGpzhsGtXBRAIxaY0q1eFEDbuKnjrWAUQJRbu/StYhRATf7MBa5kFEAFod4WrmYUQL5D8CeuaBRAd+YBOa5qFEAviRNKrmwUQOgrJVuubhRAoM42bK5wFEBZcUh9rnIUQBIUWo6udBRAyrZrn652FECDWX2wrngUQDz8jsGuehRA9J6g0q58FECtQbLjrn4UQGXkw/SugBRAHofVBa+CFEDXKecWr4QUQI/M+CevhhRASG8KOa+IFEABEhxKr4oUQLm0LVuvjBRAclc/bK+OFEAq+lB9r5AUQOOcYo6vkhRAnD90n6+UFEBU4oWwr5YUQA2Fl8GvmBRAxiep0q+aFEB+yrrjr5wUQDdtzPSvnhRA7w/eBbCgFECosu8WsKIUQGFVASiwpBRAGfgSObCmFEDSmiRKsKgUQIs9NluwqhRAQ+BHbLCsFED8gll9sK4UQLQla46wsBRAbch8n7CyFEAma46wsLQUQN4NoMGwthRAl7Cx0rC4FEBQU8PjsLoUQAj21PSwvBRAwZjmBbG+FEB5O/gWscAUQDLeCSixwhRA64AbObHEFECjIy1KscYUQFzGPluxyBRAFWlQbLHKFEDNC2J9scwUQIauc46xzhRAPlGFn7HQFED385awsdIUQLCWqMGx1BRAaDm60rHWFEAh3MvjsdgUQNp+3fSx2hRAkiHvBbLcFEBLxAAXst4UQANnEiiy4BRAvAkkObLiFEB1rDVKsuQUQC1PR1uy5hRA5vFYbLLoFECflGp9suoUQFc3fI6y7BRAENqNn7LuFEDIfJ+wsvAUQIEfscGy8hRAOsLC0rL0FEDyZNTjsvYUQKsH5vSy+BRAZKr3BbP6FEAcTQkXs/wUQNXvGiiz/hRAjZIsObMAFUBGNT5KswIVQP/XT1uzBBVAt3phbLMGFUBwHXN9swgVQCjAhI6zChVA4WKWn7MMFUCaBaiwsw4VQFKoucGzEBVAC0vL0rMSFUDE7dzjsxQVQHyQ7vSzFhVANTMABrQYFUDt1REXtBoVQKZ4Iyi0HBVAXxs1ObQeFUAXvkZKtCAVQNBgWFu0IhVAiQNqbLQkFUBBpnt9tCYVQPpIjY60KBVAsuuen7QqFUBrjrCwtCwVQCQxwsG0LhVA3NPT0rQwFUCVduXjtDIVQE4Z9/S0NBVABrwIBrU2FUC/XhoXtTgVQHcBLCi1OhVAMKQ9ObU8FUDpRk9KtT4VQKHpYFu1QBVAWoxybLVCFUATL4R9tUQVQMvRlY61RhVAhHSnn7VIFUA8F7mwtUoVQPW5ysG1TBVArlzc0rVOFUBm/+3jtVAVQB+i//S1UhVA2EQRBrZUFUCQ5yIXtlYVQEmKNCi2WBVAAS1GObZaFUC6z1dKtlwVQHNyaVu2XhVAKxV7bLZgFUDkt4x9tmIVQJ1ano62ZBVAVf2vn7ZmFUAOoMGwtmgVQMZC08G2ahVAf+Xk0rZsFUA4iPbjtm4VQPAqCPW2cBVAqc0ZBrdyFUBicCsXt3QVQBoTPSi3dhVA07VOObd4FUCLWGBKt3oVQET7cVu3fBVA/Z2DbLd+FUC1QJV9t4AVQG7jpo63ghVAJ4a4n7eEFUDfKMqwt4YVQJjL28G3iBVAUG7t0reKFUAJEf/jt4wVQMKzEPW3jhVAelYiBriQFUAz+TMXuJIVQOybRSi4lBVApD5XObiWFUBd4WhKuJgVQBWEelu4mhVAziaMbLicFUCHyZ19uJ4VQD9sr464oBVA+A7Bn7iiFUCxsdKwuKQVQGlU5MG4phVAIvf10rioFUDamQfkuKoVQJM8GfW4rBVATN8qBrmuFUAEgjwXubAVQL0kTii5shVAdsdfObm0FUAuanFKubYVQOcMg1u5uBVAn6+UbLm6FUBYUqZ9ubwVQBH1t465vhVAyZfJn7nAFUCCOtuwucIVQDvd7MG5xBVA83/+0rnGFUCsIhDkucgVQGTFIfW5yhVAHWgzBrrMFUDWCkUXus4VQI6tVii60BVAR1BoObrSFUAA83lKutQVQLiVi1u61hVAcTidbLrYFUAp2659utoVQOJ9wI663BVAmyDSn7reFUBTw+OwuuAVQAxm9cG64hVAxQgH07rkFUB9qxjkuuYVQDZOKvW66BVA7vA7BrvqFUCnk00Xu+wVQGA2Xyi77hVAGNlwObvwFUDRe4JKu/IVQIoelFu79BVAQsGlbLv2FUD7Y7d9u/gVQLMGyY67+hVAbKnan7v8FUAlTOywu/4VQN3u/cG7ABZAlpEP07sCFkBONCHkuwQWQAfXMvW7BhZAwHlEBrwIFkB4HFYXvAoWQDG/Zyi8DBZA6mF5ObwOFkCiBItKvBAWQFunnFu8EhZAE0qubLwUFkDM7L99vBYWQIWP0Y68GBZAPTLjn7waFkD21PSwvBwWQK93BsK8HhZAZxoY07wgFkAgvSnkvCIWQNhfO/W8JBZAkQJNBr0mFkBKpV4XvSgWQAJIcCi9KhZAu+qBOb0sFkB0jZNKvS4WQCwwpVu9MBZA5dK2bL0yFkCddch9vTQWQFYY2o69NhZAD7vrn704FkDHXf2wvToWQIAAD8K9PBZAOaMg070+FkDxRTLkvUAWQKroQ/W9QhZAYotVBr5EFkAbLmcXvkYWQNTQeCi+SBZAjHOKOb5KFkBFFpxKvkwWQP64rVu+ThZAtlu/bL5QFkBv/tB9vlIWQCeh4o6+VBZA4EP0n75WFkCZ5gWxvlgWQFGJF8K+WhZACiwp075cFkDDzjrkvl4WQHtxTPW+YBZANBReBr9iFkDstm8Xv2QWQKVZgSi/ZhZAXvySOb9oFkAWn6RKv2oWQM9Btlu/bBZAiOTHbL9uFkBAh9l9v3AWQPkp646/chZAscz8n790FkBqbw6xv3YWQCMSIMK/eBZA27Qx0796FkCUV0Pkv3wWQE36VPW/fhZABZ1mBsCAFkC+P3gXwIIWQHbiiSjAhBZAL4WbOcCGFkDoJ61KwIgWQKDKvlvAihZAWW3QbMCMFkASEOJ9wI4WQMqy847AkBZAg1UFoMCSFkA7+BaxwJQWQPSaKMLAlhZArT0608CYFkBl4EvkwJoWQB6DXfXAnBZA1yVvBsGeFkCPyIAXwaAWQEhrkijBohZAAA6kOcGkFkC5sLVKwaYWQHJTx1vBqBZAKvbYbMGqFkDjmOp9wawWQJw7/I7BrhZAVN4NoMGwFkANgR+xwbIWQMUjMcLBtBZAfsZC08G2FkA3aVTkwbgWQO8LZvXBuhZAqK53BsK8FkBhUYkXwr4WQBn0mijCwBZA0pasOcLCFkCKOb5KwsQWQEPcz1vCxhZA/H7hbMLIFkC0IfN9wsoWQG3EBI/CzBZAJmcWoMLOFkDeCSixwtAWQJesOcLC0hZAT09L08LUFkAI8lzkwtYWQMGUbvXC2BZAeTeABsPaFkAy2pEXw9wWQOt8oyjD3hZAox+1OcPgFkBcwsZKw+IWQBRl2FvD5BZAzQfqbMPmFkCGqvt9w+gWQD5NDY/D6hZA9+8eoMPsFkCwkjCxw+4WQGg1QsLD8BZAIdhT08PyFkDZemXkw/QWQJIdd/XD9hZAS8CIBsT4FkADY5oXxPoWQLwFrCjE/BZAdai9OcT+FkAtS89KxAAXQObt4FvEAhdAnpDybMQEF0BXMwR+xAYXQBDWFY/ECBdAyHgnoMQKF0CBGzmxxAwXQDm+SsLEDhdA8mBc08QQF0CrA27kxBIXQGOmf/XEFBdAHEmRBsUWF0DV66IXxRgXQI2OtCjFGhdARjHGOcUcF0D+09dKxR4XQLd26VvFIBdAcBn7bMUiF0AovAx+xSQXQOFeHo/FJhdAmgEwoMUoF0BSpEGxxSoXQAtHU8LFLBdAw+lk08UuF0B8jHbkxTAXQDUviPXFMhdA7dGZBsY0F0CmdKsXxjYXQF8XvSjGOBdAF7rOOcY6F0DQXOBKxjwXQIj/8VvGPhdAQaIDbcZAF0D6RBV+xkIXQLLnJo/GRBdAa4o4oMZGF0AkLUqxxkgXQNzPW8LGShdAlXJt08ZMF0BNFX/kxk4XQAa4kPXGUBdAv1qiBsdSF0B3/bMXx1QXQDCgxSjHVhdA6ULXOcdYF0Ch5ehKx1oXQFqI+lvHXBdAEisMbcdeF0DLzR1+x2AXQIRwL4/HYhdAPBNBoMdkF0D1tVKxx2YXQK5YZMLHaBdAZvt108dqF0Afnofkx2wXQNdAmfXHbhdAkOOqBshwF0BJhrwXyHIXQAEpzijIdBdAusvfOch2F0BzbvFKyHgXQCsRA1zIehdA5LMUbch8F0CcViZ+yH4XQFX5N4/IgBdADpxJoMiCF0DGPluxyIQXQH/hbMLIhhdAOIR+08iIF0DwJpDkyIoXQKnJofXIjBdAYWyzBsmOF0AaD8UXyZAXQNOx1ijJkhdAi1ToOcmUF0BE9/lKyZYXQP2ZC1zJmBdAtTwdbcmaF0Bu3y5+yZwXQCaCQI/JnhdA3yRSoMmgF0CYx2OxyaIXQFBqdcLJpBdACQ2H08mmF0DCr5jkyagXQHpSqvXJqhdAM/W7BsqsF0Drl80Xyq4XQKQ63yjKsBdAXd3wOcqyF0AVgAJLyrQXQM4iFFzKthdAh8Ulbcq4F0A/aDd+yroXQPgKSY/KvBdAsK1aoMq+F0BpUGyxysAXQCLzfcLKwhdA2pWP08rEF0CTOKHkysYXQEzbsvXKyBdABH7EBsvKF0C9INYXy8wXQHXD5yjLzhdALmb5OcvQF0DnCAtLy9IXQJ+rHFzL1BdAWE4ubcvWF0AR8T9+y9gXQMmTUY/L2hdAgjZjoMvcF0A62XSxy94XQPN7hsLL4BdArB6Y08viF0Bkwanky+QXQB1ku/XL5hdA1gbNBszoF0COqd4XzOoXQEdM8CjM7BdA/+4BOszuF0C4kRNLzPAXQHE0JVzM8hdAKdc2bcz0F0DieUh+zPYXQJscWo/M+BdAU79roMz6F0AMYn2xzPwXQMQEj8LM/hdAfaeg08wAGEA2SrLkzAIYQO7sw/XMBBhAp4/VBs0GGEBfMucXzQgYQBjV+CjNChhA0XcKOs0MGECJGhxLzQ4YQEK9LVzNEBhA+18/bc0SGECzAlF+zRQYQGylYo/NFhhAJEh0oM0YGEDd6oWxzRoYQJaNl8LNHBhATjCp080eGEAH07rkzSAYQMB1zPXNIhhAeBjeBs4kGEAxu+8XziYYQOldASnOKBhAogATOs4qGEBboyRLziwYQBNGNlzOLhhAzOhHbc4wGECFi1l+zjIYQD0ua4/ONBhA9tB8oM42GECuc46xzjgYQGcWoMLOOhhAILmx0848GEDYW8Pkzj4YQJH+1PXOQBhASqHmBs9CGEACRPgXz0QYQLvmCSnPRhhAc4kbOs9IGEAsLC1Lz0oYQOXOPlzPTBhAnXFQbc9OGEBWFGJ+z1AYQA+3c4/PUhhAx1mFoM9UGECA/Jaxz1YYQDifqMLPWBhA8UG6089aGECq5Mvkz1wYQGKH3fXPXhhAGyrvBtBgGEDUzAAY0GIYQIxvEinQZBhARRIkOtBmGED9tDVL0GgYQLZXR1zQahhAb/pYbdBsGEAnnWp+0G4YQOA/fI/QcBhAmeKNoNByGEBRhZ+x0HQYQAooscLQdhhAwsrC09B4GEB7bdTk0HoYQDQQ5vXQfBhA7LL3BtF+GEClVQkY0YAYQF74GinRghhAFpssOtGEGEDPPT5L0YYYQIfgT1zRiBhAQINhbdGKGED5JXN+0YwYQLHIhI/RjhhAamuWoNGQGEAjDqix0ZIYQNuwucLRlBhAlFPL09GWGEBM9tzk0ZgYQAWZ7vXRmhhAvjsAB9KcGEB23hEY0p4YQC+BIynSoBhA6CM1OtKiGECgxkZL0qQYQFlpWFzSphhAEQxqbdKoGEDKrnt+0qoYQINRjY/SrBhAO/SeoNKuGED0lrCx0rAYQK05wsLSshhAZdzT09K0GEAef+Xk0rYYQNYh9/XSuBhAj8QIB9O6GEBIZxoY07wYQAAKLCnTvhhAuaw9OtPAGEByT09L08IYQCryYFzTxBhA45RybdPGGECbN4R+08gYQFTalY/TyhhADX2noNPMGEDFH7mx084YQH7CysLT0BhAN2Xc09PSGEDvB+7k09QYQKiq//XT1hhAYE0RB9TYGEAZ8CIY1NoYQNKSNCnU3BhAijVGOtTeGEBD2FdL1OAYQPx6aVzU4hhAtB17bdTkGEBtwIx+1OYYQCVjno/U6BhA3gWwoNTqGECXqMGx1OwYQE9L08LU7hhACO7k09TwGEDBkPbk1PIYQHkzCPbU9BhAMtYZB9X2GEDqeCsY1fgYQKMbPSnV+hhAXL5OOtX8GEAUYWBL1f4YQM0DclzVABlAhaaDbdUCGUA+SZV+1QQZQPfrpo/VBhlAr464oNUIGUBoMcqx1QoZQCHU28LVDBlA2Xbt09UOGUCSGf/k1RAZQEq8EPbVEhlAA18iB9YUGUC8ATQY1hYZQHSkRSnWGBlALUdXOtYaGUDm6WhL1hwZQJ6MelzWHhlAVy+MbdYgGUAP0p1+1iIZQMh0r4/WJBlAgRfBoNYmGUA5utKx1igZQPJc5MLWKhlAq//109YsGUBjogfl1i4ZQBxFGfbWMBlA1OcqB9cyGUCNijwY1zQZQEYtTinXNhlA/s9fOtc4GUC3cnFL1zoZQHAVg1zXPBlAKLiUbdc+GUDhWqZ+10AZQJn9t4/XQhlAUqDJoNdEGUALQ9ux10YZQMPl7MLXSBlAfIj+09dKGUA1KxDl10wZQO3NIfbXThlApnAzB9hQGUBeE0UY2FIZQBe2VinYVBlA0FhoOthWGUCI+3lL2FgZQEGei1zYWhlA+kCdbdhcGUCy465+2F4ZQGuGwI/YYBlAIynSoNhiGUDcy+Ox2GQZQJVu9cLYZhlATREH1NhoGUAGtBjl2GoZQL9WKvbYbBlAd/k7B9luGUAwnE0Y2XAZQOg+XynZchlAoeFwOtl0GUBahIJL2XYZQBInlFzZeBlAy8mlbdl6GUCEbLd+2XwZQDwPyY/ZfhlA9bHaoNmAGUCtVOyx2YIZQGb3/cLZhBlAH5oP1NmGGUDXPCHl2YgZQJDfMvbZihlASYJEB9qMGUABJVYY2o4ZQLrHZynakBlAcmp5OtqSGUArDYtL2pQZQOSvnFzalhlAnFKubdqYGUBV9b9+2poZQA6Y0Y/anBlAxjrjoNqeGUB/3fSx2qAZQDeABsPaohlA8CIY1NqkGUCpxSnl2qYZQGFoO/baqBlAGgtNB9uqGUDTrV4Y26wZQItQcCnbrhlARPOBOtuwGUD8lZNL27IZQLU4pVzbtBlAbtu2bdu2GUAmfsh+27gZQN8g2o/buhlAmMProNu8GUBQZv2x274ZQAkJD8PbwBlAwasg1NvCGUB6TjLl28QZQDPxQ/bbxhlA65NVB9zIGUCkNmcY3MoZQF3ZeCnczBlAFXyKOtzOGUDOHpxL3NAZQIbBrVzc0hlAP2S/bdzUGUD4BtF+3NYZQLCp4o/c2BlAaUz0oNzaGUAi7wWy3NwZQNqRF8Pc3hlAkzQp1NzgGUBL1zrl3OIZQAR6TPbc5BlAvRxeB93mGUB1v28Y3egZQC5igSnd6hlA5wSTOt3sGUCfp6RL3e4ZQFhKtlzd8BlAEO3Hbd3yGUDJj9l+3fQZQIIy64/d9hlAOtX8oN34GUDzdw6y3foZQKwaIMPd/BlAZL0x1N3+GUAdYEPl3QAaQNUCVfbdAhpAjqVmB94EGkBHSHgY3gYaQP/qiSneCBpAuI2bOt4KGkBwMK1L3gwaQCnTvlzeDhpA4nXQbd4QGkCaGOJ+3hIaQFO784/eFBpADF4Fod4WGkDEABey3hgaQH2jKMPeGhpANUY61N4cGkDu6Evl3h4aQKeLXfbeIBpAXy5vB98iGkAY0YAY3yQaQNFzkinfJhpAiRakOt8oGkBCubVL3yoaQPpbx1zfLBpAs/7Ybd8uGkBsoep+3zAaQCRE/I/fMhpA3eYNod80GkCWiR+y3zYaQE4sMcPfOBpAB89C1N86GkC/cVTl3zwaQHgUZvbfPhpAMbd3B+BAGkDpWYkY4EIaQKL8mingRBpAW5+sOuBGGkATQr5L4EgaQMzkz1zgShpAhIfhbeBMGkA9KvN+4E4aQPbMBJDgUBpArm8WoeBSGkBnEiiy4FQaQCC1OcPgVhpA2FdL1OBYGkCR+lzl4FoaQEmdbvbgXBpAAkCAB+FeGkC74pEY4WAaQHOFoynhYhpALCi1OuFkGkDlysZL4WYaQJ1t2FzhaBpAVhDqbeFqGkAOs/t+4WwaQMdVDZDhbhpAgPgeoeFwGkA4mzCy4XIaQPE9QsPhdBpAquBT1OF2GkBig2Xl4XgaQBsmd/bhehpA08iIB+J8GkCMa5oY4n4aQEUOrCnigBpA/bC9OuKCGkC2U89L4oQaQG/24FzihhpAJ5nybeKIGkDgOwR/4ooaQJjeFZDijBpAUYEnoeKOGkAKJDmy4pAaQMLGSsPikhpAe2lc1OKUGkA0DG7l4pYaQOyuf/bimBpApVGRB+OaGkBd9KIY45waQBaXtCnjnhpAzznGOuOgGkCH3NdL46IaQEB/6VzjpBpA+SH7beOmGkCxxAx/46gaQGpnHpDjqhpAIgowoeOsGkDbrEGy464aQJRPU8PjsBpATPJk1OOyGkAFlXbl47QaQL43iPbjthpAdtqZB+S4GkAvfasY5LoaQOcfvSnkvBpAoMLOOuS+GkBZZeBL5MAaQBEI8lzkwhpAyqoDbuTEGkCDTRV/5MYaQDvwJpDkyBpA9JI4oeTKGkCsNUqy5MwaQGXYW8PkzhpAHntt1OTQGkDWHX/l5NIaQI/AkPbk1BpASGOiB+XWGkAABrQY5dgaQLmoxSnl2hpAcUvXOuXcGkAq7uhL5d4aQOOQ+lzl4BpAmzMMbuXiGkBU1h1/5eQaQA15L5Dl5hpAxRtBoeXoGkB+vlKy5eoaQDZhZMPl7BpA7wN21OXuGkCopofl5fAaQGBJmfbl8hpAGeyqB+b0GkDSjrwY5vYaQIoxzinm+BpAQ9TfOub6GkD7dvFL5vwaQLQZA13m/hpAbbwUbuYAG0AlXyZ/5gIbQN4BOJDmBBtAlqRJoeYGG0BPR1uy5ggbQAjqbMPmChtAwIx+1OYMG0B5L5Dl5g4bQDLSofbmEBtA6nSzB+cSG0CjF8UY5xQbQFu61innFhtAFF3oOucYG0DN//lL5xobQIWiC13nHBtAPkUdbuceG0D35y5/5yAbQK+KQJDnIhtAaC1SoeckG0Ag0GOy5yYbQNlydcPnKBtAkhWH1OcqG0BKuJjl5ywbQANbqvbnLhtAvP27B+gwG0B0oM0Y6DIbQC1D3ynoNBtA5eXwOug2G0CeiAJM6DgbQFcrFF3oOhtAD84lbug8G0DIcDd/6D4bQIETSZDoQBtAObZaoehCG0DyWGyy6EQbQKr7fcPoRhtAY56P1OhIG0AcQaHl6EobQNTjsvboTBtAjYbEB+lOG0BGKdYY6VAbQP7L5ynpUhtAt275OulUG0BvEQtM6VYbQCi0HF3pWBtA4VYubulaG0CZ+T9/6VwbQFKcUZDpXhtACz9joelgG0DD4XSy6WIbQHyEhsPpZBtANCeY1OlmG0Dtyanl6WgbQKZsu/bpahtAXg/NB+psG0AXst4Y6m4bQNBU8CnqcBtAiPcBO+pyG0BBmhNM6nQbQPk8JV3qdhtAst82bup4G0Brgkh/6nobQCMlWpDqfBtA3Mdroep+G0CVan2y6oAbQE0Nj8PqghtABrCg1OqEG0C+UrLl6oYbQHf1w/bqiBtAMJjVB+uKG0DoOucY64wbQKHd+CnrjhtAWoAKO+uQG0ASIxxM65IbQMvFLV3rlBtAg2g/buuWG0A8C1F/65gbQPWtYpDrmhtArVB0oeucG0Bm84Wy654bQB+Wl8ProBtA1zip1OuiG0CQ27rl66QbQEh+zPbrphtAASHeB+yoG0C6w+8Y7KobQHJmASrsrBtAKwkTO+yuG0DkqyRM7LAbQJxONl3sshtAVfFHbuy0G0ANlFl/7LYbQMY2a5DsuBtAf9l8oey6G0A3fI6y7LwbQPAeoMPsvhtAqcGx1OzAG0BhZMPl7MIbQBoH1fbsxBtA0qnmB+3GG0CLTPgY7cgbQETvCSrtyhtA/JEbO+3MG0C1NC1M7c4bQG7XPl3t0BtAJnpQbu3SG0DfHGJ/7dQbQJe/c5Dt1htAUGKFoe3YG0AJBZey7dobQMGnqMPt3BtAekq61O3eG0Az7cvl7eAbQOuP3fbt4htApDLvB+7kG0Bc1QAZ7uYbQBV4Eiru6BtAzhokO+7qG0CGvTVM7uwbQD9gR13u7htA+AJZbu7wG0CwpWp/7vIbQGlIfJDu9BtAIeuNoe72G0DajZ+y7vgbQJMwscPu+htAS9PC1O78G0AEdtTl7v4bQLwY5vbuABxAdbv3B+8CHEAuXgkZ7wQcQOYAGyrvBhxAn6MsO+8IHEBYRj5M7wocQBDpT13vDBxAyYthbu8OHECBLnN/7xAcQDrRhJDvEhxA83OWoe8UHECrFqiy7xYcQGS5ucPvGBxAHVzL1O8aHEDV/tzl7xwcQI6h7vbvHhxARkQACPAgHED/5hEZ8CIcQLiJIyrwJBxAcCw1O/AmHEApz0ZM8CgcQOJxWF3wKhxAmhRqbvAsHEBTt3t/8C4cQAtajZDwMBxAxPyeofAyHEB9n7Cy8DQcQDVCwsPwNhxA7uTT1PA4HECnh+Xl8DocQF8q9/bwPBxAGM0ICPE+HEDQbxoZ8UAcQIkSLCrxQhxAQrU9O/FEHED6V09M8UYcQLP6YF3xSBxAbJ1ybvFKHEAkQIR/8UwcQN3ilZDxThxAlYWnofFQHEBOKLmy8VIcQAfLysPxVBxAv23c1PFWHEB4EO7l8VgcQDGz//bxWhxA6VURCPJcHECi+CIZ8l4cQFqbNCryYBxAEz5GO/JiHEDM4FdM8mQcQISDaV3yZhxAPSZ7bvJoHED2yIx/8mocQK5rnpDybBxAZw6wofJuHEAfscGy8nAcQNhT08PychxAkfbk1PJ0HEBJmfbl8nYcQAI8CPfyeBxAu94ZCPN6HEBzgSsZ83wcQCwkPSrzfhxA5MZOO/OAHECdaWBM84IcQFYMcl3zhBxADq+DbvOGHEDHUZV/84gcQID0ppDzihxAOJe4ofOMHEDxOcqy844cQKnc28PzkBxAYn/t1POSHEAbIv/l85QcQNPEEPfzlhxAjGciCPSYHEBFCjQZ9JocQP2sRSr0nBxAtk9XO/SeHEBu8mhM9KAcQCeVel30ohxA4DeMbvSkHECY2p1/9KYcQFF9r5D0qBxACiDBofSqHEDCwtKy9KwcQHtl5MP0rhxAMwj21PSwHEDsqgfm9LIcQKVNGff0tBxAXfAqCPW2HEAWkzwZ9bgcQM81Tir1uhxAh9hfO/W8HEBAe3FM9b4cQPgdg131wBxAscCUbvXCHEBqY6Z/9cQcQCIGuJD1xhxA26jJofXIHECUS9uy9cocQEzu7MP1zBxABZH+1PXOHEC9MxDm9dAcQHbWIff10hxAL3kzCPbUHEDnG0UZ9tYcQKC+Vir22BxAWWFoO/baHEARBHpM9twcQMqmi1323hxAgkmdbvbgHEA77K5/9uIcQPSOwJD25BxArDHSofbmHEBl1OOy9ugcQB539cP26hxA1hkH1fbsHECPvBjm9u4cQEdfKvf28BxAAAI8CPfyHEC5pE0Z9/QcQHFHXyr39hxAKupwO/f4HEDjjIJM9/ocQJsvlF33/BxAVNKlbvf+HEAMdbd/9wAdQMUXyZD3Ah1AfrraofcEHUA2Xeyy9wYdQO///cP3CB1Ap6IP1fcKHUBgRSHm9wwdQBnoMvf3Dh1A0YpECPgQHUCKLVYZ+BIdQEPQZyr4FB1A+3J5O/gWHUC0FYtM+BgdQGy4nF34Gh1AJVuubvgcHUDe/b9/+B4dQJag0ZD4IB1AT0PjofgiHUAI5vSy+CQdQMCIBsT4Jh1AeSsY1fgoHUAxzinm+CodQOpwO/f4LB1AoxNNCPkuHUBbtl4Z+TAdQBRZcCr5Mh1AzfuBO/k0HUCFnpNM+TYdQD5BpV35OB1A9uO2bvk6HUCvhsh/+TwdQGgp2pD5Ph1AIMzroflAHUDZbv2y+UIdQJIRD8T5RB1ASrQg1flGHUADVzLm+UgdQLv5Q/f5Sh1AdJxVCPpMHUAtP2cZ+k4dQOXheCr6UB1AnoSKO/pSHUBXJ5xM+lQdQA/KrV36Vh1AyGy/bvpYHUCAD9F/+lodQDmy4pD6XB1A8lT0ofpeHUCq9wWz+mAdQGOaF8T6Yh1AHD0p1fpkHUDU3zrm+mYdQI2CTPf6aB1ARSVeCPtqHUD+x28Z+2wdQLdqgSr7bh1Abw2TO/twHUAosKRM+3IdQOFStl37dB1AmfXHbvt2HUBSmNl/+3gdQAo765D7eh1Aw938oft8HUB8gA6z+34dQDQjIMT7gB1A7cUx1fuCHUCmaEPm+4QdQF4LVff7hh1AF65mCPyIHUDPUHgZ/IodQIjziSr8jB1AQZabO/yOHUD5OK1M/JAdQLLbvl38kh1Aa37QbvyUHUAjIeJ//JYdQNzD85D8mB1AlGYFovyaHUBNCRez/JwdQAasKMT8nh1Avk461fygHUB38Uvm/KIdQDCUXff8pB1A6DZvCP2mHUCh2YAZ/agdQFl8kir9qh1AEh+kO/2sHUDLwbVM/a4dQINkx139sB1APAfZbv2yHUD1qep//bQdQK1M/JD9th1AZu8Nov24HUAekh+z/bodQNc0McT9vB1AkNdC1f2+HUBIelTm/cAdQAEdZvf9wh1Aur93CP7EHUByYokZ/sYdQCsFmyr+yB1A46esO/7KHUCcSr5M/swdQFXtz13+zh1ADZDhbv7QHUDGMvN//tIdQH/VBJH+1B1AN3gWov7WHUDwGiiz/tgdQKi9OcT+2h1AYWBL1f7cHUAaA13m/t4dQNKlbvf+4B1Ai0iACP/iHUBE65EZ/+QdQPyNoyr/5h1AtTC1O//oHUBt08ZM/+odQCZ22F3/7B1A3xjqbv/uHUCXu/t///AdQFBeDZH/8h1ACQEfov/0HUDBozCz//YdQHpGQsT/+B1AMulT1f/6HUDri2Xm//wdQKQud/f//h1AXNGICAABHkAVdJoZAAMeQM0WrCoABR5Ahrm9OwAHHkA/XM9MAAkeQPf+4F0ACx5AsKHybgANHkBpRASAAA8eQCHnFZEAER5A2oknogATHkCSLDmzABUeQEvPSsQAFx5ABHJc1QAZHkC8FG7mABseQHW3f/cAHR5ALlqRCAEfHkDm/KIZASEeQJ+ftCoBIx5AV0LGOwElHkAQ5ddMASceQMmH6V0BKR5AgSr7bgErHkA6zQyAAS0eQPNvHpEBLx5AqxIwogExHkBktUGzATMeQBxYU8QBNR5A1fpk1QE3HkCOnXbmATkeQEZAiPcBOx5A/+KZCAI9HkC4hasZAj8eQHAovSoCQR5AKcvOOwJDHkDhbeBMAkUeQJoQ8l0CRx5AU7MDbwJJHkALVhWAAkseQMT4JpECTR5AfZs4ogJPHkA1PkqzAlEeQO7gW8QCUx5ApoNt1QJVHkBfJn/mAlceQBjJkPcCWR5A0GuiCANbHkCJDrQZA10eQEKxxSoDXx5A+lPXOwNhHkCz9uhMA2MeQGuZ+l0DZR5AJDwMbwNnHkDd3h2AA2keQJWBL5EDax5ATiRBogNtHkAHx1KzA28eQL9pZMQDcR5AeAx21QNzHkAwr4fmA3UeQOlRmfcDdx5AovSqCAR5HkBal7wZBHseQBM6zioEfR5AzNzfOwR/HkCEf/FMBIEeQD0iA14Egx5A9cQUbwSFHkCuZyaABIceQGcKOJEEiR5AH61JogSLHkDYT1uzBI0eQJHybMQEjx5ASZV+1QSRHkACOJDmBJMeQLraofcElR5Ac32zCAWXHkAsIMUZBZkeQOTC1ioFmx5AnWXoOwWdHkBWCPpMBZ8eQA6rC14FoR5Ax00dbwWjHkB/8C6ABaUeQDiTQJEFpx5A8TVSogWpHkCp2GOzBaseQGJ7dcQFrR5AGx6H1QWvHkDTwJjmBbEeQIxjqvcFsx5ARAa8CAa1HkD9qM0ZBrceQLZL3yoGuR5Abu7wOwa7HkAnkQJNBr0eQOAzFF4Gvx5AmNYlbwbBHkBReTeABsMeQAkcSZEGxR5Awr5aogbHHkB7YWyzBskeQDMEfsQGyx5A7KaP1QbNHkClSaHmBs8eQF3ssvcG0R5AFo/ECAfTHkDOMdYZB9UeQIfU5yoH1x5AQHf5OwfZHkD4GQtNB9seQLG8HF4H3R5Aal8ubwffHkAiAkCAB+EeQNukUZEH4x5Ak0djogflHkBM6nSzB+ceQAWNhsQH6R5AvS+Y1QfrHkB20qnmB+0eQC91u/cH7x5A5xfNCAjxHkCgut4ZCPMeQFhd8CoI9R5AEQACPAj3HkDKohNNCPkeQIJFJV4I+x5AO+g2bwj9HkD0ikiACP8eQKwtWpEIAR9AZdBroggDH0Adc32zCAUfQNYVj8QIBx9Aj7ig1QgJH0BHW7LmCAsfQAD+w/cIDR9AuKDVCAkPH0BxQ+cZCREfQCrm+CoJEx9A4ogKPAkVH0CbKxxNCRcfQFTOLV4JGR9ADHE/bwkbH0DFE1GACR0fQH22YpEJHx9ANll0ogkhH0Dv+4WzCSMfQKeel8QJJR9AYEGp1QknH0AZ5LrmCSkfQNGGzPcJKx9AiineCAotH0BCzO8ZCi8fQPtuASsKMR9AtBETPAozH0BstCRNCjUfQCVXNl4KNx9A3vlHbwo5H0CWnFmACjsfQE8/a5EKPR9AB+J8ogo/H0DAhI6zCkEfQHknoMQKQx9AMcqx1QpFH0DqbMPmCkcfQKMP1fcKSR9AW7LmCAtLH0AUVfgZC00fQMz3CSsLTx9AhZobPAtRH0A+PS1NC1MfQPbfPl4LVR9Ar4JQbwtXH0BoJWKAC1kfQCDIc5ELWx9A2WqFogtdH0CRDZezC18fQEqwqMQLYR9AA1O61QtjH0C79cvmC2UfQHSY3fcLZx9ALTvvCAxpH0Dl3QAaDGsfQJ6AEisMbR9AViMkPAxvH0APxjVNDHEfQMhoR14Mcx9AgAtZbwx1H0A5rmqADHcfQPJQfJEMeR9AqvONogx7H0Bjlp+zDH0fQBs5scQMfx9A1NvC1QyBH0CNftTmDIMfQEUh5vcMhR9A/sP3CA2HH0C3ZgkaDYkfQG8JGysNix9AKKwsPA2NH0DgTj5NDY8fQJnxT14NkR9AUpRhbw2TH0AKN3OADZUfQMPZhJENlx9AfHyWog2ZH0A0H6izDZsfQO3BucQNnR9ApWTL1Q2fH0BeB93mDaEfQBeq7vcNox9Az0wACQ6lH0CI7xEaDqcfQEGSIysOqR9A+TQ1PA6rH0Cy10ZNDq0fQGp6WF4Orx9AIx1qbw6xH0Dcv3uADrMfQJRijZEOtR9ATQWfog63H0AGqLCzDrkfQL5KwsQOux9Ad+3T1Q69H0AvkOXmDr8fQOgy9/cOwR9AodUICQ/DH0BZeBoaD8UfQBIbLCsPxx9Ay709PA/JH0CDYE9ND8sfQDwDYV4PzR9A9KVybw/PH0CtSISAD9EfQGbrlZEP0x9AHo6nog/VH0DXMLmzD9cfQJDTysQP2R9ASHbc1Q/bH0ABGe7mD90fQLm7//cP3x9Acl4RCRDhH0ArASMaEOMfQOOjNCsQ5R9AnEZGPBDnH0BV6VdNEOkfQA2MaV4Q6x9Axi57bxDtH0B+0YyAEO8fQDd0npEQ8R9A8BawohDzH0CoucGzEPUfQGFc08QQ9x9AGv/k1RD5H0DSofbmEPsfQItECPgQ/R9AQ+cZCRH/H0D+xBWNiAAgQFqWnpWIASBAt2cnnogCIEATObCmiAMgQG8KOa+IBCBAzNvBt4gFIEAorUrAiAYgQIR+08iIByBA4E9c0YgIIEA9IeXZiAkgQJnybeKICiBA9cP26ogLIEBSlX/ziAwgQK5mCPyIDSBACjiRBIkOIEBnCRoNiQ8gQMPaohWJECBAH6wrHokRIEB8fbQmiRIgQNhOPS+JEyBANCDGN4kUIECR8U5AiRUgQO3C10iJFiBASZRgUYkXIEClZelZiRggQAI3cmKJGSBAXgj7aokaIEC62YNziRsgQBerDHyJHCBAc3yVhIkdIEDPTR6NiR4gQCwfp5WJHyBAiPAvnokgIEDkwbimiSEgQEGTQa+JIiBAnWTKt4kjIED5NVPAiSQgQFYH3MiJJSBAsthk0YkmIEAOqu3ZiScgQGp7duKJKCBAx0z/6okpIEAjHojziSogQH/vEPyJKyBA3MCZBIosIEA4kiINii0gQJRjqxWKLiBA8TQ0HoovIEBNBr0mijAgQKnXRS+KMSBABqnON4oyIEBieldAijMgQL5L4EiKNCBAGx1pUYo1IEB37vFZijYgQNO/emKKNyBAL5EDa4o4IECMYoxzijkgQOgzFXyKOiBARAWehIo7IECh1iaNijwgQP2nr5WKPSBAWXk4noo+IEC2SsGmij8gQBIcSq+KQCBAbu3St4pBIEDLvlvAikIgQCeQ5MiKQyBAg2Ft0YpEIEDgMvbZikUgQDwEf+KKRiBAmNUH64pHIED0ppDzikggQFF4GfyKSSBArUmiBItKIEAJGysNi0sgQGbssxWLTCBAwr08HotNIEAej8Umi04gQHtgTi+LTyBA1zHXN4tQIEAzA2BAi1EgQJDU6EiLUiBA7KVxUYtTIEBId/pZi1QgQKVIg2KLVSBAARoMa4tWIEBd65Rzi1cgQLm8HXyLWCBAFo6mhItZIEByXy+Ni1ogQM4wuJWLWyBAKwJBnotcIECH08mmi10gQOOkUq+LXiBAQHbbt4tfIECcR2TAi2AgQPgY7ciLYSBAVep10YtiIECxu/7Zi2MgQA2Nh+KLZCBAal4Q64tlIEDGL5nzi2YgQCIBIvyLZyBAftKqBIxoIEDbozMNjGkgQDd1vBWMaiBAk0ZFHoxrIEDwF84mjGwgQEzpVi+MbSBAqLrfN4xuIEAFjGhAjG8gQGFd8UiMcCBAvS56UYxxIEAaAANajHIgQHbRi2KMcyBA0qIUa4x0IEAvdJ1zjHUgQItFJnyMdiBA5xavhIx3IEBD6DeNjHggQKC5wJWMeSBA/IpJnox6IEBYXNKmjHsgQLUtW6+MfCBAEf/jt4x9IEBt0GzAjH4gQMqh9ciMfyBAJnN+0YyAIECCRAfajIEgQN8VkOKMgiBAO+cY64yDIECXuKHzjIQgQPOJKvyMhSBAUFuzBI2GIECsLDwNjYcgQAj+xBWNiCBAZc9NHo2JIEDBoNYmjYogQB1yXy+NiyBAekPoN42MIEDWFHFAjY0gQDLm+UiNjiBAj7eCUY2PIEDriAtajZAgQEdalGKNkSBApCsda42SIEAA/aVzjZMgQFzOLnyNlCBAuJ+3hI2VIEAVcUCNjZYgQHFCyZWNlyBAzRNSno2YIEAq5dqmjZkgQIa2Y6+NmiBA4ofst42bIEA/WXXAjZwgQJsq/siNnSBA9/uG0Y2eIEBUzQ/ajZ8gQLCemOKNoCBADHAh642hIEBpQarzjaIgQMUSM/yNoyBAIeS7BI6kIEB9tUQNjqUgQNqGzRWOpiBANlhWHo6nIECSKd8mjqggQO/6Zy+OqSBAS8zwN46qIECnnXlAjqsgQARvAkmOrCBAYECLUY6tIEC8ERRajq4gQBnjnGKOryBAdbQla46wIEDRha5zjrEgQC5XN3yOsiBAiijAhI6zIEDm+UiNjrQgQELL0ZWOtSBAn5xano62IED7beOmjrcgQFc/bK+OuCBAtBD1t465IEAQ4n3AjrogQGyzBsmOuyBAyYSP0Y68IEAlVhjajr0gQIEnoeKOviBA3vgp646/IEA6yrLzjsAgQJabO/yOwSBA82zEBI/CIEBPPk0Nj8MgQKsP1hWPxCBAB+FeHo/FIEBksucmj8YgQMCDcC+PxyBAHFX5N4/IIEB5JoJAj8kgQNX3CkmPyiBAMcmTUY/LIECOmhxaj8wgQOprpWKPzSBARj0ua4/OIECjDrdzj88gQP/fP3yP0CBAW7HIhI/RIEC4glGNj9IgQBRU2pWP0yBAcCVjno/UIEDM9uumj9UgQCnIdK+P1iBAhZn9t4/XIEDhaobAj9ggQD48D8mP2SBAmg2Y0Y/aIED23iDaj9sgQFOwqeKP3CBAr4Ey64/dIEALU7vzj94gQGgkRPyP3yBAxPXMBJDgIEAgx1UNkOEgQH2Y3hWQ4iBA2WlnHpDjIEA1O/AmkOQgQJEMeS+Q5SBA7t0BOJDmIEBKr4pAkOcgQKaAE0mQ6CBAA1KcUZDpIEBfIyVakOogQLv0rWKQ6yBAGMY2a5DsIEB0l79zkO0gQNBoSHyQ7iBALTrRhJDvIECJC1qNkPAgQOXc4pWQ8SBAQq5rnpDyIECef/SmkPMgQPpQfa+Q9CBAViIGuJD1IECz847AkPYgQA/FF8mQ9yBAa5ag0ZD4IEDIZynakPkgQCQ5suKQ+iBAgAo765D7IEDd28PzkPwgQDmtTPyQ/SBAlX7VBJH+IEDyT14Nkf8gQE4h5xWRACFAqvJvHpEBIUAGxPgmkQIhQGOVgS+RAyFAv2YKOJEEIUAbOJNAkQUhQHgJHEmRBiFA1NqkUZEHIUAwrC1akQghQI19tmKRCSFA6U4/a5EKIUBFIMhzkQshQKLxUHyRDCFA/sLZhJENIUBalGKNkQ4hQLdl65WRDyFAEzd0npEQIUBvCP2mkREhQMvZha+REiFAKKsOuJETIUCEfJfAkRQhQOBNIMmRFSFAPR+p0ZEWIUCZ8DHakRchQPXBuuKRGCFAUpND65EZIUCuZMzzkRohQAo2VfyRGyFAZwfeBJIcIUDD2GYNkh0hQB+q7xWSHiFAfHt4HpIfIUDYTAEnkiAhQDQeii+SISFAkO8SOJIiIUDtwJtAkiMhQEmSJEmSJCFApWOtUZIlIUACNTZakiYhQF4Gv2KSJyFAutdHa5IoIUAXqdBzkikhQHN6WXySKiFAz0vihJIrIUAsHWuNkiwhQIju85WSLSFA5L98npIuIUBBkQWnki8hQJ1ijq+SMCFA+TMXuJIxIUBVBaDAkjIhQLLWKMmSMyFADqix0ZI0IUBqeTrakjUhQMdKw+KSNiFAIxxM65I3IUB/7dTzkjghQNy+XfySOSFAOJDmBJM6IUCUYW8NkzshQPEy+BWTPCFATQSBHpM9IUCp1Qknkz4hQAanki+TPyFAYngbOJNAIUC+SaRAk0EhQBobLUmTQiFAd+y1UZNDIUDTvT5ak0QhQC+Px2KTRSFAjGBQa5NGIUDoMdlzk0chQEQDYnyTSCFAodTqhJNJIUD9pXONk0ohQFl3/JWTSyFAtkiFnpNMIUASGg6nk00hQG7rlq+TTiFAy7wfuJNPIUAnjqjAk1AhQINfMcmTUSFA3zC60ZNSIUA8AkPak1MhQJjTy+KTVCFA9KRU65NVIUBRdt3zk1YhQK1HZvyTVyFACRnvBJRYIUBm6ncNlFkhQMK7ABaUWiFAHo2JHpRbIUB7XhInlFwhQNcvmy+UXSFAMwEkOJReIUCQ0qxAlF8hQOyjNUmUYCFASHW+UZRhIUCkRkdalGIhQAEY0GKUYyFAXelYa5RkIUC5uuFzlGUhQBaManyUZiFAcl3zhJRnIUDOLnyNlGghQCsABZaUaSFAh9GNnpRqIUDjohanlGshQEB0n6+UbCFAnEUouJRtIUD4FrHAlG4hQFXoOcmUbyFAsbnC0ZRwIUANi0valHEhQGlc1OKUciFAxi1d65RzIUAi/+XzlHQhQH7QbvyUdSFA26H3BJV2IUA3c4ANlXchQJNECRaVeCFA8BWSHpV5IUBM5xonlXohQKi4oy+VeyFABYosOJV8IUBhW7VAlX0hQL0sPkmVfiFAGv7GUZV/IUB2z09alYAhQNKg2GKVgSFALnJha5WCIUCLQ+pzlYMhQOcUc3yVhCFAQ+b7hJWFIUCgt4SNlYYhQPyIDZaVhyFAWFqWnpWIIUC1Kx+nlYkhQBH9p6+ViiFAbc4wuJWLIUDKn7nAlYwhQCZxQsmVjSFAgkLL0ZWOIUDeE1TalY8hQDvl3OKVkCFAl7Zl65WRIUDzh+7zlZIhQFBZd/yVkyFArCoABZaUIUAI/IgNlpUhQGXNERaWliFAwZ6aHpaXIUAdcCMnlpghQHpBrC+WmSFA1hI1OJaaIUAy5L1AlpshQI+1RkmWnCFA64bPUZadIUBHWFhalp4hQKMp4WKWnyFAAPtpa5agIUBczPJzlqEhQLide3yWoiFAFW8EhZajIUBxQI2NlqQhQM0RFpaWpSFAKuOenpamIUCGtCenlqchQOKFsK+WqCFAP1c5uJapIUCbKMLAlqohQPf5SsmWqyFAVMvT0ZasIUCwnFzalq0hQAxu5eKWriFAaD9u65avIUDFEPfzlrAhQCHif/yWsSFAfbMIBZeyIUDahJENl7MhQDZWGhaXtCFAkiejHpe1IUDv+Csnl7YhQEvKtC+XtyFAp5s9OJe4IUAEbcZAl7khQGA+T0mXuiFAvA/YUZe7IUAZ4WBal7whQHWy6WKXvSFA0YNya5e+IUAtVftzl78hQIomhHyXwCFA5vcMhZfBIUBCyZWNl8IhQJ+aHpaXwyFA+2unnpfEIUBXPTCnl8UhQLQOua+XxiFAEOBBuJfHIUBsscrAl8ghQMmCU8mXySFAJVTc0ZfKIUCBJWXal8shQN727eKXzCFAOsh265fNIUCWmf/zl84hQPJqiPyXzyFATzwRBZjQIUCrDZoNmNEhQAffIhaY0iFAZLCrHpjTIUDAgTQnmNQhQBxTvS+Y1SFAeSRGOJjWIUDV9c5AmNchQDHHV0mY2CFAjpjgUZjZIUDqaWlamNohQEY78mKY2yFAowx7a5jcIUD/3QN0mN0hQFuvjHyY3iFAt4AVhZjfIUAUUp6NmOAhQHAjJ5aY4SFAzPSvnpjiIUApxjinmOMhQIWXwa+Y5CFA4WhKuJjlIUA+OtPAmOYhQJoLXMmY5yFA9tzk0ZjoIUBTrm3amOkhQK9/9uKY6iFAC1F/65jrIUBoIgj0mOwhQMTzkPyY7SFAIMUZBZnuIUB8lqINme8hQNlnKxaZ8CFANTm0HpnxIUCRCj0nmfIhQO7bxS+Z8yFASq1OOJn0IUCmftdAmfUhQANQYEmZ9iFAXyHpUZn3IUC78nFamfghQBjE+mKZ+SFAdJWDa5n6IUDQZgx0mfshQC04lXyZ/CFAiQkehZn9IUDl2qaNmf4hQEGsL5aZ/yFAnn24npkAIkD6TkGnmQEiQFYgyq+ZAiJAs/FSuJkDIkAPw9vAmQQiQGuUZMmZBSJAyGXt0ZkGIkAkN3bamQciQIAI/+KZCCJA3dmH65kJIkA5qxD0mQoiQJV8mfyZCyJA8U0iBZoMIkBOH6sNmg0iQKrwMxaaDiJABsK8HpoPIkBjk0UnmhAiQL9kzi+aESJAGzZXOJoSIkB4B+BAmhMiQNTYaEmaFCJAMKrxUZoVIkCNe3pamhYiQOlMA2OaFyJARR6Ma5oYIkCi7xR0mhkiQP7AnXyaGiJAWpImhZobIkC2Y6+NmhwiQBM1OJaaHSJAbwbBnpoeIkDL10mnmh8iQCip0q+aICJAhHpbuJohIkDgS+TAmiIiQD0dbcmaIyJAme710ZokIkD1v37amiUiQFKRB+OaJiJArmKQ65onIkAKNBn0migiQGcFovyaKSJAw9YqBZsqIkAfqLMNmysiQHt5PBabLCJA2ErFHpstIkA0HE4nmy4iQJDt1i+bLyJA7b5fOJswIkBJkOhAmzEiQKVhcUmbMiJAAjP6UZszIkBeBINamzQiQLrVC2ObNSJAF6eUa5s2IkBzeB10mzciQM9JpnybOCJALBsvhZs5IkCI7LeNmzoiQOS9QJabOyJAQI/Jnps8IkCdYFKnmz0iQPkx26+bPiJAVQNkuJs/IkCy1OzAm0AiQA6mdcmbQSJAanf+0ZtCIkDHSIfam0MiQCMaEOObRCJAf+uY65tFIkDcvCH0m0YiQDiOqvybRyJAlF8zBZxIIkDxMLwNnEkiQE0CRRacSiJAqdPNHpxLIkAFpVYnnEwiQGJ23y+cTSJAvkdoOJxOIkAaGfFAnE8iQHfqeUmcUCJA07sCUpxRIkAvjYtanFIiQIxeFGOcUyJA6C+da5xUIkBEASZ0nFUiQKHSrnycViJA/aM3hZxXIkBZdcCNnFgiQLZGSZacWSJAEhjSnpxaIkBu6VqnnFsiQMq646+cXCJAJ4xsuJxdIkCDXfXAnF4iQN8ufsmcXyJAPAAH0pxgIkCY0Y/anGEiQPSiGOOcYiJAUXSh65xjIkCtRSr0nGQiQAkXs/ycZSJAZug7BZ1mIkDCucQNnWciQB6LTRadaCJAe1zWHp1pIkDXLV8nnWoiQDP/5y+dayJAj9BwOJ1sIkDsoflAnW0iQEhzgkmdbiJApEQLUp1vIkABFpRanXAiQF3nHGOdcSJAubila51yIkAWii50nXMiQHJbt3yddCJAzixAhZ11IkAr/siNnXYiQIfPUZaddyJA46Danp14IkBAcmOnnXkiQJxD7K+deiJA+BR1uJ17IkBU5v3AnXwiQLG3hsmdfSJADYkP0p1+IkBpWpjanX8iQMYrIeOdgCJAIv2p652BIkB+zjL0nYIiQNufu/ydgyJAN3FEBZ6EIkCTQs0NnoUiQPATVhaehiJATOXeHp6HIkCotmcnnogiQASI8C+eiSJAYVl5OJ6KIkC9KgJBnosiQBn8ikmejCJAds0TUp6NIkDSnpxano4iQC5wJWOejyJAi0Gua56QIkDnEjd0npEiQEPkv3yekiJAoLVIhZ6TIkD8htGNnpQiQFhYWpaelSJAtSnjnp6WIkAR+2unnpciQG3M9K+emCJAyZ19uJ6ZIkAmbwbBnpoiQIJAj8memyJA3hEY0p6cIkA746Danp0iQJe0KeOeniJA84Wy656fIkBQVzv0nqAiQKwoxPyeoSJACPpMBZ+iIkBly9UNn6MiQMGcXhafpCJAHW7nHp+lIkB6P3Ann6YiQNYQ+S+fpyJAMuKBOJ+oIkCOswpBn6kiQOuEk0mfqiJAR1YcUp+rIkCjJ6Van6wiQAD5LWOfrSJAXMq2a5+uIkC4mz90n68iQBVtyHyfsCJAcT5RhZ+xIkDND9qNn7IiQCrhYpafsyJAhrLrnp+0IkDig3Snn7UiQD9V/a+ftiJAmyaGuJ+3IkD39w7Bn7giQFPJl8mfuSJAsJog0p+6IkAMbKnan7siQGg9MuOfvCJAxQ6765+9IkAh4EP0n74iQH2xzPyfvyJA2oJVBaDAIkA2VN4NoMEiQJIlZxagwiJA7/bvHqDDIkBLyHgnoMQiQKeZATCgxSJABGuKOKDGIkBgPBNBoMciQLwNnEmgyCJAGN8kUqDJIkB1sK1aoMoiQNGBNmOgyyJALVO/a6DMIkCKJEh0oM0iQOb10HygziJAQsdZhaDPIkCfmOKNoNAiQPtpa5ag0SJAVzv0nqDSIkC0DH2noNMiQBDeBbCg1CJAbK+OuKDVIkDJgBfBoNYiQCVSoMmg1yJAgSMp0qDYIkDd9LHaoNkiQDrGOuOg2iJAlpfD66DbIkDyaEz0oNwiQE861fyg3SJAqwteBaHeIkAH3eYNod8iQGSubxah4CJAwH/4HqHhIkAcUYEnoeIiQHkiCjCh4yJA1fOSOKHkIkAxxRtBoeUiQI6WpEmh5iJA6mctUqHnIkBGObZaoegiQKIKP2Oh6SJA/9vHa6HqIkBbrVB0oesiQLd+2Xyh7CJAFFBihaHtIkBwIeuNoe4iQMzyc5ah7yJAKcT8nqHwIkCFlYWnofEiQOFmDrCh8iJAPjiXuKHzIkCaCSDBofQiQPbaqMmh9SJAU6wx0qH2IkCvfbraofciQAtPQ+Oh+CJAZyDM66H5IkDE8VT0ofoiQCDD3fyh+yJAfJRmBaL8IkDZZe8Nov0iQDU3eBai/iJAkQgBH6L/IkDu2YknogAjQEqrEjCiASNApnybOKICI0ADTiRBogMjQF8frUmiBCNAu/A1UqIFI0AXwr5aogYjQHSTR2OiByNA0GTQa6III0AsNll0ogkjQIkH4nyiCiNA5dhqhaILI0BBqvONogwjQJ57fJaiDSNA+kwFn6IOI0BWHo6nog8jQLPvFrCiECNAD8GfuKIRI0BrkijBohIjQMhjscmiEyNAJDU60qIUI0CABsPaohUjQNzXS+OiFiNAOanU66IXI0CVel30ohgjQPFL5vyiGSNATh1vBaMaI0Cq7vcNoxsjQAbAgBajHCNAY5EJH6MdI0C/YpInox4jQBs0GzCjHyNAeAWkOKMgI0DU1ixBoyEjQDCotUmjIiNAjXk+UqMjI0DpSsdaoyQjQEUcUGOjJSNAoe3Ya6MmI0D+vmF0oycjQFqQ6nyjKCNAtmFzhaMpI0ATM/yNoyojQG8EhZajKyNAy9UNn6MsI0Aop5anoy0jQIR4H7CjLiNA4EmouKMvI0A9GzHBozAjQJnsucmjMSNA9b1C0qMyI0BSj8vaozMjQK5gVOOjNCNACjLd66M1I0BmA2b0ozYjQMPU7vyjNyNAH6Z3BaQ4I0B7dwAOpDkjQNhIiRakOiNANBoSH6Q7I0CQ65onpDwjQO28IzCkPSNASY6sOKQ+I0ClXzVBpD8jQAIxvkmkQCNAXgJHUqRBI0C6089apEIjQBelWGOkQyNAc3bha6REI0DPR2p0pEUjQCsZ83ykRiNAiOp7haRHI0DkuwSOpEgjQECNjZakSSNAnV4Wn6RKI0D5L5+npEsjQFUBKLCkTCNAstKwuKRNI0AOpDnBpE4jQGp1wsmkTyNAx0ZL0qRQI0AjGNTapFEjQH/pXOOkUiNA3Lrl66RTI0A4jG70pFQjQJRd9/ykVSNA8C6ABaVWI0BNAAkOpVcjQKnRkRalWCNABaMaH6VZI0BidKMnpVojQL5FLDClWyNAGhe1OKVcI0B36D1BpV0jQNO5xkmlXiNAL4tPUqVfI0CMXNhapWAjQOgtYWOlYSNARP/pa6ViI0Ch0HJ0pWMjQP2h+3ylZCNAWXOEhaVlI0C1RA2OpWYjQBIWlpalZyNAbucen6VoI0DKuKenpWkjQCeKMLClaiNAg1u5uKVrI0DfLELBpWwjQDz+ysmlbSNAmM9T0qVuI0D0oNzapW8jQFFyZeOlcCNArUPu66VxI0AJFXf0pXIjQGbm//ylcyNAwreIBaZ0I0AeiREOpnUjQHpamhamdiNA1ysjH6Z3I0Az/asnpngjQI/ONDCmeSNA7J+9OKZ6I0BIcUZBpnsjQKRCz0mmfCNAARRYUqZ9I0Bd5eBapn4jQLm2aWOmfyNAFojya6aAI0ByWXt0poEjQM4qBH2mgiNAKvyMhaaDI0CHzRWOpoQjQOOenpamhSNAP3Ann6aGI0CcQbCnpocjQPgSObCmiCNAVOTBuKaJI0CxtUrBpoojQA2H08mmiyNAaVhc0qaMI0DGKeXapo0jQCL7beOmjiNAfsz266aPI0DbnX/0ppAjQDdvCP2mkSNAk0CRBaeSI0DvERoOp5MjQEzjohanlCNAqLQrH6eVI0AEhrQnp5YjQGFXPTCnlyNAvSjGOKeYI0AZ+k5Bp5kjQHbL10mnmiNA0pxgUqebI0Aubulap5wjQIs/cmOnnSNA5xD7a6eeI0BD4oN0p58jQKCzDH2noCNA/ISVhaehI0BYVh6Op6IjQLQnp5anoyNAEfkvn6ekI0Btyrinp6UjQMmbQbCnpiNAJm3KuKenI0CCPlPBp6gjQN4P3MmnqSNAO+Fk0qeqI0CXsu3ap6sjQPODduOnrCNAUFX/66etI0CsJoj0p64jQAj4EP2nryNAZcmZBaiwI0DBmiIOqLEjQB1sqxaosiNAeT00H6izI0DWDr0nqLQjQDLgRTCotSNAjrHOOKi2I0DrgldBqLcjQEdU4EmouCNAoyVpUqi5I0AA9/FaqLojQFzIemOouyNAuJkDbKi8I0AVa4x0qL0jQHE8FX2oviNAzQ2ehai/I0Aq3yaOqMAjQIawr5aowSNA4oE4n6jCI0A+U8GnqMMjQJskSrCoxCNA9/XSuKjFI0BTx1vBqMYjQLCY5MmoxyNADGpt0qjII0BoO/baqMkjQMUMf+OoyiNAId4H7KjLI0B9r5D0qMwjQNqAGf2ozSNANlKiBanOI0CSIysOqc8jQO/0sxap0CNAS8Y8H6nRI0Cnl8UnqdIjQANpTjCp0yNAYDrXOKnUI0C8C2BBqdUjQBjd6Emp1iNAda5xUqnXI0DRf/paqdgjQC1Rg2Op2SNAiiIMbKnaI0Dm85R0qdsjQELFHX2p3CNAn5amhandI0D7Zy+Oqd4jQFc5uJap3yNAtApBn6ngI0AQ3MmnqeEjQGytUrCp4iNAyH7buKnjI0AlUGTBqeQjQIEh7cmp5SNA3fJ10qnmI0A6xP7aqecjQJaVh+Op6CNA8mYQ7KnpI0BPOJn0qeojQKsJIv2p6yNAB9uqBarsI0BkrDMOqu0jQMB9vBaq7iNAHE9FH6rvI0B5IM4nqvAjQNXxVjCq8SNAMcPfOKryI0CNlGhBqvMjQOpl8Umq9CNARjd6Uqr1I0CiCANbqvYjQP/Zi2Oq9yNAW6sUbKr4I0C3fJ10qvkjQBROJn2q+iNAcB+vhar7I0DM8DeOqvwjQCnCwJaq/SNAhZNJn6r+I0DhZNKnqv8jQD42W7CqACRAmgfkuKoBJED22GzBqgIkQFKq9cmqAyRAr3t+0qoEJEALTQfbqgUkQGcekOOqBiRAxO8Y7KoHJEAgwaH0qggkQHySKv2qCSRA2WOzBasKJEA1NTwOqwskQJEGxRarDCRA7tdNH6sNJEBKqdYnqw4kQKZ6XzCrDyRAAkzoOKsQJEBfHXFBqxEkQLvu+UmrEiRAF8CCUqsTJEB0kQtbqxQkQNBilGOrFSRALDQdbKsWJECJBaZ0qxckQOXWLn2rGCRAQai3hasZJECeeUCOqxokQPpKyZarGyRAVhxSn6scJECz7dqnqx0kQA+/Y7CrHiRAa5DsuKsfJEDHYXXBqyAkQCQz/smrISRAgASH0qsiJEDc1Q/bqyMkQDmnmOOrJCRAlXgh7KslJEDxSar0qyYkQE4bM/2rJyRAquy7BawoJEAGvkQOrCkkQGOPzRasKiRAv2BWH6wrJEAbMt8nrCwkQHgDaDCsLSRA1NTwOKwuJEAwpnlBrC8kQIx3AkqsMCRA6UiLUqwxJEBFGhRbrDIkQKHrnGOsMyRA/rwlbKw0JEBajq50rDUkQLZfN32sNiRAEzHAhaw3JEBvAkmOrDgkQMvT0ZasOSRAKKVan6w6JECEduOnrDskQOBHbLCsPCRAPRn1uKw9JECZ6n3BrD4kQPW7BsqsPyRAUY2P0qxAJECuXhjbrEEkQAowoeOsQiRAZgEq7KxDJEDD0rL0rEQkQB+kO/2sRSRAe3XEBa1GJEDYRk0OrUckQDQY1hatSCRAkOleH61JJEDtuucnrUokQEmMcDCtSyRApV35OK1MJEACL4JBrU0kQF4AC0qtTiRAutGTUq1PJEAWoxxbrVAkQHN0pWOtUSRAz0UubK1SJEArF7d0rVMkQIjoP32tVCRA5LnIha1VJEBAi1GOrVYkQJ1c2patVyRA+S1jn61YJEBV/+unrVkkQLLQdLCtWiRADqL9uK1bJEBqc4bBrVwkQMdED8qtXSRAIxaY0q1eJEB/5yDbrV8kQNu4qeOtYCRAOIoy7K1hJECUW7v0rWIkQPAsRP2tYyRATf7MBa5kJECpz1UOrmUkQAWh3hauZiRAYnJnH65nJEC+Q/AnrmgkQBoVeTCuaSRAd+YBOa5qJEDTt4pBrmskQC+JE0qubCRAjFqcUq5tJEDoKyVbrm4kQET9rWOubyRAoM42bK5wJED9n790rnEkQFlxSH2uciRAtULRha5zJEASFFqOrnQkQG7l4paudSRAyrZrn652JEAniPSnrnckQINZfbCueCRA3yoGua55JEA8/I7BrnokQJjNF8queyRA9J6g0q58JEBRcCnbrn0kQK1BsuOufiRACRM77K5/JEBl5MP0roAkQMK1TP2ugSRAHofVBa+CJEB6WF4Or4MkQNcp5xavhCRAM/tvH6+FJECPzPgnr4YkQOydgTCvhyRASG8KOa+IJECkQJNBr4kkQAESHEqviiRAXeOkUq+LJEC5tC1br4wkQBWGtmOvjSRAclc/bK+OJEDOKMh0r48kQCr6UH2vkCRAh8vZha+RJEDjnGKOr5IkQD9u65avkyRAnD90n6+UJED4EP2nr5UkQFTihbCvliRAsbMOua+XJEANhZfBr5gkQGlWIMqvmSRAxiep0q+aJEAi+THbr5skQH7KuuOvnCRA2ptD7K+dJEA3bcz0r54kQJM+Vf2vnyRA7w/eBbCgJEBM4WYOsKEkQKiy7xawoiRABIR4H7CjJEBhVQEosKQkQL0mijCwpSRAGfgSObCmJEB2yZtBsKckQNKaJEqwqCRALmytUrCpJECLPTZbsKokQOcOv2OwqyRAQ+BHbLCsJECfsdB0sK0kQPyCWX2wriRAWFTihbCvJEC0JWuOsLAkQBH385awsSRAbch8n7CyJEDJmQWosLMkQCZrjrCwtCRAgjwXubC1JEDeDaDBsLYkQDvfKMqwtyRAl7Cx0rC4JEDzgTrbsLkkQFBTw+OwuiRArCRM7LC7JEAI9tT0sLwkQGTHXf2wvSRAwZjmBbG+JEAdam8Osb8kQHk7+BaxwCRA1gyBH7HBJEAy3gkoscIkQI6vkjCxwyRA64AbObHEJEBHUqRBscUkQKMjLUqxxiRAAPW1UrHHJEBcxj5bscgkQLiXx2OxySRAFWlQbLHKJEBxOtl0scskQM0LYn2xzCRAKd3qhbHNJECGrnOOsc4kQOJ//JaxzyRAPlGFn7HQJECbIg6osdEkQPfzlrCx0iRAU8UfubHTJECwlqjBsdQkQAxoMcqx1SRAaDm60rHWJEDFCkPbsdckQCHcy+Ox2CRAfa1U7LHZJEDaft30sdokQDZQZv2x2yRAkiHvBbLcJEDu8ncOst0kQEvEABey3iRAp5WJH7LfJEADZxIosuAkQGA4mzCy4SRAvAkkObLiJEAY26xBsuMkQHWsNUqy5CRA0X2+UrLlJEAtT0dbsuYkQIog0GOy5yRA5vFYbLLoJEBCw+F0sukkQJ+Uan2y6iRA+2XzhbLrJEBXN3yOsuwkQLMIBZey7SRAENqNn7LuJEBsqxaosu8kQMh8n7Cy8CRAJU4oubLxJECBH7HBsvIkQN3wOcqy8yRAOsLC0rL0JECWk0vbsvUkQPJk1OOy9iRATzZd7LL3JECrB+b0svgkQAfZbv2y+SRAZKr3BbP6JEDAe4AOs/skQBxNCRez/CRAeB6SH7P9JEDV7xoos/4kQDHBozCz/yRAjZIsObMAJUDqY7VBswElQEY1PkqzAiVAogbHUrMDJUD/109bswQlQFup2GOzBSVAt3phbLMGJUAUTOp0swclQHAdc32zCCVAzO77hbMJJUAowISOswolQIWRDZezCyVA4WKWn7MMJUA9NB+osw0lQJoFqLCzDiVA9tYwubMPJUBSqLnBsxAlQK95QsqzESVAC0vL0rMSJUBnHFTbsxMlQMTt3OOzFCVAIL9l7LMVJUB8kO70sxYlQNlhd/2zFyVANTMABrQYJUCRBIkOtBklQO3VERe0GiVASqeaH7QbJUCmeCMotBwlQAJKrDC0HSVAXxs1ObQeJUC77L1BtB8lQBe+Rkq0ICVAdI/PUrQhJUDQYFhbtCIlQCwy4WO0IyVAiQNqbLQkJUDl1PJ0tCUlQEGme320JiVAnncEhrQnJUD6SI2OtCglQFYaFpe0KSVAsuuen7QqJUAPvSeotCslQGuOsLC0LCVAx185ubQtJUAkMcLBtC4lQIACS8q0LyVA3NPT0rQwJUA5pVzbtDElQJV25eO0MiVA8Udu7LQzJUBOGff0tDQlQKrqf/20NSVABrwIBrU2JUBjjZEOtTclQL9eGhe1OCVAGzCjH7U5JUB3ASwotTolQNTStDC1OyVAMKQ9ObU8JUCMdcZBtT0lQOlGT0q1PiVARRjYUrU/JUCh6WBbtUAlQP666WO1QSVAWoxybLVCJUC2Xft0tUMlQBMvhH21RCVAbwANhrVFJUDL0ZWOtUYlQCijHpe1RyVAhHSnn7VIJUDgRTCotUklQDwXubC1SiVAmehBubVLJUD1ucrBtUwlQFGLU8q1TSVArlzc0rVOJUAKLmXbtU8lQGb/7eO1UCVAw9B27LVRJUAfov/0tVIlQHtziP21UyVA2EQRBrZUJUA0FpoOtlUlQJDnIhe2ViVA7birH7ZXJUBJijQotlglQKVbvTC2WSVAAS1GObZaJUBe/s5BtlslQLrPV0q2XCVAFqHgUrZdJUBzcmlbtl4lQM9D8mO2XyVAKxV7bLZgJUCI5gN1tmElQOS3jH22YiVAQIkVhrZjJUCdWp6OtmQlQPkrJ5e2ZSVAVf2vn7ZmJUCyzjiotmclQA6gwbC2aCVAanFKubZpJUDGQtPBtmolQCMUXMq2ayVAf+Xk0rZsJUDbtm3btm0lQDiI9uO2biVAlFl/7LZvJUDwKgj1tnAlQE38kP22cSVAqc0ZBrdyJUAFn6IOt3MlQGJwKxe3dCVAvkG0H7d1JUAaEz0ot3YlQHfkxTC3dyVA07VOObd4JUAvh9dBt3klQItYYEq3eiVA6CnpUrd7JUBE+3Fbt3wlQKDM+mO3fSVA/Z2DbLd+JUBZbwx1t38lQLVAlX23gCVAEhIehreBJUBu46aOt4IlQMq0L5e3gyVAJ4a4n7eEJUCDV0Got4UlQN8oyrC3hiVAO/pSubeHJUCYy9vBt4glQPScZMq3iSVAUG7t0reKJUCtP3bbt4slQAkR/+O3jCVAZeKH7LeNJUDCsxD1t44lQB6Fmf23jyVAelYiBriQJUDXJ6sOuJElQDP5Mxe4kiVAj8q8H7iTJUDsm0UouJQlQEhtzjC4lSVApD5XObiWJUAAEOBBuJclQF3haEq4mCVAubLxUriZJUAVhHpbuJolQHJVA2S4myVAziaMbLicJUAq+BR1uJ0lQIfJnX24niVA45omhrifJUA/bK+OuKAlQJw9OJe4oSVA+A7Bn7iiJUBU4EmouKMlQLGx0rC4pCVADYNbubilJUBpVOTBuKYlQMUlbcq4pyVAIvf10rioJUB+yH7buKklQNqZB+S4qiVAN2uQ7LirJUCTPBn1uKwlQO8Nov24rSVATN8qBrmuJUCosLMOua8lQASCPBe5sCVAYVPFH7mxJUC9JE4oubIlQBn21jC5syVAdsdfObm0JUDSmOhBubUlQC5qcUq5tiVAijv6Urm3JUDnDINbubglQEPeC2S5uSVAn6+UbLm6JUD8gB11ubslQFhSpn25vCVAtCMvhrm9JUAR9beOub4lQG3GQJe5vyVAyZfJn7nAJUAmaVKoucElQII627C5wiVA3gtkubnDJUA73ezBucQlQJeudcq5xSVA83/+0rnGJUBPUYfbucclQKwiEOS5yCVACPSY7LnJJUBkxSH1ucolQMGWqv25yyVAHWgzBrrMJUB5ObwOus0lQNYKRRe6ziVAMtzNH7rPJUCOrVYoutAlQOt+3zC60SVAR1BoObrSJUCjIfFButMlQADzeUq61CVAXMQCU7rVJUC4lYtbutYlQBRnFGS61yVAcTidbLrYJUDNCSZ1utklQCnbrn262iVAhqw3hrrbJUDifcCOutwlQD5PSZe63SVAmyDSn7reJUD38Vqout8lQFPD47C64CVAsJRsubrhJUAMZvXBuuIlQGg3fsq64yVAxQgH07rkJUAh2o/buuUlQH2rGOS65iVA2Xyh7LrnJUA2Tir1uuglQJIfs/266SVA7vA7BrvqJUBLwsQOu+slQKeTTRe77CVAA2XWH7vtJUBgNl8ou+4lQLwH6DC77yVAGNlwObvwJUB1qvlBu/ElQNF7gkq78iVALU0LU7vzJUCKHpRbu/QlQObvHGS79SVAQsGlbLv2JUCeki51u/clQPtjt327+CVAVzVAhrv5JUCzBsmOu/olQBDYUZe7+yVAbKnan7v8JUDIemOou/0lQCVM7LC7/iVAgR11ubv/JUDd7v3BuwAmQDrAhsq7ASZAlpEP07sCJkDyYpjbuwMmQE40IeS7BCZAqwWq7LsFJkAH1zL1uwYmQGOou/27ByZAwHlEBrwIJkAcS80OvAkmQHgcVhe8CiZA1e3eH7wLJkAxv2covAwmQI2Q8DC8DSZA6mF5ObwOJkBGMwJCvA8mQKIEi0q8ECZA/9UTU7wRJkBbp5xbvBImQLd4JWS8EyZAE0qubLwUJkBwGzd1vBUmQMzsv328FiZAKL5IhrwXJkCFj9GOvBgmQOFgWpe8GSZAPTLjn7waJkCaA2yovBsmQPbU9LC8HCZAUqZ9ubwdJkCvdwbCvB4mQAtJj8q8HyZAZxoY07wgJkDE66DbvCEmQCC9KeS8IiZAfI6y7LwjJkDYXzv1vCQmQDUxxP28JSZAkQJNBr0mJkDt09UOvScmQEqlXhe9KCZApnbnH70pJkACSHAovSomQF8Z+TC9KyZAu+qBOb0sJkAXvApCvS0mQHSNk0q9LiZA0F4cU70vJkAsMKVbvTAmQIkBLmS9MSZA5dK2bL0yJkBBpD91vTMmQJ11yH29NCZA+kZRhr01JkBWGNqOvTYmQLLpYpe9NyZAD7vrn704JkBrjHSovTkmQMdd/bC9OiZAJC+Gub07JkCAAA/CvTwmQNzRl8q9PSZAOaMg070+JkCVdKnbvT8mQPFFMuS9QCZAThe77L1BJkCq6EP1vUImQAa6zP29QyZAYotVBr5EJkC/XN4OvkUmQBsuZxe+RiZAd//vH75HJkDU0HgovkgmQDCiATG+SSZAjHOKOb5KJkDpRBNCvksmQEUWnEq+TCZAoeckU75NJkD+uK1bvk4mQFqKNmS+TyZAtlu/bL5QJkATLUh1vlEmQG/+0H2+UiZAy89Zhr5TJkAnoeKOvlQmQIRya5e+VSZA4EP0n75WJkA8FX2ovlcmQJnmBbG+WCZA9beOub5ZJkBRiRfCvlomQK5aoMq+WyZACiwp075cJkBm/bHbvl0mQMPOOuS+XiZAH6DD7L5fJkB7cUz1vmAmQNhC1f2+YSZANBReBr9iJkCQ5eYOv2MmQOy2bxe/ZCZASYj4H79lJkClWYEov2YmQAErCjG/ZyZAXvySOb9oJkC6zRtCv2kmQBafpEq/aiZAc3AtU79rJkDPQbZbv2wmQCsTP2S/bSZAiOTHbL9uJkDktVB1v28mQECH2X2/cCZAnVhihr9xJkD5KeuOv3ImQFX7c5e/cyZAscz8n790JkAOnoWov3UmQGpvDrG/diZAxkCXub93JkAjEiDCv3gmQH/jqMq/eSZA27Qx0796JkA4hrrbv3smQJRXQ+S/fCZA8CjM7L99JkBN+lT1v34mQKnL3f2/fyZABZ1mBsCAJkBhbu8OwIEmQL4/eBfAgiZAGhEBIMCDJkB24okowIQmQNOzEjHAhSZAL4WbOcCGJkCLViRCwIcmQOgnrUrAiCZARPk1U8CJJkCgyr5bwIomQP2bR2TAiyZAWW3QbMCMJkC1Pll1wI0mQBIQ4n3AjiZAbuFqhsCPJkDKsvOOwJAmQCaEfJfAkSZAg1UFoMCSJkDfJo6owJMmQDv4FrHAlCZAmMmfucCVJkD0mijCwJYmQFBsscrAlyZArT0608CYJkAJD8PbwJkmQGXgS+TAmiZAwrHU7MCbJkAeg131wJwmQHpU5v3AnSZA1yVvBsGeJkAz9/cOwZ8mQI/IgBfBoCZA65kJIMGhJkBIa5IowaImQKQ8GzHBoyZAAA6kOcGkJkBd3yxCwaUmQLmwtUrBpiZAFYI+U8GnJkByU8dbwagmQM4kUGTBqSZAKvbYbMGqJkCHx2F1wasmQOOY6n3BrCZAP2pzhsGtJkCcO/yOwa4mQPgMhZfBryZAVN4NoMGwJkCwr5aowbEmQA2BH7HBsiZAaVKoucGzJkDFIzHCwbQmQCL1ucrBtSZAfsZC08G2JkDal8vbwbcmQDdpVOTBuCZAkzrd7MG5JkDvC2b1wbomQEzd7v3BuyZAqK53BsK8JkAEgAAPwr0mQGFRiRfCviZAvSISIMK/JkAZ9JoowsAmQHXFIzHCwSZA0pasOcLCJkAuaDVCwsMmQIo5vkrCxCZA5wpHU8LFJkBD3M9bwsYmQJ+tWGTCxyZA/H7hbMLIJkBYUGp1wskmQLQh833CyiZAEfN7hsLLJkBtxASPwswmQMmVjZfCzSZAJmcWoMLOJkCCOJ+ows8mQN4JKLHC0CZAOtuwucLRJkCXrDnCwtImQPN9wsrC0yZAT09L08LUJkCsINTbwtUmQAjyXOTC1iZAZMPl7MLXJkDBlG71wtgmQB1m9/3C2SZAeTeABsPaJkDWCAkPw9smQDLakRfD3CZAjqsaIMPdJkDrfKMow94mQEdOLDHD3yZAox+1OcPgJkD/8D1Cw+EmQFzCxkrD4iZAuJNPU8PjJkAUZdhbw+QmQHE2YWTD5SZAzQfqbMPmJkAp2XJ1w+cmQIaq+33D6CZA4nuEhsPpJkA+TQ2Pw+omQJselpfD6yZA9+8eoMPsJkBTwaeow+0mQLCSMLHD7iZADGS5ucPvJkBoNULCw/AmQMQGy8rD8SZAIdhT08PyJkB9qdzbw/MmQNl6ZeTD9CZANkzu7MP1JkCSHXf1w/YmQO7u//3D9yZAS8CIBsT4JkCnkREPxPkmQANjmhfE+iZAYDQjIMT7JkC8BawoxPwmQBjXNDHE/SZAdai9OcT+JkDReUZCxP8mQC1Lz0rEACdAiRxYU8QBJ0Dm7eBbxAInQEK/aWTEAydAnpDybMQEJ0D7YXt1xAUnQFczBH7EBidAswSNhsQHJ0AQ1hWPxAgnQGynnpfECSdAyHgnoMQKJ0AlSrCoxAsnQIEbObHEDCdA3ezBucQNJ0A5vkrCxA4nQJaP08rEDydA8mBc08QQJ0BOMuXbxBEnQKsDbuTEEidAB9X27MQTJ0Bjpn/1xBQnQMB3CP7EFSdAHEmRBsUWJ0B4GhoPxRcnQNXrohfFGCdAMb0rIMUZJ0CNjrQoxRonQOpfPTHFGydARjHGOcUcJ0CiAk9CxR0nQP7T10rFHidAW6VgU8UfJ0C3dulbxSAnQBNIcmTFISdAcBn7bMUiJ0DM6oN1xSMnQCi8DH7FJCdAhY2VhsUlJ0DhXh6PxSYnQD0wp5fFJydAmgEwoMUoJ0D20rioxSknQFKkQbHFKidAr3XKucUrJ0ALR1PCxSwnQGcY3MrFLSdAw+lk08UuJ0Agu+3bxS8nQHyMduTFMCdA2F3/7MUxJ0A1L4j1xTInQJEAEf7FMydA7dGZBsY0J0BKoyIPxjUnQKZ0qxfGNidAAkY0IMY3J0BfF70oxjgnQLvoRTHGOSdAF7rOOcY6J0B0i1dCxjsnQNBc4ErGPCdALC5pU8Y9J0CI//Fbxj4nQOXQemTGPydAQaIDbcZAJ0Cdc4x1xkEnQPpEFX7GQidAVhaehsZDJ0Cy5yaPxkQnQA+5r5fGRSdAa4o4oMZGJ0DHW8GoxkcnQCQtSrHGSCdAgP7SucZJJ0Dcz1vCxkonQDmh5MrGSydAlXJt08ZMJ0DxQ/bbxk0nQE0Vf+TGTidAquYH7cZPJ0AGuJD1xlAnQGKJGf7GUSdAv1qiBsdSJ0AbLCsPx1MnQHf9sxfHVCdA1M48IMdVJ0AwoMUox1YnQIxxTjHHVydA6ULXOcdYJ0BFFGBCx1knQKHl6ErHWidA/rZxU8dbJ0BaiPpbx1wnQLZZg2THXSdAEisMbcdeJ0Bv/JR1x18nQMvNHX7HYCdAJ5+mhsdhJ0CEcC+Px2InQOBBuJfHYydAPBNBoMdkJ0CZ5Mmox2UnQPW1UrHHZidAUYfbucdnJ0CuWGTCx2gnQAoq7crHaSdAZvt108dqJ0DDzP7bx2snQB+eh+THbCdAe28Q7cdtJ0DXQJn1x24nQDQSIv7HbydAkOOqBshwJ0DstDMPyHEnQEmGvBfIcidApVdFIMhzJ0ABKc4oyHQnQF76VjHIdSdAusvfOch2J0AWnWhCyHcnQHNu8UrIeCdAzz96U8h5J0ArEQNcyHonQIjii2TIeydA5LMUbch8J0BAhZ11yH0nQJxWJn7IfidA+Sevhsh/J0BV+TePyIAnQLHKwJfIgSdADpxJoMiCJ0BqbdKoyIMnQMY+W7HIhCdAIxDkuciFJ0B/4WzCyIYnQNuy9crIhydAOIR+08iIJ0CUVQfcyIknQPAmkOTIiidATPgY7ciLJ0CpyaH1yIwnQAWbKv7IjSdAYWyzBsmOJ0C+PTwPyY8nQBoPxRfJkCdAduBNIMmRJ0DTsdYoyZInQC+DXzHJkydAi1ToOcmUJ0DoJXFCyZUnQET3+UrJlidAoMiCU8mXJ0D9mQtcyZgnQFlrlGTJmSdAtTwdbcmaJ0ARDqZ1yZsnQG7fLn7JnCdAyrC3hsmdJ0AmgkCPyZ4nQINTyZfJnydA3yRSoMmgJ0A79tqoyaEnQJjHY7HJoidA9JjsucmjJ0BQanXCyaQnQK07/srJpSdACQ2H08mmJ0Bl3g/cyacnQMKvmOTJqCdAHoEh7cmpJ0B6Uqr1yaonQNYjM/7JqydAM/W7BsqsJ0CPxkQPyq0nQOuXzRfKridASGlWIMqvJ0CkOt8oyrAnQAAMaDHKsSdAXd3wOcqyJ0C5rnlCyrMnQBWAAkvKtCdAclGLU8q1J0DOIhRcyrYnQCr0nGTKtydAh8Ulbcq4J0Djlq51yrknQD9oN37KuidAmznAhsq7J0D4CkmPyrwnQFTc0ZfKvSdAsK1aoMq+J0ANf+Ooyr8nQGlQbLHKwCdAxSH1ucrBJ0Ai833CysInQH7EBsvKwydA2pWP08rEJ0A3ZxjcysUnQJM4oeTKxidA7wkq7crHJ0BM27L1ysgnQKisO/7KySdABH7EBsvKJ0BgT00Py8snQL0g1hfLzCdAGfJeIMvNJ0B1w+coy84nQNKUcDHLzydALmb5OcvQJ0CKN4JCy9EnQOcIC0vL0idAQ9qTU8vTJ0Cfqxxcy9QnQPx8pWTL1SdAWE4ubcvWJ0C0H7d1y9cnQBHxP37L2CdAbcLIhsvZJ0DJk1GPy9onQCVl2pfL2ydAgjZjoMvcJ0DeB+yoy90nQDrZdLHL3idAl6r9ucvfJ0Dze4bCy+AnQE9ND8vL4SdArB6Y08viJ0AI8CDcy+MnQGTBqeTL5CdAwZIy7cvlJ0AdZLv1y+YnQHk1RP7L5ydA1gbNBszoJ0Ay2FUPzOknQI6p3hfM6idA6npnIMzrJ0BHTPAozOwnQKMdeTHM7SdA/+4BOszuJ0BcwIpCzO8nQLiRE0vM8CdAFGOcU8zxJ0BxNCVczPInQM0FrmTM8ydAKdc2bcz0J0CGqL91zPUnQOJ5SH7M9idAPkvRhsz3J0CbHFqPzPgnQPft4pfM+SdAU79roMz6J0CvkPSozPsnQAxifbHM/CdAaDMGusz9J0DEBI/CzP4nQCHWF8vM/ydAfaeg08wAKEDZeCnczAEoQDZKsuTMAihAkhs77cwDKEDu7MP1zAQoQEu+TP7MBShAp4/VBs0GKEADYV4PzQcoQF8y5xfNCChAvANwIM0JKEAY1fgozQooQHSmgTHNCyhA0XcKOs0MKEAtSZNCzQ0oQIkaHEvNDihA5uukU80PKEBCvS1czRAoQJ6OtmTNEShA+18/bc0SKEBXMch1zRMoQLMCUX7NFChAENTZhs0VKEBspWKPzRYoQMh265fNFyhAJEh0oM0YKECBGf2ozRkoQN3qhbHNGihAObwOus0bKECWjZfCzRwoQPJeIMvNHShATjCp080eKECrATLczR8oQAfTuuTNIChAY6RD7c0hKEDAdcz1zSIoQBxHVf7NIyhAeBjeBs4kKEDV6WYPziUoQDG77xfOJihAjYx4IM4nKEDpXQEpzigoQEYvijHOKShAogATOs4qKED+0ZtCzisoQFujJEvOLChAt3StU84tKEATRjZczi4oQHAXv2TOLyhAzOhHbc4wKEAoutB1zjEoQIWLWX7OMihA4Vzihs4zKEA9LmuPzjQoQJr/85fONShA9tB8oM42KEBSogWpzjcoQK5zjrHOOChAC0UXus45KEBnFqDCzjooQMPnKMvOOyhAILmx0848KEB8ijrczj0oQNhbw+TOPihANS1M7c4/KECR/tT1zkAoQO3PXf7OQShASqHmBs9CKECmcm8Pz0MoQAJE+BfPRChAXxWBIM9FKEC75gkpz0YoQBe4kjHPRyhAc4kbOs9IKEDQWqRCz0koQCwsLUvPSihAiP21U89LKEDlzj5cz0woQEGgx2TPTShAnXFQbc9OKED6Qtl1z08oQFYUYn7PUChAsuXqhs9RKEAPt3OPz1IoQGuI/JfPUyhAx1mFoM9UKEAkKw6pz1UoQID8lrHPVihA3M0fus9XKEA4n6jCz1goQJVwMcvPWShA8UG6089aKEBNE0Pcz1soQKrky+TPXChABrZU7c9dKEBih931z14oQL9YZv7PXyhAGyrvBtBgKEB3+3cP0GEoQNTMABjQYihAMJ6JINBjKECMbxIp0GQoQOlAmzHQZShARRIkOtBmKECh46xC0GcoQP20NUvQaChAWoa+U9BpKEC2V0dc0GooQBIp0GTQayhAb/pYbdBsKEDLy+F10G0oQCedan7QbihAhG7zhtBvKEDgP3yP0HAoQDwRBZjQcShAmeKNoNByKED1sxap0HMoQFGFn7HQdChArlYoutB1KEAKKLHC0HYoQGb5OcvQdyhAwsrC09B4KEAfnEvc0HkoQHtt1OTQeihA1z5d7dB7KEA0EOb10HwoQJDhbv7QfShA7LL3BtF+KEBJhIAP0X8oQKVVCRjRgChAASeSINGBKEBe+Bop0YIoQLrJozHRgyhAFpssOtGEKEBybLVC0YUoQM89PkvRhihAKw/HU9GHKECH4E9c0YgoQOSx2GTRiShAQINhbdGKKECcVOp10YsoQPklc37RjChAVff7htGNKECxyISP0Y4oQA6aDZjRjyhAamuWoNGQKEDGPB+p0ZEoQCMOqLHRkihAf98wutGTKEDbsLnC0ZQoQDeCQsvRlShAlFPL09GWKEDwJFTc0ZcoQEz23OTRmChAqcdl7dGZKEAFme710ZooQGFqd/7RmyhAvjsAB9KcKEAaDYkP0p0oQHbeERjSnihA06+aINKfKEAvgSMp0qAoQItSrDHSoShA6CM1OtKiKEBE9b1C0qMoQKDGRkvSpChA/JfPU9KlKEBZaVhc0qYoQLU64WTSpyhAEQxqbdKoKEBu3fJ10qkoQMque37SqihAJoAEh9KrKECDUY2P0qwoQN8iFpjSrShAO/SeoNKuKECYxSep0q8oQPSWsLHSsChAUGg5utKxKECtOcLC0rIoQAkLS8vSsyhAZdzT09K0KEDBrVzc0rUoQB5/5eTStihAelBu7dK3KEDWIff10rgoQDPzf/7SuShAj8QIB9O6KEDrlZEP07soQEhnGhjTvChApDijINO9KEAACiwp074oQF3btDHTvyhAuaw9OtPAKEAVfsZC08EoQHJPT0vTwihAziDYU9PDKEAq8mBc08QoQIbD6WTTxShA45RybdPGKEA/Zvt108coQJs3hH7TyChA+AgNh9PJKEBU2pWP08ooQLCrHpjTyyhADX2noNPMKEBpTjCp080oQMUfubHTzihAIvFButPPKEB+wsrC09AoQNqTU8vT0ShAN2Xc09PSKECTNmXc09MoQO8H7uTT1ChAS9l27dPVKECoqv/109YoQAR8iP7T1yhAYE0RB9TYKEC9HpoP1NkoQBnwIhjU2ihAdcGrINTbKEDSkjQp1NwoQC5kvTHU3ShAijVGOtTeKEDnBs9C1N8oQEPYV0vU4ChAn6ngU9ThKED8emlc1OIoQFhM8mTU4yhAtB17bdTkKEAQ7wN21OUoQG3AjH7U5ihAyZEVh9TnKEAlY56P1OgoQII0J5jU6ShA3gWwoNTqKEA61zip1OsoQJeowbHU7ChA83lKutTtKEBPS9PC1O4oQKwcXMvU7yhACO7k09TwKEBkv23c1PEoQMGQ9uTU8ihAHWJ/7dTzKEB5Mwj21PQoQNUEkf7U9ShAMtYZB9X2KECOp6IP1fcoQOp4KxjV+ChAR0q0INX5KECjGz0p1fooQP/sxTHV+yhAXL5OOtX8KEC4j9dC1f0oQBRhYEvV/ihAcTLpU9X/KEDNA3Jc1QApQCnV+mTVASlAhaaDbdUCKUDidwx21QMpQD5JlX7VBClAmhoeh9UFKUD366aP1QYpQFO9L5jVBylAr464oNUIKUAMYEGp1QkpQGgxyrHVCilAxAJTutULKUAh1NvC1QwpQH2lZMvVDSlA2Xbt09UOKUA2SHbc1Q8pQJIZ/+TVEClA7uqH7dURKUBKvBD21RIpQKeNmf7VEylAA18iB9YUKUBfMKsP1hUpQLwBNBjWFilAGNO8INYXKUB0pEUp1hgpQNF1zjHWGSlALUdXOtYaKUCJGOBC1hspQObpaEvWHClAQrvxU9YdKUCejHpc1h4pQPtdA2XWHylAVy+MbdYgKUCzABV21iEpQA/SnX7WIilAbKMmh9YjKUDIdK+P1iQpQCRGOJjWJSlAgRfBoNYmKUDd6Emp1icpQDm60rHWKClAlotbutYpKUDyXOTC1iopQE4ubcvWKylAq//109YsKUAH0X7c1i0pQGOiB+XWLilAwHOQ7dYvKUAcRRn21jApQHgWov7WMSlA1OcqB9cyKUAxubMP1zMpQI2KPBjXNClA6VvFINc1KUBGLU4p1zYpQKL+1jHXNylA/s9fOtc4KUBboehC1zkpQLdycUvXOilAE0T6U9c7KUBwFYNc1zwpQMzmC2XXPSlAKLiUbdc+KUCFiR121z8pQOFapn7XQClAPSwvh9dBKUCZ/beP10IpQPbOQJjXQylAUqDJoNdEKUCucVKp10UpQAtD27HXRilAZxRkutdHKUDD5ezC10gpQCC3dcvXSSlAfIj+09dKKUDYWYfc10spQDUrEOXXTClAkfyY7ddNKUDtzSH2104pQEqfqv7XTylApnAzB9hQKUACQrwP2FEpQF4TRRjYUilAu+TNINhTKUAXtlYp2FQpQHOH3zHYVSlA0FhoOthWKUAsKvFC2FcpQIj7eUvYWClA5cwCVNhZKUBBnotc2FopQJ1vFGXYWylA+kCdbdhcKUBWEiZ22F0pQLLjrn7YXilAD7U3h9hfKUBrhsCP2GApQMdXSZjYYSlAIynSoNhiKUCA+lqp2GMpQNzL47HYZClAOJ1suthlKUCVbvXC2GYpQPE/fsvYZylATREH1NhoKUCq4o/c2GkpQAa0GOXYailAYoWh7dhrKUC/Vir22GwpQBsos/7YbSlAd/k7B9luKUDUysQP2W8pQDCcTRjZcClAjG3WINlxKUDoPl8p2XIpQEUQ6DHZcylAoeFwOtl0KUD9svlC2XUpQFqEgkvZdilAtlULVNl3KUASJ5Rc2XgpQG/4HGXZeSlAy8mlbdl6KUAnmy522XspQIRst37ZfClA4D1Ah9l9KUA8D8mP2X4pQJngUZjZfylA9bHaoNmAKUBRg2Op2YEpQK1U7LHZgilACiZ1utmDKUBm9/3C2YQpQMLIhsvZhSlAH5oP1NmGKUB7a5jc2YcpQNc8IeXZiClANA6q7dmJKUCQ3zL22YopQOywu/7ZiylASYJEB9qMKUClU80P2o0pQAElVhjajilAXfbeINqPKUC6x2cp2pApQBaZ8DHakSlAcmp5OtqSKUDPOwJD2pMpQCsNi0valClAh94TVNqVKUDkr5xc2pYpQECBJWXalylAnFKubdqYKUD5Izd22pkpQFX1v37amilAscZIh9qbKUAOmNGP2pwpQGppWpjanSlAxjrjoNqeKUAiDGyp2p8pQH/d9LHaoClA2659utqhKUA3gAbD2qIpQJRRj8vaoylA8CIY1NqkKUBM9KDc2qUpQKnFKeXapilABZey7dqnKUBhaDv22qgpQL45xP7aqSlAGgtNB9uqKUB23NUP26spQNOtXhjbrClAL3/nINutKUCLUHAp264pQOch+THbrylARPOBOtuwKUCgxApD27EpQPyVk0vbsilAWWccVNuzKUC1OKVc27QpQBEKLmXbtSlAbtu2bdu2KUDKrD9227cpQCZ+yH7buClAg09Rh9u5KUDfINqP27opQDvyYpjbuylAmMProNu8KUD0lHSp270pQFBm/bHbvilArDeGutu/KUAJCQ/D28ApQGXal8vbwSlAwasg1NvCKUAefanc28MpQHpOMuXbxClA1h+77dvFKUAz8UP228YpQI/CzP7bxylA65NVB9zIKUBIZd4P3MkpQKQ2ZxjcyilAAAjwINzLKUBd2Xgp3MwpQLmqATLczSlAFXyKOtzOKUBxTRND3M8pQM4enEvc0ClAKvAkVNzRKUCGwa1c3NIpQOOSNmXc0ylAP2S/bdzUKUCbNUh23NUpQPgG0X7c1ilAVNhZh9zXKUCwqeKP3NgpQA17a5jc2SlAaUz0oNzaKUDFHX2p3NspQCLvBbLc3ClAfsCOutzdKUDakRfD3N4pQDZjoMvc3ylAkzQp1NzgKUDvBbLc3OEpQEvXOuXc4ilAqKjD7dzjKUAEekz23OQpQGBL1f7c5SlAvRxeB93mKUAZ7uYP3ecpQHW/bxjd6ClA0pD4IN3pKUAuYoEp3eopQIozCjLd6ylA5wSTOt3sKUBD1htD3e0pQJ+npEvd7ilA+3gtVN3vKUBYSrZc3fApQLQbP2Xd8SlAEO3Hbd3yKUBtvlB23fMpQMmP2X7d9ClAJWFih931KUCCMuuP3fYpQN4DdJjd9ylAOtX8oN34KUCXpoWp3fkpQPN3DrLd+ilAT0mXut37KUCsGiDD3fwpQAjsqMvd/SlAZL0x1N3+KUDAjrrc3f8pQB1gQ+XdACpAeTHM7d0BKkDVAlX23QIqQDLU3f7dAypAjqVmB94EKkDqdu8P3gUqQEdIeBjeBipAoxkBId4HKkD/6okp3ggqQFy8EjLeCSpAuI2bOt4KKkAUXyRD3gsqQHAwrUveDCpAzQE2VN4NKkAp075c3g4qQIWkR2XeDypA4nXQbd4QKkA+R1l23hEqQJoY4n7eEipA9+lqh94TKkBTu/OP3hQqQK+MfJjeFSpADF4Fod4WKkBoL46p3hcqQMQAF7LeGCpAIdKfut4ZKkB9oyjD3hoqQNl0scveGypANUY61N4cKkCSF8Pc3h0qQO7oS+XeHipASrrU7d4fKkCni1323iAqQANd5v7eISpAXy5vB98iKkC8//cP3yMqQBjRgBjfJCpAdKIJId8lKkDRc5Ip3yYqQC1FGzLfJypAiRakOt8oKkDm5yxD3ykqQEK5tUvfKipAnoo+VN8rKkD6W8dc3ywqQFctUGXfLSpAs/7Ybd8uKkAP0GF23y8qQGyh6n7fMCpAyHJzh98xKkAkRPyP3zIqQIEVhZjfMypA3eYNod80KkA5uJap3zUqQJaJH7LfNipA8lqout83KkBOLDHD3zgqQKv9ucvfOSpAB89C1N86KkBjoMvc3zsqQL9xVOXfPCpAHEPd7d89KkB4FGb23z4qQNTl7v7fPypAMbd3B+BAKkCNiAAQ4EEqQOlZiRjgQipARisSIeBDKkCi/Jop4EQqQP7NIzLgRSpAW5+sOuBGKkC3cDVD4EcqQBNCvkvgSCpAcBNHVOBJKkDM5M9c4EoqQCi2WGXgSypAhIfhbeBMKkDhWGp24E0qQD0q837gTipAmft7h+BPKkD2zASQ4FAqQFKejZjgUSpArm8WoeBSKkALQZ+p4FMqQGcSKLLgVCpAw+OwuuBVKkAgtTnD4FYqQHyGwsvgVypA2FdL1OBYKkA1KdTc4FkqQJH6XOXgWipA7cvl7eBbKkBJnW724FwqQKZu9/7gXSpAAkCAB+FeKkBeEQkQ4V8qQLvikRjhYCpAF7QaIeFhKkBzhaMp4WIqQNBWLDLhYypALCi1OuFkKkCI+T1D4WUqQOXKxkvhZipAQZxPVOFnKkCdbdhc4WgqQPo+YWXhaSpAVhDqbeFqKkCy4XJ24WsqQA6z+37hbCpAa4SEh+FtKkDHVQ2Q4W4qQCMnlpjhbypAgPgeoeFwKkDcyaep4XEqQDibMLLhcipAlWy5uuFzKkDxPULD4XQqQE0Py8vhdSpAquBT1OF2KkAGstzc4XcqQGKDZeXheCpAv1Tu7eF5KkAbJnf24XoqQHf3//7heypA08iIB+J8KkAwmhEQ4n0qQIxrmhjifipA6DwjIeJ/KkBFDqwp4oAqQKHfNDLigSpA/bC9OuKCKkBagkZD4oMqQLZTz0vihCpAEiVYVOKFKkBv9uBc4oYqQMvHaWXihypAJ5nybeKIKkCDant24okqQOA7BH/iiipAPA2Nh+KLKkCY3hWQ4owqQPWvnpjijSpAUYEnoeKOKkCtUrCp4o8qQAokObLikCpAZvXBuuKRKkDCxkrD4pIqQB+Y08vikypAe2lc1OKUKkDXOuXc4pUqQDQMbuXilipAkN327eKXKkDsrn/24pgqQEiACP/imSpApVGRB+OaKkABIxoQ45sqQF30ohjjnCpAusUrIeOdKkAWl7Qp454qQHJoPTLjnypAzznGOuOgKkArC09D46EqQIfc10vjoipA5K1gVOOjKkBAf+lc46QqQJxQcmXjpSpA+SH7beOmKkBV84N246cqQLHEDH/jqCpADZaVh+OpKkBqZx6Q46oqQMY4p5jjqypAIgowoeOsKkB/27ip460qQNusQbLjripAN37KuuOvKkCUT1PD47AqQPAg3MvjsSpATPJk1OOyKkCpw+3c47MqQAWVduXjtCpAYWb/7eO1KkC+N4j247YqQBoJEf/jtypAdtqZB+S4KkDSqyIQ5LkqQC99qxjkuipAi040IeS7KkDnH70p5LwqQETxRTLkvSpAoMLOOuS+KkD8k1dD5L8qQFll4EvkwCpAtTZpVOTBKkARCPJc5MIqQG7ZemXkwypAyqoDbuTEKkAmfIx25MUqQINNFX/kxipA3x6eh+THKkA78CaQ5MgqQJfBr5jkySpA9JI4oeTKKkBQZMGp5MsqQKw1SrLkzCpACQfTuuTNKkBl2FvD5M4qQMGp5MvkzypAHntt1OTQKkB6TPbc5NEqQNYdf+Xk0ipAM+8H7uTTKkCPwJD25NQqQOuRGf/k1SpASGOiB+XWKkCkNCsQ5dcqQAAGtBjl2CpAXNc8IeXZKkC5qMUp5doqQBV6TjLl2ypAcUvXOuXcKkDOHGBD5d0qQCru6Evl3ipAhr9xVOXfKkDjkPpc5eAqQD9ig2Xl4SpAmzMMbuXiKkD4BJV25eMqQFTWHX/l5CpAsKemh+XlKkANeS+Q5eYqQGlKuJjl5ypAxRtBoeXoKkAh7cmp5ekqQH6+UrLl6ipA2o/buuXrKkA2YWTD5ewqQJMy7cvl7SpA7wN21OXuKkBL1f7c5e8qQKimh+Xl8CpABHgQ7uXxKkBgSZn25fIqQL0aIv/l8ypAGeyqB+b0KkB1vTMQ5vUqQNKOvBjm9ipALmBFIeb3KkCKMc4p5vgqQOYCVzLm+SpAQ9TfOub6KkCfpWhD5vsqQPt28Uvm/CpAWEh6VOb9KkC0GQNd5v4qQBDri2Xm/ypAbbwUbuYAK0DJjZ125gErQCVfJn/mAitAgjCvh+YDK0DeATiQ5gQrQDrTwJjmBStAlqRJoeYGK0DzddKp5gcrQE9HW7LmCCtAqxjkuuYJK0AI6mzD5gorQGS79cvmCytAwIx+1OYMK0AdXgfd5g0rQHkvkOXmDitA1QAZ7uYPK0Ay0qH25hArQI6jKv/mEStA6nSzB+cSK0BHRjwQ5xMrQKMXxRjnFCtA/+hNIecVK0BbutYp5xYrQLiLXzLnFytAFF3oOucYK0BwLnFD5xkrQM3/+UvnGitAKdGCVOcbK0CFogtd5xwrQOJzlGXnHStAPkUdbuceK0CaFqZ25x8rQPfnLn/nICtAU7m3h+chK0CvikCQ5yIrQAxcyZjnIytAaC1SoeckK0DE/tqp5yUrQCDQY7LnJitAfaHsuucnK0DZcnXD5ygrQDVE/svnKStAkhWH1OcqK0Du5g/d5ysrQEq4mOXnLCtAp4kh7uctK0ADW6r25y4rQF8sM//nLytAvP27B+gwK0AYz0QQ6DErQHSgzRjoMitA0XFWIegzK0AtQ98p6DQrQIkUaDLoNStA5eXwOug2K0BCt3lD6DcrQJ6IAkzoOCtA+lmLVOg5K0BXKxRd6DorQLP8nGXoOytAD84lbug8K0Bsn6526D0rQMhwN3/oPitAJELAh+g/K0CBE0mQ6EArQN3k0ZjoQStAObZaoehCK0CWh+Op6EMrQPJYbLLoRCtATir1uuhFK0Cq+33D6EYrQAfNBszoRytAY56P1OhIK0C/bxjd6EkrQBxBoeXoSitAeBIq7uhLK0DU47L26EwrQDG1O//oTStAjYbEB+lOK0DpV00Q6U8rQEYp1hjpUCtAovpeIelRK0D+y+cp6VIrQFudcDLpUytAt275OulUK0ATQIJD6VUrQG8RC0zpVitAzOKTVOlXK0AotBxd6VgrQISFpWXpWStA4VYubulaK0A9KLd26VsrQJn5P3/pXCtA9srIh+ldK0BSnFGQ6V4rQK5t2pjpXytACz9joelgK0BnEOyp6WErQMPhdLLpYitAILP9uuljK0B8hIbD6WQrQNhVD8zpZStANCeY1OlmK0CR+CDd6WcrQO3JqeXpaCtASZsy7ulpK0CmbLv26WorQAI+RP/paytAXg/NB+psK0C74FUQ6m0rQBey3hjqbitAc4NnIepvK0DQVPAp6nArQCwmeTLqcStAiPcBO+pyK0DlyIpD6nMrQEGaE0zqdCtAnWucVOp1K0D5PCVd6nYrQFYOrmXqdytAst82bup4K0AOsb926nkrQGuCSH/qeitAx1PRh+p7K0AjJVqQ6nwrQID24pjqfStA3Mdroep+K0A4mfSp6n8rQJVqfbLqgCtA8TsGu+qBK0BNDY/D6oIrQKneF8zqgytABrCg1OqEK0BigSnd6oUrQL5SsuXqhitAGyQ77uqHK0B39cP26ogrQNPGTP/qiStAMJjVB+uKK0CMaV4Q64srQOg65xjrjCtARQxwIeuNK0Ch3fgp644rQP2ugTLrjytAWoAKO+uQK0C2UZND65ErQBIjHEzrkitAbvSkVOuTK0DLxS1d65QrQCeXtmXrlStAg2g/buuWK0DgOch265crQDwLUX/rmCtAmNzZh+uZK0D1rWKQ65orQFF/65jrmytArVB0oeucK0AKIv2p650rQGbzhbLrnitAwsQOu+ufK0AflpfD66ArQHtnIMzroStA1zip1OuiK0AzCjLd66MrQJDbuuXrpCtA7KxD7uulK0BIfsz266YrQKVPVf/rpytAASHeB+yoK0Bd8mYQ7KkrQLrD7xjsqitAFpV4IeyrK0ByZgEq7KwrQM83ijLsrStAKwkTO+yuK0CH2ptD7K8rQOSrJEzssCtAQH2tVOyxK0CcTjZd7LIrQPgfv2XssytAVfFHbuy0K0CxwtB27LUrQA2UWX/stitAamXih+y3K0DGNmuQ7LgrQCII9JjsuStAf9l8oey6K0DbqgWq7LsrQDd8jrLsvCtAlE0Xu+y9K0DwHqDD7L4rQEzwKMzsvytAqcGx1OzAK0AFkzrd7MErQGFkw+XswitAvTVM7uzDK0AaB9X27MQrQHbYXf/sxStA0qnmB+3GK0Ave28Q7ccrQItM+BjtyCtA5x2BIe3JK0BE7wkq7corQKDAkjLtyytA/JEbO+3MK0BZY6RD7c0rQLU0LUztzitAEQa2VO3PK0Bu1z5d7dArQMqox2Xt0StAJnpQbu3SK0CCS9l27dMrQN8cYn/t1CtAO+7qh+3VK0CXv3OQ7dYrQPSQ/Jjt1ytAUGKFoe3YK0CsMw6q7dkrQAkFl7Lt2itAZdYfu+3bK0DBp6jD7dwrQB55Mczt3StAekq61O3eK0DWG0Pd7d8rQDPty+Xt4CtAj75U7u3hK0Drj9327eIrQEdhZv/t4ytApDLvB+7kK0AABHgQ7uUrQFzVABnu5itAuaaJIe7nK0AVeBIq7ugrQHFJmzLu6StAzhokO+7qK0Aq7KxD7usrQIa9NUzu7CtA446+VO7tK0A/YEdd7u4rQJsx0GXu7ytA+AJZbu7wK0BU1OF27vErQLClan/u8itADHfzh+7zK0BpSHyQ7vQrQMUZBZnu9StAIeuNoe72K0B+vBaq7vcrQNqNn7Lu+CtANl8ou+75K0CTMLHD7vorQO8BOszu+ytAS9PC1O78K0CopEvd7v0rQAR21OXu/itAYEdd7u7/K0C8GOb27gAsQBnqbv/uASxAdbv3B+8CLEDRjIAQ7wMsQC5eCRnvBCxAii+SIe8FLEDmABsq7wYsQEPSozLvByxAn6MsO+8ILED7dLVD7wksQFhGPkzvCixAtBfHVO8LLEAQ6U9d7wwsQG262GXvDSxAyYthbu8OLEAlXep27w8sQIEuc3/vECxA3v/7h+8RLEA60YSQ7xIsQJaiDZnvEyxA83OWoe8ULEBPRR+q7xUsQKsWqLLvFixACOgwu+8XLEBkubnD7xgsQMCKQszvGSxAHVzL1O8aLEB5LVTd7xssQNX+3OXvHCxAMtBl7u8dLECOoe727x4sQOpyd//vHyxARkQACPAgLECjFYkQ8CEsQP/mERnwIixAW7iaIfAjLEC4iSMq8CQsQBRbrDLwJSxAcCw1O/AmLEDN/b1D8CcsQCnPRkzwKCxAhaDPVPApLEDicVhd8CosQD5D4WXwKyxAmhRqbvAsLED35fJ28C0sQFO3e3/wLixAr4gEiPAvLEALWo2Q8DAsQGgrFpnwMSxAxPyeofAyLEAgzieq8DMsQH2fsLLwNCxA2XA5u/A1LEA1QsLD8DYsQJITS8zwNyxA7uTT1PA4LEBKtlzd8DksQKeH5eXwOixAA1lu7vA7LEBfKvf28DwsQLz7f//wPSxAGM0ICPE+LEB0npEQ8T8sQNBvGhnxQCxALUGjIfFBLECJEiwq8UIsQOXjtDLxQyxAQrU9O/FELECehsZD8UUsQPpXT0zxRixAVynYVPFHLECz+mBd8UgsQA/M6WXxSSxAbJ1ybvFKLEDIbvt28UssQCRAhH/xTCxAgRENiPFNLEDd4pWQ8U4sQDm0HpnxTyxAlYWnofFQLEDyVjCq8VEsQE4oubLxUixAqvlBu/FTLEAHy8rD8VQsQGOcU8zxVSxAv23c1PFWLEAcP2Xd8VcsQHgQ7uXxWCxA1OF27vFZLEAxs//28VosQI2EiP/xWyxA6VURCPJcLEBGJ5oQ8l0sQKL4IhnyXixA/smrIfJfLEBamzQq8mAsQLdsvTLyYSxAEz5GO/JiLEBvD89D8mMsQMzgV0zyZCxAKLLgVPJlLECEg2ld8mYsQOFU8mXyZyxAPSZ7bvJoLECZ9wN38mksQPbIjH/yaixAUpoViPJrLECua56Q8mwsQAs9J5nybSxAZw6wofJuLEDD3ziq8m8sQB+xwbLycCxAfIJKu/JxLEDYU9PD8nIsQDQlXMzycyxAkfbk1PJ0LEDtx23d8nUsQEmZ9uXydixApmp/7vJ3LEACPAj38ngsQF4Nkf/yeSxAu94ZCPN6LEAXsKIQ83ssQHOBKxnzfCxA0FK0IfN9LEAsJD0q834sQIj1xTLzfyxA5MZOO/OALEBBmNdD84EsQJ1pYEzzgixA+TrpVPODLEBWDHJd84QsQLLd+mXzhSxADq+DbvOGLEBrgAx384csQMdRlX/ziCxAIyMeiPOJLECA9KaQ84osQNzFL5nziyxAOJe4ofOMLECUaEGq840sQPE5yrLzjixATQtTu/OPLECp3NvD85AsQAauZMzzkSxAYn/t1POSLEC+UHbd85MsQBsi/+XzlCxAd/OH7vOVLEDTxBD385YsQDCWmf/zlyxAjGciCPSYLEDoOKsQ9JksQEUKNBn0mixAodu8IfSbLED9rEUq9JwsQFl+zjL0nSxAtk9XO/SeLEASIeBD9J8sQG7yaEz0oCxAy8PxVPShLEAnlXpd9KIsQINmA2b0oyxA4DeMbvSkLEA8CRV39KUsQJjanX/0pixA9asmiPSnLEBRfa+Q9KgsQK1OOJn0qSxACiDBofSqLEBm8Umq9KssQMLC0rL0rCxAHpRbu/StLEB7ZeTD9K4sQNc2bcz0ryxAMwj21PSwLECQ2X7d9LEsQOyqB+b0sixASHyQ7vSzLEClTRn39LQsQAEfov/0tSxAXfAqCPW2LEC6wbMQ9bcsQBaTPBn1uCxAcmTFIfW5LEDPNU4q9bosQCsH1zL1uyxAh9hfO/W8LEDjqehD9b0sQEB7cUz1vixAnEz6VPW/LED4HYNd9cAsQFXvC2b1wSxAscCUbvXCLEANkh139cMsQGpjpn/1xCxAxjQviPXFLEAiBriQ9cYsQH/XQJn1xyxA26jJofXILEA3elKq9cksQJRL27L1yixA8Bxku/XLLEBM7uzD9cwsQKi/dcz1zSxABZH+1PXOLEBhYofd9c8sQL0zEOb10CxAGgWZ7vXRLEB21iH39dIsQNKnqv/10yxAL3kzCPbULECLSrwQ9tUsQOcbRRn21ixARO3NIfbXLECgvlYq9tgsQPyP3zL22SxAWWFoO/baLEC1MvFD9tssQBEEekz23CxAbdUCVfbdLEDKpotd9t4sQCZ4FGb23yxAgkmdbvbgLEDfGiZ39uEsQDvsrn/24ixAl703iPbjLED0jsCQ9uQsQFBgSZn25SxArDHSofbmLEAJA1uq9ucsQGXU47L26CxAwaVsu/bpLEAed/XD9uosQHpIfsz26yxA1hkH1fbsLEAy64/d9u0sQI+8GOb27ixA642h7vbvLEBHXyr39vAsQKQws//28SxAAAI8CPfyLEBc08QQ9/MsQLmkTRn39CxAFXbWIff1LEBxR18q9/YsQM4Y6DL39yxAKupwO/f4LECGu/lD9/ksQOOMgkz3+ixAP14LVff7LECbL5Rd9/wsQPcAHWb3/SxAVNKlbvf+LECwoy539/8sQAx1t3/3AC1AaUZAiPcBLUDFF8mQ9wItQCHpUZn3Ay1AfrraofcELUDai2Oq9wUtQDZd7LL3Bi1Aky51u/cHLUDv//3D9wgtQEvRhsz3CS1Ap6IP1fcKLUAEdJjd9wstQGBFIeb3DC1AvBaq7vcNLUAZ6DL39w4tQHW5u//3Dy1A0YpECPgQLUAuXM0Q+BEtQIotVhn4Ei1A5v7eIfgTLUBD0Gcq+BQtQJ+h8DL4FS1A+3J5O/gWLUBYRAJE+BctQLQVi0z4GC1AEOcTVfgZLUBsuJxd+BotQMmJJWb4Gy1AJVuubvgcLUCBLDd3+B0tQN79v3/4Hi1AOs9IiPgfLUCWoNGQ+CAtQPNxWpn4IS1AT0PjofgiLUCrFGyq+CMtQAjm9LL4JC1AZLd9u/glLUDAiAbE+CYtQB1aj8z4Jy1AeSsY1fgoLUDV/KDd+CktQDHOKeb4Ki1Ajp+y7vgrLUDqcDv3+CwtQEZCxP/4LS1AoxNNCPkuLUD/5NUQ+S8tQFu2Xhn5MC1AuIfnIfkxLUAUWXAq+TItQHAq+TL5My1AzfuBO/k0LUApzQpE+TUtQIWek0z5Ni1A4m8cVfk3LUA+QaVd+TgtQJoSLmb5OS1A9uO2bvk6LUBTtT93+TstQK+GyH/5PC1AC1hRiPk9LUBoKdqQ+T4tQMT6Ypn5Py1AIMzroflALUB9nXSq+UEtQNlu/bL5Qi1ANUCGu/lDLUCSEQ/E+UQtQO7il8z5RS1ASrQg1flGLUCnhand+UctQANXMub5SC1AXyi77vlJLUC7+UP3+UotQBjLzP/5Sy1AdJxVCPpMLUDQbd4Q+k0tQC0/Zxn6Ti1AiRDwIfpPLUDl4Xgq+lAtQEKzATP6US1AnoSKO/pSLUD6VRNE+lMtQFcnnEz6VC1As/gkVfpVLUAPyq1d+lYtQGybNmb6Vy1AyGy/bvpYLUAkPkh3+lktQIAP0X/6Wi1A3eBZiPpbLUA5suKQ+lwtQJWDa5n6XS1A8lT0ofpeLUBOJn2q+l8tQKr3BbP6YC1AB8mOu/phLUBjmhfE+mItQL9roMz6Yy1AHD0p1fpkLUB4DrLd+mUtQNTfOub6Zi1AMbHD7vpnLUCNgkz3+mgtQOlT1f/6aS1ARSVeCPtqLUCi9uYQ+2stQP7Hbxn7bC1AWpn4IfttLUC3aoEq+24tQBM8CjP7by1Abw2TO/twLUDM3htE+3EtQCiwpEz7ci1AhIEtVftzLUDhUrZd+3QtQD0kP2b7dS1AmfXHbvt2LUD2xlB3+3ctQFKY2X/7eC1ArmliiPt5LUAKO+uQ+3otQGcMdJn7ey1Aw938oft8LUAfr4Wq+30tQHyADrP7fi1A2FGXu/t/LUA0IyDE+4AtQJH0qMz7gS1A7cUx1fuCLUBJl7rd+4MtQKZoQ+b7hC1AAjrM7vuFLUBeC1X3+4YtQLrc3f/7hy1AF65mCPyILUBzf+8Q/IktQM9QeBn8ii1ALCIBIvyLLUCI84kq/IwtQOTEEjP8jS1AQZabO/yOLUCdZyRE/I8tQPk4rUz8kC1AVgo2VfyRLUCy275d/JItQA6tR2b8ky1Aa37QbvyULUDHT1l3/JUtQCMh4n/8li1Af/JqiPyXLUDcw/OQ/JgtQDiVfJn8mS1AlGYFovyaLUDxN46q/JstQE0JF7P8nC1Aqdqfu/ydLUAGrCjE/J4tQGJ9scz8ny1Avk461fygLUAbIMPd/KEtQHfxS+b8oi1A08LU7vyjLUAwlF33/KQtQIxl5v/8pS1A6DZvCP2mLUBECPgQ/actQKHZgBn9qC1A/aoJIv2pLUBZfJIq/aotQLZNGzP9qy1AEh+kO/2sLUBu8CxE/a0tQMvBtUz9ri1AJ5M+Vf2vLUCDZMdd/bAtQOA1UGb9sS1APAfZbv2yLUCY2GF3/bMtQPWp6n/9tC1AUXtziP21LUCtTPyQ/bYtQAkehZn9ty1AZu8Nov24LUDCwJaq/bktQB6SH7P9ui1Ae2Oou/27LUDXNDHE/bwtQDMGusz9vS1AkNdC1f2+LUDsqMvd/b8tQEh6VOb9wC1ApUvd7v3BLUABHWb3/cItQF3u7v/9wy1Aur93CP7ELUAWkQAR/sUtQHJiiRn+xi1AzjMSIv7HLUArBZsq/sgtQIfWIzP+yS1A46esO/7KLUBAeTVE/sstQJxKvkz+zC1A+BtHVf7NLUBV7c9d/s4tQLG+WGb+zy1ADZDhbv7QLUBqYWp3/tEtQMYy83/+0i1AIgR8iP7TLUB/1QSR/tQtQNumjZn+1S1AN3gWov7WLUCTSZ+q/tctQPAaKLP+2C1ATOywu/7ZLUCovTnE/totQAWPwsz+2y1AYWBL1f7cLUC9MdTd/t0tQBoDXeb+3i1AdtTl7v7fLUDSpW73/uAtQC939//+4S1Ai0iACP/iLUDnGQkR/+MtQETrkRn/5C1AoLwaIv/lLUD8jaMq/+YtQFhfLDP/5y1AtTC1O//oLUARAj5E/+ktQG3Txkz/6i1AyqRPVf/rLUAmdthd/+wtQIJHYWb/7S1A3xjqbv/uLUA76nJ3/+8tQJe7+3//8C1A9IyEiP/xLUBQXg2R//ItQKwvlpn/8y1ACQEfov/0LUBl0qeq//UtQMGjMLP/9i1AHXW5u//3LUB6RkLE//gtQNYXy8z/+S1AMulT1f/6LUCPutzd//stQOuLZeb//C1AR13u7v/9LUCkLnf3//4tQAAAAAAAAC5A\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 0\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"rEArPH2o1z+V/uQqgg+ov3+bRXCYetI/jUN5cJTz0T9fBEeKS7rEvxq3cf+tONI/VQxZ3witnj8VflbHr9/cv8+NzGeOx8a/x3P7ADQI5b8E32qXPlTovwCAADO1YRO/bzJn2/Rcrj+wS9qri9i7P4tpTeAD3aC/MMmj/XWfl788gp7Pl6zivzcumVI3weO/rqz3ygP49L+ERtEB/YLzvxXBWJklsva/TbZrHGC887+L02DK6Jrzv4+L246VaQDA/2nvfLxT+b9nzW/DKzr0v358mCzaJPC/QzGb1Rbd5r+Q9ce+gLHmv/vzale5MPC/EIa5YgYO57896IcB52/kv2usmvQyg+a/S/UGVezk8r+QE828bbr2vzOFNfGvaPy/GekS6WIE/L8ZQlVlugH6v7B7L44Anvm/LP8DMrCa/79X36/GvdoFwClNcekuWQPAyMc9/tEYBMCplEPMcwIBwA4mptug9gPAazi+jK1zAsB1HegaWAgEwOXvHPTBzwrAF8Xe9NHDCsDDLtaNW2sLwKh0ZiQR4gTAp+F2VSdpCcB5DXjEfWcMwHAuM4ZuBA7A8IxL6+FOC8CkvEugorsOwG2AUPoIZg/ADBhfLukGEsBbPrZF5OoSwO9Y7VyUvxLAw9d6QxU7E8CXztTbyTATwBuKta3xCBPA6Q/O3qAJFMAj35TuQhgUwM+nVa1NxhLAnSMnD2cHEsC2BdlxkRYSwKCzy4Q5TxLAsT5snjjoE8AcqexzzQUWwIjze2JfehXAP2VUC+QQFsBxNVu2BA0VwMHGUqO4+RLAuubD7BxLFMDYCoB2f3AVwPPv5J2XSxbAhJUungN6FsCHM0ObuWcYwD2AHMtyjBXAwxydbH3VFMCeWwEEtwEUwOdq27DbVBXAMWd2PTRRFsAPPMuXTtUUwBPcPJYg1hXAMA7JMAtZFsA8ipSkjSgWwDyjPWPM6hXAi0OVaG/rFsB4Mhc5pIsYwJnUWNKmPRjAKDm0WWn1GcD3Z78JpggZwMHbfqj5rBrAGZ/LPaeVGsDY9JPLOXEYwDRhdUtI0xbA+wseXQJlGMDnzUGHORYWwCwtpwSoDRbAhXBdvtu3GMDk0dgv0OIZwMd/R/tPcRrAK0VnkG6PGcAIwZG8HqsYwKQWWmYv9hfAbcCmmGz1GcDIWo/qQQkbwGV6+ihs2xvAKEx2CJE6HcDVn6vv0E8ewKFc2JA1Nh/AeXBHNjgoIMDfnqbtRRofwHGpsLpYvB7AXxtscpyzH8BIxBuFg1QfwPii6WosEyDA3T2SC+3TIMBcGSMvSWQhwHOEZVNy1CDANfNDjCXBIMAp47aBFT8gwD61FROSdSDAuJRUWSzVH8AUhIvzQQ0fwAf8NPfWUyDAXYv7NxeyHsBah8tNex8gwNSEYa0ufyDAiRi77z7nHcDUlXzyjxEdwMm5SVRcJR/A74gCA3NWIcDS7aYWC2EiwEdSRWjIWyLAQ2Ee7sRAIsCv5BoGJzkiwPO+tynbUSPAtZadp9DVI8CIc/KJGgskwFmgFtaLDCTANcUlIHr8I8DV7SKjVoUkwEHt6eGGhyXAXN3BrUX/JcA5BFWHxgAmwEywvB4WeybAeyFqjW/3JcAAzzcoeb0mwOAiYzqYVSfAPdgnBfRZJsAJUTBcpBQmwFxK8MVv2CXAOw7hEEGpJcBzlQvYRIgmwMcU9293tSbAl4uaPus2J8Df9q8Wec0mwOv9u8KS0CXAYEL/oDpuJcComRNamxwlwGmJu16pTCXAkehvwBxeJMDAjtOQhwUjwJvDL6BmMSPAqsOpdKN/I8BD14TQIbIjwI8OR9y6TyTAA22kUwN4JMDoyvTv6gQkwAjfbrt5DiPA8Ta6ASBfI8Dl4vcAU0EjwMxhH2r9biLAMfU6ccivI8CqrZpl6XwjwKXr1+hpkyPA9TrPqH9uI8ANW1dZd7kkwEvHISxQbCXAvEndGe3MJsC4tkdfMqYnwCE/SRu9WCfAycMSGQyaJ8BbymK/7ccnwLEfP6zg6SfAoOq7FD03J8DXCh+FYhUowLc5+MYmyijAz8K4EJMKKcDM0J/L5GUowMcT5kZ+oyjAJG97GrTBJ8CA4/TL1NMnwCd1Fn7ctCfA71dR3e6hKMBDGm2hqmwowAcDb+c4HijA3RjmLBW8J8AAWUToTPQmwDQrqtfHtifA52Go1YUkKMDE+t/9wWknwD2I9YTWSSfAB4Muj/l7J8CA7oKS4wEowDSQx9Pg4yfALU4S4A1HJ8CgvNSMM/8mwDNnG1RaxyfAsD0PKPBnJ8AjVWvCVHMowNVdQYU5FSjAcQ/QsNz2J8CHVHxUk9smwCDZczSkiibARCzOQl3QJsAsom4PsXEnwDzv/ub2aSfAf/65MPONJ8AB4OoXqTknwL8ElMrBYSbAtPTPYSGzJcCYOW8PUjwlwHhT0N4NzCbAINaG9SXCJcBYPRR7cGYlwFKHMrkPUyXAHdnqIAseJcDseWoZ5b4lwA/YulkQVSbAv7CC256VJcCPhedWB8MlwCjUL1cMPybAPHoKFXveJMBdRlnf8A4lwGONpNT/ECbApV9iQgP/JcBTJNMhkyQlwLTLd9sNtyTA5OFpj5CoJMCoqyqldOgkwG7nshKVniTAi8Kcb+ncI8BL0fOVlEokwDR9AJJYgiTAMOzOGOIgJcBfKXZVO6YkwGhmYdc7ySPAvlYd3UFLJMCvLRbA43AkwNbaCMc9RiTAO53QimjtJMAVILByID0kwLMYndxV1iTA4xSoCDDiI8C5GqSfsSckwF/koYDXOSTAuR8cGtHCJMDSVLYZASQkwInjCceXhiPAtb4WUVDEI8CAYmP06hIjwBXfZsQmMCPA6u3d7V3NIsClDfjbuU8iwE8HSAQT8yHAEXaCSxtVIsBwbNpTYJMiwGH82JFkZSPAj2dB7n/SJMCiW6HNySQkwJCmm8Yi3yPA5Wc1jZ2cJMA5YXgHKkwlwANawj5qWyXAqnMmQ3RRJcDIZFCsSH4lwGyi8U8ZjiXAug/z2v0HJcBFu+dnIcsjwMuziE2PniLAzBtiwCo+IsAnBqEBV6ghwA8f9pts4CHA4C8vjZhxIMCT5YmjFU0gwJsCZaNW9R7A3JJAiMdmHsBtvWZ6Y/4ewAvRGJgRWB7ArWyxdSD3HcBvlTT6grMcwDtDYedZcxzAozV7E4llHMDXXTXzHfQbwNfIvsXZaRzAOIdvLfKFHMA8zfJ4adYZwLzZ5g0PtRvAOf2iyrq2HMAgob0v+5YcwLc+3/pZ5xzAvTyNws1hHcC4MTrSq7wbwEsvX3P6Lh3A8V18356WHMAJ09AHKY0dwAxdVIfVeR3ABD++qJqvHsClHuhy7Z0cwFhswDPiDRzAwwTPe8PqG8ALNaAd450awMBYkwaWrxrA0NlDmRmAHMDxwWgzYfwawNXLa4f7rBvAzGHVtA/BHcD33TTuHzQewO0IJUfKFBvAp3KFW2mTG8A02PWXkJIbwImMgKQ0ABvAD9NzcaEvHMDLaXVLeOsdwI9wnsmVZR3AFHubL5JvHcCYHY5FXOMawPFP0GppHBrAyLi3fT9TGcAcAL7us7cdwKKeA320PiDAPTcImC+oIMCgUBbkoLMewKVhfurHARzAb9ijCCzaGcA50iwLYbUYwO+rfIUuARjAaD3NfaZjF8BXS9Yq/UEWwL9zcHJ3whbAZ4Ejauk6FcBv5XXO7RIWwCWruQrEthPA3C/WEFzhFMAdQzyQUZcTwG1ExkLQKxXAm8J59kErFMC8sq73npcTwJTVgncc4xLAGcXWABtmEcBxGBS9/m0QwFc+pdkqnA7Adww/qx7RCsANMSYtzrYLwLvRXCLSTw3AyEdbi79EC8A5M8MJLWQNwLFGyPaXwgzAZERFD1Y7CMCLTe4waJoOwIun1Y+CLRHAUdY5JIriEcB/W+AvG+UQwHYmfcO/JRDAVzW8wNUbDcB89NC8VZINwJBPMsFHcwzAu6cihouVDcCbCGNRUdsMwEcrh5HdWQ3A1fTGtwG0DcAEw/SaYWsQwLCkzYAXMw7AsMRRVMgAD8A5RLbv1k8OwIMoYRzAYxDAmYBIorIdEMD3ifdwRRwLwEB4OPrNwwbAq2/XsSgWA8Dpt3tR1OEBwEP4wUomUgDASryGFjSvA8BsmQNMfGwGwNXHRJPGNAfAte/BS92KAcBL+ErwxmUBwMzz9blX2QTALedBciduA8Dth9tckbQDwDqlW59bcAPAJyQy1gcsAsC3ZZtqhW8AwPG5PMnGeP6/M9E23E8e/781bAUK3Ifxv3/YJ/HuL/O/t8j/jwdj7r8HuGkH8gzwv01kFvhb2vC//WFplNY76L+suwmwqSPTv8CFeX/9dYe/NS6x/xoa4T8rBb2dfaPDP4/TJ0CUZ+E/n8WZW5+93T/DAW9o3bnTP4sRHHfcgK+/jH1Bjssj3r+dgSfGvXnYv1gmgKwl0O6/yD+MNsxS37971xJqt13Ov+E9ytXUpdC/OLO3Iti32r9fjJo9+zvhvwUg9ZyVUOu/iZpnODqT8L+snvhe7OPxv0Ca7SK2j/a/ZMM1n+ln7b/vhVCUAdHrvxv7pinswOy/Q3AP7aPw5r8Vbx+JJxLFP50JoWmSn8a/ZZ/NkFLp2r+FwiMCKorYv8A7LbGoJ+a/mN0FYqnL4r/NCt5La/flv7C/5wdFare/9dUTEGOWpD8ZNfWHQCO3P1Cg6SXIUJK/dDKh4l9B4z9b990wOhzqPyUpRp0swPc/IFLx1be6+z9tTzhZsuDxP48DVYij0vU/g/mMjE4a9T+//WU7BNb0P9Wnqtd9Z+8/GE2EhyBW8j+AbqBsv3LyP3AJQ9ejwOw/1PBIKnS36j8wcB6ccI/YP9Ne2vC/OM8/15QArxep6z9jLO3nXevcP6O40Ymi5uA/bZuYPuX96D+uP0NquyvgP+zGdcnSI9w/B8vJrWm74T8x2o5shbzhP7/6NwxEtdQ/DAuSq+AN4D9YRkNcYovxP/DTfZSS1/Y/cc8S79EW9j+XWngGoYPjP1lE63Udi90/BSp1gOjHsj+B4DMzFhzOPyWD3AUDmKS/C8J8ne/1iT9viI4544DQv8RQtC+sv+a/lFjjQAm+179YT7AwIELIvxWgrO4opNm/79qz4yKj6b8PkeOH+6jgv3cj6o/MNNW/T53nwVoy27/ARLqF1ACov1jSY2lq28k/hH53lriu8T8ITULYfF7uP+dUHwiCF94/OQYB41js8D+lwHRA1ZP5P36b1ErrMQBALAy1icto+T99lxn9tTEAQKMhlMxFTP8/lAq+joq9BkBNcfviP6AHQIszeDlqBAlAc77WAB/jCUCLlneyF1UJQD3EJK4uEQhAC4VwBieIAUBQTyglQwH6P8+aR14ZCv8/lPE1Tlw8/D/P/f2BR2X4P5meKhslCgBAR8Fqea4k/z+RcTLmN873P7UOgsHBTQBAKzRm2sAG+j9PO5NxHhz4P3BdxJjH3fc/l+7ndqC8+D/8zEADZ5fxP5nUSNk23+s/52VA8S5P8T/3M0YJfwXvPyaJQYUXn+A/JzAnfs+K5z9NoGV5BUXzP0YJa4JRXfI/U0eDom/0+D+sNDquyB79P6VGj7MnNP8/94UzyGc5A0DtrxTYo58CQOGDbaduJwJAWRC1G82UAUCtg1u56xEDQDscJJ4ohAdAZKAPFFGeCEDMG/9UVWEHQGXbEozceAhAcPI2LY0VBkAcGZLrN3oHQOtjFYpjZQNA8UQ9lZ0iB0BrAlHZDmwEQF06laodKAFApi36/XJoAkDXwhNwH6b9Pzr97zqHIvI/FwzdZ+lf5T/t6dtx7graP1W34/6vGnu/1xyS0x2Q07/6E+NW+VrivxhrJXgbOuu/L/ndFZBQ47+kt921UVnfv7N4GEgjIuC/s7ZWxyNcyb+BF9QY7h3TP5M+IhuvH9A/hyhmGwBGwj8ub3vbNCbFvzVLY93vXOg/NA4N5Oat8T+LsBFNm3DvP3BmbA6tAfo/nXoboVKa/z/wEb9bbxz+P5v3u3NQ6PY/bT+WIRek9z+tvLmX/eH3P9g7FeFmN/I/dUaYBFpv7j9HqFQL1GrxPwUuzupVtfs/Tex1bV5t7D/5cRT07aH0P+UjOos1bPQ/X84HkNe57j+aw2NizRjiP9QpZ+oUQtU/23QxFzFzpD9NHPi7NBzZv5O4GrW4Mb+/U/NQSgct5L/xPqkp6+Xwv/Ce3pfI6v+/Sbm1hrlZ+7+ITSo/gyT4v7hSvhBeif6/F9n9CAp++L/RJ6jHzlz4vzj2VzYCpvy/uK2Fi8JEAcBrtio2UngBwJvgrfdkxwLAzOynbIvYA8Ak/W03QPX9v1kQAJSb0Pm/22WuRw95+79U/dOhreXxv81ECcKOieq/gXSVPQjy8L/t1PqfPvfuv0Hrn0eAN/C/cUXtaWJS4L/f75q3SrXTv03Ro3ibC96/AD+zwufSvb9REmxWDE/TP8VNhDVXc86/EUu/cP7O07+rzv5rNo9vvyieQWGCjM6/la2cbcoz4L8I2+gUpuTev8cq3YLFv+m/cBGtrGvwzT/jwi8d/3bMvxP/tUPcicK/eAldCnJusr8Y+lpLQWC2P2sAXuHEPsy/5KOI39k22r8glHfAAbnhv3HdnXHFT/G/4G9jW0m45r/fi/RddVzxv1ec5fotXvK/0FfTB2kK5L91XMjjgu7hv9AnctT3Fui/HKwxYbJY7r/aTpRekDPgv1PihQjsruq/t1JxUMYr0b8r767IXmGtP7XBfdbtpnu/HlNawpgh1b8l9WB+YVLUvw0UvrJ35dy/9a9H8XGU17+AtVB6RVSqPxsb2hs3VdI/+Q10IRcn4T+4G93QwcbjP0Al8GYmot4/5dg8fBzevb9QsYkyHJrRPzelNadjTdM/qwEIu7zAbj/L4oMQwYLVv8uTQo2Mmdk/e/QeDjyO4z+66JMtx9DwP7PVW8LPlPQ/vGGx896i+j8zTttBVrL2P/dQ4k+j0fE/F0dGn7PI4z/fOSiD1kTjP72/BjCqovE/CC03Lqo97T8PkMuBLYzrPyj7kFHHwug/l4SkgSnv8D+k4zZTVub1P/VAe59ehPY/FDgDCMkO8j+8TJgihqnpP3PGXc9zOOk/e1QZM0si1z/cle/DjDTgPyivDZtOcOU/9qx0E4rh4D8VO9kab8rXPzM8JqxKG+A/7RVFzP9sxj8rrjRXhr7cP3vPqkr4xrI/9LRsP0wE079t6h5UwO7hv4sgLmogaty/1YdbkT6okr+HvxWrsLGTPz50Ph/s/dE/G1JWKsJa6j/dClgwdWHfPyML/kYeN+U/et5VK8YO5T8B90IgXCDkP9jbMNEv0t8/AJArKsyThj9K4MRS9QCwvymJynFDYbE/K5bZf1MQsT9rVb3anyfVP4jl/9fG9OU/C2SEj2c89z8t/S6+VkDwP3lMJqDEhek/h5jCHqm98j9bK0HYN7rzPzw8WwyikfI/sAvMMxvY2T8fQRg+2xLRPwcIx/lVp9w/2uPzfdHY4T9oEifEqo7aP1dSfWkrCuE/FdQd7SBpxD/wGFVmpJDBv4zcWcVz19i/dV+CfBsRwj+V/+YHtHW2P8mTa+nn39s/ZNvLp9wG17+NoODEranev1ATGhGxt76/iZEzq0e+1z+YmOxEcLnXP60L+5FODOw/B9ZJltWs5z+zyLsHIcjOP1UxX9rvkd8/6xFssPZa6T9TimRqsYHoPzwg/P4p3uE/e+jH7oBm7D+vh7iVTmH3Px++V82pM/s/B8VISz7zAEBsBYZs+1v5P0vPe7fVKwBAX8iUbnkoA0CQUKChbIEGQPlFZdTIXQNATNrOatOgCUBsHUBSusoNQKEuGOAU1wtAe78wuyNrC0B5D4ZWupoMQI97XxYxaAxA1DYJsOdxDUBzNgAAnoEOQIHJya7PwQ9AaOEep7h4E0A6XvFhys4SQLt8DfLqghVAC2c1IOISF0DMCWc5TusYQLD0wtYJexpAZ6YnAAX6GEB0qQLakYkaQGuwjioF8xlAwaWZL0fXGEBXPrCwz+8WQFAe2OEK4RVA557wAafDGEAZizBIYFEWQCvilcJ7XhZAH83yGWLgFkDcZ/RT3S8ZQL/jv6UwsxlAkXOUhuYGGEBkNbjc7/UWQPvNvOiGRBVADPymt+qAFUDU0niFLzkVQIJPpmAfBxVAmyQWf57OEkBJWBik7ZUUQKr6EymDsBRA746zf3jsFUCDsGfHuLEUQBF3yiFN1BRAJptOpjcvFUBPxXZxDAcVQA4sE+aJExVApNwXa7jAFUBNIUK0EdMXQHTIWnXILBlAa5MUfQWJGECxVdPsoQ0ZQAVs4ZSy7hdA5fEh/PlmGEAhZNDMbncWQGlycHUzYBVAaJWoaE18FECL9waY4p0VQIDM+0Yw2hZA8aVJInY1FUD7kXbGurMXQNmSj3duwBdA+QxTHkBmF0AYrkKEZaYVQDA5i0z9phZAq5rV8ZVIFkCcdszKaDoWQPUtvrgM/RVAAeNbTC9wFkBFQFJIMPsWQOzKCdzC3hZABDzLt86CF0DJmEj2whQYQKez5auldhZAmxtm4ix2FkBr+P4odq0UQLuOwqQwbxNAQEIQr2JJFUBx5UgINyAVQKsGKm6XsRhAq+QnYuipGECfT8GH4HEYQEBmPrCCrxdAHZnxe5bZFUDw8nk22nAVQJec70fXXhRAEaxmyliPFUBbaJM7P0kUQExSHpdBMxNAuX5WPEGcE0Dd3XRWc6kUQMMvog8yqhRAgwyNNFvdFkBwL15xGlUWQPfXszlozBRAQnfZ6AVKFEBlCkz70OATQFwfHVKPWhJA/g40Z4k+EUAS9KSJKDsQQHi61bLsNA9AL/u/4XDQEEAS7vKenpwQQPqmbnowaxBAOFJfM7GCEkCl9aXQHCkTQHKcQqYpIRRAdNWIkJo2E0CFvrN9GQgTQPAoQ54MFRRAg8raSjl/E0Abiw3R3twSQFBjkH4WlhRAKMX1WuKQE0BIzy6WqKQUQLcDseBOvxRAfhkECPoyFEBnwhHVugcUQK9xZAAA7BRABMnGOuVpFUAxA0NinywTQGnVPdGtJRJA7XXNB9rkEkB2oAoBrC8TQFXtG/fF/xJAL9NrOkgaEUCz226Zv7kRQI9umKE5bxJAz8IV2/J6EkAulBrk4QQTQAEu1rVW1xFAP++6U33KE0CvETs9j9oVQON476+GIxZAQeXFkYVPF0CkFWzobPEZQJ9wXPIEcxhAG8NwFUHhF0AfxjV+M1AZQKHZcuzhVhpAeIr1y4PCGEDoLUwAUWEZQFDfWLQqBxpAGxQZ26cGGEAJOGQvPXEYQCezduH8qxhAZOy2CpG9F0AvmK5U7XYXQOcWnTS1xBdAqxSj3ELAF0DlDh247lAYQDFYMsaT3RdAewbt9cOWF0AU0zKzTs4XQMCnw4UxmRpASN/UDygPHECH1oMmovsZQGGvFyF21BlAZc/QiTg2G0BogFriJXQZQPOtK1YY3RpA/5+6fVhOG0BdAx9aOEwbQFe1ni/B8RtA/ak9vEl+HkCMNoq4T+kdQBmwDK5m6R1Ax/EK2PS/HUAJI+eAHBgeQCOzEZR/CR9AaxUFgTnYHkA4fyNKWD4cQOmr7w7yeh1ATzrFNAOQHUCDybTcRoodQNSaf6XVfh9ASSXJ7UY8H0AxarQoY0cfQOdKOg0Q3R5A/Ch7w0gDHkBpUE12yGweQNtUS8WVeRxA08JuZTR+HED1mDzKRc0cQGuJsSdA5RtATDM1dqq9G0C4yY7I3qUbQCH6HfjZPxxAFGjSDsL3GkDQYRYTFsUbQFwsoooW7xxAR6BFc73tHUBL15lO3aEeQDyev7nSAR5A/4yFxm/XHkD9azNxTIMfQOcsGKX/3h5AbA2iUdTTHkC8emHxn0weQHcnsv+DpxtAPEYVbGCUHEB9hRro0E4eQHDOVcb3lx1AUAQ+XiboHUD/jkwr0X0dQNKxhvsKYSBAH6vC1Q9pHkCcu2cDBJQfQAIOE87JHiFAIQLTqJKOIUAtzIxGGwAiQFPtqFphgyJAVg+ORoGxI0BboY5UEJIjQOORJrmAHCNAfOuQyr3gI0Clkzyf4WgjQPvfOo09CiNAuz/yuSy6IkCoPg8xa2UjQEoz2wP3GCNA7+l1F4+RI0ARmnfN+zcjQDK0nFhoGSNAW1ySdTvlI0ALiOg44h4jQL/gJ+9L4CJAV4tVeAEmIkBteDZ+sR8iQKl/tO6SaiJAsXuDi95pIUAiS0XeOcohQAtoOVcxWSJA4ZRkL80uI0DmWAQVyzgiQNC5SROF8SFAe8NuBqVzIkA7gK1TnZ8iQAU+U3ZdAyJA6xQILnxzIkC1wD4MHssiQGG4GQyT1SNAyQxzjpmSI0B5oFbrYFUjQIdI1PPUACNAeb7gALESJEA3gX6WQGckQLMyhKEPRyRA0g+zYNahI0CPwc2VpcAkQCNSA2MgsiRACG3LbMneJUA8tzKiCV8mQHNZDX6/WSdAO8ljLFPKJkAvTy92W8YlQItvjCIgaSZAS/ZRz5sjJkBMOQ+4x44nQAkiTk6CqCdAT4UbxN6AKEAdzOM7JgkoQO3+65FCJihACabDuPunKECBAq3H1IEoQLiDQL1+YChA0b1eBrUoKUCZp/iDqcgoQIkqBs639CdAUFJUiXz/KECFQArSDCMpQKP9hs5yMSlAe5gWttGsKEBY/RAVeSIpQFeFnvBRzylAhYwoNqI/KkCg/2PqsY4qQLBW5mZEBytAnWzDjcqNKkApxDYdlUQrQP1OTBp28ipASLg3qTE/KkD1wbW4Xa4qQBVTgr5uMipAoI2IOqNIKkDpKZasRxArQDeoykG7FypABKFfSNtaKkDpJ5g6ipoqQJfE7fFWxypAWxslsdXPKkB4wnKgB4gqQC25wcP5wClA9FCbw6n+KUCcIS8CYU8qQIMOZR6auypANCOt59TkKUBRhb2RWfQpQNiItSgW8ClAWAyN7FvdKEBr1fKt7yApQH/r6uV+pSpA6J4C7O3XKkBnN3TtSTAqQOmxyHa1qClA2DFhJNEsKUAAr2Yi9twoQFkA9bKW3ihA1ItZW5amKUA0YK1bfwUqQCsh6kV+EypAn0H0N8tVK0BvRyI9VTIrQDCIZ8Bv6SpAXWYt4sobK0Bkg/ox5wAsQPE/GLgD2SxA2R3KQ8dfLEDz+tAVkngsQBtj4jyY6StAdfxEboIyLEDTEHiARdwtQHmgEmZUHC5AQ0+6nDkdLUDP3hHVAWMtQM22AcNUhC1AffXFGS7rLUAw8cQehgguQO05krkRbS5ATXIBEFV7L0BL/BkA5D4wQAGB/uEM3S9AcJjirHHuL0CAfazwjN4vQBBeEC0Z8y9AAUPtFyWFLkBRaDXIinAuQG2sjjeXVy5A2YIlxYeJLkCz+uSAgv4tQHA1oEIcnC5ANSGpvL0/LkC9GkzS0X0sQPV2z2tx6itABA5QL4IvLEDoeRh4IOcrQFBYrjAl8ypAcdIaac49K0BUAzWt0L8qQHwkXZL51ypAMIiCHO9UKkAb9vYjIdEqQM2aRd79typAXI//4O+IKkCohuP2kEkqQKmwtvf2hypAJzAYkzTUKUAj1NVPmD8pQNtt6xd3DilAlxEIj9/DKEDRMCXjRS0pQLsp6W4WNCpA3Pymr+Y1KUDP88cyVGUpQCvmdwY7ZCpAmSLbAFGYKkBxbQEI2bAqQI0dK/UicSpAKNlriIr2KUDAAIGP2oApQG13kCW5ZShAwK89Rp+lKECVfn3amucoQM9BZouEIihA/5qoV5N+JkCdhItr0iolQCPrYUVXpSRABXQY5LoHJEAXGfuund8jQBxx0mLMXSRAOFNobsRqJUCXuhgJvw8lQC9zs++oriRAD9tD861UJUCtJ6/BxfUkQB0Cwp0BdSRAEWT/SLl/JUBBB0IfZrcmQA0wtslShSZAb4Qg3Wo7JkCo3Iq5bpAlQIjrhov10iRA1qeHG3uTJEC3FAU1sgIkQBBiOW9z9iRA1B5Aw1nVJUB0LRT+TvQmQIM7nJGyNyhAIFbQJMdOJ0BjmyhUYkUnQBQ6QIg2lydAnOK/xV6kJkDUZ5zIldwmQNv2LGfarCZA0dKJ9iUmJ0DlkOtjLSsnQAlNaffNHSdAVxv517XcJkAxLisSaD0nQDT/QX3i9idAn+b69NreKEBstFnsJkkoQGc3rSKptydANaqCTTUfJkCZJS5mfUUmQNDTOqyNXiZAkV1HTr92JkC1M7crsxgmQHAiM1Ez9CVAWTHkc0HIJUAKWGYFSA0lQGOHf9VsMCVAyBglczV/JUAXsntOOxslQCE76625MSRAiVmIDy73JEC/i2BsZz8kQJPxkam8USNAKrL7Kd83IkBf6L3EP9siQAfem7xo3iJAY81g7SMOIkAXkqzh6gAjQPHTo3R6GSNA9fHmqHzNIkB5kmrpIAEiQFMv9DlJQSFAjaxH4D5PIUCHYTIiELsgQFfeGvPNoyFAoktSBbcyIkDK1kpuhMMhQGE10zh9GCJAe6F6Bdx3IUDrcDFBAfUgQEP8rwZZ+B9ADI8bOOVfH0B7Zt/sO0wgQFtuTwloESFAs5zviPfDIUBZDehJJdcgQFu0hFKbMCBAq7z/bmXmIEAbUcQGj4EgQBPRhIvIGCBAsL/1wqLYIED7DhGb/40gQFaEhczgMyBAufr76BdqIECvmdAdqlggQMCE2AWSSSFAHJn6JqpgIUBlXKXGZ+QiQMkeH2ZnFiNAZeHFsdjpI0Cxgc1YDYAjQFrhYT+32iNAm4tN6auLIkAOAmgYNj0iQLS/hZt1EiJAOv1wrF3VIkAMmiMkCKkiQBcxlrml9yFAmAdUgx17IUDd5uZsQWEgQDWneVyJBiBAD5IVyLo6HkChilLtFbsdQGjLr9o9Qx1AB1u0IP7QG0AJZWn59JEbQAMgJKUvAxxA6GYrpHkdHEBL8kMuhDEcQFnpMOuCfRtApcXmrb4fHUBsbAwcTO8cQFcl5YlYyx9AWb+2ouNrIECda1W4esAgQEvO3PpWwCBAJWClW2U4IUCFqa1mVCEhQPKJsoAEpyFA66LWESq1IUAJqF9dvdAiQDZiHKqmqCJA4/lL7jIKIkABvK0U7h0iQO1ex3p6SyJASHF0DU5fIUBnxFSIsPUgQOOdyQjMfCFAjPadBelHIEDRVGo6YP0gQJjLro1l4yBAJljcPaI5IECdn+1M6X0fQE9VcnnuIB5A1xy/qcG7HkBNRc9QtZ8dQKG1DOcwkR9AUeaSDRqcIEDnXsQMR/sdQOnX3Wbi9x5AG734XruBIEAPW5I3AZQhQJ/py3HCdyJA2K8FTMvwIUC5qdlf8eMhQJE9OtdJjCFAU1z2VTN9IUBpw12V26ohQJlTLdbLiSFAxdyPDl3vIEBhusPnav8fQEh7FQ7hth9AybVj6quLIEDohBH3GOsfQMGlOhPiVSBAnWJPftX4HkCFB4b5SXMgQKtFyxswxR5AWRx4sRpLHUAdqn1Q6O8cQGWVsO2mPh1A7ewZJgzPHEAYCacBtyUaQH2OaddnEBpA32fGPih2G0BknW4/p/0ZQLsSGPpiWhlA8JHFHk6wGkCxiiEls6IZQEO7CnnhYhxAI8jxUL9YHUAVDTQkCv0cQO+KE12DFR1AXTDtH0JZGkBtDaWkFM8YQLSm2sERoBhA6wqGYp8uGEBYfPKp6G0ZQFG47OUM2RdA/QtoqmbWF0BsEu5ukC4WQBH+OCnNDxRARToPsRizFUA1wt75878XQKfurH7lRhlAv65UL0+PF0BJqToZSVsWQBGKGPY0dRZA62M44M/bFUCta1v2ga0VQK8jd9bMbhRAPdMa56SJFUC0peCKSYcUQGrSL0cc6RRAv6RdsvgqFUDPmjlGQlwWQEvNIhlDcBdAs+nebgePFkBpbNSPNIkWQNNpYObwyhRAAUxTrLCfE0BIKxdkJOERQFCAW8T6exFAIXnNz/oqEUBmoM2OftUQQH8+8F6RDBBAtdoCmIN5EECxZaZ8imUSQFGaZ92x5hJAeGYwJ4tnFUC1emi2OdIWQPW9tSC9GRZAPDjTEGIrF0DUpzAHMooXQJCkia8BYRdA+xIa2KPPF0DIZi3Pb74XQKyWYW6/EBlAfH91BjYlF0CVruWa/7cXQNRBP8OrdxdAt92jOGUVF0BZKykQHvUWQN9joCCynRZAHFyc8RSSFkC7FvfOp8MVQIwKCyHbvRZAoQdW4SsfGUBzzaHNuTQWQHQpOrefCBZAiZw1jDxFFEAQSnkFenoWQKUzKgq0hxhAAeHkXoAuGUCsjiwmvfIYQMXZYcJ72BhAZN5IsdEuGUB07ebe/+IYQEESxJrlnRpAf1qGHXPtGkAJYF5jsJgZQEhNzQiFxBhApfedTSoQFkB7D5n5LioVQCXJ8M1/aRRAx0SKI/chFEBX5LQYy+MTQLJZOXwnIRRATiX4l2vTFED4EpZChyMTQL1Hqnzz8BJA+Dv7BY0cEkBbsq4iLOIRQLHY94PYGBRAh3KBnezZEkBvI4JwxmcTQBdgXiK4EhRAc35AvtkeEkCivQ9g69gRQOenkBitNhNAo2/R6soFFEBplvZOoE0UQIClckQZ0xVAiQqSgRovFkDtO0f2fV8UQJHHEGVr3BJA806oSiiGFkB4CCLfOJ4YQPOQBD+euhpABI90vhGYGkAly+JiUXoaQNyguuPayhhAHdQnZwGOGkBHwQPPzzQcQACJn217YhtAgIsI+BwmG0DNgCkgHZoZQL8VinPb2xlAcMcS+tcIGEBA24BwsdUaQPWNPVclkhtATZABWiEfHUABWZxmdpMcQGjU4ghTKhxAw6wbJTsQHECz9u55f9wcQLQpvyXlqR5Atai3Xn5oIEBNfvr3WSYhQCf88DlRUSFAUWSAi/xAIUAx1B7OH9ggQHHn7Gkq3CFA1bhrcXpeIUDXGZQnzKchQF+3n5mrDyFAhob0hkvCIECIhO8tvhIhQOE7hGmRfSBAOVf0sMs8IUAsIekMj3MhQLOQX72axCFA0VeKOwcqIUB0ceEljJIhQHLK3ZWkbyFAP+qEOpjzIEAVbH3jHLEhQDDwS08wkSFARI6kH6WUIUC5NKW0q7YhQLehWfsupyJAjDokRlGNI0D9O+7yLc8jQDHPuCsOUyRA9TckCT6VJEDv2oFmQs8lQESpfbf8uiVAQJkx+atkJ0BTGCQpMLgmQB/DTL5nNCZAGL+SyW85JkAMpG/7pNcmQBwOm+CHVihAMcW88/RhKEDLS1B/VQ8oQLnrI90weSdANEtniKL3JkBPJvrlb4cnQJU6I/zxeidAsZ06ZxkyJ0BECawnaSAnQBdtPCAqbCdA7dXUCfU5KEBr5LoAYGEnQM0hl6kuDyhAI3GOeJyrKEBnG/VSKpYoQLyVX7GR6ilA8TcpILl0KEC1TLLB5PkoQCj9pFn62ChAb1sy6ru7KECcMIvRkqUoQNFouSqQCihAVE0lTGvRJkCoNSvtiIkmQDBVDhgIgSZAVN1xbEtMJkDHGyNdHNImQA25LXeYUihAmbV/vvxzKEDLRFz7NMMoQLQ499b/2ihAgHK08P7ZJ0CPLhZwZ6AoQHH04sku7SZAqadtyVfiJUANk60KnislQE2PVDWBlyRAT/tkdpBcJEAIYqhv4MIkQDPsKwsI3yRAcVjVuq+WJUDbPwYK3HslQLl/h52sByZAg5RBtfb5JUDjf79SuGUlQNyhLacdiSRA/nIN2Es6JUCcrAXTiv8kQC0qvEpONSVAxYN76WGtJUCJwKOoskEmQH8VDG2dpiVAFG7llI89JUBpxYkrAlsmQGw+USksSydA2/vQfFWLJkAXQBJfoccmQJhQN3on/SdAgPw+uqjDJkCRi5KAwAMnQAuGRrfCSSZAPeWTpEZ+JkAPoiEoWD4nQAP3D6iSoydAVGK/LEvwJkCbVg0OyOIlQPOGWkFtkCVAjZ84MKg9JUConaswPIUlQIFpAJ+PsiVAX8JWyYWPJUAJGhkOC84kQPSL2ezS5iRA1oQTov5IJEAXvduLrgIkQMEbuUMQdCRAI8bvob/PI0A/INZLigcjQMt7sccQmyJASSIGvjBgIkBRPKBv4IkiQGgdpQ0EqCJAeMDMpwFaI0BpsqKfBQQjQM41k/cD1iJANWJnh3uII0AJE5UPMhAkQGvzu0aY9yNAB9OXGrt/JEDkumY3aJwkQMs3YlOkQCVAW2MFueavI0DWcUsJfWgjQEcayRfeIyNA3BSfIp1xIkCgK1XNqG0jQDm6GD7wMSNA0gt6yIvlI0BzwXG0TZEkQND9m5sAuyRA2fuD/XqSJUBVprKdrPolQJDG4JwETyVA31yIsFOcJUCHXXo5zIMkQHgKrKOVWSVAUyZh3vfoJUDZ+EJKrOQkQP8cDU6qcyVA/Pwpo/KWJUBNtEeSVpslQJu4XeQkNyZAt4Av7pqjJkC1ZBmBk3gmQNsTSgHIeCdAXTM2jg9CJ0A3nSAlQ4knQCA/q7GvRihA0QfGqzkjKEDPJAzzciIpQHXbY+6WxCpA94nWoTycKkDXXX57t74qQIiePfyVVStA2WHM5xwTKkDU9i3zR5QqQDtg2crMPSpA304GYtN6KUAjoKiJZL4pQLkDp1zDCipAdDcT56c9KkD5xV1W3WgqQGMi6Ct8OSpAlXUZ3yxaKUA8SM2VWDwpQFR9WVH6PClAewgcDWm9KEDVPgEOHWYoQPh6nKnlTihAN4IstYrLJ0BRw+FzH+koQGj0abYbyihAPHsmxsUDKUCYmLh+1jIoQGDUZlyzzihAmYcrk+XwKECjRfddPQ8pQDmq/XChbSlAk9X4om9MKkArzrfnK7ArQKzlhnZIwCpAMIh4SM0ZK0CMDHybVIcqQHksqkPIlipA5JhZtAInKkBDml2ovfkpQO0wdCpYZylAQKW3h1pGKUBAZXPQjGcpQDMbGdSpkylAEeJ/7awsKkCbVxYx+dgpQHUIksXPditAp0M0WkEZK0CArO31yRMsQMPFX9wTIyxAVUby4zCRLUCh+NBp7L8tQKhNNI+jWy1AdfqEpV9HLUANEUpC4IQtQDtFLJPWlS1AW63B+fc3LUAs1XHjQwQtQDENzFqMli1AgHdIXJitLUDBwlh3AP4tQIQBKLfmmixALOI1CnUbLED8O0MYwiMsQG8CulrkOytAYK4eyLPdKkAjW5C/zGYrQORR0aaXJixAaZ1hXck7LEAwOcXHx48sQCFOLBPl9ytAC+lE4sebLEBLh6asA+MsQHjHyjyPmi1AhL6OsLIeLkCMvk3/LkcvQF8N2otzPS9AVQO7j3lqL0ANJzVssjgwQGiQVKLaui9AGODnWUJ2L0C/LmpYtHEvQD3/jqwP/i5Al7UJd2yvLkDUWeLbG68uQHD75fUnjC1AXM737SKwLUDM5Vgva4QtQDnpa4t3XC1A9GBQrd8FLkBf3R0dUoQtQLk1pZ+yiixA9Qbek1EMLUAw3nwoh00tQF+umEdAiS1ASyno9+AlLkDJg4GkHTUtQPVafBdU+SxAhUJs0ZeFLUCPcislWZotQAS9udzQsi1AUMTEqIykLUBzOXL7BTYvQPwRiitRfS9A81CcwnwnL0AIdc8s1jguQCglcddWji5AbT0Oz1FCL0A/BP2CU1IwQL4afydVCzBAKSylCVq/L0BBzW1etMcuQKR52SnpFC5AD1frPGFZLkDIoyjjOh8uQEinafndty1AQ7E/LJKALUBxWa2LsnkuQDDJHk6NCy5AtPWtg+PCLUCRlOyPaFAtQMR8f5fazixASPOY6Z+ILUDoBelrxVktQJubzwYzNixAVC3vvqX5KkBdEjY5Zx0rQNcVnuyBHytAESfcgoevKkCt4KIyLo8qQNwJDP4+aipAvfDCDXDpKUDtpC+/Kk8pQE2MWBy0jChAeIOOQSh7KEDDf4SDjv0nQL/u19hQ6idAz+7ZgrM5J0An6sogzMonQLeRbFHQ3CdAg1oRHcoqKEDjrr3T0o0nQCMq8GFDCidAlSLyYIKwJkAhBukt878nQI/FKraAcihAD7xhi5zfJ0AVv4vdsWUoQOEJqlcRKihAU33vw6ZDKEBI5d0+GPwpQMcWoo3NuShAq/NANXz0J0CNJqfEVi4pQPhL246NlihACHr8gz7ZKEAsb7v6pg4pQJsGSbx3HClA5IwzHEFDKUBsDwsfn4gpQCn9Ts74/ihAXMF+gouFKECL4uYheuAoQIkgMAd9bChAnSg8tIJpKEChjCI21IIoQORW9RpArSlA9FCuX1qdKkAMQm1icq8pQEnWoI1/8ypAhB+OE+BwK0C/reoWLcAqQCx8cXxdrSpA+4CK1JdRKUBLAF0P3AgpQKCGGOqbaChASMqDE8vlJ0APXDbdHg4nQOVBpMrWqCdAZXL5wB9sJkDr/evgY6QmQEirmNfMsCVACyxpS2r5JUAPi0aLumUlQGxwp4J6MSVANxtwF+AuJUBZ5evAJ6IlQA+GOb1p+yRA4T4/US3kJEBR1CDhr/IkQJkiKIC3ACVAURJeGgC4JUCoN5RuOmMlQEVdAzkXkCVAo5cISupjJEDAbRqSuPskQNl+0rpbRiZA9GxxQ47oJUBwefPqUIAmQKhBu3M3cSVA+4ZBvJyEJkA05rYw19ImQO+xWdsFTCZANF8dct1KJkBHW+Pztf0lQIvJlGUl8iVAbIOp6Za8JkDZtlVN7kgmQEhljOieWSZApGocHWn0JUBnHqoXNzglQEpaMg6eEiVALhyT4fjLJECnFZG4MTkmQGSbY2upYCZAPT2s5XYaJUA9A+9ge08kQH+odcQ0wCNAt5CutBibI0A1A4y6NPojQH3B9IaUtCNAuBcwfTy2IkDP+Ok3AegiQKOMG1MmZyNAeIkw02a0IkDTxvauK64iQMQ7j/xdhCJAqPp6uJEuIkDFjldcjDshQADiQ/+PBSFAYFRH7fJJIUDbyqboToUhQKvtVwiB1iFAn8SErE0dIkCTSO7mzqshQBB3w2sKlSFA97TYzxLpI0CbAKSWWyckQJE/nBwgHSVAiUFHpJwUJUBsYkd1XZglQFcqqNETCyZAd64jKs+zJECY/PMPp1olQP+aFYc4NSVAgNahYTNTJkC7/nlWja0lQNvnP8CFdCVAH/NlLvuDJUBZeXPbVpklQJsyC7s28CVAIyeNk1y1JUB7f7j7oJUlQJ8xQvAnxCRAeDfEVskhJEAJUIkz+IkkQD5qJSBtHiVATtrN2hcAJEAAg/ouoIoiQPSKSr7XISJAazPDd1aCIUCs7A0MdNkhQLG42FdrKSJAIe9WFpUuIUDi7CtF4QQhQLhAp1/woiFAxE3t9+NYIUDuLaBAHDMhQFu816IyBiBAs45zspGXIEDhTDtiMEYgQO3p8S1koR5AAHF1K355HUDj2w3e8DwdQABo9lgDHR5AgbNzRFB3HkBFTuVsEUUcQGskBF/jgRxAcA27pHeLHEBzBnK81tsdQLkPWbsBzR9AvUfZc1jtHUCwMuoJ//wdQBSZe9EVeB9AwQ59BG+IIEAXeKCAM1EgQCmmm3crLSBAn63EzixzIEDNHqq3h2UfQGXVBj03rCBAz36okdPKIEBR1qIs4t0gQJsHnw/msyBAN8xeHKxsIUBvIP2bQKMhQBo9Mt5TiiFApaVAgGOkIEC3a42pE3chQAXl76Hw5iFA/wWf3KqVIEBrKBTCNDcgQAU6iA88nx9AGL6o47YaIEDkQDYix/AgQL07k5GR0CBABI/b3Va3IkDZl1x0yQYjQKOEY2sXViJA/OaFkBq7IUDuFWv2HPggQFjRau2wjB5AKa5f51+qHkDvIeH3ujocQGWQzy3JSR1AbALFboisHUDX4S2p0oMdQAmfdewTph1AqFhFn3cZHkDRl4aPRrwfQOlDBTVyCCBAg8uK969cHkB8v1EMFyIeQL2lWVnhaB1Ae/DzqLIAHkCrJXaXq2keQBMpTJz2wx5AH0yk8H0IIEDpZrVNs00eQD+czF+MmRxAEWO81aKGHEA8lDtP4OceQOn3fiiuzB1ApL8YY5SIG0DUkecMBTQbQA1uNXQSgx1AHLmX3aCaHkAllEZmE5gdQEc/VnfiHB5AtWngGZxDIECdS0lAbTQgQP7PmidOTyBAvQO5ibbFIEBX8uzqqCEhQMkeyb2gqCJAGAhRp+KRIkD2pRMI64oiQF/L6kuO7iJAjQDAB/x9IkAdnuQWp3AiQJyn6ygCLSNAjHtYkhajIkDRbBRsmnAhQFMGtPsRwSBAsKghZkJhIEDcyUL2zwkgQFMl/QV8DCBAESvMBdRRIEC6jS4EUjIgQENZN5iEXiBAEW//oMjFIEAqRFkMQuogQDQQS5RvwiBAqNl2/SJOIUANrsISO3QgQNnm+LK3jyBAQWfVq7UUIEC7QuI8xBohQJTlPWAJJSBA43MBQnM8HkAdSAIsO1wfQKzDPIjKtBxAdwgfum9rG0A00ze8KK4bQC1e4023IB5AufCKnHhnH0Cl8M7fwa0fQI1ZyURplh9APVDWkYwAIECUlSzY+ZUfQEu76ZwWtx9AEIl3FQgHH0DQJKSIBZAeQOMYbpZ2txtARYQzSu1lHEApkvIUnwAdQE342Bf3eh1A1EVMtpXaG0DRLDinw8sbQOdYQlGc8R1AiaEqkM56IEDRyLlVnckfQJj2UX8Vpx5AJwCXaM6DH0AArRtarKIdQDv1OakqjCBARGgS/s/eHkDsr4od/tkeQBkQQ10K4R5AtxvFK+EYH0Cfu6EmpxMfQJ041Sqn1h9Aa5pGwinVIEAvxy8mpkAgQANCQkWRaB9ALznGvEfRHkDxxTrN4IkdQDcEBMXGvRxAwdxvYYz9GkCcZGG7wTsbQLfNB0V31hpAhEPvEGd2G0CT37+YkKAaQBk3T3v1/RpAVZ7GVIMLGUAAhdudlI8ZQIlXis+5oRdA51z+RrY6F0Bt7b3PEscWQEBF/AOpkBZAvNFjhz/8FkBb1uKKFj8XQCN6Y7hVRRlAM3BqW/4mGUCpD4LhiscbQH/dCHxIRhxAKMq8ZLQfHUAXxHInNSgcQPnS2D9GEBxAPVG2kFMAHUCtuAcDp3waQIx4sHMtghpAt+6PbySPGUCti4uCZQYbQONU2rnEBRpAbL+/8p9/GkAr4CMXuYEaQFHfoPQIbxlAKPOHnpjLGECfzvSD20wYQGsQQBWblBlAI/QhtQjMGUBbPuUh02QaQM3le1eFmhlAQd/5IpAfGUAPkcbxls4ZQKcvakndoRlA1Znh38vOGkBDROR5uIsaQAvuIi9GzxxA/CX4T0zQHkAJUdSnMJAeQD/nLp7bRR1A33b89Vf6HEBptCjfeO8bQPXwFPGhNxxA8S5bDrNxGUCJ0Xrk8lkbQEeU2s9b8BpA6A4befy+GkAXxOzIJU8bQFEDGdrasxhAPRCiIByGGkB7uYtsxwUYQAP7tmB7GRlAJH2S9pBvGkCPUWCgl5AZQIVHnvX5xxVAMYO3mildFUA6yz4Q/+4SQJOFlcebBhNAmvSSwYjrE0D+TZevC38SQINehhe4QxNAjdqdmwSyEkA82y2+nSkSQGkcTZFZQRNA/79YgEjrEEBHsQ9PuQcRQN2BTXhNCxJAodNRtekkEkBpNXuuDoQVQKB24l33QBVAmDX6lyTIF0D8nnf+CIUZQFl+vGu2/BhAbU4yV5s6F0CvLfANFcgWQGmtsczJSBZA+WsQi6ojGEBjcXtXRHsZQIS3M5ZZ5hlAvJKh/IIhHEDjTAN1V4geQNzlHW80zR1ABQ2gOySAHkAPx8oJ+modQFzo0+FXTB1AKyPZbX9vHED3tXzvpfgeQKAgePGe0R9AwK0kGrFrHkA5yNnldgEfQB8Knhp+HB5A7B4cQwA+H0ChwDhX6n0fQA1b6qpxMiBArVfdbm5+H0CAtxQvySwdQIDluI3LJB9AzK9qg2iJHkAPD7Md2n4gQBR8DMfMDB9AHXVfStPOIEBxAnM7sMYgQInZC0+ZcCBAHKVaxXU6IUAPckysm+MgQGjFecChQiBAuaxjBLOrHUDTf/Id6PwcQPXs+7CErhxAlMV2feD+HUB8wLKRA48dQOF8GYGNnxxAHxzH1pgPHUA1hr+3+6MbQPWAm7XnahxAKN9Szh0VG0D3/uIsUT8aQEsrQ5T2HhlAL/Qm/c/5GkAPmCbtUCEbQMvcfS8lyhlA3dERlF3NGUAvI2QJwcMaQA+IeXA0RhpAQwLV/pxcGECP1az+0MsZQGlqzHzqeRlA4Y29cV30GUBXZV6bkTUZQDXBLCPG3BdAZSBzoRxLF0BcWDOvkZUXQAQgMYb52RdA+STxUqB9GkCsPWT2YEYbQPSETeN3whtApK40egAeG0DLrRWJAZQYQDtcBM9LYRdArHo8pbPUF0DYzuWo/YcZQIslGAs9dhlAZOwkiMrrGEAz6z4QIx4ZQKkYTrGinBdAZ6ljso6RF0BrY51NRsYYQJ32E2DF2BlAYBiCJHV8GEBUOx4InAsXQG+bEZMyCRhACc/dyy/4FUDzDl6fjqcUQBF5hdC7gxVAM8oQkPtmFUCtGkDANXkVQG/aXJ6GZhZAkeNtAR9cFUC7SP3VaNcVQKHYm2/+MBZAu/Hao91tF0Cgp+zMPVIWQIQ+lV8cYhhAs/YN4wJzGUDA7YWA0fQXQPkCDYGegBdAiFnslpXkGUC5pxrkSPAZQKlwgeXqsBpApVMSND6VGED4AyEwtqcXQH39nYj61RdAB5zBaTZrGkDTY81wxOIYQGQQcIz6DhdA7InzkGhoGEAQL8me790XQN+ActoYAhlAQU6+gGxJGUCplKH5EuYZQMfzkWxhvBtAe4oQAE5NHED52T/lOQ8dQDWTtwkZ4xtA5B0BTIUTG0DUYOB/EncbQEzQkRSeHxlAXBjYb3FuF0BAyC3u6acUQBYkbU0m8hNAYx1I5yt6E0A31XDWY0cUQHDzrlpbVBRAEbwTcX94FEDXHiwCXocWQAzkjhjLmxZAKQsz4lLUFkAUHuedefAVQKAsnSMX7hVAzId3ZrkBFEAShLR1TWsTQPmd399h/BJAywJ70uHTFEAbmH74gq0SQBSrDRO1rhJAwWU0187CEUCf2VDXZDsSQEC7hKW5ARNATWs05EDZEkAKg5jEYqUSQPvZvpIRmxRAhFDDz6fJFEDGaYbzOAgVQLdWKLpltxNAlVVJPnSWFUARkDV8XkoUQO7Lb/QqKBRAsUecVcavEUAspVZ7dKYRQLPClVI2whBA9URBByJrEEA3ldCP9fISQBNb0kVdtxJAC8bxzKk+FEBnonuU2AMUQC/SBNalDxRA1oyr9c2aE0A58sVwWjUUQP0dC4AnlxZAErporepWFEDNtLn5n60RQGowOYa5dRNA1gK16MWFFED3pvn0I5MTQFJagzh6zBNA3BUw4YsyF0ChfbbLkV8ZQGvEXdYl7RpAv8Y8sCfCGUBHZGKnm5UZQAQbup5YlBlAzDVesDNzGEBDt6zniH4XQHzqiVl3rxlAEBEINIhDG0BMe7Do76YbQKiqh2uujhtAU76xp2MjHkD38w9aDi0fQB9ER22zzx5Anbh0sCCXIEDaPuwuLjUgQAGd6/6TMCFAG+hhlb7SIUBZzElPetchQCMqKH+6TSNAZvvOv1lrI0ApAHEY5f4jQAAy1DAXriNA4x6oMGpRJED2+ZEbTHAkQCVeg8AAjiRAuNUQhpJfJEDQqCZ4/mAkQIBfN22BbiVAQo4c/rzgJEBenIA0lgIlQBQeNHF9lSRAO2kEngPXI0CuLfj81t4iQP3MThlfhyJABb3xg/GEIkBQjPGs3TIjQGNLB1wUEyRAfonOMQ3aJEAdCXZ96SMlQNvsHRYStiRAJW8nteiwJUCxlANbj2QlQLnE79zTQSVARMAIFEX4JUBo/V829NElQOD0aRqIQSVAsdIFE9zxJUD83iCMB38mQDTF8RjHDSdA/zW4v06NKECUpA7PUs4oQGiZ3MNNcihAm+4ANaP5KECrpTtDA9AnQK9lm8mjVShAn5AleswtKEA4dEgFXnknQBsucPVjZydA5xLDX5LMJkDplZwMdeAmQKC0KBk/RidAPyTqCKVaJkAUKb8OFK0nQLN02lBldCdAq3CE5EyFJ0AngKVWcg4nQMWPbLMNHSZAP6t0cai2JUDUhwzFSTQmQO8b2JeLXiVAiEC5X55cJUAwbZxWI5klQJNYMxox/SRAj9qJLsoGJUA3ohABjz4kQGATDN52XCRArvT2AiLlI0CZvlqPTSkkQKrRSPQS+yJA60IOTPRcJEDdtD+s3FgkQEQdHqM4LyRAVQkwYVN+I0D84gyR9/QhQL/pOpDCwyFAacHdqBhWI0BThp8hYNgiQL4Bh0ll6CFA3yDzaa5AIUCXT9at7EshQJFk+xyj+yFAppqT4BbnIEBtJjHCNj4hQIsvwWs8ZSFAcX/hL6qWIEAh14AoWu0gQP953WSsEiBABzTkWrOFH0BX58ouzGEgQEGFYW67eh9AbQG4VvjEH0AhAULuOzcfQEAM6BuD3x5ARCKm+lxTH0Avv97OKxUfQHiC47nOyB1AMGFag4spHUAAN05fadEfQI90PfheTR9ACxrUitiHHkC15aY1E9AfQIgAqv+IEB1AhNBOqt88G0DQ7mIqqiMZQIy/llM04hhAYI0fgKYjG0DsrT/KL74cQMGA9wPx6htAmN62M+q0GkDVjqyiIZ8bQASDgnjjPhhAL7CfmG/pF0AATrpnLbwYQCd1jSOO4xhArZqEtngOF0CsqvncElYYQGcWPTsdqBlAo1resjXfGkDxii1A60AaQJTEOB3q4RpA8BoWbOIcHEBUHALeM6gdQLkuUq27Ix5AhRPT0HNTH0D8kC942l4eQND+a0b7WR1AaCB0Lt1uHkBx9b+keE8cQAc9AQkyLBxASR2uzo38GkDfvW0WdUwZQE1H2iFXpBhApKPwOv6ZGEA7eUnMZCgXQCEuFfqKWhZAuEs5FRnFFECofGkmqF4WQEXJLKzVqRZAP2AOdyrTFkBLOURwVHMXQJEFLgOVqRhAnMkaB/JdFUA/nzKwPrIXQG61e+d+HxVAaqrjjfoeE0DWurYn360QQKCCD5aCEhBAxzjER3kZEUDBST1rlh4SQN7LEFWG/xJAtcGec7lKE0BXX+PNPj4VQAXlIXqyZRZA2Cyjz38hFkBUytjUJSEVQBkaCBzn/hNAdVZI6/dCFEBau3d79k4UQJ33hiumbhZA+Wt+JpJTFkCRxsn0DqkWQDT0E2n65BZAR9Zggy+YFkAtndyHBL0XQMyG9Ou2NBZAizgfopzYFUAFH4VzJYIWQBPBKdKnnRZAvXoXBAnIFUAcHKVR55MWQPnqwOA8IxVAe9bdES2XE0A/4WVw6sMWQMf9A8VPmBRAOujGv4WsFEB/qqX81OQUQBSO0QH0JhVAsLdfvwNwFUDAmrnSWy0WQKsgXyjmOBhAgcWRPNolGEAga7WhslEVQKgQWPtHXxRA+yG0mfWkEkB9MLT08akSQNBV9O53XBFAMQeMEfUwDkArmpT8KKcQQDT1qdtjvBRA9Lhny2lAFkAhAnu8QxQVQPUBAu/r8xVAU0447W2OFUChk4Md6JcUQI37+g+AyRVAOERav/V3FUAdRcPk6WYUQET8WQ1ngBJAdsCKL2j6EUBnab0kgW4SQGuQbOVQcxJA9VAwTSi5FEA6rcJAl6oUQCC8cBNv5RVATTy1OlJQFkDU8opDkokWQFkIDB0QrBhAc0eQUA0zG0Cb2yg3uFAbQERfFXCmhhtA4/uEmoQOHUCHdxrrZyEeQIDa3fm6Tx1A3VyYDClkG0AfV4YKWnEaQLAf5cIcyRlAMXYMoKuqGEBkb0h17G4aQFuWOfJYhRlAJZy2eP7DGUAYhCajMp4YQDtJVjSTGhdATIMWmJraGEALIfkrKBAYQJfIMN8D8BhA6V6SgwuiGECtYtqwkb0YQHUKP5nXMRZA36PeOlp3FkD1lqwou4sYQLmvzWbkIRpABBrzcXPOHED/nH4lSgwfQABNWiqdPRxAkZEfSnRjGkC1RsLt+yQYQIjBC0OtjBdAvUzcdBKBFUBdhqkAJw8XQCP8tAqVzRVAqcv5f45wFUCDWM2VWGQVQCP/Q6f+pxRAtTLF4PK8FEB9ydRlyE8WQFdQiLm7PBdAJUu2+OnaF0CJ4rL2IxoVQHtpx7KE2RRA3thXHY9xFEB/uS12TBcVQN2sbC8oyRVA/zbglBj5FECN8pmWDIgWQKtfx0/HuxZAJzpZXIbnF0AtvtBN7ugWQGUFuE8cPhhApD+McXWqGEChSD1MoccWQE3EzooAtRdAc9MsqyJfFkBdLLoJScIVQPhO7HFHLhRAzUlSfYUrFkCT07uTMFQYQEPGwQvBkRdAj94NVchrFkDQqOE090MXQLFsCBY5QRhAX1Tp0Sq1GUDbTDGpEngYQJwREZ+nZBZA3xE9nXTQFUAvkS9A490TQK1pl3oQyxNAq/+Dzg/pE0AKAyzgJHwSQEd3d0EsMxFAABAOwtxNFEAjwP5TOBoTQEseVPQHFxNA+eiG9oWrE0DTSUoNOg4WQD05jOIqtRVAccKuQeIxFEAAFqqb8iAVQFeSmPbdORRA4elvExGgFECB6McKXzYUQH8rJq4boRRAwdC5MFA7EkCM4bGOFDYQQEl9qtfa+QxAWDyVK7jOEEDVNcyoKSIRQI2ZtDGdMg9A4GXqkAGnDEC1A6vgp6AJQGWVYhu8rgZAOLQUdLEvBUC8m3yC/JcFQI/XICtvDwZAiwD9HVrFCEBZu+s7zWEIQCS4PZWr3wdArdqVQuQVCkD9eTVxXpsGQKnbxhyKDQNAOeZpRdOFBUDfbMGGSDECQDW5yNkZHwJAwOZQyoYA/j/orKVPT6L/P0vUd9y3T/8//xdDc9bk+D+wznBEL373P5/lfu1+8/M/G7z5xCzV9T+cQWr5cqXyP0UkMAlHe/o/QzDR5epM+z/LATOabGv+P/Off4GVuvw/iC+m31+P+z80/gBcCoP3P1FZMHBDNPM/JXwtw4Be+D+V0P+/K1X5P8hbtFSMz/k/FapHhkED7T+ZWyIcZ8HuP9gky/ipRNs/S4I3Llq/s7/vsqGToX7Av0dTZdUSq8i/ZMcu2+uit78tHyhI8BrEv8PhTwtzf+O/wF5PLE2p5r+TGLwHUnLYvwN6mRXZuMc/0x233If+7j8EURMDSmzuP88JzcILjeo/1E80oxvm8z/IMpitPf/zPyHWnjf60PY/Saz07+Op8j+o3Obg2X38P5cApAOy4f8/D4mjiZDbAECcI+0OHG75P3HDZDkObvY/vW1nC/Wh8z/Vv6TSByv0P3zJg43IffU/qakhVffY8j+EJ3AUMEb2PxuIoDmUrPE/yEsnvmwZ7z9fwoqsgCTxP+OPN1o7bfI/o6rmO8OS7j/hHWkjWevxP0gIZU5ZhPg/b21wnAqV+T/zmnhu6TT5P2k0qNfCzfY/c2Xrviwf9j+5O1MsrOj1P6WjageSS/o/5xv4wiVl9T/R75FlGBf3P8cQffOkewFAhWj0y6R2BUCkfzoEn0kEQPWb80QLqQNAB7L8UCuxBkAn1zRCZOwEQFkwKIjGywRAjepzBqBPCUD5LnSZuEEMQA8jH77h1AtAUYAANExoC0BbQqUSf4IMQB+QZ7j4jQtAaRW4HNjvCEApk4hBOHgGQKfMwV9N6wVAhURpXLiFB0BjZL9xQboHQKucCNmS8QtAF+svmvWCC0C1TwJi3DkIQEer6x+S4AVASH+HR0Z+B0DZRe4CkO4HQM6niClTRwVAMaaUSrnTA0BpaKMQ/FAEQOElHHLIfQVALQIyfjeNBUATgxZJlHoFQN23wRccnQZAFch0Aj7DB0BCaSdcsJ8EQJnSqvsXmAJAVunUmuIkA0ARh9zqU5AEQDBFE0GR8wVA3IG1qvuJBECRRwnfdGUHQBusoh4EswVA0sax16gWBUA5PqjDNTEHQOfOMYUnkwhAQ1AjPwPGA0AIhsZDVHkCQFg67BnDHAJAZ3YNwzy3AkBZPpplg8r/P3sAOtNOxAdAC3VKJzniC0DJdE7ASXAMQGTNjaRp0A1APw9dzcxqCUDvDyyyMZ0HQEmaC337XAZAMK1nmxeoB0DsCi91xYQCQFtbODlWL/0/YjkZ9SF3AEAdahzCpSD6P9ckFfb41fs/MavALlzS9j8hZ9/iAWH+P1biFrRcEQBAsF8bxXkK/T/t0jbfRGX4P7f8hNiCyQBAGEQh3WmU/j+IV+HTf1YBQD8cGRhew/4/DFfBhLaoAkCwcByh0An4PxPyX/6DMfM/t+Lq2uQM4z+8kAUT8HLgP/2dKllayNU/oDtK3Sw74D+o/ERhCq3VP7XIPF/ABMm/ITLlXfBaxr9LTcaMEW3DPxT3ne39vdC/MUuNDUSb4L/Vqfi2vRjXvyCyezshRqY/N6s2+DREvL8Lz5bxpnDdvwgKxzc1Au6/JV0RBO5R8L+r8MXntevtv6QNh0geePe/t9nQQFt++r97zUTTwlD5v+2W3ttoWPi/ScOUd/wU9r8XeK7QIBvzvwXKq7cx++K/8JWuMUmtwD+9J7JmWabTP4S2xXNPquU/27Vum7Lg0D8hi/fWdBLhP5y022RI4NM/G5w4RrgMyj9cmeguIQjEP4vhwJ4Ha72/LF0SrTjsxL/IY+Nn/KPDP8yr0KbxoNi/KWJmp3I10r/d0T4x7J7Dv5ieydqSku6/HVQAxxnr87+izgTxLAb1v+l+8zdchfe/dfsWKKp09L+7YwlFRdj2v2Be4S94wPa/8JndEXf4+L+JfIwjxmHyv4igRZ5Ayuq/HSYDJuFN3r9NHp5gc3zwvwCFMvEwzO+/oI2w3aRc6b+826getNXpvwwy+un0ru+/GJ+xRng68L//iRzaRyjov+EUZVNmevW/jaoWiDwL77+v8z3z/vj1vysy2x17T+y/VQE5xEwt77+pGV5uOYn0v8n2UOK0G/W/ZC5Mllrq9b9ninwbocz1v1RL38LzZv2/RFs4Qqnx+79rOfceucf+vxhOf+L9HgLANEnDzFJdAcDZ2JUJzVDzv7jWegDWAfi/E8Z2EI6v8b8Xf0FlnjH5v3OpZO0j6wLAUWt+cdh3BMB4JuCHxXMFwDiX9IW5fgfAubeuqCPGAcBsxGA5194GwLtOVnt6vgnAnDEbTA8UCcBloNiUXg4MwDcXvh7nHw/AI32BGgcbDsBXmfS7t2IOwGOPAbzqQg/A8Eg+zYYaDsBW4j1QF20SwJJmuLfSfBLAKIInnwexEsC/a/2M03YUwJkPT2CuxBXAOd+s1q02FcDNfb3R+RUXwCSsUX4D+xbAZF2MgSdIF8AbIyMzcTAYwLuXNSOM3RfA/X9mWwgkF8BUco9alxEYwDUyIHjMTBnAV1zCjrXYGsAIxhQpT+YawGsURKxgjhzAEQUEyavZH8CcHOmJi+ccwGPxhAibBh3AeL5LpzuYHMANyAvlAcIbwGHnfxOdrxzA8xwC6pdwHMB5vmfKBQoawBxh28JHNxrAI+7axph8GsAYHRtw8w0bwKiOIw13tRrAq2aOssSmGcAPQIxHjlMZwDHNJK2IVBnAPHG8U8DiGMAJokjdKBobwOFtPasPbRvAuGV64LrOGcBfN8HO//YXwEsY5AATKRjA3wW/zjutFMCdiz8det8TwHXwbLbfjxPAIDHtlihlFcBoexX4jLwVwM9etgbx4BXAtWm0CzHOFcCal5Uy5jAUwPu2utfoABTAsFr1yG62FcCrodVauv4UwPmDmzG2FBXAK1AKsqirFMBdy9b/RuQSwBrtjHhA+BPAFx6SSjsuF8AXA/EH9/YZwP8+VE7z1x3AKN21/ZZ9HsAdWMYZY4ofwAeVpP6qhR7A76xUusoWH8CX9krQdVMfwIXHHjydyiDAXpinnG4NIMB3GqJJQMcdwJuGg+pFBRvAxb7Dr5uuHMBsw/KywWgcwKibFdng5RrAT6e9U90GGcBMm4f5gkgXwMsZEGYWMBfAPx/6uoFkF8D9/Pr9W3gWwE+dbNcakBfAII1lCLk4F8AcnCiQQlYVwLdp3i27gBXAT3zzYDP+E8DdQFaZQHkUwGnPaC8lPhXAc/GXgrOgFcB4+nqNmu8WwFDUx4+TvhbAFKJduf+uFcC9YtGvSIsVwEG68A/I4RTA9ahvnv/hE8CxlIfX2eoUwFXdwyoLfBXAJ9DUfbJrFsBMEtzX3H0XwMRTBhQYwBjAOTP4tTtzF8Dv2dhtlI4VwJ3tO1pd2xXAFOzzNaYAFMA3vu8FAvcUwAuWrtDOIhbA15RO7W8gFMAHbIfqTl0VwCB9pGr5sBTAhxpTa99GFcB7++EGFucTwDF8UufcsRHANl+wUVIyEsDpMMoBTu0RwOjG7N9bbRHAx4DTeNkYE8BMj3Dlg74UwMA50NYqChXAlvzJ7PvhFMC+lAjAH6sUwENJ68NDLRbAMPZthf2zGMB9Hh1SpVobwM3CMNUDXRnAqZ/Y0IVAGMAkUj+Z/bsZwMROSsZfnhrAzYZ9GCMvGcCftg8F6sYXwKyg4lAv/RTA4Srg4NfHFcDA9G9qQJQUwOuFw0ZvtBTAo1c9RrKdE8Cfb+8erq0SwPm0tqeBCxLA5zDkGbqCEsD27Euple4TwEuugRdZyRLAIACSxh+OE8AJhHeQ8EIRwCmA+WZqJw7AmPWQ8ZdxCsCzgYGQf94JwANiIMflJATAOZfyCY3bBMDOrL2HBgwDwLSvetSKWgbAQDl0RR3TBMB1D3CQosQCwHOAhsK1XwDA5XC9zlrtAcCHM7hT1a0EwCU+DNwiAwjAc9Odh6OjB8B0hhQ5/VgFwCjuS1TpdwLAV2LkexlpAMBLoWyzBlD9v+MJfLnHR/m/w+QOiYfd/b+5sYwf/sj6v2XKLlT/5QHApQRG0cQaBMDBhz+xLoIBwCe1qlQZBQLAocXp/hQUA8Bz0IApiZwCwAXj31bNXQHA5ZxTtpToBsB8QRUCVqkIwD2Fh7FdYQzAEy5zLbsSDcC/mHz7WxIOwM9Qh041wQzAET8jevBuD8C8SEZ9EsEOwDCjED7PmAzAPEOoR+cxDMDWN/vAK+8QwHuQUcIQ6hDARR00nHmBEMBl3hKRE6QOwLQd7coe8gnAq8/jzIbeDMCsfdcfJN4LwGDTImktGQnA2OtqIcl5CsCXlYN4g1AIwHO09LTX0wbA+x3BCiH6BMBfS4+S43wEwDO8lZJtAgjAOE+yt8eADMD1E4dRtf4MwHDWOW0yzQ/AsEzQuVR0D8CyonihHkEQwCkc0T+WJBDAbF7oRn56EMBo2ajSZG0OwCOETu01/AnAhJ02fyDLD8DMvGT6/84PwMtbCDJb3RDAG9ELAwf7EcAij6zQ6/ISwL0xItRSWBTAszYjm6aJEcA/AOWrntwRwGYC2PwEOBHA4tcmT3cVEMAg2SpDu48NwDuBdI1NvgzAGHPc3ltACMBY3rRRgVwIwJGYTYNfSgbAv0a0/msRBMCkctLOgQUDwEUti9q7QgXA+XMePJNwBMAr4TfVCucBwKMSK50fvgLAeV82AdjYAcBoWx3hwGoBwCnJOmkIRgTA892ycv2UCMA5fWA18uQEwGA17imIcAjADaZUkiuZDcARdOEx6jkPwCM2cCvlQQ/AoDqNQpZLCsDjMXZzMTcHwKz9CtnaPAfATPG8lkaoCcDkH4pOV1ABwIskYvP2VP6/6BA9SL4j9r/Zf6o8kFr5vwVmYGjXrfi/VS5ZkvAA9b93/8YesRb3v5SF53yt/fG/odr0wIqI9b9hCO9ccGj5vzH6S1qGFfy/pJ/s7PzTA8DpMKb2kXgCwH5hgK+20ALAJTsPYJbi/b8b4q5zZSP/v5BKZoYKGPy/U1mkqxqn/r84oe1RqgH7v705MM6sxve/aTp/rb318b9gf6bavWPrv9N7Lc/l9eu/gPfgtQqDzr9t7gydK+LDv0StuNZ839K/gyojrwYu7b8llEl7OgvRv8wlfUERW9S/O2CM2TzO5L+lEOCxaVztv2vPHqkm/Oy/nAPiGCDa6L/JtMzdTDTzvz+GfqWUjfq/oVl/gVc++79nCsGYKon1v7s4Jb1IPP6/jN3QsqKTBsCXU12+JFYHwCd19lqdPAbAMO/5kaO1BcBXbHl8qb4AwP/Rl0w1AQTArjpjr6mPAcDAxz2ASvH/vynJMqrqegHAKgURm6POA8Cnaaj0EgcGwICmXhC/sQTAbCpgrevFBMC7exW0xqsCwMsjG2TcTQDAGTYKjRGHAsB++uP4XlECwMghVv+k6ALAZarmlkHKBMCPZKT+AeMDwMDSa9MpYwbACmKY/88TBcDZ8DZXyekDwBYUumCGvwLAubTkg76m/79UIoQJfdn+vwbVkwkoNwPAOB2fZ1kRBMBYAaITMb4IwAglk2nXLwjAEJoM0kntCcCfxc4Zu+MIwDiAa53myA3AaOiqVyOZCcCx0fP/WykOwFDZO6JouQ7ATN/zSI4jDsDTj2KJS2YLwCwxGQlrxgrAtW2XMEmADMAHI3mQSFYKwCTVHLLy4gzA6Q2O0sgADcDDeHxBtB8KwEDKtXhBKwrAI1Na+9BgB8C0hX1stnwBwHUR32yksf2/saY1G/hx+b858aKIUDv/v2McK9teegDAdMrAfiSy/L/DYrfHaAP5vwAXtDGml/a/7AnOPBGc/b8yXRzujl0BwLQkQpWqFQPAQATwlzZHBsB5swg6l18DwCNqr0E/SwXA/QZrg9tHAsAThDf0brQBwLefnow5OQHACrJdUlzsA8CNbP1H/w4FwOEt9AzNnAfAR738MKofBMA4LEOitX4FwKoGXql56gTABUCxcJntA8DAuzmPBhQGwGEadCr+vQbA1LWkdXDECcBIS56KM4cGwNmq8DoG9wHAU239NZ3jAsBdKESeGmIEwMmsVVSDQQXAMETudpLzBsCrNUVkgs4LwJFiCojfPgfARBPcFj0KBcCjtI4pC+wGwECUqxyIRwrAHeJkJ2mjBcD09Yda8lkHwOKtm2K7zATAJdjuVq9TBsBsSZyqvcgFwGxyOvSAMwfAmRED1ahfBMAETGSQ2cAAwDlCP/tZBQLAr2oVDkCUBMC5GH/ojFgGwDGsV8vcvQPAsyOi7DVNBMA5ez/bsjAIwOewWreD3gnAhM7wNoOqBcDzPxcRDFsBwOdLthopc/q/gZDaresp97+3+7YT4qb8v+NJK+0Lkfi/nJYusZQ++b9ZigqDXCv6v8R7n9qa+ve/tv4ZENXG879rJ75XX0nvv5CUYINt3fa/QvT0KVfO9L8uqh/W/hLyv9gpTR40GfG/WeieVtww8r/dYQqeahzyv5QW8LwFavu/tOhW6Tm2+b+zGSnH+yD0vyjZUIiVqOm/Py9MfRT39b+Ry63tHs71vzBTks1qW/u/lEPrxFajA8C/Hu/TC9oGwLUXEhhaCwjAAzRmDidOCsDXErgravkNwNzpoWZ4Hw/AyDfMzokqDMBYcQEzPv4KwG1wUxkTxgnAuEUmDCKmDMB3PNNmIAAOwNloezt8mBDAKvskXDMPEMDNW64a7DoMwEgwSqOyPAvAYxR5LbTDC8DMjL1h2K4NwMnNyehWAwzAf1Q+O5HjDsBjBNtnEYQJwMBTt/wOsgvAGA4QOJODDsBHR3lNBJYLwLi5kKJXkwbAAeNGZSuSAsBxtCr8twUDwGhFdQk6S/e/KzxmutIQAsAOyDDozhsAwBewG+mzLvy/uTstjRrU+b9fEyW7zh4AwPp5iStEuAHAq0R5hjZvBcCoQO8/Y539vyc/G5KMMvu/O8dv0+DK+L+VRqn4Ov75v+1PaKqqwPm//xWoL/V0/r/fJcT6Nkf9vwF/fzH6dfS/mIQZNYmE+7/EaVwfhyf4v8jRCgA1BfO/rXVsdGCb8b96iT7OSLrxv13NWxn6ivW/tRgGitFU6r8U76xFgi7dv/TM8mvL7+u/ytg987428b9M6PUmLtL0v5vKEE99a/W/YZ5Vkczz7b+p7AdAVafmvxwD3ssLy+O/7mJDpayc0r8BNKfzzDTav3O9grnYiss/+0CbQoeG3j9RJc4PagDkPzUFqSD7uuA/8WoCY3JK7D9ISy2MeOvzPxxwqF8Dg/c/mi4Qej9/8z9vLet/Zvf1P5MFMwy7ku8/W6nQjDki7j9X1VYe0t70P9+rNusvhPQ/75ep1PNK9z+R22Lg3ED6PzlGWlFIcABA9Jv+wmeK/T/AkxlUAwcCQDJeQAdbcQJAYzxcF+66B0CjIlcPXsIEQLNnXLm18QVATbhEEfag/z93y84GsdIAQAZ6Ahcd6QJAoZTD/9FvBkD0DmerUcgHQH04BW/h3A1AWZyLZyLrDUAnYcr+3YcOQJUyqfto2Q9AHLUOgTrBC0DNqnOWim0LQOkBh1TLGghAR+jCXEUKCkC7FaUJ2sAJQLwC3YYGtQtA5UAhgLzbDEB7k48iuEMQQBCwUTJEXwxA1cPZDCLjCkCJpU6Gx54FQE+OEUiLqQRAtGoDvjjTBkBtSrB2EJ0MQOSb+d+vig1AOyQgwh3KD0CAFNoqyYoPQDmGabOPMBFA5ar0h5pEFEAVs1zv84oTQO3HclNWUxNAlUERiZG6EUD7phm+518RQIWsBp1SghFAzRkSdZHdEECruqaCM/YQQKaZ/C5T5hRAcsCui8X9EkA1LolgcAgSQF7tfjuBTRFAfgw22o9/EUBFXJI1sRAUQMPP9WQn8RRArcm+9sZVF0A7oOcIG0oXQBwtPyVydxZA87i9fhxfFkC/g/0ocZsYQLUt1oU21xtAnVgc6QkOHUDd7ohGnA8cQP+APZrP+BxADQkFkb/oH0ChU6yNFBogQNvbkvYQCB9Aedu45bAZHECtgDmXmewbQOxZ6i5IQBlA/1NBI/GfGEAlpkXEaTwbQEH5w7n5AxtAO0J5TwBMHECU9yS9rGgbQHzaJ7S33RhAzHFHyxM4GUAsyvDt1soZQBnDdm34gBhAbcq2NPBxF0DhQblFsfwTQOSulUxZcBVA4c8WlPcXGEDbQi1PdrAWQHj7hYbI3xhADAUd7SmbFkD4BqS98HMXQPwGhiNgYhZAd3QdcBcbF0Dt6voLAKYVQIDwYLAPZBVAr7C97OR+FkDtgLACCvMXQKFz1IEKexhASMXI1UKgGEA98ivh4LAYQLHFRIiESxhADWa6P5A+GUARDTgbDZYaQLRyRQpi3htAyR+vBddaGkDLDqezPeAXQLtjTWxWaxZA0X+hBseWFkAA9zjRXGIWQKBKi2ziExVA0xyaiF8MFUCpBdIqIkUWQETxW0m9MxZAOp65u+cXFUB7B/9hrX4RQISkRA83EhJAIgKA+7ltEEBQBKdnZpURQKaw4UBxPhVAHYjtPI8CFECQhMYdZQsUQBfFeJC5mBFAgtk6uP0REkCD1UlRWdcOQKxF490+oApA9Ic2ZAHuCkDZtY2idzAOQMPQIu5rLxBAKNuubH6HDkBYFZMoWlUOQAWac8o0Hg5ATGYJswgzDUClFc7NlCQOQLmneQwe3g1AsvXBj94pEEDP7OyAF5UPQGbm8b7V9BBAuGKg8JLqEkBPO7ywLtITQK33QzIr5RFAK44tG2WlEEB4l2SxuPAPQL6Qyg3VvhBAqYrI+9n8EEBnnN7yQJMQQOdmLRCSzxJAtQ1t14nuEkCZpXmbXqMVQNx5Gw2vuRVAi1TZECHYFUCrzyFtliAWQF9+SfD/MBdAfFg3KS0NF0Cw8pn4aVoYQJyWi/NxnxhANBt6FSn4F0Cb9cU4IHEWQDnwbeUbdhdASyrXfsrFGUDImIzt6TkXQK+LAh6DvBhABYFt+AtHF0DFtWXz9jAWQKdAPgpj3BdAUSGs/uwaF0A/r2eHB9cXQA0JydKEORlAiGBzWKALGkCl7vtCuOUZQN850ReNmBhAC573evWhF0CF4/YF9CYYQBc4aPx5+hhAoX7ulzHkGUBFSC9dSmkYQJEcQxPHHBlA1JnZ5GLEF0Bwxc3M4NgXQLNbZERKkxRAyBBBIMO6E0B1iKMn3SEVQE+GdS+DTRdAHadeXJ+xFkAtv5JEw7cWQCJMYvvdHRRA7SpYiz41FEALtg+9oiEVQFus5hE6JBRAGuKYSVueFEBzi62JJaIUQAvPFdhSjhRAea4cuKe9FUAHY4wsXj8WQBXN/d/FqRdAvYnl5a8FGkCw2johsSUaQLzu5PrF8RlAZWqKi/AYHUBw3ZBuJFwfQNl7kjzNIR9ArxQqCN43H0CN/Jcp2ykeQHVLSnVSoRxAH1JsHmiCG0C7Nv7bPsAcQCMlaXtFvh1A0CCgykPlG0DDsvHsyYkaQBz0iOTjmBtA3edVMTWTGUAl14sdhOkXQOtL2GSb6xlAaDUU4V0dGkCFb1k27WkaQLD3acN55hlAczFsuSjEGEDXuutzTpUZQLXz4tTn3RlAfeIftOkvHEAPQc5hD3gaQK24PG/7iBpATVUMpZndGkBVZgJgUBIYQLh3xqb0rRdA3aPLxpSyF0DFBs6Im/EWQAMY35zwJRhApeyaas70GEBtjvwPQn0aQPCvTQXMgBtAn/Zvv7grG0B0e1B8pyIdQA/6pQopOx5Ae3UAD3xGHUDpd9PDkJYfQNhXoUNhbx9AiTNmjc/SIEBIPbzaADAgQFnsTEBYkyFAHhOOvebxIEBrVmjLcX0hQHsc8aj1gyFAwSoQMfK5IkB8/lB9aSIjQI0QzF+SliJA78+pIHYxIkDvt7z5CKAhQGK3kVgf6iBAk4LW74KfIUDt41NaraQiQNHQeOosRiNASbtE+CqkI0B51eO/M+oiQKcLFZFUKCJAD2YrVFFNIkC5ZvYbdxgiQFu/wS37+yFATLkdbiXSIEDimnv9tEAgQA2/xG0eEiFAzaupFsy8IUAql851hEUiQAtDbSpmRCJAhbuFDW0gI0DJMt0qFQUjQFPiMSGAzSJAtNFG/1hXI0CRAdjkbVciQB19Fa7dNyJA2jK5s1u1IkBXaLhVlbMiQEFhDUOvlSJAul2PWFZvIUAEmH+glf0hQKluuQ1x+iFAryzKFMDFIUDhzcNIkdQhQMNeyhJ+mCFAbx77p3dBIUD9DzrbqTIhQLdbRDRtwiBATPzoOpaAIEAHPaldULseQGVtjNe1RiBAUAcloHaEH0Bs/+mwyskcQG2SHfVE/htAbz4n958SGkBRK2Jh0aEZQNeXD9ZdIxlAJ7wV/i9UGkCfg8tuIbMaQFS/HP87zRdAExdRb3C4GUDoNc44GbMZQPwCsLW1jRhAz/EZJRvsF0CMYv3qHHoZQAjV1tyr9xdAZB+6VTUxGEBLMEdvAuoYQJstU29VcxpAW7hbLZ9IGECUzP7417sYQP0t245oKhhAeJFByrG3FkAdnI0RCmMXQNw+BYoXnRZAYMj+NRGjF0D3Tjr6B4kaQON5zRgPqxpA837g96HjGUB13ekZOxQcQKCV5ko5YBxAwUitTLCwG0CRM7EBswAcQCHeeZMS9RtAPKA149BdHEAH6fI7A7QcQM9DACs8gxtADCqpIHpqH0AykSZTYHIgQKHY3dqq8SBAZdMhmoiRIEAnqti3BTohQIWMx85VjiBAR4++Qmk/H0CxHKskUO8eQC9gJkgO6RxA8PhHaAilHUAtO6Wma9YbQCFpjwedbhxA3N4q8DkGHUAs4vqmIJQdQEH6+O5VQxxALYCuH+QmH0CgIGq7PGcfQFN/lm47NSBAsbfv6iHZH0B8tW/2mZoeQPF4irzcgB1Ac/TsZzvLG0B5X1XL6O4bQNlBTyx3YBpAJ5HAhu72GEDnON2Jb7UXQPA9zEcYxxdAtXZG2VqEFUAsQaLcXXoZQPeC4PxauxlA7eKzh18/GUBP9wOeQoYYQGsxvj8/txVAvViOWBJ2FkDxGRNe2uUXQKF+1freGRhAicIXp4fgFkCYc5G1xYEWQJ1VaYc5vhVAfMIXnozzFUAPZbXFvBIWQFilyunUDhZAUTzMk5fEF0BIN9P6ayYXQLCrLfu7ZRZAxjblLfRNE0D+gfIo73YUQKqociR75RRA/ZecSph6FEBQHmEBq44TQMt7skBZfhRAd/6FJ4oKEkCr3gF8s/YRQGY6aCjRiBJAIz7vSzQLE0CDYHasXmcTQCGgTKPxVRRAKO3doDumFUAbIbmi+9IVQMGOxLIphRVAZ8ePFAdHFEBE/tMfYyAUQI1Z2xDNLBNAxXCX30WJEkCR40PElA0RQMIlWGsfUhJAALrdpc7KDECjTWIa93oJQNNj7BJr0gtAA1Ky7f5KEEB1JMSXSBARQMi3iO9s8g9AAf7Intc5D0C7PVhEhBUOQA2foGcn5xBAXNBtQGVyEEAxdifsNzgNQP9QQ9yMug1ARLKrRk3BEECb306c6rIQQG3RebR5PxJAuS6nMlhZEkCpKgqDPYURQHZsmwh/uhJAo98khn5tE0B5h0GPsMATQIFR+tFtrBVAQLvuLpR1FUDLCBzFw5cXQNWFnOMGmBdADwJuM+qUGEAbiqXjFhEXQNPKrJCuyxdAWBmhO+hTGEA/ASSoYJgbQIh47S5KIhxAIMIxaUpPGUAnuGB5hTcaQEVP+e7XghlAb0aROG4MGkBgCgqc1PYZQA2pLpM81RhALx7m9h/DGUAPrMygvS8ZQGguetoO4RhAnZ2MClR3FkCUQZB+ZOMVQJtZlL+5rRZAnJJE3mZkF0BBsBMZWPkYQFgm4Y2QuhlA9xtLAqkXGUCBPheT564ZQCT5h7Kg9BlACCsE5IT7GkAPGux8YbsbQLU7IiGvFxxA7Hg77a+vGUAMz6N9ibAZQFmHfiniIBtACcKSgmhfGkAl7yRjazQaQJ8rPGxsxBpACTNkwmcvGkAHYoJr2mkaQPE/jntnhhpAYebf7hNnG0Cxsz9K2X8aQGGqWxZYrBpAYD3UoBgxGECj8RExY3YXQI81hrNCrRVA70OIDgZPFUCxxEtge4EUQPW1XcWrKhVAK4eIKELYE0BvfyI67HkUQOLslPSL0BJALkFieKjkEkBldmKSCeERQBD0OHVV+BBARcm0GlnnEEAvzmwa+IoSQHX5Ucr1RRRAl8v2Cl5uEkCGASw3LK4RQHHIY/uGMhNAdorP4/OJFEDVGP5YB98UQNebaTsxBRZAvWAKGTslFEDBeNy0PQ4UQOhFSNBhghZAj/4APTQgGEC0cm1dJBMaQGVvvzbvDR1ASytK0XyPHEDVSXVst6AbQHRK8bDZpxtAtWOdDq2jHEDpeWuYPL4cQIxYg2On8h1AC++jh2xpHECdLtv4ZkccQIx7YEzq+h1Ad2mtj2MoHUBoaAQ691UbQBTS+bbMdBtAWVw4MAZdGkBBrZ0TeGoZQB2IXS5fSRhAkDfA5FVdGEDYBv4Dq7wWQGilmSaGvBdAHKdspKmlFUCIw7mPSKYVQHm1u1x5+RVA7z0x6OGeFkAJucyVYQ4YQIgqhuaFKBdAdOSTA9kwF0DlnH8B9ewYQEcZk5xUVBdA95X06neaFkDhltZIZwMWQGDxuN2NWhVA/A0zwKc3FkA49sG+pAsVQEAjvLpEDxZAAkI14bjJE0CfKy2TODwTQD/FM1L1EBNA18eobMwLFECVR1eeWkQVQJBy6cusXhVAtc8f983RFEAdT1mwJjUXQDto41x0RhhAMJSAFG3PGECzjKUOJR0aQMh03HzvCxxAGAcEE2FYG0BAOkal3k4dQKeqiEDHUx5A5H/oVgLpHkBfFH+w10EdQBRWQaVeeB5A0CQzY69xHkBb9BAPeFEgQP/e4XFBICBAfR7Pz+OcIUCy4dK2YrYhQCAqfSNrSyFA8jSAp+Z7IUC2KyJCWl8hQDi3VDDOByJAuk6N/wY/I0BvuskebPMjQMqH/QXOziNA4s4jmZdKJEA7mPSvRyMkQFZB3xkErCNADw2eHSO5IkAR3ymz7XkiQH3sEWLfcSNAAXCgAZNaJEDlNeFCAuMkQCnUxqdj4CRArci+TwCqJEAoM3W61BMlQL/NACuS2yNAgUVuw399I0B4SvQXdl0iQJLZr4oLYyJA2Jq43R5GIkA7xG+g1AYiQK1mbTjtdyJAAUfHLxoyIkDLSR4uwqUiQGPSJ6JoEiNAi0jryA2nIkDv4y141xsiQJ7DtPrmICFAneAcfkxDIkBfcv5ufDojQMtjYRaLNiNA2bq6hsChIkDcZPIry3AiQP+eA4AdliJANN4ZoIaYIUDp4dMGJ8IhQBpIOMg96yBAkiZWYEC+IEAPVb/R7ZogQDzsRkEdTh9Al598iqMnIEDxTtgcnT0gQPcFdEUIqx5AJf94xHTQHUBg8tYM4jEeQBfT9829xR9AKBhabswYIEAt5KU0Cl8gQPFkB96SGiBAofGee7feHUDz69+IPw4dQGO2utSWSR1AmL35oO9JHkDT7dO7J28fQDyS+fPUkh9A5PNi9WBVH0AQ9vM3PqQfQEGjVHTZvR5A227XxK3nHEBVGGMTBygaQB/tzlJZCRpAA9y1xrjyG0A4otNyv5wbQIR5Yn5SXBtAkMsNN9TIGEAsW6W3ELcZQH3DfU6wMxtAWTgQy1dbG0AFbZRyomAcQEVTWEoqnhxA2MqUA0rQHUAkNLad0lkfQAGcC+/1XCBA2ogmn2hvIUClzsR55mEhQOjHsN4GrCBATylcjwVOIECTKRq3SGMeQG/dsKUvhSBAbqd0AT6uIEDzquDDdXIgQFFXW7LgOiFACKr92BwQIUAvWg+21V4gQNc1uhJ84h5A/gKvfQkDIECmA9YWSQYgQNOxkN0JvCBA0YIIV4MHIUCVlgQBYvEhQHeGLuR6zyFA94HO1GIMIkB3wwzYVC4iQAhwPf0F8SFAE9+w3n2GIkDx5maKWI4jQFlp1GsB5iNAxwHljAknI0B2r7bjq30jQPxBD+88nSJA8TrcmZU5I0CS2CJuN/0hQBlAV9LAvyFAbzX2mXSwIkCxOObG9JAjQLUKZAtz6SNAL5bchd7pI0Ci0Jqto8ckQBwshcqE8yVAUAWDfUzOJ0BU3ruKMwooQAmhYzeUEClAKJQ2SFrPKEA00GO2R0ooQNM6U2p9syZAtwW/jlZbKEBHOjtWkGcpQCy/uAdD9SlAHO8sKupEKUCpPHWtsV0pQIgv5o/c2SlAF6p+CmB9KUCprh2IEmQoQBNDtTinrSlA0Bo/pGeiKUChBTA/aD8oQJET7EHHsCdA3/4Jw8xiKEDRmcPV7y8pQL3cNEQnBilA8YTlTQsvKECMx9C79hMpQNdQSAnSaShAd25cSboRKECHW1sGwlInQO9tV3GRrihASBVa3hwwKUC4PTGiCjkpQE10ioVDJSlAHyXOjnW6KEAzuERSHwQpQOBGzxMyZClADZ6rFXxXKUAUUJeOVVoqQI/9UvRf4CpA/7OQG9Y4K0AIA3hzx5AsQDgdTPoAZyxAMJ0mfKS9K0BcYki7yUItQCRLc98TDyxAIUVS7/E0LECv/405pW8sQMygKXzECitAn2fsT5nKKkCDQ/Nbs+4pQGAc4FZZzylALKRC92DAKUDoyEvXfd0qQPQjWQx03SpAJD8BgKgfK0BcRJZp6j8rQMwKf97YHStA576EoBfiKkDDWQJ0ASUrQL0X7Hl0ditA3ZZnEYYqK0CoJDn3ckYrQFNIeaTyMytAN0R5I9TDK0BE/QcDjRsrQCmqiiRCQStAJfSrtdKpKkDA2EukIF4qQNnbzJjFvSlA2H04FCxrKUAjlR5nFoApQGu/lJY42ihAo+rVrdrGKED0zmvu8MEoQGjyvs7BACdAp70WQ9WhJ0D1rK2CQWInQDkGmSQbaidA5ctbuZhrJ0Co3UsBFP8lQGu6JAukSydANQ7VzYTWJkCU0htYc2omQFWveBJpTiZAxaJ8wuICJkDthoLnWDwlQKluD1H5vyVASLQ2Z4DZJUCMDvVTAF0lQH4BkF2/CCVAF6hX1wkGJUCrNYw50IIjQIkBahPr3SRA57MPuayTJECPP3afCBMlQLP5V4I7AyVAzXXalKO1JUDtDwxD0RUmQNi8WDIhDSZAmBoK7JLGJUDPr70sOv0lQMu8hCECwyVAqVaDyToPJECzZ6Gt3C4kQEo15TwJUyRA59nempNNJEBPwDMMFe0iQOwv25ntmCJAQI78yIozIUB3gEylzaYgQGtx46qiBSBA/7apLHk9IUBedsc+lMggQMAb8PsXKSBAtfL+9FsIH0BYT1VWCtEdQIVh3EYn9h5AKyln/7MWHkC06npwXyseQLkPocL+nB1Aha/RfyH1HUA8M74JdE0fQMO02+L7fSBAboMF1DtZIECizNtk9tIgQCSm7XgkYCBAuESmM7W7H0BTwltsKusfQA1k1V/zRyJANte3u220I0AyL2xcqxElQJ2MWS1kcCRAdNKBZ5V+JECh3IUhouIkQEU/Ioe/DCZAtz7KGZaiJkCBb/1XPXAnQFixr1EatydAUz/Aag5QKECQzlk/nBEoQMGsgKZc5CdAS/Zb0BXNJ0Dc2HJmtk0nQB30fNadfidAsMshb2luJ0AnWB4UNagnQD81ZwJ/sydAZPUL/tGTKECFlb8h1gopQDkgzP6yoShAz7IzFyv5J0DTYj3UQ3MoQACblDxrQyhAtWZ/2S3yJ0Af9rsCjqQmQBAE6yIO9iZADHibwb7+JkCYKzZNshonQMOROYB2cyZA35RIk5FsJkAwiMEk4dslQJMC6v3o+iVA61uHGl4tJkBttzna/SomQH/TRacvvCVAA+QTPr7UJUD4fFZTvJElQI8/oIPmRCZAk5QrhMplJ0BNWFlLzxomQPENshZ/oyVAO1Eh5/3FJUAfDm7Ps/ImQMRXX2Ns0yZAV27E8YbsJkCTRE8GZtEmQMdRDxIp9CZANemblBB7JkDsV9IHBzgmQECg7DVIAiVAwVgEO+OdJECfgl30WR0lQOgnNxDk5iVAzTIcudGGJkCMmy5RBtImQFRMCdi4qidAEPVJsuyWKEDTi2IYSbsnQKl+z/rjuSZAg8BWyN4PJ0D8aukYwlYoQEvUl8hu3ShAk8e/5vIQKEBfb+croEAnQFGRxAXJTCZAgUon3AfyJUAskf80sNMkQLa6uGAflCRA1SxFsb1HJEB5sjFkheMlQOscFWffdSZAs1/mNqFIJUA1scbV6mclQKMY+9EE7yVA0WKJm9qvJEABpyqu1dIkQIKkmsbXTCVA2NuSTGYWJkA3DrpPtkEmQCwM91ZXaSZAxco3Ni9dJkDllcrZneQlQNCKT2rw0CVAqV9obfMeJkDscwTse4UmQBhXgvrLJidAXPvaKma/J0CjxHG8RUEoQGA7ExB2oyhAi6TJQIrOKEAJygyMvy4pQPwt6cP75ylA6xtTF/cJKkDZD5AZba4pQHFPOpKFoShAONgmsOu/KUAh8BzR0dIpQGngMHA8dSlA2254NDnfKkANpRnzhN0qQMPXdruLsipAnBtUToj9KUAQiu4VgtgpQC+ld4Y32ylA9enkm0DaKEB0yqLubM4pQHFD7JqWcypA3PGp3avJKUDzZI4joNYpQGPsSu3FrClAyK8UAE/AKkA3IVyfJDsqQCgyW3oAwylAPa3R0QLQKUCNTpsBmgIqQFiRk3JGPSpAoLDWsnjIKUARuPciK9QqQPs3ZfM3DSpAi304KjGdKUB8DvaI2IgpQIB8g76bNSpAdy/IS32xKUCPjadDeWkqQMSUe558QipANZ3IYjyvKkAPAhv3pYUqQAdeUMVZIStAn55v2B3oKkB8Bb2snw8sQOcAogbJ/StAIUaswJkILEA3oG6a6DMrQCgltBi81ylAdAyYXM6XKkA7Hyvgy2UrQGseN2O5nytAZFWl9jhnKkAMzy/+J7gqQPU3r520sipAM/QZ79fhKkDrUCq80BMqQEdg+3W7vClAcbrbFUB3KkATjxvZrEYqQJyfYmqI9ilAJU+SiYOQKEB5UJvIhMkoQP99RdfzxClAV/bPm2CwKUAJ7IZDVHEqQOXde/3voSlAo4mC1ESOKEB7YECMrEMoQKSuUxgMHilAWdKLo39sKUAhMuUgoOAoQHl0VutJGChAmFe3u8DYKEBRD/YlYhwoQHi3Qt8ydihAJbCLRZ/1KUDT5JVvkkoqQOWVj1fIkipAeI7H0BXmKUCctC4Jz8MpQJX4vd3T2ylAf6X/S747KUAc5zyeVqIoQNGePHNwuClAsNTA/OZZKkBbSg+nXT0pQDmR2yf/myhAD7Hvyix/KEAghjVW7qYnQNH5oYAi2ChA01FhQQRKKECVhDM+dy4oQITSFITx7CdA82EqlaIRKEDLwK+TCQkpQCtlkc/C9SlA7ZsmTx5LK0ChGuE/8K8rQKtc+zutjSxAnD1UDCBvLEDbR6HdI8ItQBv+mlb8Uy1A15IDmKl3LUA9zfDhOeUsQKnvz160dCxAw9huaZTILEAj3qnQ0IwsQPgyx74IPyxAk4u1e6ScLEAVxO1O2cosQAx4S7UcEy1AkxpFNn6MLUBRn42rXWQsQIW9ffbpBytAy55nVj6sK0AdkIPhwGYrQNxGLLki+SlAiPiePEJkKkD4TIbYBwsrQL0Ms8jdZSpAY5IFBwYiKUBToyxrEhAqQKNAq0EkHSpAdC5M/d5AKkDY74ihnYgpQAg4gAoKQylAUIJ3PYfgKED8lrV5Q0woQK3n2FICWShAcA9eC58DKEAdtIZ+JjYnQO8fXoQmUiVAuagcI9XwJEAMlGK4biskQAeEPZsaxSJA4hqV15uJIkBlgb2HR14iQP2HAZhRtCNAdN1lOQHRI0CJh+qIGVQiQJNCRASm/CFA/3sdg6c4IkAAZZxZniEiQMXPAOSQFSJAwVI6n6DIIkBvYHpiiE0jQOkT5Cgs8yNABcpsl3ekI0C84eGQnPAjQBOUGFGBXiNAodKOaVUYJED7xnOwKZ0kQEEztI6cziRAYb8NahxzJEAenPKBJLgkQLqQhCtsGCVAy2oyYrJVJUBMvEpqBYckQKMcupjhbiVA/1TRd8v2JUANzGK80pklQLVGUIpofSZAUSvGotL8JkCcKLzhrPgmQGj4PLA9xCdA6yeq1rANKECJhd4iG/onQL0qkzjo6SdARTVtTKPdKEBMo68Kvr4oQB1TzFj9kShAnRJpUYdoKEA0JiF50sAoQCjV7zUrHyhAnS/Vu9w2KEB37G61A9omQMzm3JmZMSdAQ3fCaT6hJ0CxtaBli+YnQKQJ4ZWZWihACLNrWkc9KEBpuFna+CQpQJ2ZqxgtdChAIKNAZCf+JkD9Mv9HFssmQIVI9yGwlCdALwH1f1T9JkBrem3JO1AnQOlmCWZdtSZAxcz7xXlIJkA9y3o5BvQmQHFeNdehzyZAV859dmJ3JkDnI96QSMEnQIAO7th9eSdA1SiGqSfaKEBXEjpHe1kpQM2WyHF7ZylACT0FfUO2KEANbs8qchwoQJyoVvqH6CZAw88C3Ty6JkBjxQpbavAkQKBPMR+AkSRAWWBuaKB3I0D7CEMX2b4iQP7RaYdiXCNAZytFBt07I0Dp5ZCKy9giQNX8NCpwpCNAC1lqgYLQIkD3wnHS9p4iQNxafoYcqCNAcOpapMuwIkCHoy1F9CIiQG2mIb7FGiNAEFGWgWpoI0D2o+RfhzUiQIQGBsjtuyJAxXnt5epVI0D53G34iSkjQMYiYYl3wyJAISFLw7nyI0AO2AcLafEiQPi34NneZSNAx4dCdg6NI0Bk8xSI1lUiQLNCe9IHXyJAqk5txz12IUBfrV1PQ2YhQP+6SgoOsyFA9U869yHMIkAHkZBegwEjQJrbzCn8FSNAUAMgSVXKIkC5xVOZEAUkQIJPYEZb2yNAnWU9k10RI0Akv2++hVEjQHjQBy0NyCRAGl1WpbF0JEDBOKP9nNMjQOkguY9JCSRAnEEOOIEmJEBh6Y/116skQAdZYbAlvyNAR4iS7zrNI0D7nbdH1C4kQLDmTEveyyJAVssO407yIUDwwhLNWpwhQOWuyKkFDCFA9ASqgBqIH0BHguPt/vIfQMpFbmbrOyBA+VDlR0mUH0D7fbNn04cgQAETCTNg6yBAkbYn3QR5IEBu6kAp400gQLwMwh0ZXiBAdMPgCCvwIEALzeC7qNohQMOfkUGr6SFAHPLpvPI/I0Bsmq1AdqciQG16Myif9iBA+ePXjxdpH0BUkaw/TJUcQIGKpzFKTBxA6XesS9bwG0Cf1xKI2cgaQHNR0OFozBlAg8YxUnuMGEAvBsMsk/AYQMUxwjoVQxhAhNiF/WjxGUDb2gnahPIZQEC84zmanBtA62OCdkeyHECMt+wTNmcdQPVKyGw0+h1AkD6neUq0HUC53GX5f3IdQHWFlu75eB9AxOpLzNsNIEBxGbWWE1UfQG8X/FBBGSBAK/laaW8mIEB/Dhomk9keQGGsS8vbWB9AbJnb6X6DHkDw7t7MusIeQMUbgQJ8Xx1AhNfiKA+CHEChSo8zsQIcQE+IMi+5xRtAHMZMZf9SHED0Ogw8U60cQHsVW0cKpBtAuWX3ZFlLG0Dc75y2T3AeQFwqYKbYrB5AjUGZl5gpH0BDL8iLU+UfQNA8vpRaEx9Aj/hVy/s8H0BWbti5G1AgQEX8YckjFCFAF43c5vopIUC5AVRNZNkhQEyGevzavSFAwXHcxo/jIECpBosiX1YgQKVB7mo7HSFAaaHnvcOhH0C8h++yYkUfQKVJ1vs5VB9ADTyBUqP9HEBfew7tdCEcQIPaDuPaJRxA3XgHGid6HUCcwiEa7VodQJ2DJlndkR5Alx1QMD4WHkB/jmGGSVQeQCBlYmdiQR5ANM6dCZXiHEBEXowDhTkaQAMmN/ExTxlAfP6n2cdxGEBJp9CfI/waQLSuzXsDOxlALUk+7+Q0GkBjYvtvhgMdQEzUmeLSaR5AH2prUbrAHUBx6mD3/CwdQDjNV678UB1AGIRu7CO6HECcmFvRSpEbQPfQTpSJtB1A03326q6LHUCNL/z4SQceQPE7h6MfgCBAEd1CMz4FIUAzk7wFthAhQJemmkGvZSBARXkK9Ip0IUB4DiMVhU0gQNXrQ+B7LCBAzs/RO8tOIEBo2gjF0kUhQCBKKZ7PLh9A3R+u77LOH0DdwHCNAYogQDlhKM8jOSFA2BjGTg2pIEAJr5D4MdofQAyZQ2cP4R1Ab6QKvO2BH0B0I21uHuAdQDAs4xTSQx5AI8n17kqfHUCgJxAhGHMeQD2XYpOyFCBAB9cYQp+MIECvBYEcwRUhQFUJq37TESFA2mbncBKeIkA/+b//5PkgQIuQEmeGMSBAqEViAvukIEDDWvRdBwIhQGy/eIzRVyFA9o1+IXIsIUA/+/d51r0hQO98Z9PvOSJACtzECKaBIkAj/B6vDskiQJm94ZfI6iFAz9NnN7pPIkAppmtzghchQLkfAAZUUx9Agw6KSHUEIECZ8T7xCCQgQJVHr65wHiBAsyzYYJM2IEDayFQXq5YgQOhWbve7Xh9AhUz6s2YCIEAoRYdmfpwfQEWaxxHdTyBAIEjwOBUYIUChC41wM4EgQMNixSEIbSBAtWadKmnZIEAHK2Ai3/AfQGmKcpqcaCBAQk2CA7XfIED5k0gW2/kgQDtuRyMijCFADPfY3IPYH0DzPQK9faEgQPoiXhHJJiFAgTUO0nobIkBeyTVCiIIhQGEZla6FtSJA7K+B2zmKIkBSQN593uMiQBtkG7C5giJAAZi+x6fyI0DHb7iebE0jQK2D/elofiJANSdiYgoVIUAczJvMxAQhQKHM357CKiBADtqIKiFQIEAQ5v4aUAAhQBNNqSI0pCBAIkcpO90RIECp60n9HkEgQF14eJcOByBAWH7gOvTmH0DTF/GR/SYfQOjz+HtlfiBAowHeplqdIEBsBOgmJIkgQG9194YXMyBAJbTHfH/WHkC4S9zg/b4eQBysp+qDpB1ABGftP59XHkAMS1Cur5QfQC7kTpYsLCFAzwzkEcaWIUCK/WIzdpEgQDklV4SmuyFAThS3XNKpIUBsn7tiYjIiQBbgBtib1CFATZwAyhlUIUCxLdl3R5ogQLV0q7B+CSFAGTAS6c0ZIEBxtFv1TzAfQC1Y2kCJvx9ACAMVi0qnHUArb8lnFhgdQBTRHCd1VhtAVzO8bRfUGUC9RPN+zOIcQLAI+4drmhxA7AOrrUCEHEAB0Wirbn4aQEcIujPhshlABA+WXl56GUCDFZE0Mw4bQCMieBZTbxtApV3R5hf+G0DRvAqFWWgcQMM1a2jFNhxAOQVqFVeCHUB90fbksdMeQDNKgs7ISB9Ajd/3rukyH0BkGxOFNLcgQCvZhaTtZiFA2rm3n1ZxIUDfeaNOOF8hQGB/x1fonCFAyDcY0VA+IUB8eTEYkrchQMhSOwsrwCJABkcLJopMI0CID/FWGNciQOBn8IF8xyJAKKshRK1fI0Dl1bAYdg4jQIeZru2suCJADAnxe1HUIkATLXpzcUUjQOVt4YyshSNA+k5wJ8XZI0B5LvOHhU4kQBkphLIrDSVAg1XQU3XqI0C963rTK9MjQCk1hUnWMyVApgt9t9NoJEBpWCFXrNQkQHfghD/bryNAeYWTQwQoI0BkX6rFTaAjQCd57T/d5yNAqTqZooWoJEDbZs6rOZMkQGGrQ8V8aiRAibgeq9NbI0DlpXlOTWAjQApvlD7M7yJAAaKBiGKcI0CPbbLVjqkjQMs1iNQNRyJAnc+PYLyWIkB7hEmHaiQiQEdjbX3JMiJAyEsptKrUIUDhA3gm1OchQGXmj2EgWSFAGFYRZZh+IUD2RHiL74whQBGsHm4OCCJAW8bJtUvUIUBTDUo+wb0iQNc8DhnqNSRA0x+lxh+JJEBGxmQTc58kQAuHu9qOpyRAZ+fdMfNyJEA5iY5flC4lQO9JsVHbZyVAC1r93x2UJUAbrtLOqr0kQGVjEPC6pSRAvmFRMzQ0JUDtDLw5pLYlQCx9if3GiCVAH1SRmeGYJUDbgSRL5H0lQLiQi5MNZyVA/H8eONovJkAZxlHvP/QmQFefeFm/ciZAzWFcbNdAKEBQDzyg/KIoQPfdc/rKKSlAfV1ESzDKKEB8yi4Ya4EpQB/ixmfwBSlAB3E373GjKEAbe/WVGHIoQM9O8l/VxSlAmbiN+SQdKkC3B9gn9qApQMwvfeIuwSpAxwaE0uNTKkBFm7sdpcQqQGCEv2YQKypAqTayvoTdKUBxzWjtBFcpQI29QdyiTChAE9neQfuRKEApNALxlGYoQDEWhOVY3CdAWegiYZxjJ0AJ4bMBlLImQAdxJ/3zXiZASV+WslbpJ0BUquCo+64oQAP15BH8QyhA1duNCzSgKEBdvIUCeHgoQK9+kqbi9yhAacRNSKkKKUATVYQpNvQoQPxEJ1YN1ylAy89C3oASKUDkNb7+ToooQJkWR5rCtydAG4xbHnQHJ0DE/0j6A+wnQO3vKnPtHShAgVxDmKayKEBEQY0fcB0oQED+J7mjISdALF8Eq2fYJ0AgVUCMOEonQJyx0A/TjyhAZKfoRhYAKUA913ofQvApQMg6ikiBjipAWXxyZGA4K0DIwpLSTs0rQF8IBH1WNSxA8+J881N8K0DVAf7gAhosQLuAkJR8sixAT1PBylGyLEAHqSnn/SIsQJwPBsNN4S1Af4KWZPO+LECb9RQxFZ0rQP2UMTlNTCtA7BedzM7JK0DEEp+i/XorQOtVQsSwxSpA/Lzzxh9SKkDFu56p0T8qQG1hcynQkilA3y/VmxVnKkCgrjXve1wqQFvbMzbMuipAEewhke8gK0DhyNhWtyMsQJR392vQtSxAexg0oFJsLECV/6jgvgwsQBiYphaCxixAfCq5r772K0CHbbLxK5UrQEu94s5DditAkB75xhETK0A8BYNWxuUpQHCN/DNeDSlA4SAOlg8pKUCBRGDRmSApQNXHTmPYNSlA7WGuYYDxKEBI/5jJ8tooQJnJQvMtFShAJU1X1Cm9KEBETic/JeUoQKWzaNAoNCpAvNeVakczKkB8EwqXNswqQCH9C+cu2ClAaLCRwwyiKECTH85Cb14oQAMM9M7qZShA3PdRCblrKECB/mqXL3YoQG3BD/UWEihAMPYPg8G9J0Cz1sVitQkoQJCu04argiZAaenyLWW0JkCssh6dDFUnQFic8vMvOidADT8+JXj4JUC1KOSjpF8nQIEJyYjNaydA978yHvJ+J0CvY5BvRbAnQFHaPw/jHCdAi5GBPS8PJkCjPg/rTIMmQDDQ8TX/LiZAZF6mYj6wJEDwGsKIQN4kQBUOildq5yNAZShPFG1GI0CxhHPofygkQGsKJ/paICRA2vtZd1+cI0ClNYty+/0jQIoLvznbuyNA0fH2e/b3I0BcIdjHFKsjQD80TOdBjyNATfoKvwHAIkDfBvNmLMUjQO3N7bVZrCNAxHLLNOYoI0CU7S6cQqwiQKx+y947iCFA9VNB7+dTIkB7hZPC4wYiQD7iUbcKaCJAy4AgDjosIUDEpGqcZvEhQGsS6s3sEyNAFcZG795jJEAi3U8JVvMjQKXS5WM3ByRAacpfx7AVJECReVWDr5kkQFvX+T+X1CNAMp0zZ++QJEAZ6whZ/wwmQP2oMZWqxyZA56+Uz5Z2J0BtjdYF3dAmQFCrVchAayZAI9wWr9c9J0D4YwzXeVsmQDPG0zi87iVABJ7zg/UKJ0Bnq5EA0qInQAf2JOpl7idA1Oiir3MAJkAVcbcEbVInQHEnSFS4XShANAL7bj85KEDlsc4SdyooQIQNsm65FyhAaA/0K/VcKEAork2zmk0pQCAYMPP9IClApBpPJtB0KEDsmtdAFNsoQFyoUEgx3ChAcy8jC6OZKECskUs1n80nQPNxO4ZZPiZAGB2T6uO9JkBDEhItXnknQBcwfo5tsCdAfQ+KR4mvJ0A41td3i90nQDcu7WE96ShAm+q5WpRdKEDZJRYf06snQKmLbCc3LidA044Pbu+JJ0AAHHAuqW0oQAUqyTwnxSdArL7giLPFJ0CEe6eHWVcoQDsOkbArGShA8f4d7Jq3J0AdC2hB4wsoQD+Jq8LWMyhABUtb8acHKUA9uasCR5YoQG0AgQWINSlAyawlKUCNKEAoJFtyHmApQCcS08ueAypAD4YjUis4KkALLmJbHMYqQM8pgkqAsSpA0FAEsnamK0Bz2MrRNCYsQKUjTghKkStAB9Kr2aZmLED/rocR6qQsQHz7PSEUVCxApaMVCMooLEBIaGsnqK4sQNjJIIJ5Sy1AuOpd0ZZGLUDDU+iGFKYuQByM8VO17i5AdET/Wd6pL0CguyXSHzwvQAV8oRdfDDBACQwC0wiXMEBnRv//A/cwQF/IWe9VIDFA3hTuy+Y+MUBXLzG61qIwQLW4wC8zZjBA7wRW3ApqMEBqWFjE1TcwQKcWcpuL9S5AmJpQ/L6YLkAh9e6O1TUuQMWeIzS1ni5Af4wKPHneLkBNoRQvKQwvQL8MZNPIjy5AMJGiLpXaLUAAzAxaYnAtQCV4Lc/jAy5AoByclPimLUCVr9zibFMuQGMMwWakuC5A1YCMsluYLkATD0UVP1QuQLfegkQM4yxACzPUZpvsLUBVpnqdCr4uQJhcUhynZC9AnG/8wC75L0BwhtV1cAowQIQnSZsG5S5An+b+xMCELkDx6jlEE9QtQNz+2/Inhi1AON9QRWx1LkBjuXCg3ysuQFziFNPhxy1A3ArREK9aLUArznxz4dAtQJmDvwOZSC1A/OK+vVYhLUCsXXat+kosQPxRTFVLWixAnB7cvky+LUDw6uMhVGsuQFVbCMtg1S5AXAjQXblhLkC872FD4y8vQCAUzmB1wC9ASI72hBdRL0BJa2w7h/ouQDXlkYksZy9Am3nj41pfMECvhgDq1x0xQGPC0zzF4zBAvjKPq/7TMEDdaMaS5rswQBnMA1r4yTBADaSRjZGuMECt4U3ou4gwQHeArT0SeTBAYyQJzxmnMEAY0RhZbj4xQF0GJUHS4zBAi3H12Bt0MUAUqdWptsYxQBgu/Rc/BzJAgS/8Gc29MUCPnWgg4vwxQH2Q8GHHNzFA/ljsWVIhMUB38B9A+FUxQIYCYSokUTFA+/hxxNPuMUBJJe58Jt8xQJntDX2jkjFABZsjUhpMMkBehRynPm4yQNHA8OiY/DFAVY5wNIAWMkCulqQNI1AyQEfyzzUCyDJA2qj2zcX2MkBN5kgpoxYzQCuJesW8wzJAH87zbRHLMkAWN42ErcoyQAz+b+SNnDJANRbh1zp3MkD38fwivIcyQD33Fe/ddzJAz18JEMZuMkB+mlRcNVUyQFPInqhfOjJAHmhVgc71MUCVpJUCutMxQNU9efdzqjFA5UROHd6FMUC1CbalPXIxQKCTakzQOzFAe3suKDgRMUCX1r14HVUxQJmOEaM4BzFAlfDk9KtrMECmGgHWErIwQDjmsCF6HTBAJ2nr7IwIMEAUUXc17JUwQFCZkyAK7TBAWX2+UqhiMUArQ/+kgfUwQKguXe/KNjFABaKS+wTlMEApTn53ObAwQK1JUkvaHTFAt7Ooyk8ZMUBNbhOgUXsxQEm/eTTjtzFAY42vbNTfMUAjbQqZQ4kxQAkMNAZjazFAkM1iPNSOMUBZvxhyhtExQC+s5A75LjJAwfCp/6IYMkCbPN5msQEyQL0e81p7GjJAJj8Lcxj1MUBSEIrxvlMyQGP0j6CSUDFAX6uW37ktMUARdsQ5fhkxQKvuWIPJFjFAiXZgkrpcMEAEvpx2H4YwQEkck0Wu4y9A4dSsdFsKL0CFG/Rku94uQHdJZIjBCy9AOPrMV5niLkAZsxgDAQ4wQLDHWtNHXzBAd2vWJwNNMEBLpRdvNaIwQE57+kj+ODBAHIgc5WxxMEBYBnlOiccwQEXxNoUs0TBAWIuqQNhnMECrzEO0bCcwQKWJyLRZUjBAXxCCcoRfMEAbekv8jfMvQCCKuoNfFS9ABdN3W08nL0BvndgUoqEwQAv4We7SnzBAix39nKfgMEDyV36GfRsxQFPkg8KmEjFAu96NG8Z6MEBBeDlGwygwQN+UTYD5EzBAE5ztWp8NL0BzeLRecpEvQGT9kvX3mS9AZC10JLyxLkBHcCYxPCYuQD0KJMylUy5AERgK2FI1LkAnswHnnnEuQADn0/bCGC9AoHoy9LOYL0DID0DpUqEvQFntG+YcRi9A0Qq2cNc/L0BxnP0NYn8uQFxvSxWIMy9AvFC+J0+4LkDZ9BJrvdMuQAvS8ixTpC5Ax8waAaOcL0Axc9VW+SAwQPM2gnFqTzBA/48DNaGzMEBw/adwJlEwQHIFjC9yEDBA6Qs/JFcrMEC0EcXxSnkwQGl82ZsvuzBAsQP+HC+oMUC1vHptCiQyQBRnja9SRjJALvu+KSlSMkBPmdui38gyQPZUa5tsszJAqe3irtpkMkBZtHMaSywyQAtYJU69FzJAVRyK4qH/MUBk/tcQ8xYxQNzhXP/sCjFAPwPuOX9TMUCbGpRCrZExQGhsxpEJajFA7IDK+wdwMUBnSuu94IQxQEtyxHXVsDFAxg4cNs3uMUBXQ6aTCpoxQCxtVJvkqDFAuAo08iWFMUC2GdgDjjExQKVymtU7wDBAgaywAGIhMUCHKHCDYs4wQHPhyEOzcjBAkY4KOuajMEAMf0W5GmUwQIJg/WqSWTBAA6775QOLMECz5KOOkB4wQAklES4KUDBAV5R23ZpDMEBLB1Gu6tYwQO9MH3f7djBAyZSpGUwSMEDp+xxdwVswQInrfhASVjBA2LVrRQuzL0BkjYiuYx8wQLqD5KtdWjBAKoJ8ETUiMEDHZXZ9JIkwQEdNjf0BnDBAoBSDxa87MECrgXlhv0swQPfMxqyXnDBAV1hpTs3cMEBWCrhm2H8xQAfrcZ09CzJAjKFz9KILMUDlii2OJOcwQINR7JhO0DFAPWE+EKWNMUDFnGNMZWgxQMe5ZwHTfTFAG52qpE9bMUBkCjoYLBIxQBeD6cnX/DBAgwhAvaA6MUAuz8LFoVIxQFf6YLdtKzFAlSiN1zVRMUBMAPiKcxoxQEd4cuKeezBAP+Xrmt9eMEBSECx8uT4wQAjMswJNjC9AyNzer8fXLkBRZbPePi0uQKQ6hc/TOy1AWR9eOQbRLUDchO86oScuQHmAR5TwBy5A6/k4oxrDLUAn0NyYG10tQF8UvX9yxSxAz8DtK18GLEBgKxlb4jYsQGlDq/rL/CxAtCTGkihVLEDNJ445RbYsQC113V1IsSxAeZsNO3dOK0D/nUcvi5wqQL+qPAYqkSpAx9Mk499QKkCUGnA8qREqQOdjgu2YqylAYZmUpvGzKUB18oNcyKgpQG3vqk0vcylAVz2EDHbuKEBfidZ2otQoQNNU/mqggihArw/eJeG4KECgzJFD0jQpQDArPRgXNylAx3Fnk5EaKkCHeAXOlpUqQDw3OHFtlipA36P0DuXwKkAxdo3GxewrQAMsbgV7NCxAOHZfUnPMLEAoC0UA/hEsQJCa3qyFgSxAfagvWECTLEB0qVEYhnYtQGlRMce4zSxAI77TaHNvLEDgB6WqI70rQBHGOZ9W3CtARxZxbU47LEBd3sUcbH4rQC1biGdyiSxANc1bm/34LEAocg0w4NosQGlP+UE2by1Af80X/NIBLkDVi4qHlC0uQNH+xtVKeC5AaYHvQvQVLkDvbRoGFHEuQGcTBPimXy9A9J1iY5vQL0DVs4y/dIAvQFkdJIbuzi5AIZxGQr+0LkAz/DoRHqIvQAELZgSUfS9AY7g2GNiTL0BF2QvpchEwQG2gkA/D/S9AocGkzuIyMEDJ7hCjz5QwQDfzz/tdsDBAdKAM11lLMECQRiTRfM4vQKcuA8rnEDBAi0us3VT+L0B1d47iFDkwQJPfBEU/xi9At0RUV3tYMEDypQpekoMwQJsZsNUBFzBAVxYPilEnMECLBbNmiVAwQOTOeK8nGzBAYGDwb1e1MEAjcX4ZJRQwQJlYhn1BxC9AbZ90lNAKMEChS2shYcsvQG9Z11dedi9AXeOxFyMUL0AMQIMYwe4uQFGBGnZh6S5AKAG0yPc0L0C84TKnYS0vQB1Kt0Lo7y5ApbesexNUL0B//0pA64gvQE8DSjdJFS9A2e0iSAx5L0A/44eW9kMwQAv6RKKqSzBAwbi8/Eh/MEAznNQxDpcwQHotv6R8nzBANdSNf+gsMEAzDTDmD4gwQK8uEUDpDzBA57eX9Gv1L0CPt0ruaVUwQKxR6z5/3S9Aj5owMaDOLkAvUMPA7CAvQMGq05/K7C1AgH2ZNKZsLkBL5s/PQG0uQNE6KABOVS1AWcRYpsHFLUBxI/sJqMQtQI/zKcWk8C1AnaXm8/hNLkDU93AKgVUtQNm01xsl3ixAe2IYIyutLEBbvc2Y2DssQPVFLviBsixANz2hwPjLLEAIxqwzBrAsQFT5cfDHYixAiXGmJh0CLUAgxOLVXIgsQFHWLO3/ny1AERBjXpE6LkDAIGvd38QtQAyWq7rQIS5AsTrkb+N0LkAAqdRwslIuQJvb1Gv9oi5AKcus4fRHLkC02PvFroQvQA/Iq3QOYS5A5SpdeCzILkBjfOd7lXItQIAk9E1tYy5AaIINh2gbL0BlfDzeBYYuQOff/faioy1AxzhTRRzlLEDtI723x+UsQOcY8lgBIyxAY5bBTtw+K0CtjHIrGmsqQGs55TK2sCpAzZ3K8s83KkCv9OsyrRgqQIy+Mw+Z1SlAAYrrbaM6KkAf+g0DHMspQEnEu42EiShAuV22ph1HJ0ApImQhRewmQO2PTdXLZyZA1HwdfpgSKEAgt9i1saInQKWBPntpYihAEFiLIWZMKEATyfvd8d8nQDilGSixzydA14XX3tN3J0Dor2QwLLMmQK8PeNYLdCZA3zyQ1XS7JkD57wPgXCAnQBhhZNQJ9SVA9/TryfL7JUDJEgK1vJ4lQK+FFcLtiyVA7Djk9K/oJUB7ONGiZ/MkQIbaLaCC4iRAW4acr4PpJEA64CKRdeskQIDeV8Lo+CRAsDAfceS6JECjc8x3vKAjQNCvCUCJiSNA93+Gdj88I0BNJklR3MAjQOhvrTOVKSVAKVFCfqFHJUAX8isu4PwlQH07U+KFLyZAadrukG23JkCAcS5wTmMmQKRsJTLy5SVAvM9eNEvpJUDEkwV+HrslQNmMAIU9TyVAicuKsQG3JUDrgFQfPT0lQNEmwhLqDyVAf5hSWgSBI0ATUd0iAMYjQMbBiajmPiRAVZtGBiJOJUBANIibibQlQIVGvpc1aSVA88+MmxT2JUAEswkJF3omQIFnvgZe1CZAU3eyuY4eJ0B/GZhJtdcmQFOpdueKuCdALRW7L/7IJkBfwCReP7EmQOOnMXBDGSZA+Ex9ZDY1JkBNrtl1FMUmQCC0Ka16XydArKkvg3jwJ0Cp6N6dh2onQMPQ8gEtWyZA5ZhdfTp0J0DU/Jq1YP4nQPB2SeN5qydAFXlcQad4J0CsektKYYomQEkzgzxb5SVAkR+GRHOlJUBB/uFb0zclQOe8P+YrWSVAkHzQLPZzJkC92oIId4AmQDU0vvQclSZALV52XAdAJkANVSxHqD8mQAs5eCzxyCZASeP6j1kBKEAnkjzoZ1EnQPC2hVWe9idAdyVPckU5KEDRyqnmw5gpQHHuDAWaZClAMGF/rwbPKUA3Jfe1zEUqQIgRglsIfClAUOCFKIhhKUDBFwiF480pQP+NqQAHRClAQAS7+wVWKUCY0uSpaNgpQCEtgdjDmipAzwdhmBWIKkC5LOyEMmErQKuLGov3/ytAhYjJ86mZK0BhfXVsttUrQIHxkhzPJCtA2CrwI+pYKkDp+V+dl4UqQAjaGLOgWypAQ3MHx/wcKkDY4s/WXqYqQLQFFrX5qitAkShfIDlwKkC4jHl6NJ8qQJxvEfuVMSpAYSOVnT3BKkDAKL8ft+QqQL19ax4nXitAGOBw98TZLEBbydpimZorQHidRNd+XStAzHI1HsE+K0BV+YIeHRQqQFgCvwnPuilAMWf0Z9kQKkAfN5at5G8pQDVTyHxwiClA0HYdIfllKUCcyhR020woQFHbwSPb2idA6PGFn95eJ0BM94XO6XEmQHGP+GkWtCZApAMu/9xNJkCd/5gE3oklQLF6Iu6nYiZAT5y1ZbqcJkDAuE499tYmQGg0ujV1/iZAM3JVOa1hJkC5g/OgxJgnQND4hinbOChAveuOuKVMJ0ARjYG4PYMnQA+aLbFYVidAnSpCgHfAJ0CzANUKNG4nQGc1hxFKUSdAUFWv5iGJJ0Cko/ZMVzwnQAugw/5WDihAL+zRPpjZJ0Co0B8wXnAnQIMsY16LYCdAQIZjL5orJ0BhF4S0P0kmQLnRKFGcbyZA9+n5EdsCJkC9/wsbfuclQJXhFFrh4SVAYRhFQbohJUANj4YJtQgmQJOuD+1dNCZANQ6cGk4QKEA476drEhsoQChax8Pj1yhAMWDZS1SoKECILr6ljGQpQHfmksJbYypAc0S26DMDKkAXPS+qYlYpQPsnOkju+yhA97H+C4sZKUBDiKsJ2Q0pQP1+qr/9IidAbMtK1loIKEAvklwLzmEoQIuPNNpmYilAg6em9Ev8KEAbhVjj8i0pQPv9MIFHBipAyY306XBqKUD/W8B/nQopQOCb/a4QAypAowvBMcGhKkAtHsbr2RwrQOHPb+pLaStA5CcD7vZmKkCFdLGWHg0rQECG3MdZzitA4NgjyvHjLEDJdYQKFkQtQKw+CiGaAi5At7K2G5IELkBzP4yb428uQJs73tPfoC1AyVOmsN7wLUCrZKw7eKEtQJMyInjMuy1ASG/wUw5ULUC3F8iVCJcsQKTprQJYSCxAfz5CeZm0K0C0zwiZKO4rQAF9ydo+ZyxAkPtY+cUKLECQn/UmPBwtQIvzv//isCxA+at2SFbEK0CTzoWyR0ErQDOlJTNi8ipAnZebWkBtK0BFVmAmlGwrQCVTnftfLStAc91ptbbNK0C1biRGAOEqQCQwX2BLKCtA8LsKaTklK0DXEpux9norQCTIudKeMCtAwXStqWAELEDQB+blwzssQGcl3HNfcy1AcXO6xlVBLkAY7uxG+gcvQPTfwgMKpy5ALZGATFI8L0CBzQZ9QR8vQNiQMreoDi5AqXw5reo9LkCx0WODFoYuQFP8iB9GIS5As4rHbZI1LkBDUsP1gAIvQLst/nnbLS9Aue2kkhBQL0DIvePPh+cvQG+AkLywIzBAqXIY0HO1MEA6cBMYHegwQNp6OZ7VYTBAjGDXTFVuMECiF1VeUB0wQPMhdl1PHDBAz9JY9VtKMEBfsrhL3YwvQBAH0ZVDFS9AYXNDTBV3L0AM47AG95YvQHTzuHzrNi9Asxxqb8gML0BoXwoCs4AwQMkOJ29Ovy9ACRoS9hlEL0AdIPkAABgvQAjC34x5AS5AJTnRCBXALUCLssG2vNotQKyRFPRV5y1Al78nC/oZLkBbq5ho2lIvQJcnv2cXTS5Ax7cgd/NzLkC9ppHjkRsvQH+ugbM2hC5AhMsypSb2LkDU+mtDIpcvQCeAQP5/jS5AeLQwoZs7L0D9YC6JB0MvQG1HGGy0gi5AgSvxo4w4LkC9edGvG2wtQPVXFg4gHS1AWIQc+9t3LUBUfSPQx8UsQHSg5EH9jStA4w7jXsUkLEB33haqksArQKOXkTWG9ytAF2DE57sOK0AHmh0XGoUrQDAKG1LTJSxAzSrpwWvCLEAYQfJy3fEsQEwHB23ISS1AbXwrP8xDLEAftQr5xgQtQEkdZW4TuSxA20Su21mJK0BR/ZcSl1EqQM8o+cC7pSpAIb03cKHuKkDT7MrFgM0pQIiUaSxW8ilAJPVqjXMMKkBxoHHRSEUqQAMZR19v5ipA2IZgz1/vKkAhEn8cutIrQLWQOXWStitAx5aogRYvK0B1hzQBQ5orQDg5+r3ZmCtA/LrtwggGLECUMGmHtJErQFkd6NXsWitAUfcu8uktKkCvgN5iqz0oQEmMFB+QPilA+0Xec3LpKUBtlpPGeIEpQG+8CiND+ClAnYmgRgF7K0BXmT8sylgsQCTeS9B52ixAlBM5C684LEC0tzlHnfIsQDCFMHDjkS1ACL0NN8xXLEC7V/+h5M0sQJul7CAVkCxAs7WkCIIILECxWsMNa0MsQJTF7Hwz3itALQkZW9XyLEBcP7v12PgsQGwLtA18ti1ALFy6B1gbL0CtTSCD330uQD3EKlhzvS1Ay6tYGShOLkB8mLXmoEEuQBzgIv+EIS9AsLNjUgDZL0D32ARuiXkvQPGONyX1ZS5ASM+pE2VVL0DHUsC4BS4wQA/KMyg1CzBAmWVfMBgRMEBXoUO+uW4vQE1Y4HJ4/y9ATbS2PKX1L0CopTN57rguQA2IGyhABi9AULSHDp5jL0D18gPHTC8vQPv2VlIeIC9AKBVwJChUL0AMpP+G7MAvQCFHPgD/CTBAeaAXgj7mL0Ctxojk7ZcuQBgVWkYjJC9AUF0F00oUMEBtFvsrApsuQNU1nGamFi5AibyaJcmpLkDD80BzF7QuQMtL4h7uhy5A6D1uyG7jLkAUMao4tPouQAcJ+58Hly5AOF1LYTTALkDdQ0FUzR0uQDVwsTM6+S1AC/i7KoXTLUCJwiDH5oEsQJy/gQJ/NC1AVwT/frTwLUBj2r4FshgtQF0sD8Jb8SxANGcrS3WrLEBrnXO7R44sQPxoma4pMC5AkXDisSZsLkAkFzL1esctQK94Tm+Cpi1AwGqyDIYzLEDfKqjbmc4sQCOPT7rPcC1A6XATL5yVLUCBKYwEF8osQCHk0LMI2SxAu3I4VgfKK0CoDa/IBjgtQP3DsnXcJi1AGNTf1qJNLEChfRcL37orQJGU1KtwqyxAF1FFI6fFLUDYUUYjWfktQFjXhdo/3S1AeaSYFTYYLkCBJApJAj4uQJWYPt9n/y1A7Ts135LoLEA/rPKZTqIsQMSqIscKSCxA3zhEU9DFLECM065mEKIsQEMMGDa43ytAeQFyhpQaKkCFb+ncot0qQPBoqFTSrCtAt8CeMvn9LEBxvzm3u2osQJcCvRvo0ixA1apuf8XAK0C85N+gvsQsQIF7LM+47yxA7BlgzmpiLEBotwcmgBwtQFsVbPB46y1ALRIRFKmlLUAg1QSDVS4tQIhbf6RCCy1ADIm23fhtLUBx1DJ4g1ktQPfI6ng9UC5ApOqJiEPXLkCQCwGWvvktQCQ7we/s1S1AoxLoHqNcLEA5fMKa7ugsQH8hzY5u9ixAjbnuowO4LECAGxK3E+ErQE+6AknFbCxA0e9y88YtK0CncDmwP2gsQMNmqLHyKSxA2ws+aGGhK0BDL+VLWbYrQBXCSviRcCxAmx+0VIuiLEAExiCH2tQrQHgLeFmOOCtAnBhkgJ/VKkDHVo90U7oqQFyuh4JEKCtAjEQBKJRELEBkofcP3DMrQAco+g5fGCtAGPuFLPLRKkD/pOVZ2pQqQA1HXVkhkypAj5XrBon+KUAFrXO//QgqQI+tCedYwChAJJrq5mkXKUDBKaLJ2u4pQB3qOk4R5ClArGpRauUZKkBwSEIl3TspQFyd57/zTClAbFJ+jHALKkBjVhFNa1AqQHVaSWTQGylAS6uXWV6fKECx5ASn+uEoQFFGDIaviClA2QFsd6HhKEDgXY/rQV4oQLWJcqtAfSdAI4q3xH0vJkBh/9CYAg0lQCA0Ju7LPiVAK2qE2ri3JEDOBY4gNRojQGWB2E2NgiNA7RYE37waJEAZFBKh9ywkQBHt+cwo/SNAS2OQ/FqPI0DH0jZ008gjQDiEOKuiHyRAkbIAke7RI0CaSHSd66wjQLAM7M9sASRAemRuj+SjJEAlnN3XeTQjQKHQiAfApCNAh5e51tlfJEABUNk+SYwkQOP4BvluliVA3D5nhQuSJUAp+i2lxlIlQKkO6NxKyyRAUePRq981JED+D5zYMO4kQL24SsQo5CRAyfJq2h+2I0APTeL74WQkQM2dNoHXKyRA2FsbZ17iI0BltY1wKC4kQH/arqFOICRA04OKRJ22I0Bl/2XE6HAjQFBsJYByzSFAPSg7fgqVIUCYPfIpBysiQLrNE9NblSJAPdVLyQQuI0DPjwYVNaEiQGSNKl6t6yJA+XSUUDfuIkDkw1kWVTQjQBy6B9K/WiNAhmte87EAI0DvSHCODR4jQOHpuIdcbyJA25JkxhAYIkADj2bJoeUhQJu2AuzNrSFAeVg0IbAYIkB3p+m9wLohQBpflkVaxiBAkYnXcU1mIUDXKkcmFs0hQPW6OkAFVyJAF/ciDfxwI0DHcbwtr5EiQMm/WwGSmSJAEBVyib1CIkBVD5pIC8MhQGEBybDeJyNAGXgRuHpVIkDIhve/eewhQEHvhu/AFyFAKEQBPA0iIUD9104E4K8gQPAGtUDtLCBAJ1O8z2nwIEAuG/qSfNkhQEQngtShxiFA7z6TqZZrIECVpD3//aIgQCQQOYJ3wx9AH/epzA6BIEBFq+VYO9MgQKfJ80TbyyBAJL5lkmYXIUBYCekfxDUgQMeSnhio/R9AveJ64YDlH0Bda3xgBswcQJ0z4ZKqkR1ARII/UAYsH0Dk+8KWvpIgQHFc3gKnMyFAWS/L4MFZIEDUG9ie+EUeQDeSap5JBR5AuewzkGUzH0D5pc83angeQL3R5b1FRh1AQedwYzqcHkCvxvUnQIsdQHTpTffrXB1A6Qcq0UXAH0CZ9FyzhPwfQLmxKu/P/R9AFLSsIkZnIEAtbaVrtnYgQLuSEfiUliBAI3aafod1H0At6gb4P+UeQPBI+94MdB5AMWxlVOL6G0BH1x2gEAMcQAuS943xhR1AUdEyt8xoHEB51aCYvI4cQFuMh1nSKxxAsTCSRIu5GkAYx3Ypt+cZQFF3vQP9pBlA8HZPX8ggGUChBPiX//wYQCEl0GNzhxpAe5Blgd1iGUBEB1Z/dswZQB1+8gGj9hlAWQXqjMwsG0A58O0gay8bQLBJ4e3K3xlAZVmQjhF1G0BcSk+bE3seQAkZIPtKBx9AU9Q9wfrBHkBset0KcHUeQGGOPPpPtxxAWIy383A9HEDcxea4CA4bQOh8qR0UIhhA7YxvlrCEGEC0/KlKmtcZQJzP8ciBixlAuTAEGJu5GkAn7PJYWEAZQMywKbXtvBlA2ViSB/ozF0DvVXPWJboYQDvbM2y5nBhAFOetgzGgG0AQJi4Sw5kaQOPk6MwL/xhAYTOrxToMGEB5iS3y/cwZQCgtAEDQ/xtAJQohH08YHkDpFAykkFUeQKAesD9bqB5AdRZjkUV7HEC4JWbSrAMdQEu69gp0Nx1AvO0RxHoUHEC1TUYDtdQeQFhexd8THR5Ax4cR4KaCH0DkDE3eX5YeQBFp80OekB5AaaQ1bVjBH0CjehgZao0fQOG1Jr6pMyBAgNpTysRTHkD9tzZ7vJgeQFn/ryWlLR1APefCVXudH0ANDGMTppYeQF9Zm+S5Zh5AI1DICJDxHkB5PaAIu2ofQCBo2R5n7h9ArH5+CWzVH0AItlPxrrEgQAfPBcDMjSBAMeh5uz/JIEBKeMD7H9sgQMIjpdNLkSBA3YuOm2/dIEDBD4gmUcQgQAWhGdLCgSBALnxqy1tpIEBFGnBJiAQfQFP17/jJRR5A0MbgdR/zHECd2QIVp1kcQHQnkeTILBxAwd91FyzfGkADwCFUtLUZQMWjaxrZ8xlAkGgZTxyAGUAVEtP6PE4XQINrZTE5QRZA4VnfvxLgF0A9ypOkhIQaQNX9aXunVhhAa0/ZsXmdGkB4crLHlxEaQGxecC1djRdAFyKJDH7fGEA/BOuz5HMbQEu+UHATQBlAlxAy00EtGUANsGjF6p0WQL1KzCWiKhVAh8naDx7iF0CcHY/CdOEWQLQLuoXd9hlA29gp4NO0GkCQ/izYX0saQPtPzxR3ahlAOyXKz/+qF0AgyCKWaUIXQGB+gAL93RVAAK4JAHxoFUB1N1G3hS8WQNfP9OgAwxRANJ7jTi9xFkBZPLzieYwVQH2Kq8KfSBZAY0oxfY+vFkCpEYTBa2cWQDCIQt2fMBVA+xdVJawpFkCr6/6EFxIWQL2GS8JEbBZAqSEEhv6SF0B3qmTy1LAWQFSTpzgg9RNALS/NbmCfE0D/PoPfCj8SQKHU3UdHWhJAq5zJICqPEECkOb6vNrQNQNU0IBDBsg1AQNzsQhiDDEBkFEhfLJUQQHaDexJY7RBAiX/g0mmCDUDkc494E4kOQPferdpe5Q1AEM3Hk5bsDUCnWjgGc5oNQOjxoEdGvg5A+faPqjTsCkA1eqgMNHQOQGyBXZnZ8wtARclIjPE3C0Cjafz76+QNQEyEZYJ6iw5AiOjlauskEEDDY87+qZUOQLsGgVPn5A1A7VoMazQ6DkABYDii+C0MQDSQe0B8pwlAI7jc1UVdC0DhzZ3GDpgJQKnJGu/fdQpA1bYSS2hQB0C40VMJJZ4HQPQScb6t4QhAEAJWpORgB0BgXuSsX7kFQBp0MG8CKgVA3YNJ77sGCEC0PDTqNJMIQDS8F9U2wAZARC6ODHgwAUAZq+Lc+QQFQCfDvb1PlQNAA6Jk6Y4cAEBttzm+03ACQBLStSf5tABAT67Raxwp/j8N/fh/qi8DQP/OXUgp4whAHfdlb6ZOCEDv55VVAI0JQNxkfWBWRwdAXMsrGuPrCkA4EsPjE2gMQNHSjKPyVQlAJ+4++RbaBEDdXI6iowQFQBmS6OljsAtAb/eBNTE/CkCUrMOlVBMMQCxR7IOcJA1AWFb2l2jTD0DmwkIDynkQQCtfQ0JEbxFAB+V7Bn4uEUDnn0c7EXgRQLKyXSZwmBJAxGJQC9XYEkDTINOb8MESQI2cf86pPxNAR1zGbmsyEkCDj0y+JXkSQP9BcGr7yBFAaa9jWBZkEkAvH0PfEvgSQFGbIFuf+hFABvmwLtsZEUCptxrk5zAOQPujPT2wMA1AVQllxHDLDECoaaY/2awNQC8IKx1KNg9A+x98DIVNDEBZHdKiMiANQIlBLD+AWw9ATWLrsAHWDUCLxyr8UdQMQNHUehP2dQlASRR+kdQBBUC5O2yeyosCQDt1TUjAAQRAt3bx/2gFAUAUO10wtGD/Pw3q1sekCwBA17cBUf4CAUCb1x2mHtH4P3WBcZgftfU/EHR1GInR8z/MHgyRAJL5Pzph3cEHl/M/I623ZW1V/T80tJqVSrr6P/N1WqSWdvw/qyhywXyW8D+oY0LB4TLxP2ihu0Xyku0/s7PLAwhm3T9lONmWNpu1P39RdQ6OsKA/tambshtes7/AMi8niWDDv1AtPcUs28Y/FQdKHmZB5D8fhwgGZEfjP7KnlOa5aPI/6GRAJT3s8D+j20Wht/PQP0xftfPgCNs/rxOUR1yz2T/F2PnjStThPy9Kw4tLhtw/Pukp4krJ4j8JWSNVqUjrP+ii2vA2eeQ/B68Seoen5j/QrWa/l6niPxzymh+whNY/+BX3tOGr0j+QCul0Vt7hPzGs0Un+/uQ/7YksO+Awzz8mQCdBitXUP6Uw/AZqLd8/HpD4ood94D8tqGxpJtzoP92jFPjNF/Q/GAscDUUh9T9IJB0wgXX6P/O24IPH9vs/5LV+vvIH/T/FDFbO/mH2P0/S6cOBNPA/FGYb42it7z+VTfY+N133PxFLxR1UKPs//zXd5i0/9T+p7CK5HD72PyHsREYDq/g/6YSeWKah9T+IyHDLhsH4Pxi2h0ONi/k/Bc4xGIvY8z9Uklpt+sv1PxCq3eqr+vo/7V9exgGWAUB9tYau2XoEQI88VL814QJAZ9SzjjrwAEBYI3b4ltL7P7TYsumndP0/6CW/003Y+z85TrQFmY8DQEfotGQEbQJA66FTITRjAkC2CSub5QgCQNAFm4Umsf0/9e2+1YFG+j+zmfPTXxL4P/gpFQZ5lvI/2/BHLdRY/T+91NB9o6j7P63FT5tpfQFAfG+gm/YR/j+aMjRboPoAQKrU3gBnAABAI/lppegL/D/7Qng7nqgAQPw+qhv1uf8/oJ0XBF3b+D9Pmo2zEH/7PyzTtsFDJPc/CDgUYdbJ/j+PFvs3gwMAQKibeSX6hvg/LOkIW8uu+T8SAWU47HrzPxbPIavoJvM/O2/6ZZqu+z9N5nHi5Xj8P51vFMqhVv4/RSXIqp5i+D83kvXzFTv+PyC5ERZeTv8/jeHC6pvc/z+rxFNCK1IBQPZ3e3NOOgNAI1V6nWXGB0DtdtGjHlILQA0gr+5I5gtAhck0gJITEEDZsthCJ3kRQAvw3rClAhJAtuQmYqTTEEA24CirdpQRQAsKyG6/7hBAnH0zYsr3EEA/xZxcoXMPQPDAVIQhkBFA7B4YpZszEkCyPwls8Y8RQBVjeayZrA5ATDb0l3N2EEAh0WTY184SQH7k35uGRRFAvCU/t03uD0Am9XsoWn8QQJBe3XEXDBJAYJn4hjB7DkDTp2MoiWcNQJf0FLsKuwhAvQovhpYLB0BTBI8NrpYIQHgBlsn3FQZAW7zYxUXgDECBlgusRTgRQNNWLoAmXRFA8BBrddXgEUD039cPeW8TQBj+h12faRRArQSdRkWVFEBtZWZRUE8SQAHi4mwDOhBAGeKN76oSEECN++4hGikSQAPvCdMe3hFAW9PB96uQD0A93W0s5bcQQLOHo9303w1ABTTJqAgvDUBQ/0EhDEYNQAEHmbfIgA1AU8elx71iDkAr65KgXn4OQGm5RlCOrBBAfRwbjE33DkAhAPZsfW0NQCBig2fTBQ5AlVhRqeQED0CWW/LlzWMQQPwi1YnXQA9AwXa8CEqoD0CoQSpwumcLQMm6w4qLEgxAMb2XG+uDDEC7hayO7mALQGySSWncvg9Ay7Exh1mOEkAdKSrf+OMTQEEkH+k0/BNAmRcDYv7zE0D6I0u8qCMSQDVP7FSw4RRAz6nx6v+QE0Dnr6ssM1USQO9jFf9jeBNAEFaQqoNjFEAR/8hXRDMUQNb+W5QoNBNAPz8XuXJtEkDBGe8V3JkSQAu5sxu24BJAQgZDj0/eEEDPv8TUMxkQQJGvGQ33rhFAXUZhnQVGDkC/PapbCf8PQI+XikTHBxBA9/kBRpI9EUB11co5bsARQCsNdR30ZRNAP/2usSgKFEDxhFxddAUUQDiowwhhkhJAg2F7l7N+EUCPWzyGkzsPQCvTphDYzQ1AuUvnQITCEUDN0A+MvcARQFEAIpcVFQ9AJIXAlPzbDkB7cMdTfYAOQPDbpCfdSwxAW4dQWKVvDEA7AZYyLc8LQFhEHjyzRApANDYP3PUmDEBLJxKJ3ckMQCtoTntu5wtAV76azGMSDEAl1M6La7IMQJj3dHC9xwtAZFeu0iqGCEBHjeMnHQAGQLdV9jJeqQVAZBSkS1liBkCVnF0hm0ULQB1fuzKrswxAnsPWlSMREUC0z/vVt6URQKfU6obu7xBAfj9/OW8nEECv0WUc2IEQQJ0Kh/SQjxFAbO0JZgWvEEAlMMyLgtAQQM8XnhjNVBBAwLjz5louDkAzKYtBZ2QMQJXY0xbLpgxAWH/+vMAKDkBAJowA4mwJQETw0TfZfghAu9PVJr0KB0A744X/kvwCQPOqLic1SQRA9ewNZ2/ZBUDJF6DuJv8CQPM808IfmQNAqNqGjPXUAEDrMT+qVLgBQE4ltDAhKQBASxxUVbFD+j/3oAwpQET7P//zxNEcwv4/BRh6SywDAkAsGjoPeuP9Pz5cew8sKAFAaYbSketN/z9RLqLmioMAQNb92RdA7AJATM6Ynu9hAkB5cUJKcxsDQBUczylZbQRAsW9/zjAiBUBPFPykMiEFQAMSZcuOcwJACHwqFNohBUB67PUrE7kEQPgnG2+oKQpA5yXAzhJaDUAQT1qABdsMQC3Zgrv/Ig1A2dVF+TflDkB/ckGUehkOQB+qOOX8+g9AsAEsUZ1VDkAUfwSsrDoQQOFMElohDAtAqbAvgnpYCUDHgum+C9cHQFdHC/KyxQ5AL+Uh1L61D0Cn6Wb1S4MPQMe0GgB8URFA8Z6WA+FFE0BnjXUlW6ESQGQ46MkvthNARTcKkSAmF0C3wCxxHxYWQOd81Nx+ZRlAXCih3HrXGEBbz297K4kWQINaa5KdZhVARI+3axAoFEASYe141AAUQIi/SnG6JRJAq91zDuWTEUAEK4aotiwTQA7RF/WtZxNAy3ObBiHpEkDm/NEhxs0SQEYC+2bD+BBA7j8gqxVcEkB83pdMB6QQQDntPkxQnxFAFXHH3lGeD0BrtjSeO7QQQHFAXQmWThFAgY/nsgNOEED8y2VVdiwQQEWPRhlbVhJAsA3fgc4sEkCgTfoK3oIQQPhsdcXu/gtAMF0isUjGDEDkGS1enOIOQPdJk1QDNRBAl1XOmch5EEDzEiMYAikOQNkHMTylggtACIIepkDDD0C1xT5ll0kNQA0Gxqd6Vw5AZ4sVXYVQDEAnConmTGUJQGR/FPs2lApAHW0KAnOaDkDQAAdrhDwMQMPdv5dtmQpAbKNJkquzCkBQGpWfpcgKQHhPARteoAtAhZBxL9uaC0BB8pfA3YYKQJPfT+sjPgdAkABUX+5lB0Djwg0G2hUGQLy0EjrhbAdA6JF8S9RSC0Dv64dRtRsLQD+HL2RwThBAFCDwJyq+D0Br1sv+CToRQPOW/T2NnhJAoKENPyRhEkB8+giG5bkRQEnLv77DgxFAqdcxd3cME0DH06tKI0gUQC9JxB7rjxVAiQu6qtW1FEBJxqmiOdQTQCd8qooKThNAVd5hB3sTFECZmL9i3p0UQIddjBmWWxRAW/c45TB9FEBczJx96jYWQLnWx3q41xZATWXPme6dF0DUGPMhiDsWQJ12dUYLFRVAoyXxmmZaGEBQsGYRMmsYQBVU5/lB0BZAtEvOYSivFkApoHKlP48XQJ9proV9nhRAMyWxyrWwEkDjPc3NqWAUQDM5kYi1HhVAlLWDw/LKEkBqSBvkGOkTQN1HILcSNxZA7+6oTAdfFkBDWe7P0Z4YQIDTcBRWOxxADEQvbUafHEA7gLhGvxcdQI+WOLxJGh5AgFs5vR8BHUBExsvH+DYdQPjOyHY0Lh1AxTBVUXnsHUB9H1sQJcAeQIh8WanEnhtA2R6p/2lWHEC1xaGo6mkcQDyIS1J+0RpADexIQczTGUB/mXrSvZoaQHTD78qIFhlAxIqp3Le7GUD4zU27L5wZQA8C6Wui9BhAZO7ErCDfF0CnCLYf644YQLmWvOWghRdAhZkXC3lcGEDEfqlmHWcZQCWUH/kjARhAVR/o3OaiF0AYsFArIF8WQFxvLaBSCRhAYDlj24dMGEDtO5XkKBMZQGhZngg7OhtALdg85ZKpHEC7sXtfn0QeQEMgfQq9CR5AuC0tIrscHkABg7IjDZgeQLNYlI2QSR9A32n+E2hpIEBDJHeSR6MfQGteR4EdJR5AkzK9k6SkIECTvkvs03cgQCvXRvDKZSBANE8pAjhnIUCl0KGpfi0hQF2jh2dKLiBAbxaSRA+yIEDx2KDVhfMgQEDW9PKhtx5AUOU28zymH0B157DSgQceQHDu3Syctx1A0xjPeyFaH0BT5HA2LzIfQMUeE/j+th5AaOML+tS2H0ClrnRB7cEeQEOGZ79H+xxArEGxe9zaHED4qlW0UjodQFw1y9YAgB1A0y5Ax4tfHUAksbckDT8cQFR0ShF7kx1Anfwgawz7HkANOViuZgwfQGbe3WpEFCBAx6wTCsf4IEBcME6AlO0gQEga8LeG6yBAg2kY/OtjIECrO0OtVP0eQL9oaa5/HB9A02Z5fzQ1IUDGdZf6olohQH3XS/erHCNAW2mK9h2EI0B/TJlUyQQjQGHdE8o91CJAVUlgkv86I0C80vQ6x40jQNH17T42GiRAHswNVZqLJEDBdD5+iFIkQKDJY0cLpyJA59ZfpYuKIkAtKmIM/8AiQDGRFWtjzCJAY3SYo4bqIkC6IX6gmsAjQPFzEDG7OSNAz2ah/losI0AJDUjZmrkiQNkLldjw8SNA7E6y9lvPI0DXKh3vBu4jQF+Ny80CeCNAFY6NA5EZI0DvC4LPm/kiQNNjVzcDzSJAa9CSYMW6I0Ch4KzY9JYkQLBoXWe7RiNAwqIBTHdhI0DFOUp4CPIiQJIfKrqsfyFA09gzlE3bIUCrBNZTPewiQApEDV7SjSJAcgsQP9WJIkAldOtyjwUkQCeq3Eza/iNA3biGGkhHJEDsysgQ2XAlQDynFds+XydAQ5zVhSpUJ0BAU3bex88oQKM8cN/8lShAUyotB8D4KUC1fJj/ViYqQNGFt5cXhSlAgLlCm1i+KEAFXq29E7QnQHnbxDxeyydAzyk75wMDKEB9bU1OQUYoQH28TsuejihAcc+DzcI+KECbHQK81k4nQMc4VHAs4yZA04iGnHcKJ0C7Geu0Tk4nQFz0cKUdGyZAH2ARodyiJkD7GgdHk/omQNHnpEUvniZA3LSQFWpaJ0BwjhHRizAnQABbssCTTSZAP2//WQ68JkCJZv20gDEnQCANzMHr7SZAoNq/OIc/J0BwB5Ye3JQnQFQUMD1QfCdALX4eJp9aKEBXmvZEUAcpQCAYyk4YQilAIesnpg/3KEAXnVM0umgoQOwCjTitwShANWSPPoafKED8cAhNc0IpQL8GfiiZTilAdzmTU5lEKUDFEuBulO0oQJOURJe9XilAcKk1feSaJ0BQTB11G60nQGmlaWcsAChAGA5MvH3yJkB45CzaJXYmQEPL9N1giyZAPwQp/6swJUD4ROjFzaIlQH+utbMgbyVAtXiPOOYJJUALMT/4gqkkQHk4SHWp4iRApxIPMN6xI0CzNg+8MWIjQO5dwlww7CJAlwEVu2WpI0AVGqpDJzwjQBHjF+SwByNAw7YJ0cp7IkDzcBuFxD8iQFNZIFosQyFAI5Q5qOq+IUDldBIfkDghQFPAA/M8wiFAhpZK6KMjIkATmbJjiWQiQAVk6xLE4CJAet5yKMj6IkB+NeUhtQojQK/bFg9VqSJAyVZy/d+JIkCGkHQreewiQAFZR1q7ASRAdcJig/6sJEDp43AfI74kQIRg+udveSRAzUlY0PaYJEAKzb+m6M0kQHg9IPExbCRAYQ0+NOUBJUBpScmJts0lQISxpSuk2yVA+2ce2djRJUA+lxlBGiAlQAiwQeU9xiZAkwSwYMQEJkC3vCG2mpImQKe4xZSFrCZA10JGeKRgJkBg3Boa0vgmQISvcW9tVidA6X2VmfXzJkAHK4TpMcQmQGAkcfvAbyZAEYyaPPZzJUCPsGvNHlkkQI51Nku5GiRA8Yj0BD3JJUCRunIn7lYlQBsxzxq+7SVA/Ar8/mC7JECZRW/D5OcjQAlhQ0HC/iRAZ0ee57+3JEBHmsRRqh4kQHcR98r5TiNA9E0sZjCDIkChxEKBlHoiQHHQqte8JyJA8g+WGYVmIkCsFY1LmU0jQBDptbtYYCRA12dEeam6I0Bi8jHhigMkQK0XDicCNCNASQsH1T1BJEA/F2aZDkwkQJNMLv4tQyRAMUjVWNmDJEDV/z1JJ2AlQH2FV+Q2/SVAnSDKPrPeJUDafTJjrhYlQIsAx5z1DiRAC5uCONZ0IkAdJhKDmSYiQBRqk2E/IiFAqdgYr+GsIUA1U4toWrohQHISevDP0yBAnS6XfauyIUAtabamvz0hQAixOKgbHyFADUwW5AH4IUBCrSeISuUiQASLj80TSCFAgf1X5iBNIUCRILgk9nwiQDTDekqwziNAYVLD/bqIJEDDJ43u7sQjQHyjiJSsaCRAJd2B6K3MJEBP3ddeW7UkQKO2Ox6LMSVAJeY5M9lQJECfeqQl3xYlQPFKXEDXYSNAiCL4WWGRIkDTaPp/dy0iQIdA47FoHiJARe8t665VI0BnmjVTSqEiQH+5teYFzCJAp0gUuktXIkDvoC7oIFkiQNW/o5QO2CFAFQAvchDQIUA31ZBHZJchQGUY16cxtSFA4uTFzIvlIUC5dGhLtYohQJuiylU6UyJACznoYbzIIUAP91nsDTchQDZT8wYKVyFAToAZlti7IUD9Th64bsAhQKWkF2Zu0SBA6rN/E4paIEDlqfrF3ZUfQHP+U6JE8h1ADDo2K3OTHkAr4F5wGdMcQCX+hJZVJxtAPButV75UG0BTOk+wxxwcQNsojZOl/xxApZPIv4MiHEDvebqYQqIbQIO4QOmKXhtADQt1XbWNHEAla52rXKMdQK19/UV+dx9AH6+3o0SHIECbqSlHSCUhQC0QNWfNBCBA2SmfYedlHkD3TpCdo2MeQIn/yalkeSBA0+coGa3qH0BkOVtMvmkfQDz52hlGyR1Ar5VlmfjaG0A5C0nbypQcQDB0x6MEnhxA7wi9EcsTHUDl31BmIHAdQJ1DrYCCxB9ADNXo53hjHUBM5k5sBHQeQNh3wAYZdh9AZyGOCPPJHkBXlJPcAAwbQCGFVslr6hlApVczWlRPGUDUpmDkIUoYQAdYDCCkaRdAQbdUFCxnFkApl7ZtODkVQFT1ZzTa2hNAB+CZjCHOE0CPPz8g8fYSQMakfo8ndhNAP8kcppswFkDUAscG9VUVQEDO0gjX5BZAzI+a7XTCFkB1UF8gF+YVQAdNCn8HKhdAZXelvm5XFUBkmg8LHHEWQEyXXavAwBRAhY1bFqgCFEA4yQAk8gwUQITynpURcBNAIi6H+PUcFEA/2afONXoVQJiSwtpypxJAcysLp8xIE0ApLgyTLaYRQBBf8SMnLxFAQfXHCht5EEBl88cs7coNQK18SfjBlQ5AJCmo6KQXEECPyMpra3UNQDyelrCZKg1AR2T9Y1S7D0ABO5xHHjEQQH+gvTFIFBFAyt0I5OGhEEDasym4WC0RQLdOXEa7HBFA0t1UzO7dEkDdqQk3gvsSQJ2hlSjSThJA085mhMIEEkDlX63Jcv0RQMdAl6o3kBNAwUhzbI5ME0CFNRuWIM4UQEgVl8AvOBRAoePXkOBbFkBIVdnnrBoWQFjwrOObnxVAJCp8knk1FkCUl5FjOvoXQCCF6jRfWxdAPFrsWCmbF0Ax7Kdo6HcYQF+meBk4MRdALLIezPzWGEB3wIxry3cZQLS4N14nsRhA7xhQ8F8mGUDBQKOR1RkaQBefnxnY4BpAOXoJA1D/GkBXSYSd+3MaQKv+ZdpY1htAVK0lMYp7G0Aha5BubxkeQLtQvWjYaR1A8yGWkRTHHEDEinya46AaQNfSbu7oOxpABIeH0gX4GUAhaIF3IYsaQJDY8Rw/oRpA4/aRBd5BGUDP5WsHstsVQAiDhjG5yBRAByhbmOwjFUDHgPFULn8VQGuBG5/IVRZABVDqlXMMFkCCwNEo++cUQIOA+B4vxBVAx4bZbOxiE0BHPlhOMpsUQIiXrzpfgBJA0Zdu6OpBEkC3vBb/cGYRQOxlNY5nFhFACwHZusZ8EkDgzdNkQNIQQLCvPFHy+BBA8vJF8xXGEUAfbyWRsDISQMnW+Ifd7hJADDIMYgPLEkD3ihsjjYcTQB74PVW0RhNAYg9313bcEkCH/xlo3jgSQMtB6K8Lyg9Asx4V20XfD0A1LeKdNPEPQPWU5ssZAhBA3BueBSD4EEDTI6mg6LwRQOUThkxR9RJABUpgusFAFEAeOR37SeITQL9IsgJ8QBNATQL057cMFEDDaeS4awAUQGWMS97aWRdAGO7/cyV0FUC80aA09IYWQKFymEvFQBdAmROue+M/F0AjdyO73UAZQAsCxNC9PBhA++7kGaJlGEAE0tAB/TQYQAWL3SJZ5RhALWFXcVmtF0AoTIY1OVkZQBh+ufc+rxdAIWMMXqKXF0D7DmuGil8XQP9RCWCzLhdA/Pkovl/1GEBpmWtQF3wYQKRHv0tgZxhA+6uaHnjmF0DT8uq6u+UXQAF3DzcxiBZAWZpe1+k0F0BHjQ7Pg6IZQIz5PKbFCBpA+1tODywyGkCjMW+VgnwaQFAJU1+dsxpAvf0xAZRNHUCJw3gYsksfQNUrL5zBFh1AfFmR0F/3HEC/jXBHxpQdQOg1MDgIXx5AnYBP2wGOG0DAeI9zlcQbQEf6Jg8rvh1AkB277ttSG0AjbgMhNZEdQMiru+bxkx1ABbr6O/XiHkD8bmXPb2UgQLmkodpqpiBAh+Og+zEhIEB7tbXSzPkdQMCDUK1f7B1AjMUS7vWVHUBLbkfAElEeQFlTx3FpDh5ABUhiQxFsHUBt2x5goAMdQLs8hnJZbB5ASN0XMvKqIEANMMNW7D4gQAGCr8zEPyBAdyNl4/zcIEBJdwSIlSEhQNbl+rtswiBAEBi+RtIEIUCvL3eyAdIgQJaMiMJqiSFAHcDL/lbgIUBGyFOJMvkgQO4ro0cy8SBAKU0rIHOQIEBvEAiofMUgQGMcCmQsyCBAtAXC82UlH0DXFx10EvIeQMxSYaf6Ph1AZzejLKk9HkDRgdoDtaMdQAERcj+hzh1AcdzHg9v+G0Cd2YCI+nMaQK8j1z4gLRhAZ9600bsGGEC/eT5a3jcZQIkD55tlTRhAFfn3FtsjGUCd647RxyUYQAMmFU4fQhlAS9QrL0hSGkCVPJh/hd0bQBc/EJRUdBpAk6QK2XxGGEBAreFh+dMXQHhxP1vC5xVAPehbs4ITF0CX5wrUUogVQHgdCwj5aRVAUng1a+oeFEC7s2ReUEAVQMJkbe5PRxRALemTXMTPFUBNIlTFFWkVQMPF9gjK3RRAQGeayI6eE0Bt9r3krUISQEn+EuNaqxFAM62SZ7BREEBJvDKEzpARQCG+SdlwLhBA2EMtd5tbDkB8xcTRopcMQMOzBUXYwgVATabrqFHqCEDYkYD5OsMIQLst4xVXhwpAgO6u4IluDUAvQwbnUUwPQBEpkbVmlxBAERxWTwe3EUCFQDbpucEOQO8mdnBNgQ1AUSRnfpqbDUA/zt9HU/8NQBPMVQSwLQ9A9VbsRq3qEEBUJKqW28MNQBwRliYBAA5As9WNcLFdDkDdhhOpNKQQQIXznTdPExJA2OJ9MJA5DkADfMYHtz0PQKUMIX3uHw1Aafd3WNIdEUAi2I0K94sTQHKqPh/7aBNAUXdr1+zfFEAgN6Jb8iMUQLNPCA0lEBJARidl40zCEkDkITeB0sUSQA54M65rnxNAyaVIJCslFECBFw6B6MESQIPbgFQCVhJAeQY+03g4E0Cs6bHpGw0SQP/g+/+y/BFAtd1YIdguEkArI8OgR3kSQC5+dYCj1xNAuYdtgFbOE0CAyz0wXYATQAfEdWS3EBRAFKnxSgbjFUDUnh5nfNsVQAgociH7ghVAPfV4huTsF0CXJ0YHJ/8VQIqS/wJtHRVAAAj6XYb8FkD1P3oRdFsVQN0/9GA0ehZAVwg+jm1eGEBp6Hq9PtQXQGOYvIqe9xhA+EOPrmAeGUC8/bduYpUbQHMy1L/QvBxABWdUvR9DHECA0lc26RobQJGLA7kOihpAqYSfhj9nG0A/d3hmXSsdQDwvem+LMx5AMbTzR5xrHEDRaogXK+QbQDDpkja3ixxAK1fJauEyH0AdMKAyMcUeQBAMYgD/tB1AcECdzmR7H0BehOoKJ00gQC1pQhk7wR9A6mF+Pc5FIEAl2acU4h8gQBxvFpJLYiFAzUj+dlfoIUBjFvhlLLogQDVd+GE2oSFAA+1V8CwuIUCjAwKMl9QgQMOTPWE5GiFAWzzhtAhOIkDD5bFHI1shQKr61jvWDSJAKb5vP6BUIkBhBqNdrmEiQOvwxPbT3yJA4ycEITeWIkAXjYf4Hl4iQBPwmbH2JyJANl/SXPprIUBNIZN9yhwhQDBwWzcxviFADxZ/l7gDIUATHUBpl9AgQB+3OOQh7CBA/8UceNlJIECs81iC8F0fQAeoK+Hpyx9AlctcjjDOH0AbFRmt7CAgQI4M3xSHKSFAuyJ1apE/IUB1QEpvE48hQMjXtY/efiFADJw89O7CIECXkH6QdIkgQLCUwT7eyx9A+7Bj71rpIEB0tXzMYj4gQF6S7bCHgSBA4BWzpsirHkBFP+5jxrgfQEu3eslY2h9AbJRx6/HCH0AcpVzrPH4dQGdsDUTobB5AOdD/aOpXHkAr66Wm0WUfQJWAmG0jaRtAXOhR2pdEGUC7qJzmeNUYQFC/S3OnLxpANMer1gAlG0AM03qNgmocQN/UTQXELR1ANcW69zxaHECYOcU6GfAaQDBQkwOyxBxANxV766nMHEALAP/F8xkcQGiMGk8TvhpAv3V5FHSwGUAYzAXDb6MYQDelNOGlThpA+xEIUdT8HUD/VBtWIFYgQMAdO26twB5ARAhAw4HwHUA43/wHH1ccQLBWL67ynBhA10jONazUGEDTM+hNS3sYQFiLneb0sxlAZzqtW+VwGECn9Q5Zp0YYQMCmiVgQixlAK6DAdOPlG0BsNCYuWjMeQHeTjdgvmyBAET3+GakAIEAcQSkEjXgfQPhrtEsHCSFAqmloyoDoIUBBzafBzBIiQL9ZziDCTyJAn20TFmq9IkBxPgFg5QAjQMV9YTpnBSNAMgTTq4W5I0DIVmay15sjQPVWDzDjzSJAeEnCQbWHI0BDvdsl4rUiQIXf+w5FkyJAxJEJo/wyIkCq7KO9EechQL7+IVAKKCJA8pPqtdLQIUB3vjIbrLshQEEO5kOvjSJAel6YcKJxIUAwo7WT/qIiQCSvWc4nSiJApxBT0axGIUCJVL3esPcgQNpZ+cRwESFAqCWdldfkIEALldksiJ8gQMOiYihRMiBApdhUdxT8IEDrwuYkPmwgQAFCBPKR5iBAzEpRPaNWIUBcq5B04igiQP57RoQTGiJAY3Z7se2LIkCxVf4t3bgiQMvfTdVQOiNAIDEr6moYI0AmGJJbPCYjQPk90Bp7ySJAC6R2rfrEIkAnd6sm4CsiQHRifYzlGiJA7zVtG0spIkBpcR959wQhQHjEl3b8/CBAy2dbhXnQIEAu9xrHDMMgQGDkZL25GyFARfj67ZDoIECfnTXnRuggQL3qBcaiMyBATf3MnCxgIUC6oxfNSzwhQGvfg3oySyFAXaFrXUIYIkBwOAAfkV0iQNs+7+qyLSJAQWIN8a3fIUB/etrU7B0iQBsYvTu6JSJA1ZvH4yblIUCl3Bohv2whQKHmrsoZtyJAZ6og1nBaIUAwdLDMAzIiQOEshCVPeCFAyKYY5SyLIUCby59IC1UiQBVrlGviIyNARKKiQOD2I0AWkKQu9kIjQF9GCNSfkyJAu4lims4HI0AxkzQJ0GUiQI94hCI9tSFA3/LJ/4YrIEC1Bh4dpWMhQAcmu870dCFAybMZIbHTIUDRMAN5btwhQNU0qUBsWCNAkcrkJuAzI0Ch+5gBxykjQL/ecyGR0SJAXJACffSBJEA1jw8ebfkjQM9TJJXA9SNAN8Z15KJPJUCJUSrUlbkkQAuDKvE5pSRAWZX9IuA/JEBJ3e7Dm8EjQEOz42RtMyNAXB9r+C9zIkCDe+pPbFYiQN7liUiv7yFAKk+ytghsIUBiL5eyVZ0gQJv75t6sxB9AeFSwocFVHUCgeEA2EV0eQAVE0tEqpR1AQ3Xv/VKUH0DCzJ/yuuogQHwtpYfz2SBAj+hDnjXCIEDwY3C+5eIgQGoSs7p35CFA7YUa7rvHIUB1PP4KyHghQCV7pv9WpCFAJ2DmLZgIIUAtT/1gyaogQLHRMn3P/SBAS5LbG2llIEAz+W1cKjUhQKMg+hkFjCFA4widC9TzIUBnbs7qYC4iQMNKFZmXUyNAp7UcZR3oI0Dii0D+uhUkQAOi+K21VSNAUmhdfqcLI0DtmhXbv/giQIWt1Vp5/yJArVlymuJwIkAjraNc3tUiQMj6gtJhiCNAcUd/zK7iI0C9LmseHwQlQBN6JIOLMSVA4Osq/ZwNJkD2sk6LR3skQN0yR4e3GyVAyhqbzQAZJUAJWmkuIH0kQDWQnj9buCRAyfpw0JnNI0CT4IaOxUwjQPcRX1poNyNAZaLk9ZPcI0C2fJyge6EkQNNvK0SNnSVAJ56d2/q2JUBszcgwkHcmQO++P2oJySVArK4GuAWXJUAQKK6/ookkQMQI0HlOryRASwGgCJt0JEBUUSeobZojQCgDkXPGBCNAmVObfnbnIkDj1SqSakkjQL2XhRvfwCJAwQbtFsvMIkA80uqAjHchQI2bgYllviBAsPXvX9k0IUBJ0f961u4gQIk0juwwXyBAL9SVf31pIECtwRT33nwgQDUTWRIsVh1ALBWZusTbGkCcOwje6UAbQMxfq1fs2xlAuenLOhNIGUDjnl7Ug28YQChqZV/zqxhA030Hf3a/GEDwZsubc64VQHBWot+9YxdAULwHzMMDF0AD/JRyqlMZQMi88MsG8hZA8VfWr3SVGECnmUdTZoEaQE2N71/AvBxApDEZl5KpHEDozrEstN4dQOR0haqSPh1AzPecH+iHG0AsWOUsZx8bQK8XMTOWxRxAY9488zOfHkCQxsSNdEIdQNgvYA63/htAK0H6CxT+HEDDPFjLKCodQOHmL1shvhtA5MZ8jQK/GkCYKvEw3JEZQCfWlqAn5RlAdCguZ8zlGECMuAL/FygYQCwpAld8zhVAYGkEC/+RF0Ch/ME1p0EZQKnQIH15/xxAM4GnGlfJH0A7hc99MYogQPjinYy16x9A5BAhhMS+HkBbg9R/QfgcQHxB5wLuIR1AhP6msufPHkAAIYtnPCMeQJMDX9Y1IB5AwAo/1LuHHkCzxRaGWwofQFjcGDg4+B1AydQkvTdwGkBY/BhVsh0bQMcfq6/eLxxAwNDH1kUZHUD1U4MXHg8gQGc4JXF35xxAK6IUzNfgG0AvzzEN7QAfQKxS89KmGh5Aeajh94/mH0AVH9sgtCYfQPtS3pZsXiBATLbi/wXxH0DDba8j2YogQDTKJB80TCBArdQ3gF6HIEBc0dosrsIhQFOYeCH71SBAI/A+Nh6PIEBtF9nKwnMhQEG1mg14ryBAh4JFf+YhIEA/AAsUyKceQDdMSj8fsx9AgYEKqi7pH0AhhLiCp14gQOhmflYEJCBAAP6l6VoAIEDS6nGrdOIhQK2kzahMESJA+47kLOJ4IUAVHwOnwI8iQPEqQrbr6yJA0de45vxLI0AqTvBNmgEjQGKzwmo0/iNAXXYdb99RJED5LqXtno8jQBemC8flbyNAnRA8JjchI0DsyAI0x/siQALzqck70CFAYtmYgr7RIUAPo68qw4AhQPlBTnDiiSJAxWzOQZEoI0B1h/0TGykjQPpkvysA/yJALtGJzTiwI0CSAIfndAojQBRIYnMhHCNA2y7iD11zI0BTElM5SDwjQFvdTRWqUCJAasGgnCkwIkBT4dy7FPEhQEHBnmLl3iJAP/2MWGteI0B2xasMUJAjQHFEGpJm1iJAj0dCr8MHI0CN6F7niSwiQLcHtdzeyiFAK7sebFcLI0DlVaVbgh8iQEiGb4/hgiJAoGX6HHw+I0DCkL6Q7M4jQH2WYSehUyRAPDnH7rQiJEB8FzvodwkkQGI0HQ0BPSRAzXpNLxQZI0D4Vx8WP3kiQEi3syRvFiNAr4EtDMWRI0AW4xifm2IkQJ+/AMsyliRAMBQi9zxdJUCH9OOTNy4lQAlVqjjdfiVAKIN4lAWzJUC1M7Km9+wkQOmcQij/cCRA96Iq1uIWJkAzl4VYWWslQJFKBGwKHCVArcjmBiBwJECtiNjAZHIkQPYKj3zh+CNAbeQLPGorJEBhrpUsH6ciQJgYrjxVjyJAKNlOrtaqIUClpCeQ6JciQKYsH8XvHiNAeuStOpiJI0AJqZ37fSIjQCL6xWl7fyJAFGYXX7BQIUDT4ba40FkhQA7SO8KAKyFAmZCwaZuiIUBISOQxNOQgQGPzJYi+ZSBAHWwwygCkHkCodSY55bAeQF/bWLoTjx9AXO8OFcESH0CwCBkK/8weQFV/v489GCBAix5OhimlIEC25cdFTqUgQDGQLV9TBSFASduN9Q2qIEC/+mSgWMgfQNmEr/hOpR9AqzzHLX0UH0CdeA/ixyIeQBu++5k/2h1AyVf7G6iiHkCjF7zag1MgQMrg/YGU4iBA3EasnnnZIEClkIsaS60hQEnGhQNN5iFAKQohCq0OIUCm9ywCsV8hQG/U0UH7mCBAtF7ZexeWH0B77PI9PS8gQIAQ65+ZNh9AUe6lQa3bHkDF6fXwSd4fQH0bxuZ4IB9AiEuqo/VsH0DxxAWc1x4gQEMA+w/aZiBAfIjIo4wpH0AvihvZuDEfQM2TRcXbZyBAOaY4NcV/IEDTS35ZEcIfQHU6aJNxoh9AJym/OvOEIEDFGzjhsIUgQC6rTYrmlSBA1YZlKa7eHkADhQJTqW0fQGfuSKgB7h5Alf1dd/99IEAjJq49tpUgQCAWo/bnwh9AFfanG8ZoHkDMLSBAEu8eQEvZewrRtB9AzfTrjlgfIEB8rfXQ+YcfQMR9Jd4hwh9AeUPyfXISIEB080jD8jYfQPFElh6f4B5A/bhCIuGfH0AtCs8qWEAfQJ3BhSDD9B5ACFEAf9nkH0AtY6L1YWAgQEZ7gAnxziBAIXKgL2pRIEAVOZvmzyEgQPylpf583R5A2RGOj6HtHEAIT3/51qAaQPft5sSAWR1Axw/Ob2Q7HkBhhz8fABEfQKBIAuS/qR5ATO44pbxQHEBJDLl8cWkcQCjd+/N10xxAKAk6x8SeHEB9syGFyq8dQN+Sa0O3txxA5/ZpKzXLG0DnhBlQ284cQHUT6vUQmhxA30shdZ3DHEAH/bcgvQ0dQIVd5Iy4GhtAvOB212OnHUCYo7cLUXQfQClotZxCjiBAwxRy9lWWIUBXYXb26D0iQOghcx86FiJAwkJPOOGNIkDvRaPXRuQhQDsvh7k/HCJANbZe1gLPIUBfIYG8ez0hQHflhKIMcyBA/gs1vSIZIUBxoVWanWUhQEFpobBYiiJAgciCdRs9IkB9gogYX6oiQAFtUH8E0SJAffU5miXCI0CYxOOLDWIkQJwu+l3CAyVAefD0cQaWJUCUHUucdjElQFN2sfboDSVAa+E4k/w0JUBiEZ5yPhwlQEsZhinmlCNAS4q583Y4I0BfdEsSLVkjQPJDCMhKOiNA6U7sqKf8IkAxWi47cLgiQJlB2Q8GuiFAx47HYlgFIUA7QeOD0hYiQCZwwqELziFAJXhHWQa6IEAsaoOOcaIgQP1jZbDpBSBAQSs8LL2BIEBfhmHduo4hQJzqXAMzLyJARrZBWQp/IkC1PttKvG0hQNh3XiYRsiFAofMRo/RrIUA4+3oxPt0iQGshnuaQmCFAtBOCa7KYIUDjCQxnE5ggQK8djmq3ZyFAw0zTkMveIUCMrz180lshQFStqR2I9SBAo2BqEgPzIEAiZ8ldc6IgQJu4jniB/iBALY5u7MFbIEBlT4h3pQMfQACXgl6aGx9AzKP33aD8HkD150P0K0EdQCnT9AeQ/R9ARTOTHZiDHUDRBjYj2p4fQAWwBc5BdR1AUfJCYWNRH0AcjryaGiAfQPRwQ0drox9AhzAMNzTcH0BJR0z8zrAeQCWlXLaqvRpAT7NfoOjdGkAodS3t3nQdQHugVJO5PR1AKAGJdjsUHUCtp29uIl4cQC+sHbgushtAyJp7K1dBHECdYvYVeYMbQGQUoffxFB5A44q8DsP5HEAMsdiEBKgbQHhfj+e1uRlAxRrCUVqcGECL4qywAscYQHwl9QJkGBlAP/CqRkySGEAZhxNEhO8XQPX/BgSWDhtADWq8rslYGkCwNG2I/GYcQJ8ogg8scR1Al3S9VBaMH0BjJXKWnesfQFXhkq76MyBAWE+NZOgsIEB7jmCH07gfQEB72NFtriBAjOb0hiYpIUB8aZgePk8gQPf9iLIRvCBAm+30PVf8H0Dngfp1NvEeQAixuJMF7xxAKbXIoHu9G0AZxhl+UMQcQOC04014FR1Aqab83IDkHUDrRnQMzo8dQH3xMCuRbx9Ax35U/MNEIECWRWnPOwEhQKb3zkaHByBA6NaClxV8HkDhHKafLtEeQFVDX0DBIyBAIauDQ58jIECy9RZFgishQK35j1LlySFAveet6/KZIUD1cfTpjpYgQHS/b1v5ByFAsnktE8waIkCsA4kOGvQhQEnckLNdlCJA7Fb0aTzpIkC/+TN/xpMjQLeDf8HpjSJA+okZwblVIUBbRNeQJSAhQC8L2NuboSFA0V/rGfHYIUD7tCuYkoEhQG9aNjY69yBArTRqDqBFIEDV/vN45IkgQLSC1lFx1iBAHTyTNHUIIUCziIBAt2AhQGvcVJtI7SFAoFykwy6+IkCiAANscKIiQMF9VA2/fCJA2dV97UvPIkD/71jlwhkjQK887UuDXCNAN8x4K8I3JED/3j4wABwkQMm1F6yx3CJAhH1ym51ZIkCpwv5lgUYhQJyjgDDpgSBAwxrdmWIhIUAPQFcybGQgQM/F6r8xYSBAV7W6CjYsIEC6OadwQoAgQC9j8/+hSh9Aq0ldQo8tHkBMghrgXpEcQF8Nnu+6fhxATT4hEI2UHEDn7ZFSahEdQME62+n+Px9AHaclkQOCH0DjRY4IuGMfQMHS7nelSiBAFyO/9WRJIECYQ2AxjmAgQFnpim5wBSFA00nIt/ohIUCuBAL4zG0gQIdty8G5xSBApjeVrswhIkDGT9/be+8hQNNKWq1L9SFAAHHZX0I/IUC1qFvQ+tEhQHmlyy/N4yFAfsrEk2uUIUDHMnQyubshQMf8X8CkdiNAiivqPkHOI0CBAur0uDYjQGao9ZzUJiNADBLxVSiXIkCvhWLyT9MiQMbTK55jQSNABcWCGn/9I0Aa5c+6TGEkQMkAa1MnxCRA7WBvfW8FJUAdtJPqyOwlQE2Ukdo/tyRAmN+0ZzqnJUC0E+13QrwkQAEaTBBU5iRAFV9I+QaXJEA46AN8FdQkQM2WU1x+hiRAoRJSTWFVI0CDGqGwTr0jQF+Jqd8REiNAJi4B/3K9I0Bv6uceK90iQDf8s59O2SJAPIDMsT5MI0BfaVxpmQcjQEBZ2UsPLCJA0oLR/WNrIkDK+q/QmFQiQDk6neh8AiJAo/fFCbX+IUDFugpFxS4hQFtFubTWZiFAOsJjVYPQIECGW287cHwgQNvoqTMLKyFAXYFQTXhQIUDauWcNI4sgQKXn6nyNXCFAuUjZHbiaIEDNTzg9aNogQLUe4lIpDCBASQJa3DQ7H0AMeI2F4/YfQLyHGJOCFCBAfUx2z4UPIEAniR4A2gkgQGO2ffpo9R9Ae0LfUaAKIECU1KIiYOgfQGaZXN/+wCBAiFiD0FwXIUAFAQYTlYAgQJIjUtEM6CBA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 1\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"HSZwg9sA5z8xXTIr7lPwPyDc+l+TpNA/ejqzwZXk4T9BckK8LDnqP7xK2IPgNd0/kQshDPeg5D+zBL6DLBPnP2092qQB6Og/uJ2wcnFq9T/jGmiyHxvvPw8c0SO0XfM/taAebj4D8z8KnOq33VPyP2d88js7mvQ/HXsbOUNG7z/oVa3hLcPvP4ONMaye6vg/Uy7TNwVI/T+qMe/1QXXyP+z2mx7UNu4/j10n5NoJ5D+j/1oUrgbiP1VkaT2LEe4/6P29BR/k5z/tEgqDfSjwP33epCOkauU/PeafhOkB3j+sOAxHp2fgPwdldYbCIeE/KBB9fu+92j9JVHl43afWP7vyW8eM08s/kztIb9RCvz8ZLQZPWzrgP0vHvNwdTbe/gMOzkBy5rD/VHXFhjFjMv2c+REDSm9I/kA3nkjxfpL+w/4OBSm/mv1M3qjN9WvG/62Dym0jd8r83LotnVFfxvytXDypK0Oe/yAEw8T+Jzb/tM7jaxiHdv9bOMruuk+C/M8s5OUpd8b9LFiPNT+Phv6oRCzdMI9W/o2RS2bRh4L9gaFhoCD+uvxhK75dwmNi/VWXwC3iHXb+b8oCdgEm5P8HIiw1tGNI/9PPcwUlDyL8Fg9SztlDSvwBmjlFytNU/M0Yb7ftP0b8VSC7s42ziv6xfgXVlVPG/KIX9vlAG979ceYNhugzzv/YNJPJkEfO/uaXkgbiN97+PJ9+gTdr4v7ERW73EBvC/k6f4Jr6J9r+4ZAf1cTf5v8f4J4Nc7/6/Lb3YPdibAcAdmF3eX2oGwCnrCC7UaQXAo/Ex9U9eA8Dq3avJe+UEwKHM/q4yNgbAMP/e8yxMDcBcT6DZ9uYOwAxelInwVgrAOfi5Pzq3CsBN3iRXxwUHwGmJv4S9/AjAHzxNILtxBsD09HQ2LWoGwMRcy8wxNQbAVXCosYmZCcDb+U70DvsIwESrSeZ3jgzAn5fak9IoEMBiiqLk+acRwE9hgjiyMxPA0Yl/HdxiE8CPT4z9I+0QwPOLfay5bBDAwZqZjGRGD8BzrOfl6a0MwLlvp15WzgnAgdG+dfW7BcAvOPplHosJwDA/hEYxJgTAi+okNQ2bCcD3XubwV8gLwCtvVApKfw7A1g2M30QtEMAxseoPixIOwMdVYcpc3g/AfbouoaC9D8B8ek+M/ZARwE/dVckbiRHAHbwwdP/6D8BhiG5IUIsMwA3bYG92SQfAb7BS5QI4BsAhPZGQGgEHwGxRXCLG2AfAiLGTu09iC8C7slYVqM0MwAt5pQDeLw3A1cN0LvM9EMCM44wd+cMRwPebY7SXHhHA/pQrJ0OeEcAFM2abAtQQwMUS3p74hhLA2QXSTimpFMDdyDRx4rUWwM0hW/Rr8hbAa/TSv+ZnF8CENqSXb74WwNfl6p2LjRfAcNlle05QF8Df7EiaoSMXwKRLIEP63RfA7QkYme49F8ABKLFJ8woYwMxrYxYbLBfA17s3opE+GMCw2vrlQUAZwJhxFzzETxrA0Ktrse8tGMApjWpcr4AYwNF/G9Jr7xjA7IZYAnRdGMAAm9T5uD0YwM0gig/NahfAcW1Xm1KMGMB/jikm/sUYwLlgI2tBcBbAahB/hiE/FcDbJGacwdoYwITfLOD6ZxbAY7w3SE27FcCYtJaJMZ4VwKs9dgqmExfAXKjVBZwIGsBRJ5R5agcZwKQWZKqIbxnAJ7LOj+0jGsChDRb+9UYawLS+T6xzQB3AVSAxHk2GHMBoDupsC/kcwLXmfv3QsxrA7VWM5jMIG8CztG74vZsYwJ3RS+nOTRnAg5ZggvtLGsCYpzeckXEZwMTqz4+ojBfADVem1B1iF8AeEurWuxQVwLArpKGZ0BTAA8ts+9nBFcCRwn2dmNIUwFnsuPyQgBXA+Sh/iB2TEsBQhD1nIKsTwN5MMF58WxPAPAMdNkUjFcDwzTGl3mQVwDXGThmLFxTAl28VRpPgFsCREHPMrwwXwAMP/J7sZhjA+E/MNmBMGcBUHmj50GoZwDfyOhp2PxnAvUgoEFKNGMAlYOFrDt4YwK1hyTJW5xjAMVP4Or71GcDjCwdsogoYwKRvbcnAKRfAH6AVLkTyFMC9YA0eeu0RwH38bS4S/xHAszYIAY2VD8DL9nVaSsgNwI8RvzPtAA7Ab/73B1O1DcAv39yTH8YJwAzrU7En/AzAHVEtBr2XC8Bhx48bmFUJwKXhb5a68wXAwUl1iUJrB8BzQoWQm9gFwIFTGAO6cQLAAS4PfEYgBMA9+hDtZd8HwN2RmDsG6AbA45RTmrAvCsBYiOWSyDUKwDyH8eypVQfAacz11sUnCMAECPc2BA4IwGtcFkF3PAjAleSIqsE7B8AlLkycvt8FwNSi6wNGtgTA5Ux1Dp4RBMCXKS/TC3AIwL0qUoQgewnAIOrD7Ag/CMCsX+OGKikPwHOLN4QF4g/AHJa/HEw2EMAV4lxKZ2ERwCIcac9D2RDA4csGa+65EcD57IucjAUSwGl0c828shHAc2Medzm/E8DLKbUSXG0UwKQ9yNL6HRXAuGPkizJzFMDZlzF+PHUUwOXPdlSktxLAHS91vGS3EsAG+gYqYM0SwEur/oEteRPAOozAUi/REsCG15vzPj8TwD99rweKTBTAgluSBV0ME8DksmXkb8QSwA15RSz/vRXAPaaUzJhWFcDViZHOHwkWwCBwS8PrIhbAIK0SA74RFcC9hx3Er0QUwKB9PpiOuxXA5eFVcvkhFMCD912/R6ASwHO8BN56ZxPADgduARbKEcBrDh/xJ/8OwISO4XojtA3AJwvcyNTiDsBFdwoL4pANwF8IZKTqlQnA3bkOENYlB8BBokaAjysJwEMRFMF9KAfAn4A6+9j5CsDU2m+VN+8OwMJGGYJmCxHAFDXiB38TEsDSr41DYEcRwM0SxSR/cBLAnSl965brFMD1yHm2rrEVwIYKnqc9VBTAq1JBcP0XFMAo2V/xzPsSwEPsukWMihPAxV/ybvIWFMD91p6dVJgSwPfLMfpqoRPA3vV5HqFqFMCDgQN6R3kUwI3sh1MVWBXASzdkJhGiFMCwusenWA0VwPE+92f/EBbAFBbUWSUOFsAtZGSXvd0UwMxTnJ0vdhPAG87N8zS9EMCt8fLlGZEQwEOClrSHAA7A4Ap9pyxbDMAZdEY8c4QLwIeAaxmLbAvAZSpd2yLDCsDNqVo7IyUIwBvcg2epFAPA1HfniAIkBMDJD8uwV0EFwH+wtmeQKwXA7yqMyJcAB8C4UzisU+cJwNni6u09cQ3ApOqV4Nr4DMDr/HOOlw0RwHfBtPQ44hHAixrbppW3EsAr/IqEX3kSwEcIK90uCRPANbvY6KTsEsCns34lpPMRwMuiRAODThLA1ntzAhT/EsBJ2juQcWsRwNPDZu7JLhHASkVHSmzwEMDSoK2r45wSwE3Mev05/xTAFJJhHYBXFMDMB4r6vCIWwDWQGaWJzhTAkgYvSg37E8B4x7CVuQsUwGIWTcktmhPAG7Q1CtwdFcB97Lj4G+wUwFxQ8z0rQRbAIT8F8YMhF8CRpFi+Iw8XwAl1PHyxIhjAoJF8aFjZGcDgDYeDCYwawEWOrNdYYxrAVDS/eKlTGsBbAYBel0kZwF0xSd1eFxjAu4swqQ9/FsBfh/4+cFQXwJ1Qki7yOBnAfwszntrpGMBgYVoza78YwE8DA2qckRfAHd9gZeeOF8CA50ITI0oXwGcNIuf1OBfAB9L0gbtwGMBsaCuyzH8YwMtH6xBElRjAtL1/9CuAHMDHmBLgpwQawG/SNN/esRvAOfSgzspSHsCF2zeLqHQfwLyr4jm6kR7AoZfOITm+H8AwjYfYuXUdwNQkWf7h8R3Aj9W6UzhhHcBEqdZghI4dwAktkISWqRzAzOvmXOuTGsBpZNnOtgUbwOQ5cofJoBvA41UxNabEG8B3MYWFH1oawPnivPrQQB3A5C5wtAUKHcDflGp9ohQewA9xxU4wQh7AMH8+Sp7iHMAhZEfYh/cbwNeCfmfvhxnAVW85V3MoGMDgdApjjTkYwOw7gQ6YGRnAUZhspZRVGcATGSefnxYZwPDGMytTpxnAHBdT8EhhGsA7VNcVyVkawCTJ2lqw1BrA8zFBMwrGGsBBzZF4LsgawK9izYp/FBnAqffjyjPtGMBXQEHbmdUXwAi0PIy+3hbAVS+HzcTmGMAkELNkjTQZwF/1/RyeGRfAlEbPEwBBFsCdAbDgPvYYwDd+qwE1KhrABM7VaImxGcDVG2JKawgZwHDgbA7dwhjA/czT8nfSGMCxry64DIcYwDSD6/buXRfAz3ox4AfWF8B5k9/0JTgYwH2hDnnCAhjAaeOlc4qYGcCTLueX+dcYwMvNzFjeVxrAHdvVqGtjG8AUAx7R1iQawETX+vL3zBrAHL0jzjHXGcBXkPi12PMZwJ1sH3foLhzA+RAJw40EHMCwinIKA7wbwOUWrnrvLRrASHwRsLxsF8DT/CLdy7wZwLlFNkvqURnAWOmZeEhRGMCcMQkeHh8WwJ+I2lBBUBPAIdap5jZ+FcBAIsoaGwYWwN1KwhjyQxjAAK/olxbdGMDz6M+fShQYwJkd+Ib58BfAM6GF5EXeFcCzVQ/EuyoWwEQfGMjH7xXA3JKYaGmoFsCs9OeUC+UWwLNkWOhIDhjACYVs7qvgGcBXsaGSshMZwFDu/2bikhnAS70lHV7gG8AH09JygAYdwITK7VFqoh3A9eBqMSTjHcCUMc/FcyYdwDgjLtOKThzAiZ9Pdk15GsBZvBLV9/MawGAghxkpABvApGmnLVpKHsBoumMlLTsewKXekwUggx3AsbaLU/h9HcC4HVmeAqYcwBB/llzijh3APWihOaEVHcDvmAlJSUQcwDgKrp2shh3AGRrO8nHVGsAQeDC2Sf0awOGm0oP9ghnAEzFxTtlbGsCYCuQAf3wawGybMSgEuhrARLJSJrHCGcCNf9hNVTwbwAPeud66rx3A+/ze8S34HMD0xkHGQH0dwOl9nvIp+R7AdKGoswBTIMDoSZS8mbsgwMi51MkFMR/AnOiycY14H8CJExz4lAAfwEDULgtFBCDAuW8MTCs9HsCLkKAwfvQewJHQ185PjB7AOLbU1NSNHsBz0dbdATkfwA2IBv3gqB/A9cMB4IrEHsANGZA10RcgwGi5cXrDVh7ACXKzUdoKIMCeNboa6BcgwJ/TBY715SDAGOvm+mbxIMD5t2Wa+XUhwDODWmC/UiHAcc7RtA7UIMBN65X/cnIhwHE6csZJoCLAMqyPaX/xIcDlhRHM0SkjwAjer6uKRiPAEveNn9ScIsCJhEuuvGMjwCMqLC1zlSLA/Ra6fbGNIsB5A5zjcB4iwPy2paR8pSHAKZwFz4nfIcCPRLSsIqkhwI+Kt0jtbiLAn2tdp3JyIsAZVXNfchUjwNcEs5JAHCPAkTFBfvTrI8AMZRuxZOgjwPS18GvfgCTAEf2Yh2vsJMAneTPebQQkwGVx9YXMcSPAYyveGBB+I8AzlaWZt3cjwFcDTsqfhSPAocDYGsL2IsD4xiYKWkYjwBZ4rHhzlSPALuYmsZ5hIsBiFdki/Y4iwOI4/egLiCLA3HSqbaaWIsA5Df0Ko1IjwPEqCzxRlyTASOzJW6kEJMB/6BaWf7MjwO4DRBvs+SPAw0T2H/gWJMB9BysEGq8jwGzyu3pNtiLAHBbJCKqtIsBLvDXIJzUjwIMn6I0H9iLAL+uYNPMEI8C5cvNqgV0iwPuhuqju/CHAFOB2J5JpIcDb+o2ZeqshwGH3V7NLkSDAAC+EtXtkIMDuLsCJA4QgwC6qlibapSDACWb89XqnIMCKvmCizLsgwMOwN4b6OSDAvdLPJl4xIcCnVfTL/XcgwFZiisefICDAqRfzTfjvHsAVBHD3RDMdwBdWA8xwUR3Aa+jCsCxIHcAjmQ7bycccwKuFIcah9x3AG+PH16u4HMCE4IwSU0IbwEk7JHmY7hnAyNwTqguYGsDxJmsGSrIYwJzyS7IxQxnAsXv9epIhG8CLeDkyPUkbwA8UiOOdnBrAkG/xCypvGMD8MFu3MpMXwOAl47ZFWhTAX31C0Cv3E8DX6U6LP4gUwJFcW0KZAhTAZYznyC3NEsA7Riso+IkVwC3oOatC/RfAxJamGbEvGMDFsUI0ZsQYwMSt5438lhnAADEgcAvdFsArSTWhbHAXwDTDPVv64RfAX4WPPQGxF8Dp3qTDxJkYwDDiY1fK4xnAwfImypy6GcDUNHc9jjsawBDiisoKWBrAiV53EChQGcDAJ4QdDOgZwK9msGOqnhnAG9e0N0XHGMA5JaRptIgYwFO86yr86xfAODOp363oF8Dca4TArcIXwOfm+UMmhxnAqOltOWS6GcDFINh6iT0ZwCAqDpIa+RnANLD8abSnGsArGHaHDVUZwNRuA2DtNRvAl8Z7jZcMGsAoopZY/U0ZwAweiLzasRnAPd0LfFEbGcCHDUZnjv0XwIPfcwNOJhjAmWJyGzuLF8D49iW/f9wYwJO4YebI2BjAV0MkasL7FsBP3NGKacEXwBi4pgwKXRfAk2D8B26cGMARuQv5X7wYwMEihGNlpxrAd14BlEy/HMBsQvA95NUbwH+AkfACXhzAXxI762l2G8C/9JCrgDobwAAyQ0FZoxnACIVOlwaWG8BRlM3lHQMbwOvdgjjfLRvAlPTgxtvlGsD8gHYoQA8bwCCogPlughvA4Rt6J5EiHMC5AX6JLbwbwPAZqmPJWBzApPHi+3KFH8B5Wt54568gwB2At67aEiDA9QCCX/BSH8DsK78Hw1kdwKCdeWP+Kx7AQRvsv74tH8DjjqF/rGMfwBF5ohTCbR7AhLOFly2HH8AFfRwbHaEfwBOI4YjZFSHA3nAeinMcIcAICHn4nM8gwKGbhcKmqCHAf8SSd/NSIcDmvDotj4shwGYrLvTFzSHA56jO5TDbIcD74Az32CMhwGFfn+AUcyHABcPmLtuhIsCxCDEmg9wiwMdJqIE2jCPAutVevpIgIsCaEEWQMwYiwIh46VAtkiHANNSJOLkfIcCLL3RUbSshwPJJknTMbSDAHVroiF7OIMBnO9fLtXofwFcgrTir7h3AxYaU3+nuIMALwRgv/jchwKNN29ETHCHAXa2XFDHSIMDdDJIqJpogwEbK8D2cRiDAYK/pVlstIMBw29THlRAhwOVI5IJUlyHAxO0fy1G7IcDB4irnl7kgwNRCsABzKiHAXVOvSdy2IMD9sHDj2+IgwDV8hCkeCCHAqRxyhV9yIcAn4JieK9shwA+gUixK+SLAHQl/BiJXJMAejXIEiy8lwPzu610K0yTA5yQJGbuJJMD9vFYYUPkkwGsllsXzpCTA0HpWaZJWJcDbat527twlwOFM6pLTRibAXU0MyXWdJsBY/6z7jjgmwPW0pIpC7CPAtDXvpSadI8B54BnVq44jwHH4BpO5RSPAbJaEzwK7I8De1HyfB5ojwGcjPL3jtyPAriU9y4knJMC8eSr+n3glwO9LYdhccCXAp0arjmB1JcBKuZu7u0UkwF9PWl+HRiXA9Rjo77ZQJcABJmsZkgolwM+aKXQSACbAeK9K6zExJcA12lrGNFAlwNh1sRFOtiTAVlKvxsrMJMCziqOp1OYkwINeZ1FS0CbA0cRuZM8kJsAs3sQrxEkmwETQcH3R3ybAmf/wCQeaJcBA5bDrAAgmwO9pOO5zPyXAb6761zUjJcB4SBw1cMMkwGVl/KpmMiTAvFr5UGowJMATHMHN+kklwKgs3yNAaCXAA3JzI4M5JcB2xS16kU8kwIqvZRPsxyTAANFhaiRBJcDuzUwvMKEkwNMEBpYLByXAgsBjDxXtI8A1euhlEHgkwE/yvCVCzyTANxcSJxeiJMBtpTIoy+8kwJrs9DiG/yTAJWBJ1Hj7JcB9lg3r948lwJoCqniwtCTA5pamlqQCJMAyH1euzUUkwFuv6bL4pyPARfsFWdwhI8CzpG4OEDgkwJ5N9OgIDSTAW7lO9ay7JMBHdcRYY70kwFvzd0rRMSTAU7UQEMBqI8AfzB1hqR0jwIX0WL8LlCPAw6ZUvuXLI8CvTKXdd2YkwJ2izt3PEyTAHIItvstaI8BuFkYs73AjwDoXhN8qvSPAnihRqBUKJMDtK0Dzri8kwDoEFF6mICTAb84riSM8JMAEZRfNufEiwAokjnnaHyLAaYhvT5acIMD8heb4PuEgwL00FdRf5iDAKxqA9lSSIMBdOHKE6jAgwL5d82JueCDAIwVfdN97IMA7atIinAQgwD/PXsi4vx7Ac//+oHbDG8AnWZeDtWIcwACDlYZq+B3AjO+1kHtQHcAojeiVPqYdwDidOZ6KaR/A86kifIgrH8CLGHB3GnIcwJtaN7x4hx3A+XoaI5yAHMCZeBbyAEAcwOMEpuqZRRvAt6fITjX2G8DYJv0VSl8bwEUjCDuwgR3AhwpGmLBoHcCjWP12W3cbwFe0p2gQthvAlbE4gFPyGsA0mdcAiacZwGuSPO/jlhrAkUXhkDJbG8Cd3b30VIQZwHd2+sVJiRjApQq4E5wxF8AtrO+zOeIYwJBIkKUwABnA7TNPVIK+F8DZPRGOzREXwP0hjRu6MxjA5zm9/gChGMDTDJEwKiUZwKQ+UP3FchrA3A++/S+mGcDDr9allfQWwGEWKf7/TRfAm3b4bt0MGcBk0i10f6QXwOhITJrzrBbAo/3lWGO5FMCmtMqHe/cSwDX1TIpz6hPACzQLQCxCEsD7qoD8Vs4QwH1aT4dpNxHAUJ+RhvM7EMBBytyZJDAQwHM5NnuHpQ7AaUD9NGx8D8C/mvm0C64LwLXxoS5OtQjAS4HcxN0XB8A7dfmKTbIHwBfDdKgDawbA/TKiqdRTB8AwFS7bEYsJwMgkoDlGgQzAEZuXugTADsD0qDmdqd0JwNHje2RYagnA4I6//gAjCcDovmJPBRMMwAXHoQBARg3A2EJC1LD2BsBdrQiawWILwI3IRV9nWgrALIXK27DCCMAr8Gspu0QQwAXO/NHlGhDADe42c+ZjCsAsHjmRVTcIwD/qrjVUNgPA/RsiUeECBMC3VJ1JvuoFwBsOu1MLBgrAaY/C7t50CcADI12TiJoLwPzkcKFUfQvA0OI5V4fWDMAPfDKNpgsJwJyZMuNj9wrAYGNqLfmPCMBjh/PMiQEIwOUrcLw0RgfAgYTpGvhECMA85FZlocoLwDSnvLSwBRDA029oFdcQEcCW4ToR25ISwGgMXdgBHhXAlBuFEeotFMCveQOgSoIUwFWL66lWExTACO8NkXGkE8DpKwllsdwUwA2k1kR/iBTAMLz7uDmzFsD/qz5cIpkWwAiLHF1wIxnAU/v0vyCvGcCpxSE6xVgdwGXVXE4lgxrA5+LKhvjaGsCMOJAp+d4awMPelQF0YhrAfwOzO7KTG8CJ4k9bowYawBsBG9APjhnAbbL0Hko2GcDJYg+dbd0bwL+n5XOKOx3AZApxhVMVHsCkB15N2fUcwOj2OsMi+hvAH3ojGSbbHcC6oo1rKhcgwFkOPB5VSR7AZLL6IidhH8AJC0Fufs8ewBMd8ZLIbyHArT6ABLrrIcBP7N/VaichwO+XNKUvtCHAhp/DmMNFIsBjVSRbHIggwNhYRUuycB/ASGdetJcuH8AP/3sFPaggwAWp4ceB4yDAnwdG63ClIcDrFgnLlGIhwNWNgZ7O5iDAa4RQolcYIMDzICFtuJIewEMwaD3MoB3AeBstK47dG8Bkdmg0MPMYwJPwTzT4zhfAB1NXfcu0F8Bgi9tLPxgVwH/ojqxwehTAtkpkmw8WFMBb0u6slgUSwPHZrfmmjhPAvF4RQ5TmEsBLV6WFBVATwEhg+PUYUBTAz745ciBEFcBN+wVRteYVwOAY2x/pexfAsfWniubkFcCBVT5MAxwYwLipnzFBYBbA+8XNrAeYFMBrQgxEznEWwEDRy/AS8xbAMdB3qe8TF8DwluSsiqEWwA0T7lNOUBbAd97kySo8FsCvWjD9yTgWwIuFG9vOjxXAFqc9Wc0WFcA3uMH2DjYUwNdtezKvYBTAtZ1qVNEWFcAjfwIreasVwDfIf4h0RhXAbcIf+3/SFsBL/MDAnOEWwAj3r13PWhjApe46PzBuGMDn6ul7HKkZwKhUL9zUAxnAg3Invf39F8DQDjAis0IXwPtFrie3ORjAGYnrLemiGcDMS20GCBIYwHAd2X0eLBjAMJv42vChF8C9aCfKiwAYwL8Ucw6+0xjAHB4ggXRpGcDIa0EjNNwYwOPLYv13GBrAu6FKMrouGsDvR9xLgAoZwF3c/7TIyhnAmeSi3Hk0GsApD8YOcZUZwGmuApWdVhnAL94QE7DGFsD8dw+UjXMZwGQqsKXaihnAQ1LwsY84GcB5LAJ4/soXwAskln40iRnAKBcGnVNyGcBURC1LxJAZwItAioOWdRnANC5uKhNbGsC76lp43z8cwDtPvlneph3ARKm/W7EgHcDY71kufeQfwNsuvMnjGiDAVMxYfL1qIMCWYq3p/A8hwAALcDCKUCDAADHJVsSWIMCVI8HiQmUgwAUvgwIMMiDAR8WcbhMlIcC/raHjCzwhwBvbxkvNWiHAKZUk/7jTIcCZpg963cohwPkQewpaTCHAhdwfqXjFIMBlfwrEq1cgwJDlnYvujB7ANzJ7TeVGHcA1LgxG5mUcwHuIVAkVFh7AhXom4VaDHcDT9wXv+q0dwORBBYr0qx3AQCvjLh/DHcDNUWNGTzIewFWQ/Ok8sR/ADVgm1TpKIMAPixa+FgYgwDulzFKwwR/A3GQpy8rEHsC5XNxcJsEcwGACK9BwZBvAma2jsSgmGsDYP6hstDcawJETBLgHXhfAQAYQkgwrGMBjLv4EDFYXwGDFHTWU4BbAzTb/FnedF8CDKDGAkuUWwD0wQfZ6TBbA5DHJgushF8CIenebUnkXwHOeKGxmLBbAgwrAisGHFMAvLePM5eMUwFcHgczwSBXAhDzFT5E4F8C1n6PbxLEVwHWcMH9bvhXACGUfGDi2FcBdHuXj/jUXwNsTxrrqWBbA9d4adlS2FcC8Defk0lQVwH9FNA5GrxbAwXADeN+VFcD1OczMaU0XwK8tvNFhzhjA8Xs+sdfkGcAsF/c0nbQZwHO4DshRVBrAh+PA1R6DGsAZUgZZc1wbwPPhDyEzXhrAHIqd9KxqGcDgMIQWqEkZwGwBa0HaOhnAua8Pj7u6GMB/kyA60sMZwHHhvAedxBnAjABCGJ4nGsDEVe+/wbgawDOo/F9qzxrA+RNxWpQPHMDPEcrPQj8bwPsL7CJXJRrA6BPgCip4GcCVknF0FtAYwPVt0W4dCRnAX4cmMQKIGcAhX0QhqtEYwG8uF8mbJxnATau92g3DGsBVKTHvrl0awM0iv2c05hnAa9xnArcVHcA8sWxYilEcwJhos1IaIB3AQC5woPZFHcDjwyvZ5SAdwD3FtXJw5hrASdzQdxLDHMBoUsMl5XkcwFwS5TpU/x3AtVNGn2vnG8Cnx7qu8cEbwNEmuxDU0BvAX5l96pKgGsADyVNGsv4ZwHG4F5VXVxjAZ/75nsDVFsDfv/Y3OXkYwBFxA1NF5xjAjeA6XTKjF8AMtLnBeecXwOex7VcVJBbAHPl2CAX4E8AreveSnycTwCMX2kftvRDAcPwx1VcvDsClBmZ0jvsNwIeL3B4mRQ7AVYRylAQYEMDSzLme0mYRwHcBQpBrThLAciOqiQkgFMA13lJEbEkUwFWWJAkhUhXAc8Bl7dE/FcAlM+s4iusWwOFgSCQVvhbA1yNvc2hHGMDYBrEJu4kZwLmg3tLm/BrAxwyXyWeTG8B9LWj9SyYawEnQm0IgkxrAZ1ciTPtxGcBPVJOvlT0awPwASqKXzBrABAqrku+cG8DgV+4RerQawPeDDJYRQhzAgRHfj9hrHMAJi2agOWscwBFcclck1xvAqBxStz+KGsCcfli4csAZwIvs1L8G/RnAbOw78N82GcCU3wLbW4kYwA9ULRusGRrAP8K0gnGTGMC9cCmpkYAZwBuVQ+BgwBvAPcMhaxJ8GsD/eVyn+5MbwAwiyab3/RrAqdALUenfGsAYtSBw7gAcwE20m/wL4hvAREfnuhcmG8ALARJcHLYcwB0wMHr1WBrAQIreqYIwGsCMnmuX0L0bwImjg8KMgxrAOyMalGDoGcBTI/gHYe8WwAvTxYDvYhjAxRZzSynhF8C5fVWMwZoXwHGVu+Ph3hXALQrEb4EuFcCF9adUBlgTwHJbRPVpVRPAWM2owAOWFMAUcd1rR98UwNSXM7xLvRbAkA1SR0BqFsC/i+eM+CQXwMQwGcImUxjAQ5O6bEQiG8BEqdt2aQQbwPNT1PqM3hrAbGV/tlZBGsAlQ7vx9GAawJVqoGgTfxrAy6IjwmzSGMBV2YJPAmQawF+4cbvIMxvAsF9Yyo8OGsDBgrxjUnMYwAwXHOQg1BjAkAnm+JgcGcAgsIjRMK0XwOAgwTzGVhfAlYcc/sKlFsDztQw3rcIVwBhirq3qWhXA3GRyLYMnFMATlGFUL30VwJhnKpCaQhXAs5xeQdnoFMDJsXmY3LcUwA/SwusIlhXA+Hbeyce4F8BpTURGaT0YwOA47iZAWBnA19KeHBH9FsAAIlOOydEVwHBI/r4XTxfA//5JTQI/FsA1XrbSFq8XwC2a5RvAghfAnF/OCLvVGMBPPdrCbJoYwN9uRMnB2xjAJxpSwG0ZGMCtdFJEQlQYwH3O3QpoPBbADF7MoYi5GMA0EHJiLEwWwOGpnb6DJhfAGeOBlNtPGcADIDvqqa8ZwCVDJwNJWBzAW9mzVBaFHcDb8kZh7oQewKyrgyYkYh3APQ0cvhiNH8AJy0rOdo0gwJ0b7NTRUSHAQyFwJWe0IMDwgUn/hZMgwLvC7qwQ+CDA9YnDihAvIcBlK2vKMpwiwC+n8ia4UyPAdASk+yj1IsC1IpCeTH8iwDrlFSVS4SHA2aYzERO7IcBZSrZjHsUhwOneLaeYnCHAdw9hzxnMIcCUrc4/nXciwNAfOBJG+SHAA96cfOAHIcBerWq0rp8gwMFN/1dk7yDACFy1mwJ0IMDrilFL51khwFKEmDPxHiHAQ7ky4LwYIcBbw0isvMggwNVcc/dMNiHABTidfL+DIcAOhjuAbIQhwCJGa/ZD1iHA6YhDQ+SRIsAAvY08zq0iwCVSw3V+JSHAnWEVW77QIcDhHhmQmbAgwFSKNr6SqSDAtaV8ES3CIMAMgJkGxvUgwOHJS6QmjyHAhH5ZHTL/IMAoarUmSQAhwKtXhV+hLSDAtCnqrjwhH8BfvEsYGQofwJSqYIXOGR/ADJhP0k9AIMCN7c2nPx0gwJNuEpEsvh/AmJr7aFKiIMDjQcCoFiggwJmRtCiMpiDAg+G/HWTIIcC56Fv/8BgiwImPlNl6BiHA5zzOd6YOIsBzsnDpdo4hwINSLM8XzyHAXl0ylKtqIcAxxzu4m44hwJfuNTSblyDABpaGt8xpIcCLyOs7tg4hwMEwt3oimSDAa8iPdArTH8AWFs6JqxEgwKVy9ANHMCDA10WYKINSIMB/+bzyl4UgwJfVQWvhpB/AMD6DxrGXHsBfjbDgw+UewLBA23aJGB7A8VwA2xHVG8Bx4OuvNTcawGsxfV5b4xrAW+z9UmBvHMDkVhEY5Z8bwFC4Ijptax3AfTtuICGKH8DEFTuwdWwdwL8v12I7QB/Aq06jQNIOIMB1Gv0KO04gwIltuFHFEiHAZ9rTtM/CIMCW/rHIKhogwPUlxT5zOyDARzGpNMK2HcB3qoE0MKscwB2oVDYo1B3Av/4DBOcDH8C5KpX0wGkewLf/4FPNfR/AMAAVAmWkH8DMcQ/Ist0fwEMZUaRIpyDAd20h1eJhHsBl5H1S1usdwOs9B+0ECh3A7XkP+iaBHcC7nZ4p50IdwKmp92L0Yh7AXUe7pohxIMAH83bYCZMgwJB3SeGdmyDALak5gIzDIMAZZOkjehMgwFwraf648B/Au5S+beoNH8C1YHmKabYdwLluZU58JBzAz+cqmnVQHMD45qHl0a4cwIm5Xxp07x3Al0H9FOB2G8B9ggouugIcwJFBuX3XhBvAwPdGqpAPG8CDy/uA3hAawLkVBb0M5hjAR2DmB0gVGsBkAi0IDXAawKBbP13PFxjADYL1fw+6FsD741ovXysXwO1iT7EAXBfAZ4TcQ8pFFMBvUo4nMgoVwC9HwU9bKRbAY/mjaUDwFsDsc5URXRIXwON2CjdS6hfAYEmK4dgGFsDZJiYDTcsXwEPY0jGwcRbAAN0xRGZxFsAPOfn/U/AUwCdYh8+7MxTAX1mTaZaFE8DJwShjqJwVwJBk5PXvohXAYADMaBM0F8A5VITUopUWwOON+SDiwBfAESrVeLzeFsA5wMkFRv8WwL9phb4KCxbAMLVpZUzFFcAgDVVlspIVwJyEYrihMxfAC2qX+D5uF8ARATdfmd8YwMDhR2hh7RfASZnYwEb2FcDzE2TMZB8UwLVNHxqPKRTAEa1LPUZTE8ARXovqGOsSwKUeRo8X8hPAtCBQDcWxE8BYes/Krd4UwNNT3WqSmhXAeihP+Ob+FMDMUpc5MKUTwGybdNWOuRTAxV9ZfUuNFMDjXQDIjaUUwGFOnVItXBPAD8cKcAiPFcDgYXiGb5kVwAeDh8Z/YBXAbZ/HSYTEFsAcodWaAR0XwDkPKbruMRXAkzFR3Q9IFcDob1QVhYQVwKMRAbkW+hPAtd4zSB3xE8Dj9FFSMDgTwFVqWabvyxLA3B8YI0fdEcDSqvGMm4QSwBLrpB5oNBPAKveQ6IhkEcAAdgK00yARwGSf0TMPdBDAPCvvTQJRD8BjSamAq3IOwCydBUqHhBDAJNCHL6V8D8CEJnunx4oNwNEIeyN87gbAiVWSBHfmA8DdmCF6iqj3v9xd7epk4vO/XddX/wf28r8Dcnt6ulTwv0sRFWKW1fG/5BIaTSbk/78cj87FEl/9vw9KUjYgo/S/xWezusQl8b/g5AfeZkLxv6BdomaCqO+/9ws9EZqD5L+4npEo30bxv29BYbYh9+6//8pR7V2p4r9QVrXiyeriv6opXNB6ofK/IQP24upi9L8yS7xa+uTwvzNlcHiLs/i/Xca/SLkk5b/08KjvNvvzv6wrZaYI+/W/C/TkFlA497+sDS1lnPD3v9GMSQlNY/y/c7yq3UUD+r/7XtiQ9XIAwCCH8F9K+P+/LRSA8vho9b8VpeezJXL5v1S2Nf5dFfm/PGJNgW6y8r8/02QCAlr0vyL3eIMvkvK/k9G8QPvk+b/MI1q9kG7xv9tv+/l7Dve/uWfkFE/U8r9Q3wbuasbqvzvEkGGE0PS/LzVeEstw9r+oOHs8nRj8v4+kPaoH1PO/cB7fVmcd+789DBmZJuTxv4QSzmW6ae+/4zIEK4644L+MnhG508zvv/zsZT8M/eq/jLasVkfs5r+JxDFMojjvv9OJCZq6Zem/+eyn6rbG5b+x9mEhN6Hgv1n5EnDvVuC/uQ/zZTVf3L96aIY4kzrUv1QEaS9a9OG/CxLLLsm/6b93Ec//hYnjv4noGaNMptS/06qz5LJMyb/p5fpB0GjQv2qaxPuTDsW/TUX52Pl11b/93uoJEwfWvw9ZamhqFOC/0BbqFC0t7r/ngIWfywT4vzddgxMOpv2/s+G0kCfl/L94OjCQwRf4v1ECtQUrYvC/ZatUCxgs7b/vswkjsSXuvxFWb7ctCOq/4Gm2tGJN7b8DF/lwiEPgv/v1LEPjFdW/b2FXHb1F4L9jmoMZYBnnvyOleomVOOq/3HB42knR7b8fMv7dQUfev8D9uzFYXeS/s9YTafSK4L/IEZ2+0IDJvwAeLFzncIC/2FPmIDmor7/1MUptjTXkPxBKpj4O1us/Wyzio9I/7j9kRho7X2TvPwqx2ltd3fM/PeCjcBnx7z8VNwlYcxXhPysNY3omIYu/jW0GvbaF1T8FKnTErAuyv6mz3jLe49A/e1JZAo6qsr+vfznOzgfcv8g1n6jMP+m/CEI3Cnu+xL8VbOZSO0ipv6MorjVcctc/qzj2b1vPw78NAUFUJ2THvwAJUDLQSso/6O+KI7Vu0z9FVaO4hnC7v2grsh7Egc6/meUt1rTzwr/NJuy1F9jvv+26QU+JbPS/8waFV5Fh9b+iO6hjhdP0v6nAxnFsr/O/u/+93ITu/b9Qq9ZoKKf9v4lmw5PBrwDAaBX/d4Dw9L/zCX5nU8L0v+n94T75l+2/HbN4TAdv2799ExbiYBviv5VluT1ud6M/fZuL1BiIzr+vGZGVQOvUv9D4ZDx1lss/YhLh/kX14z/lD9tlYHvlPyDIL41ZX98/cfSNcLtu2T/r+qLb+snVP1Xg0y8aKqi/QJHEPicZ1r+Azgvg8SWbv2DisAJhx+a/844SMULs3r/S5UEidELwvyBs6wVeive/HJfmqtF89L9L0hVBa9rtv7fLgJpfgfK/F/kVf3jL9b8ZLsqOdoLyv0FNVeIKj/G/1bAdjHSH7b9xq1d407jvv16ONWVkHfC/Eet4CTUn8b/pWNNlZEHqv7MNuFZTNPa/KW4nPVag9L/wIbNjHAz6v6zO1scXLve/5yy32ji+AcC9QsgfOjUAwPMuFhPrfP2/lcjSQcGTAcCzDx2AHXn5v/XD8CsJ1fm/QXZ8dgp59b9c4ey3v3P0vy3R5tKjNvq/y0xWOL0Y/b9EJSxDJJ76v1cH3XhIofi/JHp8BkKE/b9Fdaz/VS8AwF1AVBcZD/S/lb3AwZ8i/r9Q5AU6oCYCwKZtYplOgAHA9/4OWFYBBMBUQMCmwasGwPn+nCwHNALAhUWGr/F7AsDYxE54c9D3v5WwljTVkfu/vCI26P2Y+78oLgrNAOP4vyeMASG6c/O/AaNOHanx6L/DEYpkdj/hv9FYXi41U+K/cwPMaA9b379d9rdwFwnov5k0RMiCm+G/5exJg7pr5L+oCQDBEfXov7mf/AvHFNO/uUsvO5D12r/VFQPzct20v3G1FgC8f7O/oNAAHVe+278p1ktNM3XDvysH4vHN0a4/49bthkswxr9l+cWly+6pP9AtHhzkeIC/7WwPxOnewD8bL7NTtujVP5A6s6NHTL8/4Czg139Pqj+EDPltWU7Mv4fRK2fpIPG/pfxLtooKwL9vQRjFiZHHP/xMjchvFLc/OypYAaM81D9EI+MEXOrWPzRR7sbN3dM/lLu7tb7i5j9DO128xerkP1P85zNW9tg/S3xnFBTvxz8kllOY7nS7P+BAQivhOaW/AMBve1s8CT/TRTYwIBLbPxRMg9SwoOs/r9syEnzv8z9lw9LoB5rwP5WxL/GJlvA/KOSPMobR0T+jUIHK1ZbbP0nnC3Twh9s/YFQlDdOi2z/KaJxfj8fRP1FzbZ+iuto/1c1N4YFu6j/1B1fVJmDsP9xKmupc2/k/4OOcc0jw/D/fffeOHNf/P/mW509RnARAxYce0+3GAUCIY0lJ5+L4P+maGCL5nPc/qC86AO8a8T+R5Q0niI7wP4gVzsOuUOo/GVJt1puG4j+k7uZ6hhHkP49zlCenkOI//EqPHvNA2D/5uW4neKrSv50Qxdpa8OC/VbsPgzLTjb+YZPUAMC/iv5yc/YrxRd+/qyK/msSetz8AADGjlA8mP8mvyje8/IE/uRmmpifo0r/EyqIygqnov+EV2wFZhOW/LZPcnyNj8L+BswypX2nyv53AWJ7n0O6/fdKitpa78L/ZOFOADWn0v7C8SKDEmfi/hAaj9wWM8b8sEsTVAIXqv3twBY/YI/C/63Lf4eyN8r/32iPHpr/yv4hLsD5dsPq/5roEWFj0AsB8E0eU4xoFwISbOv94kAfAF4U6HxVYC8B3GspMkWwNwPE0rW5gyA3Acyohrqb6DcBtn6PKkAIQwNOv5Bnn6w7AlEL+wProDsCTwTMcO0cMwOiGxNo46QvAEOSjlt6sCcBMZujYTzsJwABOugr1UgXAQID5PLAYCMC0vpoiyRkHwOyGnOg1SAXAVFpVDALZBcBMx/kv7IAFwLlDRyBamwjACexMAqclC8CY8/27tHwNwF3GoFHTIwzAhI5OSDA+DMAZoG5hZ1UMwGyDpXKFoxDAnQd+cceTEcD6yvXVBpMQwFlsPAZiyRHA6N+OlcvjD8DbEz6iFZINwHyRO4GNIwnAPUmpXW2UCcBq/vG9RsAEwIiqtIzrHgXAQGC+tIBY/7+T1zo6DFACwHAblcdLRgbAP0RIl/cMAsAX5qbZHVMAwPALOdJ3JPy/xacIyuL3+78AOf3+0ij+v37lRX74mQDA1cxOBFlb/L85P2jaW335v++Lyc8G1/i/dEjq6DPO+b/9M+lJulwBwHetCBfzjgLAAeLTWBsXBcAYlj3PhuMFwKA6aTPmRwbAlDtQPvTjC8D5RXbTlGwNwJgGJXjjhQ7AaY3LVvEcD8DjCbr2s4QMwLxfZps2xQXA4Y5tpDrEBcBxzCrBs0UJwMNGt5hCMAnAxXMrC4jVCsAgUEr06gcMwIvKZDghLw7AQ/0DbVCsD8BcEnEcFnEMwOU5ZUWV1AzAncKbLgYDEcBpYQ5mRzUSwPtPfNduqxPA+O9x5Eu+EsA9LYWEEWETwFlCesgYTRPAUluVQlrdEsAXfZJ/qkEUwDRdhoMZLRXANgy7agfrE8ALSWko9hISwOCMsPcjRRLAqVXsIVZ+EsDFCrxxp84SwDFBi6OV/BLAn2QTGKznE8AUFkKUiR4VwCtBzudJYRPAeOaQTfkvFMAeXUbuLVYSwEiu9Y38yRHAf7+dpvtaEsDUsaO9qeQQwIR4T9h2qxLAnEL2Gg6HEsBL6YcAQeMRwBxncN4IgxDA9VviXfcLD8B3ZMgZ3RgTwE8SK1rC2hPAlpkpKbTtFMCjmQ2oNWoUwIki/i+ndRTAj0+3oHlqE8AFv4ZtCBoQwCuQ3qzFYxDAbdalqXgfD8DE6jsD51oPwIEARjAXhgrAhGlC7MfQCcBJjVFuYn8KwEzyqeHE7AjA1UoU9cvcB8Cf99Pey14JwHzI/dJHpw/A73qOf7MVDMBzLdsuV2sKwFsF7cc9KgjAS+HBxyf7CcAbu+Qctv0IwBFB0NTBtwjAUA+MZEzgCMDMEbNQmNoKwH1HoZ1Q/gXAPIf0dQSYCcB7YJg9rW4NwNFJLgCsMBDAdA36aWuJD8B5+4Gopw8PwEM324JRKAjAmeBOGiFUCMAURIMT8cYHwJVZgpB7mAvAsBp7eKZSDsAbCXa0Nb0KwDxbP8GTWQvAP1L7rJ7EDsDxmbsi3K4QwDWHdqC/Pg7ALj9FiCocEsB5QODDmTkRwO3/4broWxDAVLlgojpxD8D7nHoTxrwNwMCCvZLWnQ3AMcDV+KdiDcC5MweXJXsLwO+eEehYJA7AP9L3zcDuCcDBTCb/TNwHwM8w9YL6AgbAv1UDFLE9BsBtagpg3w4IwMw9lKGVGQnADbJFyqZ+CcA5/9uexy4NwPkpWr6GCRHAR6+AWJlWDsBkaT+9TdILwHv156DUPA/ArOaz9tPJC8DXviSXIZcLwJjmixtkOwrA6QEhXQZoDsDX7jd7w8ILwO/C57uBFw7A3WO0N/RPDcDEUSi8P/8NwNuLtXhPpAzA+xGrA1kOCsDPK7zaS8sNwDBNpL51QQ7A88+iy2zzDsAUtKJ9JEsOwMmwyok3Mg/ASe8w6iPXDsDox3ET4QYPwOs16sFHngvA8I0qgxzeDcC3XMq72UUTwCmB8P410xPA7y5hLjsbE8BJ/8Gi1uwQwFnTBjx1zA/Am/3SjfHMB8AAyatnnGoIwN0pMqOUEgfA1ONEmh60BMBf5GuUb1YHwIWk2Jv1YAzAHSpAP7qnCMBMuL/p9wUHwBBSzvZBZwfAW7TLmb+MCsCt5P34kxcMwE/UicECsAnACUeAOSrhDMARLCpNZswLwFNM4uXMGQ/A8Py9I9rmC8ClglAGQuYLwDkYGvs1wQzAuTwDFcH+DMB1E9SiuagNwC2DlElxKwrAyHgGj8IhEMBtgv3WBkAOwL8LQs2jxw7A+cXivQlJEcA9nAL9kjsNwDEZInWXuBDAAd1yQnGPEcC+SIblXz4UwA76OtUdjhTAJ2Ke+x8MFcDFf/NnFPAXwKysK7nHjRfAc8xmsOGqFsBrcFlhJvcTwNu2/3ns8xTASDGQHWSjE8AzfZE9EzwVwKzhsbiImxXAFi2DXDo5E8BPL13jCx8SwGO0HDQOPxTAE3b1q3AXEsD7JS9aSmcUwJsyNROWvhbAzVuulv38FsCMaWGaRn8XwL2MQbOJQBjAHzWt9T0cGcBjh5UbsI8YwFDCq/650BbAiIDGbUClFcBv+G6Ek8cUwLedg27s8hTABUWuaTibFcDAGpzvWagVwE8ZOIrVxRPAkf4kilL4EsDOpEjwNZoRwD+U1bkuqhDAZClTrPSyD8DYJPvG9tYPwNE/EpYeDhDA+SC2QRXFEcATkaSMo38TwOwUyRW76BHAXUTE+AcEEMCfqVLkEacJwGEwop0ELwrAjYWVJ4niDMAPLAyFYs8JwF2Fe5HmggbA0EVh7bwjBsDxLWgTmiQDwLBvEQmg0gjAw65MnAggC8AoZVM/afQLwFNpN2pQEg7AYDmH4RNNDsChsJRhqKYRwI8z4uPT0xDAT1941I+mDsCvpdASfngQwCoiLSTquRDASDQUI/BbEMBQEbTeNHMPwBVV/2SNCA7AdChuWz1bD8A0MfdMR/MOwPMQ1bE+UgrA0V2o/mB8BsCDCYKSkUUFwH/LSaJJFQXAxuAG1AG3AcBhLWIgNN8CwNB7bsjODgbAxYYiMj7lAMCHC5iVGVwDwIpbnZ1wuQDAvx3Lx+lTAsCM6nK71+j7v3/+0G6sNwDAk6TTToYIAsABGwvyeGoDwDtOFYA6NAHAzKaKEcxT/7+xLAFlN88AwCfVgsHzJAPAL8mmFLxKBMA/KZT3bd4FwDsP8FR1dQrACcZJFS/GBsAzJtrR9ZgJwNQBty7/CQPAzdNUAoWqBcBLx45GUT4IwMDbgxn4zwvA0MxLBAnGDcAMebMReJcMwF8ItMr6IgzA2Fg8Z1JYDcCIo7gn9aQMwPPKgRCzlAzAwSPfcSIcCsBwspeBzRYLwKi36UvZHgfAYyq6LLZGB8AvMuVBY3UCwDKJQQbdOALAmxAszdE5CcAsjpT2JeENwHd4Ei0SXA3A4Xf5P+iZDcAIZAsJnQANwInKmg15RQzAYGlMmD59EMAnj5Zrb8MNwCd6jrpszg7AUxYbfegcEMA8fUAXg4UQwHbBOG70iRDAm5vlYCmVEsDZzDFuF6cSwLeyQlndXRPA0UHt1k8vFMBmpi3HCykUwBPoK5sznBXANzFvVxcnE8BEgcU9V/QTwDARfxsbAxLAHsxcxA2qEMDlg96wYhARwOalgRw1JxDAqzg+pOfbEcA4gVedXpUSwEvz8UzP9xPAFj4RCwk8FMAqc3XP1WcTwGQE3K2urRTARTsWvS3NEsAk8YxMV8ESwPy7sGm1/hLA2GZD6EJJFMALu3zpaUAUwJdBDzEaqhLA0ysxfeppE8BIHgwL4EYSwL9nheejtRHAUZnV//eME8Adw+vyus4SwO55UIpS2xLA9UrwBRGPEsCusT9V1SkSwCEyEOGKKhPA78mOvEaCEsBooB033D8UwJfMgW3t4BXA5bE4XK1RFsDRsJ52E4sXwHGEcWcgBhfAGcUYGipjGcDzoQGZ7WwawM9wqvKCZxnANe9G4USLGcABbwYIEPwXwCdp/BVFeBfAb4E2mLF3F8CdD4JqlHIXwESK4zfcFBnAT+rzQ/JwGcB3O0W8nLkXwFAVT/OvkRfAZZT9fzgMGsBgINsmA7YawEBwwSXTkRvA1JHEvtZtG8AhaW7oYo4cwMdp1YZHex3AzO2WWGX8GsDjHoH1xKIZwDF5Qy2yxBjA9S7GxO8EGMApgd6mTjAYwMOMsDmdXRrAe3VLFDsKG8BggfuVs0UawAf2RndiNRvAFKYa4zC/HMADDBU2XJ0fwBE/u4h6kiDA1Es5blBiIcBjmrYeMYkiwNuGt6UgECLAU7fj2Wz1IcBhAByaKgsiwM2bm8VMPCLAKYfzZmCTIsDTPlvedOYgwFuynPRJ+SDAqaC+zo/QIMCHaL1I0mQgwLCZjAflKSDAr+X/PFA5HsC945B2ZiQcwDsaSDYYWxzAvaGKbHPpG8CsgeitCjcewO1xrxFs4x7AzSW5BJOAIMBVUml+lRIgwEUw518EpB/AbW6cWnEJHsDwoy7E4bgfwBd1+8HtYR/AShQeRkYUIMC9T6KTiIkgwGU7NxuEvx/AfbMgYyfJHcDt0Ks3vLQewKXPf99CBh7A6WRcXAVIHcBzXO91wAUfwIUiOWpLFh7AOCjOp2OLHcCZdP2Efj0dwJd0C0+zIRvA02oBsFr5GsDdXeUGGpkbwDO8DizX3xrAy4xd3G3uGcCPf0I0uZ4awJyVxbd/ixvA1NM7M/uEG8BPauy770kdwEVBM+AjhRzAidz0NOqjG8C4VNUWvcAfwIgnhriRAx/ADDOYyJXQHsBBS+sgtEMgwGvv0S2HOiDAVFT1kXOiIMBaxJdsxa8gwOc7FKS0PCHALYlvnsR+IcDMFiR3KFsiwF+BrI4AriLADwZG9FrfIsCQ82LtjmskwJSvNvxFEyXAScIyZslZJMC/jBLsjdojwE2jLYKx3SLAi6j9XZSXIsCAniz4YdMiwA03xeh0/yLAV7MHyuRaI8B0Qaho2mIkwItgED0jLSTAh+PtgmZEJMDF3T9758gkwLLZhrXvGyXA7eG65jVGJcBgNevW8uklwEwoW3W/xybA4QkwS3dDJ8CR52fRB6MmwCwk4cB8EibAW31xbPQQJsDjqs/fQkYmwFTKE801TSbAYVskE3gMJ8D7D16Lg94nwCECBbYIWSfA1W9hD1wNJsDws7aa/NglwG0rpOyxzybAt5QVvgD0JsDbK3/+XLImwEFSWcWapSXArKzMTZePJsA9HsChGXAlwOFzVTH5aSXAt4QyP5vlJMABv/mbakolwBnaDPp/iiTAUMbNt4J2JMBPzjpX27YkwD7I0dbfiSTAHhIN14CEI8Axd3IReKkkwH2AllprFSXAwci9rtPoJMDv6wgXcPokwJ9i4YfnoiXAWbIzOtC4JMA5A2ZwKSYlwAPQ+qMwkyTAROx7ARjTI8DqX3MMEPIjwFrQEFHsJCPAYaD7KSYJJMCEqHM1z3MlwAx7H8SFKibAAW47Y9zOJcB9eGAZjLwlwJzyFMwYSiXApUdQxnJfJcAUIk40c5AlwFTrmL7+dyXAXPkbm7xqJcBtj9RNShYmwADw+1NGnSbAM4U/ZrqrJsCMpAPnTL0lwAJbWQ6WFiXA7VRJ60KKI8Dz2JP6VQ0jwDuiBZ1o9CLA52Q7zjswI8CNIevHFJQjwHOP+iRp4iPASyWPyIRxI8D+XLAUXnsiwAJWUg9FxiPAvjLiA+r3JMDUzD7HHUElwAAWRcwxyiTAs8/g9xx3I8AFW6vfLUQkwHv12VgOQyTAML1knIxYJcCRci5tKygmwCx6V2DTzCXA11k+77W/JcCoCxN/sGYmwNgp0dFwEybA+5nZMqJqJsBdfyDGYPglwAOE8RwhiCbAVIGfVG0wJsB00SvUsvImwICwYAEyfyjAWB46KdPLJ8BHEXcyFEQnwB0uuAUKByfA48v/czf3JcBRvClgL4slwNeF7/pSdyXAOFqAucRTJcANHZ2/UtQkwK0xoXD1ZSXAlGY0Fza5JcCkY0YKfjYnwFGQNFDDFSfAN/ndlerlJsDrXqiPVCclwEVzedK03CXABdqGpHcNJsAZlPPJi8glwK8lO0PXxSXAJGHek2l7JsDv50wDiqslwMMydBP5uCXAUKz6LPJ9JcCjXxw1FzomwKcFosxv8SXAPZCcAkzfJMBX1ULQuu8kwGCQGXUKcCTAJYWgqe04JMCQPWtyX+AjwLhZYCB9PiPAGwStXV6WJMDxsL6XdIIkwM5pYYZZHSXAbNPyVUazJcBcC3LLedIlwHdWc8RjmCbAYW1QSLhjJsDIGX27Fi8mwONxoBlkPSbAwei1HXEhJsDZ2r19GsMmwPe0aRa4qyXA7ZdQoGUjJcC1qQYG3uwkwOWJULwm/yTAeY5DlrsEJcCHLNWlQ2QkwGszUgL7tyPA/diC/7CBI8AHI39P3JojwH0vr9ocHyPAsk8gUTopI8Dy91X0TTEiwHaGZnarNyLACdYzWF8AIcD4PMlEY0ohwDo7SNEDtyLA+Njdd8YHIcB9Hp0qChgiwMmicnL8FCLAaEkCxNsoIsB5icIRKtMhwDP/dsHAYCHALQ5m4k3ZIcC7rZwqzy4hwMGT6jKMASHAC6pI+YK3IMBHS8bHqEohwAVKi0gGniDAbBfjudPYH8DzO8+VDxocwB3Ir90mgRvAG+sNwp8KG8DkIHBKcpwYwPC9ogssnBrAqagqNr6kHcC8UNigQ7gcwOVdLbSSyxvA4/vlcmYIHMAvW408zPUbwOXu1M2xIhzAN2PM9TI7HMB4MBaf0M4awP2SrlWGUBjASEii7pqdF8AxkklvWzcYwNCyTifX9xfAfLCq9KhbGMB39XsNW8oXwFCq78p7mBfA+Pz7hzNiF8DZls+Xt04VwIuJrFNfHBbAeJRY65gnGMD4kwnHq4EYwA2qsV1omhjAPMdrmCLQGMCUCTL3cOUXwFxqC+AMGBjAAAfKQkZEGMAQpVuuGc0YwGXT13+oEBnAu8b5X1r1GMAHc1L8E6MZwJvRJPcuNxrAnF0XJKLUGcAxjzmgcPUZwJTXS4hTuBnAl+dUDICLG8BfCISXyJQbwL/nMN+1uxzA5xeaeu32GsBnrTA6ig4awJVqbKBVsxvAHdskEeGsG8Dsn9+Mgl8awMC2/rcEMRzAiZewPEZiHMA5/NuCmsgcwIgYGenQ+x3Ak/v00FXyHcAvpzaGpjMewAUsqxq4zx7A6VjBARW0H8BAKCrENtIfwKPYKwFFByHAw4BbcDg2IcA4f/AkHxIhwNRlcbtwHyHAQ/Y40qkwIcCVYgZ6ow0iwHc2tAFbwyLAKhbOMiqoIsDh5K/QCTcjwDbhwM45TCPAV2RPkndYJMBAnuteOowjwHWyx1vYAyTAqqI2qFLkIsBNicyuEYsiwGW9+LxpQiHAoe/es5BaIcAMyIrQKh8iwEOdWrgsLiLAyO25inNyIsDPEoGiWKMiwCPWrqa4CyPAMVrjkInIIsDZq7MS+7UiwIr2H4+y1iLAQc5tMCYII8CBf3dAiFIjwGtt8mu3wCLALIVDyRF8IsAfgtrvb+kiwOQHtFsQwyPA+RJsh21dJMCyinh44RAkwA6wNvouiSPA38xCMnDmIsAx8ypwFeMiwCip8lbt+CHAnoDF+54BIsAtgihdiJAhwMPbu9p1diHANGE+ylagIcD5wQi7MqIgwGlJxFJRtCDAKxnH2fboIMC0Swvb6E0gwLBIMmUMTh7Aww6ZC7mdHsCR1MckjlIewOW506m6dx3AaPmx8oKZHsCxamp3SHEfwM9KhIshKCDA1UWfhAbhIMCZsfT7K9kgwEFN+O24dyDAX1WXQrspIcAlaSegGpogwPfYHpbzsiDAEN4mGU0mIMAp+FOiS7QgwJhkPjUSFCHAwqMTsTwHIcA3Jvs/9NogwDNB2L+AIiDA/uXxplA1IMBojxf8lroewIJXF4Dw5yDAiUNAzwtvIMBlsNjBVFEhwBIndfDPQiLA6IfRqzLAIcAFy3GEYrIhwAhIIOH0HiLAmZzY3O3KIcC3T/6z6MEgwCWTs7UFqSDALm/vwS//IMBrPnm/6hIhwKjMVNBYlSHAot7qA1cWIMCtcU+BhXsgwG2g07n+qh/AI/XFHZuGH8Bz8tLCdT8gwOUUvnbubR/AyVVAPIQgHsB95I+VHcIcwAuBXkGeeR3Abdb+Qdg7HcCD6VVCKEUewG/7t+ZprB7A0eBl3C2eHsCVX1p1oa0bwLujyu/8DBvA8+NsaHxsGsCrINTYY4wcwAslPBCBIR3AGPUrbDRfHcBhrvPcqOYdwDGbNmTZvR7AXaGpXc0nHsAdxMRgRY8ewDi3HCniXRzAnAHYM7MZHcC/iV0ZMm8cwAmB51IlOBvABzHmPMC2GsBrFIyoKmEbwB/NUtOlyBvAI9hM/PteG8Dddm/cpDsdwAm1O+itNh3A0BtmU9BHHcAZdIFEjiwfwE3+sE8flR7AKHvffveFH8BPeuRza3wewOWiQGAblCDAk2lJ54CFIMBxkOidH9YgwPy9mgnlKyDA/UKMr/aiHsBFJZLNK0whwHOzmvRBeCDAaeGwD5oJIcA6Q/+Q4vIhwGC6x7I7CSLAVPHef69WIcAjSTveHeshwNRNEQjeKyLAziELBzybIsBx3s95iTUkwAyjgFAqhSPAkokNugBdI8DzEsfNcMAjwLzpBwZxJyTAcmK+LdGCJMCWU/5QUMQjwL9sh1ZboiTAC2TuNilDI8Br78I77DEjwJi1GoP9fyLAT9SoU1KLIcBzYlizGAAiwOETIQfSsiHAP385Mct+IcCVcYYvQzciwMHC4JAAmCLALeG6qM8PI8BdVWqDPBAkwGR6WFhF+iLAbbvhJd7WI8Dwotlv1B8kwGFLl18siyPA/nmH20V+I8CVXzt9OygjwJiU67zZ2CLAwkDjBmzEIsBt+73CXikkwHOTzZNszyPA8JPvUw36IsBBLQuNgHcjwL9azdaDNSPAo/fS8y5BI8Aadb6WJgUjwJ+0U+yEwyPABs0M284JJcCddouO0T8mwHOW4hUcICfA63GHD8rBJsC0tCrJtGgmwIcQQNe4OSbABBFubpC8JsBc+iw0B/8mwJukn/Y/SyfA/bbzFSVrJsDf2TGcw9gnwPHpHQ18ASfAIJk2KyftJ8CTH8a7i6InwMH/ZHKXTCfAZZwjZwTsJsClU/7/k/UnwDg6EZ2KNCjABIUjkjfwJ8BdrUeynk4owCC/Wv5aaijA3A4wT7wPJ8CcELBv0NYmwEEU9dhv6CfAiS9aQhNHJ8DgG2MU9xMnwIA1DFVxYCXA4Dy9SlrvJcCfnAToYP8lwL/6VObMyybAwNgvAP4uJ8DLhYBWP4ImwE87He4zeibA8aEdz8afJcC/wX3XQqUlwPEZKj6W8CXAQGygUsh4JsAhGDs+f9YlwFjX9MpoDybAS1VqgHaOJcCYc6KiklkmwEQltg11hiXAy7fAmrdNJcBpWoopw3smwE/fBTxj5yXAIQiPZY7qJcCHkg1Blr4mwLxMFTF+cSbA61kbEDyWJ8CH3YZhXvsmwKQu/hz1QifAw4eETE+QJ8C9DsnFFEQnwImwT7k9GifANXZ8By84JsA/7F+uOjEmwOPZ/lF0oibASBoV5f2aJcBF+fRivfskwKtFjajSlyTAZLnS9UlbJcCoFwVM128mwB8FjK0WiSXAmVam1WDzJcBbrNhgBaomwPxMYJmLACbAQ0GgWl6/JcBcQzp0e9EkwAsJYVMRrSTArxrV5O+CJMAkrRFFZj4kwGlsWbdV+yTAhGdd1DHCJcBdR3+PBbMlwIfbduxpZyTAlZMIGs/nJMA5m/p+EBYlwLF9xKcLuiTAG7JB/bzVJcCbvT7j8DklwLXqCyFFSybAbTKM7ULlJcDEyRdqZ2EmwHlo4joNriTAmNU5uaQoJcB32fHBISgkwH1ZoDHTRSTAVdZM9anaJMA9ZiJSZ2okwCAymIRZlSbAeEdHE/CfKMCbsFbQznYpwLttqDszaSrAQ2aYybKDKsDPLITVgW4rwCjh6APpjizAqKv6Z/QWK8Dx3mWFasEqwPn4L5Vy0CvANHIox0KDKcBgCkR3uZkpwJg3kexzXinABRt/Y2mTKMBpdLo1qkopwGX4+dYt1CjAMbLbeRcaKcAZvkpppuIowPAWxh1hlCjAvT7DuPyUKMCtMVCohcEnwDRnhDdP4CfAs5ko6ZnsKMAUxiRPksgowKzCz7tkGCnA7UUY973wKcBLqOFD97opwDfLA7HwoSnAwfwzf6AqKsD9dsttNUkqwIjPSfydASrABxAg0ZsjKsDxFsZYHqcpwNAL2hHkTirAoOdJdt67KsDN7w+PdikrwEEIOtHe3SrALNNVnQT2KsAjCFqtMmErwCcecm1o4CrAXyr22gYhK8BgqYCGuuwrwGstLncKgyvAMTd9YAiILMB/t2UikfQswEBsvHOt6C3A5XI56MszLsAlJS2t0M4uwLfdPQMp7S7AlbFowbK7LsDJ3bqqjJQuwD9vAoykOC/AoEviI6cJLsD1nNyrxAEvwN/SC7hcDC/AKBQSCxCKLsA1hfzMKzQuwLhEoy+4nS3ADQYu23KMLsBrhW89GmouwBAEUlp0HS3Aba4gagLvK8A4qnIBoqUswISgfrOTMCvADQ9tbgBcLMCZ3I/nPiUswLVNCXu2HCzAOY2bZk25LMD1jrTHACEuwP0KgTYFjS7AF1nsAII3LsAM7ExWztQtwC/w843pxS3AU1p//jTeLcB4c91F6EguwLCDSpC64S3AyIiv7n+KLsBk+un8b7QuwD0nz0Oqwy7Ae/nDYaouL8DpRO0JqpIuwJGCRHfSoC7A0wuoYBSsLcBN2kLxxRMtwJmVDUm+zy3AkDj1X1jtLcArrEFazqYuwOnqnDM46i3ASW9HZ70sLsDRPo5go6EtwIigCpTKoi3Ay1cXZQVnLcDfnhMzmmgtwIkjpZODWS7ADfFEmiq5LcBAoUB5KTUuwIQmKYxJ0C3AeMxHSoLjLcCHlSuaSN8twOAevmg2Sy3AkzvxVy7fLMCBRrSr2KMswFm3HYsnQyzAVbxOKI2TLMDvyXvQmesrwMtd5aMTjCzAG9jKKzToK8Dt154gPm0rwJH3K7x23yvAu25LQltSLMB47QsVESMswDmHj5kaySvACdIFRDXiK8Dr2WaArRAswIgFfawBfCzA/WFDaoSYLcDRMK8C5q0twBPTFZlU7S3A2SnbCU/LLcBvvTceKGUuwKh2C3bd6S7A+WDp1oSFL8Cjhqxr3IIvwNMNPsywHy/Aea6KzdkfLsBfLEU7DsguwIWoipnQEC7AlImMoZFzLsDdUexp7r8uwO3cWTDQ2S3APAYG2BHtLMCIvc/eO/MswN/ucOUFzCzATTeo+GcJK8DjooE1zSkswHH/vR0xQyvAKGDw7FrZK8AphhzbPwcswKWJ1cpASyrA4NHlcLnCKcDUXW0rqxIqwP/D/DUciSrAKe9JsjZMKsBnOA2h1zQqwBUojQEMHirA7LPliqDTKsCLYv2CuHwqwCmBw7iysynAJbq2larYK8CDXbIr458rwCs0kWBW2yrAL6CEJQ1+K8CRPOY6M7UrwMlOW1TFTCzAu3E+14QoLcCXVzml0okswD8EMLlcZSvACVY5xcgZK8DojjLUzlArwKT0AMioTyvAbQjXGCT+KsDfl9hU6NwpwK+EmLm4HinAK9h5n0sLKcBrCmza22wowEj15KuNxyjAtS9Lb3xJKMCJmeBrrjwpwNO1U6v+0CbAYdQRqYcHJ8C81wLE15sowPDdmDJzVinAgKgjHft8KMCt0Q5LfH4owIzB7Zq/WCjAPZ0gh6CCKMDwYP/bOuEowBEEnOpUeSjAveZOrKkTKMBBj3VxmOwnwCBjHJpmCijAWe+0ol/qJ8A3O+DnY2snwNjSMAc5vifARK1aa20wJ8Dx56RkI4onwID6hrulESjAq/4mEOBeKMBrN7wZq64owGg+DQTo/yfATOUwjD9XKMBpC393aiQpwLhjamkeCCjAhbwcEyDCJ8DJqUi+GYgnwLCXuy49iyjAOZgdog3gKMBosXg4rLIowI0Yb44g2CfA0JBs5++QJ8AUqVEhMJ0mwHHe/v59+ibAnWEYGIxDJ8Cbhx9IAr8mwEAztrJ8uCbAU3JY0DFEJ8BQhHASH7InwJgkxZN6KifADSvsLmmdJ8BfPkC3GZEnwEkr0YNxESfA2WqW+j0qJ8CI/8iYLScmwBT/IdBgvSbAp0eSPerwJsBdxQNZt8YnwGu7bZT4kSjA44P1nHzXJ8D0MvqKHSgnwNCsqXXaBSfA32GsZ/CRJsAruqkqgpomwBV7S9F71yfAbQVIq3cJJ8A7VQdSrwQpwN8Za4RHACnApDfVE0QjKcBYEVxclXopwMT43UJRTirAb4FY8YA+KsApsbp9FLsqwBnghzwNDCzAzxjyu99xLMCA0jqYCHQrwATOcXMG8irApUo1qYPRKsCMnnZ6/LArwABwsBKbLyzAWcDYX1JILMAX73lwUl8swBfd8aOERCzAqPXlH7Y4LMCrczDJi8IswMXC7t/r5SzAXayfd+KQLcBdfsn+9oUswIXjw/eIBCzAFBiApyZhLMCw9R68wjQrwFupxTfx9SvA6CQApIoMLcBp+5n0EFQswEUqsgR/Gy3AW9CGNiHULsCM7N2YDW8vwP3U1iFEgS7AZTO5qyYALsCYkguOxD4uwCc1l1xjsS7Am48eS/H0LsDgjtgE5ZAuwAQmBVmp+y7A5MCgfv9WL8AlEGPwDPsvwCv8ngLeEjDAe8fdHXlFL8DIdJ+s7a0vwD/Ik7AyQS/ArEkIVt9nMMBnWIApoT8wwPBWu7UsJDDAsYlHq6HWL8AfOGc5IKsvwGRXDO4MZC/AaaB7KH8YL8A1MWwjncQvwLsdRKkBMzDA1ccnBc9kMMDYk4AOFJYvwIDcgbnERy/AP1U8/dQZMMAXkY2zaGgvwFttCoE2MTDAI38vTGEoMMCcbMG/RSgwwKe8TE39czDAPwuznsR/MMCu6IU6bT8wwCmatDVmZTDA6SvzypmnMMBQEmSpgSgwwFJZGGgtpTDAgzaupo+0MMD7RTD0rJ8wwJaJgwQ+fjDAw3PYCWGhMMDB07KkcrYvwD38xZqRATDAmeakDatkLsDsQwG7EaotwMwU+g+hoy3AE6i6Qe2lLMAJHnyyRT4swO28uOpxhC3AiTNlvVuHLsAz3PjKtdwuwHC6+q+ZsC3AIO6BcDy5LsB1fVmsz4cvwASBbXpxBC/AadP6Dq1hLsBhq8KYF/YuwGWYNY7ijS/AjxQ83uyVLsCDPIjOfxUuwLMxrqaoTS7ABeRXaLtdLsBfNXWwqRguwMNlTYDs6C3A2IIPQFF1LsBwTNkdLmsvwKC94PcqMC/AhTDRMBYlL8ADJmMUzrsvwNBci+4ofjDAXmoAsrtNMMBa5qMywiEwwG/zeXSCmDDAPMj6+eACMcBFQpf1vL0wwCoycKwOJjHAESCbUVuqMMAw5VgwBZowwCBkQ93w5zDAw2rJxaYsMcDvku2JOygxwF8rVBUK8DDAxspazfXJMMD8NVUL2rowwEXSkERW7zDAJFTTuDNpMcCOURKpQjsxwMGch+1AZTHA13dDaQbDMcCCLC7TfcYxwJ8u6tbKeDHAWfiWTvaHMcBkBmZVRq4xwOOVmiaAxjHAgh5sm4QUMsAMR7e673kywDKA9yJ4TzLAc7oEethgMsCgaWNfUVgywOialrv04jHAjOmRK1DgMcAX4hGDnaoxwIo0pDC0/DHApwLx12cgMsAcAAucOVEywIGdVfFBHzLAYJQi+owjMsDhgr9xkvsxwHbP4O6OpjHABoKTiF0DMsCrtOF8q2kxwOWQxmyZnTHAdiXtfbeOMcBZCJcMdUkywPHpJ6SdtDLAsNVtwvx2MsAmQqfKbP8ywMsTjRZnoDLAdkkWsxHXMsABubjt1dEywJvgEghJizLARKlU2hVaMsAULvkrtNsywKYOTpJRqTLAMv0Ayk+aMsB753tiwMIywMQ9/1n3YzLAXRuotasbM8DvHQFWIpQzwFnxzCP3ezPAUUdsOcfEM8DrfPmJX60zwHPZp47YrDPAT8R6zaUHNMB07SeB7XI0wCfkuxO3HTTAyAtIUcW0NMAD/E9e4YM0wPgXc/q+szPAMI+WgkjUMsDbC8crUyszwNWCj7NdQjPAlzLM2FuyM8Crdb1X+3kzwAOQwIIhNDPA+dgRt/iKM8Bt6rx3pkkzwKmPiPlcbjPAEakotnUlM8Ap6diQ6wIzwNOtePwjtDLA1U6J6bZjMsA/UYGKogsywFT88RyTazLA6hU6hut4MsAxJFajJOUywOPhqC+4ujLAmxj1KkneMsBtZmKKURgzwLG4y8dzAjPAV+GGqlypM8D55b7Rf4ozwO/2CnZZxzPAlf2qgdD3M8AVXsxlodczwOcan4gLrzPAQ49hitt6M8BFB/OjWCYzwPQe1J30fDPAcgL9iG1zM8AW2Rr9P6IzwHOGCjJjdDPAN8lk0PqGM8AIQoqYZuUzwEvEN2RRMjTA5gQ93qwDNMCqmjDkOYgzwGqs8N6KnDPA30aFaFx6NMDXE3lC71s0wOY1rcgjljTAn3CZRwwnNMCXLM8V5nI0wE4iA4iVMTTAm07eFR4aNMDLF5xmGjA0wEh/+11V7jPAaUAxBKIINMD7L+o+hJY0wKOM22bCQzTABczYwcTvM8BtwJ1x/lczwC5ZNp/F0TPAPOJDn9fLM8DtGt3wvJozwNMZYYrQxDLAA+LLof8DM8AthHc1ifoywCJO7VZXGDPAxUq0+J09M8DmniOYueMywNkwzwIkPjPAGmCEAQjFM8DT7Dca8XYzwEf+OQiLIzPAQqFBTKFxM8CkvjFFur8ywNfCUVFEkjLAp4w1hON5MsDdgMaTwXQywGVcU5saiTLA2+rrpUT1McCtvtg+7dEywIaTvknbAzPAbiLjPWrhMsDjXTz34fwywFSMqWs7kzPA8Wz0G4PMM8AjRlh0t5AzwCae2XOuojPAA+T/BUplM8BS0TUydEEzwO13/fVGJjPAQYvSxCQ2M8ChO/IVVqszwJiXtDHooDPA6VC/8FIeNMAzYtHM4JszwOJC8Fb0rjPAqubMLrNMM8CZQ1/LiR8zwGuQZT0ItDLAA85t1r6mMsBl4Q3GIsEywKqBDGzSszLAU3Lxk2AEM8BtJAZUhPgywNIL7VZ27jHAekpCO+9/McDsgP8ihIMxwBaG01FK4jDALa5zbzmbMMBVRzWQUQwxwM+i7X1GWDDAgd7eu1LPMMBecFvr5kAxwOt3mksXMTHAl0eptbqoMMBDZeOm+14wwGnnSjxcfTDA3TnRXUdWMMAbh2RA64cwwMuHJWNMvDDAMfCjqBsLMMBucDz64yMwwGNlU98EDzDAiTjrlv7DL8CO0DRO0wowwN/5IP3uADDAXqIYn+QMMMAI3dJeRoQuwF/Bl2gMLi/A/f5pHTFNL8ApSs9gO6guwJAKTPrfBS7AdSphET43LsCN59UlZX4uwMw1Edi7/y3AW2kBon9jLsC1HwdTumcuwM+eWz6/Vi7AZzvnDXicLsDdofTCb1QuwPgBtmCJsy3AIRTMrh2PLcCNmydSL08twCsILZ3oIy7AYCgm1K4VLsCtoFVe0ScvwJfQGSQiPjDAEciDat12MMDIkXK3taowwGUPuZlCoDDAnTDszxRIMMCy04YnLWwwwNCufhpEXC/AZVQqc3tOLsCxvUvQan0uwCDGEe0J1y3A12QOEjlgLsDc4fat3BgvwAlTIk/nBy/A62cQ27sGLsB1Kr5+6KctwHeRXwwmfy3AODLAXLvDLcCVMWAZ5KkuwLXeNUd6Iy3AUDXdvngsLcBF2rgJTQQuwJ3LpICe7i7APwCE6pOMLsDD9oF9+tktwHBBQb9omy7ACQ7RFtlyLsC5Y/ani/gtwC9eTFpeFi7AoEovciXALcCRlqcle7kuwDjfPFhUai/AzOwBMeibL8Ad7a6iUkcvwP38oj5ndi/AuVEJaAWdLsCBQ7H45gswwGzKUd46TTDA1gbS1R7YMMCtRLv6b7swwBdakQDZuDHAAwQpu7sbMsDSvmP2qg4ywDXJgfV4hzHAmSCkKdmDMsDKWXxJQngywA/f2Hk3iDLAEVJLHV4gMsBsE5/VqJ8ywHeELP2SRTLA2XKxqdIGMsD/Y6z/95wxwO2/7jBbBjLAFcx61KoBMsB1Ymgg/24ywG2kZznNNDLAuAoBlD2eMsBj3qmL/JYzwDipd/levDPAgbTKtEmYM8BJUtdSHX4zwJzi8gWMajPAajf9ULkiM8BSPiPEF7AywLfvEr4ZHDPAHL+hjfRPM8BFNkKnNTA0wJmdXMrsjTTAcw6BQoS+NcBf5ujqqVc2wFeSZU7J4TXAf6m8PavvNcBlDWthTPA1wOPXWD5e9TXAR4RCX9PuNcCViGylDFM2wC+wIZXlTTbAIKXL8yVfNsBt/I5MZaI2wOlmbd0vnzbA5TLnvOOsNsDVSGkTTI42wFnvp+CWljbA37+kwGyzNsAjEZd+LAU3wEXeGWLdZDfAmafrZWg9N8D1aWzg1T83wIxrf0lgFzfAzFoiN6PCNsATysy4MwU3wFFzFjZI0DbAvLbiMOiHNsBXp1ilMVs2wHP0ptb3VTbALwA9xqwbNsBTHyr0GNQ1wGCLX7ySujXAAFfYqlPMNcDdVHwLIsA1wAsOubH/+jXAG+YUeFndNcD1HK4Zduw0wPUJZI2HjjXAdGReNaBvNcD9U9h9kZ81wAcK7nSlVTXA714boqS3NMDB80nFR8o0wEC60c7/WzTApRfgUcKeNMBzAdcXLC00wHefVWJ45DPAVbs3BZqsM8C6E78Y3NczwBaRKHsMTDTAxy7j4QR0NMCcKjjad9g0wC33Lh/s7jTALRllHTfMNMBvGVLF+PU0wFa7GbpeTTTAQek6DBa3NMDNCMXr9Og0wPzT7we7yTTAt1YpB/3JNMBm6En7MPg0wARnVZllNDXAK9V/w8MsNcBm10laTQE1wGSBufKKNjXAUgYF5spENcDYTbeJVtU1wMWfjjNfSzbAR/AxCONZNsCR8Z8XdpU2wLiMMozt1DbAaLs3a9eoNsAVLF3orJE2wNNHpvq4VDbAOArZZkcnNsAwjindDkI2wDA6+OZzfTbAI1EaRs47NsBJRib4ryM2wEMpFTOG0DXAQWAKPTueNcBv0NdcxVQ1wPW9kEiiCjXA3bxLJSCUNMDpqGSWe6c0wFfwyx4QXTTA5+vBCKFqNMDcb4Ez6QU0wFnchKuEoDPANnHYCHHsM8CdsYekz24zwJF6ydMgzTPAv905OgUoNMDkFGIaV84zwC9Pz9dKzDPAekO4ZcReNMAOYdsNe/kzwNcrCrKUCDTATE8aYbFVM8A7NXzOht4ywP0G7+Ns9zLAypQpuUqlMsCHXIwne0YzwKmMPyZ7CjPAA7GRjvzhMsCbcAF3ns0ywBMmL1W4xTLAWjn+I6IRM8CFOz/P5lQzwKAKWMAUdDPAoUoIh6AuM8AI5N26Qd0zwL3eypxIQDTAGcSjfS3yM8A9TQrz8dgzwFXn0WL1OjPAVE3cp8YrM8CjtW4WO40zwPEXOrVVZTPAW+chJAynM8Bp1qVC87szwFzIbCWD5DPA37lluy30M8D1ZANNqTc0wGPQPzBT5DPAkPCUCRWYM8B14+MH+/czwOwKXgf7ejPATLvS3r+DM8DaUSSkwHwzwDYH14QpHTPAEaraAOmnMsAlu8OgUZoywP+hoAymxzLAgK5cf3GHMsBe08cqFIIywK03IZzHeDLAyU/Bs8GmMsBP/We7dZUywHwmEuHRIjLAM9MXxoVPMsDPvv+oZpgywCpdmylftTLA2E90CqztMsAvwexCeRYzwJ1W5yo1nDLA6VpHg7rAMsDFAxMJS78ywMW81Zb8NjLAvyNQAemEMsCnFYX5Tm0ywH6pioqEsDLApx2Rx5SRMsD5fMsAslIywJk06PYZAzLAnTkvde1JMsCbjWtR/ykywFcqyN8neTHAB0jDBWqeMcArCcMLyaExwORYB8RbdjHA0JlVlgzPMcByGasoWKYxwCPq85KzYzHAv+LHSWxoMcDk4/IsY8QxwNy10rAwzTHA0xDbeK5PMsC/Nh8/RzkywGZRfmvk0zHAcBJ5/4C+McAdUwIMYsQywBFtE2hM+zLA1pJEiEmIMsDNM2nHxFgywFPG7Fz8FzLAPNnBXJPRMcAXhQ5kVEkywMEErcrKYTHAx1dQXCxeMcALvUfxaX8xwPAdiQMTDTLADza9O8KpMcBMQAGa+4AxwI0mxDPHxjHATG1lUUKeMcBM5QhhWcwxwO5BBfTukDHA6Sf1rWVzMcA6SsfpNSsxwF3fdS4gcjHA+fmHZ/KAMcC9Czs29eExwBebgOGTaDHAT4leTc7AMcBHOvIm7a4xwPLaBXMFAzHAkXoVFPjMMMADUWp5RQcxwCO+pfWAaTHAgcYpG3MtMcCvl3YGv2QxwOE6VXtfuzHAxJMneSzcMcDr5ExgGn4xwOZK4U+efjHAlq9NzcYEMsAX1PSTYTYywFqWKXD8WzLAh4LXjUMnMsA+2y6yQv0xwGhI5ESMzDHAVdUSCR2OMcCrHSlWSMAwwI0mO97OyzDA3leZc479MMCE9RTundMwwCGucV49BzHAh9+WwrzyMMBjd4OulS8xwEcjBmwL9DDAQ9gR605PMcDf2abHHb4xwNvIcBWjxTHAAcHKb4W/McDR48AJQCIywFNvBrCBCTLAg7388zhAMsBRF8m//IMywJ5H8XDVfTLA8b0M6zg7MsA/EPjlSxwywC8d7jxURDLApdxvUi60McAcZ3mKtYYxwBtZ9DSvCjHARvHNOEolMcBvHk+ZN0YxwA8ST+8yVjHASvpW35yjMcBzrnyUcFUxwA/zG/uVCTHAizirf5IMMcAg4/rbIyAxwMNolU6rKzHAoW2mH33WMMD6DHgiTwgxwAQGrCdVIjHAL4RWrbASMcCnkPgpV+MwwEfU3A2jATHAacvDiTWkMMA+fCx2IiUwwGOC/qWOMDDALhiJacZDMMBsQ77Plc8vwCHg/VmJVC7AmyjL6c04LsDTYJIXuFwuwGBmV6RSeS7AT+ivm/XWLcBww1JEib8twKX+CumHWCzAZZ3vNhl+K8Dnc5YhBWsswBAFZkd31SzA8dqX4d6pLMCXVB3890UtwIszyLJcnCzAgWYCbxaxLcA85QF3fwYuwBN0zXlNIi7Adc/a6sC7LcB/8aFnaTUtwOmBWM40oizA7MJGCGh2LcC9LM7Xg50twICHukfR+C3AzNkEDweJLcC9wOXhP/UuwNR3RrPc4i3ABStA3QWbLsBsImOExuUuwLH24wKDay/AhcTN3xSEMMCBnv2Pv1kwwGPtQGVyxDDA6TWNoeKyMMBvwVMCqPswwA8tNIXhLjHAG49lE1BdMcBWkGcSqcgxwPcpRgIYuzHA8pvwKmsfMsDL3056FjIywI7PQnwpKzLAp+6dkpy1McDtvTHPZh0ywPwB3iy+fDLA8y7WLdbwMsDYp7Qo76UywCZ1HqV3rjLAZyPzVOIZMsA23Xc4b5sywCRx5lJ3oDHAS3q+XMJkMcBw3b1y6H0xwHcZ0o2DPjHAbpGSFugyMcCtCgMBhKYxwD3rdyFAujHAVV2LE4qYMcAVzAVHm/cxwFeuoktUzjHAr1whgePUMcCLon+OXckxwIOUg0WoyjHA5wpGPIEGMsBgKCjhHoMxwEXkHFTzXDHAP5IPElo0McBPAp4Zrk4xwB1ppZOTJjHA/tOGJzTDMMDlEuyUkwUxwC3FHmG2QDHAd/wUaDArMcAqdcptYM4wwOu6jGEnpzDAOh2599SzMMDBJOjquhAwwPL50daAPDDAAPmr5hOYMMBX7npXXJAwwD/D9kc+xTDA+1TM+DgmMcC/cRJqjUQxwM8eh2rEbzHAcJObS6eIMcC4qTMtz9gxwNopzVcMtzHAfyvW4hlNMcCBROmAP7YwwL/I61O6ZzDADVl8vLNkMMBLIFHCKSowwLeaQToprS/AdXModAplL8DI8Q/BqU0vwHfLAX3FXC/A5KcMVykJMMDxTC238tgwwBsgdHcCCTHAs5Klu13WMcCEKZc3yy0xwBFBLbgvZDHAYGE8lgS+McBthzPLiaExwL+h9ySzgDHAorASH6nAMMCxb7bqMJwwwIKhy/XSljDAo/UjK5hxMMB57ZpWuHUwwAUcZsXtlzDA8gDzbD/bMMD7FcXxYvUwwBec4ePmPTHA2Yy2JZu+McCAtq5eRzoxwJ1iD8t/oTHAw5mzN8OeMcCjGFNK/dcxwFD3HBDfOjLApBzLq8Q2MsCbaVgMOP4ywMSzzlx1wDLAMH2sGO6jMsCb7gU+6c8xwH25akDkLjLAMFuLGPGVMsC9bFQ1AkQywPhMooEVPjLAB8f18hBTMcBXWN3lSJMxwHSlnK0/ODHAuKZaIKHFMcCIhtOyUk4xwCL2CtP3jTHAjYAGRucHMcBQZs+rfkIxwJQdUhKRFTHARhT2/37yMMDLmTYpj/kwwJegEMFHrzHAHVdfC+WgMcBB8xYiC9wxwBeIgK4aCDLAw3iCezpnMcBcoN6zk8oxwJiKbYsSyTHALq0rUc1fMcDA/AJKnqMxwOUYjrve4zHAcNtTyGGIMcB1wssrX64xwJIB1V2iGTLAeQNfLtI6MsCfg7bmBpcywJGiTdDSVjLAp6qX4fNIMsDX+k27Fg8ywDwRducrUjLA2oX7PBaoMsCzHxLJwZEywF7NNih7bjLA3HLsDyHNMsCA9JzMVJ8ywP5O7QKquDLAvlU65sv3MsA1eWE1Z9EywJ18KF5wvzLA4KgO4rVIMsCpejA6oysywJhHUtpKpTLA2UwBNe6dMsAEvU03Nv0ywIsbnbMNcTPAdYCSj1gjM8C9HFDNtTszwCHwllF44TLA5gz8zOhcM8A1jHiA9oAzwGMzFljizTPAM4JajDtYM8Af6GDNEMczwFN8+zWCqjPAhgOMEVZvM8BIB1NcCK4zwDPlkwkHqjPAw+HQDpg7NMA//zbrbNszwBNuGyxM4DPAsqqhs3YDNMB12nWCIl00wCdnOBEDwTTAqXcLAIb5NMAll0sY7LU0wFJQ2ezj7DTAJJ4HnX8ZNcBn6CR0lx41wCiKjtiVVTXAn/rpqv/gNMDp9sarJao0wEE7nCk7bzTAOc5Ox7jDNMAxuEytO581wD/WrnQwZTXAYfoay91ONcD5RA8j3+g1wLyrlKN9NzbAtVnzBb07NsCbWDrSwb02wJMrOmzPFjfAqEFFR0wIN8BJAeM41rg2wMw1zR/ByDbAnDaUQ3XhNsAcCg4CieQ2wHhHhoRabjbA5VS8B3KENsB5+DxwplA2wGDlTXchRjbAlXp6D8hjNsAz73mmwFU2wFGxMvrZHzbAUfCXVnEUNsDjt0ACAj02wPH1gWgh5TXAgXIrNlKdNcCJJL7vd3Q1wPUExaXGjDXAjPOSmh9gNcCSucKTrzA1wM95C5jvqTTAsr+UcwIvNcB6U1bkRUI1wGSlL9XaejXAAbkVVYmmNcCRJVUNm0w1wEvmrVSpFjXA5yzxy/kaNcBJm3sAISY1wImQ3mp1DTXAt8KTVJHLNMAWozZ1q1c0wN+P7rUsUjTAE7sLjiEoNMCLuUainWE0wG9snwmaUjTAwelkgoycNMD/JyeiSwE0wFc96K6k0DPAFi7NXlsWNMA5PtCl6DM0wN0HKfZ4MDTAjw90rZg/NMCgb0nWle4zwB4Y1ZaLLjTAjxMH/o9gNMBjTmgY5140wLTAiIVbEjTA6HRwT2YbNMDW/ZpLZH80wC1eX4LLfTTAL47U16BSNMDX2PRZMmw0wP+A0y+AdzTAvfVFgfpiNMCDCaHM55k0wN2E2h6orTTAXQBoSD5PNMD94cZUDCY0wHpCxFC5DjTA1CTqFQw4NMDu3bIz6x80wEj3+fd7mDPASSGuJ3fVM8ANqjmGlXQzwCK/3mVttTPAM7hXbwYKNMD/WtAFRqQzwKeSSvqASDTAq9UjOXHGM8CGFEt3m8IzwGkBRwLhdzPAESnNUmhSM8A5w69zmDAzwED5QRaMwzLAQ3+L6WxgMsA1eKWC01QywHMNQ/zHcTLA5tRoFyJiMsBynh00QyUywOnDJtNrXjLAWolDH6ZbMsD7rKTdo0QywHVjUr/1GzLALkLvIUhEMsDRZfEEUkIywMu98uGLfzLAAVORv08aM8DwGWJp3RMzwByzMHCl8zLA4jh4Lc6+MsA/abIWTwQzwFGTmwMfDjPAq17hf5wtM8C0emM/H2UzwDa0FhoxUTPA4VnjNdlLM8Bhif6OGOMywCc6UmkbZTLA4Tx/GJkCMsDFZSIHwY4ywE9Ow+WuczLAmqlUtzhIMsDHeLJHEVsywBl/BT6bDTLAb/GHIPlMMsBWfVZxQtMxwAcOO3/bmjHAOwJ/+b84McDOolBqOz0xwLXbODyMYTHAyESXPIW8McADo3HcSjwxwA7R4BpfVzHATR67GzphMcD04aQWMtUxwNRrEL7U7zDAPeetisqUMMAlx5fObCAxwFHq5b/YmTDAI+g/cv3tL8BTB3MyTQwwwLj25Qo+CTDA7nO5zu8OMMBbEYLPDwEwwGSiJ93INzDAkYyjh/8eMMCv4Jq72EIwwLJlLffxIzDAT+8aCDfVL8B9g5tta4AvwPxs9LSdZy/ADO8ZgxWPLsDNn/npyVkuwFVXDUuddS7AGwwitcZdLsCLEojy80YvwMTYE9wvai/AUco9BHU/L8AqqAa2kYAwwKBZkXfQfzDAfSGl7v9UMMCv+rcfzn4vwF/W8/1ify7A4A0vNFQOLsCxs33/UZEuwFixvIePQDDANzVvl14wMMCQWIlIRX4wwL/tJawxuDDAVkAw/RwhMcDttcr1g9ExwKltVvoT2DHAvS3bcqgRMsCP8JA5VhgywLHyG6CiTjLAtBIk+gIdMsDAcXa+yVgywHxyEsSXqjLAZ54N3xQHM8CsL1xahN4ywL+n5Rhu7TLAe+VP844UM8Cya+JNaGAzwCu1LYrkFzPAbNEa1oqRMsCjYnaZ+JwywGlIyx0IijLAuS0WWS7sMsDLyY1hjbozwI0f5iry8jPA1RyMq1HNM8C7RMLcCgI0wEo7rivbTzTAIUcy7UpNNMBUcXSjyIo0wGKcED6dijTAjSYo3UHVM8CkNX0g+yc0wDzyqFp3DTTAjEK/xj12NMAa9T97h2YzwNycPaaRUTPAF1AFLCw8M8Dx0LYD76UzwNnx4VEajzPAq5lWVeOFM8BxkE7dcX4zwGayreR5vjPAYmJooyixM8CdgJIx1iYzwJPv/uf/8TLAwefi6wzTMsAWL8cahpsywJ+LoU+sPTLAKOeH2kIZMsBY0nzdm+YxwHDz9eTZAjLASgda2srwMcCt4Lqex+UxwKevNybtGDLA715XrxuxMsDlHZcdLD8ywIkvsbMRyzLAvjG3Cor2MsBW6iIO4BczwLQUp1UjYjPANQ+JwDohM8AX4ge0Dt0zwGmseje/3zPAf8bo0zGSNMD1he5xSTk0wArW2/nmbDTAP6AE19gQNMDP4rPPFiA0wNV1i0kfATTAhdbVzYlwNMAnqtNCUk81wA9GyapobzXAi09e8CJENcBBlKQhMOg0wLAH6J12CjXA8h/N1RA8NcDQNjm2A001wF7NUSryUzXA6O77ag2SNcBQA+ghtnA2wD1GR6xWNTbA/Y9NELgsNsA1Y8ULFCA2wJjAOO8cojXA/S1uHfLjNcDRUfUFj7w1wBz0is3X5DXA3/9gUW02NsAPC48V9ss1wHVcl1CDXDbAK4fu+aHPNsA7CCURHfQ2wFxEh9/D4TbAVCqzYa6AN8BYB6yQ/g84wGPfJXJtMTjAQDyK0Zf2N8BsZoi5dAc4wEOFMovc2jfADY938eEDOMDUbUw/HTE4wGm/IFyybDfA3IrzEXcBN8DgSBs6ZG02wNM+e4FQvjbAERnbXhy4NsCt1LvXJGY2wLyrO8jsITfAXR3dSGcsN8B7JezRkQI3wJAAZL9zyTbAz+prN8KlNsDfT15IyuQ1wAjMkbX3kjXARWTwx8x7NcAXdRplCJI1wBUNvirBfjXAGxTUh3XHNcCL7XrqXuM1wK+ZVyVlNDbAE0CGPG4qNsAPl1+wwyQ2wJhaJ6HhrjXAocWAZ3B1NcBthPWhHzM1wJNU6Cy7zDXARBvHGeXINcDV08kZGKU1wIyMxCTRlzXAwR67JSFpNcDdHkIBDkA1wJng9eQn9jTAhWTLuhYRNcAViveOsxY1wAhNyRjP8TXALet7fG5ONcAlwIk+PN40wKdiS9UBwjTAoDMhZU+gNMDXLXSc4Pg0wGtq6YTvrTTAp52lxpyCNMBSb9T+P5Y0wOJDuvx/PTXAaz0rBSEvNcCDB3f9Or40wAKKVdLggzTAE/ZKJ8FMNMBqsqQn1HY0wOBGK0KRzTTAY6UU4B83NMAsG15QEFs0wDSWatEUSDTATxByyLTfNMCVPwhXKrc0wGAf/LbVxzTAkdm7Ey8dNcBt+vGDY4c1wGB5+e2jiTXA2LQ6kJmYNcBHTh5+yoU1wEx6pNU97jXAiAkxbKGLNcAVFaj2e0E1wJiY4aY09TXANExr59w/NsDFNm6ZKIs1wLQOTjR+1DXATE3jqTKXNcBfpyJ0za41wD8bTERQBzXAD8fFoN31NMCq3Xyauac0wMaTVirfATXACcQ6IqRjNcAMp1Gm/NE1wF9V7kpoNDbA1IEr1bGSNsBgyiKZcJc2wPxD5EBv1zbAk8vrQywLN8DwtaKgHAI3wMzS92ykSTfAk2eva4OWN8CjxH9aTtk3wJUQeYr6oDfAWxqa/mCzN8AJ5p03AiQ4wEiCGMOaFDjAgf0+Us+UN8BlGt74Fbk3wEETdKxuETjAk2nJDdCuN8CUTU7bPLM3wMOloYgFtzjAM/Fd8utoOcCt0uC2B/o5wIlfiTyRljnAk+ckZpmcOcC/tkN81pM5wNdytP2xHDnAldUKnn3lOMB/xBVVenI4wCCsQVM9ADnAYaWggfjsOMBg97XEsbM4wABeUHunZDjAiFWZ3J/LOMAMnZmZ9XM4wET0nd5pujjApOUKm4RiOcA0B4M3Kho5wCSzdwcVhDnAWa0IQXe9OcDrx54YoeA5wHtH1zt4yznAhOBnHBYYOsDQf9YX13w6wFT6VaxwszrAcd8UPrzIOsBs9J97ClI6wLdPbujyozrAN8gnJClTOsDTUIg8uiQ6wBOQzYZvUjrAO+dDbRS0OsAgE4Vza646wOvEDs9BrTrAUCwi0Uq2OsCtX5XFyiE7wEAfMRHyTjrAx+USrzhZOsC17Thr8ow6wBedCSgo5jrAP6NkG/JhOsC5L308yoY6wA1dAfEPTjrAJVOM08GcOsBv1uzO5rY6wJ1q7BT1lzrABzzRlubsOsD/vkd8IiY7wCxmz8Y+BTvAcKACBNfOOsD8pjxAIYc7wGMYduKwXzvAddtILHS0O8AH6EEIK+E7wDN7XE/G2TvAkEW0msPOO8AJOPIegTE7wM+C6xqKqzrA1U+yh9LEOcD58FkUxPI5wEWkuC633TnAI+M2V7HcOcBRYnwvdcg5wFgGFFZgkjnAO93bOlbOOcCV9j9XAxs6wPAXoRImszrAfJwkP5QmO8D9gceLDzU7wA8TEBcgPDvAMQEsLrnvOsBFSWsT0gk7wA1rfUqWnjvARd0cgHncOsDjTPmuem47wKS4YFvkxzvApHsJLTFdPMA718HlSJU8wNOGnDDCAT3AUEc3qX7rPMCk3/NPnGY8wBUDWt1F0DvAqNCS+Q70O8C1qYTQMdQ7wAmTKpPMmzvACAqIDT7bOsA07eYZy246wC9LOYpiFDrA22FXOFuAOsCkxHSh2L86wIFqZPzLDjvA4MAvmLTQOsAL7q8GzeY6wG0Ink0bNTvAPxIsG/gqO8CBclJzElQ7wPwWyrtgqTvAJN1DE2ByO8DZ429KHlI7wK+y69QNEjvA5f3o1sguO8CpLBZy/yY7wGv984vpYjvAGdaSInXhOsCkurYFuoU6wBWI7c1JozrArTDFuRTYOcAEeUNj70M5wPTh2f/YGznADw7rxnjfOMBIFBTrh5M4wC9Dn6SSUzjAcJKGjfSFOMCX04PMD+E4wH0XiuvzhTjAkAEsv/NuOMCH+5544uE3wEjmvO9uvzfA+XVRvQLzN8DdJPw5UMg3wIeizsNcvzfAdWL9Pg0lN8DdOc86q5E3wNNTUg4rTTfApDKYK/FGN8CUni87jCQ3wBcG/TEPPDfAqOTzttFwN8Cz5uHFnaA3wKXI3xfAbzfAr1qgV68kN8A95VBfVLw3wM2dHjckSTjAfZ8lQ1RZOMBYvOrYrYs4wImTjLQVgjjAbTtXfDRkOMBlVHEvtCY4wLSHd8NKCTjA5ICy7vcZOMBfXGz/f0E4wET5Hm9QIjjAF0cI/ps5OMCfhyVmHbc4wGv3iTEI6TjA3a8Se4LcOMAlOquybxY5wM/1Xz8fZznA33xtgCeSOcA0x5dD7Ks5wMAJrstJbjnAeG9/qXmXOcAHnrlTrKU5wISTTxhwdznAWO6XZs98OcAAlJc1eXU5wOfyUj8CnznAU4m5e37xOcBfwLtvmCs6wM9MeA2gTTrAyPQxyiaiOsA7qhjILc86wNH1LT+y3zrAF62WsFCTOsD1PPxZ5to6wCCNBrwYjjrA3LK9USM9OsDMSiOo+086wNBlrRC4hzrAP8I5mNeeOsB130vdDMU6wFkewZeWJjvA4TIxKb3xO8DdWaFb6QI8wFt8uvoylTzATcDImLjXPMCAtvWgsxQ9wEGjci5K5TzAsbyKTjHdPMBwJS0DX988wMGAkxIwIDzA9DapKMySPMD8JnyJ7pM8wPFHP57WET3AB4G/88n5PMDoLaBSpvM8wNWJASObYzzAoc0wBmuLPMDduWiYnSw8wDlx5CrXJTzAzV5GJFPoO8APMKERlg08wKgrvmZYWTzACECj6N3XO8Cl81ruwLI7wGQPiYEcTDzABC3HIKkDPMCB//NbA487wFmI54jRoTvASU3z1galO8AfKvp6sCY7wHPGDeJ4LTvAC7X1zt4HO8A793Eqmyk7wC9LW8gYczrAQ7QJG/L/OcBLb48P6GY6wLOqaIEhXDrAjThnsp3pOcCXSAPhJiE6wDhX4PNk7znAVfDusqw3OsCEBxZn2JM6wAObRKoIZzrAEJD6MHtcOsBgkWrfmF46wMMQkJRH1DrAtQNujfjeOsBpBRx1J5s6wKH07lSR8zrAWzdQ8ZskO8A8qC0DIB47wG1nhOQIxzrAfCi+rf+oOsBf3cxol6o6wF1/v12ZhjrAH4tbEa/OOsB5HS6KvCQ7wHjMsL9jPTvAf8fD7lOhO8CopNnCWHc7wBtx9nYWKTvAFLleMrz7OsCFZM1lVfs6wP+yQG47yDrAT73qR33fOsCgSQm/CoM6wF/OhJE9PjrAuyb+M16FOsB3CaDTs8A6wOHhLCzuQzrA0zlgrbGpOsAMA1EUxwY6wFA1dXYcfTnAR4KmrarLOcDR8YkqV4o5wBBbBfHKrjnAQSfFnYNdOcB1TGMARLk5wOhTQH6doTnAt6vBss63OcBJE4ZcVos5wJECXx4FjTnAbdmwkF1bOsDH5bjPMZU6wDc2/KmRlDrAwdaKuH9OOsAp3UXObe05wOTQOXR12DnA3Ru5c8m7OcAoozkCxg85wD1UDNHbBTnAx1/OnvJgOcB45ZKUaFI5wOVcUm8LlznArzHJYcdhOcB8hgWAyr05wG1/vTVoujnA8U54vLbfOcD89tcTQn45wNuC40wBUjnAFekiquJ1OcAfiiJV4Hs5wA3nlEIvQjnAS2s5gQVzOcBdUUNLjqE5wIEdJ+D8NDrAGDP8o2y7OcBTXZGXHtE5wKEHm7TXLznAQNym2mOxOMB8REVMr9A4wA0Ro733lDjAcSlbx9KPOMCozNN2nVg4wKnSKcWLfTjACVhErWYIOMBD2c7U3Rc4wFnWgHtXLTjAW2fh95JlOMBwqcYYZew4wJiiXGgY2TjArbfhMy2OOMDrGcMjdPQ4wOt4mLnwZjjAbH951ovDN8CrwtmPQv43wKHvawz7MDjAFe2FwPU/OMB4N2Dj50Q4wHD8rhdPGzjAqQqfEaAeOMD0xfrdjuo3wAxmxMHZrTfAsbaxUOFRN8ArBo0j0Js3wHgJzgnKnzfAoyhdljeoN8ClMX2TA983wEvzGOjyBzjAkOZTZEHdN8AYljMV8QM4wOeIagg7DDjAfNuY1tZCN8ARe7XPx+s2wEhg4UQq7zbAtf+G8mSiNsCs1EyMfo02wLzW8WjZmDbA8HvPo4txNsB/MgqcB1w2wE+j3tPUVTbARadLfrM3NsAcYzdn1/Y1wJOKqp094zXA6WrJPsanNcCpN6XNY041wAS7zpSqzjTA2lvh1qQ1NcBpXhop1ck1wPeKPS5CNjXAywXlVEHFNcALwfrNTO41wGOqvdSjZzbAx2dKMdjTNsDshi0k+T03wInRKiQVHTfAnJbWZLJPN8AcAGloD2c3wLHqPw8yBzfA6FoXtn4zN8DsIW3RLLk2wKngxOHEqDbA0fW1XfaGNsC4eCzL/Hk2wBAl+n1hajbAqbdqyySONsAxCToKsmc2wAgsbsXyZzbAQ/c0H4nkNcD8Jm3x0lU2wKXqEhdygDbA+GSj/KK3NsDJEhOMcgI3wM/iiNrdyDbA3DoFnU83N8BHVa3uOO42wGTRvUwoQDbApebzy3RFNsAsHikoJuA1wPMH3NrgJzXA4EkzS50PNcAINglcm3U0wMHF8wS7jTTAIAmevw9GNMCTxQyoaBE0wOd8DDI94TPASXI4M8V9M8D5Nur9oxc0wFSotBq+NTTAayU4PLVuNMBbhfrC6Dk0wDK6bZlc+TPAJm2l65AWNMA05dycWyw0wL+z8TCE/jPA9XX5OBwPNMD7QW3suDg0wOOuMgHQ4TPA14F5TuOdM8DH2kqsMNszwBa9kXCSPTTAQV2KQlvMNMA0hGgTPjY1wBjfC7GtWTXA93gldKmqNcAFm62A6qg1wHzm+KRraDXA7PYesb00NcDJeLAg4mA1wLxzRj62pTXAQOGVn2SJNcDprRXmCnA1wIiVQxZOOTXA5SkEkEOANcChLtQBmZg1wC3yhdePijXA4Y03Rz1ANcAftLSj2T41wAh3hesH/zTA8lWifEneNMDyFBOEYGg0wLpqhYP3FDTA5RUbEHslNMCz/HKVcB80wDe823QxOTTAZ1Ah++GHNMB0b4gCUZI0wMIP8RhsYDTAaRqDFOj2M8AJkMUke/gzwHPxqzEwCzTAapwOeNb+M8CqEGDYtDg0wLeYcC5P2DTArLs0JdN8NMAFgIawFak0wEyJE9qufzTA5+r8mWYyNMBNq/IJyuUzwJ16T8fpAjTANy1a3GW8M8Cffxk/4zA0wMMgRQMpFDTAgQglzv3tM8A1eLTiJ1ozwMYmeS4glDPAaNa7AIPBM8Ao1NEw6wg0wOspWbSYCjTA3tyuzxiUNMD0gb6YDJk0wAfx6k965DTAkSy3LhAKNcBFcUnbnpE1wHR3TNr/cjXAiCr/LKILNcCrCUVlPqI1wJOq0MAF1zXA3xLb3GSTNsABcTDQYAE3wGVGA5C1wzbABVNlqkwLN8DAw4vrWNc3wOSgJmN7UzjA1QWOFQd1OMAXvXPFewo4wLC9DgVX2zfAeJK85ZyNN8D57FPxVwA3wF2qKfs9tzbACI1OlLNtNsArlEKzkFQ2wHMr9VXmKDbAn6vYUy4DNsCAPTjo0bw1wE3NZSblFDbA4SbPGVghNsDRSQyc+KQ1wBcZh658NDXA8JKGpHe7NMAX7ap2Um00wA9ZlhVUOzTAU6h3RNfoM8CMbARr90YzwAFs/zi/bjPAzVvzAIhwM8CJ24RRCGszwAe25qKRZTPAFnI3mF9BM8AR0LsrCq0ywEAAllzHHjPANvXqGwDOMsA7Dei+IacywEP3758RKzPAEX92L0HAMsAK2N4eubgywOrB+byL4jLAAEWJgta1MsBC0FjsaLwywFIiH7siTDPAsWW+D5r+MsDG7/qrelozwAC1TXicejPAIpsAdEqHM8CU9nKdPIUzwKEdrlrLlDPAYxtdCc+LM8BjZMg0XzAzwOJ9hUxlFjPAAY9b307+MsDNoXdZEz4zwBgOhWEmjjPAhb2AktRzM8DrRDejQL0zwCBbBg2t3zPADkRPBdbrM8CHFBM9b4A0wMgt2mwvdDTAgMZr2r95NMAMCeHfHyIzwLyqvcqxmTPA7Qa5dF0GM8BERUV33hczwESwOHRrRjPAzZ9M0QHuMsDvHjaLFR8zwBv94FvHuTLA4YcCpWyqMsAls1+CTOYywEzlgVJizzLA5yuX/rycMsA71hfW1eUywFXUfuNaGTPAgRn+TI5HM8CvpUAHsvkywMA1qAVYEzPAlS5jlfLOM8DJ2ACYeT8zwB8+MGXkZDPA2VkRUJi+M8B4o3kk+4IzwHQ4IgYUojPAZHao4rNUM8CL7F85gQozwENNZiJqXTPAPYZXmkU5M8BWsydwYW0zwNDQlTdV0jLAKSIZJHNzMsAnDDkDgkoywE48H8VoaDLA7mYsAOtWMsB2hzPZBj4ywALOAsMGozHAkL3kKM/MMMBrAo4zIO0wwB/hYJFoQTHAwRUZBa7TMMDay46Qv60wwLK+YuI7vjDAGycV9CWbMMD5xhxhrUMwwNUApKDlTzDAHfSdudJIMMCoBDfY0FovwJy6Sx8XPC/AwcAErOcGL8DV9zRmxzkuwF99yK/E+C3ABfFChZfkLcBFETIfMbwswKzlLnK8Pi3Az+8jBf/XLMAtzaMq4KcswMHnlLARrCzAJGDRlhwNLMAdMjTzvAsswMUHSV3suSzA1LJNpw8ILcBAnzK038IswAXHct9ykizAA8IsJAUiLMC/s/H6LI0swNyYzhom2CvAkZ+T1x6fK8AFYKasyRIswDEWIPgZmi3A9Cu88rnSLcCbSSJZReUswEsyJzsefy3AONOGkj7eLMA86E9revYrwBxc76ER5ivAGM9243PVLMCVr/GUy3AtwLgkmPandC7A+57TBrCOLsCxRNTMiN8twODJ7CqHcizAr8ZgXLrYLMBY68XKDSstwMdeIN4xyS3ADbOKK/6TLMBrkTs6RIEswLmltn4tmCzA/OYWX2R7LMCVb1cYDTMrwLEm9TzOxynAYP2SDpeNKsCJbcmci2oqwKviujsB4ynAGS4MX704K8C1ydZ1RAQswKs682iMVSzAoG1L0XoJLcCHV+1aKK8swB2QfQEojSzAky1HKLgaLMDDKQt7yU8swOkLMoIDVivAae7iEXpAK8BE5L7NtuEqwEeMycmVQivAtaJXzLr1K8CxTfGreT8rwEVBrkA8dSrAKbdkp9fLKsAUD5VxlV8qwAhqQWdsYinAaz8RphVtKsARwp8w/1MqwFiK8Bl47irADLDWx4yLK8AJ5Aq2D1orwKvmLbxIdSvAPbEXSxEtK8BQGr4bWoErwCA+VVNqgCvA+1jZ6QNELMBlzTToXJIswO19slisIy3AqZ9HcfpBLcDThPTnZGovwGFZOD68Ly/Am1J4DexLL8AYC/as4CQwwCcWMYP0uzDATRTTxSBdMMCJUtXowTcwwGHJnZENsi/A74vt8/oML8Anhe4qia4twC/gj36/Cy7A+ZWhis7+LcD5cr5oW1ctwNDMuR7G6yvAxy0uwyqCLMALJUcnTyYswGfJq44zsizAyyUq7YdTLMAfCSy2XJwswAj43lQlCizAtCx/FrgdK8AjSThz/vgqwIe8IXX+tSvAdyXitR8WLMCLE5OtsAAswHz1scZCaCvASF5YXoApK8B9/FjeYDYrwEMVUVW3byvAKEzEzuQGK8BzPdRKyjwtwGCU0giUGS3A+DT/gKvuLMBgSZfas+0swGg/4QkvKy3AJWrKanYaLcDNXBko3v8rwOC4wg4WOCvA2IwqBhhtK8Awgw3S9N8rwN2ME/vFGizAb/7ic7/9KsCxUcK01aAqwDEngjApKCvAKbLHxYqLK8BhkBaD+QoswON2LwO6WSzAeKIKvwGaLMC/iviCPgIswMhbb/Qs+ivAn/jthuniK8DNzQzTXbErwI2l6Bi16SvAy9woMXIaK8B3wJ4wOj8rwJunmRXTqyrA3VF33rGcK8A4qRY2/zQswM2rpmkviCvAl7t06rpQLMCAPLY4Nh4twKik9fCgCCzAkG6h2WwzLMDUlTt+NXYrwC1YvXX3ICvABXEDwTM6LMAUBbZhLBgtwBfS6ixi3yzA6T6lvUGHLcCRFC4j8IQuwOxMpuiRFS/ANFNDLDhxMMD++s+z7XowwBFmRuMe7TDAJsyInGsmMMCflzwfWzswwBIeoly2VDDAIUfZmIZ4MMD3LFpbyfUwwNlzt6rXcTHAdX0NZ+6cMcB33MTNQ3UxwO3/YMDTwzHA6Y9pIUiVMcCN6XAr72kxwKXXIq65vDHAT43+lk67McBiDskxDuQxwC1Ev6z91zHAX6ZMjbcYMsCVExtJnasxwM66lwXB/DHAO2vbujtAMsC7uqaUxjYywNVisGNZPDLA6Pm8JX+RMsCrkvVLb20ywMsRcPQEcDLAjPadw0LCMsDHfACKQ3wywETSJ/LyPDLANE25wuF8MsAfiPQq5m0ywOyv4km/LjLAySU00gRgMsD/7I50HccywAqEH0CQZTLADKGXfuRkMsAgB17nkbgywNnOaJ1Q0jLAqIXxx084M8ArSHydKJwzwO2VNSzKUDPAHI9ubRJxM8C5AwnwYyMzwFX+qfatXDPAbYi0f/91M8BwIRsOHTUzwM0726uFXDPATbTcQuEEM8CKZOrHmgMzwNtiJq53QDPAJ/FGREfXMsBjbphSDckywAMIxP8kLjPA+6AQVWe6MsBP8yueg2YywOlLP1g5hTLA0XcWd8ISMsCnxRRsCCMywDt8HSb1ADLAUtD8KvUFMsAncoiJygsywIXyMcaEyzHAUP1z/mDKMcABo2XJXd4xwInbu3OPyjHA26BCyL0LMsCYtEILK5IywBeRJboqiDLAjYC3i9aGMsDXEF/SZGYywBvrYqMozjLAbWjYaUn2MsDcbrUF0vAywD7ZQmZqpjLAHmLoMBKmMsBBvPZf+sAywHFvwV6WkzLAOttg9jX9MsC3O6jrQzkzwKaZHA6WUjPAsEJDOvhnM8ARZ5gtZE4zwLY4J3lcwDPAD+VKiWqgM8CjjRkNFSEzwKcd0eaqFzPADlHEReZuMsB7mHQfCTgywBnTngKfHzLAZImtCPeJMsCw8WJUnkoywDWIRcfmMTLAGH00PKNLMsDdS9vVNqUywPUAdiEAkDLAtkCqPTtOM8DUsd8lLkIzwPCDTEyZMTPAYc3SWXjuMsDx2qlAf8wywMfBnmQWnDLAs3RhxqArMsAWNuKk8OcxwIZQbu2fZDLAEZoyGaa8MsAmXFIfwsYywEodIe1TljLA3uqmOKJNMsCjXfeAtMkxwD/CfBS5DzLAlWhPQGhXMsC3sCZ1MIcywND4dZSwtzLAPdlJvTbGMsBEvgDWIEkywJjNAMBPkjLAv5YnFnl9MsCLLy2OUEIywBMSokVBOjLAVR6LlvLOMcCKOHHFeNoxwNc1ReTXxzHAxxvRSkoAMsDLds5BEAIywOc9lFZVsDLAd0vVQo6sMsAZn5RExmIywDVVkL8yuTLAVO/kNwVCMsCYFkRuT/ExwA+AR/V0rDHAjskeUTkCMsD9hKCD8BoywBv7moIIyTHAbTDtBjsxMsCvhJCesuExwIFCWW+BpDHA2kFQgpR+McCBvq/EfdwxwMSiQWAptjHAL6CwAFlzMcCRL9/Wg+EwwFh7RzBF8jDAdvFHTFH9MMB0FQeSVuQxwDmDrQVn7zHA50Qo7EQzMsCd9JS6i4oywOW3BIc/rDLAveeeGqnAMsA24FfAZp8ywEPS+OS25TLAwQtJcU1wMsBZFrStJSQywClNagTPODLAI5RZ99jBMsC/+IkbDaoywFFLiGLvfzLAp8m5SHhDMsDbUcDm+NQxwAkvyB5f/THAjutGPKdmMcBlLiNjXSsxwABa1fvyjDHAd39AubgoMsAFYvPnE0sywMDkHTPsDDLAbc3Eagp8MsDxdD5mqY0ywDfTe85p9jLAIlrodLEMM8BB/LhrLOEywL+xNgHbNTPAkgsghXfTM8BO8o6qNd4ywCR7gZfXSTPAwVPg3bscM8C+wpFWP/MywOgGVCBtUDLAEfsEgqY9MsA92ljWyXoywAE8nyu7MjPAYhbzp200M8CFYtXh6yEzwHC8JlrS0zLAipyw/b3WMsA1WnZTeyIzwJlxolTWxzLAX8XAcQr0MsC8qHBAckozwNTo3sD4TjPAsY+4XG25M8AnOQSgj4IzwIcjTOfRqzPASYErIW6LM8CMzXi8O4UzwGK80OU1UjTAU+SDhLtoNMD3laAw/Xk0wDagHe0XLTTAAYIud0YgNMAVZaAaFPkzwOCO1BXDuDPAp2J0YFsyM8CtCEmKGQAzwPiFUreQ7TLAv1UajqPiMsBBW0eY4hUzwAaTG2M45zLAbs8pp3ngMsDGIDCuChAzwLbP18CjlzPAcN6On3dyM8CT3EJR7U40wEx3im7OwzTAgh8pDm8HNMB6mvDtyK4zwGUKzjM0hTPABI0ke7NtM8AfxAkVsLczwN8SzD4CvzPAccRIv5fuM8D5rbJ8EvAzwK23tvcaPTTA2B5T8BpGNMAVKgYJsEg0wCAblRLvAzTAqhwH9BApNMAJevDWWWU0wI3B2AhR1TTABUks2aqDNMAPmnlmEgY1wLWKdD7MxTTArd/Fd3fZNMDem9drptQ0wGXobQ1vizTAg+a+7bi9NMBVYQhCjXY0wFDy/DN05jPAKVEqn0IrNMDNqZdjlPYzwA5JO9W4LTTA/iDTe2byM8DhStDh6RQ0wBOzVCZwMDTAERkX2d3WM8DVz+IzOnkzwC1aGfxANTPA0LT7dFGrM8Df4cq/Ut4zwAmYjf5IqzPAn6dZZybEM8Dh3cv4/1kzwNkAnAC73jPA+jbHsviCM8A+9RS7xTIzwIUjvgqSvjLAMvulKsfSMsAa+tFLj6QywJ+gByvW1zLAc45uBxRfMsDk+qBpdMkxwJN/89pOWzHALzSCefN8McClJ48iOgwxwKZWNIuQ6jDAFYApYUAIMcBp4+QFJVgxwM3EKzfp7DDAH9xAI2quMMB+4+vuvH8wwOmo7ojEiDDAYAKGfqJOMMAZjjNQI3kwwHZwKW0WkDDAy9IHU87JMMCzljwoBGEwwCenlrHsfTDAyz20gz0LMcCd4PmpqS0xwHwDF1YpVDHACAo55C8gMcCba4fUb/kwwCdMdgmeuzDAS68hB50/MMBr9hw7Ak4wwLC1JSPEbDDAcQbouS8LMMDF4Hg9rJEwwCXr3DRcKzHAdPDqAO9wMcCn1sWV1UQxwAwHXy2IPDHAWecWFc6KMcCJwNO2fz8xwLwUhyJlpzHALcKdpQDmMcA9XzXIdQ4ywLFw5IASIDLALoHWUzfpMcAIgDXEbV0ywH+RCZbqBjLA1gEOYnQ4MsAoUUxusJMywAuz+LCgXTLATHUcEdAAMsDhk4ksyRkywIMWVXmDdDLASIATtwbuMcAzigH1KcMxwF5QlT/ZoTHA/IhFyC+rMcAH1t1sdS8xwMi5prQEUDHAtQd2EKAmMcAKA+xTPkUxwDvigy0RXzHAubVvmZn3McCQhr5J2OExwM67MOc0ZTHAdPNcVgGoMcBt4kTG9LsxwAWhbS8qKzHAVgNl0wEZMcDVLUgjfQsxwHo7V9RTsDDASh4EvolfMMAkDgIS4q8vwMdUu9coNy/AJRvf8yVwLsCvuElHSlouwOs376pUhy7ABQYp5bdpL8CHdL5NvIwvwCOizFTLXC/AtSMk6yWKL8BxECAI81EwwO/3GpvlRDDAw3xBKMIwMMBJqBlFjlswwP8NcZ/eYS/Al56IiEYWMMAqldtcoUUwwNtSm8dolTDAIh6XhBxwMMCNFb/OxKYwwKVzqUSZjzDAbPA4L5v3L8CfnUQDCxAvwOMh4PDZJy/AkD8Fihu1L8BIdx4U/IouwHV+zf4A5S7AG3nxMs4TLsBUkee5+0ItwNiHAERuzCzA4CxWG9+kLMB3NxYhPaMswGVDcFGg7izAcEA+MZioLMBtKvrP0TQtwIHjjvRrgSzAp+1c14n0K8B1lH1HfEQswFlPAU107yvA5JkDd6atLMC7jaiyBIgtwM1FVARTbS3AyF2MnROoLcCXbA6QYlMuwJmIHilDOy/AEFlT12XfLsB8xxcul+AtwLGbeTeA4izAPWUybOuZLcCA8TPz+XMtwCimxoxyey3AgYHHKjBaLMCpyevuNqgswJnazkUE8SzAhTyqMnSmKsCgRnEKhnUqwD/FZh04EyvA13pY+m8UK8AcORlmAYIqwBnhg43aVirAqOLjVlOzKsBZ+h331HgqwDtzRF2XCyrA/wbXJQT+KsAEA5iNiVYrwM8f/EzMgirAsT6X6+6jKsB1n2n6tqoqwOH+cs767CrAdHfuyiqZKsAI0wGQZzYrwAQ9CIHHoyrAyQ/WSIo4KcCtTjC9KoUpwEAwbYQPGCjAqbS43HZ3KMCBV8UC7HIowOmvT2yjdyfAeMPJ3BDqKMCjUWml4n0pwDfzW7qcGCnAS0WAi/J8KMDtukB09XQowOjauycI3ijAKEmQ9rclKcBsnYVksM0owHnloUfMlCnAxAKgAi2pKsCQXo4gdYgqwAdjwuuNbyrAr+zvD4KnKsCcsH1CZt8qwNCHr3kMlynAz1U726MKKsCPsUKXH2spwHSj5cJZKSnAWZwVKKB6KcC8c63H6h4pwGEXH/7e9inAf9lTTEeBKsCjzRXegY0qwN3tCVbV4SrAh0UrkejAKsBP6d+u9eoqwDeWnuZolCvAfZilLhPlK8APdXRMRgMswFzVgfhSmCvAaZVPH66xK8D5mHUfHlYswPdI3W7b/ivAdSUA6A/NKsCQqAYRVfsqwH8oZYJx0CvAmD3yfntJK8ATmoRz2gArwDVTS00rfyvAh56qBtiVK8AlLHdnSG8swJmSGVxxyyzAfJsdArGlLMAPukT7AI4rwBTbFCJDPCzAdaQtVRJ3LMBzzc8vFIktwC2P+2QuhC3ARRPO49rrLcA7Tz3zId8swM/kK5BRJC3AJYexHHgCLsDMO7bdZMAtwOQp4lT51i7A87I4fUU5LsAkm2tOs0cuwD+gJy0hYC7A2Mo2+sj0LsCQJkt4w1wuwGzTsXMeNy/A8K02XBpCL8BLra0hDGMvwHtHBVgUYTDAMYw0xz10MMDFUu+4sdcwwAIStF9WHDHAQlIF1ISpMcA60jELWzIywCO0dEum4THAxQN+MVRVMcCrwYmSALIxwA+XA5JonDHAOa2RP7HeMcA2ykMloNwxwNeCZ5eYtzHAp35NSUeGMcCpi7BUWFAxwCZ9xQRXjjHA5CZyaRShMcAaJ4N0ZzgywD1l5B2zZjLADuRmNOlVMsDtwD/zbFEywJ6SAWCxczLAwf7yKPF5MsCdmZzBGfQxwIkC0UXm0DHAjz0FZvfqMcDRlVgp5XUxwMEkULzZgDDA4OzAwJxrMMBJvEIeuZswwIfi5Z9lsDDAlDS/p1QzMcDA7pQoA78xwH48XzLg1DHAEwrPp9nxMcDr0jN4iOkxwAuDriRuiTLAV93BqOd1MsCXKUiU2i4ywCFu3TThODLAbyGHdzvsMcCSLEws1KcxwONhBRZFjzHAM1BoC+tZMcB1lYPILPgwwCefIO+VRjHASaOIBMP+MMDHR6cn20gxwEXjRMwoSTHAR04h819bMcBYVP+SvHYxwB1P2mwfzzHAeDS/5heEMcDBbObDbkgxwCbpHy30ODHAtcF8Fa9EMcBOjGTekvEwwMvkrIHayzDAiF6x8bH3MMCAxMd4mkIwwPMZahiZ9S/ACto33s5CMMCgI6rWPyExwIVvYBu5BzHATFkn0eL0MMDo43lAUyQxwMy/6NhHWTDAZc3oMpVRL8ApB7gM+GIuwLN8ifp0Ay7AJzpM9RrRLMBJrvSc/lgtwN0igD31Gy3A5IRLgSWyLMCoPfyjgHItwDsgdq3BNS7AP+wfPqIzL8A1aMKga/ovwEx+BTJFyC7A/A6iOBo9L8AOgpu/iAUwwMVEQZ3I/i/AX/y2Zu9zMMB/Hh+awWwwwJ+z36Z1QTDAD3xlns/cL8DflGnRRJswwJ1Qo0Ic2TDA8Umz8v8uMMCKkmDN2rEwwGHTBH6KnzDAiZBP9qgtMcB3wtoaWKYwwCYwW8jscDDAAxS6XYw+MMAz40n5E9wvwPU63yepqDDAJ4szPe8XMMCmyONGb3MwwNjtAHO6sy/A4erV91akL8C0Q+KEEpguwIGSXgSWfi3A5fpXJoXfK8DF6PgYcjEswGev8FEwfyzAw4soNAfoK8B8EYUEG5MrwFNl1tSh7SvATDQ1VrrxLMD8WYHlF+sswAQOH9KbzCzAYSfBAjF6LMDANaJ+Hk8swD26mC8R9izAOMjw+QljLMDTPvL0jI8rwAfqpweR3CvAFXGeNKBVLMA3VAe9juQrwNz55CxlrivAGJPOtPVIK8DRkvEPZ2srwDAevd5LBCvAw0PRldd1K8DMZGudgrIrwDl7JFQEiyvAaPYdN/MEKsCgyPmN+nsqwPzpgwaS0CrAXSoxrlqgKsA0RsyQ7p8rwIfqGFEweCvAseRdVg3KK8DvsO3pcDYswFyzQP/5KyzANF1tiU8WLMCdTDXyKgkswPW8ttSOvivA1MY7+KHhLMCcoZ+L/usswHzCJ7dwtyzAQyvRsW3hK8AQyDwtkqEswCmm9gdNHyzA8BbavO0oK8DhhNn9SUkqwBwMeJqw0irAD514yP74KcDslWqjAo0pwGdTU+Ql6yjAkLm0/udOKMBHv+HuvXQnwEghjWeL7yfATcb9M0F2KMCg6i3wCi4owLvfZTfEsinA7diEQY0bK8ArOfgkvqQpwINlN07VlynA6MSp9lwvKcCFiZ9uCrYpwIgcMtdyRSrAVJgMCpjKKcAZ00EoWrEpwD+49jBtiSjAubFIMmY+KMAIOUhKyUAnwDU8oz6xcSfAw1yE6mF+J8BsbQYmlLQowFSxXC3/5CfAJ12xUQLeJ8BZnuNKL3YowJc4H8qR5yfAsdlu3U8/KMAguUbtoswowBNb4FxnpSjAp2aKAGlUKMAkT+MML4UnwKxmZXY/oCfA10NHubaRKMAMbeiej+IpwHH5Pj9FlyrA+BUdIYTAKsCjbaTnE+UqwLe3Wg1KZyrAZMlPVnspKsDIUO5vGu0qwEzQ9LNIPyvA/GCk8vH6KsAItt+sEj0rwBcBE2Pg/SrAJaDtajNTLMDU5+/TduUrwJDN9xxl/CvA61qnyisqLMCtGC45eNEswESeOUxUry3Aka96VtjCLsCRBLbH8Q0uwItVRNQ2Oy7AwSIs1qiYLsD5Ji33yjcuwKuDfVtn8izAmT/Io5LvLMAYDC9rTJAtwHfDbsGOzSzAXVYrGrVyLcDHpFb+ZjgtwJUYRDkoYS3AaSPC25YmL8CIqWh4wU4vwEVpSmSapi7AgSRVUkm4LsANx665ENgtwPXch/613izAoVtofO7MK8BJGwL5XMErwBxJPm3fXivAAX7cR7OhKsBw7RMAD3wpwJkHPCRnrCnAHUhsYHPWKsBrNfBgrmQqwN9A+wPwTCrA8ZkLmQ2EKcBJqRr7mY8qwGumNv+JVirAEMd6pWh9K8AliWKQI5IrwG3sO1MWjSvA5EKLxyojLMC4xlIHpQYswLjPnTHytCvAW1FhzSEtKsDFfQRMvM0qwKlIW8dFZSrA/WobLcSXKsBvexJM5SApwOsglbg2hijAjXMq496UKcBzpwi+mUwowJnM8EM/fCfAn+cRUWfaJsBDNOPybPklwM+ODZC1GSbACZKjNBpLJsDNXBsrSG4nwPSs9DcxVifALbz3k43vJ8A4suF/kW4owKM8kohYYyjAYSvWjRxMKcA5WmTyQTwpwA0hfTzTeynA212t7TPkKcChq5/DJlIqwGM7EFDEbCnAe8LZZ58wKMA/dvgK9gsowN+KFnMPHCfAVSifbbNSJsDQZxEJlCQnwKwOP43HUSfA2znQbS0iKMAdhfw/RLYowBAOjuUd2CjAALQLgYP4J8DIih1O3/MnwOvR0qDHJijASNxpVSmFKcAH7n00+DspwLeSC9DAJynA+0YYrA65KcC/aAUSaNsowJ0kjGm88SnAVz+rFbNVKcAHM9hCJk0pwFtDr2OFnyrA6DxMul+kKcAfmlblcjQpwOzrieoMKynA/yJJBc2PKMCrn5q5GuoowFumWD9VASnA9FpyqjcOKcCXzyDA2NEpwEw8/jaVeCrAxFLOPWfpKsCXorZdDDwrwN/jssDnQyvAW0kGKZZ5LMAUSJ/GIhkswOkuWT+m8SnA1DWO/+L7KcBbEV3d31cqwP/lZKQ0IirA6cOjMWgBKsDPiPai8WkpwJEr0ZYQYCnA6P/bd81BKcAZ1qKZX3oqwLACc06/xijAlI3InIUHKcDvgCGTg0cpwFmuJiK17CjA9MOa9XoJKcBHn2I8Kp8owF/3GIMd8CfAuJScGLHOKMAFArUuXqMowCU2X47QSCnAITFoVW9UKcB086YPiN8pwMEG/FGXoCjA2X+EtUvNKMCz3GETubknwLthiHUGdSjAtA1kAUP7J8BUMgCjeaonwDONpUzGqSfAwMQiTRgRJ8AEtUy7VvonwHutSN8LvyjAy2jYyJDNKMCRwx2TujknwC11xHXnDCfApLrwpF5AJ8BIRq8S8YMlwDR74hK53yXAR1uS5QQcJMD4+MshbAkkwG364liCmiPA5zDNpbmgI8AevrHXOEQjwIzSEQiahSTAJ9BBz8r8I8AM++1HxVQjwMu59WKsNCTAAO/YNA+DI8BECmidPZ8iwEzu8fVGciLAmGqhd/fAIcAXbY8HvDEiwCEcCSgpQiLAFFHbUkaLIsBLkBL2GWYhwG37LVRobyDA+D3viHyLH8BxdNWavxcewEdOMdD+mR7Ad9tVnri3HMD1nj2DS98awBX+/2K5dhrAqG7Gv1NlG8DMy3Jxq9AcwPxW0ApifRnAGaO/tvbJGMAE+/r9W58YwO/qpVg6nxjAHzz8PgrrGMDIbNxi+dwZwIHH8vefTBrA28I0OssnGcBLHEBjax4ZwHtcyy14dhnAffGxHO7dF8AgisU2QUAXwCmjt1m5bRjAQ+wFVZTRGMAvhExuf7UZwBmjMaAAShrAo04XhG+UG8Dr98UXsaocwI090ciezhvAmYHfXzD1G8AdFaa0CK8cwBU+ROvaWx3A/WRqDQ8qHMBkQ9zllS0dwEdVqbvFBh3AiSH/bYgCHMA4mOOqshoewO0B0oZITB3ATL0UsDERHsD3sNWIvDcgwL3Hs4b8CiDAN4i/DYAbHsD4vQKkdvccwGf2VNK8GBzAO3/fbn7qGsC82iuTzQYdwMtsr0vQ3xrAsI6pjjlGG8CkTs1Li7MawLyTbb+8QxrAbfjJOuDrGMAsi+LWdv4YwJ1lLSsP8BjAtJOgMCc4GcDFeUZKR0UbwHlRlYexnhrAYO5kiCbaHMBXDNbejpscwG2kWGdZ6BzAw5Nyb7B0HMBsSPt1j6sdwMFfkVTE1R/Aq+pML1WkHMDTe40Mb3scwPzonbjLIBvAd/0iSqPIGcDdrFUKpgkawMCzKPGkfBvANFjoakZpHcDzDyJIAPcdwPT6ITV5dh3A0XeELN93G8D4pPQGby4bwPkn8v/rtRvAeEumxC1vHcBfCa0obzEdwL90ml13kx7Az+FlcQfEHsBAbuvQzdIdwOwiFGdDPSDArK8NHdziH8BIFauhUA4fwChPJmqzIiDA6CfLftngIMAHM61/4ukgwCPaDPqh+SDALwanf3wnIcBZpiQ8ALQgwEHfolbdjiDAMxxrCC02IcCHfaovEGIgwFx+Rgks6yDAKkt0Z0c/IMCJVyQR158gwFEwSdFV3CDAtaghd29IIcARgLnw7bEhwMtEPuIkjyHAlPJmmKOEIcD3Ht8e3wMhwNuNtDEepyHABXshOG5TIcDk1I/m1FkhwHemBiYA7CLAU/Aw50OjIsA85LRAc9EhwMfdiXzdlyHA3nP+OQJWIsADuoyM2bwiwFGpIsRJeiHAc7hvvTO8IMDp4JYoD2AhwAcRSkNDYyHAsqPrSC5ZIcDTmNSdsu0gwPo/hrqT7SLApc0ByN+lI8CAp4IPsUYjwPRsRemFaSPA4+KqkxH0IsDAgvJJxr8iwPqyz2aS/CHArztbX4GRIsAaHkh2WP0hwNtEQdwJxiHAIJMjaEoNIsDDFXVuPrIhwPqruhu/FSHAe1VO0bTrIcCAcdUe1fMiwGvDEsnJaiLAMMZ8beKMI8DotpO+/yIjwDmnBJHDPiPAuyRNUWyGI8AIrr/wuFIhwJkk31J/PyHAFSCFLfhqIMAR7f5ZjecgwJEVJzZKpiDA9Awose+4IcBBT7GWxvUgwKpp9QiJHyHA6GACY1XgIcDUpcZv55EgwGTvq80KqiHAKPJn8AuCIcCR9SI9/QQhwNhiwrxcfyDA74Hm4fLMIcAZ5tB4W3wiwEXIx2MmoCPAeTxKTgxMI8CHuGBjo3wjwO9do+L8xiPAt3u9RPsRJMBqf86ULQklwKydfhLjSCXAQVsQ24URJcCUgCN0UiolwB/KXiduaiXAWzCNjpr2JMDXtubdRq4kwIyZrPcDYyTA9SGrmQcmJcANG1kYJIAmwAfI/y4XcibAXVjWJNgDJ8BAn5RqfWEnwKkEqWIwHifAvALSEd/tJ8BbfB+8D3IowMfWofTSESfA0Ux/4kNoJ8ARS14dtNknwGPferiemSfAh63xd2DrJ8DjiE48V3QnwGmn/20NXSfAD/lDgguoKMD7sx/A1HMowPxSKcbs/CbAlVnOH2L8J8C/ewMpr4UnwOtcDIjpWCfAiI9lrtSRJsAHQ7ftsAMnwLCkBXtnuCXAq4Sk+Z7FJsABfxkoTtgmwKCmtdNj8SbAqJQEd4YqJ8CJnkdz4E0nwIvGqwyj/SbAtZXS1zx9J8C7CD+8BTQmwIxZhvHZNiXArV0g1cUvJMCtDKhUDf4jwMv2d1yd3SPAEtDnLG94I8AAzcssUS8jwMlq0r2x6yHA5yweCFFoIcC+gory9BkhwENmNtz5FSHAR8tMUUbhIMDFgrZk6Z4fwIn9cm496RzAQ+KGUiGCG8B903wSVg4cwJM9wO8P8hrAw7OO9p3vGMCfUg0koBcYwLD+HYTtgBjAXw/MOlkQF8AcerQGep0XwE89+TS0nxjAUIXNJ3d+GcAjN8wNsscXwJ/BDhGXVxXA3BVT9CSHFcDX+wCmd6AXwPu7/Dy4AxbARMhiLMRiF8CBtbCejeIYwJjcEM3sDRjAPA65PM2wGMDhYMGdS38YwGV26zRkERfAiQEOvCn3FsAoJ3ZYWgIWwL4ZiJ3f0hTAuH9AM1fQFcA3qR3f0NsUwASnrCmQBBPAjRmH0bNRE8B68ntKpUUSwMMblVTFKxDAVxEVw8GsDMBoci6aWyQHwF9WnW2dJwTAM8PMjiKaAcC1LbFi950BwMG1WxykKAPA9QOcqo1yA8Dsz+xeErwEwDNm1125DQTAbGTWnTJmBsDzPSLMZ8cGwAx7nX3fXQfAAWq5QHotBcClviuc29wDwGkvEAfyaQzA85Dp0mC8C8AJTsre+sQKwAMvFUGvOgnAQS8qyv1/CcD/LAN2UkwNwAfVbT3uTg7AfYt7Qd9qDsDbAd9XC5YNwNc7H3NMmA3A4Sjsds/HDsDPNXL7gzkOwNRReZav8QzA2zIn5Jl5EMDnRvnrgoQRwDgvsB6PaQ/AQbLWgemyDcDUcJAiLFoRwK2315nupg3A4HYVPpAFEcBmnC7GS6AQwBXYaureiRDAQ8t+IRQUEcBfp84s/SsRwLPzLmf+YhLAg0FPuer+EcA3tLbmn/kUwHeIWkFRPhbAMPhwG97/FMAhHdr4FeIVwOP4CdwmshXAXCb/McwVFcCYgmDONqMUwHTeu9hr6RPAi/6BkzE6EsAJC7Xw9LQTwPqtdetUIBXAj6P1w4muFMBDkNqw08sUwKP3wmNvWBXAIgzDZ+gvFMB5uAG0hrARwCgG6Ed1sBHAox/0wVzkE8DVKaeuTX8UwESFdC8P5xTA2/uiqTjkFMDMHZvZjRIVwMcxuVRgTBXAjOxod2NUFMD1gzpTIXwVwAxVVawgARXAVg+ggIvKFMD35UoIvQ4XwKm7JjKz0RXAbOeJcdoUFsD3NZTBFPoUwDYcBXreOBXA3KOW1fMKFsAXMaw71oUXwECerB5oLRfAMQpQHRvTFsDRy99Uo+kVwAI8PXLwUhTAFpYc2+E8FcDBWtIwvCYXwIPIQF2YMxbAB4WtJ3xtGMAgQMV2wJsXwDMqjFZ6zhbAs+Zbq7oXGcBsTnGBbkQYwB/+tECg9RfAZbgnpJt1FsAsITEYSYUVwOV9d1IEORTAYyX1y378FMC3HItLvEYVwP0fWn02LRfAS5qPcDw8F8DfrAFRHPYVwOTYKxXwmxbAWXeRE6jjFsBJLNCH83sVwHSXXv2jdRXAdsNng/HDFMCDxdf5MCcWwFzY17xo5BbAoQNIzCe8FsAYAb047gMXwJ1i7+q8KxjA0U1NN+jSGsC30jBmBxEbwBUDJEzz1hvAt1Ko2T9jHcC/eInc0X8cwCEDVGnZPhrA20WrlNBmG8DUOw94RIIbwA23Mvzu9hvAfZsxQCQFHcCVMS+Zo8YbwKEvTp6kQBzAlUleee2XGsCtI0X7qa8ZwLskFxv/DhnATY9x77BRGsBtd5SjkqkbwKEolsoM6RjArenKWYbSGcAIel9aqZEawB2NFFViYxvAQCmpL+NxGcC4qibZipkawMj6045k3RnA58mX4XfMGcDImBy5AWEdwIjwhSNWJxzA+FnnPGyiG8Drch9Liw0cwNU6O6DcmxrA3FjpNWTCGcDX1SFMHksXwJPGfjCXPBfAtBZyLvPCFcBhB8DAfcIWwFD2EjAAXxfAwP5ls03NFcA9QrrZs8cUwA+sBa1UDBbAWc1nwVBKF8B9+g2UgYgXwE+/cC3mkhjAZExaYWz1GcAE2USfVf4awHTXp2PQQBzAz4MiWZFCHcDguzeaYBEfwNMfQq3zQh3Aiwh3WGnWHsAdIKbCzU8fwOtK8dLOWCDAb0g6NO/7H8AP558SiKAgwI8cvXyl5R/Av0uIiP9/H8BEJlrqU+QdwB/uMJIwEB/AcWbhMfYCIMBwU+KP6yIgwF49NKkQHCDAPMh2jO2VH8AlEUJNvZ0gwIMRRiK2ISHArQR5KiQIIcAD7PMKJsUhwEydJ3+dKSLAIQ4kwzA5IsCZEb6oUEQiwGu3oKn6UCHA/CUt9b/lIcCCxY0wOyEhwH8k2WUtzSHAB+M99+0xIsBlpCrdhakhwGhViJ1pkyHARY18eBt5IsDl/pVWihshwCebuZppnx/A4Ilg9o7rH8CcfmX3K64fwH08vWKorh/AmAiwaAmlHsA5cNziLGIfwMSAvtmTPh7AzQ18Y2xhHcCvFd4OWfYdwJ2m23iSrRvAhA6KefwUHMA7UpwWbvoawEA//NmXjBrATcFqKrmBG8CBKH+rsKgbwE+rQ+s1CxvAzZwo3BlmGsD0pUEDockdwAhQVfM1HB/AdxwD070cHsD823fW3LEdwMn4x2LAJBvA3XchN/2ZGsCkOFCZaQUbwKc9pjTcFRrAa2Qb6n+GGcCjhAxnMt8XwAvOK1tdvRfA2WtJxP87GcBr1qvYOSEYwJHoOrL48RjARV789skwGMDMO9uCz4UXwLcpYDjrIBfArT50v38zFsD9RCJi24MXwJuiLQGW1BbAdUjq7nfsFcCbUQwaMLcUwJnt9SCnohHA0X24KAo2EsBpGoyqSGgRwODm+rs8IAzA1KwvivaaCcC/vIjuEfcNwIhB64ixPA7Ap5cMYEMYDsDfOo0NsQMPwI0QdrKe4A3AIiyP7w0DEcBBs337GN4TwHe/XlBj+hHApM6wym/rEsBMpsM1+tkSwF0n+XCzoBLAOogHjc/HEcCmFxA31jERwLOKTHUCcBDAT67OH7ifEMAIcZxA1hMSwFDgXWlAzRDAX/bU/dSmEsDsm+xJV+ARwGbHADTgaxHAE94dsxnDEMBPhnKXpg4RwH/yM8NMPBDAdSv0LMGsDcC7nWTF4DMNwJESDUJZnhHAbdfnVkKBEsCphoo4RK4TwJOkA8o4UhPAIwCCl3UsEsCmNHT8UmcRwATauc9FChDA8vYD9cbdEcAcdZz0VR0SwJl52ej1CxLA9w4QlonBEcA87R2Ty6URwCaiEyHkRBHAI8RBMKL4EcBPfTGHPf0QwFiNM6ontQ7Ab+ya91P/EcB8WI3LfIEOwMUD6ziBYQ/AJfgW3rM4DsCheq7DXAUPwHfzywXtFA7AfQBDU398DMCFXEtnFIYMwPFp8vUiPg/AadevBAI0EsDxz4f3igcSwBM5t7e9HhDAhxDvkeJfDcCtmlUeYLENwKkeIbYrXw/Ak/S7jmi1DcCAFGAvd0AQwItkKnP9bhHA9VBuBIb5EcDYVVZlgosQwJAKlqNvdA3AfdeTSosuD8BMGQ2P/7sQwMROU9SEphPA0DxsgE0PEsA2AtngMDASwGim+LeFAhLAtg+oyiuYEcD1TB1qpHQRwFeeIe5rtRHAriut7HrYEMBgWr4OpewQwC3tQkKcfA/A5VLmMsNgDcD5favWcf8NwIdfMQKCRhDAgPFzLx2jEcDZFhYpDlwTwLroZWxIKRLAaONfamlzEcDxEk9JYqURwJS8O/7psg/AXI51nVeTDsCAt6QUuNwQwGSWNbrweg7A8/0WutQ5DsCDLAQEXpoPwIkbUTfejw7AGfvvMCSiD8ARS2LN2UESwMeKHYlPxxLAIXSNjsbnEcD/suF+zZ0RwDnAXTJaLBHAztumN+FJEcCvsKAgyHQRwH/9CKYN3RLAVlERi9IjEcD7jH5nlkMSwPW9428fXBLAhHAseqr7EMBmG+AxDVIQwETcz1948Q7AiZwKOnXJDMAIi6TQzVAOwKXbnfr+agzAGcgftpFsDcCPZx6XPToOwHXCIY7kSAvAB6wnnY8sB8DnYVn7sS4HwJmQTHheyAXAwYDRJFbDA8BI1t3bBWsGwPQUimcpQgjAcKslAP9sCMBR0WBfu1EKwJ/YLCTKNwXAz/5qO7r+B8BBtvAEXs4FwBs3klvsrQXAVxEHgzq7B8CVYp1dP74IwLsv22/K2wvAeTN/X3UNDcC3jW51Fs4OwJzdjHuvhQ3A2NteQ22NDcARb2KQne4JwKjlOt2QdgvALX9/Qy6ZCcDdVdH4G6MIwCELfIyKKArAcdR0CNVQCMDZSD15IYQJwNu+KtwolQzAre1WuRk3C8DrjhQrbnMHwKYuW9n3VALA2Ky1vMGvAMAVJuKNxcf+v1HxgJBRgfW/v1e87zR0+b/tGxOWtScBwNsVQ937vwLATlW0tJbyAsDDBhYCmRIFwDpRhajmUATAQ086z97iBsBY/c/fsAAIwKvxcn8REAnAlB2OmQpkCMCDDib/MH0IwIM1sLFeJAPAKltNpzN6AsAb3/mc/HMCwEG2qb6D7P6/eyAsZwv69b9jX8gEjLTuv+1BlWgSDeu/+NV70NBz5r/PbuXpMPv3v4vuVdkzJ/+/Q1vsDiP+/r+hikOLkoQCwNlJiH1xtQDA5ybm7gCm/r+z1I1J9Dz4v7VmfNdd3Pa/jwn3THSR8L/w+E+mXBfuv9vOkX2Wde2/hLCv9wHK6r+v4lps+zLzvxo7hov3CvS/CfpAsIGV5L+bU1C0WQDav/uW/ksBKuG/r9abvpqV3L+JVxjl65LZvw0bKf8+aNq/aXngmBW9wr/laVDuNdiVv+iLSc40lpk/OVZAtD5vpr8szucF0rPaPxnTNyXNN98/UxPcPcxA7T+JfpNJyVzuP+tatlyAMPI/wTxemMUq8T8T4fBpjnH4Pzvzo4NLrPc/pFfnbLGC+D+gEcj5Jh7/Pz0dIRGX3QJAUNOeVwwNAUDoytYTFucCQBc3ghi+DANA8Kh4Q6J2+z9ZkII5mU3zP7Sx9tSfQu8/2d9vjupx9j/9lXdusoz1PyXZd/pEwvc/ERWNNR2cAEBHU6A3ZvcBQFBReXHLRQNAeOafeC5e/z/fX6FgNXADQOBnevIKh/4/0wvHuM/z/D/btm40tVv9P83C+cO1kPs//765I7I/9T8nbu02T3LuPyGOplwIfuk/6pemWyYD4j9/iQhUgMrsP9SzeAxcNOk/EyIVmrZR6T8VpW1IzuPnP5X1uiQLGOs/UApotc508T9f/eqm/NPzP73FC3T4tOI/Na2neIuK4D9ighJ4rx3SP8egPrR3C9g/xBquygsV3z+YZsJHxDjmP50Ld0mQCfA/8LN4tgz56T/HssV6n4reP1XyRo4cor0/fy+AR68s3T/3XxAS3ffTv+gdbFz07cy/+6Y3g8xv2r9Vgmefc+zXP+TMSIIYwNA/LYlRHkAh5T/DX8ER53TpP679NirjM/U/ofHDcamT8j+3KeHTi1/0P+8JHHVTr+0/W+6Zn2fd6z+g4cNOg2W2P88HlrNUg7g/vwi62apbzz9w0is/DN+ovzAZMyTModY/DUd5IgCPvD8pC0L5lUPmPwxHkNKEFPI/sdPNyPnE9j9Q3yha9vD1P+1zMlnPjvs/gJLY47o5/D8IVEjYE7/9P+XBJSZttPU/0SfM3pde+T/h6x3twy36P/zx4MmLmQNAmwmyPagQAUA4Ay0Y4JX1P3ffnxkWEPw/mOCpIwJh8j9N+cFJehXlP0VJJ19939w/2xOHUbXV6z8f0OUxp0r2PwhARUxJEvw/MIXlAzyj7j/gLPqDDpLxP3X0gCnHgvI/EHXVGj6n+T9tEQb77338PzhrvEYKBQBAIYc6i6j/AUDIsxubF7ACQClAhtaS0ABAtGliidBB+z9lwihl0o/6P52me4wxkvc/eSuDyvyt8z9BNENoKgf2P6jVdL2mR/Q/yYXQEEfD5T+dGl2siw/wPyhhIDPNRPY/baYbxuiL8z+T0os7ZQj6P0gbjXALfvs/a5BV/uLz/T+nF2tGHBj9PwlsSuaBPPc/SfC+v0cm+j+NWaVlIUfzP4ezXmuwwf8/QO5tkPIl+D/9qFQjJP39PxyVCXMpsfo/6ZBciHcZ9z8BXU1/uufzP3w7zfPi3fQ/fTZ76Dps5z/Lxx+7VX/kP2zmd6DhSeY/+QaWQQDR4z+l5RUiigy7PzsNuti7mba/c1Bw7HLj0r+AYDFvdf2HP/S+4wcWp9W/s3PTRJsi778tbdAsF/Xnv78HY5FLQOG/vVe1Jv/q5b9r9nWAbVzzv8EvPl1CAfe/63o1Wfyw8b+QFawCjMz2v92yoJowTfi/5Mk/RPhE+L9ds5Qeblf6v9fmgkwahfy/nzopRE+t+b9b2ikSv8j5v9Q24IJhvPi/05peO1pA9r+n8VVyYbzyv/8PloYYPPW/PwWB0Owb8L/1ec4kIRrXv2GQ+GTslNW/Jdn4smm4sD/ldOjLKO2/v+XhUq+qnrU/KzrEzD7Dtr8wKV3A2evJv2ks4jJt4NW/wAVUowohwr/cPEdS/8HAP+y4arEPyNE/ydVBIaDtyD9LhmVYX2W5v7kqcHK0286/u5BVXia/4r/tBcOVSj3Gv+UxLADDGu2/YBFkUJMh7b9vsttuZ2bqv+RHpUHH7+2/6fpT7MbY678GTPv/4hDzv8FCqPi3Mve/rH62P6M3+b8zel3Y5Nr6v2HhVo4UM/i/SeFMoqTq+7+l7Jvpvg8AwGN0BZw3SwLAvIu927rNAMCUWz3PTjb6v4+lHsNQbfu/AaUIorQ//L9k0Il8x/kEwOhjoKgw+gbAcx2s46ZsBMANeEor6eADwDuM3ZHRZQDAesx/h/OMAsCpsIVt2ekCwMFXXazWgwHAe4/uM9wC+L+JIjPNQlf5v8+5fTtcwvG/g3WBuBcK47/ZDjPgRATTv601xKFkO96/7QUh2jM44r/LQu2HDLS9v24QPIC3BNC/LUtqT4+W4r/wwd5OMdvvv5NeIVXHvvC/UFMya+9j4r8YN5vLCCPHvyDhcE+ZkJW/b8Yyl9oc0T8EukRZ7+3mP8iL80BtyuI/XJAIdrDr4T8t7NNQ5VLSPx12pHRHUr0/9Yw+Lbadv7+v+wfe9bXQP421CLjf++c/PXE6UajE7T/DxbwQmPrlP+N1aWc/Y+o/t4+gCya+8D9E6RfGixLmP0jsejx22fM/dwIG+Fec5D/R9LNZKFfgP8/YtZrKy9Q/nYdlj0IB0z93VKHrK3/DP93mjSpKsLS/CD2B4Fhaw7/rc2Rp/fnXv933frVjZtS/n622XcQZ2r/frQ5tQiHzvxRrGlqamu2/qxXNux+U67/3bLl4Hn3xv+WeHKQWI/i/oePPY6U68L+YEbfR7Sntv7XPw+tDp/G/w/TLsnzj1r/wgCqpUqvFv3MUamq9VNa/3eboOGobwj9FCVKnvCW6vyh6TBjTWso/axDJXUlk0L+AOFU9VlrFP1VVmcnRyyW/Xytkb2FLzb9Is+bYGfWxv8nHFO0mlti/m/V5CjAvs78gfpRlTo/QP6Az5e1B9Mq/QTa6ADMt3L8Q9M3oNhvmvweQSD4U8/C/6/mq2Ttp8787uo0UfWHov+/7zvFsTvi/661eWiWq97+Vy8Ie0SH8v5c9thyLUf6/U3hdCwy9/79w+whYpdgBwD2n8m3rCwPAF0raQisiA8AHeRC9M9gEwLOxGmysvwfA9Qm2b/fWCMAoCZf9rU0NwOCWIb3osQ7AP5/gbn5mEMDRaxB41D0OwEt9l31FqA3AZQ18cyYTD8Cf7hH6nDoRwCbDFTYdBhPAn32gejS9E8C1tT129cgSwGlDKbIikBTA0UMzviDzEsCD1SVGNZARwCGFSYLZpxHA8A0Sdj83EsD5zc2zbooRwJMVK2tAPw7AYG/i4l5pC8D3LLuXO68PwJA/vD94Ew3ArFU0U/VZD8D/LwfqSeoPwHmmHW0NBxDAoqvCdyBGEMDjiPOxM4gOwEOmin2pShDAjkUu07XREMAk/YzEypcRwKtIYKU1/RLAFUDh4Y6AEcCaqX6roF4RwIf4iiBE/RLA7y/EXMgPFMAIx/mavOkVwPUVSSZfDBnAJW/eCwwnGcCpsTqu2gMZwCjrJJ4orxfAPOpJnMgxF8CRM/YdorgYwHhoX+9anRjAeXFOj5huGcDTajG+e0sYwJcNliNByBfAUHd1Qtc7GMArbPUAYiAXwEUXmukrABbAR53ehrxpFsDNC38wjpkWwBMgg39cpxbAtxGr5F34GMAj+xYsJhYYwBP29vC9lRnAo664W5GiF8BVU0gXiYYYwOhnSV5ItBjAzLhQdj92GcADEtteVkUZwPt9yCKPjBbAfP0EH1JOFMDAQoI5EmYVwMDJH/vL/RXAY23GFV+MF8CRQPU0/RQYwFUIy6WzZxjAYPqyj8AnFsCgsu41W4QVwDyVad1vrBfAGBaW/XxDGMANGp4faIMYwJuLp+yz9xjAX2mrnPcMG8DHxAaMj/8awB9ev8TgURnA21eFVQgnF8ChtZRa2X8XwB1PSz8VoBnA/KWExwb+F8BkbGGoyiUXwKVGiuKyNRnAY0n+dyhPGcBjnvZOltgXwMH7bjzhYhbAb50ynvaDFMC/d9IacI0TwM2rFQjMPhPAd4eZtey7E8AB6/3SvZ8UwKbFrY56CRTASf2tPERIFcBg6mGChT0VwGlP2P+sOxXAPW2Ox7RfFsCUcZzImn0VwLEs8UegZBTA3wITZylWF8BLx1fmyAoWwCVydi5FvBXAQVRL98MXFcAHsbcJQAUVwDk+ejRdPBbA6fWQswe0FcCJUn9t7lkUwI+q+bvS/hTAK6Xc9WQRFcB9JO9zl+4VwHsMpMm5yhTAzaW4SyOlFcBVXm/bty4TwAkE1XX7QhLAk4VKV7JLFMAxgex8jDASwJXSidwP6RPAu4F0GCkiE8DrsaW9ROATwB9oAnlKjxTAP4p5FdkJFMCN4F73Kw0VwHPcAzFVWBXAoykXwR9GF8CzRQdaH8oVwKDsQ870ahPAhaiflfGwFMBzl9WT51QVwMcbYkLKyRTADeHSQhZxFcBpbvSdIoAXwG8hXKtzdBfAB25bflo8GMCHt6SBOf4UwA0yZL5ywBLAl1ksxFgQEsByAi5LdBUVwLipnQ85IRfAX6kdpIxFGsCLRJeU7+MawJ+KbBkwFBzAcdteXhAdHMCtv35woEYcwMPB22nd3RzA246LV5WjHsBZbNyb0QMewNlcymBikx7ARAO2USB0H8AFQnzAT38gwOhVKNRyoiDAKLGuAX+UHsDFNYVFZjIewPyqsdyYwR7AHPDf56LBHcAvo+13TsMdwOWgNJFDWxzA1foSMpCRHMB1FVHGwpgcwBgsZqMqZR7A362OS/UfHcArjuXDqZoewHCPwyC2lh/AeZNh4qeOIMDjqxC02OsgwFYt+6nGNiHAwWKOrDotIcC2uhjXQ8UgwNergFaovSDArkrBNBXgIcAEuedKMZUhwPXyrUXd9iLArXTAZr5bIsC72I26hYsjwP/LRRHuiyPA5ZrV8vHrIcDXfQg/Y6YhwJzZ8snDECLANopv9Y7eIcBTdLianAQiwNvkMSdKLSHAARz7Hu4HIcCP0orTvxkiwOkIJfp8TiHAj4+TPeROIMBYuRK355ggwC0NqreY9SHAUzMRdjJgIsBKuVmh+y0iwGkdlyR7YyLAYRwoya/VIsC5CSAWAgEiwCSjj+xbRiHAwrRe1wpLIsBjPi+06YgiwL4qwuYpxSLA+eMBfSEtIsDvyT4pxFAiwDPLn/eIPSLAYFf211OjIsAdG1gw+oshwLJLyzQcDSLAnq3fMs2nIsBnw/LWp9ciwH0xnV4lDCLAKFeAsZDxIcA3bRvrBqghwO+Iuuc/9CDA5jr/j+wfIcBPlAZABn0gwMj8CMODlyDA/zkcNxo+IsBIooWAKhAjwKFv8pE53yLAv6RV4ljvIsD5A53F1r4hwGvF350sBSHAzenU/yW3IcBsD4k8VhgiwN1/pn/MNyLAwgORBdzZIsAbariBQygjwHeWcKOaxSLAKSdiUWlTIsDTXF21oIQiwGdPyLSOMyLAsvByTzDUIcAjsBqkGhUhwEkmXOKoXSHAHZHB/TdKIsD0kuELhlIiwIDzuQMwrCLAjf7fY09QIsB/iGVUPdshwCRB5LEagSHAOLnjtmr8IMCCKCrzEpYgwP3QSTO1ISHAAEabK7txIMDJK6vkSBYgwA17jt277CDAcQ4CMQfSH8ALXlVE2uAgwLk59no4gyHAi+nLy5aWIcCZXDSXZRIhwDd0AwKt3h7AG1drze36H8BZjDCQdvYgwPejdTcVuyDAvZWXfIPuIcC9Ms5+sB4hwDLjnqQqeiHAQDottc/vIMBDd2jxws8gwFkzwAgiQSHA60chodgVIcAF1Evu9hogwPNw2IaRJyHA+8xofB8GIMDx4AdMgIAgwH0AxwJS5CDADAFKTnPAIcAjL+34O4AhwF7x/qSyNyHAJF3mF+32IMDUxsbYAc0gwP4fFMzwsiDAxBMdlhAdH8DbzvwGNaEgwGgwaVbXMR/A5S5dVLYjHcCLAZnF+bgewBllH9qQrSDAx6RO3k9YIMA2+/Rx2UcgwOtirCYE9h/AMUvDwhIkIMCd0hujLf0gwAfmqFpgwSDAnarFaEepH8DT+roV7a8dwOufs2O1oh/AxAU1vbRpH8D1jx0g1G4gwKKzBezqDiDAX/4G7YR1HcAJ5Ge4gdkcwIBSTD/m/B7AJAwVVVaYH8B1/PwD3hYgwCFwz8nFlR7AYxwzy8H6HcCA2hhgwVYcwMO4iNbBgB3AizuXVb+hG8CLnzSo+SEawMHNRECQuxjA7PlTYCpzF8DskkebG2kXwGX+ZEmlChfAe9glHh83GcDcf5CxUaIZwD2I6w00hxjAhHPVITugGMBM8sQyEQgYwK8k9ZLxGRbAKSq4B6TgFMChsq2m+LUTwOj5IeiFfxPALkKgG1SnFMAYxCd/oRwUwAn259c+xhTA8Z9puybiFMA0Gi/76IIUwPz36iqQ0BLAPJmBXs4YFcBMhzNFmroWwJu5GZC9jhbA9ag0wqsoFcCJFcY6kvQTwDdWje87PxTAeD+rjlWuE8DYP/R1cGMVwB/1fVNOEBnAWeYsKJHNGMAVtAIbXKsXwOviS4WQxRrAB4+24o9MG8DEFj6Zja4ZwM2GdYoS4BrAiYsJ1+GhGsDgNKP9gWkYwKkmt2H7KhfAuYvh2Ya7FMAZ+yUmAD8VwMCmH9BWghbAoxNf0cA0GcDBoQbiKdYYwByW0hrxvBfAnOa2N1fmGcDbraWGvp4ZwOuyxsXtpRfATWJ8XLRgF8Bs72COeugXwItfDvtbohjAdbTaCDmxF8DJnGtqJ6AZwFvUoEAbCRrAZROz7lugGcB8+KjRL80ZwMFk5ENV7RzAYzlaSgD5G8DsvLKFBYAcwATkUpHU9x7ApQPQyzzxH8CH2RlMwdEfwIL0t240BSDALNcWuQkPHsCl3siR0KkdwJ0o3pZmjx7AlUj44zBtHcClPwsnjdgfwMWc56MWbR7A4F9sFPRyH8AMtPdbsEofwORzhcz1Ah/AvI8xLX/pHcCs4uwX140fwBOPPuqdZx7A+dLbdSZKIMDzNhyo+owgwGXwaiaZMiDAS2dCITEJIcBDU6x8VDsgwEMxioyadSDA+uLDsTkSIMAxpOsS/ccfwFSIJ3d9xR7AgF5BZqASHsD8717RlQEdwD/miETdkhzAJRSwjObeHsDwcPH9RAogwJUAtEju6R/AWZcN4Uk6H8DPyoODEjQgwE0Uc9pFISDAxe/pZCYdIcAROAC4228gwFrF7z4z/iDAJtX9vAvWIMCgZRrPqo8hwEXx67RF+CHAeawoRxpyIcBSBL3BE2EhwIzFQsTcmSHAZh3uwFQYIsDVQT1RBS8iwDtSPRnOWyLAyFCaI3CaI8A+ocqQzn8kwGOrVRb7vSPAmNZe5DMhJMAkBxU8lqAjwE2FizMuzyPAwz8VFt6MI8AB6JS1FeAjwLXkC/6CUiPAnNQq7SFpI8CYEgkVNjskwETQ0RAnUSPAm1yimHfxI8AfkCwvvzQkwOhdocoD3iTA5x0oKuPxJMDEic8iGbQlwPCRdv2wGSfAcTmHQQBAJ8Ak10CY0pInwIB2tbOfcyfAeBrV63dSJ8A4U5xmcJcmwN1HNgQXVSfAAbFznwiiJ8Cx7Pn/ZyonwBkyeGVrLCfA2Vu2LDRUKMAA3RyydOcowG+4BguyvinAr6TOUVdGKcCJEWKp/aInwFRvj7nIQyfAOO+FFUzzJ8C4XTlMBJYnwI/kFzN6wCfAFKfMudDbJsDD+OTcoLAmwAfPQYvMaCbAWdJxsa/9JcAFiHviuvMlwBvZ2/b7vybAtLm44uSmJsDDiaPaXD0mwKlVufUP4SXAwd3CUCcFJsBs5LxanhYmwMAtk7OujCXA1mDuFEk8JcAru+cM5vokwD3qPfdvtiTAECNclLZ3JcBlWkicS4MlwLfWy4QmpyXAzzi8ODQaJsCoIa47rw4nwMNaRa0BCifAPGBX1mQpJsCpqkSon9EkwC0uF/XYvSXABNiuaq7PJcA4PEQOxfIlwGnf3OwoDSfAqPEGc6EyJ8CE1K2JSKAmwM9N21AtFCfAyBSWRDF+J8B//NDuNYQowE/xBbUFdSjAX4wMlsQoKMC5vquqTNUowH8DI8XjSinAkyH9C+q5KMDcLXTvuD8pwL0Ol3Xd3SjANT3zXp97KMBjRRrBnFUnwFk1AlgnMifAMCa8dBV2J8APo9ryY1wnwNMcWuFRWSfA7IJba/a/JcBTDQrpURIkwKF2RUkuLSPAYkv68e2xIsA/oPn+SOYiwGPK1aVTjyPAmSBuhVKJJMClqLCvbpEjwKfnLqyy0CPArXRwdHGcI8AYVybCCWckwDG0M7aCdSPA9yM8CqReI8CO6+O6nm0jwBzVVYZo5CPAmeKxIp5YIsB9DeKx9H0iwEe3nmqB+SLA6Rli3getI8BNPTxq8i0jwCv+lWbnliLAmoukoJA9IsAFCcaa1CshwEmn0QNaviHABLnLjUipIcADmfQhbvIhwAWp6qOqeyLALLxKGTCwIsBL6cYU+QwiwGX2kELsJSPAeAqo5t4zI8CFC8cFTtwiwC8U3ZcMgSPAXVg+qirFI8DZc9idizIkwETLokXmVSTAYkOf4glhJMCNWjygWOkjwDkoTDoB5CPAS8upBwnGI8Ad86hmTyIkwOWCXIAgxiPAwqxH4AMxI8CQ7CCR/VskwK9F6DVs6CTAmsKxNgGTJMC7oCfJ/Q8kwOMGFnqu/yPAZc7tT/5VJMDZYhHE0xclwBtPQrrDzCXAmfODtk8GJ8CZpZIoiggmwN1WOWgAJCbAAHezJmN6JcDMkZikStsmwKToF1+DIynAt8YFX/ZvKMD0amTIowMpwEuLRbCooCjAqRR9Zx0hKMC5D5wXDXMowBvL8xeflifA4JXyS8b8J8CQ8g/KQN8owANFdiviDSnAhAz/o2UMKcB5AQO9u3AowAi6Ylj5HijAPwICswaEKcCchkmDwWQqwCRxA1unIirAC2tFW0urKcCnqM7I/t8qwKBUlYio0CrA79/VEyyZKsD7FHcmFM8qwKehrlFncSvAsSOQw82IKsBtFTelP3IrwDN93/r/dCvAmLo5uSJSLMD7o3+N3eYswO861J/HmyvAu1gZOE8ELMBPTwluSegrwDf9gIINxSzAOVTfKbDALMCjLaTzicUswK/PNdd1vy7AXx8VEPGzLsCDNtyIW5cvwKMtj+z5cS/AoHXQr4cHL8C3G5mGGIMuwAyv0QhQRy7ARPLUs5tRL8AtoW0Wa0kvwPNEJsKWRC/AsegXIivBLsC3OTU1tIIuwM3DvOLYii7AS62SkjQiLsBNbjmA0u0twJm+R1i2VC3AvYmyX2EqLcDLjEfWy9kswEk6rLTxFi3AB2syQiEDLcDbwRD8L5YswOtxS63vNCzALCp2MljuK8Cv2ktDyvgtwMv2mvU4ci7AoPiQodLQLsBcaY8qSHUvwAP9mSVwiC/AsgYFlgsPMMBAbbdZYbkvwNORSamQxC7AMS0J8BOvLcDFJU6btsIuwC/I76kRfS/ApSPqrUxFLsBnR8A6ph4uwDOp0Ne8xS7AIZFV7PGILsArejhDkGIuwPRSMC/qui7Am1GjQeyQLsCJ0iQROcguwLR8QCT50y7AzFxdFjXNLsBIy2Jerd0uwKN1zN2OhS3Ai60kLc05LcAZmcLadPErwLUnMF04aSvAWIiPIb2NK8DnfAOY0tkrwOV9ZPR3rCzANJXDyyAsLcCLwzf9onEswAcJh+bFAy3AKLJwTNDwLMBd00om+8kswLEOfnKhQC3AfPUQQcYTLsCdit8k268twBeE4oQ91y3AgePhd0qBLcAwF/vOCcMtwMnQ7byT9C3AgdXAmXpMLcBkxe8z6wstwEm5UxLhCy3AO9bodg3XLcDvQgGZQ2cuwNGV/GsV7y3A5BcEuabJLcAE86RmRNstwCEaPODEFy3A10HEl89LLsDkyR0H2/8uwBzYFtWDKC/AaDCr9HiXLsAv7uUU1LMtwHyPS09zFy3AEUwCdwtbK8BzSKqNNxQrwNllCIPdNCrAN2hIw6H9KcDL20lLxvcowBQhFXT4LinAEAuwzomuKMCNx89f+f4owBe4blAy0CjAyNgOYpscKcDMArBI688pwIssusa14inAOOjVjNlcK8CYASPD4uUqwAiAlEqQyyvARxHhBWuOLMAQ9U4Q0tQswFlC2n9wCi7A1QLnGqyuLsD4LtOcuoQuwNPQSy0hmi7Aa8eyF75qL8A9ICCMHpsvwHEofJ/PLS/AJJns5smCLsAcWVu1t4EuwFktbyEbki7A15U7ghFWLsAFdxmaVksvwHyTO/KuOi/A6xWEy/1SL8CXndcSbnMvwK/5QodJyi7ALGTDFn1DLsBxXz4QxsQtwCRCgrUmCC7A9yR+bmhcLcBD763hByktwL/JP4D6Ty7AxFZM5DOrLsAZIv1MaOEtwDT/2m+1PC/AVBz4r+X6L8AwBzWqeIYuwA2aSdQXKS7A+8wSW8yKLcCX+uQMRPYswBiSRJpMXC3AfKf9+p3pLcCQc6EoI+YtwJsX8/DoayzA7cRq1ZJyLMAj5ZKEOBAuwKDgwIe/mC3Asdq6uMqeLcBLig+QcDQuwIN8KZmJNC/ADeeicDf9LsAM2plB1BovwCNs2/rFaS/AAdW1Y2ORLsBrEACcNawvwD3y9obKDi/AYcRU9h6ZL8AgIqVhFSovwFmB2cnA3i/AL0xhhnsZMMAt9wbuyiAwwCv3MPR/ri/ANQwI/3SvL8CRE8uioQAvwLx9RCjUYy7AGUdtJdCJLsBx4cIgRlgvwE0YbP7Ghy/ALz7khNmcLsBDFPtjsH0uwL20LoGPhi3AiNzmNYRqLsDr9lx/WP8twCyPPDPBtS7AbFZT1ocNL8Bl/pgd3L4uwGHEDuMHtS7Ar/DmWRtILsA/pfV4GeMuwG8DHfGzPi/AQ/MsnqjfL8ARqzK8gVUwwP9ibinvLzDAKb3piXMtMMCJqiY+CD0wwI7MdCJsOzDA/cmopSm5L8AFT4PR9AwvwDDZlyP7YS/AnP1yOt8IMMAcgXLqVfYuwAkKUpwe2C7AAGEyszQ6LcB78HlelrUswCXC6iDr1yzAiV5GsTY0LsCLTbN2b/IuwIB6qpp5ZC/APGQuoftrL8BVy16xVwowwMFKJ3k+VDDAWh2JbwhvMMBt3RyDiPUvwOtkdvySLDDAJubblRpTMMC6uMEDTX0wwMWzVlZncTDArwf5DyP0MMAryY28C7MwwKk95SRyfTDAknXUC4d4MMC/9C9wfJAwwAMPAmMXXTDAynbNp5uIMMCdZrOfL6gwwPtDTuFb1TDAcSngcWQ5MMDfqVroorYwwENMzTkeEDHAkEzlRqGgMMCrcdlAZ6wwwOxQhVpv5jDAHA6wDSfqMMBF3zo2ezAxwFgVL85X2DDAXa98wlJ/MMCCwppdfWYwwAVG57HwRTDAJ0cuE8p3MMALGSq+FrwvwNvLdO+JRC/APe59ipVlLsAp/fFO2x0twJDoJ8bJMC3AFVdVt0cTLcDDFTQf5PwswNg2+Shi2izAMJWsRSPiK8DcYzrKY+oswFX5CWjPeCzAmah7Ui+YLMCLwnMY+GAswBRurjwwICzAc6Hi550wLMDTf1ZCc8sswK87RhI3wivAVCIqHfL5K8Aw9YNzmaIrwLidVGTLCCvAWwEkIrYCLMARIi1KqO4rwGnXpfPoEyzAhKEZiDlVLMCRLbSwpMgswIhPtjb+xyzA332g4cCoK8C8j+NL59MqwJUn6umi6SrAcWxUiXC0K8C5r+90j9UrwLBycmiTEyzAmSNlKoQLLMBwD8bJeuwqwAwWsyK8myvA7PLsStQpLMBIANtNJQAswNyv/yzsYizAA9ZmpqLgK8DonqIFjposwOUg+6ufjC3AayutgL82LMBgP67+BX4swIsRpZYvmCvANH6KbuqsK8CFHwFbFR0swD8VqMYTNyzAAOFvFiisLMBJ8PJZ4v8swGTQLuKCtizA1GfArPpULMAfQ9V6QZkswExVH8wKISvAaeAh74xPKsBDCkGWX60pwJNJXyY5ZCrAtaNGkPbGKMBbDT5LVyAowFcEfk4xeCnAzAFeh1/9KcDw1al2HtkpwFVKcmTh4SnAke+StLj2KcAbVlbwVnwqwI9VxEGUDirA0UXMLRRHKsDvCFViP2kqwLEXfI5FSivA09LhcrZ5K8Djg7NtVZArwJgYtBN9WyzAU5GYSL3qKsA1km3TaCorwKhpAqn5ZSvAD2LTfcQ3K8BTcofxju0pwAiFRzaoYCnAwFyqaub9KMC1R1IzcRIpwKs8wAyq1ijAyCrVEWfKJ8B4nnMl354mwEDeIX6BHyfAN5cFV0QqJcBgh48xQGQmwGxC/PJqwibAYEL5YoTYJcDlJBGefgsmwM1B4vicASbAk1E7AWYAJsCQq0fcbM0lwD/ewvGCwSXAvBleUEeJJsBdsbc6ViwnwB8BwSomhCfAuZvy+u0nJ8CPgu6kCNAlwNX1s4l/PSbABsNVmW03JcBmAHx8uDAlwE3N/bdkYSTAwSIWlOXBJMB/056ueC0lwMfoZTbweyXAKeSQ2eirJMDpBP4szs0iwAZzHCRz0CLAI8ElLs4kIsA8vBzxaE0iwEV8cnK0kSHAuaAB11TjIMCzEe/AnMggwJSVr5H0HyDArRBY0gCfH8BU1Z5MmIIgwHLwxC2OryDAFjg3WBgZIMChe/6d4RkewNffvh+9rR/A3K4Vylw3HcDXwtqEDvsdwGxZmHaX1x3AUR+1X64yHcDnxHN9QqsbwAH6TllpYhzAQRiCsW9pHMDVfiBXjG8bwCBs7rGPOB3AhMmZFb4RHMBcrGvlVDgcwAR81u5qZh3AGX811QcoH8Dp7bgm26EewDuQPBHcNSDAeavrbCeSIMCV2xzEnuIgwPP56/i8bCDA86vQKR5wIMBHOZ4MvosewIvs9Nx6qh7Ad/zrYi8dHcCXq+rGcDIgwAezsIwsUCDA35e71u21IMA9WeZDopEgwLxHxtL8dSHArtzMBDkyIMDBpmHoIqgfwGgOgt3sHx/A/+MTs70yIMCMQ4kOTJggwAy4N6CT4CDAiUfshPvQIMCohtDavEwhwN+KQpwyqCHAYy4866kOIsD/XLuoMXchwDE8k8qKXyHAX4JPUff7IsD/e69AhCojwFf7iFsIVSTA4DWEEO6jJMBhWLkzeWolwNXIr/G95yXAf4aUjU8lJsBthD0sZzInwOR0qDv8UCfAH0zvxlJPJsAVwqdGoqIlwDMtHt3oeiTAV+ETvTpnJMAxmI8dOdMkwKyDHkpSZiPA7WQ3spnIIsATS7sn0rciwGeUcB43ZSPA2bRrMauEJMCXF3XqjcgjwG0hnm+pjiPAUOC/7SNTI8C3L1K9j7YiwK3Sjhgw2iLATbhIuwpdI8Bf/zFKHK0iwNUtK8om0CHAe4TUgWVCIsCXAvKvTngiwEX/5cMf2yDAe75i1MuIIcA/uiATfFUgwPBxKxaykR/A2BBj9UufHsDQ+8UmckcgwNw58euR+CDANuadKkJsIMBPDpBCH8wgwGC+//D+YSHAgux5/wcNIcAlie1rVTohwGACIIpSWSLAbiMt5ch3IsAPue8a3ogiwILG+og1bCLAKzvMratGI8Cb+0fwPJciwEbb2Hx09CPAntYAhKITJMBIbmU3n7wkwNh8vA+fxSTAOU6zg98ZJMBa3Rw1HrckwFXyneLzhSTAsCovGi+AJMDJOPFDqFgkwPU0ZjMzISTAhlsiIOMrI8CfE+mgLRMiwFuw7CNgXiHAZrbexAWeIMDiXRzxnZggwJ8C4qgj+SDA9x6Z6zHcIMCalu0r5bMgwJoL8wriQiDAQSZO8Db0IMCEVDM4BbwfwPDG6ycAFR3Al/G5DSQ1HcCrIa32D14dwANe6n1m2xzAdcBBSNF6H8BdjQbnXScfwPun7suTOCDAdS60QfwuH8A3kSof7LMfwKUcT+kFTiDA7DhnJKTuIMDzDunjFrEgwI1WxrDNqyDAO+5vqFONIMCwqP6FM6MgwErZA6N+ZyHA4C01kxE3IMADDMHYFEsgwMSG9BAaJyLASU65TBT4IcDuqreQ5PwhwDOUuSIomyLAiVQNdmPGIcDXOrfT8jchwBAZuafD2SHAPbNX5xmQIsC5RZDq9PshwFypHFunbSLAxZZqKSVvIcDL/URezSAiwKeBbERoyyDA9Xt5mNdfIcDzhECgLwMhwC3EHskV7yHA6UAts9DUIcCzq+SqgjkiwOGuMDRUBiHAe9KIzw2LIMAH/jO3PKYgwHPmZN+s/B/APJpKRU58IMBTDA2vgfEgwE9cCeUqkCDAlwSaub3hIMC1S/bF6SIewGBWfMFTKh3A7PgMdIrHHsCHMiD/kIMdwLN5/aNxth3AYXX76uSSH8AvB2RCWR0gwHOx6BC9VyDAS3avAflxIMA8L9zLjbYhwPRlKJwLDiHAMEwNfuQkIsBD/8FPUGwiwI4H7XvUJyPAVnq3ocPPIcBL38uPn9siwHVZmmm4+yLAgJg1wuHAIcAtEQd3+qIhwIDcLDihqSLAXm28xiOqI8ABpjOep3ElwB93Xapp4SbAKErp8mD7JcCx5kEgsuQlwHlUGl6fByfA25D3qXAMJ8DH29IWXZonwENNnVJ0vyfAi26vWGFlJ8AJkSut1/gnwG2BtpxDHifAicMHOj05JsAdjeUFA2QmwIyBDaGpGybA2yBAkT6fJsBnblNn0JwmwH2NY3wEDifA/WppHZ8zJ8AbvP7vj2YnwIlCMVqKbSfA77IyWu0wJsBRXRO0ptglwNg/TWZONCbA1VmDxlmtJcDliGDCttAlwJG91lxXcCXAwXkfKr3SJMDldyvv7rAlwL0TTgc+8SXAN7zQNVWWJcBAEfbkQcklwEd7yvGZkCbA+PdKgWNVJsA9N5udv7glwDsS+j35lCXAi2CCQB2iJMChCAgDDislwMKjI8Pv6yTAvgWBvVWAJMBfxoem+/EjwOmT3c5fhSTAIUAywe6/JMBjIo2vfjcjwHoyINrahyLA3WV77Uc4IsC3eA9h2QsiwMVZCiikniLAb/6Tvr6OI8BP7peQ1xYjwPxcXYFGPCHAE8cSIwAcIcChpVkAKswhwNUrsIK5QiHAb71DO0MyIcD/frrhzB0gwOngrHV/4yDAqWicLCtCIcCOzyhYo6ghwFg5lBKNCyLAcAHHlTvJIsD50fRIbUkiwMuxy12eIiHAcKY7St3XIMDk5g5NKscfwE8AxndRyx7ALMt4+jW8HsBB5DSgFWocwDNevzH4pB7AJI5mBGYkH8DLsWJDEGwZwJ84BEi56BnAG/vYmWqNGsDhWq4iHXsbwJterUXF2hnA/JVWH6U1GcB1n1SuY6kZwFuhbQtOAhrANYUWZIhIG8DcXIQmqN4awKSsJM6T4RvAFRfvH3xsHcA0fXTN7vsbwJSBRl/JShvAzWTKqSsWGsBF9srrTdkYwN9j7LosdBfAy5P17WsaGMD8sriufRYXwPmfmRHqpRnAh2ZGFS8KGsBEO2ElnWEZwIflqsuHUhrATYq8FyW0GcDUVrPewPEcwOgICU6rOBzATVhptyPoGMAQes8VXdoYwCGedz3nMBnAqf1jjbTSGsARCYiSZ9UawDukDKpUbhvAfRIfs/H9G8Dwpd4zwVQawN9S63ezAxjA/zDwCninGMBleYdd1zQYwAcjiyK62hjAbSwqOpVPGsDEslPX6N8awDH2t0VB1hrAZHTj7rx4G8BDXKgWt6gcwER+ahKoIB7AJUKKJe2mHsDVlAC8FwkgwMXGq6ZRoh/AIKBHxmv9H8BKfVI71eMgwHc7GKi7nCHAZfhMqA72IcAYsPztXz0hwGV9xMRpbiDAiQv7FGlsIMD1/EPlEu0gwDdh1WWfRyDAy0BMozCcIMBiCzcYLj4gwM18XE/rqSDANhXYcDsIIcCmVlalScwgwAGauhVwHCLActYT6m4YIsDqth2xyBEjwKbfy21h5CPAifJWTfJpJMCGFaKPD7AjwCmK+1UXoiTA0Nvy0+rJI8D1CvgQ048kwL568AbeKiTA8croOH3CJMCojXNV2oklwB/ExQiYpSTAF8jMORCbJMAGUVP/KrokwG+r//WkhSXAjFV2as7JJMDSkpNK+fAkwN90v9aP4yPA+cs95ATEJMDPCyhyfAglwEefC2P2YiPAjH+7H7R3I8BvhB6TmZoiwEEz0xdFJSLATnBLyTURIsDplFA7gPchwMPaG18sUiHAuW4BTr15IcCv7zwn1i0gwEk69hp3pyHAA0DiPgxLIsBVjAd2wb4hwBouygFwZiLAAOrisjHdIsB9uRwNOZsjwPgLHmSx4SLA20KSFMU7I8DYb1Hdp7EjwMTIC8JtniPAH/hk95aXI8AT/nOS7RUlwPKX4d+JcyTACdK24XP/JMD83ThrUlwlwDDQbVVmLiTA4Sh3009mI8CdQ784OO4iwJCoLvnYaiPAooNRUAZ8I8BX4TLtgQYjwJO9bOEHSCLACmcQUt2qIsCvKDyhWV8iwDspH3ZJMSLA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 2\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"/5LoTUFhxb8Q8VJgEkbbvytkaOhBcZq/fz2GKRq7x7894npMdGnVvwC/fBKHC7A/iuiwCb67tD/XY7VeIDWiv//n1DOWL9q/7dPn4ch60b81N7VNjijVvzzF4DC8qOW/O86iZi4L07+TLyvdxLztv5uk8dnTYvK/G/ROUAZe8b+Q7D0KNvj3vx/A6AtsD/e/zCxDe7mu+79TiaCqQ5b8v9dmJTDqyvm/SITt+rAa9798yUkOXLXrvz1zyLpRDOG/QIiJU4m27r/RET+ZRcXav1MHbJWd7Na/jUCDxfoA5r/zjoXUBYvvv6cQKuIJk/a/SO2eJRAH+r8txBIvHZMAwB18Jcb6Pv+/ZaPwQwozAcBZS7/fX5IFwKwZtk0DEgrAJ8lBxOy6BsARwGxbvEUEwIu9HbO9aPO/Gwkroj1R+r+j0ToHKlLsv4dhNPRoZeO/s7jaNaU65b9iiN+Oppjkv91klRDgdeu/OLdOtt3t4r8dFjGsmJ/kv2ubioNCCKY/Un9xsncW0z+p9I6MPxXEP/eie1X3A+w/AAdPqRM33z89Q0/8AiPjP+sms62hbts/ld+kkPiz4T/LZjYLFwbTP4NpJvvMgug/A+O6TEBf3j/0ib5lNtDKP0NwW3dC99K/Sndd1JlA0b94QugKZ5S3PzsuYd/0uMw/My+Ho5NKw78HmWXPYc+5v/uKAgtEw5e/y2ICH15Vkr87Hc5oQEXXv38BToISQ9W/OwMbbMO1pb8YiaVMDf3hv+vtvrzpCce/35X1C1kH2r/JIyzDi13Iv9iabMl5ueK/zDx+yzJC778NSaa09Wj2v5B37dFMv+q/A7vFevss479ctItK96vlvxfga24dTu+/V0L2Unc0+L9wEwOamSb+v5naSt55KwDAHePy+YHF/r89LH6kiN38vytrPkuBQ/a/INp3kjdk9b/o4MM4Rb7wv6dfz0hzY/K/tQ9zSZZC+7/TNB09j+b2vzUvQcJrnPO/dRP5GXVD9b9dLzNtiPL3v++Z1Y8NMfK/qShMaiX86b8RLmQ6KQDuv8nyz8bnW/O/UAJnvjdp9r8AfOga/In5v9Rb7XxLsfG/t15RcVqW7L8BTGRdmCDsv5YrevYEofS/oYmcgc4v87/7Xa/4eo38v8cb+VkAxQDAgk+bzUlXAMCp5zxGN1sCwJEV28h4OQTAV2CNMVO7AMDfklBAV+ABwMcG72DM7gLA4IjgU29SB8BpLx5D+38FwMvHJW+6bgbAsy5gIJbLCMBAi35H4ngLwKUyY14XqQbAEHsjKpmsA8DeImbnS0cAwOPFDy94UgXAyVVMFnSLA8AbiPdFxAQEwDX/mh4aRgLAd8b9nYWDA8D4vVefIf8CwDK62J5ubgPA+2SjfB9pA8Dzck00ysX9v1xuQ/t+pfG/3W4HXYHS8r9w5kJ2j3zyv2gPg7AQG/u/+Bkrm+Et/b/7PunUQDD+v7QnCJhr5/+/w5zLwwx9AsCApb1Znfv4v209ASjB4Pq//M4FJBMr+7/vMO6JNLb0vzM2HoiN4PC/ORq6MxQV7r+5ujTug4vjv0vo3Ijo+O2/lRnZVibv6L9EgIJdPPPhv+sHpTjtB9i/NQPMHeSerz8sd5PBDduxP5m3LTFp0ti/ncl5Efs85r/dGxfMUs/fP9EX8MEMAOo/DcGBknvx9D/gCNBtIcv0PzSvwS/yEvE/51PCj1pg+z+UXMG9pub1P2l/TZNO1fQ/tfQfJmsl+j9sOaraWOr9P0N/TDmJF/g/AJny/ZDt9D9kQ+z0S7P5P+3APfUWvfc/PLqRxhYTAUCIjBCHK8YBQMf30jBkhwBA+ROx6WPB8z+Lw8RJ30L4PwPIg2Tp5/c/aZTas72/9z9/kMtUfmn1P4JlOHJ7DwRAy1bXgeY3AEA0Tqc9ZTf7P2W+FWjlJvs/mY1kpZu7AkDESTytJRgIQA+UvW+iaQVAsGs+bpZJA0DvruWvpskCQCPbu2boUwJARaTJvxI3A0DTuXtHBSoEQOU6IKdWbQdAy1O/7oXEBUAUpV7WH+kFQNXbLJCglANASrbteGaDBECUJRvDQiIFQGlhHCrK+gVA4NHEGkGnB0CJbPxTRccJQC+Ofe35VRBAQYmivWfKDECffmXb02EPQDDWNOPrfQ1AoNUJyCWtC0CnPJRVrncLQH+XicwJogZAIRmMbTlcBkA9jU9ov+gHQCCe6H0VdwNAUzNEQYG9AUCjhPOWQdH6P9yrIaWN5u4/tNjLpePn7z9W6WpencvxP3nVTixzJPU/mAjP/3Rf9D9Ns/6v0QjvP02haxQS2/U/FzCaNOCl9T8cP+9mzfvwP3SujYfmRfY/6z+NqN7k6z8L0jllUY3kPxnL+9V2qeI/NebBkA896j+YnoQYJjvpPx9p2B1BgvA/iEn1PHYe7j8wKJjL/qzuP66D3G7j1eQ/S5LNxjjw5j9zulwokxLlP7AXLJNUb8U/kL8fn7/Iub8sK4+AJgbbv5NTW/NtR+u/YyJGE/YN7L/PMG3IceP0vyk9sTyXR+i/Waj3Mzqz4L9ZpL5CXmHqv7H4AXXYC+O/zxTqxI9/8b/VEoLGjwT3v/FeVhvvYvu/XzvlBPT/+78TRguWpfb4v+sG268yEOm/7e0KU6cJyb8MH4NDcULRP5sKa26nAsk/dEGlOp2qsD+0KT1oI1LRvwXqgp2aQai/qJjGUPLXvT9VeGOKuwqZP1xVxgJvxKW/Lfx0Dvp2uj/gRB30+lW+v/hocuWui8E/HzdrCGpW5j8BGbUpwdngP5UYx0NBB7s/eV9WRokXzL/l4blVH53nv6vt+zgTmuK/78y/N8Vb5b8TMMUBoIXmvxxmLVFstua/Zdl6VviR47958Z1th5jjv++SiCK7jO6/+0hrUEub7790X/anc57svyVkIhUGXfC/42DVPXah5r8n9HrXn0fwv+OPKBiIpOW/HeQAEn3x6b+QuU950QXjv7+1ywmDv+C/B3pwPQKu3b+tAspmEhvQv3WeF5Qec9O/+NSDI1eYyb/3m45VvWvAv1USNzcUHlq/8eVteDP31j/xqlvQE6PSvwAQ0Nz2wmk/YboIbXud3j/gahbdMn7tP2vYuT95N8Q/p10Enc5q1r99I4TQYJLhv2eGHMnmG9i/TxfnHi653L+aAHlfJ1Piv4sg8JfbgOC/+DN3uoz0178ZsVN7e+zAv2PPakLIHtQ/0VUtn1h82T8gMnxtY0PjP7XZ7fYI+OY/m3VC0Bmpyb8dGvvWp9u4P6/uqz04tKI/HFek1XBKzD841iX/fqmuPzxuvrbHvcA/b55Q0MGsxb9V1i/3gEnDP+A3n14vAuw/IFj4/5Lw7j+Rba+CbOz6PxOIPVmm7/Y/z979K2kb+D/7IVoZOwn7P4yF35IytQFAHUCrWEnw/D+FJZ+CDuYBQGX35xIOCwBAGkjTImxKBECbnCe9UmsEQCGWsZJxnwNAk05JjWPABEBxTQeGhzEIQBEFV1QvoQZAi7EB9VbnBkCooZCpvIEHQH3a+MOe/AdAJZRhckA6CED8lDz611QIQBeuxsAJXgtAmxOdC9mpCkBVzz+SryAIQF0R7XmLzQxALzNy8clhC0Bldi0BcacQQLVDMvsyIxFAf0cS6iUCEUDFt1uP6IcOQBtT3Cx+vg1AA7YWjLfGDkBcZt6ie0gRQGFfYF656wxAKJZyHF13C0D7tm/NaZoKQPG55w0zdQxAD3iOL8PxC0CQk1KRP6QJQK144UCIgghArbkP7YfcBkC7QC7RKf8EQICsJKJbmglA6JGGJ/ANCkA7fZ/I240KQKGSEjwyag1AaWRqQn9XEEBYTvpGhokOQKlN0en19g1AhGpx4bD5DUA9SrVNRGsRQPqyAqUVUhBAQIFRSgD8EEBL/juOr4QRQLMtN2wP6RBAmTDgcRGjEUDXLRir+KQTQAc74e3lphNAGzUcgufKEEAbSgFaDH0RQMEq/TcHHRFAb+PjsrDEEUDdoKAdHxISQG1Lwc9iGBBAcI7bUt9UEEC9en3SO4wNQES5kmeB9A9AuKSgk+38EUB7qi+61A4QQP2YyJj9iQ5A8LwZQU/pDUCTZ6uYCaoOQEhQcOdPIQ9AgPb4GTA8DEC4IPD5MQ8PQFCcibW+2A1A/5hMzLxIDECMxAdYvewNQIRwq0XabQ1AlVrg5A16DECVPU/oRwILQO0CvYx5YwZAtd7nDWpZBkDIUBo+VUkKQNsYY4frRAVA9XxyHLbfA0Ba5pxH1GMEQIcFCUy1egJA/G2dzTM0AkAPc4zLkugBQJD6xt1g5/4/S6+asoTY/j/vfJa8jRP8PzyJIumZuek/P+U5q30f9D8o2w3TLU3vP6vSXvLfDvY/IYAOZs5n8j8YMS8QwIH6PxEEhemZKfw/sXTNxVfEAEAYnU4tHBb6P2yw03jeR/w/6e0taSRaBEDliClfc5kFQKCFQVifLwFAcDTq/eeMA0D5pcg0HWsBQIEZeDgaSAJAl90/wuUU/z9LKAfd6i4AQAL+1qyioABAYbQXOAlnA0ChGdA5sEUHQOgPcs7P+QZAVHkSBPUMCkCIJK+5xGQKQBONoxhQgAlAmOPQDXzzCkCTEwFEOzkJQPQQ5d7ebgZAZfLysWiuBUA5XskJZQkHQPtIcGpzlANAOykEwWdJBECDZS7QrUD/P0zBoj+Dev4/6h2PeP++AEDZslaUdMwAQO5Y6RstYQJAdZVu4xm2/z8VKg375aX4Pxd+mut/vvI/sPGu3VVv7z+gmq45OnX3P3TA6OgYDvU/79Q+skSN8T+tmepJlAXpP2SyMxA9k/E/uAv2Xay+8T/BujEhc6z4P4VDDQGbre0/wXs+Hhbm8T+EdeRjMLnxPwHibc53BvI/xP/1kwBf6z/MnL2J9IHgPyCAHLxXCrY/b9lyxS3hwL+9FEF5d5fYP3Qyidx8gs0/B61gVIzs4L9g9zKSFQDtv6uqb6Z91eS/nZS7I4ks4r8xW8fhEf7evwFEzJotiNq/qU8/xMch5r9wePjLQ+76v/AWtlRVkQDAC/xbKq7z/79w+D76c+r4vx8UpWK4qf6/wJEVMmC2AMB3UJMTsiT1v8GhVfsdWPm//Fr8YbARAMBcLsGyNmn/vw8gY34sTwTAOYHHn2y4BsBDjmxHwY8EwHBoY0U/aAbAk7i4waQJCsAsmv0vtDMOwKckc4shLw7AR4jXB8BkEsAim1lnF00SwNl/wJaLhxLAHYHH56CzEsDFL41uWDsSwK9mdwotPxTAyy2H4cS8E8B6ZoyB/aoQwJVJsopzHhHAoZ0k79d6FMAenLoI3YwUwD2a+bOC5hLAxeMPDWRHE8BVGgwGjVkUwB/FUhUsORTAYyUOIJriFcCyGxirXX8TwFKRCKuMQRXAAbCZK9UpFcCFs+sJhLoXwHCocmdXXRbAfKsDbaOrFsAYCrQaJbMWwCSA1m3/9xXATAkW5rXSFcDhg8R9dkgXwGU0NzFYrxfAfWBAaHtfF8Bvufdf8acXwHOEEb/LOBnAWQ6AjL3iF8BMScEswGkXwAjBktQmEhnAVcnh9xXFGMAsug/M5a4ZwIX0sRLM7RvAu/Q9i4GfHcBrANhGIugewKSVrbGODR/ATbkC04e2H8D3/IlHmyggwADeknAEQiDALXGf2DI6IMDXXe8Pl5kfwMGCY3AX0CDA0CRKs27pIMAfbHR/3/AgwNg6YokgxyHAj5rgf53+IcDUETezqVwiwIHOxxfsfiHAt3l9SYFlIsDzjK3Af6siwNaHpN3UKCLAHpzH1WA8IsAlVAk4yksiwG0FbCF7biHAPbNvlTwGIcD5MLaWs6wgwMT/SVzVix/AJzK+rL5OHsClG2eA0xkewL1jY4m88R7AYOZIbOjOHcBETkKCpccewA25Mb3XsRvAFZqFBEoYHcAQCIJ55fgawEil5eWfzRnAbWtVAsPRGMDfY6WXGkkawANV/Zv7Gh3AYFpSjEg0HcBwq0ixNOkcwNm8rverDx/A7HV44BopIMBrTct/6HIfwNs5VFZuDiDAZV3CYAfsHsDNrvwNsAogwOdV+hFVIx3AOXaXB96NHcBhflsu8CgcwPuUYECZfxzAfx6DgkhoHcCFmYlDj/EdwLkaoWO8AB7A3S6fkqdEHsBQ/I4wITIfwOhGB3kQXR3AaY7Fk1cQHMDdPWOK3xwbwGW4Kiwq9x3A4OObE8lMH8D45AT4U4cgwNRCf6hI1x/AI91IsFPuH8ChR/HHU10gwO8eKll3lyDA2wTqeKloIMA3RmtJaY0fwKAsE001Gh3Aq8DWMWBUHsBIs4z9ljwewKwa3X+K/R7Axdg7Y7lQIMBIvbNCpS0fwKwwWd9m/R/AkqhEHNBhIMA7Xn8rQskgwBNzmN+nnR/AXfUWXiZOH8DBjAyiwakfwN2arfI6ESDAfODafX8VIMAxzG23Jr0fwDX7JJlQ/R/Ayehw1I4CIMDwW0MoLg4gwFhO5iY9zx/AQ8tZizcUIcBJA/JsaLsgwEUhVHoyoyDAtb8BRAQCIcCX6VpzDOQgwC8Fah7jCSHAh7zFbQHkIMDQ3D4Oe4ggwOmJjFDIKSDAA9Q46LSMHsAVH6NvbDsewFge8HRBhB3Av0sFTo4XHcC/MXZFah8gwLLC6AKrnyDAf+vncm7QIMBca1T/42UgwIGt0XpKaB7A8SVWpLkaIMAbj0ptsfogwEeth8pwwSDAzVEIhsB/IMCo2zBo2BwewBDVtNRgpBvA13XqSIz+G8CpoL9ukL8dwHdvVQE0YR7AKK+w6d/bG8Cxic/RXzIdwIAHmUMDBR3AQEvfpsYmHsC1WWRsr3kdwEB5p1+PGx3AZaHrlRIUH8BLU9ht0okgwKZ+epbgPSDAdMj6XstgHcANx58kRpEdwBxoUITzSR/A1u0CT2M2IMDQnhddVjofwKsskm1q8B/A6ZGQ9SJ2HsAAmZPQ+gwfwLEHDBgPzx7AGQN7NR3jHMDhW3+FvoQcwMlE8+nmOhzAZZ+mVRS7GcBzU2E4uQkZwAlIGOvwHxnAtCdg1IskGcCsFDyDWJ4ZwD8H8i8CVRnAUHuEjYhjGcDZRPiqrgkawEmN2bINzhzAP1y/9LYdHMBrJcC7D40dwMGoY7yvAB7AqT+7K3LlHcBZTnsfQbYewPxF7+/Fuh/ARSUfmVRUH8Ax0qaY80sdwDXMp5bDrB7APNecBYHSH8BpDEXzECsgwEHtQN/8/R/AacyUd8bfH8DAKCPgH+MdwHf6aoq6qxzAsWiBdtFIHsBD427jFS4cwEj7Gn2FuRzAuIolDmJzGsCZtxlQou8cwJl48pJ1ehvAkOohsSIDGsC76SCSgXoZwNNdgBe81xvAEVafzbVwHcAn3PVp7w8ewNzihtGiBx7A4IJI7ECiHsAndrFzjpAdwMVzu1/ffRzAwIJVuQ2OGsCEjWFpr6kawEM4X7+djRzAPPKLH1siG8A3NyasbpkbwIdBeGANSBrA0NK4P2UwG8BFQV0JbkkawNgcuVEUxxjAIC/qSqfOGMBXMGkso3gXwFfGlU0QThjA/SDoOm5nF8CgUyMunCwYwOUVSrbZLBfAzErlMBlaGMDHACef/AUWwPM3ZU0u1xbA0YocQ5qwF8Ch3WGIpekWwAyw3mQtWxfAQzb0a4bDFsAfIjAN2JIWwDfw5vMxhxfAXaAMR/QEGMDF9f/l72QWwIS53L1PgxXAfUNugih4FsAk0EufP14UwCHP/Hu07xLA6aPcBZR7EcDvMxkZCfQPwKiHymkvFBHAl/CX2lYWEMA4uzzSK3sTwCOHx6N89xHAHDeQNkKcEcDzu9ByUvMTwMVB9CpephPAOAMevNNBEsB14agLCPwQwNHyggv62hHACIs6miixEcDtx8PWVd0QwFxpPWTntA3AEKjf/YdxDMCf/PXL52UJwN9jc5FoIwvAbAWwCaKGCcBvpVaX+qYIwPBcsIrWvgzA5PaYgUTgC8BgKpqWPyQNwN1sZJ9Nag/AZEpVBroqEcBbihn+HW8SwGyWkfoCihPAUl83GoV1E8CutmmLcIQUwM/CAlIaSBPAB/vIazltE8CV8jjrYMoUwJDVyHZJMRTAHdDsM/7JFMAg1vTH2GQWwHQNevBp3BXA/Vh2OJWoGMDE/9ot+DMawIjCGEgbChvASzoOfNq9G8BrohvyWQodwOXG8BNaSB3A1M09Y1gwHsAB9xKmmDMcwOOrumTCtRrAD5gDpcjSGcDJ8P9HL4gawClcYQbD0RnA1Q+4NRdKGMCgVUb0dMMXwABwzQSy1xfAJIOgUE9FF8CkCOu9NUcYwPQuefWT3BrA7BD5741RGsBDHYpbQBgawO0pQlE0UhvAo4lk2+G1HMBUOmVNPV8dwH205wgHUR3AkcqM9OR2HcAp9fCydgUfwA94FNNf7h3AR0vSTY6/HMBRyyeWPkYdwKFLeSuXLx3AE9kBdcktH8AwpCAScukdwA0sMlk3Dx3AeDPef1TFHcA8YClDZE4fwKeGSTHUjh3AyShtogRkHMAwDtaB9QgdwEc9GNFPMRzAKbtfS+xjGsCvC3BUENcYwBh9xwODDRnAoeQ5WFH8GcBjIOqOowwZwMWcnAw6hRjAaH024nmaGMDVPYGxgfkXwKMN0/9oChfABDvuJiVVGcAwdpYPp6IawCSuPMO23BzAncY3yHCOHsCgzhd2jzEdwOk9m1YygR3AMTTfi3TAG8DNxCjf2d0ZwK2wzpbJ6BnAO7qyocAcHcCweSJMgegawAsraEXn3xrAqzgVyyDAG8DrG76B3YIbwNz7wytITRrAMWQ4X9ZsGMBZjkv8jL8ZwNgmjeF9tBnARO7pd3MHGcCPNUoQFMoWwAD+eADcUBbA7BxocodfFcCTFg4Hk4YVwOrZm84vJxTAvkz2v4XoFMClUvGFXjcUwICIZGeV7xTAwq2yjAuaFMBPi6eNj98VwAxioef5WxbAwSww2b5vFsDf0zafa7cVwCv0nRw0FRfAo3Th7v8lFsDYB1PLG2AXwOnYIX60jxXAXc9UdoaKE8B/9ZljWroSwHNNaOP85BPAhrraoyGCFMDPMoLAXrAUwF+11roUKBXAMA4zef/dFMAvIrhV1ocVwN15It4XLxfAJY7WhuPfF8BQl5E7OK0XwMm0RejfsRXAE0+GmOK1F8DFqPPAWcoXwJuGf64N6BbAtRIbo8vQF8AsD9HACnoZwI8U3d2XCBzAAPV2DLpAHMDFBopOte4ZwCBGn3fqjRrAUeis2f3cGsB1GNBO4JsZwBBOkugLKxjAmwyOmKVpF8CN5WABC0QXwJds+HEAUxbAc1vDD2zYF8CICHL3FBkYwB1r7cgoeBfAcEmyDkH7GMCfObwFBtEZwCkhPyPnehvAfFX8h0q1GsC7v0FqZh4cwD/XGMmWex/AyGN99ArZHcCH/9PxQsMfwCdaQUqowR7AedBFa1MRH8Bl4lhUXsIdwGmp1stPAB7AtcRuZxIfHsD93vVUbkQfwGMl6vueQx7A1ZhMl2j8HMDgq0G8JF8dwJNrvEu7uhfAiVJcdgYwGMCtXRkrNyobwLXgao5cmxnAiB7FvpFjGMATpTZLroYYwI/FwJagjRnAaNBseWWmGMBhTYVBiSUawFUZp6zCRxjAR363FnScF8Dkm4F4S9MZwLloJ2sXJhzAd8DNOnzBGcDvIpI2R3IZwJmvpsMjRRnApJNY328MG8CUULElq9obwOMTHUB74BjAzzOB8mzvF8DwnAAf3CMZwI11dk84gBfAXAWiS84GGMBN86Ix/c8XwEyf30CwCxfAd/m5KhVoGMBwuT8lVjYYwKXa70lBLxnAyWChYBOpFsAprdh4dCYXwHPYhrkyORbAYxBpJo/JGMA9Xq56QyYYwG1NIhzdnRjAG9rxe0kGF8Cbg82sP8UUwBd+/V1PTxbAh11QfEVaFsCrQBr7CTsWwB3kGlgVOxjA3CxoXcPSGMDVAsiUs9QXwA+BW4CPixXAAXTBEjEAF8CtESh4FqgUwP1sjPbvDBTALx+cAuGOFsBBQNbR12gXwCkB/II6FBnAgHPzFk0CGMAHK0CXuAIZwGGnce1WYRjAXL3KFTbSFsBAloJA/BgVwEPn0xY6/xPA+wN2xserEsAiDCTlOc8TwOFyFLayVxPATwfP2P+GE8BVMIQFAiAUwCjMevsRoRTA2HRnGvnIFMDBK3AauUoUwKiYigjzNhXAP7hHsUqtFsBVZ478C1IYwLna/sDnqBnAmTLXnbnmGcBAO0I0arocwFR3Jm9SRBzAT5JEcWLcG8DklryMFJAdwAT2CheBvxzAW312wc5/HcCsFr7Blt8ewBxGOdrN3xzA8dvVQ6bAHMCMR/1dgH4dwKOOmSC9sR3AlUU2W+hFHMB456VkU7McwGeSBDPxABvA+wHnTKN/HMDQpCR3w/YdwMAGiivqRx/At/qKcSckH8AtOnY0L2kfwCT3tRtDTR/AFBukA3m+HsBEm726w8MbwMl/8smT/RzAwPEO8ouVG8Dh7Xz/ZHkbwEs8Plp8UxrAoBSMyMvEGMBnEkzqX6wZwOdVU0BXdBrA36K1RW5AHMCzQFHpMhwdwLsWE0T87R7AYGIkqC31IMD1l5iy+uogwAsSzuFtbCDARymN9ku3IMAzwMukWSkgwJU2XsLkhSHA9RthUmYBIsBoQQ0xLhIjwPKLKTeS4CLAB27sL3BpIMCwG0fy5x0gwLGx3RUnaR7AzJ6ri/slH8CTUrU97zwgwH9NEbMdhR7Ajap2+ZBKH8C1OO5yKPsewEOm9uWbNCDAYXkCEaZbIMCmJmvJlO0gwJWXKRRUbSDABTnSASn/HsAXaFms/LAcwECheR7CHRvA9dThEWhBGsDAjpPE6xUawHs7lYJLLxjAz7WK4f06GMAFkuK2Xm4YwN8hYmWKkhnAuYNqvyYWGMDnjyeObeUVwLxOzPH2jRXAr4zP8JupE8CQwP+IlakVwCjjsXvHGhTAKEUjIqZ2FMBreLAgYqwUwDuxExOKyhPAAwi3cICUEsBvSITS4HITwORviTsHCRTAwKbn7QPRE8DrcUoCJdUSwB+rd4reGRLAnvHAhVzREsCfuAe4rxYSwKQE45NLABPA6bVhf0YNE8AxhA2gSYwTwCwEO9qm7xHAzpv5xvbAEcARm6PiifATwMdz8B+EchTAffoqZ5rbE8B+fjxqtqwSwASyWZI3+hHAdHaxYFu2EMBHg5XgGm8QwEzznutm8BLAoCjO6yVJE8DRVyRng50SwJ+JToGFLhLAry8kp6usE8C7GexaJ9gQwLQhNUqD8BDA6NoIL+JrEsA1QDkOu8gQwA4AiLVRpBDA9R7/d0fOD8DfFUdYN6QTwHvoav9wixLABiCppP0REcAnalsN8OESwLDLU4le/hPAi8XCgAXyFcBD1Ac39KQVwN90H8/0fxXAs5Iu+WSTEsDDlzCy6wQTwBIs4rUaQxLAt0zEhtl1E8D6o4hjUW0SwGH3CMQTWBLA34bXw0DUEcC9/ntE6cASwKfzJSoB1xLA3RJJ9BpxE8C/g0oZTg0TwER/yvSplhPAkNxayDt/E8DRs4yqH40SwGEwvpeVLhPATzEiMxciFcA0WyboH9QVwCcsfJAtRhjA2TfwcA6mF8Cp0/QBKzoUwKLQs96QDBPABpC8QvzAE8Cvu+zumYcTwPNLmPkgKxHAUTOPsqq3EcAil6jl3g4TwEyMqTk4YhLAvBNAtUhjE8BOGwLLQjITwOndMcZkYBLAFTXD2d+SEsB3Tz26DmkQwEMh8XE3FRDAzKMYiwGRCcCV8+hodRoNwEcZpVaELw3AyyB3ugNDEMCdmEoG5mkSwPmqJoZDGxXA38E/GdojFsCgynAKvFUXwAsWPoQbeRbAkGe0cH1DGMCMIc59plAWwEs37I44pRXACwokW57BFsAIUaWcfpEWwE2fRryUkBXA701mpl5tFMCmLchLBI0SwLIQ60Yh6RLASwwL5XxNFMBzFFYc5kIVwAv6QCn5MhbA67YZhaB3FcAWQ/NUoOITwH9PyEK67BTAX3hFG/8uFcC//2CKNUYVwFuhFHGyZBXAl1MC9fk+FMD9vU8VVXEUwHxiLWOpBhbAfiSPo+xhFMCdJOKgPS8TwD0JgQHGXBLA21pHr8zsE8B/ZgYoEeUVwIwY0r38NhbAUZtQdV2XF8D8pbMKt2wYwBcrBDFQIBzAbAVRzKe9GsBrg3/lBawawEwa9v4TKBzAidbvLMy5G8CVRp72bi8cwIedSX33JBvALRP8DPBdGcAjHKqeT2EWwFeQZzRzTRfA+/sZtoKqF8BIx1SruEAZwK8GUKgNCBvAmRTDzV7LGcD3fM3kKNYWwKCv0PztehbA+yg/xFuJFMDeFaiBAfYTwMmf5ZsGUhLAfH25akSmE8AxmxZvvdkRwA9ra9ZtcxLAnbaqNoNUEMAYWRzuW8sPwOTNo6r2Lw3AVy2Dxh2YDMAlUEvRwCwHwI93LwaKQwbAcD2/ZlC1AsDYnPy3GOsBwBAuUhUf8vm/O6E76DAe9r+RoLaGTTj1v2towU6xU+q/HFGVJgze7L+BgP0t8kLov0DixJlXKt2/nYKzFNDgwr83vDoahsu4v3DCUeMaILi/YtdTNwxk4b+vK9bBBcX3v/+HDiMdePa/5IZxkI1Y87+lqkEBoGvuv3uKdemUTvG/0v65Rxq74b8JaII6X5vyv//Y6fRkEfO//V08Mpsg+L/Dd8FhmN31v9vWgkurp/O/KD/rafcX7r8QliYu7UPqv8i/TYw9xuy/L1NGY17a2b9D98CIeCXMvwv97fPJRNw/aDmYKBF54T+L2KW/+D/GPzVyHsMXOrC/M7hLyhwkwj8hZg72C1TTP48K2i/GSdE/HNmVtm9qvz82NCCI+NzEPyTGs7rdr+U/ugZm2mMS5T8rhiyFlhrkP3Gi8ING6tg/Qj3R/kk75T+XG4du+m/rP3V5vKkW6O0/bG2sSA+N8T+fFb3hTuvjP4BsE02809k//46XTT2V3z+P+xI+u17VPy8gix7EzeI/zl8c9Rup5D/ZGKM7/Br1P+wmlUPs1/M/TZr3Rx4o8T99oRcOgh/0P/X+ZW1L7f0/GfAZIcvKAEDVstPuk/YCQApkz1RjdwJA0qH/w/bEA0B7QzDaxLAEQBmtZlUpdwZAsLmejPYoBkByb6DxPMcCQOn/adtTEwJAneWYzoLFAEAgu73rAJ8IQAdU9f0vsAxAp6u078iPCkDTjZ3MGGsKQHtuGfx+HApAo0oVe+jjCEAwuRpLlicKQFBKzuknhAhAyF2ZsCD7CUCdtSEmJwAKQAWLpOjJEQdAXJ3DIJlPC0D9beBv6icHQBUAa3ZWCwlA48wR+vOjCUCRW2/lXCcLQJzkbwXnWwxARXyEeJj8CUBkgI5aiuoLQCPcc7sKrwxAHbh/xJq5CkDUrWwLqzwJQMCDUyPB2A1AkddJTggsDUCvCxTym6QJQG9m4atggApA43SE0DQZEEBYML7y6F4QQE3COJnVNg1AfcxOAwX9DUAfDvWlTpAQQBHuCu9qfA9Aaftr5bGKD0BrIRAwaawQQPFFuyTctRJA14xyHcEMEkBn5a+Gs5cRQOmYs+DnHhFAbTyniY8ZEkC/GtmJ9vsUQGkqpvNAlRJAFMbTtJZRFECttHjkK+cSQOzFtSg/EBJAY0YXV/S0EkB3k3YMT1QUQBtvf9kRwxRAru4vIyswE0CBAfCv3UYTQAKjcOgNixNADdgrHIRYFECrx/vxc54UQH5BXpcwlRJAH2BVJXZWFEATZMoUdssTQHVTPKD9WRZA+b8DO7NKGECf0xdx7O8XQCcdNFPTkhdA2TMsGoo0FUAtj+l6XuEVQPaie4KkoRRA3+5PlwqzF0DFLa1HudYWQERsAg5rnRhAA+e9smULF0CkMU450HIVQAoqakosbxRA7+rnvSxHFEACKKwd79wTQDnwiU4aMRVAaKiCcXVpFUBPxZJemNQTQGlOC/TDLRNAj6lECzkZFUB3wfMFnnIVQGuCC3g5RBdAhHc1rGvTGUBXhtpxzMoZQKNqLoBCqxpAVYlz2pByG0CNpsEfNpAcQD3N6gI+ABxAIWYd9uIHHUDd2FENOCYdQJsqRdzBUR1AsJ8wLZNLG0Cb3VujlpIdQA8GM4Wpbh5AoYPu/nl6HEBIWsClXt8cQOPEByksIR5AVzpigwFlHkC1aF4ByhEdQLFHOIT/FxpAzzTK/ypfGUB0IOrM62oWQHTEhLPJ1xdAp675eKWhF0AYJpUqpeEXQOfxcyNLIBZAyEVdopVyGUAn2zL9+aYXQLWkGgofFhlAsOlLem2MGECko9FK6PcXQFHjmUXnfBlAe+C1YdzOG0DHd5CcVzYbQKhMOXBMnhpA4zVrdmZwGUCRbIBQJMcYQFRkSAm6lhlAyaHTNC0JGUDtBztSF5kaQOCaq6hFCRpA3C4cGQAhHED/Ejx0CA0dQIXA33Y6qB1AZ5xPqFK6HEARkr89JcYaQBmVuMqp/hhA4I4wcCtqG0BP6x/xARQaQBxYATaLlRpAkWEIe70GGUCbeIrQf5MaQEslt/j/IxxAF9FSk9g+G0B/eLC+e+gZQEcgVxTffRxAwdVE0XfKGkDX7EMyih8bQOcOh1VPARxAA9Clbn9+HkCMNIFqZpEcQHTicawy5B5Ay0ycHmC8HUDbuKlnXvUdQB8mXkxDyR1ACbq4tTXVHEDE/btezLYcQBcBv/t1rxxA7a7wZNn9HUBVTVA1zpkeQAdGiJbaVB5AScRB7PoNHUDRkPHAAOUdQJ1OSs/8Mx9A/98ED2E6IEDEVpKuOBEeQFBU8l0dbR9Atf/JNPVjIED7GvgoD8MgQFPZGf4BeiFAgUUXR2LmIUBU2cZscSIhQCCXORlvyyFARrZ+oB6wIUAdyYAlm8YhQAsNHprhNSJAxJuyEbYWIkBzDzUEr8IiQMqbGInbHSJAtZ5XWHP0IUB/PX6lOJUhQDvL84twayNAqtZgb+NiI0CgptxdDS0kQEOJtXRAzyNAl6u6om0VJEDE+xVNAbUiQHrkQRnJLyJALWCdojELIkAP5B/TyTEhQOy8b5o5jx9A2ldY/+HhIECHV8uZkSEgQEO13ohR9CBA5E4rlruLIECTDTbB7k0hQJwIywRPSiJAmOvH/xGtIUCrZm7dLGchQMUYruWD/iBATaUdPxF3IUCFvyrRmKQhQOsA7cQ7PyFAn9FuGNzHIEBRQ4huAQggQAfgMQv6aR9AGekO14+qH0A7eCH8p7keQPzV0gB3rB5Az5Q2kKIRIEDPokXu4KYgQE6erTGtDyFAN0c6GlDDIEDVM7Da7g0hQGHKIT7GrCBAlcRoN0F2IEBl9H8t8W8gQBetVrfI5B5Ax7oWdMp5IEDy1Y7vQoAgQOIm7v0jnyFAIn1qmX0nIUCFNbDh+TAhQKzfVmhGsiFA9WS0dHbgIUC71nUeDs0hQP2/vgZMHSJA4m2BeQYMIkDglVjN8IchQCN3OzFL3x9Am872TF7oHUC9fiEXD54cQJFs6Av1LR5ARFtl40CCHUCYLI7JmRodQOc261cbjhxA1Wcu4Cr0HEBtnpa3POgdQOAGHvMZBB5AKH2DIlosHEDYTuDV0UEcQOefIIFK1x1Af0nVvLZ3HUAZPLQaWPEcQIOsnNxy8B1A9E9XoFgEHUA1ikHeNr4dQPX6nhuuYyBAvYZJizElHkAAjEIoHzEeQO97azrOfx5ArwO726xAIEC6/R/WvKIgQDQcK9fx1SBAK2ERetMBH0AYIsf8o+MeQNrhcuc/MiBAPijE8l7eIECTatUfAv4fQM07413CICFAAdeLBCD2IEDuxBuSOzIhQB1JSI8CfSBAD0lZegAYH0BNZn1E5CwdQFcTR6K4CBxALMuChIzCHECN30GGSfcdQM+/ITtywhxAqGJAc6IkHUBPoc/TukocQNgD4Q3BLBtAsxYq92WAGUDjC5/qQrUaQDQZGq1MJh1A+YRJm1V1H0CxY3veQn8eQFtchaWRph1ARGlSbNdtIEDf0DHhEL0gQBIx8gRohSFA21OZLhXJIUD56ZbQBcogQIcSOTucHSFA+ymqq9pyIUDhsDglRO8hQM8ZguafNiJAR6GH+wDPIUATsjpB9VshQNb/JoJ/lyFA4Wx/8MbUIkCChR3t/rMhQHtBTikBYiFAm1TprjDDIEDzEtVTOhwhQGurLFDZUiFAvsY0YBF5IEAgrrgdxWMfQC2ZM23H8R1AITAiUUkRHkAQ9c/YYeMcQMsS4mfCuhtAGPe0UM0GHUC91Qt5W8McQKXl6vRoDB1AGCWp0XeoHUAsu9ylOw4dQGdLgOJathxAIboWemBqG0DnSeZ2k1wbQGMCWHxuyRtA5090VHEnG0CktGP8tjEbQLCEt7tThRtAIEQz2TS9HUDpg6I7HuIdQN2mfe1r6xxAs6PIdJoVHkDolEFGMKkaQNwmrCHajhpAL5sURUKHHEDU8m1AlIcbQHTcc/X0nxlAuDUwJlT5GEB7vYk3+ckYQERkD6RcMhpAVUfGbkaHGkAj/paUl+QZQLUurpcPcBlAK2zBE/8jG0CVkW1LAVQZQAs8Yp/zrBhAAbZ+vWLgGUBBUgQHrwcaQNxNr0eYnBlAPxo/dKITGECDcebZgUgYQCck8dlKwhdAv2HMKkS3F0ANidY9f+8YQAf/hEJYNRlA5NFkK0GlGUD3nJMaHAAZQNvRPJ0qVBdA/bEzmhK1FkAxnAhtjzcXQD+BfOPG1xVAhz06QW4GF0DwDx+z1s4WQI8bljYRdhdAW0SESNGHFkCnmLbCL94XQBfhwgMmTRhApYS1WrrzGUCl5ZXYmnwcQCUi1+cg/BtATRK6ubJzG0Ar4oBT4HkcQOGiMn7+8xpA/XTpX//oHEDN0KtGNf4dQGDnSKNd+RxA643dBMi6HUA1AZU2eekdQIulbfBNOB5AKA/ZujMFHUCgf5UfJbgeQIBc2YMviB5AO9u6S5EkIEBZSOfN9C8hQEOIQYqExyBA2QuCi7LjH0Awm0YDd+oeQOQOCgW8zh9AdN4MR/IKIEB7G3H2y3cgQHLsJEAvYyBAhvVO4N1KIECXFM0h2YQeQJfPf7wiIx9AsyUkhCZ+HUCXB3/oLZ0dQElU4gSXkRtAc9TZGMteHEDPtCOsrHYcQDQMObuQiBxAmf6LF93FGkCdTSWpDXEaQFWU90doJBlA474Fpm52GEATbUze78gXQOAMHfG8tRhAOOk2hzAXGEAEc+UrTRoYQF20WoUctxlAR7/Ede2iGkBfTswDXbYdQLCBtwE0ghxAj7Wb5DL9G0Ar1QtzT7obQPO7KiuXdBlAk8mU2+SrGUClt/mxV48bQHDShq3uExpAbxkNPvmLGkB3ahb910saQO0NLxrbJhpAB678cfjhGkBTG+guosIZQHEKqHikehxAbHGbZgZ6G0BDmf7cn2cbQByaaPHUHBpAZQsy2v90GkCV//jeX9QaQJvlAHv3EhtAc4+IwxKOGUDonhEZ/EMbQMNWie/SfBtAEwmrS/jgGkCfYosHzGAaQEU4b17CAxxASLNNC+JJGkBo9vLvYfwcQMjYS5CAYhlAQR47p/tXGUDA7Pu5bQoaQO201QLKRRlAz1tmuPsgF0DVCbztJhoWQLTxQptRhBVAcVi4FxsBFECVt3x6ecITQJvR2sfzFhRAD5GKfy2wEUBnfUNPgOAQQBjiICvVIxFA2Y6/fZ64E0DYyA61a98SQLMn/XPUChJArS5wzXgwE0BjuW8xdpEWQFmVDZ1UsBVAnqHRgNxPE0CsTojK6AUTQG6HA25FnBRAg2elHj5QFEDPih5NjZMVQGD5jbNFnxpAEXWTXzkNGkAsD9gTn2IZQMO239NTchlA3cOpAgLdGUBnB5rF2cAaQC98tAAnBxpAx9OmD7ZpGkBQDiBCv+AZQMg1rM9alRpAtM7+lzyqGkC0CKAiIOIbQGTRoq2sextA39vnCelfHUDAk+JoB0wcQOE/V1HaHRxApBrRQ08HHkAbd1Ess+IfQMXBZFVjASFAyazJ+wDOIECLacb0OWAgQDPp4V+vFCBAY0uvwtRhIECLu54HVuQgQHOf6pPz2yBAuxCrVcLnIUATF940x4QhQEf2dN4emCJAeXQyEP1AIkDLZTPIznwhQNeteFEsKiBA7gF6W7OVIEAi5ia2O2EgQHVKC2a+NSFA0RAD11M9IEAsS7ZMwlYgQLo67Zo1NyBApK72Dd3lIEA8rdkCUVMhQF+oC/mzpyFAltO68lJ/IkAdHe6m7/4hQJubSv1mUiJA1L2ebTJRI0CDIpRPMtkiQIbzGeHhQyJAReYPaPqiIUCxkNjnuFghQP1mn/0mFiJAM0Y5QtjSIkAJtUe8vOAiQJGIQTb8bCFALZ+iz8ohIUCBH91OFLwgQHAIm+LCZiFARwjnMwU/IUCTdJ27NHghQDyvA5cRsSBAMS/vRcgcIUDlBaoTq0shQBXCglwspyFAjXNX1qvIIUBIjORUtXQiQEOcAbzJziFAqcKtiPlNIUDF25qIpZUgQNEftCW2SCFANC9LIDCBIkDquQ0FyH0iQHY8tDphhiNA3+qb9AbPI0DHoRayOc0iQKHeyNA+ICNARnJOXj+2IkCXmVNz4iAkQJjmANkX4SRAX0Amam2eJUDnTR+XLNUlQJ3PpPJb8yVA+OqszMKyJEDlz+ob+HkkQJghyphwKiRAGf7Mg9m5JEDxZ9UA7eAlQAXDzEgK0iVAUVp9pzcBJUBvKYzQiUQkQOU9SuP/WCNAXzaKVF3sI0DrCgnME/AiQCjlVTFL+iJAsebwZDRnI0ArBqe2pnokQG+XgKq4uyVAAJDR1MjPJUAkVNdqnmAlQHzOI9Rl0SRAl49zNgF6JUAVHnsJTh8lQEtlc4NkzSJApdYt15BjIUCq7GyfDcchQB9LS9d7riJACFuKvXUjIkAPe7MgIrwhQLqFwNw6gyFATft2GbgaIkABfY4wP3wiQId02ILBhiNASy54cTE6I0D+ZNrSjPIjQEX1V7O6LSRA/I/OZZZjI0AJtxYPsmYjQAPJyN2VfCNAJH+uAN31IkDMFVLKrdMiQAM+c0J8bCNAPnRUNQW1IkAl6BZeKrIiQG/xsrRWnCJArHt9p/9RIkCsmxDFDzMiQDAg1k/XlCNAO0Wc30QHI0Bz9qseoBojQPWa94eICyRALasTMi1ZJEDhmdEABhkjQH2x/x8CIyNASaeK6JKXIkB7IZJsxDMjQLbfUgFEGSNAPRovyVAqI0CNwKrLHb4jQAjn7jd92yNAKc65UOwXJEDn0fx57lwjQFvnsa6PCCNAKXBcav6DIUBk3tiJu2ciQIr6y8CfdiJAOTJ56M5jIkBdrOvplJAiQOs9hHf7myJAYLlqZqa3IkATV1jt1KgjQJ4UfW1HLCNAuO+8NIGRIkCeBguRDnUiQPVfBLcepiJAm2ndfWeBIkAIlKypsuQhQFSVlCUheSBAKdUXIf0DIUB9qormgeUgQJSuLlrKSCJAtwMC7dQGIkDXZ6Ds1h8iQLdHgFWsqCFA27J+4jh6IEDxBMz3J+sgQMcDVtQbRCFAJUEBbOZgIUB/xY+8P04iQIeHTmZaWiJAx0UBFqfDIUAU+YlTBJkgQMNvkByw2SBA/1DCPJ6yIUB9+QAEfr4hQKRF2rUraSBAAnE5y5agIECX0GaVNEYgQEzacZYADx9A74Y6Q3f7G0C0CVRq+BsbQDWGikmdnhpAM1U6A46FGkA/0O6rPg4ZQON4ZQDC8BVA7aDX+4VfFkBwgBGwZ3kVQASrNJifehVA/4rLGPoTFUB0Xp/KUSQWQMtVGOKXFxZAsHx1OgoyF0CoRJzrJbgWQEMtodkO5RVAfI8K/pZ9FUBzUruk6dQUQNTi8xC96RNAmYyWTizrE0Dpz1FQNbwSQKLD1DOr4xBAn/65aMRgD0AREO5uLZgPQDAT/RwCyRFAQWHxeObZE0AQgZmKw6kWQAslZDdOGhRA1NkEqLuEEkDCgUbr8YkUQG3f7BN7WhRA3UQYkTa5FUA7ljkQSt4VQFd6cz1ozBNA++HjX3v0E0AWQKCCMjEVQF8fNNSc5RVAIIBnSmK0FkDPsRb2EmcUQIT3LAGJORVALQWxE0d8GEDF/aPh488ZQLivG84SOhhAFXvaPbA+F0CXUacmevIVQK36b8nb8BZAcXeYO5MkGUCoaHTV2p4YQLFX9zxrrBhAMQ+OwjTgGUAldr0SY5saQI2eOWLvqRpALaAO8hsAG0DP5CIaZy4cQCw4jZh43hxAySwUB+rcG0Do89NHTSQcQE2PZUSqUx1ANDWU5qEWH0BYFkrCvAkfQFuxm8NFHB5AYVyg/OATIEDPFYQU4OshQC4MkBAF+CFA8RlnjZkYIkDZo2sU6t4gQItYzw6WOR9Ai/FItNwhH0BL7quSXfgfQGil9ZslESFAUckUVVKPIUAHmvXnANAgQB/cMNioqyBAFXwqjvD3IEAHyAwnUKAhQHGFL4HTyCBACUeDwSeXIEBSggfDxX4hQA9ZtOGXNSFAIYA0iyGAIEA4Vqe/AMsfQKBvhCvZwSBAxIzlFkxLIUDVUYk5BMchQBng8qGJ6iFA3/PKxX/OIkDvS9LThNEiQGbFrslsuiFAlO4bPdMDI0DqIWHoCLAiQHeWabzWiyJA82VnmJGPIUC282alERghQAPDXI5xySFAKc7C50WLIkCH+pR+rpQiQGeC0/3LqSJAsHKECrEOJECrD4ZiGoAjQEyLyXNC+CNA8u3c5DjOI0BZZEXMErQkQF7aWWeE3SRArxNZGogwJkCUKlU7k2EmQD8Vop1DiSZAW+YmFi7eJUD7ke/X9WQnQBjLejJ3GihAo7gvrCV3KEChyo8Qw0IoQFiXLpTuUyhAme9UyOd0KECDoEZ5228pQMdgr6AaVypA0Eo8xUcFK0CsjRfxUVwqQC3qyqfClCpAU/jnohMeK0AhxkLFMTwrQJDG8s9kIStAEGoLMWkrK0BBIh0AJr4qQFcOyf/TICxA/G4W91lPK0Crpq93kUQrQLeTtPEAgCxA2wWzdd7NLEAnW7oQJ4grQJsby1espypAJCyXTXoRK0B04C1wVbcqQHVaSHFw3CpAsRcndzz7KkBbq7AFcxsrQLcCpRdp2ytA5OqEFp8jLUDwakXsGBAtQM1E3G07qi1Al43Kd7ppLkAlmy7pTUAvQIsvmg/zHDBAs7hGkaiXL0DIsD63QakvQFASCnQpeS9AnHQWE3XkL0CdfPFAqEYwQDktBEFCmDBA7yLMu2fDMED2iqPH2o4wQJi8wMUu6jFAsL18vfflMUB0ZNAdkVgyQLFtnDKK3zFAQmv2EBybMUAHxw5r2cUxQAZbaqHLcjFABkWC8oxeMUAXB2QzlmYxQNMZbZGfZjFAufv2OUHIMECYPDG1H2kxQBefJhl5ozFAl8WA0ccdMUDZq60+svgwQOJFSaGduzBAR507CWQvMUCEbtvoCtsxQKh5ykYk5DFAJ4AxVWDiMUACLxwrh8QxQGMKNG3a1zFAL6fTMX+uMUC7yig0p08xQM/s9mEc0zFA51Lw4p0xMkCnoZz1ygAyQDKrbunE3jFAgRFflpUMMkBVLK5w8ugxQDVfWBb9XzJAgu0G/oCxMkBibS7rzMYyQIPyfDz8IjNAW/WM3r7PMkBRl4Ckwq8yQK8oPqVwcTJAUR5z/easMkA5f04xi+wyQNQbx90e3jJAFHSZGkEPM0DHaFU1T24zQGo9s2ZklTJAFyxUPTBkMkDwsNvaMiEyQPXqFhASmjJAH7ZbZ0AmMkDnwBq7AgEyQEFFo5VYhTJAutbihQ48MkB7qqcIMc0yQL9c2vj5DjRAbffAdonIM0ApRq5KyUQzQErItxkFmzNA9dlZexAPNECQMewdCxY0QIp39ovi2TNAIDBVkWEmNEAPqtjyPiw0QMtFkX9JDDRAh7k2A0jMM0BDuASb/o0zQBm7Cq+W/jNAy0VjPtK5NEBJtSjWS780QNUQVQaILDVAvE2BNgr+NEA0l1Bw5MI0QLEgA90wQzVAy+bT0q3ZNEARYjoUUnE1QGX9xMpfUzVAGrF0sjXbNECc5eaG9KI0QN/XrTi3BDVApY+zlcq9NEABoAmjB0c0QFDAQRD1uzRAuZ9Bw5qpNEBcmbCKE6M0QFr0siU7JjVA9U/32tnJNUClWjpEIJY1QPCEQ+IrfDVAA8R7vRCENUAIp7GRJWM1QDtr57LAyTRAHf41bbjDNEBrHBFchg00QEk3ttXqmDNAHsPPjEdeM0Bft+wktHEzQAxIPBAxHjNAWVhQ8zdcM0BXeHYcm1YzQFeU9hJohTNA65FAuk/3MkC792iVccsyQBuzO417/DJAlueF98UcM0DmsbaYJeAyQJGpxqt/7zJA7viGpnvoMkBhK+55zw0zQBwiUz/FFzNAl4xXqTDqM0Dt8Sc60v0zQGaZ0zwCujNADzXc2s2TM0CdiUFsS7gzQMWK7j2Q+TNA7UV3lHbWM0D0v68y68IzQKL/Nt6kQDNAhWj1aK1OM0AhtLIaffYyQHzvL/z3bDJA4+djG0U9MkDWTem+OFcyQKHDzllAvDJAJQIUuvlVM0CE32bh45czQLt6yehwWTNAO8JyxSwrM0DHOb0GIpMzQPdHkw2SBjNAQClnjgaSM0DjFWC9zl0zQKpkDE5M2DJArVIxNAhMM0CHNBHrAzEzQM4rIPX4xzJA5zEfw56xMkDpZyPSNj8yQKJKVvE2fTJAMCCE8u1CMkBDS5ERpGoyQMRJLGTi2DJAMh5mPkc+MkA0Uf5JHhMyQPvDx0VTyTFAJsTk1M/7MED3XzhGOmExQDs9Y5r+djFAFU34iTVVMUD+59Dj+CsxQLf1G6q/JTFAr5b7ZtglMUCj3LagLPUwQB/0jYcOgzBAUwhvb2K2MEBWyazMKoMwQIxP1TUOWzBA4+E3XAGpMEDxkp3ZGW0wQIUzGKJ4gjBAwZkC8mzCMEC5NMJOX3cwQJcc7IpoSzBAGxYEvVGZMEAV48i7eYQwQE2l41ZtmjBA5fGgGIQvMUCJ8OzJ8lgxQE0FDeBz9TBAl3nxfR0qMUBT4PMrugMxQP7gdbh5ZzFAGCbijy4LMkCZSN797GYyQDBRPGG33TFAbQgctUo0MkBYFIne9/gxQEQ0ZRe/hzFAlxeDyfZJMUBdmXNpajAxQIznATHG0zFA3uUniCSUMUCdtwckyyIxQBz/oDmoQTFAO1dN1r5pMUB2xF5fIjMxQN5Kk5UHVzFA0SdVAVCYMUCjYzUqvLQxQOsGd1AvajFANtbNbRhVMUCEy11DllUxQPSu2ZhVwjFAIEbft+fiMUAj2LG/aekxQCfKeQdr4zFA0dz57Uk+MkARroi03zsyQJNyWVvJ2TFA03uAz7lWMUCTE04CQMswQGmckBJjyDBAKydQAkKZMEA1UBd1+UUwQB/Pz9YdcTBAC77Apic5MEBByKvh20UwQOEq0b15QzBA967kGK7yL0CAadV7J+MuQEmBVoDH8y1AcVeYyz7fLEBtYonPWP8tQNUFs3LHBS5AuynwPQCXLUBxBTwrfBMuQPDTaLKbOC5A9Kor8ZLwLUDHgV/Z7UotQKTpmCrcdixAkDLG9pM6LUDsMVoj5MMsQCxiYcrlyyxAee9cMPY4LUAj6MAnKGosQPsSsbBVNCtAExvJyAylKkBZeKx0ayQqQKtfzMukeSlA4TJQ8aJfKEDcvYrZur0nQB8SJb9hqihAmM3vEtZhKECgykAjqJgoQFBh3wlv+ihAt2Klk5RvKEBvNJzEFjQoQEd4l89jNSdAJ9GFRU9aJ0CNKdVPvasmQC2y7WO7UCdAb4+yyP/+JkAxh/vP/o4nQBG4gEw0liZA3RvJA8QtJkCjC0gdIdklQLMLWlk4HSdAt/kJF6+4JkDNYpfD/ogmQCnPiDkf5SZAiEyn1O4CJ0Afnu5aK4UnQFiRbyDVMSZAD0+QioeEJkCARkV9zlcmQOTL1of3AidAp0CbLxp2J0D9undFAPgnQDAyR9kT5ilAQbOJbEdDKUDHRaT/ll4pQABzzmbTOSlAwDShVMz8KEBLEZkWvgEoQPOKkj2C2idAYb+Ey3rsJ0Bh7WgS390oQHACCfwMbihA3OvKbWb6KEBDtWjrf60oQDllC+srGihA5HePUzTYKEDA92lptRAqQDXM9jktHylAkC2/ibDlKEAXJ/JDYYUpQA+8kf3dQilAwe7qTq4hKkBxig1kdWQpQB+hEMbfeilAqdZ74z5uKEBcWMz5Rv0oQJdAdC1TqyhAUFwdKmrkKECbORlLb14qQOvtKpYggCtAcMR65CfOKkDUIE73Bs0qQFMdn3v4lSlA+et4BPEHKkCQmbvGmWIoQJFOM2shiyhAMcFuRcJyKUATqw69QAMqQLkOarJD3ypA2FlKvTetK0CDPrASX7UqQFQ+WoaISStAgWdCSq3JK0CHpgILYMcrQNNAWxNZbStAvNvlEh1CK0BrLb5u4NUqQAh0G5udmytAYw6qNw+OKkATbLu7Ow4qQOH+rIeYgypAaI/5mX1iKkBz4CRn03oqQOnbaXL+sylA42PDdeo4KUDg0ojMbPEoQLNYMviD/ilAsfkSUsZEKkCYeIZ3wHcrQFnX7VZn2StAhdrxJw+6LEBPzWwutE0sQGE85S5XsCtAbLmEfpw6K0Dsdb3ci2ssQCGSc26XOy1ADPAS0WxnLECM7IIgT1EsQJgRTbdl0itAj96xW4BDK0CX4O7AZdYpQPw+a8gP2SlAP66CSTnoKED0Gbnm0nopQAT3C3HwuSlAJ1SQ7eVSKkA5yvCKDsQqQGHIbvUj2StAa+t7iig7LUDYTBh4dewsQOhPBsC8Ei1AO3jZpUa4LUAYN5wu2eAsQJUq+B5JGixA9fJd/hxDLEDwMaFiVlwsQNijmt6OPC1AiCPn+sWhLEALEEsF2SosQPM0hdU4ai1AoSirVCUhLkABr/F2/UAuQAccTL77TS9A8WlhbJMtMEDBVIcroUowQIHoNL5eJy5Aqeg+Tw4zL0D3K3Uw3oMuQK0mMlnRKy5AgacEr16oLUA8bOyUEW8sQGnzg+SCfCxA+ITxrncvK0DjeugDclgqQGSp82DtTypAxwCLiKYwKkBQ/Z2kw9gqQHPJL/FK3SpAVYSV18XpKkD7xbpzlt4pQOVzVD+1IClAI5wlYVwTKUDjymnwLNMoQM0FtNTvwShAQ9vU9dt3KUAwQkmN0yUpQEPRAVuQpSlAzWin9e4AKUDpM2V8s9YnQHlYf+wqlSdALyPfmXqQJ0Bj6UuPWGYnQIPsCrgoaCdAcRTPmqT3J0DQwuVGP3knQK00OcrnlSZADVn3TTRrJUD59HSjA4UlQECAMGD2DSZAPHGGWEoDJkCFtmBw5+AlQKQuhHIEoCVA7RukUlmlJUDndOW+ZyQmQP/K2RgGYiZAaPC2N4hrJkATXZyj8g4mQLcTPtZ39CRAxcSxw/kQJUD/GT7icI0jQEIY2jF7ryJAJ0kfHATRIkCx8HgkupwhQFIgIAy/4SJAKAAG1vONIkBMyL8chWMjQIGpuskYJCRAQtofEccgJEDcWsZClRMjQN1oC4IcyyJAh7bz/GKsIkAbMeXaJJEiQLmSx68kUCJA/zd+IwDTIkCSPJFEg/AhQGt6gfQbdyJAE+9BMDooI0Cig9/CO8AiQENKe1BbCyJAkPL3AUbYIkDPgdoiw0AjQDnmOInIeyNAPQIyB3RlI0A/J7xoFo0kQPtk3gyBzyRAd/lg7G/1JEBiBlWPYoEkQAXrDUgwmiRAlZvhrpJbJUCT9kPDf8EmQNALFracxyZAZZCrMOwGJ0BJS0btRS8nQHxfB4nqjiZAHLLUUwILJkCrrVV8cDYmQDCWbe4+UCZAg/cg+CwkJkD7l+DfASQnQIBzVVnY8iZAtVqGe2OSJ0APS51YnZInQP1lly3r3idAAwZPA1E1KEC/00uq7o8nQGgxNzPKwyhA+zO++sgpKkCBu+Bk+7YqQE9rUzijFStAvyjQyxyMK0Ack3pU4CssQDOEVz2SbixAE0CUNnCyLEAX6SxR1skrQDzV5QPj8ytAP69lRHtvLEBzGz6peSssQAwmM1ccvypAsYuuqgWoKkAAPbwZpKUqQNfuOmCiHipAPDPXQ1rJKUCTEn50z8ApQKy0mqWQ0CpA9y0P7DmzKkBxtW5aHtwqQDDMacKheCtATbjIGMeqKkCNOsdzUh8pQPE3SpLFHilAtzgQidowKECxPWVOm7snQK8QKOqsDChA23Y8G5k1J0DXFByBe6YnQKXPJp0cwChAybBiQFKTKUBlycMnRqApQE8+uP3XmSlAJAS6Mc+XKkBEYe0dZQQrQE10hx4T5CpAgWGRNA/pKkCDMCHcyasqQKurGNjW9ilAXF7mLGrgKEBloNdPZeAoQDucAKeIKClA8BOBEMv5KEB9k7Pp9vApQGl0utqffipAOzkpSKrtKUC8s194B7IpQF3UfQYdHCpA1+uF91b+KECdxt5TGoIpQGFn6Ga5aShAaLKt69K0J0BYRpLvJUInQOkf/LzIGCdANID67T7FJkA85jkdehEmQHtyZTEpMyZAM789lEf+JUBdAPdMcP0lQHFiNrx/MyZAvJuKDT5gJUBYooCuO5slQGusPXOcuyVAs+sjmUyMJkCYsp3upYkmQFiJtDRiJyZALfO0OCSFJkCYbkGLCpMlQCRo21T3tiVAUEXWVg1kJkBPFjopRz8nQGShV9qJVCdAyWbSp75lJ0A9CLvtAfEnQEuE3jjhcyhArFKq7BGEKEBXU7VTEp8pQHRZB5kaoilAaC2tMnvXKUDzTshCgEApQBwqzNFfYylAcQNhdt7sKED1+qMbrfwoQBkyyi/UgSdAmAsJ2hD1JkCMaxoKimcnQD0mxg/68ydAm57Z4dclJ0BNQ6B4IlwmQBf7AF9bySVAlAqWzvktJkArSqfZZRglQE8uRq/RGiVAgjV+zd/GI0ChfhRWS/kjQIFFjZ4sUCJAvSNKnpDtIkD8unmlQbEjQEEaAboQyiNAK3dPAP2JI0BJ9/bWOSgkQP1EfO5cziNA/ArbSPe7I0BHX2wnX6sjQPOlgibd4yNAwK0BywXVI0CxbwEYSNMjQID18FkZjyNA0ACMMoWUI0BR/t9dvMQkQF7sKaGNTyRAoZlIQ1wkJED0asbRAMkjQFyKxJyhWyNAzGj8XtAUI0DJ1YQ1IdMjQGU/3SC7WSRA/RiXvxQNI0A6VRCQkGEjQOlNKkA52iNAkcvc7UzyI0AhA4zCXYAjQPlvWHAvayNAquEZPAwSIkBUCANV5uIgQJXd4DGpySBAATu9qdRzIEB9oCMDxRMhQMtedGBuciBAOvGpkEy3IEAhpE1Y8I4fQARdd/RrHSBAb/gx4Rp2IEB1mkS80aYhQCj3SSPkzyFAZXZSjjDoIUBHactgoUAiQPY/8OhdHSJAnjms5fNxIkAEkxHMEAwjQNnvmfkxLSNAiBdIRmyoIkDrPeQ/XegiQLHl0MNSbyNAbVe+IDxSI0Dp1h+GGn4jQGNFc7u+6CRA5/46otIkJUDtwBKBxJskQCMsd6xL7yVAmFCZXiiCJUDAdbQHB8gmQK24y4o5VyZAWCSqJR+dJkATCLxnK4wmQDdNjQD2TidAqcOBwUpvJ0BoUxMHx4wnQAnaFeCDVSZAXVm3ATKGJkDD3LWdlJwmQDiXqoxXHidAx1Z1yukaJ0DEyQX8bccnQJMBXrbZpydA1SGVP5UeJ0CA59WP5BEoQIcj4VIMWihAu+cCkLuXJ0D7FLpxFDkoQCClQuK4dSdA1UnAIOMbKECLA72AZt0oQInyYqJV3SlA6CIE/DHzKUBcg8D1ElQpQPQcAsd3vShAUT7qoKEVKkAdkK6thAYqQIX/+vOmZilAuBsXT+FxKUBfriFVVFMqQLlAyN7P+ylAKMLFwuPBKUDT55VBGqcpQBwGLQecjilArLwp4XnWKUDBdLyXz10qQMlrHoYGAitAv3HA25+0K0Dtl3WeTScsQBiMY8t7xitAXLeJXHm+K0BwxSxVt+QrQAdjt1z6lCtAFGZSvagyLECsp7bWJDgsQD0dnCj15ytAx5vMQiKfKkDga3n7MtAqQIu84GvgWitAyzrwVe2OK0BzNws15AEsQNlXILVCByxAKZjX4OcQLEDf0JoBfjMsQGTohsht8ixAwzaF4XDPK0A8HbWgfe0qQHHR5g5nCSxA1FT6tB2OK0CYHYiD1QksQDQewUS6vStAPIDASB0eLEDEUzH9O+0sQAW46ehJjy1AU+9xsPiaLEA3uMn34R4sQPOF2/TfrytAHLvQ2RjLKkDdTCOrkKoqQNANjrqMcCpAnVvvopN2KkBPxswloIEqQAFvHEGAOSpAEHudrxBKKkBlypl98LsqQNSMZtchRixAh42Gr8coLUCRbrktYl4tQIHHB8n5/yxA7UUQ8gnQLEAjdKqjDZMsQPxsLPZqRixAo3v12RSSLEB0KcbX9D0sQB+4/jpRTSxAPeQgMzj6K0B0QZb9ovksQChhvP7ZpyxATGJ7ZnFZLUCTLyRXVTosQOSJHvu2xy1AKz0yVX2yLEABhAgKhsosQL/7lUNWpi1AeP4iCF5NLUDfoW+S3iQtQKA4VDZbly1AbzR3+ianLUAdV1BMv9ctQF/qRjDCzCxAkKYDdsM7LECF92vPG7IrQMBX5spm2CtAixg82wFsLEBxGdC9SUEtQADO4wNRYi5AJRERihOOLkB5XajgpoMuQEUx3MQJmS5A/cL0P43CLkAjP38KYcgtQNHpYpGTJy5AlEzcxwvYLkDY4P5+Y2YvQCjiMxsP8i9AcK03tqe7LkCEO/ebBwEvQA0ELj/SCy5AzV2SbbkVLUA8KwokbH8uQJvp2XwdqC1ApNPzLoUmLkCnSblrab8tQDl6B/JW3i1Akbcr/bIgLkBEG1FBqyovQMxFWyUFHi9A8WQKUeGuL0C/w1INkR8wQAOEq89HHDBABewAU9bvL0ASrrh7CQMwQMRYreu4vS9AcVFNFTyBMEANPPsXvPYwQHDHBO5L0DBActYvaXpvMECRVle2+2owQOP4QM4KKDBAPwoJokhCL0Dr3T7fxjsvQKhJ5B3pXC9AKc2QtPm7LkD8BbYr8OIuQGhW62kjVi5AnyXduEYbLkCX/akdgXstQK+pJjXvii1Ax/xLnf0JLUDzMAS4TKYtQIPaKiXMUi5AZHjEohfSLkBpNEP2T68uQCe7xwUtmC5AsAWTEukqL0DVqfo8cg4vQLGY59oRdS5Aobl8icRzL0BjCpkXdggvQFP84lXXqS5A6w6kNEldLkDPSLiI0r4tQMBnE9laIy5AqM92Pb/mLUBtEGbuPbgsQE0AnlOcly1AMXWF6vhXLUAcHO8VTVwtQOCJoIFOMi1ArJOldC5QLUCHw0tBT+EsQB00z2AdoitAIZQn3/Z1K0Dt19UGFukqQBhGKX0WUSpAMy48FcGgKkAfCdHY16wqQF+E8HEGJipAH1KP4JFKKUCUQlxQyNopQMB19U4dJSpAhzVNwgjxKUDjM7bv590pQMmp1/JnlSpAxZ/KwW+DKUDVICwirlkpQIySKRwEJSpAZ/daD72GKkCZOyhvFC8qQNjbVR3e5ipAH7HkdwEXK0DYGocG/ncrQPlO2Jfg8SpA9G/+SPZJKkCpQ/7SoZsrQHOo7hp1/CtAnccbkC50K0DlaPt5u3wrQCj9g9DolypAdewf641TKkCbiE3jxKgpQF2sFle1MypA7R6stxeOKUAkXrmQM3QoQOfJgD9FmihAp5wHRpA+KUAn+78dURApQOBZCICVyShA6Qz5m0qQJ0Bn7/28okEnQMNhPQxq1iZA5B00+tyBJkC3AR27Tg4lQPMi8xgANSRAeZbM+jNBJEDMNxvBSTYjQB0ygsvq2SNA6svROMMNJUBPksuIXdUkQBdno6ebwSRAw6agDBENJUBoFS91ZmclQCikRejNmyZAWaD3mLgRJkAL5A6avXMlQPS4WLfSwiVAI7nIFzDIJEAQp3y9oZIlQCs0O/2ariVAwf118BxrJkCLhPtHnr4mQDGAHj+ceidA+yEjFQY4KEDbJ63SNnQnQFTBuUQpWSdAk/8kN9UzJ0CYOBzd09AmQDxTm39plyZAnPwVk+xMJkDvTiY/IConQBXoJcbW9ydAuQmvxciTJkDIGF06qGcmQBQ8pG3xhSdA/8KaLr1DJ0Ac/qIHy+wmQIibMeSjzCZAcFjVBdm3KEAU5S2arK8oQPxe3gzlCSlAOCz6gXxPKUC1dWqUYt8pQM2iY/tYSypAxCvBV50LKkC/LuwObOEpQOtByye+LypAyzBY5ZcmKUDIZZLpVJkoQB034Rk30SdA/WuKJQ1HKEB58h6DSl0oQDTDrMAA7iZAWT2JmLJSJ0BpUi2Bf+InQKHBrwDTGShAJB7SzlUpJ0DRKc9NsjgnQEeamhrpcShAIDLlEbfKKEABqqdGAIkoQG1RaAvTwyhAiWOfCDE9KEDjL8JyTAYoQIAdpge5XihA/J8bnUiWJ0AzCqMM9bYmQHtM35dnxiZArEOUJGobJ0DPQSG4GWEnQFcnKt59nSdACV7u17FQJ0BExdzaah0nQLPJk/DtIidA1/gKEppdJ0BQ5AfI8OInQD/9yBMY9ydApwExYjL/J0Cl1dMimoEnQIeOKPSBpSdASacIo5IbKEAx65RJ+RopQHzI0C6tJyhAF/Ekq3c8KED7sRbaYugnQCUr5qQqmyhAgD/6UOf5KEDQOas+sfUoQANzokg9sydAHdoRDcR3J0CIw6tlfhsnQDj+ey3/TydACE61UTadJ0AYBzDzOI0mQPnIR8bfmiZAa94Kb53UJkDt7IorQn0mQEXJZkZPfCZA7Nwsm6+/JkDj4bNjk9EnQEWKpcL5vCZATQk0OrUpJ0BAstZIMicnQNRcBoNvPSZAnHxJmkuEJkDILGY9sngnQC3ZZIYc2SdA98mt8E/RJ0AQhLlT9rEnQGDr8yB4fSZAHH781e1DJkDfKwcMwAglQKkHQ1qnAyVAGTweFEjsJUDBDNUxZE4nQHOzd0QsLSdAO518X5S8KEDUzX9tM9cnQAuMvinw4CdAA51LwCWJJ0DfIHnlfigoQGAI2ulxTShAXzXyWnD6KECYUL+53eUpQJjWs4/F+ClAuyZQsNZOKkBPr/rULqUpQJMTchjhqypAqadMsKYWKkBQdFfevjUqQJWs2Yn+NipAqYavxKq7KkAn53XsSCgsQDfVPvIo8ytAAC8LQqsRLUBwZfrM1rUtQKus1ZTslS1Alc5Ad2a3LEDRVj81u4gsQLkbs19mki1A5/fv9MzxLUAQwnUYjlAuQFjAn0vZ+C1AVBLLDpzQLUCvD495hIEtQGj25DUVgyxAWSVtlrfDK0Agy4VW22QsQLcj/DDhIStAODC5iiRmK0Aobr2vo7krQGTWbTlBwypAZUpPYGaoKkD/6gAz/SArQDh8TseQ3ClAwGGhU9XSKUAYli2OViMpQFDUXh4TWChAAGKPxmJ8KEAcT0/oSGAoQKvbyRNmPClAEW9V/TFfKUDgJ/vQk7MoQMQRQZ10fylAk0Beq7PLKEC5d0Eq4kwoQAgh+0kuVihAubvYnUFxKEDL5b4l3pAoQDxKxhYgQClAbyKJ4pHmKUDIyWh8mycqQESsK72e2ylAQDvA53cuKUAx0jXNcksoQFxuVpvObilATGmxqgHxKECPuPzUeqcoQE0Mtu9u2yhAZ7Qc3blZKEBdizrvYTooQLzQQfRGJyhAM+nd5WiMJ0Cxw6LwBZ4oQMR6n274TShAoMg/Qu0TKEDokMZiHqIoQNBbkGImeylAmJE9AaUOKkDF+ArlMioqQDXDaLC8ASpAU3QzKygbKEAz5W47cW8oQBdbB9J9zyhA/SCV0189KEDXu/HaO2YoQM0PkEG19SdAOFytfOxiKEAUlWu2sdMnQBO8LhP9MilAaGVJKFruKECTQ04oaJ8pQOtKpQgDSipAbGuXvaYSK0DLog4WFLArQHU1TXnQYCxAhXhh/qjALEBEprbg1pMsQIuFUnceRy1AWJt3ZX5yLkDRTlS8QJ8uQGNggFzWVy5AaE9g7KllLUBn+fMUwbwtQPGdUuPgAy9AWeLRNuUGL0DtKEe01JAvQD1s2zu2UTBAsxAcIN9zMEDaBhDNuD8wQPfTWLKMkTBAFJvgUZlzMEBgLdV1yakwQNsR3gy9zDBATkP3sR+MMEAZHwzOyWwwQE+6T2prqTBAVbVv4JSvMEBXZ4bYdbQwQAoSwTuuaDFAYMAWI5rRMUCLoEu23toxQKtRKhUVizFALRSeSlABMUCFwnl6UpMwQAGg814WATFAGbPpKtyhMEBRIYZz4AUxQAfuyYEzkzBAd1YTNjTiMEDZpKuI7YMwQMQP06vitzBA85RHmNWaMEB9cUf5uXwwQHMCBTrMODFA11y6hQtIMUC9uBLrq04xQBeYN/7y0DBAMePb6tQ2MUDgp9r5VkcxQGE8m3JAdzFAXY8dJRV+MUCObBtHwwkxQEaqLmC3LTBAoJ1C1VDdL0DoEkweaewvQJ0J3PiHHTBAcnp8ZpErMEA8tvc5VaUvQC+i1JX9yC9AE7ORBC2HL0At9puH/twvQK3DD4+mYTBAhDNKvJ8gMEBgyo/LPH0wQBUmNpwMQzBA0YNH4NhoMEDYwiLpPuEvQI0bxbYuJDBAA6mekk8gMECJjdCcWygwQLDUFuMhxy5AO0Gt9mPFLUCv7nhan+ctQCQsiobt4S1ACaBHab5PLEBPlZlILqMrQBUN8ysRYSxAbKp1beKyK0Adx5W2Wu8rQHc0K5JgQixA+yGQKzwYLED/6qd0qfgrQGuXRyLX0ixAFTfD7HWhLEDdiOHog/IsQElmEahzGi1A1dtjzgFLLUCpOAgy4bYsQNtOplN/Ky1AfE08zOvRLEDcuZhZTj8sQL3n/KwT3CtAIfjVjKyWK0DEdyFmQ4IrQHOrlDolpixAbypNAOdELUD7ffScXFIuQFPM3bk8YS5AFDsW9iZaLkDLJ7muD2YuQEmf/t5nKi5AyasgqSoSL0CAu83eIMwuQPn/mPPxii5AYX5hms63LkC91pV8wh8wQMS4xLDcvy9Awzu8BPUZL0AhsEv4HuovQJlkeI3GRTBA1cdxDUJNMEDQIOm58nAwQPrCliThkjBAZC0ZkbzNMECZStYEG8YwQJX7iSfumjFAaQ4uxdlLMUBzp98/zLExQNfNB9URMTJA9x5qHladMkCXuYwOYSYyQDeak0LkbTFA1XspXzr6MEDCWGSCDQAxQEQyJOmT7jBAAh5K7MCkMEDrUD3aej0wQDUc8zfKLDBAobIy78m9L0DE2hrRCDovQFDF5n+4YS5AvKq3Zg0OL0D5PKJ2iHUvQD3ejrG4VS9A6LISYBW3L0C7B0ImE/UuQPHfd3mLJC9Ac8XkEpsfL0Cl9pAILmMvQCFtjOS01y9AaB5TuKeWLUBpPo5qXRAtQIN5GoNcHS5ASC85rLKULUDV0zAldbstQDvZq4a+gC1AUzCDT49fLkCbjX+gGcQuQEi41in8ti5AOfYi9T5WLkDBf9qJM6cvQIxH3e3p+i5AU35oE5X/LUCZm+SYYtMuQKPTjZXYVi5AB2+LVAfeLkCQQTuQaYkuQEvwUWmzFS9AiD6sFYHqLUDhQKaaSQwuQE34BbkGLi5AzK5iGoNULkBBpYfql0IvQBUnEp+pMi9AU0jsl/UOMEBVPBQJlvsvQDurHdnVJjBAkRE7I6PCL0AAwyLG+WYvQLkaezrJZS9AGOcbIxbfLkCgPNKwnXkvQBH5qot7Sy9AodmtrTYHMEBhEqCmNvQuQPEFuMllRS9A1U8NmmraLkCg6lXV5m4vQInuEM8eLzBAadbCCtMZMEDFYQeKZmswQIHX/8N+ZjBAdF0LVPxSMUAiCHEayMMxQBfmDtQEKjFAIDCOIvpRMUCRfSffUhIxQJf5WOshmDFAzDxRA2F+MUBuYebXK1oxQNhbyg49hDFADN8F5FCrMUAtyv6oBcIxQGrbuLTw9DFAP0NalUCeMUAVMDpPmrQxQCmLVJ6RyjFAybb2Sz5IMUCzfvwbOGgxQEirIpjymjFA+u87IIAvMUBvqCcc3sswQPNeC9dutzBAoxlMPrenMECAWQpwqisvQMBYLeEfuS5ACG5tzzISL0Cp3etGu8AuQGfXHkUIjC9AM4Paep0RL0CoDWBIygEuQMMtXVqmGC5AyZG/NF82LUCv75u1QZstQLlu8FkJoC5A4JYcR7MnL0AcIVv/OqsuQKcoxiV4pC1A70Sdy9KYLUAj2mwFC54tQLDJyr3V2S1Av2a5cENELkCxEbqZGH4tQGGqhc4arSxAJ/m+73GsLEBpRbzJuX0tQN/hAN3e4C1Am4OuQ/YoLUAVpWSyVyguQADLPTyKuC1AVGww5w2/LUAJiQchs14vQD/RpgPXzS5AXHDkYF48L0A9CfpRpg4vQMdfLQ2G5C9ADRWVzZtzL0BzhcyS6fMuQHDOXwQFSi5AN69sMb1LLkDM7ATVEqgsQBclDOdqrStA5H73Ut97LEBxKAT8m8ArQJ/bDAyK/ytA4efUJx8VLECb102w6corQKemgW2D4SpAEFVH/d1pLEAMT4SeSr0tQEtcRmNYWC5AL+F4EIEgL0BZglzmwlEvQLhBvWnoBi9AB55lBnY1LkC7edw5B9EtQH1v9BFedC1A1ScvY7H/LEBZOaeJ050tQNVuVOesES1AELPwbUUvLUBhVY/+QtotQIcMiLwzIi5Aj1pP+piULkA84b0ZSbEtQG+S4DLbPi1A8EP2oieKLEBX173vyEYsQOBltruPYCxAjJIVs/pcK0DcVhODpb8rQDgSlhxUWSxAs7glNAa/K0DAf5KRC/8pQCgTuwchqyhAaWt7tYOFKUBz0FRCuZcoQPU9Zb0X5ihAv44FP4W4KEB5h+aeeXApQG3e5mu7GypAKUtU5olrKUCVPQRrflIpQKlG1xI69SdApblOtXXbKEDfhGkuFZopQDVwETRK2ilASWiWWq0DKkAIsBV+iBEqQLkalFzG5ilAbaWe5zRxKkAffMo3mxMqQP3QLkRjBStAHN9/crPhKUCXcXCxDkgpQGGUF4NF/ChAlOUxokvpKEBnX3lZ6ZgoQD3SS9PC1idA9B6Zx4bKKEA0u8pGWDkpQOv/cYEPoClAMd9pf0QNKkAh2T4GX4wpQP/lZFoGAylAsdXMaCF9KEDLfoPYc7IoQFRzq5Du3idARWIu2RiJJ0AXvXXe7UgoQNOHUYilCChAGdbNSo6PJkANsCu4qlglQAGAZTLpICVAj8BbFhjwI0BtAfem/zcjQCtxEF97+SJAiLgkkdT8IUAdEfkOBY0iQDGKYv4Q5CNAQW3oN7zKI0Bs+pDkwE4kQGE6BjrMxyNA1vBYpnz3IkCY4RK48mgjQIuTVWofECNA/FxL/us2I0DQGMTzTvciQEfN5WO83SJAP3M69AgeI0CsWyQpssYiQEOIEN6CbCJA2cRwDKLGIUAiUYipSRYiQIf3+9VE7CJAURxWA43IIUBBid7lDHkhQAieNm8OwSFAn8R8c6k+IkDNT2WySjoiQD2b3E2UoyNABZMeSYCBIkBLfyzNVI4iQGC6o/epUyJAN65kWwOIIkAl3ylUNhMjQP4mbdt6siJAP2I9RkDKIkABSGxK+lQjQHH3Vgv08CJA5To3o99LIkDt5l47zWMiQDyt+kPLIyJAaACb+4wlIkCEp0jtcVciQGManV3gDSFAiquNTONEIUDxfMJ76EQhQFT/mB4gESFA6KzK9xmFH0C0UJgTeoQeQPllkArgvx1A9JQT4hZoHUAwilCsYzEeQGczRafHmB1ASMqa0YJtHUDnzn2KDwIgQJR01lEDGiBAOMxIa+CiHkC3VS0lLH4fQNwjMPUEvB9AfPxBy+NFH0C7W7mqKBQfQFjsdGUZMx9AibsUXC2jHkBDIFlRVIEcQNuOmw8CjhxADeGQx1mQHUCT+njKa2wgQGvf1B/rih9AEO+ylnN+HUABxsu4f1YeQIWLS0bIGR5AMUsFpPVnHEBbicFg9KIcQKfGEKxWJh1AkV/pvXe4HUB0RUIgmd0cQCsT8y9xoh5A1QUGpIVYHUAEVT9W3VkeQEe8LPyazh1AWEL6MXGJHUAviEC5JhMfQBtTio3lrx9AsKKf9ELiHkARC6tFWK4eQLN4gTftaR5AsairtmKmH0BLvLcvjuAfQFVo2+cdUx9A0USP03ACIEDrghWJzSogQDg3LhVRHSBAgwgxQ2+vHkCntUvZhpEgQP/Yvv/WESFAh/GA0z3mIEDBBunGvrMgQCFlGRW0HSBAJDbiWlyEIEDMyvP68CcfQAWvfQzjRx1AENYZv9RxHECIsK5z93wdQH/cXJDgvx1AoC+bqaxmHkDxmgrWXbceQJOSrWGSHB1AIbbY6iiVH0D3D0gKZUEgQP0kNM3rAiBA+/IDb+I+IEDZ591vNQQfQGC9HMd2iCBAIOhGYlV0IUDp6IVZqBEiQFtDctU+5CBA/Xq3Lh2eIUALV6o+rt0hQCE3rcKfGyJAtjvwEB56IUDFQUvdJ8AgQLfN626KayFAaZzz8uDDIUAbGesW49QhQFY2GxMxiCJA6ZIpl2FUIkD8lGBkDhYiQGn3EUM0mCFAWLXfs1HhIUDJz4fAg7oiQENwsWc68iFAc2CETm6BIkCODPUyB+ciQJc4sRJkFCNAmGnVRJ3xI0DzamCvqr8jQBpt/czjwCRAAbOQ9SToJEBJa198ybokQKgu6mh21CVA+1+cj6kZJUBM05kw8bwkQA+JzBz44SRA9z0KWd5RJECZe4rxCPIkQD+Pmx9HBCVA3U3LPNcTJkBpWljuwTomQCdYwA/snCZA8Q/vWWElJkB5s1i+ry8lQANEbYgR9CRAV0Q1yQ17JUDBCieiGk8mQNs7yYB/7CVA/ahzykMjJkAVRuiclPYkQJeAcwG7VSVAxcyi6XtDJUDAdH064Y8lQAj3thMf8CVAbCQUv67GJUB91wGIfsEmQE2/iIsWPiZA9MVglvZ1JkBMu9LNbXkmQCPL9xaZQidAWVec0zNWJ0C3qy2rKqQmQCgXUyZryCZARx6wRtvzJkAJmhCC9sAmQJgIdtmAFCZA3bCSjtOFJkB53gtUnI4mQHUcwHvwiiZA0XGwnj9iJkCULj98rhonQJwmF8RwVydA5Bwxlqz+JkDYoj/L3xomQG0LM8JLOCZATZ9+tGxiJUBHiN+MGiEmQKBDuZcV5yVAA5/lbgWjJkA8GbQx6EsnQMQXAE1MeydAjSMWh88DKEBsshmVvcYmQH0bWaO5LCZAVAwdax8FJkBdJD5lvWolQOGslgaMuCZAq8Kya7jbJ0DdgLd0pE8nQIUWzR55riZAES3nREoyJkChCGFLb2MlQGfUyTXXgSVAOgTqGDyCJED2Z625PVkjQJxyonQX4yJAgQ+j3hWAIkDl/X1pBQkjQJ8cv4V5iyNAjJ4tRFlHI0BKzSIMYG8kQAHsO1CKhyRASYIzVLEtJEA5PlmgIwAkQOB9eVHTAiNAPxI9/DZrI0BS01TIu2ciQCcUS4dt8SJAKcwiw0MFI0AVxoMVJi4jQB+1NxITzSNAXtla1C3vIkB4/BFMswskQFPEncoEFyRA3ws7yyDAJECnSQasy00lQLgSM9LNrCVAVSoTl2UFJkDoaplva+4kQMdNQi8z4CRA+aQrccxIJUDH+qv3/j8lQI3rnCRliSRAyr2brRpiJEATuK7ZXYkjQA7qb46cWiNAAFTkvJBOJUCSTo2Ab9IkQJkQIdyHrCRAgd/8Cy04JUDY5eH92sAmQISUhwnG/SVA7TCQNJEDJkBTBN671k4mQLh9ueMR9ydAsbmcu4BKKEBr7Em4L7AoQCurtcXj6ihAOV91UgxhKUA96NpKdXgpQC8pgkQB0ydAjzm9TGtaJ0BFeXascysnQNf8n+Ni3idAndNuVegJJ0DR5basflQnQKuLW4vRnSZAVZQ90hplJ0DgCgAExE8nQAHqRVRSQChAVHF1Ziu1KEAtMV3atWMoQEvk1MNu/iZAU+Usb1XDJkDAdDVvw60lQKwgILHatSVAR1Sw8+cFJUD98R+Dfr8kQOUNfocDVSRA507C30AHJEAMHQVTsIolQNV/fS6TjyVA1KENH2sMJkDtzBW4iHolQCEKzhYpzSVAayQB/g4vJUAtmAasNu0kQNks34JQsSRAPVEDLs6TJED+RVO0A+QkQIXvZxXsTiVAGd9550CbJUDnpa9u/nAlQKTzm0VhhiVAFGKggJz/JUCzDwerKVwmQENr5uxM5iVAB3PPVqf+JUCTXj40+jolQJ+jzDOInCZAgKw616i+JkCYne2EBaMlQDGviSL2XiZAG5OtUSonJ0D9t+71d+snQHvJRaufwSdAqH1UmmIsJ0A4xHe7X9onQPMIKTz3nidAOc7pV48gJ0CfG1bZGC8mQDwjgE1JWyZAU9LjQHaeJkCMbqtK0TEmQAME0aF5siVA24xoWIzJJUA/RAz1eVAlQA+p5X45YCVAE2C6WRLhJUD4L2I3kQ0lQD5HtHRjPiRAy/GbK6hEJEBJF2XDtfUjQGVaXqYwNiVAoAoCdGSWJUCAWhPJQTAmQNWbxlE96SVA2SQ24/A7JkD5fYvC5LslQJ0eSDWuMidADzEzQdyGJ0DZClpbRT8nQGWJFY1ICydA3QxXYahTJ0AX+W4xl6knQI9DTSwcLydALfSIeFtMJ0CpxgqE5DAnQEtfDs0WxyZAMQzo08BwJkA4XAWtJR0nQH+ydoSGLidAVD3TVStPJkARKxLMuFMmQI/eSj4VFCdA/5jhvWvOJkD5dXz2xI4mQB+MS+usqyZAy3abwu/FJkAb81W7oq4mQE+Jh//JMydAAWzn93kCJ0BM7qLpa54nQH3THWMdrihAN1n24HoIKUBgegvRi9kpQOFIhqjLSSlAzCnF6tWqKUDpDL1pxuwoQEtNGLdpnSdACQuQEfMWJ0D0dGIaN1knQNnXG8jxYiZAce2CAi9PJUCPFZna4oYlQPPgFWDDpyVAzaW2e2hvJUDpvtIs3eAlQJiox6nGsyZAaCfiSZemJkBxwTUPY+UnQG31cfIcKSdAq/eP+i7fJkA4Z/PBJCgnQId3L5HoeidA2C7wbflFJ0AAo1YVdhooQCvEvr8pTShA03puLkWvKECNh/uDOzQpQFDvqAVMUypAcXeB968oK0DIisj9kzYsQCwoBbf2FCxAo+LnIuvZLEBfjAd+owktQMvD94Bcmi1A8TXVYXfCLUD8Fd6EwaMuQOH35hpn5C5A76KjMoMUL0CdH+7rVdouQEE8GgeBTy5AtdbP5eIZLkAr2vKIEq4tQH0DS6DHdS1AVM8qjKdpLUC1Ha7AVzkuQJ/UMvz3Yy5AvYsPAaR3LEAXyAMOCzktQH2vSJdpRSxAdP02D8dKLEBnSM76qH0rQNdxwIgfBCtAi1A2FWnYK0DxcuF7evAsQEHAsmV7pytA84NCzzwgK0DFSe0RY7orQJGiKKxSHyxALTPkXv/zK0D3WU6E4fsrQJ0LENReCCtA2SVLcCr1KUCoOzIj9/AqQJiZSFH6ySpAJ4MHoHfJKkAThT7c9esqQPRsoFcb0StASUsuvIdrLEBFUdSVROssQD36zWAy0SxAaFzuQi1mLUBdUCIbxU4sQEuodzOU/StA739ATXUTK0C3Vyh+A0ErQDHtyATnQipAjUAP/bDBKkA4Y5vozu4qQLNCKVdwvCtAYPjgQjrsLEBf/dHHNJwsQKXSuOqd5itAkOlH16O/LECVErG6KjQtQBHlHixldixARB1RUHBEK0AJakNjVx0rQEBSVTR9VytAiaMZYiprK0DQ5g/vDrUsQFkZAreRPSxAZR9cg93qKkDToV+VQcwpQB/y1TUZDCpAgLZOr8mTKUCP3fwY8tIpQDFXw7X43SlAn2p57fvaKUBNvVT/VmoqQLxKzDfmjCpAHBkFeMyrKkDXaF71OCcrQBD1FrMZ/SpAXNNf7X8pK0AlYO7n0GYrQKsij1fcxCxADZ3HhQXkLEClsta+2NwsQCzg/95FtC1A84ePauc2LUAQONyXbIYtQHF3SbWjVy1Ah5AvbeAuLEDPWGglWiksQADlvcJ6+CtAa+MFYBwCLUDDVJutmkItQJsch4mnNC1ABC/GvzmNLEBleb++aFctQLwKyC5EHS1AUaKqLBhILEDlMoP3x+QrQD+SHXzC9StAgKd+6nNdK0CwSXlOVMcrQNCxZm4AEyxAj0Ml9HcTLEClMUIA1UorQLsbs/7HVStAgY3K4IFjLEBjOO1nb44sQF3TE/Ww5StAkGldiroDLUBQme14xjguQGWIcetg5S5AvTvtxMenLkC9/0EJoW0tQEUjJ4iwty5AYJTJrgOQL0Bru5FC8RQvQBlL5x/CPjBAlZSvVbqjL0BBH0dV9DAvQN1DpRbscC9AjXqczUwhLkDzhAu0dNsuQLwGjEBpZS9ANxS7JtBWL0Br0TeCSqQuQPP3jKbG5i5AO/XzskJ6LUA0gIzBLaYuQK0cLbW8pC9A2bYWqY8JMED5iIt2ttMwQCdVpPj3ZzFAFma3ow/PMUAZOSuSMlUxQKxSAiO4EzFALE/WCgQHMUB9B0X1k7AwQLs5ijrZizBAQjFeZUWUMEAs/OAU/sUwQKugRyiQoTBABlvh9gMkMUBLVpCm8oEwQEnrUaObGjBAXz/B44IoL0BUxwqii6wvQE0g/uHaRi5AwJQ4TcocL0DlISiFK6cuQNkg2Jl2mS9AgYk7SMfuL0D7jpiCgfsvQPhpZvWDNi9APGai10zvLkDzIiJi1iwvQDeJF7Qnei9AfBNGFdNjLkCNlKCeFMItQMtuDrrkbi5Ax2zfUkSkLkDZwcVdCPktQNPn/4cenS1ADxCMItA4LUDHDyUuMCMtQBH41PeGSSxA2JbekGIRLECLpO0/ibkrQACDytyWzCtAG9Ub2C1mK0AD7e+WXtUqQOkHAmjWzCpA/elkLmlnKkDVtGKZwhErQCdt7tQkmStAV6PNv+Q9K0BUxm2odYMrQHFKMkV4eytA/98QSbpoKkBIQ5t87qopQHyNwuALVipACVuSOqLOKUBPRQEPHrsoQFNju6TmUilAo3VARqMGKkDvlXP/TLQpQN2hptdVjShA8FHyt/ZxKEAFGfkvy4wpQOnEV3aXrilAa+CEmKe1KkAkRp+XnBoqQPHUDCDmHCpAzzu3AmSuKUDhjj2f/xYqQKm1mzQmlSlA/CpG/vNCKUA5HQXsvLEnQLisrW6ADShA1R1Lq7lxKUAAHwp73GUqQD8FiDMo9ypAh1GKi7kLK0C7EThlrFsrQIXMOL/qJitAWx5GDS9HK0CtdkC76KMqQCF2W62ZtSpAgwNy5xYCK0AcQbVZiEcrQF/ph5Q77ClAh7em1oLFKUDb/zvgppAqQEQPkHMsMCtAMM49GF4JK0A5OSO4v9gqQPm2/oBoUytAVLTLLMHBK0ATO3kSnkksQPNVKCFO1ixAgFRfG1tDLUAjHCSAyqwsQPUKEPvm7ixAtb+Hscr0LEDDZwWFXjguQAPJroD24y1AoIMu5AKhLUDhTFM/LPctQGAIbzU1fS1ALK3Y1qKaLUAXv9jaitwsQOexDYO2iCxAHRXloilmLEARItCKJ/wrQMsrpOPVQyxADb5uKi9ULEAdCno5VyAsQLO2pMRaSCtAVS6y/ZOvKkD02/I/HigrQMOkPdQ0OipAaPPT2WdhKkANvkj7K8wqQPFLMbzAfypADA1KksF8KkCl3ovSDzwpQIFpdg3PYChAt7KSeEKOJ0BHZI+WyKAmQO1l331cIyZAjaID6V65JUBDzA9+fCgmQN/kB5T4AyZAB64fJ/qYJkBkjrVCKWYmQLwIcreUJCZA3I9Fgz8UJkBv2Une2EgmQNto5khuYyZAafQAen/GJ0ABUzgn3bsnQOtOWyXcdidA2W0iDWwBKEDlUjA0xfMnQLfRvy4EiShAKZ1bsRvNJ0AtCNHlMqEnQJf3bVP7jSdApI1ZZu2bJ0BnI4E31rQnQCNyV8pYNCZA/OxCE66LJUCMgIIr868lQMNXX38BPSVAsx5D4NOFJECLtTbPXMgkQCGL3eKRjiRAOP7kfwFLJEDIWA0p/ewjQFtLBf9lSSRAu2rSv9cLJEBWhv8EHzglQKShYK4TfSVAn322GKYDJkCRtJeswvwkQKkKKmnU2iRA8B6cgM2RJUAfGls3L+AkQCOrc0EmhyVA6Bg7M04lJUAX2pSDgBQlQNZ/HVDFxyRAP0Q6o1gQJUD3F2qgfhYkQAXo3Z27NiRAbV+Dv1p3JEAk1XEziZElQJX0d2GOQCVA0QhOwcpEJUAA3wDawGglQBsrpP75CiVAgCH+kpgJJUABVXFZiMgkQAF7aMSwXSRATiiX4gcRJUA85s6cQTIlQJzsVn2ORSVA4d03TfRjJkBdc8p0mrMkQCqJ7AluSCVAy3vzCHkkJkDovLlkAK0mQK1mIYqRfidAqE0ZKIiKJ0AzZtchoFomQLR6qzPDgyVAFGrX7mcAJUDYsB7q8yQlQJiDgDDEiSRAZoFyqO6kJEAU9E0F8HokQD500FtoziRA4FQWq7UAJUCMu7uT0HElQEVXDf54mCVAmNBJZxS9JUCIwLHS6IgmQAelVzGO1SZAaLiNrMIYJkCvsZG7nfAlQAOMSp5uxyVA728V1PxyJkDtInG1cJElQOMEVkaLcSVA91kAR5WsJUAJ9hrUTWslQGfX+4UN8SVA+7mDPQwxJUDRVzyl4G8lQMMAI9Q6UyVANVfpV6lOJUCL7f7Tao4lQI7sqIskyyRAX06dgI7gJUAxxE92NDomQMUhCMAE3CVAZ+1DqUc1JUBDm8cvX7slQMRj4BRfWiVAE6+uIbl4JUAesngTdE0lQMmVgSXp7CRAEwmYGoaiJECt5Npda/0kQMHc5S3w1SRAZLKfRxH8JUCnR0WU5QYmQMmDssT+HiZA+33BBP42JUDZfTKhP6UkQL7aJ8KdJiRAr51LtZH7I0AfiPYH/HEkQK8c7j6LACVA4Y0Y80VhJUCUd29Ti2smQMOwr/CSUSZA9kYmqb9PJUCL8YjYRyIlQDfYlE+sfyVA5NiQKVT+JUChdZVbXCYnQL9ibo5PxCZAsNFrq2KgJkDhIJDUL9QmQISCTDQtkyZAPUu0QnWCJUDaiujhpfIkQN3xKlvpCyVAOFmVIUlIJEAdfAmJDDwjQK00yEQUhyNAzSkKO8JlI0Dp4jUgVxgkQIigLA103iJAVTM74/EfIkBTeZ48q6IhQBuNLALQ9iBAa1o4iHn0IUDdjSWuFIYiQMxpGAcWcyJAVz0s7GCpIUDXi8cIKoUhQNXqnAv3ryFAJAH74EzeIEBvmAnQOl8hQB2kd/+0fSBA5E38AFV0HkC8kXwY3fIeQG0pVS2HdR5AfSw8ArGmH0B8G21sl+0eQETNFbv6vh1AcNyRvfD/HUCXrKuzXwseQKhOgF5T3h9AqdEL8/XZHED1iCt7sN8dQOHXqDaMDB1AayNbcHnXG0CfuBaSnGYcQCxTEoemDRxAwBghZDKXGUDfJ72VtKQYQIQNyy/jdhlA75n7LvNnGECURwfhU44ZQKtRu/x6CBlAEEjZyvb+F0B5PDf2S94YQEmLU2sv/BlAI60f/NeOGUB3n/JndYoZQGlXSMBkjRhA4BiD7+/1F0DQvg5rZ6gYQAfD0ggPrBVAt1bBNEDkFkCaB/fUdJoUQAL/7bMnrBRAFdse47lAE0AJBWY61f8TQGCp6omg8Q5AWZ/oXiYlD0DJnQ1W1PUPQNu39PnJ0hFATJw25g0KE0DlDN8G56UUQC3eMR8SfBVABQhfjd6sFEAHu5lbVXQUQMvlROAeQRNAr5c4xUeFE0BdWkMRT1EUQNhNSjZ5XhZA9UEG57KZGECtaDUCX9QXQAvFIknPERhA7VTdNMEqGEDXokdibSkZQAM2ShRRjRdAKz4cNm6kFUCJy3BgZi0VQGjXhkZfqRZA7/5gS7D8FEBbhC0rJq8TQKT2eJvCABZATDG+YNEmFUCzKAkIUvkVQAe2Q7otEBVAzlCrD7BgFEC7H5GGXfQUQKNIJ9VR5RNADFEh2VLKEkC3+Dq3VrERQJPITf2xXBRAMcA1zzlkFkAvBYRRGUIWQDXxj3ZosxdAN3giUv2gFUDzBPenEBwVQHtusZ5D3xVAQc1Ts27YFkDp0P6L7PYXQEXXOKZgdBdAb3MLhWkJF0CzDM8a+C0YQNT8e3sGDhpA0W06twV2GkDsBX65GZEaQGFx+UjdRBtA97TzzU77HEBxhqL7dSMcQHQWH0xHAhxAX/9af/8CHUBkIhUw8iMdQOOjjxSczB1Aq/0gUx6lH0AAze2NfkkeQIGNuL+q6htArbs8fFmpHUB7p2GJ/UkcQP+hDjBYPhxA/1ydvBnrHUBzvDY8sxEfQOzmKYeX9yBAjzZWi10jIUD+d7jBZbIhQI93pSA52yFAXZ3iMkvPIEC722ze94ggQK6B8ERVoyBAzeiPCQLPIEBpp5VkyrwfQAA6WSRLhB9AiAi1rAPkH0DVgNm5sYEeQGV7k5EELx1AhQftfzM0HkAt970vqaMaQD/kX8lkkhtAgNWQAYQDGkDnErPgmaUcQN85FcMuNh1AqxGqr0lSHUDHbUs+PdwcQDmrDj1nLh1AjNG8bwA5HUD92JE6ZyEcQJB5/LAvDRtAQCltpxm3GkBzgU4rzboZQGzlhveeaBhAkMhi4wldGUBveUAiklAYQHGIPbWAqBhA96OBc2pzF0D4CoPCGd0VQELLBcc7LBRA0naWl3YzEkBZ1TVZHgITQBaA1kjrMRFAaey3o+IaEUCVF8yIJi4SQHW0/0nrjRNADAZ+xbtAE0CXf7DfeDkTQLGs+lXr8hBAnEiqbM9pD0A70qMzJUAQQIXQpeiugw9Ad6i6bgzBC0CxsiCvb8MJQCzstgkRQQdAB7xqKAJ0CECVxCemjz4IQMwVuwTvvgVAbBl0EVYQBkB9quMk++IFQDtF3QCyCARAZEmSUAxOB0DkB92FT4YIQLRmyoT/1wlAAItrTIo0BUDr/TOW5MUFQJFiyWCUwQVAPhKeftPoA0BPQTsCPBwJQG3hD/mXwQZABF11YlgLBkDfM+3CcKIDQDNtKrLCtgVA+eVzTDxcCEAB82JWtkwGQBV4HCKG2wNAtbWif8i3AkDu9M8uCc0DQJHsuzs6SAVAsSHXwD0xAkBwIwQ8fnQEQL14S/cm0ABAaERQFimmAEDNhZJDT8gDQHA6fh3dGwNA57W/8jbqA0CR3gSSEdMEQEA96g+NQgZAzTzqnfKjB0DrmiFNd3sJQCcAwkjWrwZA/N3+MucpBkA5qMJQrwMFQFt6Y2ymSwdAX83mPeqvA0AhUwA30k0EQGyvW7cWAgJAc9P/Hq9A/j+QMu3p6CkEQD3rT1gfdwdA2n3gJIe4BECxx2LIHfsFQHsrvSyUgANAr8E3ZdPwAUAX8Tg4bX/+PyFjyQ/22gNAQDdazxwzAEAc40ka9836PwPoQnaRGP4/cQ/fmZ699z82kn0DVxcAQA2hRc0+h/s/ZUeyleas8z+JkAetQl3xP/Vto5icfvE/I0VRc5GT9T+RJy6Rhi73PydRoUylRP4/WFJS9Omf/D/vTq9frKIBQNrOnQm/rAJA1gtNkUQOA0CpBXlNWMYEQNQMVHX8XQZA2EEiTDPHC0AkTjcLawcMQJs9LLJZ9wxASew7/Bu0C0CYfw27apkMQHBDmCmnoQpAoPYF6R5LDEA4tYNtbV8LQFQIAalhDRFANK5Cg+IuEUANVpkNOHwQQMysrjJQnBBADxryknVeEkBd4tp8OikTQLH7a5o9PhNAg96H4klHEkArNyXQcpQRQE+ii2UYxBJAK6VcyduSEkAIiRZg5BMSQLbbO+/WYhJAiiEWgp5+EkAEgFqnzVcSQEuwkx2NqBJA689YZVO2FECZDLcniegVQDWy5Ub2NxdAWL/OFrVhF0BANFKmsrYYQLD3xPabrBhAyD978y6hGED8ZSjVDloaQDEJDAtkZhtA7aXhLQ08GkAc/85ysG8aQCt1BCtK9hhApAssEpqCGEAnovrjKWYYQCfjEMAgYBlA3+YydtbSG0B0AOXQTxcdQDv9xUG+sR5AKSHb2fZVHkBIVII4xSweQH2dGCF/KR5ANdApPGaqHkATnODsk+UeQEVGIQwZ7x5AYaG9xfwsH0CIkp6BLuEbQLO3BvhmtxpA3Njgm+WnG0AgqTj675kZQFEmTgm7WxtACDCR4M6LG0DtzIVRwxoaQNV8qTbAOh1A+9+4MW6mG0A9ifEasNMaQJPu8Sex/BZAESV0dMbxFkBcJ1Y5rhcXQPgPSMVHrxZACU0jUiP0FUAZsGLG5LQXQESkbxyzvxZANzAlZkOfFkC9MA+FmqMVQK3AuuMZPBRAHfDxfHFZE0Bkbxj6KkMTQAw4YZVnuxNA+5fXZft2EkBW0el8FE0UQDQj+R5/mhRAvGIEGPNIFUDNBCmKaHoUQMpGfJJzOhVASOpCb7eCFkCXZGRJntYTQO1RYNBW2RNAKL1U9WRwFEDrnbzbFAYUQLvDSU+HTBNARsFzRffbEUBrBc1bmOkOQNuSvyaYXQ9AWzFXTuu6D0Cby+SbuWMPQCOSV8F5NRBAbR1UENiSDkB0eJY4NpsOQFjVFrbnnw1AeW4FPUiREEB6OR4RXf0RQA9wqVZmZhFAPRfkpgvcFEBBmPHtBkkTQIbfHKFC/RFA3b30SV60EkBlJU3opLgQQAylHoKToRBA2IkmiqW+DUCI+ByHso0OQN9+mmcplgpAqFk0MBheCkDYoojrjJcHQLWpBLNysAdAXdX9rokNCkBrs17SsuAIQAM/9AkzighAhUEBOSKxCUANnIMgYWQNQAmFmvqUSAxAdSlY8o6cD0B27DlIDzgUQAvgGAm77hRAwwM0YSIBFEAj7V+QquYUQKJnxgC7/xRA4WDzhZhKFkBB54YzLcUVQOufYUvoJxVAndnG82BiFECGxqYKDtkUQIP4Fi5cABRAxR9/4Kq3F0Ccy9iTqvwXQGjjJdpGVBZAj4QKvqeZFkCU6x4K7rkVQIF1uDtu2BdA8J+y6ZaoFkDr7B6OTP4VQIcQz0mxzRRAPaF0JwU4FUCYkIS5X1QXQCxT/eSImxVAKRoO5konFkCfQJP1rZUWQJ5Iwj3t6RRAXfftKiIKFEDGqWbHRiESQO0kvFCYCRJACi34w01JEEBjHKVqXy0TQKDD356GQRRAXSKN9+IxE0DgJECEfw8SQBkVS99XvA9Aue4giGSGEEDrQ48mUrQRQAe2Ou3DAhJAKe8Gm7C1EkAzKo0gpysUQJX4auLOURVAjyEohSgEFUAdwG00Qn0VQMeTQyj1ARRAb2ODjV0QFkBgXjbz7W0VQAQGRbioKRZA3HIl1mhlFkAvQ8flS1cZQK/tbWyv1RhAWMgFojVLF0Aj5nMEym8VQPFk0JqJxxZAnMjMvOvjF0AoGIMeE9gXQADWh4Bj3RRAvIMZH5rrFUAML7CNBH8VQMTj45kb+hZAgAt9hjt7FUDwkuXGaCoVQGd3SMxE/BNAxPcknTzXFEAvKEKcR2IVQCoL2U8RWRRAJBi0UT1XFEAoNKmGD5UTQKOsASq+jBJAS3YYc9cIE0BV7RL8KI8UQAVfIoCrjhVA5VKh0WeuFEAswakKslgUQNClxa4ZZxFAhqmYObV6E0DdFTKFmzASQIVoYqMgphRAMf2EMPOqFUDf6DN8jZ0UQPTSmCjJeBNAawwJyDgOEkATwipU1wcTQMbc/noZ8RFABm9r4iASEkCULVykamgRQHLJnJ/V7xNAC2G4/xh9E0D/ASY/8TcTQJTO3uQRIRJAwuv4ySUUEUDbB3HKT24RQMEoiCDQ+RBAS7m7qm03EUAos0URSPcOQNsgGldzFApAiJuuugEJDUDshFv3r4EPQCmk+pXazQtA947koGtyDEA0yBMD/qILQD9bpoTMUglAcVrc8ikJC0BryOR9hvcQQOgNZdQ3ehBAyZ59BWbLCkAUunm8ewoPQJx3odJ6exFAcJK1vQ28EUB4t4JdJPgRQOTDIe+HDhFAfIsiUoZKEkB0K0ZnA98SQONmRaH5yRFA50jzvIwnEEClZ+uw+a4QQPCzZ1TV/w1AkY9qXC/UDEA0iKvPRuIMQKX45MFxCg9ALOEfJYmeEUD5qBq2CYQRQGl5cvODVRJARx1s7islE0CbLeBhGAsTQMv017+XoBNATtYkISs8FEBQ7lSEL3gUQBGUWpl8bBZA+Mf50d9nF0Dwa61z19gYQH9gHcOXPRpA8Py+LyfHGkDU6hE3lNAbQI+C1V5RRR5AbaYYh2CDHUBdz4rbjCYdQJy08leYCRxAiJwKFweZGkBIPlRvl8kaQJ9G51mopx1AA5OLZK4WH0ABMo88GwggQNnoS+oQYx9Af0PxNb6IIEC1klyHwsYgQEdjNQ2ovCBAiV+yJRyVH0D/2Gv21AMeQJNV/4i3ZR1A8zvhIUCGG0Dbq5vqJxQcQDtIx6ycUBtAsXiCpsA6HUA7jrn7Za8cQB3IXdJNsRxADKuzPl6IHEDYmG0QsUIdQMdS4KF+2xtA78TbBQejHECYnxnqiN0cQJ2+4MDSbB1AiRFyfNSpHUAVWPa5FmYdQNEmSopxuR5AEwaE4LiSIEAdbBWtw/kgQPPzC/XbziBAXeyVDeuXIEAwj79ASO0gQFF+hIGh5CBA63x9UC/MIEC6HMa258whQJUCJZJ6niJAzlfYvbQfI0A65Bqs1HYhQLc/un2pzSFAAJkpPfQUIkCa1goA86oiQJRzp8eZhCNAfEO0oHAWJEAVqZnRw7AkQG2XqaU4LyVA6Wb6v16EJEAxz9OenlUjQIXiVhcBtCJAHKaON+bYIUB1VmHgvj4iQNmgLxaWACJAQ2HxUnxEIkDgU2SkJashQFA62sdd6yBAfx8o+C5HIUCKeQo4qpAhQC67iOrzICFAXzIlA2yiIUBlscRolnYhQG10KNJuLSFA0fa2JXi3IkAE1maJ+dgiQGMwqMjbBSNAkSAA5vh2IkA4cqQdCnYiQF724s/omyJA2zgFgngcIkBH/nF5MOEiQAniwLLVRSNARQ7BsX+2I0CJAMxHjjYkQMgvAiFtDiVA2n07l5sKJECjTM4y+JckQHNQwebggiVAaVdqWRCGJUBxKL9hOHAmQLXDrr9WkydAt4aD4C7/JkDrywadtzkmQGGovltPuiZA22LINDYCJkBPLrUmWUUmQJN19QLuqiVAEbRIWS+eJkC/rTn9gnwlQJmfIXScQSZAw6aQliOEJkBg/0cZtIUlQOue378QAiVA7ao4NkSTJUBBFz2DtzYlQLpAtFxh4SRAvl/qBiG5JEDnL3HDD50kQF0Gq2XeqyNAj+DAgqUEI0AH8LSpuXEiQNWUKnehXyJAc4EXVqFOIkAD6H87OogjQKbEeY253SNAZhjWmqYzJUAyI8VpMxolQDuc9bXTWiVA85IYYKQaJkDcQhI340omQD3UNa0rXiZA2f/zZWMlJUDJJtUeNoMlQJBBZcFJnyVAf3rUAEfxJUDbbrQkBNokQMNn179ERiZAl0RHKBxAJkCQfa4znOMkQK0dUWdyqiRA0oyKgUmxJEAU2BGknxUlQHzbF44XfiVAAwW2OiHcJEAqJ3CA27skQPRSbSjzJCRANHl3bMrZJEC1O6WdmR4mQGWkw0bwgCVAYEXQoULaJEBLHUHxriwlQFVE6r+W/CRAC87BmfL6JECwukw89GclQP/ukA9kFSVASIWqpmUyJ0Awnk14wCUoQOOkW0ZpkSZA84St1cpKJkCBRtNJ2oAmQIFZ75Mc1ydAh1fQnAbhKECRKWBtRRopQO9A+CL/xChAgwE4RtA/KED1L6qTgrEnQAd7FsqC4CdA4XQGcXiyJ0DrGG96g0goQEDeUk9peChAcTf7Qh+xKEADPcMPmuUnQDDIi/HHbShAw4ziAsHXJ0AgxAjel8AmQGPzCBQBoCZAqVe4vElBJkB0dz/Nt7omQN13zgCrNiZAsGLqJ7tsJkDQFn66x5wmQJCtaAeMtyVAp0yvhfnfJEDEfqB9XkYlQIc3sO91uyRA57k/vXq8JEDB4nZOmLslQFApWVYbLiVA7Yz3HOiaJkCYhic1VegmQJ1/ovnjOSdAHycO33kHJ0BH76mxaM4mQPs7FEmEEidAQW2Z9JkaKED0erBWvxcpQMmW9BczqChAEHc+1JZ8KECFzmpD4HcoQPsq3d9cWShAG2JaGlXYKECFfOTILiAqQNmMpZA7dypAU19NcVP/KkB9R1KB6b0qQMQ6qALzcStAjL40tYkqK0DlhYTnOgArQBMYq6bUgipACSgJCQuyKkCA7VV/2cUpQB8eXPmZSylAdJ4pcUjdKUALAsZInZAqQAuTF8FxAytANUkjeNwjKkBgi2QgWZApQFF+gYY2uidAUL7Xg141J0AYV/LtU70nQPPYdJNE0idASN/Z4lItKECUabg9tEEnQMxRLHtUMydA1HmiJKNgJ0C5i08RxmUmQOOyuJeBlSdAhHCdHyrLJ0BEaZl5uv4nQFmsb7CPgShAMAAGGlw9KEDYalm6FDopQNPFxZYv3ylA4xs5qOtCKkClVa33XuIpQDBlRsqk8CpA+fCf5IMUK0DZx6lNAmorQLceQxJFBSxADCbQxbWIK0CAGwIRlI8rQLs6ceRLqSpAPxHiTUIvKkBphe32MM0pQBFynJjIiClAO++1gFpTKUAt3nPijFgpQIly3+oraSpAybmtfYRTK0C5y4dnbsAqQBwcvL1m+ipAj/Qam7NZKUDFoEJHp8wpQH951JfoiShAyELsNIrLKECNmoTiB8wpQKVx5nLJMCpAsd4XaKLIKECJsW8yXjgpQAiaFAROzClACTcp430kKEA0VvLZyUIoQMwhb/nFaShAI5e/PgMMJ0Bh+lxXYV0nQCG9y7RDHydARLa9BipMJ0BtS/14EIAmQF3WW3HLVCZA2FuOLevpJUDfZakJhBMmQDRHWHXmGSZAMzmsjYRpJkBtB27mYqglQI8WDia0kCVAG9T4STR9JEAJcHGHncckQDJUNQJUziRAaEQ1k7RWJkAl40jvnfomQODhtWYtaCZAKDC9NGY0JkBMj5+Qlu0lQNkC4Ha78iVA6L0lHho7JUBrlqUb+eQlQJwOozxMmSVAJLYr1MjlJUB/w0KPG7olQCGidtSv7CVAEZkNZFN0JkBQdLr7ZpklQHSD4oFphiVA25TumOhiJUApBWxxuEQlQFcx3ZtMiyZAA82pmV3pJkBJBemF00EmQAcXW6RgYCZA1ANx20WBJ0CpULgsXtUmQI8zv0bwtCZA6CKlJsK9JkB4v1KuRUMmQGBj3hvfjyZAV+/mZ2asJ0D0RhGvexsoQGXOOBZ2YydAhWdFYCYdKEAEFJAPxhsoQGw7A9csvidAAauU9RWpKEC8RVip5rkoQAhOa56q8ydA13zX6bt1J0B1gou8RGsmQAvgkHlWnyZA0B7kzTHTJUA4lRnVNVslQBinBVh3oSRAM3N98zRlJUDdda4qqKklQLMrNrnOtCVAHGOZrkBNJkAnKZcRWNYlQGWuBAND5SVAJUviGvJWJUD84rfoZIAkQCEgHsrUdSRAjxCF15RoI0Az41PzG+sjQKUruPi+HSRAtqVPrp7/JEA3aI8/xAwlQMu+1PLt7SVA0TSfbycwJkDBT8Ucm20mQKQVVn5bUCZAuQlSI8t/JUCPPoKkN2MlQOPezP9i2yVAN6YpvhDiJEDpzRrJvTMlQLz9ey6O5CVAxDJVQ0fCJUA7g3Ipa/4lQJdVtALd5iRA1TerJWfVJUBgajuEGHQkQLtNM/dJkyRAJJbIRJweJEDNW2K3f6ckQHNVgI/9WyRARwbWYztEJUCxJwLvR4klQMOfd0A7qCVAOPAzEuVJJ0AwP0N34dMnQNG8X6VNaShA9SP3BBWmKEB3mxAVez4nQA3tPuniTyZAW4wriVZvJkB9zBfSYn0nQIiBG7sM3iVADUecaVVtJUASbNOh2M8kQONFD/SL2CRAwCKOucXVJEAljXbKurwlQBSDT9g0LiZAT4wk//tHJUDc7USFSR8mQPm5epMFpyVAByYPfEEJJkBIViTuKWAnQG2hitVCRydA8AI20GHCJkBJOkorEGwmQMFCzGK5jCZA+Kxhp7TYJUBjlBfeRYklQPOOGCZYQCdA8JUuS/R2J0CZK4NO3U4nQMcFtlhynyhA7LZWXBRpKUChjN0iFBspQK/+1H6BkilAH5EADDFMKUC0eu3IhaMqQKHZmWCF6ilA12CRYi14KUB4f2wCAaEpQOurGCK6bSlAZSz5BHp4KUB8mP7wYngpQHlt9krx0idAKevdKqEcKEDAkXOUavgnQGkz/yvwVihA/fPZV2bkKEAFmdwQP+QoQIXm0/mjsilA0Vi4ufK3KkDBunc9uSYqQHVsBXUZ8ilAu07/U0qJKUDf5BOghMAoQPnhR8u1MyhA4MmS6JKBJ0CrvGxRgMYnQHGgOOu1/ydAq0TRYpexKEB9oGmgSZooQEMhBSRsHChAVcrm9L4UJ0AvFfYeJx0mQAVHvmffoCZAAfKvt2w+JkBg14dTGpAnQN371mRapSdASd6aAjzPJ0DPSJzeDHcoQCh/ZIWPiydABL8rfwiKJ0AgdjXhCfcnQAiiVQf0PShAvGgK+1X3KEA0FEIymUYpQMNAo6F3AipAID0chprfKUBoq7yIy9YqQC3SWmsI8ytAL7IcCwJwLUC7UE+/5cssQGkMjVKN8y1AD5KfDGpkLkClKawPRAAuQIUnu83OIS5AAxXosyHPLUAn+EyZJ/YtQCNFVEyVSC5AsOz2MUqBLkDPnU1Ze7guQBsQ32vCxy9AF21YI9BeMEACiRQDLi4wQLti2o+bKzBAeMJRtHQoMECkW87QDjUwQMVa/vjQajBA2SBtpM6+L0DD3tkoI+IvQCBwNkKXxi9Aq62HKqx+L0CBbQHckeQvQLEPyIjyDTBA7POOz4s6MED5eqzeNC0wQFPe42pd/jBADm3/50MiMUD8Xn1Gz2AwQOOQrrn4sDBAX+zkGZ2RMEACsED6qfYwQBENA/CkeDFAM8HH1uzmMED64LoQu8ExQKvyllDYKDFAz4pOQSexMUATB2d5MmwxQIebiQI6ejFAO640DEPyMECtsbNLFPAwQCnNxxGyjjFAvj+m53ybMUBagRDsUmsxQNHh+CQuAjJAPFFh08LkMUDXbbauV74xQGyHXstsJzJAx1JOFQtUMkAiADxpKKgyQMc9QDk13jJA4Zp6sGr9MkA9+c3AnscyQCwxBl/0lDNA0eXoA0ebM0C/EvqDpm0zQKfyp3PHPzNAGyfXwUQFM0D4UWcXGIAzQG0ETW1WljNAsUrvgWjaM0AkjcshlMUzQL+bq9VP2jNAWJqrdimhM0Ao3hHGXdcyQNMxB1WLDzNAqXhQAj4EM0BTPzFd5yYzQHh3PV2MezJA+Ajc+2DYMUBv/eXJ998xQOHvkzPIgzFAeFPKP6HsMEDwqUt2PdowQJ9ai6aK5zBA4eEZn6RvMUBoT/oA/3cxQIkGx65tjTFABHDML2uBMUChauhFhMEwQASfDSrkCzFAW4xfY+hLMUDRc3by9R4xQFyrtoq+PTFAzgO4tFmJMUAaH7ADbTcxQNnPGdrV4DBA4dSco9eiMEB3h/Y7N3YwQLwj+41a3jBAcFsG/JduMECf/mx+9UYwQL6CZtcNBjBArqc5+y02MEAQOvN2PCUwQO82mlZLJjBAl+lsdKtzL0B6NGYbQT4wQIK41qxMITBAstQgAYtOMEC48tO5YqAwQGHGCKVwIzFAN6wSl5JcMUDjJirJwjExQOz1+4gBHzFA2pZKtkSKMEDTklFzTpwwQMldqEysrzBA+o9gbFT1MECC4U9ev+gwQK+1G/VMtDBAXQmkLdjgMEDvHqGGCxMxQBe6OXykojBAvPSfsLR5MEAuRmoNdgwwQJlLLWIzWDBAIBr15o3sMEDXR2mOf4EwQA8Z6zLenjBA7T2EoVItMUAGTCE+WEMxQNLD5GM0qTBAsHxF6IRYMUCvc0R1DDgxQEhaSKBFVjFAT5gG5wyWMUBx5sY/qk4xQNsgCDBhNTFARX/amZe/MUB08QMmYHExQPPsS8cgojFAgCgP4rRRMUDrTSUSYMkwQF68n0mG5zBATnf5ks2vMEB8PRxhMmAwQOSnAhoLli9ArqYksJoEMEBraH4tDRswQAU05EtnQC9AyWKwdE+bLkC4m+noO8wtQMxfdTTNBy5ApDyMZajILkCYyF6xPnYtQEuHkk7YQy1AsTxzQrbVK0ClVysCaDksQG+mSmkCmyxAk1LLxd/6K0BN3l0rcPcsQExxDlw+0SxAbYyibHfXLEDzXFHEnSIsQJNqu653GixAMwNEeWqbK0BkOuqcT6UrQLF8QtbcqytAO2wo0E+WK0AlVuod/pMrQJjSSZGCwipAWbUYY5tMK0BEhdz0lIgqQF1KdrRWqypAfTOUDpmeK0DNQC73BTcrQFkvodw7EixAN27TGDhqK0CXKoO8nSwqQLN/NeBLaylAn4BTvAdLKkAs8ZEh/vQqQD++DIikECpAq7aNZdbHKUDpw/fy2gcqQAGvgP0M9ilAEQeBpC4xKkAzYPljRfYpQF2XpmZ9/ihAQMqLCJ4wKkCrYKMEsvYpQOmFx3i/TylA73M1q+eTKECATafwhDcoQCNFX1yvUSdAgHs3bFb2JkDRI3ddINkmQDQtaieboSZAoHpNBabaJUDcIvGm+CkmQD/QyXL7HSZADHX0wYH8JUC9MEtxlXsmQCT+egBcxSRAeYPd6lk6JECfnQwBXGUkQJDWfvx6hiNAZXIncIUeI0A1cRaMnOQiQG/+JrZe8CNAt0bxPfdyI0Cj/aaTGdckQBdklv9qeyRAVUkCMiaMJECBcLXf4uQkQNOTzM/BWCVAS90dlfq0JUBpFH4jj28kQPHGdYA1niRAXL/fyeArJUCUN0Yf6MglQOG0/jQ6hyVAl/BO/O2yJEDcoEcEBngkQC0tzDBZpiNA7VqaTa1lI0C3/RdteeEiQGIjSkP0uSFAZ17MUNdiIUAvil8eR7MhQHeWqvN96yBAvZo2B7hFIUBlER/RgPIgQPMBPK+iqB9ATShEoQcyIUAhY4n6iEAhQMtImHkN2CBA3c2XEk+YIED8dcGnKxshQFHHqgEkoCBAt3BQAOLgIEAZU5VSeQsgQE8CmTydPCFAxcUe3bepIUB42Xio51EhQOH1ZkR0NSFAqYvgG0HJIUBSvDKghYMhQE7LICTThSFA1o6taf2eIUBFA+xVBuIhQDWR6k+ItyJAob8YU+qwIUA5eTHnyeAiQNgP3T6QeCJAaQESvQ/uIUAGcRoA0EAhQA/CT4+QPCFAcqgoPaTMIECqgyGj+3YgQDsc2sp50SBADPjjKOKjIUCsGKWxc1ghQEaGkUWJ9SBAoW+jDc3iIUDiCKuW19ohQHOFuY6VRCNAy8v/5CEjI0CyPGd9vcohQPMg8MVfyyJA8WCEqyLJIkAqscGZoB0hQFCV5BJ2kCBAC4TMGPRuIUCt0I3N068gQCvEF617JCBAbRilW8s0IED1AScne1MfQJUgFOjUbB1AzXMG8MJ6G0ADgjOphsAcQCl3+t0hcRxAG+4OpIzyG0Ag6k1pVMobQDjWSozakxlATyd0AKpOGUDPPVwupkkZQNwvzhf5aRlAo5x2tx07GkCgmeumFIoaQKCylwxHdRlA3ZkzbIo1GkB/tUFtxkMZQEVkr30qaxtArO6jTkcyG0DP3JUZVG4cQIdbZS1ypBxATGKPfBV2HEBNu72dBYwaQPBzrKSQzhxAJzWL48DsHECMtfzRv/4cQCfknSl67xtAYQeondkVHEDZ6aknswAdQKhOG5KVwhpAgxwVNUu6F0CoD68r/BgZQFXMcpBq2RlAmZJlE4+WGUAL7pQPeaAZQNhsCbxj/BlAQarteXAcGEAZFVRbU08XQNMPevVzfBdAqTnx2ZzTF0ABu6PAxokaQKQjOC59/hlAGf0Q3h8eG0BZI2QjDvgaQGMerTkLBBlA5Q8gwvF3F0AHuw1YZw8YQEVt4v5yKRdAYfhI8X3zGEBT8yM53l0XQMA/v3uJXxZAHER3M/FZF0BJMvXRfyoWQKeCg4e2BhVAOjoSquIgFUCk7C+M6roVQJC8gZaFvxZA6R+30f6IF0ATySUrQNUYQGjWaqyXdRlA4B2VmCFiHEAxiBT2CekcQM10Ix7dBxxAmO/mVgo8HECnCq2xnRAcQPgzi2et3RpAjLf9nnTOGUB5SJxsX58YQC1E2YrRhRdAY0MDzWyuF0DUfzDfvjAZQNQcwB6oLRdAHFsxHecgF0AJzm4IQMgWQHkQU3k+1xdAMK79y3kdFUDAAt9NVhsWQHj+FmOcYxZA+EHkhjhSFkB0w595gnkYQLDl1MA+GBpAcLGzgFO2G0DVC8SGzrobQKT/HShM2hpAM0yYy+jdGECRBjj97mgZQIQcc2JqzxtAAJsrEl7/GkAF4d8CLE4dQE1A5Si8Zx5AN+pC7fVnHUB7HfEDC5YfQE/E95TYlR9APzoffhVvIEBtERkXWa4fQONJ87FZcSBAVfbr5GzcIEBUPhCz+wUgQFnVFMt4eB5A5BPx14ZqHEDddE6xVwYdQJNmgzpqOB5A/Cfw6fkyHEA7KvNHDF8bQHid/UOPQxpAux7ZB/ptHEBvhXc/UVwcQNP9XKvHyxxAdZXDo4ZyHEC8saTpZGccQP+cCHJprRxAjWiHyP2tHECDvX/7YE4cQJP3Mxj7uR5AGfXRGbMVH0DUDyczCSEgQEsfse8VUB9ANIShyWVoH0ARl++Z2NUfQHcj14Ncah5ABIvnnOnxHUBHeMzLfvEdQPQm0bQyPhxAJVlQ4gmXHEDkmfBj234bQNBXRQcEbRpAWBOrZPnZGUDHAnV50jsZQLuAtRw+DBtAVRtZTf2zG0BT+UaFiSYbQP+xdfBg2xpA+SRaOiyFGkDbQqne65UYQP94qFOiZxpAqEz983ANG0DHX7a5CsYZQM+D61hckhpAnHtmVVdWG0CTyW1luY8bQB2Wu9SOMhxA938bZAd4G0BAJozEq94cQEmDvxHlFh1A8TPD5R1qHkAf4vHXyK4cQEjwCKhiJB1AIE/qW54nHkDTpDeABuoeQKyiKw82KR1AyJPNSB7jG0DIVOz3VKAcQG9oj7cMCx1A/4SLZu5QHEAzdeYWacweQNzQMJNRnB1AS6iqa0e3HUB0rS+T3jIeQGhOqpQcIR1AG4PDc7P3G0CM6cgABUMZQJeDhhnjQxlApdzKca4MGEDRdvk0wtIWQMOWobbMtRlAk2LTOl0cG0CHsRVFuZkYQMVoc21JKRlA1e8iNR0oGEC3Y4mV+08WQDNup11ElBdAa5cSmAR4F0AX7Mf0mFsYQBUKDpYwHxdAE9nXZWkQF0DUObGWd98WQNi5ppkzNRdAzVCwgRcEFUDM+UWKE/oVQIUMex7MTRRA8BaMSgwdFEBLV1HYaREWQLTsc8rwaBVA2DGWLflrFUA1RNft7S0WQBTlQ8Y2XhZAydEZiggfFUBF5qye3mEWQKvqOVDSkhZAEUMF50LEFkDI9CvBxc8WQAGCkwBcVxZABUvxmtOuF0BnXf24LksYQMcegtZwHhlAOTHU17vfGEADsyvzymQYQOdRnyNuExhARWKZxvZAGkCY2pCCUEIZQEC+qGdEIRdAnfUSc71YGEBV8QxmJ/cYQFPm0QHulBpAOX5nIqioGkDhVDwBLEUZQF3fwM/IDhlASEDYjoXbGkDoLUszexsaQJt+jJmRoxdADd1BvvdVFUCdLTH/e7IVQC/l7gTFIRVAc5i2mIbeE0BNT+gj2KcSQNXpCW1BqhNAeEwkXmqWE0Cj8AsDpYIWQGcGpuomhBVAkzk28h5sFkAZ8tPJ6gQVQDDrczuEfBZA3cxgCav2FkBt3APGIDgWQA2ygYYU4RdAoLZ9KreJGEBt3DXdxAgYQH9NWJsdyxpAwAgIt8cvG0DLLTQio2wZQMBTKtVIkRdAuwTt7VvbFUBv5uKyThgVQPVS5aVcbxdAK3i/r9dIGkCxj2iBbm8bQDN/kCnJeBlAiWqHrx2eGUC4T+FdivUWQPm4m0Cw9BZAlV8n9qLIF0ARBDVCc7gXQKAeqwBFiBhAvRbsLHf3GEA3bcGMWE8ZQN89MgnuSBpA0cNP39YjGED9pFFvgtMWQBwOGscm5xhAUwYoGxi8F0DJ1P6dfFoXQPC6fUgQPBZA9AAfykm6FEDRGQqJdwEXQC332Qe7iBZAH3QWhFYpFkCRJfMimfIXQOgZzNj5uRlAa+F8RcOXG0B4BXZyv+4bQAjCbiqn4xxA7UubO8GyHkBg0GVc82AgQLuNqZ87AyFAd8W+WzDsIUBUngCtsYIiQHf50FN2biJAyMSpO8FFIkC1ReytH4ohQNFVcG9tCyJALroBWQUVIkBRZGDaUuwiQLES0Kk9zSJASoHc3t+BI0BPgakNRwsiQK8IUlyRISFAbSZosA6UIUCarr4mbK0hQKezwye+MiFAagDzjQtsIECUC3TCgmggQB+a01pPFCBAn6iFNaooHkBXo4756EYgQNQL5vDyuyBAtGuWEk5MIUBGM5BPYAUiQI4I3X0AhyJAyTtNSxtMIkDtlSe1ujkhQNnZSq+kvCBAVSft1xXDIEBzkl9nvYUiQC9/o72GJSJApOUTBJ6XI0CcF90eoA0kQADvm7kznSRAh9leoZFrJEA1D7v2aLckQLlLJiYHliVAgR5nesQaJUAwkqILS7MlQN/y4TQAbiZAi/wlmY2BJkBA/6rD2I4nQB+pP/LRSyZAuV0quBMWJ0Bgh2zniCYnQFNgfL7mDidAbGRQfjPlJUD5AtAeV5QlQBePjJ1KnSVAbNCBKlmJJUDgQJ5rbzUmQMAWIUvhlyZAMU7nVm6GJkCQiwWnCF8mQDVQm9fJ4CRAPSoQQfABJUD9cphU4i8lQBkQgKJKyiVASZ0S7s2mJUD3SYOPDTomQM3f5/xW0yVA34a2qpHGJUAcmmkIpvgmQCAQesrQnyZAUCaTdLZTJ0CxPQxtEfcmQAOWUmD18iZADGIaTiRMJkDQhhStRYolQEAfV5WnuCZARZMjV8NgJkCwyzx9obcmQEngB+a60iVAR16HCpVeJkCD0dpsuNklQNGpUmx13yRAmP2ujyFjJUAPv8+JePQmQJckXYysMyZAT7yfxWnMJkAcSxb9sFAmQJkrSHU0cSVAcwglw9h5JUD9Exxzq6klQDPqyfQTjiVAcMDldtZ4JkAT8PKdQLgmQH9gx13CmyVA2ydjJ+KOJUBU6n92AdglQLN/f8J0aiVAz+KWZ83xJUDvkk+04TglQCkNjKpRHCVAYY1rZVLzJEDl7YDTSLwkQHFkduebdSNAU7cTUm7mIkBEgpvVeOUiQANCLM7pVCNAqx1yVF9oI0DhM9VCeD4jQPQDj9EI3iJAO9zoTcbYIUDbCcwTrqohQF1Fd/oRpSJAS/Y5Lb1JI0BICVg5aHMiQPs5twRbuSJA2QmxLBCIIUAV0lf2PXUhQAaawgXuOCJADKv03DFDIUAs0iearXQhQJuQGpF0GCJAlPMGEw3RI0CZ1Zo8XxQjQBr0J9+GHyNAA6r1hysdI0B3odCosxkjQCd3C78r1CNAGHZwkJO/IkABICBXhGIjQLn6P1y1DSNAVg2Qs9NxI0ADp6AI4ywjQNfzxfY/kiNAfpMJ5BtQI0DlpL2/aE4jQBPbevyH0CJAE/otQPkkIkAjV4FdXRcjQCdih9CHjSNA7qEpUTunJEBOQ8MXdEckQBkuQr3SJyNAolmo/thgI0BhsLnzE7giQA1YupehByNA+bfhtXmwIkAiYBTYtq8iQKXi7AfYtyJAGnrHxOUuIkDKjRKZ63sgQMtcdJUC8SBA0WADH0s5IEB5rKGFVwQhQBuQoc27kyBAw0XtfwRbIUBrmrduK8QhQNfVO7J8iSFAIpHd+1dnIUDGjB5bgfcgQNOAEIP3eiBAJKXZDbPWIECO3mvIeq0hQMsjsgbHaCJA3+CDMg0EIkBb/FnvREchQEc9Ru7IoiFAYo/Yqjr3IUA9UWD7WOkiQAcdLzZowSJAE3Tr+spKIkCO8hP6/ksiQDoTHxBrbSFAPURQbqPIIUDvBlN5k7UjQPMMpcA3PCRAZ3BmsPqwJEDf02g2rngkQK+zXimfbCRA4g14zRIxJUDHHmzYHFklQGEVP2cvgCRAG9jQilRxJECmHvh+NjklQBucNIsZiSVAZavnLSZqJUCvW9Qbk0ElQCnA25zEtyRANCtIj6CIJEDH3F1x/XUkQNWSEa9PHiRAhOxbLauQI0AAVPMYFOYiQCYmotrPmiJAcyW1o1o5IkCdoOB0Rf8iQPHCU2IEyCJAf3lPxnTcIkDiHQUuDPwiQOZFb0qoHiNA8BeF6v7UI0D4VRvRcV4kQCMMP9y/ASRAlIlHBeL/I0Ck0ivPNSwkQOloBgRGViRAAS4uOdbNJECxqzlHptYlQG/IUaCAgyZA9IKq/xJwJkAJQLMTMT0mQBs4GA3SyyVA209yY8TEJUBA6jz6TR8mQNVhMQlEBSZA07Y+npN+JUDB283lwUYlQBAfPsmwdiZAFBE3O6AkJ0BPPPIu9Y0nQKutbEs1mSZAF0OGXFJdJkBUMZVOxuMmQEsn/yuScidAOfgDZ1CZKEC5RVYq0QQoQFT5EYcdzihAd1lrg5jWKEBox8nOylcoQJMySAt3BSlAceS8ji2WKUBMftIzRp4pQHsOYkQ81SlAFP563tJyKkAROAPDe/kpQMXn0PH+GStAlcv3g1XCK0BsMN3rH0krQNUr2O0vYStAl5Cs8DzvK0AobqmVSqgtQKQWUvx2ry1Ae8sasoVdLkCj7ABs2cEtQOiQbJsfwC1AzLQSJLLnLEBpUHZO9tcsQOCZJsqJLy1ADTsdtS25LUDo+r5omKgtQP3rnW+XbC5A84VbhbdFLkAsJhYXT5QtQOSfDBRnSS1AXZbkGmcRLkD7+iaAlPQtQIN/BdHvfS1A/WMkLm00LkCRJnCUzYYuQNywgntAzC1AVa9K9aptLUBnGw7KX8YtQP+SOa5OYC1Am5NEzs4XLkCFhPuND8ksQBAVgEnVqi1A1MYIJ0HFLUCTCqrj0PUtQIwqhO3dgC1A93qxFvfNLUDR/J9t3b8sQJ0tmvZbXytATPKffQIYLEADFY+z9CIsQI8a8FIKlCxAB8cJ5anSLEBZ3EdIOtEtQK9Qt47LWC9AtzB42vmUL0D1qrliXS0uQPvAkc2L7i9AA7qEnKZgMECVuXhraTcxQJXbguLm7TBAVDD0xrjuMEALRjOxYygwQOEJFhc9OjBAykGqacUKMEADfD0ZdUgwQC/rdWEUkzBAt3vKgiCXMUDMGEQ3to4xQNnSp/5MnDFA0WQXsGX2MUA7OnGSGW8yQMnv+ZIHuzJAuX9Gsq/xMkCz70PnpOoyQEs1V6g3BDNAdbbQqFzuMkC/5eG+O00yQMZQLodIyDFAMdhvvCXaMUBj0Llq+H8yQDxsVmYxRDJAvuhyxWJ+MkArP8AmCkcyQMlJZEcNyDFA4TSEHE7eMUDOPQdijZoxQAW5+Lpw3TFAEqzmIcA2MkDDjf9GZt0yQN1C5QUHDDNAaCn6bUatM0CUXxyIzCEzQE1znFCzRzNA64MAiSLOM0DFgdMGUhA0QOitSQTdFzRAEpGsyz9YNEAQ4YxJSQQ0QCJU14s1MTRAdr+s/gpZNEA4xNb/xXg0QAf9UlQWczRAtR5F/aqJNEAeqcQ3dq00QDtGfvxgDTRAOX2j7nzRM0AcygvosQc0QF3PUsZaLjRAxlx4WDjrM0B8ZGAcjAY0QLD1LiLZsTRAs9ibqOCfNEC9KfYNWHI0QD/Xb8/mnTRABTCfYSKONECQNXAJ4OE0QINfoBltaDVA2GBJa3mANUAhJ4AT2bE1QO05YkhBbTVAgvurGJQCNUDKnYeovSM1QCCNHfXFQzVAILi57hu7NUBADb+muYw1QH1r73ZZMDVA90EyEaw1NUBnn3Khhi41QCN9/ReCfDVAASoOIQHiNUCtmtCYs7I1QM0MXGnxGDZAnGbE1mYoNkCdDhohKmE2QPkZRCuiFzZA/74DmVDdNUCYVIeH0jE2QBUXwLsFSjZAtGb7tJPPNkBc7y2y50Y2QOeox8JZbDZAL77eE1SGNkB9xlRyi9Y2QGP346bIjTZAV33mfVuUNkAFrBArVFE2QJilGNtl9zZAbfB2uUzjNkA/DPhMnvk2QLDjQU3UsTdAwY/80dq4N0A1HomWS7Q3QNFnr4tfJzdAnLUBYRa0N0A5gknwErc3QLSU+tXbRDdAS6oD6B2tN0AA46Gm46s3QJH+tZ2n6DdAWRYSSJEoOEDHrK87ffE3QKmLeW2h2DdA4XjzWEwWOEAn2D+oHho4QKuWpIboNjhAWO8B9q9BOEBBvZ8EjCk4QP/oaAbeCzhAXUH6Sz4TOEAzCc234jM4QJNcIuaGZzhAAG/YzABpOEBNAbH+6w04QKSJhwxc8jdAPGvWuqk1OECgJRlsAVo5QEiVGc15mTlAA0dw+VP8OUA5MjFXsTY6QAdQDtTdRDpAWyK7udwaOkDwcTPriVM5QIez1VwOaTlAh5ho+SBwOUCUKqWTG8g5QEmViJfAADpAZLPGNz1JOkCfbE62f8g6QJmFHL74sDpAGAxErF33OkCwbj5Y8MU7QIyftnaY9DtApeIxOhknPEDgklNklag7QBNGdo7JYjxAtL+Eg8Q4PECUyqpSPt08QHxgCuJfGD1Al2lJbri+PEC1FQbLXAY9QFkH3m8/Lj1AJbOwAWVxPUCtsqij8cw9QOvCuvbEjD1A3zJ8uAGBPUBI2Js8zIc9QOc8/FcwVD1AWOSX6dOfPUD3GPShPl09QFsQqRlrvD1AbEkaR1nnPUBQm8QbNIA+QPO/qNwzaD5AeDYwcgwhP0CEs/98DS0/QOf+d1k8ez9AFT693G3EP0CNmRQz7hNAQJT9rbYgCUBA1Ho/YnYXQEB5YGrfrxZAQHLUCHMdFEBAVBHTy3H6P0Cj3mvifrE/QN8E19SCFj9ADI3WglG2PkBjN3NaT9g+QHvL7h/12j5Auy2kz9EXP0Csi2scW2s/QO1Bpbarij9AEW1/DVYtP0DzmcxDk3M+QMlwbXqShD5AnB0JvWhKPkCDyg1RC9w+QGf/ZyX2Yj5AY/qhz2lPPkAhOderoXM+QE2BLErEoD5AX0uIgSp9PkAV8HcZiaw+QKEhRD/1jj5AYxkWDcd9PkA0og7n54c+QJTjUGQdYD5AsbKXIkhXPkDw0/xDtLo+QK1YDibNVj5AROC/97bNPkBvnI4yLn4+QMt7Zcn1iz5AG7cRSEbXPUAtwMjtFEQ+QNVsY6YPQT5ASKzZzMxLPkDz279GDPo9QLeXfxSBjT5AayAqUCwPP0A9GKLIeMw+QGEYQXC1ST9AYAviLM5YP0A57FBCa40/QBCVy7ehSD9Ag8YwlAyhP0BTMWLiaPY/QFBAbgFo3T9A3GGnKU26P0DJ5XIbIcI/QHOQ2hg0yD9A5yG6SOLEP0CYphMbyHs/QOnzLE2NSj9ArYMTdUhnP0AbrQIezng/QPWTr1fioz9Ad5y0CyF6P0CxIiPBzAdAQNGaobnjHEBANKKhtCDRP0D101XUFhVAQAkAAXP4akBAktq9n6SBQEDSN/AZEXZAQHo8LgqEYUBAXwM7DEl1QECXQN0hM4VAQP/SPzaFNUBAreZ0BXhqQEDHCKtcjQRAQKQf5IbmMUBAW5HAW//RP0BhR+EG8bw/QLtc7Bbtyz9Adxbat0pSP0AUUZu2/k8/QCiHLVfbsD5AVTRnWkg2P0AtseSe7WM/QCWzUh9Ihz9AZcZMzwXpP0C9nZY7HIo/QPjyo0KXeT9AnXi5NRl0P0BpqMfnCAY/QPFx8IfR6D5Au+dUwohLPkD0IuQ5SOg9QOt1gByZSD5A981I2i6bPkAzG86S7DE/QMdWccgocT9AgybNB8v1PkDY+KWrwUg/QEi2nSZZHj9AD6pZEQYsP0BU3GXVC9Q+QDshd++Ejz5AUX6oO22yPkDvYBALXis+QGHh/WIg1T1ADCXeQkr2PUB1Qxc8l2I+QBgd2ten/z1Ahch+wYAvPkDlMF1pUaw9QFspaDCnxD1AMTfFd3sjPkBMhDkXXlc+QGyqhbrNKz5A38S5gIwJPkBotXK0KRo+QAxHIaXrnj5AOaUjc8EoP0C/E0UP/W8+QJs6NxNpxz1AmPuOdlspPUCnqF94tHk9QJE2CutsCT1AvA7d/H72PEAjoCBWzMI8QFgmMxxPxzxATPybV03SPEBP91XtpIw8QCmxEleQODxA4ODVv7+CPEAAsLET2YM8QNeEi/fU8TtA6Ds1X9h1O0AlSTI92C07QNPLFkXp4DpADxoq4KC0OkD80aIo+fc6QPy+GESu7TpAqV21X5tZOkD7jQwzH4w6QOmxtx6kczpAqawHxLG4OkB3dTNxxqc6QCvDlG+aPjpAEyyzdr9wOkAb1NCF9u06QEvuzEMG9jpAa47Na40DO0AQiu0Ndu06QNPN+mjI4jpAgZBPF4udOkD0IR/SebQ7QIQDzSA3NzxAzT2j6hM8PEA79l7rbvY7QB8P61/5zDtAZHM3gYrjO0A/jcM84Jo7QCigaQ2hrztA3N4mMrpAPECIvuXxeXA8QNBQxZMlhTxAW5zB4iV7PEAvFrONdcM8QPCU5yC3tTxAMbQqC2bDPEBcbV+Nu1g8QPQrBEED5jtAe20LHuGUO0AcPtYQ6BI8QLwvgyJh/TtANM1+U4KSO0A1kmFeChM7QI3GD4ZQqjpArRi1BPluOkC7m06lvbM6QI+zWslr3jpAID2iUTJFOkA0mS84jkQ6QJDTi028hTpAJwSjSACUOkDgDooGam06QGeCkVXBhTpAYYYYKVHmOkBtH3vWk0U7QHO6lJ5dJDtAH3nF9H21O0DQv9p3H5Y7QGdcSCgL8TpAuH3MEiHzOUAfZTX/kok5QJR9/uyHaTlAM2su9uN7OUBv0SGQJFo5QC3bFP/J+zlAEQf0BU+AOkBLje88iGA6QFMrUZ+pWjpAt1egFjtYOkBHoSEJdYg6QPsgMjybyTpA38Mbm6k9O0AT0yl2Q0s7QPiBwKBkmDpAwIEPL1niOkAsbB961DE7QP2xQ+aWGTtAW37nGarGOkC0MIWNDho6QGFoC7tbrTpA1d29d6m2OkBI1YdKiGk6QN+iowubPjtAUFR87rQEO0Az7EzxpwM7QDzBpeBtDztA12Hiiv5IO0Dwp29MXOw7QA3Vue69KjxACNDPVmIUPEAVOsaDLr87QHcbSFwzSztAq6w7+BMKO0Ac3rCYqcE6QMOe/uDa4DpAywwN9eQAO0CRE5UWaZg6QGHTPR25vzpADUBR/8jeOkDz2S6VRZ86QOuoxXPuKztALF6KCPEyO0D4VLcjX9U6QIQ7B5xtlzpAJL8Va7zIOkBMOH1YRZk6QDNuPkRRVjpAF6e3d5DEOkC/IPrTmfc6QGm8QyV5KjtAPH9VhQOEO0A4cCnEbkU7QG/GZdmyGTtA7KvWJFMoO0BDRb8q4EU7QNgb/fQJITtAf7V/qOC9OkCrvNDr3Xo6QCSZ8t0DSDpAQzDu3eybOkAMFk6GliM6QIXumzF9kjpAq1e+xC5zOkC5uoxGQlk6QLBjFUiUqjpAAL/+cIhaOkChbEiNKak6QA0/91BBnDpAvChzdQ+MOkDoRW10lGU6QGxFv4iyIzpAW4HPdoVSOkDNRb3UTHM6QFtp1mLR/DlAG7hrr+MKOkD3O6hfR7g5QLDN4+SxnDlAYfEydVV8OUDw97vQWtY5QLccgGDJqDlAscM7KX0dOUDN/bYM+zE5QG82YmdhNDlA20CIF2ZBOUAzYHOY/uk4QIdUpq4rlThA3yD4qsnYN0AwoXMiask3QBd/arKpvjdATZzMHx5jN0DceLunC6E3QDyU4GNU4jdA2b3qKWT9N0CgMQLKv0E4QMv5YyasrTdAnB+D3RkvOEAwWCUG9Ro4QO+7KHWlhzhAJGTiIlanOEDNIc2z/wo5QCTACwc7QTlAbDVXh9QpOUBXNHV0uNw4QOOVPSFvLjlATZ1m6B2WOUAwFEwNsdo5QN+ZOLghfDlAIPFw31t5OkAIK8xJGIA6QKNpGhKk+zpAsC6Vcfd6OkBd3wk7rRI6QFsGvn/ImzpA+NwUbYyoOkCYlZlXJY06QJuh/DxTtjpA3VzT4CMwO0B3XZLE4Ek7QKdMH2V8ejtAGc5EgCnfO0DAri7S2cg7QDMTfGbiwTtAqyN6L2tZPEB3tHl2TbQ8QJh4kOAGID1A9+cKPzrrPEDrlQ/2yww9QCXbOrwHBT1AkPlfT38DPUCPseyDEvc8QDTYMaUb+TxAkPcPrCdtPUC7lV6oIS89QBPpR0fAqj1ABOE/5pjKPUB7ZGqtuds8QFQc7aJQKz1A/F8B5Qp8PUB3SQ6gZKA9QDFL6tswKT5AQ4G7toeqPUAr8P7coxU9QLG7jA3ZVTxAoUha5Iw0PECIGKjiUHM8QLiYFQvEHTxAKTnbcmOGPECrIXfXcNM7QCW9ZWwPgjtAKMV+MDeSO0Ax+PuQkeo7QI+hL/0YDDxAE0neghqKO0CXFDCT9pk7QGVgS2bewTtA7F8hoaPdO0AVfqDJYVA7QMkseMF0EztAGTQj1vPuOkAtWMJRwzA6QGlVgGGBfDpA69W6JIgzOkDtGugjBkc6QAeRgi7b5zlAZ9wnJ+naOUDhiiSNf4U5QJi2r9FIuTlARKZ0Q29vOUBYo80QK445QIRCBgEmdjlAaRTuSgAvOUAFcCv0og05QHj9nOH0uzhAVWdCgnghOUC/92SBsJU5QEOuyUaYCDpA36m5QG9dOUDV/jZ8Of04QB06Pb/97DhANZtovTuxOUAHO7Di0Hw5QGGNP2/xczlArbXxIqemOUCJR4mIxaw5QMhY62y2uTlAJFfSQ4xkOUBX5Cr7t1I5QItZQymRTTlAlEfb40DQOUDh6bGrRLg5QImzKkEMiTlAPI5bxtvnOUDdkkzyOeA5QGVsWDx5CzpAa+//cOE5OkCwz85EUJA6QM8sKiOgljpA0BPApQzkOkCzLBLCrfA6QIfqcxwXqjpAkSHd1LNLOkA4OND59GI6QAGWobzKSTpAH/gmdj58OkD41SB6dPc6QIy/HDNtETtAX6IUKhIjO0D4vfyTONU7QNkXGmYhnztApdNDDHbqO0DRorGzjRM8QAl8g+EoTzxAly7hHsAzPEDkBdACMBg8QAhSvNxX9TtAu6i8kBmMO0AUXyULjDs7QCizDqDnoTtAHUHi1hXeO0AXzJNcB107QN92EsbYzTtAnRgbTqaVO0DbB70DCd07QMA6+OaH8ztA14A4Pxx5PECpeiA8VK08QBP1ahZhbzxADTBnVG47PEBBMVWLMEs8QJTipBeNWDxAfRxyKdvqO0CV8Gr3fLU7QFW6mSaWrjtAOcBMdLfFO0DJZd3gEzo8QGWEb1EqMzxAtbufUZpEPEB9P1A/Kd87QAMXtPiulztAWcMf2qGCO0AAiZF2M4Q7QGhpjgrGeDtAzQJ6maDPO0DPJNQt9cs7QDsjKwn8iDtAH2KV10v3O0Ch10XjJkk8QNRyx7xC5DtA96SYkOGCO0AhoQ7ba7w7QLyivcDCjDtAfP1VMrC0O0A5Z0lIlE87QADXJsiehDtAL7HqfkS2O0CxesPQXE07QPyW8070oDtAw5eM7bHyO0DgDIYI9tE7QBixANnONztAR8/V2bsKO0B0XCefxbQ6QDMEg/zPEDtA6QFtnDY9O0AZyZ+/3007QPW38mMiQztA0KYcCZnQOkBj+E2cw5o7QEX/yeBU5TtAG/bY1QwuPECw9CoWuyg8QJCa8QncDDxAvHYZ6p+1O0AQ11gR5947QPWGLRf7HDxA8UVZaj2DPEAkQT9An1o8QE89YzQ+WDxAyHxjjVMyPEALzp0IO0A8QBVWaXx7KjxAM0PtRI66O0AYoRISmKg7QAi8HmZWMztAkYK/1i0cO0BtdkLXWRQ7QPQVpdizvTpA8eDHXZm1OkBRU+5qNJ06QG2kcBq7XzpAaVjh7fgSOkDAlgHaupw5QMFAWUrD6jlATVqRn+MEOkC/2NOvWGQ6QHdDQuQ/0jpALRH7Uh9/OkDMTlb9xmA6QCBrUQ7S/DlAwLm1jYbfOUAtYC4h3MM5QO+5pc5ArTlAwScBj0gMOUAXkkEhLt44QBxQPXCU0jlANOxkRnEjOkDV0yff8Fc6QB2xjrWLdDpALBylHr0nOkDxUoX/Fb85QGBW0HPPjDlAHzjmpwowOUCz7Ll4yzw5QPmV/DmpXTlAUIs3B137OEAbBxiY0Ts5QK2vt/etuThAb/nSoJJiOECIQTR/Nns4QLg9L99WvjhAwLaVIPFkOUCBAz4dM1Y5QJtYN1EXqTlAZb7HtCO8OUAb1kRWsIY5QPwM0jDQbjlA+zESZ4rgOEBgYOpCiZ84QASoBP/KlThAkCPsNZmjOEBwE7q9OBc5QE3vjqctETlA1BT1GiwjOUBbqFCUssA4QJVqsVu1JThAwVreuctmOECnZKcm11U4QAm7pHR3fThAnCpASeWQOEDxNITLrd44QAlsdpG0mDhABe7g80J6OEDUYNlYONY4QHjf+A+93DdATITnF9hBOED59PfzyGY4QOsAGW2WrThASRJ29ogiOUCdtZsYjwI5QFSvQVLXNjlAYJHZPEoIOUARXDYCc4s5QEHw+MKMlDlAYSUz/5bfOUDPEmDnMfg5QHstspja7DlApxZGvBi/OUAcTTCS53k5QMhOsa9Z2TlAOIMtNqvXOUCVxfNWVhE6QHRIsb247jlAFQWP2jgnOUBFwvn+DFg5QGVIQ6e2pThAv13iqBMLOUA9cPwt8cE4QF1qFJFGrjhAVCLh5kuSOUDYHYkgPxw6QFhrXUywwTpAwwHX2va+OkDTJfeBJl46QOvhI6otpzpAs7hwvCrCOkCUaw5jgbU6QA9eH4lZpDpADB62J+3UOkBRSkdUgPU6QE87sSY2djpAge6oZPvwOkAHKUakVXc6QN+/iaYdiTpAfRJR3j6rOkBdNUH4/Lk6QFPAYlkvkTpADzUZF2GxOkBxUeHAw4g6QESSrk2TRzpAExubDmOGOkBpbc1bteg6QOcLRMUXDTtAsZxdeQLQOkCLobPCr9I6QEtZXf+SCTtATZ74eAAIO0CXoHk7WhE7QItSTGaoMztA4aow97hNO0AlT8uglqk7QIXch67sbTtAjJu1zxNVO0C1BNW6z9s6QIEte6bC6jpAYZIPMwU4O0BYJCv99ow7QM2q6kIoZjtAfSyQPpp3O0AYcInMR3M7QOs6b6RPmTtAKITHirYVPEB5CnF/Vvw7QPwZcob1LTxAXSn+IouaPEB1V98S/G88QIlnyceN2TxAox6ulhElPUDb/BE6Qws9QBNuY4LysTxAI9fKXmYhPUDhAU7yVjQ9QAGE9jijLz1AWygZOzc2PUBbrtnAb509QKAL2dWxET5AueLhIU5bPkBttx5VGO89QGGLfxfD9T1AXTBCau4nPkCA9EDamBo+QAMwJCnT/j1A3cadR5zlPUArdIZkmiQ+QMm25Sm7WT5AH8N5G3t6PkDIP1t2eNw9QDOLm0k6ZD5AeVuGMqOrPkBYbkhX4J0+QO+X2hq9MD5AEfh6VA0IPkAws62pEYw+QHT1VI2lQz5AcYCbo8JiPkBtoUyebKE+QMPPXkSBmT5ArB/Nmr38PkDQkYw3OQM/QL/bGVdm5D5AcS/uKDYKP0AYGSdtsEI/QKBj07gzxz5AcV+UDklKPkCjtYzLjVU+QB+7xwFTkT5AWL/zm1jiPkDFYhrW69M+QI1MvnvF9D5AsT0BsyJMP0CDEj1AIIY/QI877+seOz9AD+n8ApkEP0AYdCDjD+M+QDWGh/Kwdz5Ap9NBD3F5PkBRa1e6x5k+QMedH7woHD9ADNA8fUhGP0DjRrjB5wE/QMmkV/GE3z5AFfKo+O01P0DhSWiX3F4/QGxI1f0gvT5AGwTZRXWgPkBg8OtGtpg+QNchlht3jz5A/ASqaCJzPkAw2dBvqjU+QG16Z7ekPj5AEM5eywmLPkA0KfdOEPk+QIsAqh3rtj5AIPzrAB9nP0Cr+pHab8Y/QNf9Z6JdE0BAVfHITsQpQEC/bcoUpSNAQKGDr9SDP0BA2dcO8b5WQEDZb+9kqXpAQD8FmGnblkBAU2EzYnKfQECz8dSMEOxAQBFzifADE0FAr5IKjdMDQUCNz+iLr95AQPY9P5op1kBA1A5kgQbyQEClGMi0nQdBQCS+aHOKAEFAufHdvqg6QUD0+mePzQVBQGu6ql6D7EBAgcG53qgKQUC2QifcMQRBQMWSIUBrGUFAew1yz7MsQUAdQesU7JtBQE2vOBYwpUFAuZwfhHS5QUDLjrH7kNNBQAkH5KnUCkJALffMuEsIQkCE8fnlrPpBQKWVW/TUI0JAs7ncscETQkAr9iz19jlCQDvQ9nJ5RkJAwJaqT5gwQkDfCRu4CT9CQLV25nWGa0JAJhCmCwAVQkAseSB7+0JCQP5M70kEQUJAIUmGIn8HQkAVb/zMXuNBQD6DqDiM9kFAn2ZQFSYOQkDFMiEQ5p1BQIxdiEHcwUFAsLm+8ZAIQkAnKn47rCtCQP6RCUCbXkJAx8g1LZVHQkDlsKejLnZCQFZ7IcUPYEJA29E4lIR9QkALsovH06JCQCyxDDyC/UJAg9sIvqoKQ0BeRjvZtvNCQLVracTG80JA9VM+KTEtQ0BIbXL62INDQDjpPBE9oUNAq66yGBvkQ0AGbS/k9gtEQOWoLWDcKkRAtansd/s5REBvItTzNm1EQFH3MbJ6LkRAoVmyeBwvREA/sWZ/qVhEQJ0qFkcucURAhrU7GgV3REBSkoWp9HREQJgE/qljh0RAXQXhASWbRECknAunD91EQKMLuWBQ6ERAl8n/CogfRUBKiXy0VDBFQMtJbUYlKEVA32Ngv+EfRUBfX7rrBTlFQGN7sRKMgEVAT66rlnliRUC8TCGJmppFQFe+Q8BBo0VAXVXxRGyWRUBrfYJx9L1FQNsawgm2lkVAQ9b3TPfYRUAJxYoogp1FQFuEqOul9UVAIe/Ox33HRUA/oVvn1K5FQHDfRDghpkVAt223OZbTRUBdhhXEr6tFQBMBYUo+qUVAAALbaeAiRkCDbJcs+xxGQFDlf/XrXUZAVYq/j3dYRkBbSbLkejVGQC8xfGooKkZAmX6O9fw9RkAUPh72pRJGQADhx5Q7PUZAECWMwf9NRkBtGr/JYR1GQHgdXL7OMkZA9zfYjOBPRkA80WkDJVVGQMwp8ybiREZA6MBlFp8sRkAJ2pS9EEFGQJ+76PhTWUZArFyxY76ARkAr4fPSJ6VGQG/m2ojanUZAkVnwLEDkRkCRDJda/cFGQOD2j0GRh0ZA53yGDXTfRkBwxrnDydhGQNeW0Me6cEdAWcMhcrRyR0A5zq0CK1RHQJyVt1aEcUdA47wdBU6VR0DD2ih8GmNHQDM+vfYaOUdAHPBCcTP/RkBv0QSC2nNHQNM6UGECgkdAbed/3M+VR0DTWQm+ieFHQJBbkpqB4kdAfc64YEbrR0DDT8/uId9HQEspdoojvkdASP5V3bfWR0Cbs2XG4OFHQLDinj3Bz0dAX+sULuu2R0CUnN48GthHQNAIObkAIUhAvC6ZzilFSEA0B0NqY1VIQJs9dxU0qUhAB2EWGruBSED8TwrLLXBIQNvLphXUO0hAXHKBNOkgSEA49mRtmhFIQEGEIdXdvUdAvOg7y9FQR0BZYFIBn39HQPuhYdeot0dAvzTfuDekR0Dl8evK5NhHQB0SBLRIqkdAoU6/8riYR0AvLykaHFlHQMXuxxrIREdAwPQ8VGk4R0DfgOJZeTRHQDnE+MwkJEdAg5sq6n8vR0BvBDJ9l9dGQGW0ULuS6UZAIyMDFUb2RkB1bEg44A9HQAxcIAY07UZA6+ZKNCr/RkDBvt6Ru+1GQORLtW3dxEZAGWp2rev7RkDcpROJhAlHQGik7NA7WkdAJ3ErWtBaR0CESCne7GtHQJPOt6B+fUdA3Gy0F21+R0BRhLbke65HQCuwSwhY6UdAiH2qAlDrR0CBtBYvwYNHQO9OZmwxokdAASwkrrX9R0DgCEWGnbZHQGxbhflUxkdAzM3VQU3KR0Bnqd7nCOxHQAzvf1YfpEdAUTC4AKGQR0CUHMjeXZFHQAgW1agWUUdAoOoqfutAR0CQeh8OEW1HQMCy+c5hbEdAKAkZB0l9R0B/6MYA8zBHQL2LaNTIYkdAD21KhlRbR0AoVmcIelhHQPxwNbiPoUdAjbGNcIJvR0B3yGIdwFVHQDF6hEvyQ0dAnPCljyT6RkD9Gp7KytJGQN1Vk/RT5UZAtK1pVzv8RkChvvxJI+dGQBjzxZwRFUdAiPyvUw4MR0Az+gsWdAVHQJlDR8KY/kZAuV/TLDAHR0CkbzlEWARHQD+nDwem7UZAZbYaLfwaR0CoqxDbiQlHQGH37g289kZAYJu3sbcCR0CUnP8wsl5HQLsYd4qeGUdA3QmXo7w6R0ClgVd1RkNHQDzocUeieUdAdeL4fQV6R0C0Ruf3uYhHQAv/wh5DfkdAzKMpcHOHR0CxnuH+o45HQAxEUQauTUdAmNCV4j5cR0A8IhbrbllHQIuq3YzEL0dAhLfN604MR0D/UD26IPlGQE2p0dW4EkdAo1UY4h86R0AIhfWwWRNHQMXT9M4ROkdASX8k/7P6RkDEg/E7FKtGQOlnnImT0kZA9dyTikV5RkAxsMPQaKRGQMfv2w6GSkZAMPRUns9XRkB7ejFHriVGQJ/KGbYXM0ZAMU9bVmYORkC3rsCBjLdFQHdGidgxNkZAxAy+NW1zRkAIusot4U1GQEfI7bWcFUZA49pPyiifRkDksfps17RGQCl8QMlqqUZAt2dsTj3GRkBVnLdMawFHQAgNR9wT/EZAXd6Xkmo7R0Dv+Z24pMxGQFlGkY+nF0dAGeKA9VUMR0A7CkXrSylHQC/JXGeAKUdAibcEPdYeR0DMr+I3yetGQI3e00fWN0dA22XB2JkcR0AVVSvUSShHQBVRdxHHHUdA9NDIWO8zR0BHW7iKih9HQDxy9HiYQUdAJZJGarAvR0A7HkR74f5GQEFl73rvD0dAXBjin7LoRkCI7+9ROxpHQGNNNi222EZA76ElGGDFRkBjlF8/yuRGQAtdnCLewUZAOPirwaHkRkAZOGUiVcVGQJ3nLC+j/EZAv17waxjORkBrylcLB4JGQEhU9uG0mEZA3IBWkwCMRkADqbSSfsBGQN1ZWmEJ2UZAx+O9temeRkBHhh4y6bFGQNjLqMTjoUZA6KwCoQnPRkDM61tkfuVGQI/VWVVwCUdAVzBBrD7kRkCMsAtL5rtGQI2n8SAFvUZA9aAdTrblRkCPcZ6JS+9GQONH6wUoPkdAkTZxZs1QR0DQAkeuOJpHQLHCQn7j5EdAHRkkfdDSR0BXcx7st+JHQEP1q5Q62UdAQCNDQ+dUSEBj1xtlV2JIQG/aQngTL0hA3G0SphryR0Ch0B91rfNHQEkqkOJeUUhA7Dk90rQfSECvG2j7IRVIQN/pytzcD0hAJ+upQ9kISEBNCsBi0eFHQA+GGraCCkhAPRuvxoE+SEBot8EHQBlIQN0gSr8oIkhAn0EOdScsSEBR5Bne8kdIQNi6nHu4aUhAeRq7Vc10SEDlBGJYZXdIQFRgB450q0hAQ5Yg/5odSUAvvI8tpiNJQIDu+aRSWUlA16PXOgo+SUBMi3xSRnJJQG8D5lbfGUlA1B2LhAhBSUCpw01ztu9IQC8CPvIMIUlAgcRUDOU/SUC3Kw18hw5JQMdVRNRPCklAs87fuBIFSUAvxhz7jthIQBipHZrsCElAXRYgQmoVSUDM+LcBYDtJQGfX8JOnGUlAOEkF+49JSUAASlYRvW1JQIFj6W3vXUlAzAMOh3pPSUCcNFPHO1FJQNnsSt8DoUlAi3XyqnXRSUC9ifV+VK1JQCN13cuZBkpAPF2/wuMaSkAQxKcMKPNJQA8p5RnMQ0pAwVUP/nMPSkCIadyOzUBKQNdb2QFNUEpAh9gTk2mFSkDfQxbI8NVKQLybJvxL00pAcJaKZC26SkB/+UxmyLdKQIHzHYwgxkpAG/+QMD7BSkDIC/8N2bVKQEc8sHvGZkpAFVaBI2ZaSkB5pnPP4l9KQJsXnHuGm0pAaN13VUhzSkBbxju/BmlKQCEFTtHvRkpAwYagXaxMSkD8xGsLUmFKQJBbWnYyB0pAUMIWBIgwSkAU81RW9B9KQJRwRGAvMkpAfQGHuhdXSkCTyE0U6ktKQKeOTQk/CUpAdyOjx6vdSUALRDQ3glBKQOer1+ThPUpAeybgcmo/SkCUttSZZTpKQKdmyrnic0pAuBLU7pVpSkBg6DLwojlKQHNGCiDoG0pABQIiSbkESkD06xIFlfBJQH+wxOIU7ElA7Xp+hs4DSkAZctvU+ONJQGs+1kLe9ElAy3g6PToGSkC18W/VxR5KQLdmfp88IkpALxElJ7H0SUCs2FPrjMZJQIhiLcQrYUlA0FIdVQ9VSUDB5PMUxTtJQKMgGhMbFElAsEEoa/AFSUA0bv3oQGNJQDuX/eIdWUlA3H9Fm3VxSUDTlqQTkGNJQF3sAmhINklAIafG9c8BSUBXnbqnfDJJQDzCAFMTaElAlPYWDupiSUCwFY2TXo5JQCWcl2BakklAgMEcBSWPSUC4ozPmEVZJQDQvEEL1qUlAJEC4y+W3SUAxXf8mbdxJQIFrI1G70UlA2acsAsTkSUBXrBgDuDJKQD28cb40U0pATcQQy5xASkBvlLlQlVFKQLzDblwuRkpAT1lGb/IKSkCMhPq/FgxKQGljslBXQEpAaGhnKex4SkCPGtZTJM5KQNSfVDmutEpAAA1VcKJYSkAc1PSiNVhKQEBEk6BAdUpAgHYbT86RSkDxi2XRYNJKQKhuJpmb8kpAxxC/pqAhS0Arq4AnAzpLQMdeQxXb/EpAyQ5wZ0/KSkAdoLnukvVKQG2lQLPi7EpAnc+4QqjpSkClii+1ZNBKQOfE2/KM3EpA68EdF03YSkBE20N6Lc1KQJstbob3g0pAaxICuhJ+SkARC2Wx10tKQCuORtnEm0pA3/qJtmZYSkA5Xma1g09KQIe2MU0u5UlAsKgNsZKhSUAlzUnbq6lJQFHFJTYqsUlAmEYxwYCuSUDpQlXYNXxJQAfVa82UoElAwTyaBdDRSUAViUTzRbJJQCtdRwhCgElAzCEfOidgSUAwkCPy0nBJQIV+879cqElA0UCQgd2pSUC/wF/gDtlJQPSM3/jGsUlAUwDTDPl9SUAgyUZ7paNJQP/b+8F2kklA1WhYyHzoSUBF2jtFf+pJQNTFjpib6ElAtZtbB5W4SUAQzw9jbptJQHkeD2o6qklAFGWos0eVSUDhj/5Ot55JQGy4UcC6vUlA9FYkRGulSUAXLU9Fdn1JQKcGsuBPxUlAM/z2q6r0SUC9AfdWirZJQO2cfS69sklAB1I3DZr0SUDNAx9MzfBJQKhgVROGuUlA+xyA7XGLSUBgisNZ/nFJQBBAANX3VklA00C5VLRvSUAsGPNLLYBJQIzbApVmdklAlFLmDCFKSUC9ye47m0hJQOkB44U8/EhA/A9xIuRSSUBVUYswFHhJQGiSfWJ+u0lA0GBD0mWoSUBvNp3Rxp5JQI+NaU/Cs0lAZappWCe/SUD7XfJKsapJQJyn6OxAnElAFQY1tk9XSUDdhZ/P+StJQBMX76kyR0lAhA7HU9hOSUD5NvhlgFNJQOsDT9zrnklA0KOhHv2CSUDb2YfI+JBJQCD8HmZPaElA/92zB9pqSUDArFMIxA9JQDOHtSJ3OUlATEDG+9ARSUBduWbkjhlJQIzHCxKoR0lABWoAlFJxSUBM3Tabp0lJQJv9UFgpGUlACKjbd84kSUCIVVev1ztJQLMFaCrdU0lAC4TWqHhqSUCfPF7fzaRJQE0GWg5b40lAUV8o+C0aSkDZU3ctKzVKQLVwmZ8G/0lAc/MtZUTmSUDzbZJxrQ1KQHhSlNZgAkpAmNe+OG2QSUDoTvVmN0JJQIQ3RSRVOUlAdMshVgJOSUDLUcdeIUpJQKTjfzqUIElAAXTmgEdYSUDEeDy2yFJJQCkMgGY/T0lAOFxDeXdBSUA56GMzKTBJQLNA7Fa3ZUlAXQmrqO9ESUCIRsOg9kBJQMnZZgprU0lAhOcHRbI5SUBUxhOzaVpJQJi5FP8ZXklAuYOgZ5JrSUB4TnglF2VJQFl5TEKCIklA/5jiXoZCSUB14eOu9iNJQP2HXjYs70hAcMPFkafpSEBlbNGPTaJIQDSKfyEYh0hArR3A4UyuSEAcght3pt5IQFk5sV+eEUlA6OYynPNTSUBHvTj4oK5JQLNAmYJAmUlAd5Wv7EWXSUDXqJGcpYZJQHSYQyMIhUlAuGXPD5utSUAUT/FeEEZJQHzSTtG/BElAECartIvrSEBJNBZRx6RIQJHsbMdczkhA50qdJqzySEDPnK5ulgxJQB0C0P9UEUlAM6NayfXISED8rDnuF+1IQHUYNq23tkhAXeAaQfORSEBJM4fgb85IQKEW/Xgs80hAZCRFB9G/SEBEyY//eNxIQFTwMe7+70hAwbBa4bfdSEAzUXloWeJIQJSBbsLH5UhAn5D/VxfESEAPKXFS5PhIQOwRirdnyUhAbDlBJfe4SEC0ymNtIJFIQNk/aCcbg0hAkBnQf+ykSEApzFBheWtIQCjwh/NFUEhAYzIRvm5NSECz9XXtuEdIQNnmE/xMi0hAtK/ca5KrSEDlaB+ioJhIQD8TODZhzkhAF4IxOg3JSEA0S2TyhtdIQD+HnH2JzUhAVUSwg5HdSEBEkkBFXq9IQAt1n3BkmUhA+zEG0SvOSED7gDZTxPxIQKU/CF8qGUlA/EKGuvoGSUBhigUwXQVJQAh9VzrCCUlAu8Yi1Zo+SUAVXlLJwylJQOcs8uu3+UhAR4aQJJfZSEBxFJU94JFIQOdtKbBRs0hAtftdSMOkSEA4GZvbmsRIQPd/uEkItkhAOKqqsXGzSEDVxJj/7r1IQLRlDyAUAklAyb2dhfglSUBwiw4U9UpJQC8b6r41T0lAX9/nfqlgSUCg40NNwx9JQOVeoRX4FElAgMaK+azsSECpR2kvl7tIQJdjsW9HtkhAVwt4OndxSEDEPWucoKpIQPgKcU0OtUhAFJKtHTypSECx1FEf3gJJQGelfl9h6EhAl+fcUj0USUA3kFVBXvtIQPuxeC2GE0lAVZ9eKgkmSUBcrIfq2WtJQGOfcPIZIklAwNJCFTBBSUDbtV8iRFFJQDhL+83TOUlAb1sfh3UiSUD9VxnMnnBJQJjjOVxWIUlA/7IBBuASSUB53u2CoAxJQIBKg8Ul6EhAVMVUe3sXSUAoYKF89SFJQEg/oHH2HElAJDEiLw8WSUDcqCx1Vi9JQD2JFuhIfUlAN0Pr6j1ZSUCxRodbpGNJQPictbSud0lA8cWB3HSQSUCRIouO/5BJQPCUOg8keElAEWnIvAJaSUDxAC/bgV5JQHuXY83YaklAF++kXX0jSUB8hYbV4kNJQKh0dQu6JElAF0ryGbNSSUDQbPmJnE9JQB8ZRDtflElAMSFFZd2BSUAvjCCge2NJQPX4CIyEQ0lAlymxOFUfSUDg3QeOuRVJQOffjnK89khAMzOAYMj5SEAs+9otEPxIQHyVI+i36UhAYdx8nIYiSUCTVPpB8idJQAN+vpOE2UhArSACJ3/FSECgSw1gQ59IQClSHVEQu0hAsaTl33/MSECE3NSYg5pIQDMcJb+2v0hApRKshf2KSEA7j147oadIQOulLDk4vkhAhdNYjUq8SEBhGOFsCqhIQGPijsnAs0hAnNeTuCqrSEAQRANQaY5IQEGJEzbvpUhAKcyYs+CUSEAdXIvtzpZIQKlrd53euUhAwyBo1zDnSEBpfZTF4CNJQPsgr+U4UklA9IaRr8omSUBJVvSjoh9JQA/EL8UoHUlA6F9DqCwcSUBpV+PaFyJJQDFHf75dFklAcDyLT9hMSUAj6GjHMwVJQDia7FrETUlAEfBg0ceHSUCcQrf7j4VJQFTyVaxJjElAIDZbSrqhSUBz+YPUtmdJQHdVmt7wQ0lArFGR3bCSSUA5RlbCB4hJQHHnvR0Gl0lAvS+MA8ZJSUDpQV9sE/JIQLEwhZAECElAPJBB/3isSEDNnP3ncsRIQP2YeKAqz0hArzwbrOfvSEDDaf+GhutIQORhmFYGG0lAJb7v9rL1SEAwudzJN+5IQBtfkA268EhAuw5/ZKwISUCJJqXrdCNJQFtL+55IAUlA6wL4v+DvSECFvSbBUstIQJs0oKYiGElABytfbintSECAvvXA979IQGxGFfNbu0hAx5SN9D2tSEAzbRtcL9BIQJk1+H7Zx0hATJEx5XvfSEBoP/FzHpFIQCgaMcTztEhAyInzxTi1SEDPEgdL6qRIQLPM+evKaEhA1ef2+tNkSECpwP9lc1RIQMkF/zChHkhAtaDrv2/TR0BRaHavHehHQM1uyq/KCkhAfTVE/kE2SEDHQOD24UVIQFgDZ4msY0hAVD/XuS7HSEAbO9P0J8tIQPtMg58UpEhApLGmjXq3SEBF+RcWGn9IQH+Y9po3KEhAfXeCzcsgSEBYg6rPCtpHQHcsjT+42kdAYNMlVA9jSEBFqkikVkJIQKGzP83YR0hAJ/1AbH12SEBAd0XYOh1IQINjc0XpPkhAh9HJ65cFSEDXKqQnGOVHQClSzTTViUdAk+kTgGAxR0Ad3bTkoTFHQIy7HDhkRkdAke9K5WFZR0BJ/DyUy15HQAzjXmLXR0dAk+xcT24LR0DIL4Ck4eZGQDRkn1k1yEZAU5zVylYER0CH7B4KE0JHQBB2iiJhcEdAMBwKBpWHR0DVqgbX8m1HQMFe7a4NhUdANehy6lhhR0BrhClHzYRHQC0FNh6eMUdAv4uABqQ3R0Df+TwfCThHQAEES5Q8Z0dADG6wzVhQR0Ck/+aoczRHQJwqypggO0dAL5g/yaV+R0BwYVI0Gn9HQNm5G9NveUdABwpMENxVR0AET3ADymhHQN+hTX0PWEdAa2uzJsBfR0CMmQkFtLZHQEQuZmecxEdAADYODQrDR0AYYPQPLZ9HQBiJZVLqgEdAWzyETnd7R0Bn52pfn65HQHtJ6RxjrkdA92EwCLLRR0CksYfH36pHQG971FmQiEdAeZRXQuVhR0AXngWGQQZHQHBpdJk81kZANPEK45DCRkCIaaasWYhGQC/rbsGihkZAzKxV3LyWRkC07DP8PmhGQH2oxr9/gkZAHceARrpkRkA59n6XvDRGQG+yyzT6W0ZAd+PkiiltRkB5XOj7VoZGQPw/kwffnEZAyEBbx/ihRkCgnVDzosxGQC1zksoR50ZAeXYQFrvyRkDpjGvId9pGQN3NfFZ4sUZAr0oGw06ORkBHzSFElb5GQEhLYVxarkZA81bRunDTRkDsF3qtyLxGQJDhwKYQoUZAFaivHvy3RkClziMJFMBGQHOiRiTwq0ZAEAu71+2gRkAsDML475hGQCvLRgvsi0ZAAcejz/Z1RkBRy2eaKWJGQA2lhIj4bEZADYWnYLmBRkCxuVf0vzJGQE+uymVQZkZAfS2fiQ1xRkC/7TnRfSlGQBww26QZIUZA9XSAKGkoRkD9+XJIUxdGQLRBUV0dQ0ZAXQVQOA1uRkAnHEL/XkNGQCgFegeuQ0ZAS3RiQkuARkDzgN/8BKhGQAzkbovL30ZAYXRCHDbeRkDLDRhjoPdGQEFpd/eT+0ZALV54vbH0RkCDITFxfOxGQJg3+ESKDkdA1aujEPAqR0BLQ9osvx5HQD9JUMx0/EZA2F+S2x3wRkDPoNobuMlGQBRbB68hu0ZAUcCQx3+iRkCh+sZQeb9GQLmy3b6lqUZAuyvDKHdjRkB3Bb/SIIZGQJcBjkfjo0ZAMPKGhKXRRkDT7vttDxRHQORiT8irGEdASbL7UCMNR0Cwp7tOmB5HQP12hOdJ70ZAE4HsxGLyRkAwKJx9kgVHQCgc/kcYTkdAzD05q6xxR0BXeaNfWolHQM1AzKA3o0dA/AnsxT26R0Adxq4HgMBHQKl4StQO5UdA7T/RdUDXR0Dku6bIv85HQBgSIkCw00dAfCOyX1CuR0D383Ql7J5HQMEvrgvTpkdAWD2rh9HAR0BlxD3456pHQEficzbKqUdADcLlQZ+MR0AztmrkEXpHQE00Ak7IlUdAy5hje4OpR0CsyRD8yoRHQDRzq1aWv0dASXeLn/S4R0Dle9W81MpHQMEStxUDwEdAgeF0Nq6jR0DhI5/jhqFHQKXgW/O9qkdAQx3na0zCR0B/Sj7UPaFHQOS9/cDaUEdAxz9eNw4oR0BVgcFo8gdHQBldEMh400ZAn7ClFQ7JRkD3hIvW6NNGQCyRfy3HkkZA9CpRGDWqRkCDaEcQ7ZVGQA8lb1UDgUZAaOxW439iRkDcpuSElcdGQNGF+oMxw0ZAUwFpNUXrRkBFlWIOTwNHQNeLrgYPEkdA/3H/e4weR0CMU5lFRSFHQDQ8306sSkdAb6Zxu+5HR0D9b5wEaFNHQJlI7JaTgUdA4Rcs+l/OR0AFyPvktvJHQFHKoCApG0hAwORVpJIISEBp48gDtQ9IQNhIW0vbTUhAsVwEuaujSEAvP0IjJcBIQAX3fNJVp0hAWYsqK5m4SEBFYw7y57ZIQKSTUE8xsEhAcaFG+GyXSEDzN95274lIQD894QfCmEhARyXxb1uMSEAxsit0NmdIQJdk3jtvPkhAyIsgkl11SEDkT3J24ERIQHe8cQDnSEhA+Tsql1saSECJaELgrQNIQFiHfrYT90dABPvnS5H+R0DDn9mqEnNIQP/4qBRMVEhA1fWgCa1uSEDVp1RVH61IQAfXaAAIZUhAfY8jgVIdSEArRBRt3hFIQPT3duadFEhAHS29jpzxR0BpV9Y6sfRHQIMtK0KgyUdALPg5x1+0R0CgwFGs2KVHQGVMhpAMskdA/ByO3NDeR0BzgNJ7QdtHQNjWt5JZGEhAxKPFfMEiSEB0QtqajBRIQF1vAOUECkhAcTpzTgGpR0DN8gqSyq9HQPvbygbbx0dAzIu1/dqxR0CxA0LGNbVHQH2UrYRtakdAQ16Yq/qKR0AczFAjz21HQEuzFbqcQUdAZ7xfcJUqR0A8yKfbcCxHQGmctA15PUdAtLKruGMZR0AV30SBlvdGQDSsHkOOGkdAuan3z7vWRkDNdzUKBrNGQCyQk13clUZA3MfGRU5tRkD5qla5djlGQDfCrON430VAO0RhoAzARUDbRmyqsfRFQNWyYHREj0VAAxVxI8N4RUDcrtBvT6tFQEDV1SycrEVAsblzO5GhRUBrFEAMnmFFQOl9AFKymkVALPYlHjWERUDD6/zErNFFQKcDpCt9f0VANdjFadKXRUAJEOtcyJxFQLu16mvJS0VAh2rkHm27RUCfxOd+KvhFQMM/M80G3EVAcx1DmZLBRUCge5kh5aRFQMtG8+gIvkVAPRfcXSXKRUAYCDP2CgBGQB2VFxm99EVAZC45xR7yRUB4zR0+KstFQFEksqju8kVAcOGTL/XuRUAkmwiynMhFQDQ4so2ju0VAGTHk9951RUBcNSRAG2FFQFzK44YCHEVAdw4efDsTRUCPR+7A/dZEQPImSsB2oERAYYb36PuiREBKA4C+0JxEQCLEoTFYw0RAj/lEJKHkRED5EL660PxEQNU+Jch0+0RAbOJvvMORREAT82djTJJEQLmD1xogrkRAHdwWUZNzREAr4WRrPH5EQJqq4dnmqkRAD93zkMqXRECVUm7aSMJEQLAMxsx0AkVA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 3\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"UXQ1BCKC1T9J84E73DDWPxxC3A6vmdY/UEBfrQpYyz+nFbX8w3zYv8nT5dGz6tU/u2iFv2es5j9fuVG/qjLSP6BjDkmWT9o/uCdoHPMR1T8ouJ8/2RTFP7i6KxIYLrw/mM+/Qhxf4b9ISSGlQ6vlvzmXKiro+fW/J9cWPsZ+9b9FPCoaOSD0vwXsGQ8nee6/EDduFTOx7L98DjJRG2Hyv4lPx6nImvG/CIO9+Yip/b91XLBKnub8vxBPtw1/8vW/7a5tfs+n+r9U8vhkMNX3vytjFYxeO/W/YdN9HjED8r9dTgrQIk/xv08EYcI5fPC//Q+BdrJe7L/BcfqLTxvsv7mRbC2MCei/c5o9c4QE7r+ocvJQL7vvvxJguF4uefG/kSPPa3Ht57+BOzOe1urxv11VbgiRMfC/lb1yUB2w87/9GuaMHjv5v3WFefR2N/y/A4mIlBOS9r94ahbP1y79v/caRSp6eQHAu1gieGZWAcDohL+AqO8DwAm2kVHofALALRZ+G62YAsDmCTvDT+gDwAO5aZanKAfA4MLG4BHJAcAxgbCD5NP9v99QFVDFQ/y/ZE8VLq4q87/8TYmUg4/2vxGUeHtLXe6/B1kT5+fv7L8Xlio52D74v/3+gfDoZOO/yD3GJb7gzb/b9ZH+mizovxMsFM8vtNu/OIuCRBoQ0D9EnL5L9969P5xOZ05S1b6/HBPk3zE34D85SbKVdLbrPyTHBd9keew/Ump7Ugpd8D+SKT71tITxP8WUKTr5ddM/ErNGQzktxT9lCGHOUhbRP3Ew5M+9kuM/q8f9mnEUfT+tUaKP1zjePyTwoi/TROo/HUW0zzp08j+0ifDXgHP7PwFKZ/jXJPE/h1HYoCFa9z+di6PgCS7+P7/TO55e+vM/OYTH4T198j9h6y7atlz5P1DYiJsyygFA3IGiVC49AkAz7pB52EUCQMWNQGuGwgNA4lamLpT8A0C0/c99d4UGQC3RkNk0zAJAqbqSsE2Q/D+BhN53z5H6P0GEegaH7fI/n35spF0d8j8ZIDyPPT/wP4+eg450oug/ZKctXQEq6j/NPV3iQxbmP/Pd2mS2huc/J9RJTOzY5T9yzVmMP5jiP1MzeJCiwOY/gKNCjo2J8j/nngFoKif3P5Hs9dPA3/E/SP25a5TK6T/LgXeLIPrpP5OHJUqtYOc/iPaPr5mg7D9EclxcsGvkP1OAOYo9H+o/1ZSB5RHf5D/UHTXkHrPpP60q8CkBCuQ/bPXQEpth9j9fkda+4tTlP1QbBvzKKdk/mLp2c/9Vwj/Di/jF+Cy7vytxd8ayPs+/VSM1e/0MxD8bNmpKN6+mvylg398aYcq/84Krv8nksr9hK9NjYHPAP2A+a0cUmrm/lvUj6Eo00r98/svLIyzVv+0itWS/BtM/7xpVPY4G4T/t++ACdF7oP7OU7NtIZuo/pyCJoB3h9D8w+w9ThnP4P+eFN6kDFfg/P8Onk6RJ+T+jbROrbz76P0GoZMOoOv8/4Ci2GnUQ9z8GZfgH/UcAQGQyMjTMXwFAbwl907ooBED/MiVs6iQFQJ3PY1Y3qQRAkgaNebxxBEB5BvTm10kFQJkQGSAiYQRA8F/vMgjLB0DN/m3PGFYIQFW51WIRMg5ACN3PSBGUD0A0xX19kvoQQHTJ0Ys5Aw9Ad9aiqoYHDkDUY1nvcD4MQGnUY3Hedw1AF3gXyNCsDUDfUP8dv+wMQMUvZGQV6QtAmToGxDXRDEDAJP5HFOsMQD2YxHlRUAxAOP4CxmfkDUBvm+kOnEAQQH2qRbY73gxAR2vVyCjDC0B/xOE5HZUJQMxJQmm7mgxAUeWwM1X0DECAk0czE80PQI+MClPjmg9AlP1kS4dXEkBhrXChdgwRQKOkuSQVXhNACKIYewNyFkDpJwYN6ZwYQN8Ph2YWDhZAPUtpyhoGFkBNM/dTpOsUQC2VPlKNYBVAOZEJxf66FUCbFt9nkwQWQL2xA9TazRdA71/OdX5oGEDALKP+Cw0ZQOw69oXdmRlAjEU2AZjJGkCb+y8Qh9cbQAswsryTthpAuZyv7qOaGkCxPnqiHhkaQK/AWL/SJRhAhFLXum2yF0BHeER1y74XQJcgzUlQwBtAMLCpTRACHEDZN0/BVcgaQNSLgLtOXBhAixHD4iPYGEAA3up4Cs0VQHULu91VEBdAFw7deVDaF0B9VVvLPjoaQEdPIKK4BhxAh8GthEB0HUCwFnyIGHAcQJj4ShGKKR5AuBgcJeUvHkCw1pUmaggeQMBp03HHfh5AOJF414BgH0CFSUbiCeQfQGfOolHIqh5AQBWAQMcDHkB49zOX1kIfQC3tdyBHlhxALEPN3+wgHUARqhorz8gcQM/IU4ahGx5AXevh4urvH0Dr1ZKHF10fQBC/nXzN6x5Aq4UO+mjCHUA/GWWkJjIcQFDlfvgeeB1AjWRZYmWPG0Cf9aotxWEdQF1DvXWVMx9Aw7qL5aTvHkDLm+euQA4dQCSF8WPHwh1AyKoHh+N0HkCYmofGHYIfQEUmYkl/Mx9AP3tP9chaH0BNzf8pmSMfQOVI8bi90h5AkYIlNjUpIECWgZdpUhAgQNlZSp86wSBAMjB/A21pIUDyo1RaDN8gQDWb2wr/DCFAySnzjOeHIUB14mH9Ji0iQLdP2csAUyFAm7N/JUBOIUDasWDU/e0hQLWMzTlEPCJAjzyhfUbIIUAgCkV9dW8hQP/IBW3yyCFAGl7ygRclIkB0BMZpFA4jQMl0IwTqPiJApxQ2znZuIkDyq6yASKoiQM0XLmj6biNA83VYisQyI0Dwkl9BeQYkQCBjQTN7ayNAzyT41ga2I0BEf/UqaaEkQPZTRBu1wyRA29WHbRJWJkDdqwz+bQAmQFiU9OJOCyZAn4jiUmnaJUBE/vZ8oHglQBQQqqwZQSZAbOMSkPXoJUBJYmsDndAlQM7u5kYVUSVAPG28yjbLJUD/1akH+sAmQM/wmx46DydAW3Nb2CceJ0Bv/ZwY20UmQMP0n8eGsiVAcapuK3vwJUDZFutSHD0nQPnRMB4AOCdA93BgmdU9J0Bw4Azt/qwmQBv5ziaSriVAaBdHZbWOJUCs2lWgblUnQNdRp8osTydAL850azirJkBxbbcD5WImQGgpwWYkxCVAbN7WI5CEJUA2wNEopMskQN8WBhIn5CNAy0YeviNpI0D6PvlNo38kQIplW0tZwSRASUC04l7wJECMn3nRmiwmQGPyYGLAwSVAKUTBh5WpJUC2VKJaHSYlQJRBPamClyVAh7gFJH9oJUDBzmP7jQImQJ0A+oiVwiVAzfECO74NJkAgqE7XFj0lQDH8CT9HQiZA33W1tFIPJkAg2TVlrXQnQDSS723/viZATb9Kkk8jKEAEr0obCUkoQNxTFWWwkydAE/APKsPfJ0DYc7ymlQkoQMBXAPT0aidAgzKMCLyYJkC8dzJSfAYnQK/wO8cMUidAVcPuaSHZJkCkK2VCGBMnQBsg9rGxEyZA3Yl2o+DaJkCs4852kHwmQNciuWyNNyZADZTE08NgJ0C9+bUq8NEnQGsD/dwaCChAySdihKMeKEAhc2jqUdYoQDxA5cBLtihAmPix6ceEKEDfQEPRLp0oQJk36OfqyCdAGwKAP8naJkCNf9Hv2QcoQFWe1AfbPidA3FoCr0VkJ0C5fK3MCiEnQOssbc9dmCdAlSeAdN8KKEBIj7i69jgnQONa5x/AXCdADMk96plBKEC3VMyRA1AnQOtDo7KUrSdAGfuwMIYTKEAxC1lzhbIoQPMe9vZOVChA51bYEMlBKECFzCSO8+QoQL18da4bTClAOEJlPBFiKUBhJuVrIDsoQDE74QmaxSdASDhTfqBUJ0DM9IZKJDgnQCOfPDPDoCdAG84iDRuVKEB85UCHqAopQMXZshnfHClAZ14Wao75KEBtM1meLp8oQGVT8RwnpydAYOg7Q89XJ0BHYLJvl7YnQG1R889OnShAw1RYzYJBJ0CzjWoK1CooQKCLQjOIpSdAm1spDRksKEDv9XV4qR4nQNmlTEJl8iZABByBh8M3J0CQRDValc0nQOAt77gVYihA0A9tFXFMKEBQAXJkfh8oQJf5WU6AUSdAwN3Fu0G9JkABLodocDYoQFe+27kheChARA7oENLvKEBv5WWsyQooQNtpAta2HiZAK/NWPQZeJkAcoM5sH+QlQOSx7SWD8SRAjYJXdqusJECxjGfPep4kQG23n5mxmyNANG6YvVt9I0DPz4hpbOUiQMM0FyMTsCJAD+7TNmc1IkDtY2xHqWwiQEvmrI8E/iFAzb8VKu5oIkBJFTqUGk4jQBos1E9vOSRAgceCTHDMIkCkN5U2U1QjQC0XxF2H8iNAvUm/SVW/JEA3RxzFTWIlQNBKgfMtKCZA5y7U5tvsJUCRuccZhSElQKU5jRVWCCVAyVvS8IzZJEADLsQz6YUlQEOZ+p7gGSdAn6Ipu1w0JkD4Iisaw5MlQKCyWoK5biVAJKNBp6LaJUDTKUMjTaolQM2X9An6xiRAVeofO1DjJECaEZIqFmQkQCQskKsmZyVAFJMFPxUXJkBt6T/pK1knQLBCwquKoidAAWZfjZUHJ0AryfCs/zMnQCHoiZ6L4iZAL/DOsdtnJ0CBJmv60nwmQPD78013TidA8/oBwG6xJkBb+MkLS24mQKteB9mJHSZATdXczR73JUA8y5CS6i4mQEwRyblFRiZA+AQ0kDpBJkDwPwJ6vjkmQKvdfDXZICZAy2XU7hMlJkCl3KHrHtwmQEg6NPVzviZA/SdLHmbPJkAhxmPy/EAnQMSN+04npCZA5ZShWOSmJUAPpl0T8b0lQL98hdcdOyVAGYH+A/wQJkDBW5T0YTcmQJ+Gbdws7yVA1EdJo452JkB/8k1SHDgmQDwBeNOVpCZAGHA1Ex0xJ0AEINIqv3gmQIM/j5/hKSZAk+Uh+Mm1JUCV9bDUDbYlQD1DqJpZWCZAn0ClKjNrJ0Apv4tmnfAmQITF34PaXShAgw/mrxyVKECtmwnnVFooQIcXnZwwsyhAMFJz645yKEBFbCKbTf8nQGDD/GxjPChAU1kPBtj4JkCD2VfcN/gkQKnSJwgBviRAOG8TFyyOJUDb/HzthOklQCk8S8QPECdADF18uvGeJUBjmIIQ6xslQDIvXGDBoSRA0yk8BTIOJEDgLpJ1zrsjQMCeVUpbJCNAgSl31mBcJEDdHd5Rm/AjQG9wmeVV1CRAifn7tY1bJEBHssArXYEjQN5pkOOH2SJAzy/QDGmrIkCjlJmpYhMjQOdF8fDi0CNAmS/t6avYI0CV5U0ohmgkQGSH7gAypyVA9+goJ0HsJUDLFNUlIeUlQOEgdoXy2SRAYlQiMd3rI0CdoaddiMAjQO3PHHezHiNA65FGWN+aIkABuyv/kCgjQDUWUNiqhSJAP35w38hyIkDrlZR35xUiQJhP/l+mpiNA15Y2DHkKI0Dt1KQCQD4jQPHE2s5tLSNA1RB5SxgAI0CiiGVubl0jQI2xGFq91SNAipyt0vkpI0B2c3CEz8MiQMEuN5XLNyJA0fv3kcnSIUDrDhA2OawiQLfwSpsMYSJAqVOHJdvJIUAtwA+kH44hQBD2TZsRYyFAXfEX/oY4IUCdXzOAZGIhQAw/Avua3iFAszZt/9WYIUD7iL1RyuQhQAeTwmRAviFADJHmAEFWIEDne7p9wEggQKc7Ehslgx9AdSVDVw7BHUBAPr82qoIfQEtC1wK3JB9Ap6W/fiLGH0CdL1by2DIfQA26wSb9Kh1Am/x34MlrG0BLRQaAuFsaQB1e1ojJzhlAWbbkDjDUGkCxfOqqi9sbQIlarhblLhpAzVz4X9V3GUA7ecTgzB4cQEO4RCLP3xpAcKj3L/CZG0BfC5jFQoobQLheAo7laxpA05b9LG6bG0DY3fG3+eEcQC1PTzjSIx1AeHJ64+ugHUAhAwgXEtwdQIFK2nC3oxtA/UQSc/b0G0CZ2Sd/BdQbQLtlcHrDtxpAJJox6zlAGkC3baGM204aQMijneP52xhAWHKoiNXlF0Cc4/YfvcEYQGtw/PSP+htAMHDVPi8bG0C80piNSBkaQERAE7pgaxpAy+OUn/i+GkBEm6CwbmUbQDSN5/Jn3RtAvYdQVE7QHECxWnYlaPYcQGkRQ6Yt1R1A6eejPfMKHkAvVxOf8BEeQMgn7M6QnRxAu7s3itkeG0DtjBzvOgwbQOyXCJDSIhpAY6ZRyrg/GkAIWyHl/bwaQKW6gx7MURxAGFM3XrnrG0AU9J3rj7oaQAurx5/S9xlAeZFWDIxhGkDxrFqGevcaQDP6TT+ttxpAoKQ4cTvRGkCkkY5XjcMZQKQi19hDvxlAORGqErg7GkAsdX8P6fgZQGuT1M5xnBlAFwFKwXNEGEAfrSIlREkZQNlEB7NIfxZAA9Er5iMdF0CEX6f2rnIWQC27MGAA8RZAkSP4B6I4FkDpf5MNU48WQO2FPIfdoxVAgFVWicNvFEDumSa3rlIVQImtRSr3IxVAMA68aSHTFkA4mcSFpD8WQF8wCkTioxdAb19Qu0I1FUBnvWTnAxsUQLFSs1mmFxNA9SQQTBZpE0DhtBBdgUoUQOUDWe5/lRNA2gnBC6BZE0Dgg2Y3K44VQLzfLnBIZBVArekxOH2IFUBH8L7u71EVQGt+QI6VLhRAHEVlFJEsFEDOAl67CkgTQLD6mI8p+RFA5SEfjf/TEUAP4lYFGCcQQDh2R2sJ3BFAksVrJbeXEkB7qEMlDX0SQLvdxhQQ3BFAL3EVvOLzEUB3Tk6nUkcTQOO0fTe/3xRAWyBm+OoaFED1syXiOx8UQCAQyADJwRZAaVY/wCvdFUBNmEsTAikXQKNxhM4dVRZAT0+vqueXFEDrJKpra24VQADuyRI1sRZAwJOo1qoJGEALpzVsj30ZQFWTAlRhaRtA2+7rocw5GkDz3eeqxbAaQA/z3coTyRtAOcgwj44VGECcz50d3tcXQDgcZPSnXRhAyXvojJDDGUDPQwccLYgaQEVwFKsSwBdA+xmXlBKRFkC7hQ5c3R4VQBU8wknhrRJAMc0kgphuEkALEnA4yNwSQMv3l3ui1BNAc4OpbMflE0BweyFFvnoWQNRyX8cFDhdAAIrL3Q15FUDNlvmBWhAVQMV3n4ID2xVA9UzuJpxUFkCYpr+v32MXQFBWmgaxhxdAD1S5KeD0FUCDh4lw1ZIWQAnbtRhVSBdAiwu5DofQFkCNU5eQbTcXQMQ0VcLdWRhAWfS1awU0GkAJPkepqC4bQM3phN1PkBxA4wT+Cw3RHEDj1HHhqckcQPnCRg4AWR5A/RGIKgxMH0Ajs5394SkfQLPhdpCxaCBAv+g3w/GvH0AA+3TlCUQdQGAi5k0+pB1AhcizmTnAHkBspX+4C8oeQPx1RzHSIB5AbPaIoaDhHEB0o6abNvMdQG1p2Bbi1htA1Tn3Js0QG0C0UkA+GKMaQMUiiBxzdRlALdyPURvYGkCdI1bhKGseQP1G5qhkJh1AjSTnTx06HUA9+G++lk0cQM9pSNSJsxxAuyCQ9r3tHED1jXwZ9HIcQMsVcjAS7R5ATagdHSarHkCN6NCv6fUfQPuRre6XJx5AoFXNBCseHkCdSLmSH70cQNslGVzC8xhAWawzphx1GkD9LNj4HwodQBCOqX46nR1AEb00j+pAHUCgqBsXEmAeQLMP7QBrrB5AsAu1UK2yHEBpoeK+m18bQIAa79uxOBxAIZYoo4BcHUCN0u2+e9scQIA/PyNjERxAgQ9tQBjtHEC9OOcD3vUcQFSqHV6oXRxAmfIffEIHHEAUd+CkYSkbQCkYIdh//RpAhUMei3WfGUBjcUhAjh4YQNzYb+TcFxpA/6mb+DXuGkA/uKSLkjsaQO2BOFVeaxhAUSXsn6b3F0BQ7cMEcq4YQIHAMILiZxdAkQpGHiCWFkBF+8kDFvIYQBDuFcmJlxlArzoc/ccCGkDB+6GTa0YZQHkAtQoybhpAMZwun2RIG0DZQPdDRqYbQAHCaPpSHx1A0HITKGWwHkDZiAwiBc4dQGvf7p1OhR5AufZzWe6rHUCf0GVrykcdQC0RCm7/ph1AgJYS+iPjHEBHDB4k28IbQESEs5OfnR5AH28oAPyuHEAreJ6U8JYbQHCQdvavEhxAeQwS7UALHUBlFk5Qx40cQNT5/WgEWRxABQmsVt+oG0CUUL459lsdQJTc43UkhBtAAIUsSvmPHUDcyoChGCceQIB3nzhHRh9AK4xSCcCNIUAMDrf5g1wiQBup5Tgk8CFAGUdG/YBtIUDILjdE21ghQLqLCGJKdCBAe243DgYEIEBwbgWLPFYeQJulNpa8Vh5Ag93icj1AHUADJPsslogdQKCTs4myqRxA9A91/IImHUDDJOnbYfwcQN3i46fMiRtAi/bXv9UKHED0RzwqRYEcQFkAJGc3Dx1AiF37//D3G0C1ulAvi+oZQJisFowk0BZA/1YDHLYnF0BTvM+J7b8XQF8RV8lPlhNA1Vci7PdDEEDqNYngr9UQQAIzAhzPUxJA9CeayvBhEEBzQ33W/SoOQAVlbMq7tg9AITHtdXEqD0Aw01JZrF8QQJi790b9fxJAdGl8imfiE0ALWkamnX8VQAsPuZ0GFhdAF1mP1wmBFkDBlLk6qA8aQCT763E2XxtAxD99lCmyG0AjaesAmhccQN1QjS47lBxAe4xPNTpDHEAToqGc2TEfQPTh2jxukh9AvO5EQq8uHUC52fXKLaUcQNiHnm0LUB1AW4vgXLIcG0Ar6GngbeQYQPgk/bgnBBhAg79gCO6VGEDYjoMNaGkXQH+ug35rNhlABPaCM6KqFkDP7JnQ0d0XQASjfX50ixdAxTq7AzK5FUBhIBACZzYXQJPHfLPiLBhA3wqg9TyiGEDXJDBIQDsZQD8iwak5fhhAR0PGOCzjGUAQIx3VcjEYQMxc+4LWLhpA3CvkboEJHEDpZBdj+fYaQDF6GhJMUhtAE8a901J3GECEPHndhNwZQBnV2KWR9RpAL/MExqLjGkBbC2jaKt8bQCn69C12BRlARGBlDO0zF0BT3TK8pZUYQBQvdgFoVBhAYxXXhkM4GkBspBoTFwUYQM999V87mBlAxb9VsSR/G0CEGOXQMlgaQDSvylUUiRpArdSDanW/GkCsMkYPe0kbQEtSEfqa8BpAdLcmqnXPGkBNiNsnh9MbQIz7SEFNfxxAKGVGWX4LHUCfuK8fLn0cQEiwBGipChtA3Tac2K1uGUAruPQtVioZQEFNEThCHRlAyZdx+nYTGUABc8Q5eBYbQNu3cxFDKxxAx2tZ5DkIHkDpmO1OoKoeQJxkc+txqB9A8ybcDQvKHkCQDTfw43IeQGGNdZhWax9AExq3pI7FH0BY8tOnATQgQLHCnzuW2x9Asx7vMFQeHkCk3EEp1nIdQBisliPt0xxAwX/HtW5+HEBjYcHJfdccQHgQ0N1uFh5AWV755e05HkCwONtycW0cQHyEJZAz6hhAyBrmNUOHGECr5zw97MYXQNH8E8X/jhhAew9uMmmqGECdSiWg2DoYQDR0VQKO8BlAuf1+dOlwGUAdTSrNOp4ZQK+ammAXohhAOUK35pCoGEAobCZCJlcZQPfeCYzyQBlA9AkGW8CtF0BnRqiQx+MVQJc7LVA9HBVADP60nXu+FUCl1QlSRg0VQMMs2HlVnRdATNv3xJdsFkCpp3QnY1YYQAkhvtbyuxZADe9dBLwBF0BvqgzUXqcXQCl4/xuEgRdAfDwP5jL5FkBhHnVa0WcWQIPz71x+QRhAk57hclkXGUAhxu/OSHAaQGArzPRuhRxAcQf0a74vG0B8LZ+FkCodQOQSZIHZqh1A/I2iM6kgH0CvgsgYMDIdQO1oz71xXBxAR1XbbQsNHkCDDOI81tYbQIjuC43IjRtAfyq76HbAGkBlvRGKBm4aQOWJYYuKxxhAm5BNXQtdF0DfuqJMaeUXQLy7cSkXdRdA9fhbW1WwF0DRIoKbw9kYQOsuO0Yo4BdAMS5W9WACGECTwMHm99YXQD3/4QTXXBVA04tfTXxxFUBXS7tDeUAWQFZ4PtvMyRRAqSu54c9QE0Do8ZK6JmEWQBvurMGeeRVA09l5JyDyF0A5O+VelhoYQJAwd9xPNBVApeoRVFHDFEA8tU5o7I0UQICYdky9MBVAbedQth38E0D/5MauveISQOmdBeiQVBFAWebAlU4hE0DE0Is4doYSQCtiV+l0pxJAGRUf29elFUBt/f+RAPMYQI/XkbiZfhlA7St85l5OGEAVHgPEOJsXQJXkruZ3IhdAMbzAGVRWFUCnV2ZA3owTQHGIAemdOhNAXr95Y9OBEkC5UStaUooQQLMSbSDkqg9As3r18yf0CkDRFUV3viMLQAdUZiVqLgtAHwdttFHzCUBF816SLhQLQK+1BC5LIAtAGQ2dxJMRB0BbysC6pvYHQDze03SxfQxAxUUjW0ZsDkCX2oBXuWIMQCQMH9yTeA9Ax8igJRiUDkA1pM9INnMQQEEgSTnbFhBAJ6LZPUzVEECCTPrbQWMQQBvieCZ23BFAuFHmlPJqEkDpsCcGRPoRQB6YPUjguxJAE2LJqLu9E0CMJOHCH6ASQIOqnyx8cRNAoiZyxpvuEkCfMPl9RIIUQEPAPDxddBRA+4IRiqCkFEBzm92lz8YSQE8rzlbuZBJAEZV+YCnnEUCiYb1wY1MSQEnJWNjHrxNArOjmV+YIFECd8oygo8sSQLktARiPyhJA9irXfaSyEkAHij1ipfgTQNtHy2/HlhRABevW87YjFEDIXquUBXwWQKrBl1myGBRA54DsutNuE0C7Rj78l4UQQD3OJlnPHhBAno5rt0sKE0ANq33ftDkSQIfsVG8myBBAg40JkFV8D0Aod0Be5CwPQOALOXBHPgxAF10ML3BYCkD865+8jXEOQNk1ZVC9mQ9AdBIk6zOODUAd0NDNolkOQCjAgudH+Q9AIzI5iN/nEUADXOQM48IRQJGH/v07eBRAuluq+K8lFEB9dVhvHjETQPTmdUvW1BJAq25MDxmxE0C6r+anhO4TQEAUTAtdnxNAml0jH7YfFECiRtYIdi4UQK1+HXDrwhNAiZsFPTztFED5cNn5PZ0VQOhbOVj1NBZAjRhFkyclF0Adf5v60P8XQKTkms9sAxhAUaHoA+f7FkCLszHjbo8WQJN/LpyroxZAAdzAcTiuFEAnOWwMIvcUQE4hNO+HABVAxBqKyNZBE0CfyvfEgLMUQJ1RDRB92RNAgq1Z0mPWFEBEPqs8oLUVQP1zGHsxChZA1SN0woRGFUC4z6nrKQsXQBChoI+THRZAPT/mIU5uFkAF6Ygw0toUQOuNNLaZ/xVAn9eDh9B0F0An6eJURt0WQAmMYnSIAxdASfy7aK8WFkDP7Pwyeu0VQGMXxqu5vxRAiDhWz/zMFUA08oUBVmATQCjGMto6GxNAFSGlMLiyE0AJgFIyPWUYQL24+lQbiBhAkHwLQ7gEGEAT7QBtKakWQP2Xe+zh4RhAx8TOx6qRGUDUwKLk04UWQCDDTHHgahVAw7FOdnMvFEC9t+MvX3kTQLyxpounJRRAi+49OdG1EkBxuNcSaDgSQGsi8K+6IRJAneWOXqcVD0BrKG0IqewPQEwryMKUGxFAW//05FzFEECX2GoFgbgRQMeA0+s5FBFACo1hnZrTEUDavSFRMIASQP8tukNY+hJA/cRDEtXoEkBe/Z9noMERQDGQhOdSOhJAxFiJG4LUEkAbpo1S46oQQAVs8ymUzw5A8oxxO1pPEEC5a4353AYQQGmH0eNQ8g1A0QAJKUUhEECA6GV4M0UPQGHw692AHw5A2IXq/rs0CUClAqsqZsgGQFBsY2EwSgpAN/DdpozwDkAH72iEl9MLQLAztcML1gpA3UFHeYsKCEC3owO8JzsIQK8+UdhMuAhAy5OJg5bwCUCDWxb/2QYLQA/mIEZKWAhA0R1PTuPgCkAQUmxajPQJQC+oXfCkvQ1AYPGbxP2VC0A9Y9tysTYHQIAkus+mkghA7SFKQxv/CECJ7Ye+KggGQOvsGz1s0AVARRWWfCxGAEBDm8wOJ5IAQBur72F5I/0/aK9qxr1N+j+NvoMCldv2P/aAAv/8EABAP5pE1hbEAUCrOkVvtQ/6P1vJrJVcAv0/q5wQoHyb/T/h+dWNFBP7PwW6RD1rS/c/AL1k4iKI/z/Qs61pXBAAQGo1ZQFK0QFA7UGF0hOVBUBL1nX6I9gHQNBbLZdr1gZAwcymZiGvBUB5mSeyiMkIQLGmv8vUiw5ACchtQYknEUDDvTXyWpQNQNmCOY2LswxAJ0FOQLPsCkBh4Q24QwINQExFt362LQ1AaXuJrBEHDUCbZqCbGckPQASFpMNNtw1A7M7GQKwyDUDsJvGRLrsOQBSaZdwCtQtAIVmsXcojCkBs+aGrHtsMQHM+kqcqpQtAEauMSIZlBkDtwqm8ZZQFQC+KuwRb2QVAfyhyKoWVAkDF8HxR1VQDQEQ1u9G1rgZAw6Fmti4ZAkDWfmr1uXYCQHcehgr3CwRAh8Hgai5TB0A/atM9hJ0KQCXD3haDPglA4YdYfc/sCECwvcrBbFAFQNT+4igLLwdAgIp4/m+2BUAt7ZkqMc8JQF+Tk3jsHAtAobaaKG/vC0CQXK4WXZoKQBjqbouGYA1ATZTDvFRyDkAcgBuazAgKQHO5avgg5gVAqNyMOZgTB0DtgvfAX2MKQG+ON8/hAwhA9D0mUdalB0CkxNWipQ8JQOmSw8c1JAdAYQvJhPPgBEAGmcIuT68EQNsNjZLjQwBA7dXLmfKGAUDgWibqFd8DQJ8hCUAaoQNARDswyu3oBEAIehKJgC8GQM+xSSbpVAZAiBeeQOvcBUCTWf/ARxAEQNMrt4h6VARApXS/sPqsBEAFAngg/1wCQKdR/DRJqwFA0xiPQ1yY+D+xi2MQRtj+P1csdY3SKwBAqy7D2Nv4+z91tUS53qz4P6vLtNH1zAFAuGWRaNGQCEC1ZHl5LgEKQKgEmOEy4gVA6ZrO2l60AkC/5TXXvMkDQE/VA6fzgAFAQzsDWz4YAkD57RLHzu//P7SKctp2/QRAQKrXYOLOAkBz4EKbezz/P5OC19DIcv0/E4hhQ49a+D8Lee7UlI34PwTVj927IPc/IwkEreWb+D9Gt0hInwD1P+RTMOIUE/w/IbxbwekZ/T+toT66Hzz4P4Au0fyDhfU/qEgu8DDZ9T88wcDuq1LxPzwhXF+fi/c/O+njvnDv+D9V/iRJwNb5PxD91onT1ABA70DD5WUAAkAEPR3JFmIFQOBDBD+yWANA53i6y5kjBUBXJJxPjtkDQBvRaczD0ABA/8ifM+8JAUCK2O4WPdUCQKBVtF4X2f0/+3HiGwrCBECvYsNtwqIIQCkbXyCxNQ1A4oGl9B44EEDEbppGU/URQGkqOQXO5xBAGtdexVoTEkDfvpcdQHgQQO3m48XI3xBAXQzZPHQsEkDzy5xrFDoSQGZk7QqM2hFAN1n6hrntEEDS0ZHfL+IQQPuTsSUe5w9AK08DdsjcCkC7lYe5QLMHQBVXQS9zMAtAFNdBthwZDED1i2K+rFsIQIMhxcyXTwlA0LgpcPX/D0BtH+enmUAQQHiAMFpvqAtAEIjhaNvaCkBNcc1G24UKQBBpkUjMpQZAKUOSAZwwCUBzxhL5woYGQATCH/p5GApAVcTjepkVDEANrNuYc44NQCOtau989A5As3FPpEIsEUBWGv5msIcQQNU148mY9BJA0yO415SEFkCz50EsuX4WQPWaluBKgRdABJquptUVF0A1cpTC7hEWQK1CmU/CHxVA87dJUYZ8FkClBrc9B5kWQGkzF9mRWhdAbVIKMpbZFkD97De8qZ8WQHzo2VOR/hVARMP1cxvwFkAxO02/T78VQNEK8pyFThdAAzNqzY1aFUBn88imb3UUQKAK2d9gSBZA1z/hwkrCFkBddK0rah8YQCTlXppOJhZAfFfMiFixF0Cgi/3+gBQXQKhfxq/icxdAjd/aAndVGkAlxVZzE7wcQBC6aXYykxtAy+mTu592G0CXmatbt88aQCgvXZPaMh5AABvhB8ECHUD9uonqnbEeQGzvpm19jh9ADHah6d+THkDMA+wBabUfQAgB8/CvISBAF0+IRmVlHkAf/3WCaEYeQAvAIcvFWRxA5HwNvsrDG0B4UV/j6VUcQCe7ODP6tRtA28EyLyaEHECgdAHThBAbQCGp/vX9xBxAYYgVx2j0HUAhYRmV/BEeQBmN6126Mx5AAexBRsb/HkDh9hYmDB4eQAeGo6yRKyBAfwy0rc2xIEA0PbQiZpshQHKEKFbrMyFAQCL3Y8P6IEBkIKbs8P8fQJPEmgQ6gh5AJReqqIr0HUDoC0crnJUbQKV8NrbXVRxAj9x51gfDG0A7iHOPNmYcQGyVTBBIoRlA13QXpRHCG0AXmWc/7O0bQOGS+g9mqxxAoA0yHOjHGUDMPjOP8KkYQJdXJ0F6NhlAtO6clp1HG0BnFHZzGwgdQMV2kA8z2R5A64J2DCbyHkCESyjHeKIdQEx8gnm36RtAIGG0cN+cG0D5DnTQjg8cQPgjuPeWzBxAJIrXEiOvG0CvnWdIMlIcQIlbMTGxSxtA/OIFuj7/GUB4IU+cq+8aQNGWHRB+5BtAwbk6+9bkGUDEg4VcM1UbQKNZNoWjoRlAOwObKF7zGECcj+ykKwgZQFkmt7aYqBpAuANfJFslGkBZzQJATmAYQHCSATDKOhtAHfih+nM8GUDdegOvtfAaQBsImGrfJBpA7RlXg4WbG0AXZn1dQC8dQA9fLJYJjRtADR9zlw2GG0CgF7e/i6wbQCFV1edRMRxA6FLiBBofHkCAiHVRSCsfQF3ffZxgBh5A2GaEd91AHkCUBsHVMBwdQLU+iqFczxxAQa8YpfaIHEBY1xO2V1UbQKWjY+PgTBlAuUaURMkFG0CvIxlcW14cQLyU/zp2aRpAXFvTS/0MGkB8umMA/qUZQMEclfNg8BhAB6SAFefyF0AjMsrtLUkYQHH1LbXyihhAVG0ic3ESF0BowdsY9P8YQEkDYILVuxhAtA6J3FggGUC4H0DtYfYZQLgEWiSlJxhA72lxdS4GF0Cp9ijqYHAYQKfiNNnV9BhAwTxk82Q8F0Aw9qP31ZwWQFRviQBlqhRAxw9/hwRMFUDyCwRKJkoUQKFR6553dRVAw5R9iJRfFEDnSznQbBESQD87XbaMEhBAI5GE2NLnDkAVTl5aR18LQP+id5iigA5AvdMxv20DEUATHUKvfwkSQA+kF01S6hFAnQlPXfR6E0CDCuwwfBMTQNGOuv2ujxNAMtNHONFsE0C3q8AcdBcVQEMb+EBG2BZAkbUvyMQsFkCrA4q0CS8WQBDx9znjWRZAI5ETERu6EkBeRDgLZssTQG9glk4BMRZA+R0RU7AWFUBTkbNT8NsTQFvif4THwxRAfIeHl2P2E0BtfmbrSuwTQO03qz94dhVAwKdpba44FkDrNnx7yy8VQB9xk0JdSBRAhmIAjc5jE0AksKmlcsIRQG++D/CETBNAvzQIHRzxFEDTOfGpvVYXQFD/KvyAVBdAhJcuL29ZGEAP0uerwdAaQMzaZyIQdB1AU+evT8iWHEC0QK3qxzQeQKAARHr/2CBA+2VCOsyCIUCJH2mcpEUiQB0DOh8ybSJA18x7btThIUAFvuNF/cEgQKXoip+rrh5AyyaSSCg2H0C9JjuQKBsfQFkvM2u42xxAFQqpQNFPHkBgcyXSqOIdQFe5Nb0snh5ATQ01iB/PHEBJGSU+1RceQFPuv8VdRB9AwXPEG9NEH0AtxrFOxsoeQHmYzKP3Vx9AlJx/CjpAHkDNPcRvuaMfQFTqiXReGiFAb/GkG0NnIEDPYDO+3HEfQNHc+/xtmyBANPJm8NxOIED1jmV/iB4fQHCViEY3Xh1AMAJ08dO7HkBwzuLNHz8fQAllDa+R2h5ASzApAdrZHkBokJuR/9kfQGV65NbMqB5A0+1ms9XAHUBYt2XH7FkbQIsn0Bo3dR1AsRwovkYTHUC72OM2BJ0bQFRuJRhCUBpAEztboZbuGkC0EwFeTXIZQFmvKCUsyxpAgU4lrdBdG0B/bydofP0bQFytfIZxlRtAnBb+neEmHEAwyHT4EWAcQGyN2d7Ekx1A6YVJMRPgH0AAjIQDjPAeQCMciLWi+B1AjWAgRo1VHkDhovKEfx4fQBMscRtrjSBAnv8owVhyIUCPGFbxIxwhQFPGLxgRcCFApbrrJcSpIUB1hQbEbDghQGnC0udqKCFATUsVzmaGIUDCnlWArMQiQOevWeBruyJAn2x21PNYIkDO/IqXpr8jQAHESBIwBSRAqN2rzrUjI0A4kQcFvOkiQHC4XOkNLiRA5WAIihIaJEA7TFU8820kQNiSQ8/3BiVAmspVtFj2JEDZbUUEglElQC3sQFH2OSZAFYRZtZ5oJkCtKpPZYyMmQDlii3p2miVA1IMEVbvEJUAHR3dHlvokQEvLUq5h2yRArnUU/wiZI0AFoHBXIGojQCeG3EpvQSNAyE/xlikBI0CcNt+SVtciQKKfx0zxgCFAIzrPyziYIUAHz+4H+h8hQF1uAbovnCBAhx+b6Xb3IEDvwVYPLXghQNvmmIWcvSFA9cnzFdSdIUB/2cIcIVEhQKtsaAbZKyBAU9R49AIJIEDRKuEMZSchQA7u0Ak+iCFAx1R+5cdjIEBYHcUjG4EfQD3fhXLGRB9AWx1d0f0lIEAXlDGzEvggQN0Sa3if6SBAvjOT00MGIEDvmzvnVwUhQEK32PPtUSFAwg9mv8FtIUAEqikEWSIiQKW1ErU6QCRAew422b/wI0BFNgCG7hQkQO9VWKiMZyRAdRQMEtuBJEA56cbBl44kQJCl5+mOzyNAs9z0tpNNJUBAHygVdXMmQENT4FT8qyVAsT2KrGxWJkAzU6wBz+QlQHGzWfx7xyZA8Q/oDLNoJkApCovWcnMmQIlva1StsCVAwS25KiQZJ0BhOnld1GQmQFyk0SYZ8yVAwGDQqLbyJUB7Xu+G0S4mQGdAkzAi5CZAJandXZf7JkBfJQ06wnIlQAT832TQESZAlJW8VXsGJkB15B2Tr2klQO/aS4eXLiZAU/CsRKMuJUBBSsWAODgkQDdS+zdB4iRAMZm4UoSAJUB7xoPcCXMlQPGBMLZAISZAMNj6OfugJ0B72mA7FOcnQPsOp58w3ChAoesAkFp2KEDf8U2cMlQnQBfpEAMTxyZA/NWldHCeJkD1L/+I83snQEvRRHQaDidAcd3RPwofJ0AXRmbXQjUnQDnEoLh3WydA/agLQUMYJ0AVGdQcZNAnQMwfJAj6lyhAO+j6lWp2KEDnlneuUKMpQHMA4ix0jChAV7uj0r24KEDkRLohTyMoQIWkCvYfKSdA0/Gyo5UeJ0A3g9cs9lcnQDSDhYCCVyhAJRyCAILkKUCVSqAp4D4pQK0TYKUkHipAhCGOWjaKKUAzibjgrfoqQJl83MhAwipA2wDWoDpkKkD74QlOA+opQD2MIO1GHilAuc681ySuKUDM4Kt2pe0oQBXaejcqSSlAgd/kQWncKEAoARsMK+QoQOlqODm8jSlAweWIBf3iKUC/buueZjEqQJBF5APATCtACeGvQcOZKkAj65obBdEqQF2IqNzFJytAa6b3HfA/K0Acey7TzhEsQEPREfrHDS1AMBsjC5oYLkAX/7IxwdQtQIyonaHm4CxA72utUODXLEDPSL6r7N4sQCzkTPRdOyxA1zRqXHdrK0DpjEIIGrcrQKEZCWFlTStAZAGDlDv8KkCQ23sKJ/MpQMwXZKK6qSpAPyt99EZ/KkDcx6jyTHEpQORke3+ugylAiOoVwm2NKkCED35wcr4pQK3F6C5m1ClAV4G4+JNMKUDcvS3KQRspQFNGA7ExoypA4PPRZNShKkD32ltAJ4ErQN/bQL1cEitA/64XlGmZK0AZvN4YPOcqQLP2yneDLCpAlFWdYM2MKUBnVQuFltwpQPyDuR/63ylA45ClQR66KUAFj8NCFu0qQN0hNt0AGCtAnZTGw9oNK0D0HkqsJZwrQCT5wLiV4CxAFXu7FCdALUAUlus+wu0tQE0JA5bJdi1AsLAvzSU8LkBgIYwmHsAuQLzkQP+UKy9AcokgjUxRMEDBPpwXNj4wQBkAxoyEJzBAGn3hCUEmMECjRfRlwhwwQDOUmse2PTBAMWPCrdhlMEB1B5vKRWswQMdBTUq/kDBA8f/4pwTnMECopyOoW+MwQG+q6OQrBzFArVrVzBilMEBR7ddOo/kwQOfeViXvpTBAFndB2HRWMEA/CE45jAEwQJBiJ7usBDBAj9e0zLecMEBoMMBFjNAvQKd8IdBizS9Aw7P32DrVL0DpSei8eAcvQHDUZdAyjC5AIWDb2LSvLkDBEIka0SIuQMSMP4vOei5ATBnoCHhvLkAnRXmN0s0tQDkIBNRa6CxAuTColduULEDXlNl6rDctQB+2/PS6WS5A1ZQRm+oLLkAUC1VNSV0uQANjbaYG5S5Ap1enwbeVLkBkkGMPAlAuQHUchWWZAS5A7WjCtJz9LUBPUHQete4tQMmYWPGDqi5A0WKDpc3DLkDEnBv3+VQvQLycnI1w3C5ALfiU9gfaL0CJ2DlJ+hEwQHoFv+hzuDBADUGYWidMMEB3n9ypRjkwQETdP6kO/i9AbLrbVcDqL0CT3BhM3cMvQAM/mqr3bTBAWYo3d0yTMEAxLLLS0T0wQO8R/xKqaTBAwGBJjt/GMEAQfEjvGWEwQJm1Q8XmqDBAS+UqCNYsMEDQuWkASq8vQCPYlYerIDBAwde+zXRFL0A6iK/X50IwQCvmVAk/iC9AXfum4y29L0DrQZiWw2YwQIseiOM3HDBApWYLfGdyMEAshSOaoMowQBmFIRS7iTBAh+hdpvCWMEDBen17asEwQIqA1tGWwjBAYr5lXFtaMECcstX1+/UwQMoy3OW0BjFAA5jyJHiOMUC8ks8f/VUxQE+rZf6K7DFAfWetg+LNMUCTIjHLMvUxQGIn1ToHdTFAVcxJ7FRtMUBVGEHpNCIxQFtCcoIeRDFATF4eWdr2MECIpWMwamAxQLtlZAnXXzFA4pna+gepMUAW/vc1KLsxQFJ6j2VfEDJAKyZUPuLtMUC19eYTaK8xQGfKUG31nTFAq7FIFgZ2MUA0NwGDZFExQJsUPVLHljFAyFnlZw9oMUBXoPbKDegwQHvzLxpolDBAiQDUiLRFMEAwGclilkswQA1bzoO5hS9ATMVtjoh1MEC3BzjwhYwwQOialE6FKTBAKCdRtY9lMEBHe3TLF88wQO/FP1HAAzFA7Q4FIVHBMEBVtN5W6RgxQP8pnttZqjBA7bw/vZZTMEA7IFVK2X8wQMvMc/bwcTBA07JDpLYYMEDNNQEylYIwQOKLk1MmHTBA/btOluRoMEAgatadvpAwQMvDcrNVlTBAlvoifCWMMEA61oTRI1AwQH0WzTJkqjBAtYIn6wGMMEBMxIsvre0vQKG6PATcmS9Aw6lsKX4gMECkStkiSOovQM+tTfKjbzBA18QRHQYUMEBxEmTCGjgwQF4wq349uDBAHcXaWDGkMEAekCcTEKcwQJz8Mb1HjzBAEYAc+RF8MEDT63VU6pQwQKNgDZr/czBAz+mvoXZ8MED0gKKmFhExQEMOGuWkATFAg+d8XOOvMUBlkztnbjYxQAXMj+4ZhTFAfr0BqfI7MUAmJ39eNWgxQD6NPl8hITJA7LOJIE5HMkA/VP1YzMsxQCHdr9qeQzFA5+umxwa0MUCkClyKyl8xQB5spe2s1zFAyLIYyqojMkDHzoqNpL8xQO8dXQQvzDFAg3wVHyHoMUC9CMchaOsxQHipSn9BATJAjaojDRAsMkB4FZyxB98xQH618Yb6hDFA22LqxmG6MUBHXVwqfJoxQGRnoHeEzTFAr9iXYYWoMkC4gAU48xkzQDR/xr1eKTNAG6aW4GNlM0BV3vHH2xszQPffO/yF6TJA8cef29JTM0Aregf7dBo0QNigTGikITRAFX5gLjieM0CbOiOzm48zQFO1caNDkDNAfu2QKP35M0DFGbAL01szQLl05ihubjNA8P19FX6HM0Brp7ujSoUzQBfWh9H57jNAnD81wK+7M0AXam9ypUYzQBOxzdP7PTNAPDXMFcIvM0BknrSgQ6MyQD+krDGWkjNAKKmJ8EtSM0ATqjaT+SkzQJf0EbehBjNAUcqPlyp7M0DlM/YAF0szQBvEj26dbTNAudW8p69YM0BgCpCEywA0QN8mdBpFpTNAWho765woM0CdOyGDi00zQG2uGbq+AzRA8N6JixzrM0DDLfhv5y80QBbq9Dt0IjRAoeWtKgE6M0DQZodp+vUyQMh39NVyDTNA4jzbOrtAM0CfDwmyVtUyQB7SmPWL6zJANnu3vtUoM0CZddKgZK4zQAhpke/anDNAEqNBuMxKM0CJkxtWVv0yQEnl9PfKUjNA6o8u5wEZM0C0vs/nptEzQN1Za6P29TNA7bFE03dPNECgY0kbC74zQDmMTPYJ5jNAXopwC+SOM0At5pcSMD4zQFYyYMTWXjNA1eG8glyaM0DXVGSenzk0QO9+Nct4dzRAM2ViAN9MNECSt0Ie8aIzQIOzaGDirjNAn1ixyi08NECsv0j84GUzQOkL5fI9GTNAhf2XS4P+MkDnZ6+A1jIzQCfZHoE5HzNAxEuoTCS0MkBmlHg4RLIyQIWC1L037DJA259cgZlqMkBH9dW3llcyQC9aq5jLnjJAlUQLPUokMkAsTkpLPcEyQKqpz6cXtzNA65s75n7jM0D+GOBgMe8zQEl0FVbC5zNAtF8vE5ccNEA76f0sHVQ0QDk61RXgATRA8KN3gVqMM0DHVKXIQ0YzQNoYN7d8EjRAZSjH+obuM0AyIkT0+cgzQJoO9pAkuDNAHyax467XM0D51LV04uwzQGIPEHpxsTNAWArPY04/NECNGiMEVnY0QDmSk4DMijRAztuod42aNEA9qAmygys1QPvsj8FZ5zRA7QSHCLUWNEBsvxvXIkI0QAufn8VfazRAnru3Tb+dNEC5m+81zRM1QItxnF7O1DRAjYbtgUTmNECJ3N7B1FI1QF1CUfoXfjVA/aBLhjeANUBr6jMex0I1QNmirKB5aDVATMJoEmtHNUBpbYsxDfk0QGl7gaAZETVA/Wn1Q5cENUDdYV2XmHw0QPH7jsF8TDRACE/CFic5NEAhJ0srrGI0QM2uLHUuIDRAOwzHoD/DM0BpgyBw9pwzQMOchDP3aDNA85JxZi1MM0Clki9jnGMzQD0KGmWdvzJAF9L0+YLfMkAbBkyOlwczQDMoZcP/3DJAfjElMTMWM0ANfheiycQyQIhaJIsPBzNAyEO3MHbrMkApF0EdTNEyQB7M1LPIwzJAEzVX/zN1MkDkoci6r5EyQKCJFaJKhjJA+zoOXe4GMkAzphYZe0UyQKutWzB8zDJAy7zQIEf6MkDncSQWKb4yQJMWG9xaijJAJ64AElnDMkDLRo9ucvkyQMNap09yEDNAy0STCUfhMkAnTJHlJZIyQGWfHdwefjJAuI4CFLV8MkAYQypMtpcyQGt6CL//lTJA5p9NzxWCMkBzQQZJ6nYyQAKqTySENjJAn64hrOPyMkDRxdzhXlEzQPacTmK8uTJA51YN6wNdMkAHTdHms2oyQJm2x+XLXDJArxCcWxLGMkBxp5bGSvcyQH3b3ZWOyTJABcrVxh/VMkCJKMOuz7IyQD7g+FPppjJA/8MydkZoMkBdGWl3wVoyQPuoJnucTDJAgwAXdSOtMUD+oZWeYoAxQId+FHEO4zFAg6sr+/2zMUB6m7E6jvYxQJt/N8U8mjFA87I9Mc2JMUDpz5L6KkgxQEnACQ7IXjFA578LPVdLMUCWTomiOBgxQDUQjNHiDDFA11EhHlmVMECffLnAfYcwQCN0oWmblDBAz56NSv54MEDbAnYhuqowQPnYZqFNfzBADmAxDk80MEANy0J7k8EvQLM5yzw8fy9AoN9j1BEAL0C0vXynCaMvQOwyVGE+dDBA1Jh5Z8aJMECU3Nar148wQAFTMkwBgDBAHFmEhoDUMEC3JSvb9YIwQCGNXZeKyTBA66zSZcGcMEB53u/JBZAwQIlNIDyJazBAHaTw5+nXL0BhqIf+pyIwQLN1jejZ5i5AWyUY/fs7L0AMVMM+Gv4vQMXPXXizMTBApuQl5s0nMED5+BseCZ4wQEUSP/MG8TBAXsI9diJqMECf9SzPJ2MwQNVZpmhPwDBADTDXJlVAMEAbPAnTcJMwQOhM0lyBPjFAgBIsaamfMUDAtnEEONIxQKtiIbkxWzFAOvxXp9BkMUDbZcaGKHcxQKmWCnZc5zFAafxHGwgEMkAdz3S2jKkxQEarrixvQDJA8Csem6JAMkABAA41cvExQMn5Qi2CITJAu93kEoM1MkDyQl+A8JYyQGGsRNCVdjJA6f9KZZDjMkAwQvXDvOsyQNEL024z7TJA/YfcwUeIM0Cm153yzQgzQM757yI8czNAAL5YIFH2M0D8IZzY6dszQHQ+64DYVjNAYyjhlwwSM0AtDy1beXwzQFfFbJbCgzNA/60CpkhfM0AXxb2z9kM0QKvdDBTBEDVAQo6wDIVONUBzZ8mA/Zg1QMV3P4X7/zVA4O+sOrqQNUD7CGeOh6c1QL/v9NxEhzVAZdtXNSVdNUDLoaPczzw1QKVeaBupaTVA4K8PL1+cNUCrmG4u4qs1QCk7GUghuTVASfHvMnA0NkAAs7a0NW02QFD9KpeLDTZAT/w4dvsKNkAtzI31dEA2QPuC1XSOxjZABxn2i8PjNkDbG5Re4/s2QOwGthVILzdAi1F68vHDNkB3anLITUY2QONzUyAQiTZAq5KSt+ErNkAwjGQab4Y2QDRKQ07grjZAKDwkNsw/N0BByBuwkq82QGMLeCsYDDdAm/EFV7QMN0Dth5270GU2QLWy2w0XmzZAHfUEokYjNkDB1N3mH1A2QPtyOFeHUzZAAHcPSTLINUClI43RQgc1QHOq8mq2EzVAYdtAZOMXNUCACUxuBGw1QO1muC+xdDVApb6T6VJPNUDnR59Z5AM1QFkpIB1f3DRACYl0GZAINEAL1CIrCkc0QOHGoNtiDzVARzOgeI5aNUBpOHw+d8Y1QNzQ4Gwz+TVA9AamCeMKNkABQcel0+c1QBwti1b8qzVAsBwvAU+lNUDlOiBgb6s1QBTnNDwrCjZA3TElktxGNkBB9qC50B82QKvNFecvJDZAuf+gDimgNkCBZwpxsww3QDlj/omD1TZAE0sxMIFMNkB0Rg3E2bg1QMqwxirxHDVAVfSazTTKNEAFSPul4OQ0QHlVZYvJdDRARpv25zcZNEB+/d67xU80QF1uQJGyXDRAANIf9EVoNEDiBO0PIWc0QAvaIXIO6jRAPg1zAhbENEBR3UreDL80QNuBpQ28fzVAaByonTH/NUD/pu9VjvM1QBVbL7KX3jVA8ydaTtQQNkDghU77Vh42QI0Tn63XlzVAG6gwZnn8NUBMyqZnpqo2QDdplBkXYTZAiT/D9yDKNkB9UwEp0lk3QDh9EhRieTdAQ5iosdvHN0B18LARu7U3QJUyeVXuTDdAMdaplWysN0DzRyDcbF44QBQ9JAj7HDhAtbvVgxAAOEDsKSyq97s4QCFbDnHpGzlAdTly/ebwOED7347kO+M4QBvc/tCYuzhAzEQ6F+LAOECdYGgbQqY4QFWMSfIvxjhAxNJsiqnQOEBnPua7W+Y4QAGMJWyzQDlAXBbN6k1fOUDNqj80dVg5QPVkwjecnjlA6Zbfd5sXOkAxwrhPSd85QG9tDm3u5jlA3ZbXMnJAOkDRrOVyIkw6QJCTavR8LTpA+yIUjZ3iOUDdxG66Xjw6QF/pCqXEujpAEW6fz35vO0ApYbhXeMg7QCnPjXGMqjtAY5PausOIO0BXZpfvzEQ7QAe9AtqyszpAKcaJKUMZO0DbRugO3+g6QBM/syiaSztAxEz/5CRsO0DB6IDKWZQ7QIOBWw8qYjtABTZXZ3yLO0CkhkuS8aE7QPvjvlqr2ztAsx5xSMouPEAP19bKwws8QAfW2xy2sjtAq2Iq+C0cPECcaMGWfjc8QFv+AvlL3ztAdxYvLngMPEDn+DQiqwA8QPTlEcyOiDxAgLN+Sc5KPEBNDgCgDzg8QO0aU747jTxAAe52XM+GPEBnjtAPb6w8QPPsBJtP/TxA6OsiACSaPECt2ITabIY8QAxCxgQJnDxAN/vMgYrYPED1QKmdFO08QNwSO6ngAT1ANHhIZF33PEAcdunJphc9QAgKCY6XlT1AXzNBXIitPUBkn+rdONk9QHe7sqZu7j1ACU32y2hYPUD9pL9ywVc9QBg6ixzynT1AB5N0pVFsPUBUrVGbslM9QPhmmzV39D1Ae5rK2wrDPUDt/5jEL4A9QOTsCwXjhT1AnYUle7OBPUDMKKNXWuE9QKxQx1VNqz1AbxMDdccYPUDjzA4+Dw49QJXkW5KoEj1AOCEH/hynPUBlvlPpblc9QEUzDKrkxz1ASchOvtcDPkDHV4YglGg9QLe85+kOez1ADKOH/5RvPUAAXwQfqSo9QMsq4sCAZj1A4bU0us0LPUBb6y8/Ylw9QOHt5vKmDj5ACXDgHwlMPkCpAqejL5s+QFSqKBF9FT5AXecHgCe/PUDY224HEpM+QE9iu31UhD5ACVbRv1MrPkD72jsgfa0+QBDFrz0Fbz5AG/aujCfBPUBs/zIk/bc9QEC8lMPT9D1AqRMgR2VMPkBjD0I+TuM9QCEFc2vOdD1AKEwnEC2aPUCb6eL3CNs9QAEfHYl4xT1ACJkpfLizPUCHKNKi9TY9QCFO+l4yOT1ATQWjZ2PMPUD3cGqvWdA9QJ0659nTKT5AKcs/0D7lPUBBqx6UrLA9QJEHpOCSST1AkeZvXBjEPEBVjsFG55A8QFBdj445sTxAdJiZINEWPUDfgm4DzWw9QAF/X/CiTz1AUK8UBdepPUD19ypn+TA9QMwwUg6mij1ArKZ0a4nDPUCRGbvmdfg9QK8oN/0y1z1AD5x7TZFYPkA9EXZgjAw+QEw3LHyazj1ApyD/FQQcPkAI3mM6UYg+QERnatHiJT5AvwCI4UNdPkDJsDHaUWg+QJMdoWNmOT5As+p2G+tfPkD4VjKzNi8+QMgXKWGmfT5Amfa8D+1RPkDcmne5unk+QIcthRpk7j1ANX7odKTdPUDFDUPQ9K49QPvzJhLEdD1A1FTv7FgePUDIrZKSb+48QLUHaC6bTzxAbNd1lA2RPEDheEgTwBs9QCAR0GtzvDxAJK2C/LGePEBT21KvPKA8QH2p99jB/TxAdLqIL8UQPUB5AM/8eVg8QAQdB9DSMzxALSZSDXpJPEA5Ra0Geb88QAxwqP3pdDxAo39edYfuPEBvBkPEsxY9QD+/OXMSojxAy4Q2pe5UPEAcKHqTDXI8QL/DsSRYRzxAUSpMt0c7PEAohPquusI7QHuf//Or2DtA/ZipkCTcO0BohYBYils8QAeGTC78XDxAWIKLRJvZO0AxFvpSPgs8QFzMpB2K+TtAwZy25es6PECQScLaxU88QNPVH1TBRjxAqVj5SGNFPEC7ezNWKDs8QCjJeuMK+jtAA21bcOr9O0BJKauq5js8QDAZoGSHLzxAcSakxohXPECcG0Ct+b88QMx3hkTZsjxAO70tsGtsPEAU/ZrQhL88QO9eu2dF/zxABSz97xA2PUDtMbCENVM9QKvKOd2+VT1AqVtuzJpZPUAn0W0tW3U9QGG81Spq9jxAsWSEbmfOPEAYIqH7eGI8QLmf4efDwztAYP91c9/kO0CrMYVkJWM7QHVzaY0/rTtA1ATGXX4mPECIZBzpspM7QOBg17FSAjxAaIzVFGWgO0ATEC0YCHg7QCejIFcffztA0xwbRenwO0Bb+/xN2Ig7QCPBC7LsgTtAX9/kn21NO0DAW/NAtZc7QIUQQJQDXztAsEo8iP2NO0DUwtx7qq87QH+quWyuqDpAUI1/9yLtOkAECk+i67U6QFyBbCpP7DpAQQlnuwASO0AdIgke6Ls6QFTgKdRCrDpAVDa8fJuXOkCYSBiDW5Y6QAt2WQ3E0jpAWQNstd3ROkBL6eJKkuU6QPt79HnpXTpAPPN8GKUaO0Btvgg73CE7QE0G2TnslDtAE0Vk5eLtO0DXdESf2wI8QPfwQyAYizxAWAeAIuwkPEAdv8p0upY7QGznpRmIOjtArPKVUYUmO0A58jMdrtE6QOhobM8VkDpAYyA0AYaLOkDZpCVhlD86QOOx5eD31zlAHJgvgTKEOkD5HhVLQ1k6QNQ87JlsCTpAcdJwXUmZOUDpDdJS8UQ5QHt4MKI8sTlAt1SwxYEHOkA7O0OPWqI5QKli7TkCFTlAnRW7Cg9ROUA70WZnFIo5QHuRbBqi7DlAyQ2U3aX6OUBj3j1duDI6QLDvAImd5jpA1DvM4va2OkCfglVKgX06QNBnVx9s+zlAs44FmiYeOkDLHJoyLgs7QO8VAhdcJjtAVUNGueGQO0AZNrG2Vc47QAAJQJfmgTxAnK6QHqRVPEAUmxv+26A8QIWJd5DsWDxAkSS9qxscPEC7OXQhQkQ8QHA4rh8KFjxA4AMWBY/QO0B1qWzoEtg7QKNnxUdXqDtAgNuRr/G8O0AAGfiryVg8QKy3ExmLUTxAlbNRiiX4O0AjOP9crK87QATfv8QBkjtAM/ZfVJesOkCx/l1X+3U6QLRrwK1eZTpA4ESQv7gvOkDtVTTyOpk6QKHqeWvLYzpAvVGzhhsBO0A59ttre+s6QCwks0/4CDtAOVN1pEx6OkDDTuP70Ok5QJOz3o4UATpAGA0MiWApOkA48F8OMhI6QFOVnwFfezpAQ6qPzB/mOkCpHssIHO06QBlfRiULQztA4X7orKPLOkBdloszo1E6QGdxfLDRWzpAXeVNuswxOkA1j2AG8kY6QOkBx9fryTpA10iQIcewOkCnUY6wB6M6QI10CQGazDpAcFjGguBwOkDDWBsqx2g6QMtQwHGObDpAnKzqGEBsOkDcP6UY/6w6QBOU3Ia2vDpA3FkNeIFvOkDQhzeh3bs6QLVD4L3DjzpA44ZoJJDDOkDBAfmY6806QFt8SLAdyTpAY8fl+1FwOkBo8+oGf+Y6QFUJwBIpHztA3HoJ1tUlO0AnQuvvrWE7QKUQe4drTjtAAHkblE6MO0CvYcIQX7s7QPWKr3NJQzxAf80siNSSPEAkLmyLd888QNxhrk6vbzxAKyspwKB/PECMjfGl0kA8QOPZla4+RTxAMP72FqyVO0AddO9oEmg7QPTevqfpajtAITlStzAeO0CRmOedRow6QIFiuHLKpTpAp0sCvv0GO0D1tQSZm5g6QOPnvT0EnzpApb7JRZCzOkD5+gvvcko7QMFAU+FUHztA2GI5/kl7O0AoSQZMhZU7QLcmakKpZTxA/Aj1ao0CPEBxRi6w2RM8QDVuo54fSTxAJxeaB/JYPEAPqJDrmiM8QLTFZ8Q+ojtAELxdd8AnO0BrCrLy8sM6QEvwN9XIrzpAZVxollXrOUC8WaGbuAg6QN8kQ7yr1zlAxYtMTSDaOUB//5DgzyQ6QM87G1oMHDpAp62mkmtfOkCItvyWcpo6QNjPm0UdpTpAYV749zlMOkBsWD8nOpA6QCn4YIXOkTtAdNWkV0KcO0Df0M7xFeQ7QPtiy8La0DtAsa1ot3uXO0DQnYklGS47QCMHX/pJBztAFfP+6TtwOkBZ+hySf1o6QI9gIBkQZjpASP1cOhyAOkDg/Cet0XQ6QEc532Yx2TpATxaHviOTOkD/asWUKkc7QHmtydTEbjtA4wvPIIf+O0CMwWHJg6s7QPwhbI8u9TpABCjAQBV7O0Cvn5P9c9c7QHSqCBXZAzxArYZNWxYhPEBfk7Bcqew8QM3PeDRGZz1AVwnekbEKPUCfMkgxcg09QIFKowyXWz1Ary7qWOpIPUBjGny6XLs8QDtoWR7FqDxAsNbMkpb8PEA/pcOUSBk8QMHX8T3GVTtAUQj7Np+OO0At+rPJV207QIveoRLs1DtAn/30RSRHPECQk75NM4I8QHvO3z0+ZDxAl0XWHVuTPEBDyNFG6HY8QBgoz8DTSjxAvcTRpkQpPUAFkQQq+jA9QJxYQlKrlj1A2ItcANT1PUBcJW8bPbI9QCnrKi5vOz5A2deelhcVPkCNpwLJ2BU+QN18L2JvEz5ATCmFq7TEPkDN1L/eUm0+QKmLsEu04z5A7cBA/STyPkC4PtIkGa0+QGz2V1Z9uj5APKvbznXuPkDUBV0e+wQ/QEtLxLewdj5Ac5GG/UyZPkANzy+NpCo/QC3+B6BUSD9AySmE662HP0DH/FWyIFw/QJBAOqaqKj9AdzrowhWNP0Bc7i0ZkkA/QF3xh0yz8j5AMxuZMoqqPkBPgYyKtv8+QMGCQwh6Hz9AA5M7el46P0DLJW17uXk/QJVAlAwEcT9ApAixZ8VRP0AlZ9yoiv4/QF+JDpII1z9APM/m6R3MP0DUzUGwDz1AQBCahsw8MUBAB2gxyyQAQEBERlxAYIA/QPGS3SfDrT9A4B5pBtCUP0CYsFUcqaM/QKsTPMMvfT9AMD+T4IFdP0BByswUkN0+QFv2cEyu0T5Ay2ARhSCdPkC1m9Ev2dU+QGDs4qtwwj5A2Pc1nrKVPkAno0XauSg+QOMOmW0RFD5A6Mx0hds5PkD/2jt4sEc+QEEFaIrPRz5Al6d8pe9/PkAxfLi3c1U+QEuYUiEi/z1AjaqPFyhvPUCYueBKWXM9QIFq6yrocD1AH/JmknsTPUCvH9w+RUM9QD89AnhqfT1AGBFt/yQQPkCFC0nGraw+QBBcFi4Imj5Aeb8Kx4AZP0C0p0ijjA0/QIBQVsghST9AnQX6IO2vPkD8mw13j3k+QFC7AdPwiz5Ak5tV7KqYPkDMetB6Sgk/QJcHSH35Jz9A7wV+KKHNPkAs30mcr4s+QAdfknPNwT5AcC+xaLihPUC1g1Y7U0o9QLwKmSEtgj1AaGJuDInPPEA9/bcqXgI9QEet6wTHAT1AMR4VEMU0PUDZTqcLmus8QNO50vUx5zxAOEZ2c4sKPUDpgP+ncvg8QLkxRhpYyzxAr4BwMk9kPEDRw1bVuQ08QFVjND8HnjtA4O8MdY9sO0Bg9YOaFbY7QAPJpKmJEjxAmD01/UHVPEDtIjCPA/48QKsjlo+Uzz1AAT8B4y3QPUDLwJMe+rM9QI1H69gFNz5AeAF48wm2PkBXEokK498+QCAsu2lOzz1AEdNmyDm5PUCTfxbvRMU9QPy8IC/B5D1AQLSMMRfSPUAQ3t3L+ag9QKR+tqyBVj1AvHDeqgy+PUD3F7w8A4o9QBnlSZXQKT1A+VfGVPbFPEBVEiRAcUs9QG0RdsmuZj1AVO+refNPPUA4Mk886jI9QPPs6+Q0qT1Ar2c1fYeVPUAzCk9tgds9QN29/D7nXT1A+2BcjrjqPUDHbpYx4zc+QPOQyR+S1D1A5K3r6j0bPUAgj/lcIVw8QI8AhNQZKTxAkeGQo9HTO0DVOXUz3tU7QBRyhe1f1ztA565joIhtO0CUFXOO42Y8QMF5Ul9dyjxAy0sI66yFPEC9LXRFtHM8QLVxuXlO4DtAXSDPJm5+O0CbtM0Q3mY7QNVldg/FkztAkOMzVh54O0Ch8C/PVhs7QFAWz5ZylztAVIKz5DO9O0DoTFWsHmQ8QONLWuDbXzxARSf/QUZXPEAg3nF5EF08QCjC83wrnzxAS32OJSJJPEDXtuc/QgQ8QF0LAJgkxztA9Qnoae6nO0BLqpr3Ufk7QK0q+TyU/TtAm8it2U8aPEAv1m9MGnc7QEHgBHGMYTtAJavGoLusOkB5gUQ5nlE6QHiDizg+FTpAtwNovyLhOUA7u05J/gs6QE3/fO4BTzpADfnDVEFIOkDNPRAseAU6QEx3PnQzNjpAqc4jwP08OkDPbPZF2Zk6QAutVGoUaTpAhVX3sax3OkDhtdWduOM5QDztElLDxzlARzf+4eobOUDf+n0Ppxg5QN9YK9g0FzlAX9utMTabOECJ90i9xtA3QBWYF+maVjdArY+WSoHUNkDc4rCTT102QNXkvIwvZTZAqdOiWrTjNkCDzMPbui83QEC8maLbRjdAmwsGGPxqN0Dt4M/Xzf43QMUKpzebAzlA+yKrwUgHOUAXtrr0RFc4QCECXo4sgDdAqEHJXNfHN0DfuHRrL8M3QBsglTjTGzhAcPo2l+zuN0Aknsk5Zb43QJCa+CVouTdAo71fqKqSOECjcx7b7kk4QGgwqpwzVThASf7lCrlqOECMAgonJow4QPXSELmiPjhAbEhZ02rqN0ApHBvoTQk4QDi1qFLfbzhAh3Hvt4qHOECNdDZpKy84QGQUkHOhfzdAfHTSEuhzN0BjU9d+Fkg3QIN1mYn70jZA8Tdloz+NNkD0xWLY+OE2QDGMEIR1ajdA1ylQYVV3N0BYmMo4ut83QGNqlIgUazhA1GVuTnWLOEAoEKaG8gg5QJ25or+m5jhAcaJraJrvOECRJBJgexI5QHzTj1pU7jhAnQs8eH/ZOEDlaM2GzkM5QFc8vv+jvTlA9U4ZIzV0OUDVNQeXbAY5QJhK9EUoTDlAz544FpMAOUB4jzsa+7w4QMGpG2oufjhAn1MJOEeNOEB1qRCDva44QDesZFIaKjlAQCBY78tsOUDolfPLKFg5QNxDz7X/YDlAoCn/CywWOUDsDXJ6Hjc5QOjicPL0tDlAqPxZJI9xOUC7PBoqeWk5QOFWxl8OpDlAvCUsUlKzOUBP8Yz/pLY5QLurmtK0PjlAJ4imFpI+OUAwn9jN7R05QAMq2Rz+rDhAgYnwY1lSOEB1fAg6C4E4QP0ZXQkkWzhAsCq/SsUfOEBsvPBCPZo3QOn5+QpFHThAKci/k72QN0AEkBUnfHA3QNh5njh6IjdArbnY9CSON0BJr1IG4eE2QLv68XSk2zZAVDWEmxIKN0CvmT4UY6o2QE1S0sqWrTZAKXHWxZqwNkBkachUBYw2QNTf9CBIQjZAL+ilp/5MNUBdZPHY0HE1QFtniJyWZjVAPd4uCp9iNUAw05S+8WE1QLmki6TzLzVAZwW7ixAYNUCpEvwI1jA0QIObr0xRKTRA8nA0tp2LNECa2hT3PKI0QBtPweI3AjVAsdIAKmhvNEBcmqp4mc00QLcgrVAtozRAoPHN1g9aNEB9Dtqymks0QBjyrYLTRjRA3YtbW1EMNEClYx6P3Do0QOn4/HOwOTNAD7bhKSquM0Db0g2GIqQzQB6r9JCDTjRAuhZQOHRzNEATc9tu1Qc0QPVopLTp4zNAOufhdph2M0Djk8acpDkzQLGdkMU7OjNA1YnNsJbFM0ANs6f6ELUzQGi3mmTPdTRAQFtAGREvNEAOCAYRvB00QEz02C4kXTRAE+ogIel3NECpSyHNbY40QIMC6l721DRAJqKiC0YPNUCa0TU79g41QMBdbVIz1zVAx/o9+IDaNUDABFupR8I1QDNYGSeLezVAZQX7oQoBNUALP1WXeYA1QKjM7mkW+jRAFKWFM8itNEBPI8XBGaI0QOJ8jAmV1TRA5eKMHvXRNEBJ9fu1q7I0QCFN2+QgcTRA2TSd7KpzNECfezdLL+8zQH5bOkwK/DNAGBKzfe89NEAW7pla7tkzQEnexxRshjNAWpaa2Y4RM0CI9spbg0gzQINCytE0VTNA4f85sGqoM0DPYptJzbYzQI9Co4oHazNAdxw1NKi3M0BBviIX08QzQDW6kYQ66jNAkqoeB371M0D9m52T7JUzQC7bxv8FvjNAXQwQOX7uM0BHO4qXqLMzQO/MhiESpTNA7pU29jT0M0Afh/iwhHYzQKhTSx8+OzNAVatLei7xMkCcKtDXtccyQAYlUghk8DJA13HTnAKoMkCxATeET4oyQHREDFqHvDJAd7TmE0TtMUD/tAkCFlExQKsA0VMHeTFAMXhSDLlQMUCy0KF4dbswQOFsgxDt1DBAiUpv7ub3MECZwH7/QtswQCWm0dXmyDBA4q0EUsrIMEC9iC8dVoUwQLnQUDW/pzBAn29YwJOIMEBdTXvShDwwQOWloZA3OzBAc7AwWDc0MEAGkFWIBkgwQP9ZaGFMgDBA31IWyJoMMEAEBVdkEMEvQIWrEcuK6y9AVJmqDnpbL0D52TfAFoovQEMwygyyky9A10I9c6MeL0C5N/9eH6AvQIEMi3Q0py9AHy89cJyuL0Bneqy+5IwvQFUBiuVAVC9A5btlXvI1MEA3S9S0fNgwQPP7MBK+WzBAMiT2+f2kMEBl9oTWFcQwQHciXtQg+TBAhG0jhkeqMEAwZDzmP5YwQCt3sBfnYTBAUBalkiUBMED4UJl80ykvQOgLBLE2Li5AuEqmRNHwLUBRmNxtugItQDU0/aAlYS1Ao3Ju9paoLUDwK7m72VkuQJMMZMin6C5AlOKbciEVLkDxnmaAx2QtQLiSw8zBoixA35aN3+XeLEAMGZbuSBYsQNHJWb1oECxAlfLT+UnoK0A/0m479DMsQPn3f5BcvSpAVDCs4BVCKkAhxAHbVsAqQFwdbn8rhypADXZyOAlkKkDHJe2RT0kqQHgrAdWzOypAo8Ddv9lGKkAlklHoQ5IrQAuUc1lD4itAaVcgs7oXK0BjI3W4/O0qQH2ZjiP3AStA7K6COWv1K0Cs0vYpkFMrQGdOIVnEgytAeVA37OdjK0B3FdjTaDwqQBd+V1jfnipAZezjOEDcKkDTMhikjjoqQFlA3b8pUCtABONjZiyFKkBBfwdkikQqQEWxUoar6SlAM/6YNdo+KkB1oSWZUsUpQC8cgyiaBipAM4Yk/kEQKkB9aeyCU8QoQEW53FjxYClANS0YRbolKUBLa2Ng7wMrQFfYQEJwkypAUbcNsd7UK0ChBHCAoBItQFPHzTtHHS1AC9rwTxgyLkBtj/diwrQuQP2tQjJSci1AN47KYCOPLkATzPPDS80tQJGUsQ94Ui1AD7HGZ/5ALUDLI5n4Ch4tQAciRj6r2i1AH2yPBc+kLUDd2Kr8AlYtQDF0oyk1di1A2DDz39yZLUCkHoZ6O7AtQN/KpAMUpC5AQbFvk+x2LkDJijNngWQuQKy7wIDWei5AffT2j5VuLkAUGKYjUo0uQNSQw+Txoi5AoboC87KeLkDzYEpQmRIuQC2jLihFGC5A8/06RnhwL0Col41sFgAvQKuu5rBzKS9AW4oOJo14L0CUa6SkGJouQB3vR1fB0C5AjHt1dIk6LkDfpPYwvrAtQBcCpdMloS5AhT++vSSvLkAIg/Pw/YIvQBtQpH9OGzBALYloC+ZoMEC/ZC1b0eUwQPnNXZbaxTBALfJw5jUsMUA1hOmrlDAxQLaWQd+r5TBAGS98lG3mMEDTeeWoVOYwQNkuPyiosjBASail4+hcMEAgbeiSJNsvQLmEXS9BTS9Aj1S3D137L0Dz2WSECmIvQOU3ZWtGGC9A0Bqh04w0L0BltKD33wIwQM62OgkHkTBABzV8zJV8MEBNgzdMUZswQK2bDBjPMjFA2PfFd9AHMUBN9t0ezjkxQPVk+f5LfTFAN1W+4YdAMUBDoJdN6q8xQDOgmgnrjDFAUWjFV72tMUDoVThX6KMxQOP/tNYphDFAMQTIkFaCMUCkpuT4fr0xQKTjBXcl/DFAH7TyZ1hXMkBY1uxEMaYyQPF1f1q+RDJAzawm1CzOMkAB8dIodcAyQOh5R55jqTJAgEQVF6IGMkD2AVx66FwyQHwEMXxf7zFAE88l/wA4MkDhe4SnoOsxQC1BWlJjVDFAh2sMJBJxMUAdydm2u5ExQCxzKIFSgjFAL3fH/IHwMUBbDgvR/L8xQGjoZTUJRjFAL+XBJB8rMUDEIois1kgxQN+m6thCkzFAR3m1VPbOMUAocaBErk8xQFmT7xAYsTFAGYd8KG30MUBHRgHqIPgxQJV+DW4FNjJAOAjqfLx1MkC5lnf7pUIxQNoSo9U18zBAEsm4YO3UMEAxylKYubAwQN0PaTwfwzBApfV29iqwMEBI99PiyaEwQLQ34TiJATFACI8IZ4ruMECf4BGvAwkxQM9VkQhEuTBAperXltKuMEDCIE8nQywxQEhjFt28UTFA3bOQsDm2MUD8N4Zh5hAyQDPauF5ZvDFAOZHG5UAcMkCUQIOS8MoxQAcJD5CM9DFA3DdY0PDbMUCg3NUmJwcyQIErL7xrRDJAEee37FJrMkDPUDy9rm8yQDlNIhEnETNArfc5SiMwM0BdiLCTNHgzQHVIC/65/DNA9fpa5faJNECFYn7fDGg0QB/lGlWgKjRADTITVX63M0Cc3QzW69YzQGdTVQrnlDRAJZpA73czNEDnHnGjp7E0QD9XO3p8IDVA++3DkoIwNUCFJQa8CjM1QPvsMSAbfDVAZ/AZ019iNUDQvoDscXs1QFlQRLl+vDVAzM6HJStSNUCQ5ysia+g0QBnWagpI+TRATfFWD3A7NUAYjcKFhQI1QJogDLbCDTVAQRKbVXgWNUDn2UCYKSM1QFk+tcXvDDVAapX53HLGNEA6czm5NT81QMdnjtGQ3TRAsdBVwE4GNUA3pnG+E900QNMinGbaYTVAfUaW/3FaNUAoXFJnK841QEWe+QN3ITZAy7KlFJQxNkCl+DPbU+U1QDtuCI0/0zVAwTLkuls7NkCnEH0kcYY1QDXTYveYJjVAy3dOzifYNEDoEQay0bk0QBNOWlpYUjVAH/vJY2OgNUCTV6d1+Go1QD8vJdYG3TVAkeOiTUWfNUAwHZu8NyI2QJV4pgAEfzZA7PnJk6SyNkAfMrsz0J42QB8RIrz8xTZAD3BrrGKONkAUZwFnuoc2QIltDtuTGTZALJVWnTlZNkDnLRzZclM2QOt5RJA2+DVA+UHnVwvJNUD8TEMHTLg1QM8quv+xnTVAWf1P/GZkNUB0zkTfWa80QKe3bGfezjRAfLVaxVYONUB9H7uztHg0QO42OeepMjRAShidNkHQM0D44YdIvV4zQAZuUNwubTNAtzj/tkVoM0BlZzxZ82AzQJtch/bhSjNAqQzTGST5MkAQbWRxg1YzQAasQN62aTNA7p0nX62zMkCEyFsrAoAyQNxMRcqPuDJAfAFXvKnTMkDDwtRhP0wzQEV84BFjzjJAfQ6GnDRKMkC9H2a4En4yQP8GKieaZTJArGMnQur8MUDL8E6Qo6QxQMcOogZXbTFAJ2oPKe2zMUC3qHalYJExQE7yM0sDfDFA35p16gNIMUCr0qBCb3sxQJjjDOWNSTFAAWJ39CyTMUBBt/I2BYQxQPU8w86tZTFA0Wq3El6JMUC9J/6aQaQxQG3O0UzUzDFAX8ipsNcyMUArzibc5KsxQDjAwqnx4jFACeGwhi7jMUAn0ASVdGgxQLH2UBIm1jFAffO+EQyhMUAy26RqIcwxQBd6RfOYGjJAB1sse9PSMkDTmXEaT88yQIlzr/R6ijJA6XJmkJxhMkCTSE5DecUyQNmJM67Z3zJAGT0KzFUMM0A94T4tmPEyQJHSnM8uxTJAeWa1lm2pMkCzsKMoAQczQPkIyarGVzNAcKK5VoxVM0Du+rvjnJYzQNb+WsIvRjRAAXWql/IhNEDgYNFC2CI0QDHyH/KUuzRAZgonzfAqNUBbIH754G41QAXUrQFjdDVAiyf5FeeJNUA7P7Qri7s1QAjfheWNSTZAl0dK0upGNkABJozSwoY2QHt4vaBkfjZAbR3btRjUNUDFMZ1tRQc2QBBsS5g9QzZAtBfT+yYZNkBAA4dvxTQ2QPOxKONJUjZAKW1czoTgNUBgfZXMXfo1QKHwcYSD8zVA0KKcx8wONkAU3A+NSLI1QASvSuwTPTZAYL9mZGcFNkB/2iP/w/Y1QIABC59oPjZAlW5dpST4NUDjwCPD4Ao2QEsd6Z/oJzZAzT5YQquYNkDN8Dc+xJE2QCGzlvGpXDZAtW13BaMMN0A8aRNp5vM2QN8yj7/3MzdAI3Qob6FvN0AjWiYjb5A3QGVJqVSGWThAeR2Aok9lOEDd7p/lyD84QLz5pNpvhThAn3RtGq5IOECslARt0wA4QBcv7Q1gNThAfOk+k5r1N0Co9xHo+fM3QMF/JPlzPjhAPWoD52ArOECEmBvK0yI4QNk0i4jkgjhAYajLVf3YN0DbC4hxXhI4QIgu30mb/jdAoEW0R/EcOEC/a5jDq+E3QLjmiAEJQzhAhIFIsXVDOEAYy727VI03QOyTS2GI9zdAPBJkuiTTN0CDNrUgB3A3QHVJmPrNojdAOP/9JyKzN0C70M6XY5E3QADOVnzVXzdAPYynJAAQN0CTBRIsQls3QBCQh+yc9TZA8zCn6OxaN0DPM/QEr1M3QF8KqTYNkzdAdJXPGk5TOEBIQj/hG2Q4QISuLmGFejhAY274OrWYOEDoyLuxnmQ4QEkNj3RWpDhA5DF6PlqrOEAAP8gbBWY4QNf0oBOUTjhAQcfhSoBzOECwf4WOO/U4QGX7CjOcJjlACTNTwegEOUCn5AD46sM4QD1/rL2RMzlACebp3ICZOUB0LY37ejc5QA3de2n9IjlAuKVshV2iOUCIaoQonpw5QG3Ea17XBzlADJxzREs0OUAgDqN+GPk4QMiVttb0SjlAd+1cKSjkOEDrBeCZsvk4QDSYz/TQujlAiWQxRytpOUAX56vD+DQ5QDA4u1vKIDlA+yzsB+xnOUDDkHYxv4s5QCXZpUbrGTpAbeikRIYWOkAjlVods6Q5QK9kEQjmUjlATGJvhD9GOUAhGsyU7IM5QOxDHuVfiTlAUA5Qn2pbOUDFewdoqs45QCzKb6jYEzpAKE23b7A3OkC36kmpSIc6QHTj0auYvjpA5yu8aG2FOkAPipVj5Fw6QGxH81uSsTpA2+AMrNznOkA1Vvu6H6I6QI2s149CpTpAUEeC4LKuOkCtuARH8446QMDlj5eETjpAjIfeeXzbOkBYEsCe9+Q6QGBD7L3MKzpAH1eWQybVOUBXWUI37Kg5QGEhETBLTzlATUIFpEo7OUAfEqNV+to4QJN6lzBTvThAYS2tscNIOEB3CQ1g5Tg4QKuAl79AijdAEIsfJz6MN0AEtXwHjXA3QCXVsZNRbDdAhXgySCMaN0AVSG9AFv42QH/xCzzxjTZAXKyUHPptNkCtilXMsHQ2QO0uKNeO0TZAwOQtt+6nNkC9jQd3BJI2QB8HjU9WRDZAG61fqtaGNkC7J8XGH1g2QJ/R631NZjZAnXqqfPhYNkBBcgHKEIE2QDEgsSYS6TZAq6MVqhAaN0AAlVMulsU3QEMdNRpgOzhALOYkQjSBOEDJlNbRw8A4QON+k61hGDlAAzCKEVz3OEBHcFVS+ns5QEG/EMhFkjlAy1Jo+lRBOUA94vjZl7Q5QMlSpZ5tiDlARD3TvbW9OUB0zHYxK2U5QLfUMIVCyDlA4UVqrx1+OUD8XMskRqI5QD2zBlWUADpA2BixY7QaOkDUbBT5vis6QLxqcxHWGjpAM/SOn5RBOkDlDXKxdLE6QKxByAktcTtAcXP4mGS2O0BxFE5RHzg7QBXltroLCTtAvGp00pSLO0AlMl9hU/Y7QKmXzI+HjDxANRrgmlkIPUAJODYmZE49QFHPE+LfiD1AffkNTqmCPEC/HBjlupw8QF2P+sFrUzxA5JOtlOa+PECN1RSTIcs8QCUuxg1majxA18fGIPsaPUChS/lb2Sk9QBU1ENSFrzxA7f0qiNcPPUCXbdh01dY8QHC5+v8e4DxA4XOKSjJNPUAVTXbfC4c9QIA0oIPMaj1Aq8oK+WeOPUBEzf+wWWE9QFf1U/z7Rz1AbL57RiZcPUCd9qPdFaU9QIztUeszRz1A619q59GgPUBkUcHInN89QAf3I+qP7j1Asa/nDmGNPUCgR+5gdoU9QIdaHz1LJD1ANShOdNMzPUAYqdw73to9QAtAoQemLT5AmR+iw0uCPkC1ZTPbZPw9QOSCcHjH4z1A1cKf81zEPUDMcY3xUUg+QGvr6VI59z1AyQjINGK9PkAV2yFMAP8+QLyQOGLqiz9Ai3fENMQbP0Cd7uHlQoQ/QKcB20nXTD9AL/OhJyNZP0BrhBHz5zg/QKjhejOzlD5AZZrOH1RyPkDlqCMTwC8/QKFvujzdqj9AX65GtNnOP0D6LX0rpQNAQE9Fizz7AkBAmSSjcKwiQECt9SaTBDhAQEWeZHVIWEBA4ZbWuwZ4QEBAwl2hjHRAQMnJgAPDNkBApBIFGjJfQEDk0K2z2WpAQA80GijnI0BAOr/kKwgoQEAI9JNCWjdAQKWE2MT3UUBAuAQNvGJtQEAPm8ktyUBAQLYF+PUkN0BAK1dyJuoyQEABW0BatD1AQOUDMA0UFkBANV6Uc2RnQEAXaFEcXP4/QAHu3hlvGUBAzcTL7JAKQEDbA++dYJY/QLmTtUzsMUBAYBBkYu1EQEDl3cd/af0/QJfO6HRcyD9Ahue5+REBQEBtNoHLTr0/QJHHxwU/wD9AaWaXlES6P0AvMxla5o8/QNApZh2svD9AcpFx6YgHQEDHX1sLnydAQJVX/805WkBAaMYaGwunQEAbCBoWyNdAQBSejVguw0BAPnSPYA39QEDDx9yLfwxBQNGAvNgxGUFAj4Wq708fQUB5mLc8HzpBQD5pgzegcEFAO1HsrT+KQUD1hWTFybNBQNpmmiFXqEFAG4hO3GyYQUBQ5tE4jtFBQC+m8q+TqkFAUKeuV/3qQUDcmxh8XuRBQF1254uhukFAP3QTzElxQUDFqyezxIdBQFYOfYJqtEFADME+i42vQUAzpE2iR8RBQAzJWkvnokFAM0YaFeqmQUDjQkyUAI9BQMV60T/xwkFAqfjdUx3DQUAUXIsd5NpBQO4iEkYbOUJAnyh/TA1cQkBrQmchQYRCQL+ysAqeoEJAbk8xOAKAQkCTgB7rgbJCQCQlq8Yrn0JAfK5JhlqoQkAbRe+dzcxCQJNsMDiByEJAgFrgh6rTQkClM7LzKeFCQP3AnEhk+kJA+sqpH57hQkCz2wqaJBBDQAr5eZrV3UJA+0Drtvj2QkCPTIwsxedCQMsn/3WOwEJAOXDNqsWoQkCT8hmN/7VCQC3HiGuYt0JAMEO4Oz2sQkDf7D9T4a9CQAnNGb7dSUJA+HdAoZg6QkC/krRvZT1CQMPnSoGsHEJAaPuwFN8OQkDbm+MO6j9CQBXpeDPZYUJAH2nj87GfQkDkMWQG4KxCQDMXT5Oby0JAaaESINGeQkCzZjWlPXdCQCy9fLCOd0JAuf3gufPbQkDv4WgzXeVCQMM9lmRB3kJApKBFt+rDQkDujsbwaSNDQFr5iMPvGENAzZ1CLZr/QkCY3BnYESFDQBNRfr1+nkNAcbJj3u3fQ0AtYQDoZcBDQNHNo8nUZENAYlEunARkQ0B5DTa6ollDQGgYWsV7cUNAO95RtG2KQ0CoBCsPPFRDQK+4x9SJUUNA9jlRyNpJQ0CznOiUDDRDQFOVvhWdBkNAjRmSlH0bQ0Cw/1O1YQdDQFvSe4QOLkNA4WX1ejFAQ0CK0Osit0JDQO1eZLz+ZkNAQinv8j1IQ0BlWuWQlldDQOoACau2f0NAgwj446RJQ0Ct9Eehl4NDQEHwKTUcj0NA4xEZiLXfQ0AyjFfq0MhDQEtvdDtevkNABbKwAcXGQ0Cn0cu677dDQPWCXeHhkUNAR3HNh43SQ0D+dWLvjgpEQI0CsVXgEURAORTXo/goRECn9eYASklEQPKl5meJZkRAQ6ejPfdeREBxemiGSmZEQJbVFSWjgkRAIQHUtY+MREC9Bc/W/MJEQGwsRkQoy0RAlwObEIj2REBVbQOS2dtEQMguO2ghj0RADV2Yk5KJREDYXuIbA4BEQI6VOBO+Z0RAcYgRlTJsREDBFr4HRoVEQCX/svgBxERAq4hfOQjzRECWOapq9fZEQGN7XtXev0RAbwS8CT3+REBQc3n1TeJEQEaXKsHi8ERAKF1nnpoMRUDkkUrebSRFQE+IAPWp+kRAOGYPPWTjREB7yM6thiZFQIntRb2uFEVAYVB3TaQdRUApqlMOTjZFQPmE6/ZD6ERAZQIIHJ3hREAUfiw0XZ9EQBzfenBum0RAW1MRWZ1jREBEQG32sHlEQFT9/YaHmkRARoji+cOrRECfO2iWm/dEQPHCSwM68URA+xZM3ksqRUBTIfmbUCtFQI3SyaSBLkVA2P8WR0g5RUC5DBJRQTBFQJCC47yUKEVAd+9LZB8vRUDf+2t9ZQdFQDlRmv8H90RA6de3NXAxRUBT3/efvVdFQNmpcTXeXUVAMr8ge3lRRUABPsg/LGpFQIukssUapkVATFQZYXx/RUApKoCYN7NFQDF5x3D9o0VACS2OU4giRUD9pKx49A9FQGMiY/se1kRA+Zrpqx79REDlmc/Wi/xEQNcOpAhRS0VAEXsFWKQPRUARIj1/aglFQKWQTOOkD0VAYTzN+i4sRUBfO1wO8CFFQOXQedW070RAMwaxc0TlREDUxhFCWfREQPxBZDzdG0VAxAVeopUbRUAfAVg0FFdFQOHftQr7JEVAp6d1iAPmREDJXco4uwJFQOgci22vFEVAx4Hc3g0iRUB6L6Xn0BJFQNrZzkV2LEVAz7x8PLSXRUD0a8IvCVBFQHUSDrh1JkVAbMTE9ARJRUBQFVkPQK1FQLG5XbvJ1kVAOHCnG7uZRUCfDff504xFQFHGOf9r1EVAiK12RTDGRUCUhhsD5MhFQLhCBM2RskVAgKdMj3OwRUA1FAutG6lFQNnTX9TDbkVAM8AlcGgrRUBmSUUetvBEQLfWc/69+0RAlPRFybrPRECbdqGiasREQFV8GC6X3ERAKYzufw/YREBORxn29e1EQDMsMMebAEVA2ROmMgjbRECrOIA/eaxEQEVVFMCfeERAu6s8gUWDREBq+FZC34dEQIwDMnWV0kRADWBe0OJMRECp7/DedotEQN0x4R3+aERAs6gK42y7REB96p2WHK1EQDEv1yHUvERAO0YVG4CvRECnuWqrg7VEQB01g3jXmkRAayIHPijBREDjfwGGNYtEQFdgcTKTr0RAE7UMVLO0REBzh4wxvcZEQI8H6X2rxERAR1w/Y5vGREA5f6zj8PtEQLcNYbzG40RAu3kwCWa/REApKr4U8LNEQHN/hu07fURAdGa0wT49REAVuhJ4n1ZEQJOQMNH0E0RA99W46LbXQ0BqpZEqIM9DQBKnCKVmEURAJDYKjNL3Q0AfOvoY6sxDQCELIX20sENAO3Hn/g+jQ0BPjEigSKJDQBUIQRzjCERAx17V8QskREC4Qfxh1zpEQAwmvxjOKERAasByV9wgREDdmx2yteZDQBXziF1j+kNAe+fIFlO0Q0DlpxhAtclDQLX4CoTFJkRAXWEV5e1KREC0phEQ8CtEQFt95jInFURAhTDg0UcMREAnubG7b+dDQHP8nMlr5UNAWzDlCiIjREDsQv2cVQdEQECAvMN8rkNA7FdfkBWhQ0D6msegW51DQD+Wy+t1r0NAIiFUjlK9Q0C1YAPhsK1DQAeMhOIM8ENAQZpaIcpHREAnF5yLIUtEQMje8ZSMXURA78dRwH57REBpfK2dIJNEQNMJTeQ5mERAGZq2hzNjRECH+5SixI1EQPT9fEa/fERAkaKCWrJtREB7gOxSr3lEQJnbfgNyN0RAh/m1WFg+REA7If+eHzhEQG04bFhiH0RAwTIqviVUREBFMl2Ipz1EQGGZcXJNGERAk6TawyE6REDBpduMFk5EQFbfRuhEOkRA16RV5/JGREAdVi2w90hEQJx3ZzcwH0RAHfGB88PEQ0BDDSJTPqdDQB2C6FAGqUNAjpTyICSuQ0Adw+ht3NVDQOPUmdeIBkRASwDkPVA5REBR9q5mSlBEQFuDfo7YcERAB3IqtfpPREA3opURwDxEQPm70Lo4OkRArfnyUyxjREAVm3iSaF9EQOsm8bxdbURAA6PN7ixlREAdXTliWHdEQHnuxqyQvERAB7qukTHcREC6FPvYlP1EQA8LII8fMkVAcyUchwlyRUBFv7tXPY1FQGEaGcxihEVA6y9ABEeYRUCkgURM5WVFQGVes4dpWkVA5CwJwc4oRUCP/wzqhCFFQAJG/+C/7kRAhbylH3XZREAfoFIpKdxEQLOQZhPRiURAT7glaZSxRECGCoF9Q6tEQJX5bcU9zkRAN+azyusdRUBQKV80UAhFQBNkaIcbWUVAwDo0HkAtRUBFlbMbpsNEQLgDSHazEEVAzAxySQMbRUBCDzxt+Q1FQCedq5hZEEVAhQ7f63pFRUBYK32OoJJFQClw7+NUe0VAsGwKL7t1RUD5Jdj9ezpFQEPmGhkeEkVAuZsu45HYRECpj0Qaq5tEQKcs+fRmzURAPvUg1LnDREDW9cPVOL9EQAT4x1dxeURAext7NhdyREAzgBhFjFhEQImdU7uypERA52VQA9biRECD//eJXMBEQFmU9snb2URAearBPD3GREBtbP92mw9FQA8gjhkRLUVAT9HGa0UfRUDOQERSIDRFQB2SdkbtAUVAtyJ1jL3gREAG6gREe8VEQEMVqWEs+0RAqf+50JUnRUAnXAENZD9FQDdL0oQkYkVACdDtZ9abRUBsDR4HMTRFQJ1mp1x7XkVAoL8nCZZbRUBg2UG8T3xFQP9CwHOYrUVAHUGhXoCaRUCr1zgtKINFQJXszaBao0VAa6FT8qfdRUAw7ZEtM+tFQA9CCHXTz0VACdnoP3yWRUD1lwWzL7JFQIlWN8/drEVAbfnWe865RUChTeLymZlFQGEIi0Ypd0VAefa6/y98RUAchHhH429FQPlhb3nHbUVAw4cT+at3RUATNK6nBFtFQEXy0mIcTkVAwVh+gv1qRUDx0MEyfFVFQDfcYRVrf0VA9cTSK64+RUChy7UesbBFQL9OhTpitkVAUzPWCED7RUDrFnkZL/NFQCCFOlI00UVAWYrp2y+MRUDMKQo2t2dFQOd7wGyxZkVAnH7W81RWRUCB2SvCuVpFQAP4I45hYEVA0Rn7TlxNRUBcmVMBlilFQMiK1JReIkVAKEAhvJScRUALhAZiNkhFQPEJ63aQV0VAgEbwQN+BRUBT1+eaJ5lFQMCklkI1yEVAeceXQfgHRkALX1gLsfJFQNvWz9B3rkVAmJa6haeuRUB37woBrMlFQIeaoQ+s/0VA2GipF/L0RUAtmdPKJLBFQF07sFe1zkVA2F3iwz7iRUCLeMMRyBJGQAjVlM2BZUZAPyXmHllQRkCPwBbBh1pGQPBom7Znd0ZAjbnkhupXRkDT+OF6zYpGQNnwsUXFl0ZAw3XqQOqbRkAP2BhotupGQNcmEJ2M6UZAd+isnLvbRkClcCIae6xGQG/Fz0UIgkZAXd8n1maoRkDUx37jNa1GQHvkQ2WtokZA6F+5b+LCRkBgjrZJ5tVGQHxz5w45J0dAFD83QYs3R0D/JRa83xlHQGcgeO9N1UZA39+DXyyyRkA/nn4IoMNGQPXcGZrwL0dAQKwNsOolR0DtP53YRG5HQHXKl8TPekdARNdwPZGIR0B7OkcfiqNHQHjwfXZG0kdA+TChoQB5R0DFLApn0pxHQHWHg9R1tUdA5LfE+k66R0A761ySBstHQKTBMJfywEdAD8hVMSOzR0CsHmjogLZHQHi+hQLikUdAuFTeIcPMR0BhXFyDffZHQDGSjw3y2EdAZ7zv2KrRR0DdzU4nUJ5HQOlfspWTWEdAJFfNpVM8R0CTX1JOCSZHQI9fgqqNU0dA9F4ZPTqnR0DAcopTJKdHQHjh2SRiUUdAZVFw4YPGR0Cb4kvFOM5HQFUQOXEpm0dAoaVVj3G+R0C9SWL1oOZHQLTNmKVktUdAPPSk1WN/R0B3CmBawZNHQBVGNrDhj0dA1ZcvkUupR0Dpq6Tkl2xHQMGp/LuPQEdAkPXG3dL9RkDvVFnLGEpHQEchg9qkVkdA6dkfhmRoR0C3yeMXSGZHQJtZv9TnpkdApV7kHa61R0BvqMwrothHQHDFX6DIv0dA22wD4T7XR0CRrXZxawNIQGDgcariT0hA5wEPHPNbSEC30KDHJVpIQBkZGsWNXUhAxCCfUjJTSEDxwczpnytIQIW8umyZyEdAn35ekGLzR0CRlAiUicVHQMd7poz9vEdACA0dbV96R0B4ggQ9JDlHQGtjPWY8RkdA/3bXLytIR0CY4F0WcztHQGxkfvmpTUdAGBE14QIPR0CBX3ywQMpGQPWMlgxGwUZAUVJLD7beRkAlhLBY455GQLcOyPF2B0dAYcd4E3PyRkBsxlN8VcFGQHPuoZQu70ZAVFz+3ILcRkCP3MuuaRlHQCsW3kxCG0dAEDFS+f/pRkBZtS8vxaZGQMexS+cU4EZA+I/OipLBRkC7VzHmQeJGQMWcBxXSy0ZAeOjOTHXkRkAbg6QqAdFGQOVO5CWozkZAkb8WOqWtRkAfKV73HoNGQEga9CVUVEZAr+fy+MIrRkDAmd7AeulFQBXcmLg4AEZAhx6Gej4oRkCRdUl0NEJGQAA3mHMKX0ZAyWfPFqBbRkCHskFBDCtGQO/J3hOnSkZAmZG1jF05RkDVOKbRpTBGQJFd5QTMKUZA6Z3gM9xERkBYV4/Qui5GQD10WN2AA0ZAxy5QBUktRkAk1CoiKUJGQO+cdjhXSUZA332BJJdRRkAYrc6/u0xGQOOHzVeHMUZA/UGaHJsoRkDY44x5YwVGQF0B8tVhDEZAHNiLuRgFRkCvymAaRQlGQNlX96vnZEZAvG981C+gRkAdaYuixydHQHupwH0hAkdApc2nxRy/RkBkeV54j61GQBBECW2OfUZAUUh/YfpmRkABble6Ln5GQEcoVvWMYEZAv6glrQRERkABFGKALlNGQAw0sjUvVUZA1FkAoiQvRkDg+mBb8zJGQC+M/pVsGkZA9PbyDY91RkAFQ7Iag1tGQJ1ALZNih0ZAkHGfPEfmRkA7b8iznJ5GQAjy2y2zi0ZAf1qpmePRRkADNK49NrdGQHmIhgxtf0ZAb9qTiB9GRkCZlS0QmzNGQAuMPWx8TUZAw1/2wWxiRkDZi2j8nmtGQH+gVv5fwUZA2I4B4AkNR0CfA0hKCPJGQGTXPSpT6UZACFJ2q+r/RkAQWqdoiW1HQNeV76wuZEdAb69bpiZoR0DwTiGBD5JHQCSjnrDBwEdAr6TyA+28R0BP1ODV/dBHQGixyFBO0EdAOJt/5b4kSEBETZJn9QhIQL+F09HtMkhAV2VIYahrSECf2XIyxV5IQJyji0XfaEhA3Zm0QJtqSECoDluRkIpIQL3VBvqT7UhAd5CMLxgNSUCnJlyKgTBJQC/aA1smMUlAbXiF93A8SUAMyeeKTYxJQCecgpA7PklAhL7kogccSUC97tQIpfBIQO3OWQjJ1EhAq39sDPfiSED4pdV+yAtJQIU6iAdu8UhAaxZwFAE0SUDou+G/MkFJQHxDzJEdWklAuTyZWChKSUDterG6AyFJQAi4QsTJwkhAAbAQ1s/JSEAzNxgrvZZIQGfRZINimkhAkUNiDYyXSEAtiI4J6uBIQFGsOEYp/EhAdV27CHIVSUCHugu+N+1IQMd/2FuCsUhA3HW1WhF2SEDHTT2VpGhIQLvkMeFJDkhA2Yo2E+0eSEBNtLahjgtIQAy2kCanOkhAiSY3sFcJSED5oJgkvwJIQGV5s6+3E0hAUfwpUvAeSEBtgqUom+9HQK3hTVxg5kdAlTEofLTyR0DVGo3JoyFIQGPwq6sYCkhAhJNbSDM+SED0DkV/lDpIQM0qYzToUEhALyGcwdJVSEBs4pTJtmNIQI3ZXrmqNkhAT+rzxZo0SEDtDcpig39IQMA/A3SIZEhAPDYxU+BPSED5pOjXeS9IQFGxwks//kdATaT8F2v+R0DQxDmwLM1HQF2CMe+8mkdAuyd5BiqUR0CZlHW416JHQIxiCVt9dkdAoHdU2AydR0BoYeAS7mhHQCCh7fcYkEdAVZNtFIVpR0D4nTJxt59HQNMEThPMqEdAZ5LUlOmiR0B1KMlIF31HQExP5FCAVEdAlw6AW44/R0AAv0KjVRRHQOVfsAUvP0dAkPYvYRQoR0BTQ2OqsiJHQCHRzh1gUkdAH8g7fzZGR0DxsDTu5odHQBOHdjNjZEdAlZ1myEWUR0BsXTHw42BHQNUGfvkkWEdAQZUeeAqGR0C0G46O34NHQMQ9+pQxkEdAZ7aAai7rR0Cw2y398AZIQNl0q9yEGkhAFNJyXcR3SEDgsaeR2HhIQNPX4si8DEhAnOlWFrvsR0APqtRhratHQOkSmO8ktEdAGxxoqqriR0C48NEDsNlHQKsLOSoOskdA72CvIP5NR0Br2vaqXVhHQDFVYqgngUdACHHj2UZHR0B7u+K23vhGQAhj7oaAjEZAT1C9YsVHRkCTDXEPYk9GQCP75cktDkZAgOEZc0waRkA4T2tEeM1FQLiDAlJ4p0VAQ/B5FcOVRUBMcZ7MuZVFQLUyDrQtjEVAud5dupu6RUCdRWaYY11FQFtuZvJ0VkVAs8RyKv5PRUC2IS+mET9FQA03v52uMkVAnBuwV84jRUDv3XdGKFZFQG0u9MWTjUVAwald5UWjRUB5jV67o5dFQNf2hEKU50VAKVYLfecURkB4nwzCZ+VFQOwdYJgnLUZADPL9zTNNRkAo6lkn029GQLeuOhbWZ0ZAU/HsJDxmRkC4mGXaBJVGQKNAgU/0kkZA3KjxvrEOR0BciAyZcjBHQGnwGZQTaEdAI7WM+7lGR0DjjNyPQBRHQPGtMZBlFUdAoH2mMkoNR0D0CgtaLOdGQAXtmHG9GkdAgOk7SJvwRkAYoiA/G/dGQBMVnJx0FEdAuZAso5MrR0AzFHhSwCtHQAOHWlrkOUdAAUJAV6nvRkDEcbCtozBHQLtCuh3UEUdAM1PLrYhAR0CVuIbYrgdHQCCbu7zay0ZAT2qGVWe/RkB1OsVeAd9GQMkVTGWjDEdAe2amN9shR0DpJiXuyEZHQAE+83rpdUdAVxukmVGaR0A/KDejYctHQBOnnRjOv0dAX/9Q0+0PSECk3wxQ7P9HQDSl+logJ0hAOAvmy9A8SEA8kvWOpD5IQHcjZL+gJkhA5ztNWnTBR0BTcYBHN5VHQDdU3EsAeUdAsYNX0plxR0AVeDowM19HQKVPvelFjkdA7C00d+NgR0C7TbTEwT5HQMNJCngdM0dAtEcHQk5zR0Dr3EzhcGpHQDjFl0BMfUdAZ5eI8BRzR0CT9oMzW21HQPmbD2XhgUdAsAudW0a/R0AUVkY+/b5HQBl/cdJHh0dAzKqIEhHkR0C0bF5xW89HQJkyLvv23kdAeBnHwg8TSEC7XHetowxIQNGvAjQ06UdAGXcfwz4USEChVrWn+nFIQLPPrEubcEhAwS8dLSUySEADu6WvIiJIQNeKNxCC7UdA2PULA3iiR0A8bv9nXfNHQGx7zIkFCUhAXPMRjy0ZSEDUPETl0g9IQPHGPfqoLUhAU7z1R4ZBSECcZIToJE5IQOOJDcw2NkhAxQMRSJZGSEBYdapXokVIQNwKOnxTFkhA3NCpaGsnSECLORKMxjJIQJ1tUJNBBEhAhyecIuk8SEC532KztyZIQJyC5sO3FkhAsy3mRTYoSECHuMqBh09IQFziznTvXUhAT9YVdHx2SEDjP/QsFyZIQIQnGKxbBEhAB+Zi6EvhR0A5IwSW+P9HQBiNWcf88UdA7PIFsy05SEDsgEaGbDJIQCULNTflW0hAtOsRx+99SECzvOfPaW5IQKiRRZBKgUhAV4jgGM5oSEBbeVlUilRIQN2QQj/JQ0hAJbInBOoJSEBvaiEqk/JHQEDczTEUJ0hAmD9vdRszSEA90CKjjipIQGHwCB88GkhA/eNEWQcnSEAgiLkvqT5IQJwJiWjTWUhAIAAtv99ZSEBFtvonJHNIQCy3HrA6ukhA+DfIPx+pSED/kFZyd3JIQFDWW0fxkEhAePfA7vJzSEAP8Cd4WY5IQBSNeOvbhUhAUaW98kmASEDkSP88hmxIQLU9y/GRbEhAA6zdw1qKSEBNkDm9O49IQFeJkE3obkhA6Jb9oKaRSECrzSD3nI1IQPuCChQgX0hAtS/3S4NwSEAwGUyDP5hIQIF+zap8cEhAc53Kci41SEClzu/8jPNHQPgl6kn3nEdAQX3fbl+MR0ApsL1nwqJHQGtDrChvj0dA/BrO9YykR0BxAScP8WhHQDwgoHt4rUdAEfAmUS61R0CU0GTXJ9VHQKHORmelskdAy2Kul4HOR0AE973TaaVHQDh9W76Ef0dA05UvnTKWR0D/1YyhXDZHQNO3nzYbOEdAdNKX80U0R0APQ0MUMwVHQPgRYtyQJUdAuaZ6vKZzR0ADeOqBXXlHQKMMsv95jEdAITpoublWR0B4HVrHVkBHQABLc7ASQkdAa3ajFSwpR0CQo0zgm+9GQJzpsa6pEkdAeBLlJTu/RkBnd3YY8bdGQMhHebLXcUZAPYreiJylRkDwphxOEbRGQJBgApWzq0ZAgLQtk658RkCtzVsv75ZGQPjixv2bnEZAiJqmVxdxRkAQRvfeoWVGQAU8SRY4HEZA2eu/EgU0RkAHgA5P1BtGQANYpkcrHUZAWXjrQnMWRkAEgKtgpF9GQHeuiiK3QEZAITYtWaCDRkDwLO2Y2bRGQGX/JiCEsEZA93LHviWJRkDIwGX99nFGQPBFtUv8jkZArYdJ5/bARkC7Uw+c1o1GQJSap5MVjUZAn6HNiFyURkCvybJ0b35GQOzYTFk1qkZAvUYVZkZMRkD/cAQhblRGQD8avbkHPkZAsaaFxRNjRkDTuoIap2BGQB1RiE9cZEZA0LUnxZOcRkBDx8b9vJ5GQJwIYRtGrEZA0Tax5hafRkCsK21H601GQPvIfrIEekZA2JcYDpLMRkC3GvWCxqBGQGi0ePn3jkZAbdO/0BVeRkAM4W8smmZGQP+R5F71SEZA6YFkox0VRkAzePpk5z5GQOFbkwd/HUZA76lrUdgiRkDMZ39aPiZGQPutSr7L00VAjwDgL5z4RUA4jGNQbBVGQNCuZ9q4PUZAGAlzGZh0RkCw9WrJyHFGQHD1QSxDREZADf8VGKFKRkAHldbhDC5GQCOdAun7KkZAtdnCgKE8RkD5AqIluDRGQLfodrbMaEZAXxIb45FDRkDHAfNAGVNGQDUv2EHFhkZAh9ZOI3maRkDEHlwQzmxGQCk5F4DLfEZAV+ECeoR0RkDvSJPIi3FGQEPbc3qXfkZAq+fQ4jRLRkB8/yeURHtGQEiQYW2YTUZABarAwn1lRkAoOT73eFFGQGRRON7/OEZAOBh3bWpXRkBDEwfhY1hGQMNx5hgTm0ZAM5bUw7FORkDh2e2n/3VGQOmYd9Y7GUZAzLlQgRkuRkDjXMLYcTtGQDduVJJOYkZAletmVmFRRkAIoG3U1JdGQLAYxEhhkkZAROL2hqOARkDxR/p1TUVGQBvxnOfl3UVAXQ7pgtnhRUDjMEhXu9BFQLtOMWnVo0VAMSMPgyeLRUAXw8iDYkxFQPFqqBGUd0VAEar3URFyRUBsWRSaoXhFQDyhdy2EcEVADTZQVKONRUBsgD1bqY1FQF1JnBwqUEVAx74VqzYaRUA/Mfwf2HdFQDvXncOjZ0VALPL8r1qcRUAAPm9t3JhFQCckyQ9ahEVAYJLEAyllRUCli4j7ToBFQPuTX1Xk/ERABH+IkhjPREAZFsbbHYpEQHF7BI18pURAziNxQheeREAnRGAXJN5EQEUkwcFjDkVAs7hnd3EuRUAg6oqVwQBFQPNfEbHv20RAf14qQvG7REAAGNitgIhEQEmvf7zibERAsTcSsro5REBLLrMQiFZEQDxLmlmkgURAJBUj6S12REC/0hL8jFREQNNd1fYXF0RAGYDa5IkEREDTZZcCRB5EQJHNRxCIQERAbgfmXfFUREC6Mxls/VJEQJK7ZUQqUERAl7cqDjFoREB9qdCrmlJEQPEAqdtVUURApxut+asEREBesUFQe/lDQPDNeoaNFkRA7vXT6ZwzREBSWFOLoDJEQPNXa8pyUERAdsei329qREDxlHmuw3xEQKxMtspnkkRAVBRZf0iGREDhDzn4nlBEQAwh2z4rI0RAO5+70kEnREB3GfiWfTtEQIsbl/sUT0RA6NMLVoVHREDpnBCmbGdEQC+T8x3DgkRA7c1KBSK1REDn9u0oDt1EQExgE/R37kRAKWh0fhTNRECRvjfvBYdEQHPtJMtigERAQHC0j7+pREApSUOA97BEQAeQQbQm4kRAi+N5TR/FREAgkMvRmrxEQJ36BylkyERAvUW+7KgsRUBcJRIDkilFQI/x6ONaMkVA2XbU1PTRREBLm3dAkNFEQN3Rw3jf3URA/RCVnUcTRUCtCyOR8RRFQC0c8vn+7kRAJXwqdHL+REC7HnqcZsBEQFnZKV1ktERAXFEo7+CVREBpMJdW19NEQIZMOVMBv0RA3LhRRsrGREDHNrjxlNdEQDOOakKBxERAwO0fnu+0REARIq32/NVEQOkF3InO+kRALuVXp3QlRUDcryRMk1tFQBnUDTURPEVA8Q7n6KM1RUBDYVHyPT5FQEdk+Tvl7ERApqcKN8UZRUAntCqKKxhFQGFZtHLuOUVAEzSQG48bRUBt96egCCBFQLHfMicGIEVA4t6dqZofRUBFR0hbpAhFQIOKGqvfykRAlMHEysWtREDlyJo9LsJEQMMpxwBG60RAIo9Vjy3LREDGPkbCKwxFQEn27UqZE0VAFJh64PdlRUBQqzOAOoVFQJUALDcohkVARB2zubaARUAblfTYLqJFQA+O+STxpkVAqGVEDsuMRUAxakNam/dFQK31ngShA0ZAJf5jh4HkRUDZado3df5FQAFqtAfILUZAn8f07AYXRkAoe0jWTBJGQMWZa9Js+EVAqeHMSfw3RkCbXFpg9PVFQPVetOkR90VAkQm7OvozRkDbb488c/xFQIHR8p2aGUZASDcNVCEVRkDt5njGNRhGQMGv+bjv+kVAg/OoabrFRUCUO/2LRZhFQEOEiA0xbUVAr+ImzFRhRUDsBHBOiX1FQDvJ+O4XkEVAv8vXMpWCRUBJGXICZ3lFQKnXKiaEtUVAX0Fwn0rLRUCTmsPjhN1FQEVclledFkZAXXqGLeMXRkCbxt1WGzhGQKQHAptwP0ZAWVvLgNl1RkDMlciIRmRGQIn6q/dUpUZAY4CfCPDVRkDoEbFVsvxGQOu+sFRS/UZAfeRv2ne7RkA88UO55GdGQEXuletsVkZA/L6fQy82RkDFXT/ujDNGQK8cE7DnR0ZAZ36dOFB7RkDkNSQauFdGQIThFeSaP0ZA1RZ03yFZRkCBkrcV2a1GQCWWddPyM0dAXUljIaUrR0DdIT4fExlHQDS+2nmyEEdA7cstEVWpRkCYy/cmg9dGQFScuwKhzkZA3IpY+UiyRkDNp9C9JKVGQCQRDAVCrkZAf6yyE07IRkDzQ6ttkABHQFM0JzOREEdAbRv/1J0hR0DjhBhEA9tGQMHa/Q/LG0dAQO0nEP0oR0Bz9Y2AQhNHQNAN6ve1CUdAlXXjug0PR0DIFtf0WB9HQNhZar2uAUdAdTHscwQKR0Bd3JFtOkZHQCjb65uAPEdACeEto3w5R0DzCl04JGFHQEWGovirVEdAkTbO7yw0R0AUm79WDh5HQBHEmVTN3kZAEzfK9bisRkDDJ/xPobNGQIyHJr1BAkdALF3g2zIUR0DhgTYhfW5HQPkLLnC2OkdAeRIlWAMrR0C8xKFxsPtGQEQH6T2H7kZAxwy2BjnlRkBcAfCe3qNGQGTU5xb5rUZAALwAjU7oRkAgqEBDouFGQM1B1NTpqkZAf4VneQTDRkBj++e54c5GQAu39EjClEZA9ASBYnNyRkD1+vqrMXNGQCx5nzT0lkZAjXgZxqNCRkCsJX3IgGdGQL8YFeNveEZAlZ7VRft3RkCBkS7MdYdGQKRCEUIClUZAW/M5sqJlRkARI8ZW/WNGQMvzpU/mpkZATcITDmWqRkBNjDseHI5GQOF+iwkUWEZAQ/OvQWFDRkAVw6LNymFGQIt0STd0aUZAS6MC5hquRkBlt3GHb+1GQMGf+GUtxEZAl1gPEgo6R0A5BiSWvnZHQEUe9UWP70dA+YSlmPvLR0DM8CAioMBHQONrZFmk5kdArGHfxesGSEAnk1gophlIQMSbtRin9kdAZSiM9mPfR0Cj9rN/4i5IQKDxRZ46UEhAgCMGREcnSEBBLsMNWEFIQCOWEELGVUhAHVudM3VESECRlIPQ6GpIQGSixom/Z0hAFeq24E1KSECIe1sXs5VIQGzAxCNhrkhA54uQPAmvSEA00LxXxb1IQKeubNP5vkhAP/IjJoTFSED5Y3LRww5JQKzVJlD68UhAF93eZu0VSUD/63ENnP5IQIf6c1pr9UhAWCtaR881SUCVO/es8kVJQMjCmF1HAUlAq/Nlh6zSSEBkCzN6NNhIQBMBZfCbH0lAGAL6t+0WSUC1MVV9wyZJQIgoSicXfElAz/5+pZ9zSUDsCddXbXVJQOCSKXdULklAfw6/MScoSUAd4Hp2qydJQAyP0A4n+UhA9dLL6c88SUD1n82EmolJQF3tn9G9l0lAWBBb1qjXSUC3dA1Wqs9JQPmDdHOuHkpAtCPs9fMvSkBlz4kqTPxJQOtr7msXMUpA02U2tJhGSkCgvugy0WRKQHXHOGFmTEpApB9iYCYySkB8oE8mCUBKQHvaTp0UXkpAKKFmALZlSkCvLuGwbl9KQO0jj2uGXUpAp88ff0GrSkBIUM7VrI5KQMMHRVtqwUpA6MOAxO4wS0Bvvt+ONDxLQLkjErqpTEtAVaUMGh8mS0AkqFr6QipLQHGHQ+KeJEtA7TEJZHUwS0BTlfeLaGVLQJm5Iuh8aktAD+yz2vcbS0Cz6TA2gxtLQIN7bfmNVEtA//jnH4F6S0BP9nQRnV9LQC9YEyp9N0tA0CPGfTRcS0DjaIxiuzlLQDAKqzZ+GUtAF2lzDkLXSkCwtcyJH5FKQH8SGM6igUpAfbckkpV3SkC5toGgeXVKQCAO+SubQEpA4GcRhl4hSkAhlEjgmSJKQHEJfsxV9ElAHWJCsoTISUARijoOt8hJQD0lQLr34klA3TgQkXPPSUA4CzO5qKRJQMHsfY3LuklAj8QxAEOaSUCsZxCdFq5JQFBSR6072UlAAIUS6ymkSUABF7CN/flJQPcyLfD1DEpAQLQGWxwDSkDrLRb1UfNJQMSRmkGO8ElAK7SSQw3rSUCZrRMRqttJQGmZohkEzklA4G/a0SDWSUC45TdHJt9JQAGQtLHs0klA7Vr0LK3PSUBU8CtYj75JQLROGO7Wm0lA950aqEXLSUBMascpnOVJQLVwBuSJyklAycff7uUPSkAjLu8XrQ5KQGnilPKrMEpAxDhrBRpTSkB066mFepdKQFOsChGIgkpAB8qr7rYiSkD5acWQnAFKQJWG5nMMI0pAwcY4K8I7SkAktWbemU5KQGNMgAcOZUpAIP0jabG1SkCL8tG2uMdKQDN/BA4ok0pAO5EoSmF7SkAzf0l3dX1KQH9pa6QarkpAL6CvwdyvSkC1d8W9MMxKQENXUHnTtUpAP8cFdy6oSkBMCjmwP3hKQNkh6QWGQEpAHZJEmbpPSkAcjU6uqElKQJn7xfxNeEpALzzBETNzSkAP/9l3gHBKQBSUV9nugUpAAfJ52aKVSkAJAQUZM4dKQOUJqOD1akpA1NdjTdFRSkDAIr1+KzlKQP8MYaSiKUpAUy33Lt5jSkBjOsLEJXJKQDSkNDYXnUpAM/AB3FGDSkAf0skyF4VKQB17DNhIPkpAbwDJ20hiSkC13QkDNahKQFnvRUH4uEpAj4NGzMy+SkA5MaoVc7FKQO1+XQ2pfUpAKLng8FRQSkBdMjlrVWhKQHDsfgeRZUpAbw3UViFNSkA0NZbY/zpKQPOpw7vsVkpA1UEuu65aSkB7ALXL7JFKQHStHQCDfEpA/wLlmwVcSkBFnBVVx5JKQFELG6t+fUpAUSLbje/XSkCoVX+6Z+lKQKD/nHBr2kpAVMIXVnrxSkCgyP3gBCRLQEvybAWCSktAYOKvX746S0DrLcIjnmVLQGT8tBQ9rEtAbTai4/HMS0CQAUHSkdlLQJx6SEJzp0tAJ53CUuiwS0D/8l5LoLxLQL8Q+DrN0ktAkfX0MREATEAkybvjOutLQIP+A4yJDExA9b2ytQG5S0Ajj6lSj7VLQPhcwGtBaktAG7GIHJpLS0A9hBOYvm5LQGn+aIFcVUtAdHuhzxtzS0AcG7vY/ZhLQFnypEvhiktAL2UgzIhUS0Cnz1x+CXBLQEvBsJ5iaEtAG2nKEtiTS0BA+6xk+X1LQDzK3lY6bEtAKcgeiSCHS0DYtW72WZxLQAOgiG+rpEtANRqxc796S0CR4QCtv49LQEdYgjuvk0tAvV9WsCp8S0BoxOWOOklLQDWXYcwTcUtAEWJBJctZS0C0PdPEJDZLQPnIKM+mGUtAbX2WDiHUSkBVS5a+VtlKQOWeqUEGzUpA6YDYyPgBS0CEuje6cltLQKQ9RMcz80pAXexZ72CxSkANat+wM6FKQOGbjgEY10pAK81QuWndSkAIFFChhg1LQMlrc3lbP0tAzXIU7e9iS0CJ69Mq4mZLQLSXTnya20tACDqXeCC0S0C8GKl0aIlLQOH/K9i7QktAUI5EzY4oS0CNrr9XlBlLQKwcxs35B0tAqLPJhHLbSkDxkmwKGvdKQHRSGdRpGktABT+UmUXySkD1HyqJj1NLQOnbd9xgvEtAV4dEVFGCS0AH2apiGpRLQP/PMqLpY0tAzAH8h24pS0Bss8YCXQtLQBkzgzjVUEtAhRsHqmgbS0AbJHezlSRLQKQBexcmAUtAsI5vV1kdS0DVDEZ3gRNLQNsHzMU+0UpAAHBB9uALS0D4b7p+2NJKQLu8cNGjK0tA2QF9KJgQS0A8PjLEhw1LQPujLyw1KUtAu6Y/cng9S0D/iv3GYQVLQHzsxDsjwUpA/GzOHfIDS0AjCosTJiRLQLCm08cmUEtAm2oJfEEeS0AN1rQcvyZLQDW3m8WyIEtA/c8xLX9PS0DwydQEoj9LQAVMrV7fMktAbzSUEOsvS0DNDptQlEdLQEMwWlFGZUtADBKaS2OsS0DbaeBcHdRLQJvGEQ0DAkxA6/XoHBOjS0Bg0bcaZMdLQJzgTH8s00tA3XuSK4AcTECceMSQckNMQEHwk03mXkxAuJ7S0BFKTEAFUS9i/kRMQKlBsZGVc0xADQY7BB47TEDX+fKaYvpLQNDW4VDeB0xAtXpc+1rZS0AnQGyf4NNLQF3S6sK36EtAuNaqGSW1S0A/6ooYwrVLQNxptGFJ4EtAtMEVSZoYTED8SNcg7TVMQBMhmDGS80tAbGwjeTD+S0B/rV2GeC1MQF1jTRn/WUxAb6ghsYo1TEDkaJ/yAhhMQH+Ag7oZ8UtAVxH2TOdPTEAIpXCVkQFMQORTy9IlPkxAnftN6Yh8TED7qMUQRXJMQE22bcykXUxAN/sCxkzlTEBE71zzf89MQNfI6dyjwUxAOPM9OGKPTEDTUQTatKtMQCu+00mTt0xAIJgJjxfwTEA30VhSttBMQOT5hU7wekxADVCT9NdBTEBpX7oUuvZLQJkfgw1+GUxA3YDEGuBJTEC85o6bVyxMQDhPsM5/TExAWBp6V3oSTEAV6VzoWzlMQKR3nio4YUxApLXVPBC2TEA9dlbAQqRMQMtqpPv8skxArFv/m5e0TEARMMHBZoZMQHuf7EXfV0xArC2myGBkTEBZPGafRGVMQOPd+UboXUxATAVfOwE4TEBNyr6pNRtMQGMTomnIH0xArzJUkvxWTEAwE6+gNIZMQPWP8gNgfkxAX0Us6XdcTEAZprIFU2dMQKxMinMkXExApGq2wA9ETEC4MP2a4V1MQEB25aJXRUxAlFC05TEUTEDzaSQZW1VMQGzbbVl6VUxAUK09TKZJTECDrwhN2T5MQDz+BYwCRExAvXKAxH5JTEAJPaAb7BVMQGTKkyGUKkxA4BcMTt9QTEBXkzKm9lNMQFQXElLUN0xAiO9miKdRTEA9DyrpF2lMQCFzzxBOkExA1G11x3yCTED7E0cIDJRMQKdiITQnF0xAUCLbYPkOTEDJXSg9H/hLQLB+qPOC4UtA45xhWqPuS0CYVgnWaBNMQI9IUORiUExABY3kv8RZTECz8XNnOo9MQHN3gGgtmkxAPAfl6O29TECw9s7rG4JMQG3OIUMcn0xAfS4+aaDHTEC5FSaDgcpMQOu737ZqiUxAkQqg21tTTEBZIhBKvTNMQGPXvx78LkxAWB9raMdZTEAc4XAIb4hMQEQCJisWk0xAbKRumXKwTEAvUEmWLR9NQGU9lFZsjU1A/R/ygVFNTUD37sYDpmRNQM8y0P33WU1AQ3J2qaFbTUCb/rd3xyBNQMVjme+CP01AhWD02zljTUBTBMK3BXVNQF1WsE1Iu01Af/T0pU59TUCk7ARQj1ZNQMhDFTHsE01AQY2nVcUaTUAxa70YtlBNQNETOuVIaE1AV9ao7GZUTUDMrmrpZWVNQNSVKDK2PU1AWCesmMF8TUCRVu1ohGxNQAAr0kZOqU1A+xXVqkKVTUBcoYgD17RNQJTriXRJrU1A8MR1qEFtTUBLCdt94RFNQMkv2CIP40xA5EHur0nNTEB8p/fTar1MQFQwDAP87kxAXAmCuPXZTECBzGkfqvZMQNyNc+7c+ExAKMGYaocQTUDfowPqzhdNQJ8xuUS3Fk1AeN5TNsxFTUAX9uXC13hNQGTnkPZAQE1A5UU3mA1RTUCVmJhPcj9NQPly9HW7Z01AVWwVMPBRTUCB9DhV4oNNQHfgp0wpuk1AXdVlXVSoTUANuFtTlZFNQGxjSKI2dk1AAANhRKt5TUDJkL7BXapNQKBxit1Exk1AeDBsOqwxTkBFk6TCV39OQIu3cuBUqk5AryHC0oiqTkD5MWewUdBOQAC+P1Q44U5A8NT+SQXwTkCXJg3UYf9OQDWRJcP4zU5AkKT5n0/iTkDwTGJ4QYROQA2fjoGDWk5A5asGK7YwTkCHAsV951BOQED0Z2XRPE5AA6l30dEETkAp7kfs3OdNQLEyr/ZOzU1AS5PfEc3PTUCBa9DHzvhNQASt1B//Mk5AZWU80m4HTkDoVOojeQROQLPj625H/01AQ/cizRjxTUAoHnx2UtlNQHgD1R9Z001A9AhllCeyTUDxvJ8kW+5NQLwPlHVlzU1A+W3XlTFuTUCnOrx2d1hNQD9YjXswdk1A9HFTytpGTUD0/SXUVS5NQNWAaHCoSE1Ayadps1E3TUCDgL1z1UpNQHcF4yrLWE1AVTc9IcFgTUBzJywAlD1NQDCD2QKenk1AbMdT5R5yTUAwVYljh3VNQHuqAgfBr01And5UMjK8TUD/oaDCcoBNQAH8LFdmZk1AlWYQYL90TUDwsXjDOnFNQGDr4C8WZ01AoP+O0XWMTUBUZxJK9IpNQAUVL8ckZU1AhNWl0Fl5TUDXoTyNEmxNQCCIZJ3CPE1A40yObORFTUA5et5MZbpNQCOsHenzok1AWTU656C0TUAfTjMdTK1NQP/kTCFcqU1AwZWwylqpTUAxYIxz1u9NQH8phQJ+0E1AVJj956S+TUCUGSfqyR5OQKzjohAR0k1AC8TpHqCzTUDs2+cGq+lNQBxAG7Ezvk1AwG8/ByceTkAtJMZ8UTFOQHdutfZaFE5AdYidxbkkTkC0AiFMbitOQFMjGM82GU5A1xMGRZ8NTkDxpLjk+7hNQAx69PLZvk1ARAt+zPiNTUCzZ6+lRnNNQGjf/e39qE1A84CKXmmMTUB8igscG5JNQMerUZL4vE1A0N2tyFmsTUDwxvZt4oJNQOclZdatmk1ABULm716QTUCQX/SuQJJNQFeVxCV1dE1AtSvQ0PJ4TUCsry8GwYNNQGc1IrcTv01AD2l24neKTUCXBMZ6GSpNQKvf1i4EF01AzdJcmW8KTUC3vKgUueFMQNwVUs3pEU1AF+BN6tLPTEBQNv+rWuxMQGRhurwXC01AddM7UjbmTEBJJarR9CVNQDALplmoI01ACHWX3wnoTEAbXd+cGDRNQCxv8OwXN01AO5fC/BMWTUCI/aJl1+JMQPu//4z+3kxA/ElGrEXiTEDvS6iehM1MQPgyGIqNu0xAecnYpq33TEArgUUuZPNMQJXFIG4Tz0xA7cgpLjS3TEAktvysOfBMQJlPPvmMB01Ar47GtEv/TEAQw38F56JMQHsr1Wzcn0xAqD5cun1WTECQ9aunsnNMQCAGnS1sfExAvA3LYcOcTEBRPcWugYFMQKctWN8ec0xAJP93/5FBTECI9MHmSe9LQHmLJTrSGExARLM7q4wfTEClSsBYDRNMQNCjfbF++0tAaLuxCZe2S0CzwxD/DZZLQLGfxOLv7ktAqRS1EkURTEBR1e5c5RFMQHnXmQN9VUxAZdPwqIxaTEBLnO6x4hpMQJEULy8WCExA1NT4AXLrS0Cj2EP9/ddLQHsOrsiuEkxAH7tJt3fhS0Cg+zxwNMZLQDcyxb4Y3ktAEaegbUvBS0DZN9DZN+ZLQOC84yms10tAYC9k8TeyS0D5dED+ZKZLQDR0RW3vxEtAQOGYiuyZS0BZhmj7zJJLQAwj8Bgbl0tALLmKqJnZS0BljXzmx/lLQGxjCd9I0UtABdkmKr7xS0DEum1mVflLQDH8rSHpDUxAaWZSa0neS0CHZU3R9sFLQI8BmMv74ktApHNB/FihS0DxW0G3WddLQLf3UOkHw0tAONY8uZKtS0BoyvLOEMZLQESDhTm0q0tA8P8JjcbBS0CxbiiOzqZLQFx7ymKGgktAB7rrNceHS0AlWTMVdqNLQCfGBR/l8UtAwVho0fUATEBtLQSDtPlLQN+dLkv2zEtACHQROwbQS0BcOJSix7pLQNgqxG7OwUtAPaMG/pfRS0CYZZT3IsRLQFfUTy1Qu0tAu4wtkNh/S0BpLD/U6kVLQFvNUI1WR0tAADVwMeRMS0CnvnHjqX1LQC8ri2bMFUtAcQHGFdIkS0BvGeXzUu1KQM1v20ypokpAqZh+UPyFSkAM65cZcmlKQM/Wq3OcjEpAiVJMO2qjSkBoAteUtq1KQNDtWwmYo0pAh/IHzWlgSkAdUOsRHDhKQGvIjpRcNkpAMdKHz9McSkCAjvfAKixKQFwFR0waLUpAG/PHNW4nSkAkA0LWtVVKQPz/jFXXNkpA15qYXr8/SkBHfE0C6UZKQBQLCfPwEkpAdD1zYZb2SUDhmEekjhdKQHCUWgMOM0pAzTKNRv0GSkDdU+LZOsFJQLytnaBTzUlA8x7N1XN1SUCUxNIjB15JQFEy17C3l0lAnGPJYl24SUCPOxIPbcpJQNwdKWcL50lArzaJFN44SkBjsHQRVV5KQFuBFJw8KkpAIRQFd79zSkB4C0NsfFdKQBgd1ADSFkpA7BMSkbpOSkDk4V5DlRZKQNXDA3OxWkpA+QZH+bZiSkDduBz3XCdKQDm4m7L+G0pAdazmj3wdSkAcMzPWsoNKQNjePcSDYEpAHE0NrhGLSkCZFGgbw7VKQHFnEKxfi0pAHEXUAMm+SkAfLXEsyL9KQLSBR+9vz0pAHD/hrYcTS0C9jCQEavFKQNxMiIlqBktAVKthUYtAS0B5tROAfFxLQHOWXLTliEtArNMLpvNyS0CFU/E/pFRLQD2I4TzzYEtADROF7xOUS0AIyKJnlYZLQN8lkIv5cEtAiLi4XwJMS0A75QtG2ENLQFBp0pkLZEtAT0lmvaiAS0Anz1wpyXJLQGM0pLiDMUtA0G46SrdOS0AI4Ti+g35LQLvQaYlGl0tAnEQydBZvS0Ac45tF45VLQIC0sBSBjEtAAKK+zMBqS0A7JhTBC0tLQGT8IjcoJEtAeNy0cev6SkCM3MuccyxLQGlu69g9XUtAOywPxtIES0CPp3Cjzu9KQPUgrgEcukpAl3eop+mRSkBd81Ai/4hKQDO06uKWUUpAn1MF6bs8SkAR1pbFZW1KQAw9RQk7ZkpA7xK75fh8SkBVlQHBIOlKQPUTVeOZxUpA/Rx9/WujSkD0Abwzj6RKQBk5TG3zuUpAIGxTKHeaSkClixnHl5NKQPH9i3Bl20pA5xo90ArsSkDFfmT1L5xKQFifVXZcy0pApDEmNFe/SkDviyBvX4RKQCPAqldEm0pAH6zG9KqJSkBAZk/r6kJKQANapP/dZEpADOQWBQ/2SUCxjrNiFfpJQPj+n5oUJUpAZY4tL5P6SUC3e3SK9vFJQM/nkz4UwklAx9pH+cdkSUAocSC7FndJQEkN1wIlT0lAt/lDh3w1SUAt0uzMVHhJQA9R0yRGnUlAoEiLXwWySUAZjJU/iqtJQAkmqkeDwklA9yZKiQKcSUCfy+fk3Z1JQDskABRWzklAqw7Y6yEPSkDrHAiZ6RtKQLQRVHv8OEpAqesxRQ9pSkDl7DE1+GFKQO27s6UrmkpA/YyYyG9pSkCZO66tNiZKQCemGIoNPUpAfwncgWHTSUABWiVbefhJQLl/zl4XPUpAA2YbvP88SkBM3RyrXf1JQCsJTok/NEpAOXCOlJhmSkC4aAOopf9JQN2/4J4u0UlAvT5xdhaqSUAk1hvRO7lJQFjKG13MCUpAY2uUV8ftSUBTFHJMQvVJQCwTAYLX3UlAdbrpSHHRSUB/Esb0MOFJQAFQj/0aBkpAR35VVoD6SUBPiMSlRA9KQKiByvOZ+0lAa25RRXL8SUCpBlKPJPVJQAknsT5r30lAZcv0w/3gSUA3NwMR7OVJQKfi+/QFzklABQuJ0PCySUBU9Mdjdr9JQEDg5oVD2ElAV+t3X33QSUD9++9eE8dJQMesg/z5pklATCHNFoVuSUDBUS3EdG1JQJiwoAShJUlAXGKSNm0NSUA42X06WfRIQHNtRXIn50hABWgw4REPSUDvyeI3IhBJQJx5qpyxTElAWUexmA9OSUDtRDDvX25JQGHrauzYPElAe8Wa5JU0SUBVToG9PDBJQCACI7q7H0lAFfrpgEEiSUCJw13h9e1IQF+J10UOl0hAOBEhN+TFSEAEvOu5oxpJQG1iOGdHF0lAbbHlQOM5SUCg/UwuOihJQEuplz+LKUlAg7hIoYw4SUDHkzVS1E1JQIfTQZxhdElA0ZgMOM6YSUAsnEsHrppJQEHLDdUOo0lAOKgDCRiDSUAh2T39H59JQESdnMXqZElAxKaVpKBESUAJnWfolTVJQJFSR304FElA7YVnUNy1SEChMqy4M5xIQHNhzrnHTkhA0dbgfTZhSEAHlFYxN2JIQEjFV4ATfUhAfBgvTZMmSED0WwaV3/RHQPNtcWB07EdAEfjO9ahUSEAoUEdx3E1IQKVJC9CZhUhAp3/RbzV7SECUB/BPdoVIQJTaHUhsgEhA06Cbphr/SEDIeYBJ/y9JQCc0u0qkEUlAU+W8OIXkSEDBbbCNfNxIQIXD9BPys0hAvQvGtfH+SEBDxub8wI1IQANiVnhL1UhAqyvoxK7USEABWClgYbJIQE0JFkjwwkhAaPld5tQMSUC0AbzHdN1IQDvG67CF2khA/4o2IOggSUCdL0XYvhlJQBwFIJCLRElAvcY2CicJSUDLydrNVlFJQLkfLgSoGElAGPGOe43iSEBfkhKIWVlIQOTz6uSeXEhAsQJiOe+ESECD0dtuKlhIQKMP1ugxK0hADG/0b6gnSEDRq9jNagJIQKfD5QRVCEhA4NFmmx0ESEA0EX0t7D1IQP2TmeCudUhA5XK+AKR+SEBXh2MDNK1IQAl9301fy0hAgFGDZB0KSUCrr4D5Le9IQEH0rNexvkhAfAp/hAV8SEAn5yK2xXdIQBjlbS3BVUhA9VJYumuaSEBJeqqFGV9IQE8DzRIKdEhARaY/2utkSEAQowytDFlIQMUAO/XCekhAR2NfoPYMSEDIGyy5RttHQGi6ptXBCUhA29dcLYoUSECdS2ABJxRIQImyE+DbHEhASdvWJJgYSECjlgAFNAZIQAmCMpIi40dAiOduZ5QWSEDxhHOgnwtIQMTdl687+UdAqVLIMn70R0BjXhAkisdHQPf6587zBEhAV/cX6PszSEDVfWyzUVxIQG+VYPyJbUhAQTNfzAZwSEDXxpAdJGhIQMnfWv5cSkhAnz8d3FEPSEAwpKeSEQFIQEFLD5cr+UdAcWOgW7XyR0BDTSvxKcdHQCVC6xn+B0hA9eNOTqZaSECYXfCCRU9IQF+Nb/HqW0hAG3DB0paISECdYowmLppIQN1lV0HywkhA+TzorBnFSEDllK0QNuhIQJBr0SdJFklAs84hJmYuSUDfbLuYyvNIQBO95DU1JUlAiLI9wMsJSUBAMfQN4+hIQCyLaWYhtEhAJPqHnXaySECH4d7uypxIQHxQgVVWjkhApfJRcfRtSEDJNQqVEt5IQLkfSQNyEUlAsDTg9urLSEAYYO51hLBIQLCQ1lFcZ0hAS1RT6DWDSEDT7m7DyoNIQCfHyrITcUhARL5wyTxISEC0aWY6vyVIQLVDf4ke3kdAEQF95QHoR0A56hfZIdlHQL0wf5fez0dAI+4Fmfu4R0CIJGovf/pHQLCuHb7DJ0hAlfAz7MQjSEDIAgSdzPRHQCyt5UsKwEdA1eg9HA1qR0ANFP8bd3lHQEesWQZwOUdAA+leE6A9R0B8BRkAvVJHQAFhxczKdUdAwwARwBhpR0Cbsg6K9VZHQImGELgFcUdAt7F/uDlVR0BowqKwQFtHQP/QY9CfJ0dA7Cd8WBgHR0CTDY+nBUBHQKco2pgRCUdACwUyZuJYR0AtCJI2ublHQCV6yDwCqEdATL2H8rjQR0Cf2Kd+v7JHQAuu30WFrEdA7YQEE7v/R0BR7sWIUvJHQNcZCIRNvUdAUziuF+6rR0Dp5ol7JA5IQBB4Uvl1zEdAYfwFPAztR0B32aPSgfhHQGjU+E+dNUhAF1OWVqQrSEBHqz5ef09IQGGjMi6YMkhAf2KTrlhUSEBlebLpvRNIQNiVSOLSDUhA+37nE9s0SEAnRNClsjNIQPHXbM5PEEhA7cwEXe3VR0BP67ueA9pHQAs2lGGf9UdAbwjD3+AxSED4NyieKFNIQPgTBFinO0hAO5DW210CSECvn3eQzPhHQFzFu/qrtUdA+e/eU8p+R0ATOaei4J5HQD+j55qdhkdAk+DMQF6WR0C0tiZY1EZHQCXhrrfrBEdAyOio5XjlRkA9tgUh6bxGQDTn+k6SlUZAg3RYVfF7RkBzJIsCeppGQLlnC8N1lkZA/RqFnCR+RkBc7XRlmU1GQGScyoOX/EVAF+S5dGjZRUAPiDR1vdpFQMEkGsgwoUVAnJ8rH2uzRUDYkRhxostFQAnZYdgW60VA6Ns20Z3qRUAlPScbFipGQIkm7ZqBR0ZAJwAQuq5iRkCrtsFlkGNGQIdAu8wSJ0ZAM3LbulNGRkCxqchE6TxGQJEEHg3MJ0ZAEOKFAs0wRkDBz0KMIylGQGtSFNnOREZAD0bARJhjRkA5fFuaKGZGQKyUcHK1F0ZAudlIL2IsRkCnXcSrIzFGQCWU7nkyk0ZALLFdayZvRkA7qt0jfItGQISFaZeLmEZAoHfOn2aNRkAlcAzlVWFGQGyOn6vLcEZA5/kmy7BvRkAxFO4ytXNGQEP0lXaiYEZAFcfslgkcRkADTdT2lilGQKkgd0KpOkZAEZmoimtjRkCkYbjAzVlGQCiPTlsrSkZAiwcb+3iIRkDZaZhbim9GQOjtADtzXEZAr40M/YtYRkBJawpqkqRGQFwv5KlPpEZAq3nPfwt5RkDs+FC9xqpGQByjyJgnokZA4FE4PmZFRkAUoB+KoEtGQD/OSW9nd0ZAVXKmtU1PRkBNtWb9OzxGQN9F3HcBGUZASHSnhm4sRkDUz4FRz0RGQG9UoPlFG0ZAkN+JbFsYRkDFhHc7Pf1FQKT0MjaxFUZAcxYjlNf5RUC7PrzvpyhGQEn++71OM0ZAk8jdLntQRkA8aFQe2nJGQO84cSbYTkZAhOl4mx0PRkAB5E+VKO1FQH0972SsVUZA8frGoEkoRkCD2ubsrRNGQOdnVMog+EVABUVXQidORkCsgxlzNmNGQI1sVhFNdkZA2wrPv526RkBzYeAXsNlGQOgaCyaaAkdA3a+Tq6j9RkDdfkLOqOBGQAyJ+jA4x0ZAywqlUpLdRkA5S7x+OOlGQH8SCizB8kZAjU3KnJomR0Dsgx5rofhGQM+9ayCA30ZAu6GMRnpvRkABisMfDmNGQJhssNi5F0ZAjf7vMS8kRkC5g7lax0RGQA06gJsEW0ZAU971NfAjRkDjI70JQlFGQNjfOH6eW0ZA6WBePMOFRkBRhRH75oBGQOHUB3tPYEZAH6mfGJJtRkCAJIs6+Y1GQKHshdiYyUZAaJXm3MunRkDgxjF3kYNGQKx5bhlMhUZAJYGPGaL1RkD/mlBtv/NGQGNH3F4kx0ZAG0JfcVfmRkCcaEiqbrhGQIlEcLepy0ZA51BGLBGgRkAxYdWHI/RGQMjRlW4rOUdAY+9KT4WdR0D5jm0H3mVHQDz+BlVXTkdA2H+7DbxrR0D0Eisj+LVHQMjyXeV7CEhAZHEi6+cQSECkp5CTeORHQL9Bu8Kk0UdAUcrIeRaoR0AccZ991pFHQHjsUy5KekdA4caGztNHR0BhVcZ+hEtHQE9nRwg0HEdA0XJ9xToJR0BfxyaiAV5HQHEWsj5kdkdA/DmuEe1BR0C/1ZFK9z1HQA12rOY+UkdAm3vX2A1DR0BTlASqFnlHQKTqEyAbK0dA63nVbq1gR0AUYMllN5dHQBSTmwmHWUdAL1bHEjRTR0DVYxQbLUNHQHgj/CMgX0dAZRMVTh92R0DxGrz760NHQGFZ/DidaUdA8FKEuoxuR0Dl1HCReX5HQBzES9PHMUdAhWyCy47lRkDtmNzGIr5GQMlI7dL0rEZAMSPc9j99RkAshV7+b3dGQJwwrIlDaUZAGa1o2u+BRkDIDcUGGrhGQHeeV1G4q0ZAg2tndj/4RkArIHddXARHQPXwssjyRkdAHc+S/RRfR0APqDP5r25HQD3+o4YATEdAs2yJ6f+nR0CJlkaRF8VHQHsI9JTn0EdAIJcAeQK2R0ApQs5bP4hHQHuMH9jPdkdA/DJoOAo/R0BoB0M2/HpHQN8BGhKTJUdAV7MAZpdyR0CQFZXJKJxHQL2+DpNcf0dA7P965ghJR0AF+CJcYnBHQDPq53TwNEdAEKB/0aBWR0AQHRdhbZJHQIGctDcXrEdA2TadiYjOR0DZcnBiGolHQGBiHl+bbUdA9MLZjxiJR0DLUo4oD7hHQG2sEpqzp0dAr+mBOOt6R0DQB3J8gJJHQAlpGd4+iEdA4xwalOWGR0BoS1WmY4VHQCFXZDcHjEdAM6UGAv+3R0CdVbjNDp5HQK9iIMRzfEdAQYC4MFGGR0AEH/WUXkpHQJciLfaUVkdAAA/NZ5OsR0BMUWRi8OBHQH2iKA5bHEhAbSp08ni8R0B1fOMh/29HQBDCkGL9V0dADVXVs1ySR0AFM5R1oo9HQEAdBCjtgUdA8OBJf5OQR0BlProwI41HQJiuvFRzbUdA1TvjM61zR0ATrvDCEDpHQBjvpDmWVkdAlyeI7dNdR0DNSNsf/DlHQGm4c2FZKUdAOW+7CNIJR0B/GX/I5hJHQEdjvuaBFUdAQ6a0fIDrRkCsFbhf5EdHQJRc/0R5OEdAM+DF/F8WR0CB8V5bkeZGQOv87BMuREdAALln3O5cR0CPujwCq21HQIuGKYuJBkdAMyOUzfcMR0A3Q8U2scxGQIXK276LmkZAaIx8dd+pRkCBOssGtptGQCP+5kDBXEZAWcQEagxERkAwxWBu9YBGQPBxsf1XwEZAkZ4o9Xq0RkC0SigqU6lGQEe30dBIqkZAgTQcvJppRkAhzu3B4XxGQEWMRA8gj0ZAnJWkI06YRkAlg+EqtqlGQEHUXD895kZAtMYXUOOwRkDZhXdqJJFGQFxfJWaPy0ZAMEQx68PPRkCRfRKhpUtGQIErQ2AaNkZAXF2I22pJRkAbzbXicTtGQIVRi1wpKkZAaTED82ZhRkDvwTJbFGdGQBTyXxlHnUZAYOru4+bRRkAAEHWWSZlGQE80T5B8mUZAtw0syKeGRkC7VrH8475GQDikLz6AZkZApb8FojZnRkDkA0jjtW9GQGFVmTWpiEZAOBi7mfq7RkAPbDD7rhNHQA+3NC7doUZABckorMGdRkBxkmJVh6lGQJtO0QInrkZAUdQxCUGbRkCsDQ/lPKFGQLFQ7p7DW0ZAIfKSKaeZRkCJ+SY3TZFGQJdfc6faxUZAtxdnf0fRRkDUcFw0aAhHQLwZAOZC80ZAUMUfd1rqRkBHfssR/cFGQO98h353okZAA6r5DwtZRkApZgnb11ZGQMQS3Y7/OEZAAO/qgmgaRkAHsxW0VERGQDUoUoHXY0ZACZa0w1kuRkDFvgVL5ThGQDsWQjjCTkZAPGq/TjGCRkAQQtFi4L5GQIy/hTQw70ZA7GN4+LriRkD0SlOtEQRHQEixiWr5IkdAKJeaU5EqR0BXCniEqPpGQAlknERK4EZAiGkNHTkLR0B9z0BbUklHQKu2FqfsU0dA/TnNjV5zR0BTXvpuNHlHQNRCB9y/fEdAleN64o6hR0BgAALB7GJHQOelR6onSkdAL72Kg79TR0D1vC0s5FNHQGMwZxs3V0dAFYHi+EAZR0Bj+WWbou9GQEnGS2GA8UZAgcKYx1LDRkAgK68k1phGQIn6vatdlkZAA/U/YU69RkDXIvhz2NpGQNnK6XdYF0dAodPD3CYBR0CpRUk0dOFGQMG05i7OREdAz5hP+fcjR0ADXZ5KUUhHQFdSdBpFT0dAeBxmNqVvR0CMA/rO2HZHQC0ZZ5R9aUdAmQbzr0dgR0DUSVEnyqBHQIMJEOaw8EdAWJIA6CLyR0Djw3ttNsxHQDezb4kyh0dAiSWITe53R0Dngm+pdG1HQCGf4qhahEdABC554J61R0DXOmiQwKpHQHdqW1DSt0dA/AfZ3RGfR0C/H2f0deBHQCsq3F4LAUhAZxxl27TzR0B7AVc5H0NIQAgBgmvqREhArwk7ANHaR0AzfCIO4dhHQGU4vQBMHkhACMaDsvglSEBFT/4J3zJIQGdUgLVpkUhAs/Rt63d2SEANMCQSxZ9IQNccv6FRwkhAKN6wxkmjSEAQaRFRvWRIQNXWix53ckhAiyvcY+hkSEDFjCS4klJIQB2pphdciEhAxUcvNeOUSEBx/5udSYdIQA89f+31Y0hARZWN66MJSEC0ykDUBwBIQP1JNd04LEhAvdOdPb/nR0DBCcc6GAFIQHnkKxLy70dAVYd8rpLiR0A/Ohnb5vJHQO+dLw3N0EdAGCj1mheyR0AITBEkIfpHQB01uSFMFEhAx422LHwJSECs6sU+welHQCctm7ttL0hANwVEJjgPSEAh00zy7DNIQNWXTZs4I0hAq6xLG+IXSECElBALuP9HQPxdMyxC/EdAlO4dnWMmSECztFMwx+pHQJFqx9uG+0dA8LCMMO+9R0BDTrqplPRHQGjWf5NMzUdAZO3feiPeR0AY50u2M6lHQKCJ68YohUdAa8LvlBuyR0C8/LHh551HQJfX2lH0ukdATTPrUTLER0DvbukFjtpHQExfG7YAJkhAx/nkx1rZR0C5ueICbNxHQGtR2JBg7UdAUXeFmsPRR0AMYbC3AIRHQIGa9olPekdAJRpjyZl4R0D7XU9DM4BHQLHs9dr/kEdAMcsJek+0R0AYHtaeqI5HQJWFBZaopkdA1/zjWNGAR0BVSHWIMTZHQPdClEi+HEdAk+M/R48AR0ApEX5iQ0RHQJzWwg+PTUdAHX8cK8H5RkDd4+2H5PhGQAGGzKaC80ZA0Z6N1tI8R0ClxvCSkEpHQM+aXD/pQUdA2daGYBlaR0Bo313G4FRHQFikq0wppEdAMNQUaYl6R0DNZGNvxtlHQCV1S7kawEdAi3yPcBW8R0B1VjgFS9JHQAxcYyWtzEdAPAJXPFTmR0DgbWSw99VHQOnmD5a6l0dApEyk4SyUR0BLO+5Gg4pHQCt8X4uzDUdAH2V1R835RkDjIxXHK8hGQCnTeXU8tEZANcoYNAYTR0BTVFxrM7dGQDmOgh3zt0ZAhGa/t4jcRkC4p4yZedhGQP0QG+mp9kZAGy3ZW24GR0CIEPKPsgFHQPX93Zj9GkdAe0i7yJAhR0BtHDV4RzVHQH3HhLCKI0dAaSB9/HEVR0AXDjeFGf9GQIB0GrWhH0dALQTU4YgfR0C78Daq9A9HQPSqQrbKMEdA9TaOVjZPR0Ajh0ly9VhHQHUpIAwcI0dAidYdvVJBR0DFk+N13QNHQL0Hh+uyA0dASJ1ac0TfRkDBeRRe+7xGQJPc2Kbc8EZA4EOMVzC2RkCdBYio7ddGQMPPmwykJUdA2YgYCFgyR0AxrPCPIylHQBh573gy40ZA5ywRJ7UTR0CJam/yyS5HQAS1Y6eL/kZAV8G5vzkXR0ApDbVfQglHQJfzMD9qKUdAmM5nEe0rR0AU3G8aVFxHQHS6kNqyZEdAHD3DqkBrR0Bf1pvmnGFHQAh/yWIkR0dAQTy4a7AKR0CIiUqTLtZGQGEh59Rm0kZAWF2P5i3ARkAn88uDsZVGQLQO5eIMm0ZA6CqxvKTHRkChN6FWfNhGQFQ3H1ey5kZA0ct1NF0sR0DtvyrdqDhHQNx93Mg7IkdAsKYfQxohR0CI47DpiBlHQI3MLoZVAUdA6SwUbtEUR0DPOIeqsTtHQKf9Bwe4KEdAZeRQgBV9R0Ad2KxF1pVHQPQhs2AyxUdAwCINI5iSR0A1/8N2G4BHQOcl8EsplEdAveNsseWZR0Ax3yATrohHQL0sHJTmxkdAy6PZ8qbWR0DbbVAIfZxHQPOe4LwDk0dAgMHU1vjSR0DUSmsT1mdHQDjAM0B/ikdAkTjDWj8+R0DIJRETEpJHQNxK3o8+bkdApAI9QQBmR0A9YVyZ/EBHQIfiTZVcBkdAV50Lm/ROR0Cp8VKdkThHQJ3ELOX7eEdAazJWWjGQR0AFA2zRCWJHQPM+/ab4WEdAJ2Ea2pmER0DhOxupHpZHQH9tW6nBf0dAT7BMXKBjR0AwT7OHn5pHQPND5F91jEdAwfe4MSJzR0AR5ys5zHpHQFsMZejCjEdAb0QlMMGBR0DTttEu4bNHQJewM1weg0dAWGzppiVGR0AffH1SDB1HQC1XgJURH0dAp7F8AmYmR0CU1sTqrmtHQMNWyAWRakdAKXyeZjptR0BNuLX8wFNHQEzkdib6aEdAu9jiGEWZR0AMpgtEE3BHQHv6oH0YVUdAFYJBX1BiR0BtqeOJTqpHQEXW6SnMekdAEYGM0gJMR0BFx2YEXm5HQPf8sxoOYEdAp4P7NFl3R0DcUsu5XGNHQDymR5t3LEdAd6HzXR1OR0CkoGhcpGlHQLh1+YMHTkdAKAPiKxFFR0AQu0m5naxHQEnus1BsikdAsNKxQKd3R0BIu+ZeqShHQN01keQkPEdAufVcTn09R0D5JbHLpFBHQAEOajScBUdAz23PCa6gRkCTRHmd+Z9GQNX9xzytnkZAvZw8VOW/RkCELtvuiuxGQCOJ/TZrBEdA+63u9KA7R0BpfozU5TxHQPXzgzUQPUdAHFRZYtX4RkDQvsHsXgRHQAiV6+q0G0dAwYFxbGo0R0CFnl440elGQPBJDMrWjkZAtagnKh+URkBv/jDgMbBGQIXI6S/GeEZAT9PvvydbRkD5vMnaOndGQMh1BolkwkZAtR4DAocOR0DEZ1eKUSFHQPjumJ07F0dAA5EwjmkDR0CcSjW7PQBHQJT3RBMdBEdASLBQD4n9RkD4RxO551lHQLhzhrgCGUdAj3sS2IX+RkCklfIOlfZGQAyJGk+kB0dAQI6cfOsUR0ANt+kFqkhHQBmA37AXG0dANPv6mVX6RkAltEZaquRGQE24NOIc20ZAbTuktKykRkCFpzqLrFZGQLQrFALCakZAQ1ZilCPnRkBxjbMm1OpGQLWRT8D61UZA5IS5NInQRkDR7h4DfMRGQL8prnkWI0dA9Wf9SPMcR0A9GcQK3OtGQLECdXYMz0ZAfCCwX5+6RkBFvhjab7VGQMEWUZv6UkZAnGC4Q3siRkBFKqj88xBGQFgvf89m60VAMLKEsNr3RUCbq8F3VwlGQPlLRfzv5UVAiXoxga24RUD/D/PhT6ZFQKydfaT7p0VAACrMPXDxRUAp9G47z+pFQJxiBhTQ3kVAbaXyRoUGRkDDhTYxuz9GQPFslUg9VEZA9JsHkmZVRkAT/CILWwBGQEVl4xNB6kVAG7NGVTXURUC9KxIXEcZFQI1GsEKv5UVAL6C2PTffRUBpA/j1uetFQAVy/CJ690VAr8Gh+YcXRkAx3qw1fj1GQHCS5789ikZAOM+GOhHmRkCRTjYDzPFGQMunD+6zAkdAn8OPtF0YR0CAXsYqsPRGQIh7bT3A0EZAi/hdxQq3RkAsnyjYySFHQEXgm7HZK0dADaGA4JklR0AhS9HZ3ltHQME/GP+2t0dAzSjQbgSkR0Dsx7PyF3tHQLAUc81ztkdAU8ohn8LuR0AUD6RNGNlHQHfu28xPq0dAbcPwZxt+R0Bw1c6BvXhHQBiRGBk7bEdAgyLtjTxhR0AzyE964C5HQPyxkBLrSkdAUa4vGNQ7R0DL7P+Z929HQD1LVIGIc0dAQcqFdLqiR0C9/aCpvXxHQNlTnr1kqkdALTncFjXjR0CzZEk/Qq9HQDQPpWFrZkdAALC83FJFR0ChjpzULTJHQKU8un5DIEdABW+9/PAiR0AlOr9SskZHQKwds5yqYUdA92ryXRtZR0Cg/4zzyFFHQFu3sXSDOkdARZwCUOH0RkClWZ7zYcVGQMCTyBCWuUZA2OzPaYXhRkA9nf3Wb8NGQCN1mwebf0ZA24rhkhOoRkAhY7LoqMtGQPQUbFtC1EZAo65wWS/lRkAYad2GYbBGQLSH90FQ4UZA6yzjrDCvRkBEJ2aZGcJGQBj6IWqkrkZARecRmTixRkAvQ/J1hlRGQJ8iN4a3WEZAxKSvk3BIRkA73wxini9GQLs/QagrikZASHv0rwJ1RkDsTrWLdbhGQAt5Q7iI1EZAtD/eHh2nRkBr0GTvZJlGQOMumjkUpUZAc7jT1oXQRkAJYxkNhhVHQAs4+H0gVUdAHJOpToguR0DI5ZSsiy9HQAxZb37+9kZAAD6hrLMBR0A7mrpOoxRHQFF0spmt1UZAqH1BRSj8RkCUrRTT6yZHQFWUw7W51UZAhz0wij/VRkBVy5bgwCFHQOh2KjqbMUdAwM9vwE40R0A9d3mkBElHQDucCmWBKkdATSArrbgmR0DNrIC7evdGQMz9yG+8C0dA0wIXJFFYR0CB/vKJL2ZHQMOdUtyaOEdA9wBvgobcRkDIxA2Z9zNHQF+PWFs2AkdAMPPnt235RkCtEijTC8hGQJEUdhNV60ZAAzdfqL3+RkCruJOW3e9GQMAAnWtM1EZAp6aVNkHERkAFT1Deqr1GQNMw9uBm50ZAJJFcfgY0R0AY2N21MWxHQC9LlLkqh0dAbz0C4x/VR0AVInaFEyJIQCdVTw96NUhAhEx2i2HpR0AJz5f80/BHQL0xYcBUMkhAC4nhC1gtSECjwnUoVDJIQIcAuwM/UkhAlKFpvdqJSECMP6p7zWtIQMSGV17XY0hArb3/wSZbSEBd2LjupWZIQMzxuRx0aUhAaOGeXHB2SEDU1t9uhqdIQPHaBDIOeUhA+VMh/VZsSEBLzMu1ZJpIQESvSQtYmkhAhBbcmU6nSEA/BXfvlcdIQKz5wN0V00hA7AnC1b/wSECoXmb/TRlJQO02f/swW0lA/EpnoqsvSUCBFHZceAFJQIe+MUKk10hA5c//WOb2SEDZ0kcPOO1IQKcsz4zXy0hAV9tNzDAKSUA8giYCteFIQOectQPLx0hAZVeXZhLcSECM/Mhfxv1IQIx8fIzAQElAOMkPP2d1SUAN9Ou4T3BJQAvfXHPZhElAX1UA4jmVSUDzcdAUvNpJQK9QTK5AQ0pAPezPurwzSkAPxv8t7RxKQOedLetJK0pAnW2zw9QdSkA7DFYoOvRJQJsYAvDmJ0pAgZfCFxVcSkCv3RsRqExKQKkwvcOjcUpAqN28nwxqSkBjjHTep0tKQDDgepKhYkpAoUD5uTdOSkB9HYNh51BKQDW6ecvDV0pA0d1zf8tvSkBnKU0sb1FKQOXHENniikpAIbeyrZfDSkDvazmX0thKQOEvsO3BDktA9xZendX/SkDdA2k5AOJKQDW132yWx0pA1/9LNBX6SkBTn7rplDtLQEDPy+Jf8EpAyPLhtuMYS0DNdg8+kjdLQC97qE3v9EpAj8kJh1QUS0BcaCsfKtRKQHzY4NNhrUpA7JZ5HrOfSkAP/wsQNcJKQKeJHRQyvUpAs2az9habSkALRivboVZKQCcbc9ZHeEpArDsK9/hiSkDbP7HB8V5KQJjKTzndo0pAqS/8/y3zSkDRuqa8UsBKQPesfpCiHktA/60p3vltS0DVZ+zDqWBLQKQsv2PKr0tAXVDB7RyhS0BUsUd63q9LQJDcub6iYUtAOcbP8SZjS0B3EzTxAydLQLXcTPSOLEtAN1Qie2UnS0D9HrGD7RZLQAUR1kseLktAMVh17sEOS0BhgKYQQypLQHy3nR7lUUtAJByp1KUVS0C4MVoXaSxLQCE1C5OVPEtAYZiNO3gvS0CMYjLFnXpLQNtT45dgaktAb49RST9MS0DAzpHI7WRLQC/4hwC7TUtAYFEv2Gh9S0CQNciRCGBLQLfvlGibSUtAUS7uTbVqS0DwAugsFY5LQJFqa/eIrktA00fvnyXIS0BwZk1Mfw9MQB0SEu/NwEtAszeh+K2tS0BtIj3LdtBLQN1AUMVi20tA+ABWFzGZS0CoE93hz4FLQJ+9zsTOv0tASb4Hp08HTEBjA8o7e9FLQLV8+r+1PkxA4U9VIZhTTECkEuL+gh5MQOSH3sszI0xAa+wIfBoeTEC/dB/MeEhMQMHdIQXLPkxARCxElpZATEBz36yUcRhMQOQi80xT70tAG1G5Px60S0Cdxo5dvZ1LQMGnIv86Y0tA0KJlkssuS0Cv0p72ajxLQB10C7xcAUtA+fQbVqX+SkD48gWoTi5LQG9VHqR5D0tARG5CuBIZS0CIFJCQOrFKQBN/qqbppUpAr3msFwCvSkDDIyF7fK1KQIR5rdBL6kpAaXodp9A3S0B92EXgmiNLQE+QiXZfLUtAwTPAGe30SkC1oMLPjQ5LQEfjXEEsJ0tAqYvwNw02S0C45BwaSCxLQOwmPCGDLEtAFGD5fjYuS0C0oBii0RpLQEDpAhqzKUtARAM9YK7vSkBwKoWyLhRLQE9z6Xz3OUtAfeqnlB5cS0Ddv1xYgUlLQGjWpsk8C0tAkwqFZ5zuSkBlw4VRlg1LQBS+VzG2wkpAfyv1qF2VSkCfaCekoZZKQCEkf6fNnEpAmet6NuSYSkAx3brUVL1KQG07T57z4UpAmWADpZTVSkA7i79HyANLQOQ3gLzXBktAwwGhsr8fS0D8r69YyDBLQLkTG0tFWUtA5WLIDDhdS0B3UEw3E0RLQN9h6vAoYEtAUV3hBFFOS0D9RwtMZU5LQKiTiAdNi0tAZQzcPYdiS0DP/hBpwjhLQNcEVHnx6EpAGzaPxTTJSkDMx2Y5v3lKQG2m28gmr0pAuJp61rrrSkAlTBqIYB1LQP3Ft5+agktAoJ6tP7mNS0BfLYSZq7RLQEDI5PXstktAd7BItJXZS0BN/BsQNbJLQEnfJ2zavktA/K1NS1SxS0Dwfi+SN5BLQE+Xt4c6YUtALLHxC7RKS0CAzbgC0URLQHjunrUPT0tAQ5McfhA+S0Cbp9L3jgxLQCPWHq/hDEtA5ZdH7OEaS0C4jLgxAiRLQN/Secthc0tA3SAZCDqUS0CV2po/aLJLQCeqJQ9+kktAOT8rfjJgS0BpAG0FsyRLQNVM55CVk0pA53h8VUGkSkA/7NcBu8FKQH3tR9Tot0pAaG9tineqSkBg8Zjc2rdKQMyy7FIscUpACCqEc+9sSkBYK8qkXIxKQN8fJcMepkpA+Xg8WTCsSkAzuuKsrqlKQFxQSJf4iEpATx5W4H1kSkDAvZBlR2FKQJWvsdz4bUpAfF2MK015SkCROeOzqq9KQI8H30FN3kpAODaYeBDiSkDf55dXzd5KQJFBO4S5y0pAsFrAgNjMSkBsMtCaWMdKQKGJlTpw5UpA23BZyYjqSkBMFx418c1KQIl+9w1hqEpAmNxz0e2aSkABayT5XNpKQKhE4dKO8UpAR+MOmBopS0CgNJ2ZeBlLQBUXiZTRTUtA8LGhW0lIS0Awsebwyj9LQPkx2ULngktA7YegWE2ZS0BlPay1t3hLQOdfVfj5tEtAHIzadUu3S0AoCdsSWOdLQCy0XjhI4UtAoM3Rau1yS0AovBaih5RLQFjIj7dycktAPPHsa9wtS0AX8mrr+NBKQElbgF5S0UpAC58lwjb1SkCYLltrkrVKQBPi/QnGf0pA/65YyRODSkBL5V6WEqxKQAFSaWSovEpA1w+opZfrSkBPmsyCx+hKQLT0qGAllUpAfJorMEeQSkCtmwqG/bBKQHHp4BkbgUpAyOGO2Nd5SkABrQYYMGhKQOAVXLOqq0pAqEXrt7d7SkDLnoGsFeJKQGFvpCaYt0pAnHlzdZCsSkC47hRrqlpKQHUZDbXOQUpAjS9/aVJfSkBtR1InYHBKQMvWlBepZEpA50tmwfhOSkBjqcBeZT1KQNf7zrMyQ0pASRyV6oIlSkDbX5+OQ/FJQCv4tIRgDEpAwSpr7lPeSUDUbe+Q0OdJQCw1yu/5oklAuLq6yEUmSUCJJd1y2B9JQI8jkYfhCElAt5PkLUj0SED5/pRbsepIQAzUeTcQrkhAF75wMHjKSEB8yw84cfJIQANx9StI7UhA3TOiLBPYSEAsrun/7MpIQCwrYxuy9khAB7sGwJ3/SECxGw1MqtxIQIkkWUKj1UhAhSpUbNIASUDlrgDc7+NIQPkyQOCgwkhAkAjzX+ivSEBEntM1rx5IQKtVeOlf2kdA49JH+aCSR0DhqP6j8bJHQANWZN/Jx0dA5TwFJ3nfR0AgqQtNDp9HQOtw2YN3e0dA6exiFu2FR0AJjcrgam5HQO+CkZaCe0dAnD7n+XdtR0DV1R/9NahHQKDxyghnf0dAzb81Tqg9R0CZ2/zLuHdHQO8/A93SlEdAu1IJvJp+R0DR8X1q711HQD2oymrOQEdALbSiDJAcR0Cc8J/xRS5HQGAGeXgOOUdAYbpwwWCBR0CvIGqKRHtHQGv28SQKQEdAjyeKGTwqR0BAe/0N9zxHQMS7+5BdQUdAPFyKnb4bR0BUOGEZRB1HQLVrqfN1ZEdA7OgbSC9OR0DkM8KfaZpHQKjzl2ryrkdAXXRrr5C4R0CFCKH13YBHQFnDx15AlkdAnAI6ogHYR0A01IJ8dKRHQEnwvo5luEdA4ZzLy+7dR0AnNbo/3ddHQIjRZGyO00dABJEHBZnyR0ADBM3yZeFHQNCOQpK05kdAVKFWDqrxR0CFQXxq+gNIQJhUVqYuOkhARbcWawJXSEBvmhQh0nlIQMvKX+vBfUhARDWZXPNESEBMoigbD1BIQDH5n2OEWkhA48cQEVInSEDQkaIkHUlIQKD4lENDUEhAmzd/hHpDSEBTkwV+MDlIQAt1tYvo9EdAE1u6MIzHR0BDLlhoXhZIQCdd8vmJSkhAXIuwithKSEAliwel1ztIQGCrOTwtHkhAy/7eA6oxSED3S4CUYjdIQNQOg9O1ZUhA7JRA3vedSECv5WPEUKhIQFzpbKbehEhAReI84ctXSEDbSZqdpyhIQCwHB5ZvLEhAEc/sSwMJSECpcoy1QS5IQGeQw2z2G0hAwc6dV04YSEDJAJPkPfFHQA0IYeyuzkdAsYsaz5jWR0CoGaIh4LpHQDPen266C0hAfaW4iZkCSEDtOGruziVIQGQVCUyuJkhAwfeNJ1slSEBHjDL5QxZIQMRlor0J4kdAmNCfkwYDSEDsRL0OSBpIQGB0MTDcDUhA3x2MlsQISEANxD7pUxNIQPEWD8PnBkhA44N2s6ZJSEAnF+2Kd2NIQIcqBH4kXUhAQe8KWY4/SEAxLjs6J1BIQPciqnCzMUhA9P6n6y9ESEC0+st85KlIQLjuzsp6jkhA//isGqCTSEBg9rBDsbZIQIdrW8rSvEhAVOnuyeK+SEBIHhWCT4dIQB0hp4V2e0hAgLoalSJnSEDUhqExklNIQAz1FIHSOkhAl77GCFIUSEAkmf2lxB5IQF8hXajpGkhAcSL5tqYhSEBvsccIWEZIQFid+HAff0hA9NKhfVCHSEAJm8HY8G1IQNDhbqeJlEhAyfuyRIORSECHgCXz5VxIQKhK04E31EhAmF2JFLS1SEATJSjK1LxIQGULRftG+0hAd+B8BvQiSUB/Y0XQyyhJQCM4DAF6RklAy5Lq58JeSUBcpJJZ/DVJQDyOdkn1PElA1AxAoRwgSUC7xN79HEtJQAnv9DvyeklA/cv3/JPESUCfY9BjhfFJQEuAJheBIkpA372RGbBiSkAP7BkhEpJKQFtLhYNYm0pAPaR9XKecSkDzM7rh4rtKQP1o2VduvEpAoBKpShhmSkAEiqs2Mg1KQMT/+WxPeUpAWUcMk2miSkDYEzMjZ85KQBEAsJ9m2EpAP0MBRcjnSkAbUDo09p1KQJmbQo/YIkpAzF14Du1PSkCBvhb5pHtKQFx3y8I3VEpAkcYMNYBhSkA0+PdvokhKQL9UVnckoEpAvSFwe3LeSkBtNGKIEsdKQMd1hyP1vUpAiedMwf+/SkBhQ2EDDWFKQNN1cWxNbUpA1z700T5QSkAcYANX0yZKQH85OPNFCEpAf+GgGaoBSkDpdidAAupJQEjLJAMb50lAvZQCT8zMSUAR4Ooyw65JQKQNZUlS2ElAd+wlNEj7SUCrDidhkhlKQD1Nlu7mT0pAk5jrilhISkD0kLih9ypKQM92LTYrIkpADeju2tQsSkAbHiXtyBNKQJmFiTHROEpA8wR2SRQSSkB4vJC0miVKQA+yr/PKLEpARQZhq/M+SkD8ZHKgxUZKQNv/AYkFW0pAwBsD/gxzSkDbjL3XglRKQB0EF95QFUpARcqgYxRTSkDHnIt07F9KQGu9DuCFLEpA1Bu7rG5kSkBMy3Pel11KQGF12a2rX0pAq9sjvXBXSkDBbF98piJKQC23kNGyyUlADUCtcwHjSUAjBCVfos1JQPB8j1K+xUlA+TzlpWbWSUC0WBK6jBFKQF+Mdnn/xElAG0XPgSHjSUA0bkc0jPFJQMS6me6HCEpA9Skas/PoSUBHGPTdoAVKQH1Pj1aoH0pA05MH5mNlSkCkxYMYIGlKQBhKJh8qPEpAmAPJmH5ASkAlMTtE6j1KQG+qSeE+MUpA68yYZRs0SkDDnd9kQmVKQIdeeLqWQUpAkbqfysqZSkBYtSnJSNhKQDsPjf6E+EpAN1Jz7g/ZSkCTVehSx+xKQB9S41eTx0pApeQAe3nzSkDQ47ms+ypLQIA3PzJ7FUtAJIuMesYMS0DHhIt0yztLQKQhmCdfW0tAGQEM6TaaS0AvAoV1ZJJLQDQxOm4UqUtAl14xIiyES0CbP6IzBK5LQAM9TAix80tANPn7yVgLTEAgJXmsGvRLQGNGwQMuB0xAUySucrXyS0BUP9BpQ/RLQKABtZ09yEtAu5HSLL+6S0BceTOn68tLQKn/fYG65UtAtBN+KVgKTECzj1OxtO9LQJtql8P64ktAHcwauKARTEDNMJ9b0zNMQMWW9rYiQExA3OnMwjdvTEA9XsdSlhlMQLmRS9xWC0xAPaLVJZ8OTEAh+WJLg+ZLQGuu/QUHn0tAKWuTV0NfS0AZOh7wO2RLQLRjxdO/MktAMIngox9JS0B56lB00mRLQJvS5rbZwEtAj9PIyq+1S0AVZ1dNAHlLQKlnpALpNEtACCJQiA8GS0AJFVX3mdJKQCAskfDT+UpAG2PjHvYfS0AwSenpUuxKQLTMyCn86kpAqG+mMmb/SkDErhUHVyBLQKMvNEeeDktAGNVd7/JWS0DJYQONkiJLQOz9cRCLQEtACeknyKQIS0CfxXS6YCxLQKfV0sb6K0tAQEpSEyceS0CcU3qGUfBKQO3teaHd0EpA+y5Fi344S0DYUdlU5nJLQNvvykZLEktAuDQSkbA+S0ChjMHmZktLQF+ykwj8qEtAzW79WOjpS0DTWqxhcexLQPteNjJz80tAzAQ0KyKxS0Bf4Fzv0KVLQESsQwubj0tAo+76lrCjS0DXbHEhuJJLQHxyjDVTcUtAULICYQ6HS0CRk8qOGotLQIHlSuZGektAjAmdS8VjS0D1tcZounJLQO/Ylx0wu0tAjDM7SQStS0BU0RQR25dLQOUSMCd5aktAeR+0EFnSS0Dr2SM+N8pLQIedKdUTgEtAYCRLg1W4S0DrCx8+rAVMQOt9HRaaTUxAa4hehM0RTEDTo5P3mCdMQAgUM7MhzUtAnyV/DUzjS0CVxMkLHPtLQKWxoPJqAExAJ21EzmvPS0ApLBfGJ59LQMj7SDl+rktAmUdPzvqoS0D77MN7jbtLQHwi5kcW/UtArcCg/SHES0CUhSASN4lLQK1/BJJnOEtARQkNE/NLS0A7ca85xjVLQKgcXEMFK0tANS5/U0wCS0DNUOQsW+pKQIih3Rs7oEpA/LX/eW7SSkCIC4clCbNKQBx+Hfdx6kpA64Y+XPjjSkB3f3WyfBpLQA8Mwf1QIEtAv6J5mpBsS0A0VOehza5LQBn0Bwykj0tAT17fX32rS0B1y+/jNdlLQDEJlSKm1ktAIKgNgGsFTEDdGjvPSupLQBehkAelHUxAW7aG09QUTEBD0D4JkxFMQO/8BFNBE0xAqe/rLSO5S0BUovxcyI5LQHR2WsNRoUtA/GFW9NpvS0CgWjdUtLpLQPGzVJxgzUtAe8dU9T2+S0DE60psBXZLQONLj8LQTUtAYMgdaP6LS0BR2hP/EdFLQOP9FRw2f0tA4dolq8J9S0BFjFIOrJ9LQPDLXzIAYUtAy9kXgjc5S0BL+KH/HlRLQDWe2HzeO0tAs3vBuHBES0AvAW9cwz1LQOdopWgxI0tAsDK05oznSkCoqCuP18JKQEkIvGh8pUpAuEaf9L74SkBEECDF++1KQPuPcNXAxEpA57oyDHvoSkAULnJb/uBKQL94tnd7y0pAJXvDNJK4SkBgpOHSyttKQODXKHmgrUpAsIW9yOC6SkC5TS8Ry6BKQKyRGVkp4kpA26UsDVgiS0BYObfDjBBLQD9a8MCTx0pACf451S/PSkBYtcNgotpKQOfJ4g945kpAMKknUfHPSkCJRaXvjftKQCuAZwXiEUtAtJpUZeH7SkCgeJ+GjMxKQMNQ2bzCtUpAENyPIiLISkDBkTmU1/NKQA3ypDVnw0pA4JPhgpXNSkDt5pIA+xxLQHAsolXhCEtA6TR4m2FsS0CdrPz6MW5LQN1oVCDEU0tABxr5z3BxS0Bf9aHDLBdLQKETddX9/UpA5P+WxPP4SkA1HL5NDxNLQHC5jTPDC0tA/OysR7vwSkABAj6rcdRKQMj6G/SR50pA0/k+ayvISkDHc2eVc/lKQLNTMW6GvUpAuU8DkvDASkCL0F0iWNBKQGOgS1bWxkpAs7SWD4kJS0DswPtYEzBLQNtf3sS8BUtAHKjojy7JSkDlC6YZD5RKQDhl9jKbf0pAeNCxHhd6SkA/FPJ858tKQFThIy5+rkpAvKCzFn7QSkBV3AeDPH5KQJsj+ma7KEpAMC1cr4A7SkDETdyPAENKQDR8OVivl0pAQJ6BD/9+SkDYrb3uObpKQPfu0xWmy0pA8f8ez2bTSkAsQcGfVoxKQECqZ87dbkpAwJhL4wGXSkD/VZQwvJNKQDtoeuG4NUpAgXi0Y8DWSUB/fBhDfQdKQD+99p/h4UlALSYBg5msSUCg0AuCwuJJQPPwrMRS+0lA6LgUT6YzSkDEJIb0L0JKQJD6n8n3VEpA5115vR0lSkDv5Rns1GNKQACqgISAU0pAhLxK9ENoSkCMcFa7zqNKQLwsKbgb8UpAcTZ3wXPXSkArUX8ITpZKQDmvv+GXYkpAiVN68SNeSkC/AXwHzUBKQMk04WKMh0pA2bz2RgqjSkDgFoTynPBKQH1jMojZukpAODL/wemTSkCJX4BmoXdKQOUBtmwgZUpAzdCxluE+SkA8d/W91m5KQM2+wnE/LEpAo7pWmMUYSkA7KveAFxtKQJ+6PFJn8klAwb1dfEvYSUBomvhy0eZJQLsSTSRJ+ElA7IMaRpDzSUDLl/bONk5KQMSurGwKQkpASDrshdA1SkCsN32aUk5KQPWKAsDIY0pAs0RvWFJgSkB7psWCZE5KQM+E3hgoLkpAaLThjNBrSkATvH5xH4RKQH9If2yEbEpAgx8m7xWWSkD1cHqvtcZKQGGZTb2cp0pAeVgCN9+kSkDPB0yboHRKQD9kyhkJmUpAmL5oNaSpSkAt7BtLvOxKQImiCKzwrkpAVf4DyNPrSkAvi1SEj/hKQHSMesWAAEtAe1Gmwzu4SkChugFCu7NKQGNjnB8U3kpAlNm+bcMIS0BJuXefjN1KQFiJF3zdwEpAdMNO8AYSS0DknFJ0fj5LQHwsud3wUEtA7EE1/cpRS0DEnxKomZxLQDBr2Q6Q2UtA0SQUfOuvS0BJegHnG71LQOs4u/f/vUtAE3jfGB/dS0C7J6eKHApMQNPIfAHHMkxAfcW8CvpuTEAgQdgWeopMQFRYg+wVVUxAecu+UNQqTEC0vSiCCjtMQMk2hsBN3EtAyFuNNjv3S0DEMzZRxTZMQNexH+kqBkxA61uC7a5jTEDjXDrsSmdMQDC/MjynNExAcNguxLBETEBxLIqenS9MQCe8jA5yFExATYQV9W3xS0BzAI6+2u5LQNNf2eDpy0tA3bCw5xHeS0BBw9XZrtxLQPFn4nQwmktAa1D/qj5pS0CnBi0haTFLQAzHxdZxTEtAQezqV4kKS0AMe7/FORBLQAGUYD5r3UpAHdPLvVLASkCHHB/RhPhKQCMi+8rw+kpAfNv4l61GS0CJBZc/kjZLQOOlFWJ1WktAQN7Y/B46S0CtUpZHZ19LQBe59xjfVEtAYR6UbjOKS0D41wmG8cZLQERkJk7G80tAr2ULk/qfS0C5oKRKq51LQEURqlcGc0tAP7pJH+F0S0BYVZF4aFBLQFGLnfKpa0tAnVdfmGhoS0D5Ok9FOlJLQOWdmrT/LUtAA0XQZ/AUS0CDdDfqpz9LQKytSi3pEktA/MRNKiO5SkBALxVUrGtKQPihG3pil0pAzJvkPbRySkBHfJVHF01KQJE8lBKDY0pAX/SuXRVPSkCw6qqbOGZKQETAU+NgiEpA70mJiDWiSkDUwGnAE2lKQBuNuBAXMkpAPAqyyoU9SkAQvkWKSAVKQGEN54bWV0pA0f36PCqDSkDDG0iNGdNKQLdXFS7EkkpAIVJruo6eSkDBQTVmSKZKQPgiAy2AwkpArQl2GB0lS0CUM3teIPpKQHiYhCODxEpABZpPTdSlSkCcJCoJh1dKQMyiYWxGWEpAM74SOr1HSkC5L/fwUHBKQLupCEypYEpAUSwsHtBWSkClc5WHtkpKQLcbYmQ98ElA/yHfMDAgSkBgh+Jor6pJQCl/kUrtcElAT2quMIt/SUBffWPYXr5JQGhMTkmcAkpA9CaW7nhfSkDrNZlAUBBKQPRuwInGYkpALXjAgI8oSkAAW8tZkxdKQGmbCXtK40lAgzRL20vaSUCQQ4UbYMNJQKPRAHMb0UlAbCPXEaf7SUAdtFNjIclJQIx4ZRCx4ElAT2X8HreySUAknk8vaaBJQEf5Rb2wdElA31++xwilSUAMDNS8ZZ9JQLWVuU3rjElAjO1lJjSqSUBDARinz9FJQCQ8tEuiz0lAPF4ugPnTSUBfO5Fu5vBJQP/bgKDyB0pAsyoHsZ3ySUAdBozuKN1JQOvBj3Vo3UlA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 4\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"ayvJwt4OtD+LYwK3QOPiPyPCBBDVIuI/vyadySLV0D8fPearChTeP+B0dpzKIuA/h/54FCZT2j8rrrpo02iaP23IpWPFpMG/lfGFhpaSer9Qh7glZiXHP/QrJRBN9bY/jxuZFTWt5T/QJbCQaNPuP2VZ21W3Lf4/EvSsTUivAUCOA6sReSEEQKW9o25jVQdAQU2O+BmuCEC4S0TK8ZUEQFeMj+AnigFA2BkjAzFD/T/2rIyxt3IBQPsmtynRgAJAURRuELFeBEBYug0zMfAGQOLPjZBp6QRAuBdiEsY3BUB4N7MHsp0AQLCD8OgTJ/s/B14e5Wuu+T8AUDiW2X/0P1flX57lTvU/bI8YWXEK8j+6TSdS9UPyPyUbpIAkBfI/5CWSQlKj+T9rp3W58Kj5P2XsSoWs5fc/ILsydqlM6T9bCVj6DwL3P5Xh283++fk/dA0v325j+j9lsyv52T74P+P13u4LKfk/ex1+zfrR8j+XF3Mc6FH3P01lDbtHMvc/j0Saznhz9T/Jwqfbcyn/P6khnNI26f8/bFsZvY3IAkAdZ4tWP+cGQACqLf1XIwlAoKc8K9TIC0BxX5GgCu4PQAs1Gs6UBhFAKSNEHEiUEUBYqSq0C0ERQCx2oXHBehJAVX6H+lhpEkCn5dUH4PIQQKQc4UglfBNA/Uk2pR83FkBJ7v6RjX8YQBO+tJpONBlA0RdYiAEEGEA/7mYCe04XQHu4qTO6tRZAjEeW9PA7F0BdmY/O0AcXQNyNTwSwqRZA440opQMbF0BEQwYkoQIYQBSHQvGYeBdABQ5WmWNtFkCB+/CEkC0XQLNpGZEjehZAc9xbB03MFkAxwTtG7ZYXQJTbm3arDhlAoWkCDME1GUD//CJdBlgaQKCDPj5HVBhAzT7s9HQxF0CpdlEE6LEWQFPi4xA2rRdAZaMf7znxGEAVNH8AVUkbQNHcYTxeNxtAbZqecZvFG0DJVZbQDLsYQJs/HLI8TxhA+SmZg3MwGEDrX2wtdg8WQCE1TarD/hRApT0SJMdHFkADLRUqZZ4ZQDEXki6oWBpA2C1XvaQnHECAll2lM7gcQJGBUCetABtAC2WfFDTuGUDMet4eoRwbQLSlymVayh5AuXfCiUHkH0DlqvDxFB8fQCRHQZ8lhx5A/81/8hsUHUA/e+mYXU4fQEuX51h3YCBAVb13D05uIEDdSO1NMe8gQGOWHT/30SBAGgaja2nrIEBCKpPkwPogQINGzJwKbiBAbUBmwM0TH0C8FV/3UuwdQAwEZN/2LxxADLy67EqLHUC1lJchJcofQBlRJw1uGh9A7yaT6krxHUBoSYUebk8cQFFMtSO2CR1AqN4OJ6BsGkB3TZxuIBkWQGnZQ42KNRZApLL5T6hUGEDBMJkFH3YXQLeFdttYbxdA4zqH9AjJFEB4/9EyHmITQClms/JohxJA3a5b7nzaEkCJUeuWxagQQGuBE99E0xBAqSmiqHGOEEAcjY4IDUoQQH3gvaFBKQ5AJWXT9J6wD0DUiCllGOAPQNthwZ66qxBAFxPYBGcIFEBHLXVTmaMVQPllOPswPBVAW9V4RqnZFEDgI/R3RegTQPO8SgRxxxJAQeH1P9+XE0Dc31U10DYVQIgfGhQYCBZA6SIx00pAFEBkq4IE7iEYQEf9pJ1PIBhArFgCsR9ZGEA7PblfcGwYQBwu4T11xhhAPffYZUJpGEAV5izb6okYQN2uR4rrJxlAXRSv7KGJHEAM0yKMnzgdQLHvkushQhxAbf09TjxIHUCd6JdMZ/cbQLT+LVWc0hpAcZTgVK0eHECJ/sxtTq4aQO0qwVbXBxtATGjOr4pWG0DDN53qhxkdQPSoIdGTqxtAnxqhUBqTG0AR0icJjC0ZQCy6tEYHfBlAu0q3Nd7uGECNp6DhiKIYQI0Bu/krmxhA7DcdyaeoF0BvCldvyjIWQOvZfpSYyhVAv+bKisS+FUCnMN0T4J4XQKytoQcy2hZAUepQSbOpF0AtjvIz48QXQLA2FBPCHxlAUHGZMLIIGUBl2OqWWWAZQCiBBasbyBhAqDX7kktjGECcMiom1QMWQK2eK4zygxlAOY2krSBPGUCQmkeVjv8XQJMXYqVXEhhAffYxw/wZGkD9n9pbfd0YQPCyyqeHOhlAaMarr+sOG0BPphaacG0bQLAlSZQ/NB5AQ+nHYcU2HUDvtHIr8OsdQNhc0vD1Ax5Aiy13CoJpIEAbKJ4zOJMdQDA8zOrI2R1AvYPQrSE4HUB88RDlJj4cQO9M4vqlbB1AvJGdPWmwHkApzh4gx2IfQDf3hz4/Tx9AjPGCLNBkHUBLF5+nFYgdQJc6v31JlR1AteYzcqDDH0AobAL/HE4fQHiUKgx/dyBA3V1V8OOJIEAfrH/kkOUgQH6CJY7MViBACS64gWKhHkBc1KkPjtIdQCEYtFrhJxtA5x/lZv5MHUARtIVBivIdQLgQ/TUgjB1AbN5uFe71HUAYfsaL9mAcQHxELbooSR1AZNwbB8jyHED7wiFrAj8dQNCCEPYPZR1AGMGh9X9qHEDPSe3HJVIfQPgDjzBwgx5AhMjeWYHbH0CxAhBJ7YgfQEX7cElo/h9Av6CvMn44IEAj2+p/hwQgQFE/iWBdOh9AH/vGlKLnHkAfsq5trOAeQJ06wN+11x5AB6WFElBNIEAnSc4jQUQgQC1XdFzgvSBA2ccE3XSiIEDrPo2WLKofQE+uAmTTvx9Ar80+9dCgIECICwafXYQgQDlZvrHLaiBAfAE5G7xNIUBX5fwiZtMhQPm7uJyhJCJATlxLvGA6IkAjneUf3WUhQIwFjLmhmiFAjR1thy8OIUCXVBdBYJAhQCdk8MHaIyNAcCydOwf0I0ABljlph8YjQK7IRp7b9yNAwRBfzNafI0AVLhxE6QEiQA4M+KfR4iJAyUDvxTnAIkA3Bov/KrkjQHfRYVM0hSNA6vlecQr2I0Bl2G8tgVckQOfoHGeRkiNAYXW4rLzwIkAk1Prj0QEkQGz/oUGtaSNA3V9E0NLEJEBrR1z7y3gkQJLVfbp2syRAZJCzZ0ygJUBsy9AGKIsmQDtu0bE2TiVAS/FeeEd5JEAnZid10NwjQI0tp1dbDyRAz5Cq2o9DI0DIioZrYKUjQPBTzgUmNyRAg+IUA2sPJEB6dkjDJRkkQIDbjPGCDyRAF0VAwEZmJUAN7fqbeZMkQOCDqaU5VyVAFzIXdqv8JUBcH5JmMJQlQM3obUZNMCVANtI4kzw4JEDtWUhUVU8kQBE7+PR2aCRAwtgrwOy7JED/yx9ySMwkQJkiydEMpyRAOXaDnN35I0COhgRiUqIjQEBKnjZWvyNAgd4apFIKJEDvOARNInEjQAvvfcgDvCNAx4U+duLMJEA1UadLsFskQB2AU0s0UiVA/LOss4hSJUA5ytYgHNEkQIvL4M6phCZAo9ZOaJzNJUBrPf/STNEmQPT2xEdFZCdAKd25W4hKKEA/FboAcMEoQGNyXTvGIClA+x1d8H3dKECXnC3ze+MoQJmeijv1ICpA/E6RwugqKUC/wIj3RXQoQMjAFaqkhShAMUkT2t6XKEDrSyaIuikoQOCx6xwhyShAiDzzA6c7KEAcXCp1EG0nQATLFWIC/CZAu5JVrg+JJkBJC5y1+psmQCT1RoBcxidAdTXeY/gEKEAjrzM0p1cnQNiWMq+fbCZAa1SdRvlXJkC337kajIAmQIkwuhMx9yZAa2N3f0/tJ0B5KHagicknQPNIFhK8RyhAcx87WB4pJ0AbyOYIvk0mQDzefnrd+iVAdXTKsG4KJUBv6gC0KFskQNmj3yKgSiRAEva9QEPcJECdZvTSIjQlQFMb6P3DfSVAcT8kP9lgJEAV93VeKnMlQGiVIx5PfiRAyglvE7IlJEDkJt0YS90kQHcvaY/IWSVAE0DbB9QwJUAlJ2SE68ElQN0SlAw4OiZA5QgB5jP4JUCHseS8VFUmQHebFW0pdCZAFQF/cHL1JUCRsd2tEP4lQOO4dwdpkyVAFcSj5/mLJUDBFA188OMmQNccpPTStSdA6AHGH5a0J0DpiEcbtcwmQOUfHX7r/CVAm9jhBoBfJkBLCgd7EwonQD945B/o4SZAj31UE7nBJkAMDakeHAEmQH2OMOTVmCVAvPlDCUW7JEA0w3wV9R4jQF8W9dOfNiNAl7JOx0W6IkC8/WD4+7IjQK1bTtHvriRAkQD5TZ63JEA/HS0zfPUlQGjqq2eESyZAATvwrf93JUAhsyowmLMnQGyMB9pJDihAzzMUUAuJJ0ApZjOTAEYoQNTTgem0KSlA1UEN742OKUCTOAhcDHwpQHzoOyP92ClAcew0/RRcKkA4pthAaWEqQNCnqvIMDCtAlRlX8qkxKkC80i4XD9MpQGQsTsOpMilA+VBGrs1dKEAD5mjDfsknQLmet+e1lCdAjQ1kVPC2J0DdcTjMybgnQIRb8YqqMSdAB5vuJDtnKEAl/bGbukgoQL14x5oGAyhAnZVusPxwJ0Dl7K9PWSQnQNla4Vi1GSdAH+65F/YOJ0BwjSF7KggnQLNZTVK1xCZAoxp1XxFXJkDTt8Vwkq0mQLUoS0FwSSdAq6PM1u5yJkATMc5RrrcmQMzVLcMXRidAbYTOuRJrJ0BkN6CB7t4nQCCITkOcgydAiwkCfD2TKEB42YgD8bcmQJscO1j11yZAIVaR/loYJ0DZXIjjyGsmQKma3/LP5CZAOOxP4KiPJ0BVzsatEugnQNUHTe8KKCdAqUXdqRmbKEAtWiL/jtEnQI9/J7+dByhA9e9Vfj1tKECTMSPQjSwpQKAUVQL2aSlAPT4iWOUXKkCgWQZpxokoQO9TbFIW5ShAqA3QSycIKUCL1eKZD9soQEcR80IBPChAu2Rk0m+LKEDQxYoFdBgoQI+GsPUNqiZApFOtNjJBJ0CR75QKl90nQOEMmgfEYChA/AAHmbQpKEC4UdrQPnIoQCQCrofSSChALQI9nX99KECswnp/rHopQA/HioGbaypAI2aKVe1yKkCb8ntIA6krQCSpwUIe2itAoFGO6yY7LEBXf2ppXZYrQFPD8m2mySxAcJMaeB96LEDjmPs79fMrQPCSDIiahSxAyP41EqNBLEAIafAGeyksQJu+LKMEEixAL8yEgqIyK0BAEBFeJKArQHnHXXvNnCtA6LZ1Ij9zLEC3cwWCg8gtQDuFYuOLji1A9yrkk0uDLkAIJGgmBRAuQGmRgLrL2y1A4ckLzBYALkBg/Krcl7YtQLcRRgtxOy5A9JFD6TBcLUBQU5SQ7rIsQOegh2N1/SxAW85d38DZLUB3exn7huktQLSnXRikWC5ASB1rzRJkL0AYNUDh6BMvQGW5hWsmOi9AOKxFQ8lcLkD720maqtEuQFVGsqMQLi9AoJ2M0xFZL0D83teB12gvQNqTxIKyFzBAW8vghckcMEDofI7ksK4wQLE6mcTPSTBAbhIP9JAbMEDY8AskA3gvQHQlrwA/vy9Ac7dvp1ABL0D3RSepDRYuQNzoXQBgey5AXVEHshbSLUBjUnJ3fR8uQGljQmoGki1ATcp1Q0mNLUCr7+4G8RItQA/eyp5mHSxAH3dco9+nK0DjbhNrnPUqQBDagQnfyypAvC8iAvsUK0DVRygTs0wrQAyhAHt8JStA7fUMjdeqKkBYJZNG2RcqQHF3iZMOOSpAuwVpPE2tKUAZ0t2MxqEpQJnBqn9ZcylA77YuMJyQKUDr9agBkCUqQA+iEcTYPipAF+po9EmIKkA0Jp8RNocqQNO+xrc40ylAB6/FgyBtKkD5HkdqSl0qQBkazh1tJipAaMcBKh0YKkC7+Q5zt/8qQFX/o4ceBSxA3X5RuoWFK0AbPZ90laoqQDkcYwWZlSpASH0sPO01KUB0MWNjq18pQPvjboTFKClAxwBl4pxnKEBLFegJunMoQAXPUy5uUylAfBTB9UoLKkDTxdSk7ocpQEE+n8fi/ypAzBU9DFCMK0C5cvU7BHMrQBvPJmQYzCpAaKE7vUssKkBk0+WoVqopQGWKWVlDEitAzGpxJpDDKkCj/q9HvMUqQBS5i70ngylAVRJSKX0UKUAIrO9Oz2YpQGH28fALuilAw6zuvIctKUCFUFVDsn4pQOc+XZkkTypAE2gTAgOBKUDIMGnlfiYqQCkD7fwSZytATIOMssrCK0DjXgxDW6srQHt1oVI4KytAmGi6T6NMK0AlouMFbRsqQPudLhKXXipAPPFx7PaeKUD98GQSQlEqQKliYU0EASpA6YIJk+i3KECVOUUhKMwoQN2ck8BQkihAgApL4npOKEAN8fRr13IpQKVAo6hTrilA+RnpLAzrKkCAOJhS0/8qQCizoH+bWitAl7mRN9QSKkBV//mfnUoqQAsdusS/xClAuxmslmYyKUD3elVdHdIoQA1KB/6OKChAnHZYbidcKEAH45xN9ewoQJsxy/JuzSlA+dC0koH4KUBI4T4seLcpQHDc8c3uoypAhfQD3m07LECPMYSKEIksQLf+KPU4+itAEYOGb15dLUCF8lBe1DEuQIFW4/Bj3S1AfEc7Ub9KLkBIHgOV8dUtQCtkl4RUmy1AYKpX3vNaLUAMN0b2SvosQJH18T17dyxAWWXA+RXfK0AwamBf2JErQEFWcG5G7ytAmVj6Ni2CK0Dfhlc5AYIrQNx6FkGw0itA2HwnnxfiLECAno+sO3gtQCHJLZJDWC1AQZk6hRR4LUAM6F8+Sh8tQKNT/yk+zixA889eEw+OLUCQ+Pr/vActQHfOTQQH4i1AeDBb3gqcLkBRZJM1xLsuQBmTFoKk3i5AeX+OlpiPLkCEj2Ddb6cuQMzntnKaHC5Ac+voYr0BLkDw08tf6M4tQF3Y9KWVfS5A6WqVpuJaLkA72RhsQtEuQLgST1yHcC9Ah8GAYdLAL0A08LbhwtQvQLWrc9BMHTBAu4pBMM8mMED0juFOxPQvQODVReaWAS9Ayebpc/PcLkAIFZvEQZkvQHF2NX3gRi9ADc/ofKYPMEChLiMgnVAwQBuyhlGFUzBA5uh/xAooMEBsAfNXDNEvQBZoX0mrODBAxDN60GhXMEBhc81f6HowQE+a6xtqnzBAyarZwLEuMUAVO3TEJAsxQFoGFacxZTFAv5OuETIUMUD1PN/1H7cwQGvhMU73ITBAwY4P26hRMEA1wkTbEXowQJVMaiH3YzBAF83wHqSqMEDIqgI/wlcwQLHoZmlTejBAQc/0u6YLMUBY9/nUtPwwQFF+5mjUdzFAAbiAvGmAMUCDLkanTnsxQHvA4bC9KjJAChsKW/YlMkBI6fQbesMxQPoXiYG/sTFAmbKVt/+ZMUDPUXgnEIkxQNkEsoXGxTFA2Czbcc3kMUCEdnBsMMUxQNmCIwH4sDFAS8lZmE5PMUCXv2qOgDwxQH3NyiPZ7DBAXl5hZsDtMEBR0yGWAvEwQEnID7aJCDFAa3Lu81u9MEBn0wRHcYowQKDdRcPK+y9At5gDHG+yLkClsC/0d2suQIELY5kKSC1Af2LRj52rLUAcSZ/MXZ8tQHuqx5xgGC1A9F4vp7YuLECRouFBfYAsQLenEOfOIyxAt9aO/EmbLEDVXF7/i8AsQKmIPw3YCixAVZI96UZCK0BNSEgyvgkqQJdn5xeItSlA0zvaYbfiKEATUFUwGjsoQJswDLbSNyhApRzhX/MiKEBI32UCuOsnQMDvU5b1midA1+rJMvr3J0APUj9OVV8nQIwVRcP4gihAJwDUGR8PKUAnmNguFPopQNUYlHsMoSpAb96oiPEmKkClOSq+UncqQNkz+HKYxitAD9Q+NEPlK0AzfP2FZHMsQHTihkB1OCxAbEvxf1HZK0DUeCq8rEIsQCFar9KmMSxATIfmTh1aK0DrNSi+vVErQDFj4dsOxitAx9U6UVpwLEC/AjKx6WEsQGH6FIMOzy1A8yp3oHAVLkArfBnoy7AtQB9Vbyo7UC5AWfnEqwCNL0CFzT+omp8vQIRcsB/Qby9Ab5r1j8jXL0DR0b/XywwvQMRxN8+nSy9ABAvTvlSUL0ATF7Mca+cvQL3fIYYupS9AXUQmcWd0L0Dg+RUW1ekuQJAw14kmNS9A5wEYcOcRL0DYkzzUWO4vQNQV6PXNKTBAzm1++dJNMEAgimErGREvQPTiky1N8y1AJ0Gqg107LUB7hnD/8YcsQIvxBmFnCyxA66O0AmRRK0BRsl//G5IrQFHvA/jf5CpAfBrDDt77KkCfZaQ+1ZIrQPed7G0WXCxA/DOGP3dKLEAnZxxAgzEsQCSnenLFiSxAlGnxJmUkLECYhbyXOl4tQEg7slBI1S1AZWOmSHrkLUDr2tB2gn0tQP2zkV0ChCxAE6yYjyvMLEB8E+8suLQsQNME2pJi+CxA34xlLbeTLEB0qsFU6XErQJCjoBu9FCxAK39WitWxLECdwTSW4KAsQE/HmEyvZixAyxLxVWrTLEAlrznssHssQKmoN60c4ytAPcZED4vaLEDQDtCMV+osQBBjIjl5CS1AvKozMWbuLEDHExBO7D4uQLfunbKE9SxAy6U5b0JFLEDEWm4zcQUsQFH0KDHzaStA7dBApstPKkA4csV8flMqQOUa8hMXnypAaCvO7SrRKkCnvqLjMW8qQJHGGnjJfypAL3Du2rKUKUAtTzqr3W4pQFs0Qvy74ihA2+esAms4KkAMQmORGyEqQGhuB5zhuipAw7u7XDmPKkBwOZIEu1cqQPuswb+eTypAjC14CIXkKkAzufRj5HgqQHkxnWzjMCpAGJi9XNJjKkBoDI/mtTEqQChN1guZlCpA8eeVhzdRKkAbmWjRI+EpQBD8llIadClAB6Bc0tgNKkC9eafHPjcqQC3gKe3VdypA6bEfDjjlKUChutSZ3VArQMBNaAajqytA4b2n5SUIK0BvdlCeJsYqQPiMDe/AkCtAn+eBsHBjK0CYw8B4lXMsQDzOgMspDitARSAUmC57KkAYA02KMXgqQB3UOxzg3SlAA/he3w5eKUDzHfgHRm4qQAXr4Bhi0CpA4d+kjEhzKkAoXho9XL8qQERM+QGZ8ypAxGbKhQfQK0B1MccZsGUsQAtOVzjHIyxAGehZqQY1LEAokRHT5rsrQBSn5Xdd7CpA9ACF9qMfKkDEsWYgXL4qQPg+Sk6+IipAWRgJn1gSKkDQeArZcOwpQCzLJXPuSCpAg7T6cHXSKUAE/U25dzspQNHFwFDjlihAj9ifJEwCKEA5PRYs69EnQAFIfvrOUidAraNLbU2HJ0DtRKDLGWMnQKB/in9uNidAq9dSXxDcJ0BsMYFbUh8oQC2MsNYxvChAmZmzoYdUKEB96NU7zDgoQCce+akH6yZAw+bzWukHJ0A7Xh2hs7YlQMtizcs4cSVAJWt416wlJkCTeTBN6EwlQBBXBdkWEiRArUB5QXk1I0A3wNVWe2wiQKSP0coxqSJAbmeasMKbIkDlXsGwM0UhQMyREgMwqCFAP2WcJilSIUA3dYxrecEgQGImj+SfxCBA5Bj4aKMKIUCCbOtQKkchQIHG1LN/AyFADn2Sv/ZzIUBFzuniWYUhQClHSrpLNiFAbhGOSpLjIUCZTlegXz8hQI6hA68WQiJApoR44HdAIkAlUDZmbZshQHPWusfTriBAsXm4kCO3IEAtouoi2qIfQAiOWtePdiBAYVo+Yw8wIUAWP9RwttIgQGs8BhUFliBAa3j+YLapIEBfBIHcOiQgQK68HAR8aiBAD/QSPQf3H0BfcFqjUFUgQDBQY/uTTSBAuLsdK7QEHkBRDvuSzt0eQJ/bcShqAyBA9GbYcVx0IUDLly7ZfqQhQDGWSZe4vyBADe34v8aFIECkNK2mIZUgQP1Cza0l1iBAv/YV1SfZIEDtgKWPh64gQKFlIe15ayBAG9ONsvobIECR55YmrDEgQCE2HqbeJiBAQ806DMLfH0AVYmw9znggQIrVRNKGWSFAk73LYr9hIUC1xeU0fU4hQCGWu5kKvCFAj5is48M7IkAqlfYbkdEhQH83sHjOoCFA/5lJUCzZIUDQfLxlJBEhQHG25VFQAyFA7I5bTt/wIUCpAUUTrWUiQKPmNAEHTCJAcZLlX1oTIkD7G84uhCkiQJviDt4N3SFA4mbYp0GSIkDNXnZWQwMjQLPwGHe3NyNA7e84u3fpI0ChYp/dNm8lQJmLaPpfTyVA/MCzNwobJkB/lrwnTqkkQHDo8jTRQSVAq3Bo0QNaJUB8UgacPF8kQOUoZQY1LSRA4TGueHE1JECvt9ExLmUkQPN1YsC1YyRAt+5fQ4vII0DT3jHMIxwjQMfvg22LFSJA7VMmVU+7IkDaSdPBNhAjQGp9WOABAiNA+RIzVR51I0B+EHSnqAojQLNtviGMECRAD6ngZqL/I0BycDpUx3QkQHNUu6l+PyRA/SuzjNYNJUBE4ZHW1rolQN8fwssAwCVA+7TsrvofJkBHjTrap8YlQPyg2YI14yVAaQt8O6lvJkDH+1fMpkQmQHVdZqk6JSZATWq6kZ1hJkD7LGZEi+YmQIet5ddHHChASC9jgM7dJ0B9bhiftxooQGCePI2dBihAQXZ6y38kJ0CvwHKDO+YmQKB7TIJczSZALRHQXKJHJkBb0dT9RQImQMy9ysfTKSdAG2mcLtnBJ0AxKbpCBR4mQLsP2livEiVAmMMHGL6mJkD15vtz/5MmQOAMn9DYyiVATDgeVFeXJUAfsVtE31UmQAwJ7H5IeCdA98UY5aDoJkCUhFPf7TUmQFcpwkXuZCZA8Y42L0QKJ0AYTYZjAs0lQGcBPgorfiZAVHs6CNYyJ0Dt1ljj7GYmQIAHvmLrbyZAm6V06V8jJkCpmWbkpockQPpnqgsjsiNAxWfOf5J0I0Cb6qTUhvwjQKvWv7cLMiRAdvSANXmNI0CR5zzYEAkjQFQSyOD3CSNARc/PBi8ZIkAYJ0SIonkiQFzajhDCBCJAIZRxYIcKIUA3rs6EhEUhQL8JOWhfbCFAC9FuuOESI0D3Bu6SXDsjQCHYqRP8PiRAue/gfmy0JEBlkKFUoNQkQIokJojIqSRACaJz3+joI0DvPSO34gEjQH2Cfa9GIyNA1arDtYdBI0CpL0/zhbEiQFH9kqr1NiNA+hraPXAqJEC5TteaoQAkQFoxwHDIkiRAXHZJvXMMJUBQoMmehnokQN6JuTBGCiVAIR9jUTqWJUCZ+lWSgdYkQBgmUDUcmiVAPW3F4nV3JUC/vsz82CEkQCj+YddP0CNAHFsqHoJPJEAVYrZ4pwMmQFSl4lAFjyVAKVofo3vLJECcGogl5gYkQIGce+FU0yRAtKrJyGRBJECP5NZ8cCkkQCRkCsbO3CNAea7l4Hc0I0BNoi22XPQiQLHbHClTqiFAF4SXq38rIEDV7cP4gEogQEBB7cAmbSBALke7trWYIUB6/kKB0UIhQNvZdKP5RiFA0kBt99C7IUAH+M+R5t0hQIpeTT4sbSFAktGHgxiyIEC39BHY9QEfQPdBHT/s3x5Alxuc7J12H0DhR3obfOgfQAw09N9+yh9AF591LVYBIEBstSHK71EcQLgaU/hWMRpApRkDzOOBGEDjREEPkZwYQPeXFlrlWxlAN2N9zAZ1GkC7SxyUvUMZQHureeQwJBlA55vE+aDkF0DjSSp84D4WQEwe2lnU2hZAv7z49CFfFkAnTtWJMZ0XQCiSKO/ZuxlA81FQNgPOGUBnI/5XH4AYQFjHw/FFxBVAP8/0T0xOFkCRUOhUVVMVQP8HFqNI1BVATL6uAR3PFkBrevKt7CwWQIWSA83b8BVAtPSohI0jF0BpuIoor2cWQOOQqA96LhZAMw/z8ZI5F0CL+OJwJh8XQJMa6usXKxNAiNF7FlP2EkCztL6Lej4TQCfIjvE2bRRAG9JyIsJkFkA7188Y0oQYQM0Wb7A0KBZAM7GkRNKwFkB45wvI5eEVQJuR0DTxaRZA0LTX7oqmFEBLsSZ+cEUWQESO6LxbsRZA3yRJ3BHvFEDTyLLlpigYQCXOVr99RBdAw+dmH72YGEDowOJPdAgbQCmlLXsoORpAGLZGX1bDGkD4ZPMIqH8bQNVjxML4XR5A39lyy61VHkCVvbfja/cdQMky28eKzx5ARENHV+BaHUBjw9iKXP4bQNwMML2T8BxAkEduQX25GkAU1tek1CcbQNnpYkHXYhpApxvW/4CGGkC0go83cxgbQKj5hJfwtRpAzEhHViDnGUAsAtpqf7MaQPhbl1zowxlA0WObOuSAGkC9osd/1H0ZQAgs3Jmv0hlAG7G0oxwjF0CVFOmZ2w8YQHmXUXB03hZAW63DHUqcF0B7WALIXy8XQDek9igNcBdAVwNlZJnyFEBiiFYJ9NISQHrYyUWAohNAM4LnGibdFEDgC8EjZmQVQIQSBZGv6RVALyIq/J1cFkDlKw9iEdYVQPv1ONTsWxVAuwKR9iKTFED9qF2ASL8UQKsMxeYsphRAjE+cg1HDFUB95VOaHOQXQFkWEKgimRhA2d8IgZxSFkDf/KK+cQgWQOkpIJbjCxdAb7SgcTC3GEAFo3l3ciMYQIzaL0tRkhVAObr/hZkyFUC9wBZYq5MWQORAuk3nYhVA0L/vRPJzFUD5evhqJrQVQNfMAFa05RVA0EFEOGrhFUD0UOcqKy0XQLHedGM+CRdAd1dDPaSZF0AFlmP5k8QWQB16vLViCRdASZBuemnBFUDqRuEeVL4UQI+faNsvbRRA+AZ11dxEEkAk3cVqHsASQFF499jPIBRAkZNvD+ypFUDLkKShMicYQOXV2gTCSBpAZwuGVawqG0DPR3wBLrYaQBAUQGOxhBlAfYF5UwLuGEDgCqbWfS0XQIVvbFaoXRVAoJTVa17yFUCtkBbE34YUQNh0A1ZtuxNAXVvOAm0wFUDP7UaHIqUUQKOePlMwrRVAzSpekY2tFUCU93TdbR4VQApDXKW1ZBRAff7StwmTFkANvtHlWPQWQPvcUeNJEBdASWfJFXdjFEAu/InqRAUUQGFaq/QwsBVAu1+hVW1QF0BtLv7RVtcWQEmRqEZw/BdAT8oMwvjaGEC7XMNAJrwbQJ2d2dVboRlAJxW6b6IBGUDctXtLBigXQBcJ8C6nvRZA1L8VkgNmGEAIfUADd3kYQPfX3JqgyRdAgFHyZOyuF0BRFcerC/0XQOyg0kk4/RVAazZFEKZdFkAtCIlEqhUWQCHVIrTvBRRA93iVCqNHFECO673ZuqETQFnyFhKtcRNAR4JHln7TE0CpmpnRmdIVQA8Loss9exRAih++8hE1FUCsg2WIwvcXQC1v+3JnghdALU9qxq04FkDCSLaqijsUQN7yV93auBRAb2xnXbmNF0AADgph6X0WQISUztbcehVAQXltrZaBFkCNU9S1UdcVQAYDM56v9hRACwWE+0N3FUC7BePouPYXQLh82bJI4hRAXc2sWatrFkCNe9tss48YQKQ/Hie4rhhA0ZTkY5ubF0CTmTXaTg4aQKNyVOOK/BtAdMZjEpJ8HEB5f68w7acbQCxTUpZB8BtA7bXf6/QQHUADwn30kiUcQPCPe10euhhAfHpHc88TGUCNBi9V/koZQIvNhgNIWhpAjzpIsrbGF0B5wJXajJ0YQJG6EQXedBdAOybmzI9GGUC0efkbE5gZQH2fT2oJQhpAkccK5YwNHEDTuLlBpJcbQKTHD77mexxAHAzx3MSXHUDNVSypaxAcQLkGcX8ZexpAya4+rhOiGkAUUsnV8UMaQEzevQEFlBpAazCr3Bw6GkBfu0WTCcMZQM35GsHQkhhALWZIEncFGUBhYW3WOIwbQJh1pXwBtx1AO65h9Mg2HUA7kQL7rMUeQFkl2NoewR1AFcMSjyoAH0B05grleYMdQAH6Tv3awhxASC3r/KBhG0BwyrlQrCMZQIfZ/ZRUYBpAzegnKOBHG0C92FBuG0EZQHl6YVgvNRhACGKcvPJUGUAbc2kUqIIZQEPGY40JNxpAjAxNu6XIG0CsuNlg7UsdQLnACWCFoBxAgIMqUN+KHUCpDSt6apAbQABPREhsfhtAJDgoqZuRGkDYCJt770IaQMlM1KXeAxpAAc/lXBDSG0Coekvqe4AdQKXsi0I4TyBAF/8/jQ64HkAM/pkLDTsfQKXwxk5+EB9Apb4MCQ6BH0Agtjy2POYfQBiTvakTaSFA3NIWWeQCIkD7lWr2JhEiQAFF9vJkYiJAJlGnkDkRI0ALe0da5B0kQElK+JNSPSRAO0a9tv8aJUB/HuGOZ2YkQJgh5CPyuiRARw5Aob7DJED9jPKi6O0jQONKumweASRAoYYuUim+I0BFbmsfzv8kQHsU8tGgFiVAAbdjCs1BJUCVEmPw6yomQIcw8WDs5yVAmuo9xK4xJUAr78/b1ogkQOekr+xbiyVARRyY7hbVJUBcO+ImPGEmQJ+gTwan3yVAzZtkg1iNJUBtLSLiBAwmQF1y66mi1CVAJ094wRD7JUAtiOMswX0mQFEop12L3iZAfwBUVVkkJkAFnpp7H7QmQN0n+XXe2idA4UnQWuWMJ0BnG1YjvPknQOzNqGZThShAHUs/2VNfKEC8zX3tnjgoQB3Isao8YihAN/tQC2xiKEBFUsf3BNQoQJ24998HjChA7OBabFcjKECjsGomdLgnQNQoK3toWChAKxUeLHyyKUBAlDrGv54pQEjGsxx24ylAMSBjcd4BK0DvM+iBKRQqQASpZOf7qClAH8Wf0OtFKkC4/XnDa/ApQEfoWOEznilAAMKDQwE9KkCNz6V3o7QpQDu7mJVhSytAT0eURPNrKkCzCj8sZ10qQLA6EY2mwylArW8nv14LKkBH5V1mx8spQNiEIOIMmylATxPqVQRiKEAh8Ov7E3UpQPu9BIpfAylA9Gm/cEmoKkB0QX3T9DksQKt3Em2DzyxAvTtdEVU3LkA/UBSqpqAuQLsuDR530y5AXxWuxWDZL0Cwgqb1msYvQKMzhD/40S9AZwWOV7dbMEB971V5SkkwQGxuiIyILjBA3EEFHy8fMED/Ex07a1kwQHBSmDrBty9Afbp0M2m6L0C9WIXofJovQLwMxHKaDDBAu1Rv1qgWMECMlGJbeL0vQNS5PEjNMjBA6wdg1phnMEB+M2znEEwwQMRAWbMBWjBAMTd0yOrFMEDRcHUmd9swQLx4iLKt4jBAATuTh/S2MECcWlE/rJowQA3nVqWCrTBA/80aWCiQMEBma8tRzhAwQJn7cnXGEzBAlRiuEO96MECzNa2uJX8wQF58WRRB9jBA+zn25sDEMEAWr3sr62kwQFm2i+LFRTBA9f3/eMGEMEAZ0jkFL0MwQAiGInG0aTBAFxiMLDuVMEATIqtaFJYwQNd+q6KN2S9AhatDknI6MEAUiBumCEAwQDB0NQHZujBABQEFETIOMUDmWgPMv6sxQERUyBuJNjJAm06UP47tMUCXNJddIQcyQMFXHYP/GTJAmUu+GgRzMkCRW//bAq8xQLLFR212XjFAGUt578BTMUB5PI+gzb0xQG8MPCLLOjFAosEVGXcYMUDXf7I6Mk0wQLEvlvnaCDBAB6y9p7tBL0AZa/tEYgswQCBk+15pay9AaPq6jZcPL0AFHE2ZlpgvQDvm977Eiy9A2ay9K7UMMEAP40G1DT8wQPb7Lc5VOTBAkQOhuEuVMEDH3QBSYA0xQA2W66yirzBAbZiiJ2vEMEAtHh05QC0wQPvJvL6G+zBAkW0VporbMECfixlV7RkxQEOtUGh2XjFAqbsfx545MUDFOEBRoBcxQNu8KnW6OTFAG1Orn3dcMUCd3oR5GP4wQFQWqBVjTzBAhJzQeLZPMEDXZxlxwhswQLe53ye7Di9AOcgk4BwaLkBI9ybHWDEtQDBXRoGG/SxAbJthKneVLUCsyjF0fSItQMdH7oAw8i1A5FZj9Bi2LUCBsIFvmXguQNhDRALCBC9Af+5v9qMxLkB5ds7z0IwvQKw3YKwlMC9AsAaLBpfiLkAD8X26ngsvQEiWPiqsIC5AVU2iOdZjLkDXNKBd3CsuQAjXE0DREy5AUXDWah09LUCVyN/q+ucuQJiRW9Ap6y5AOaIrtfPsLkChwAkjugYwQLci07fG+y9AHBEVh0VNMECHvPZSIFMwQMfD2Ja1JzBAsFTGJHMnMEDurcIIIE8wQFwlGPPuDDFAuO9UKWwFMUCvkCdQqPEwQMdu0fUVSTFAO2jafyncMEAhvTK1sfYwQAlrrCwBNTFAEuoqKXhRMUCx5Of1Ci4xQEOI9289MDFAEvzl6Ll3MUB4DAJyh7wxQOf4hOpB7TFAidYiuQF9MkCG3pzJ6FEyQBnHjsITVDJAiYwfA1h0MkBb258UG/wxQNjqkIuNBTJARj9+PcHxMUBH/EVE0CsyQK2jkMASujFAleFYHpCQMUDtoKikhJAxQIAV+GCUPTFA/eD5UfDvMECH5Bwz1v0wQLwYamJu7zBAP3W2xezrMEBvDMwyHnQwQHye9IfQuS9AsFoxEhmKL0Bo/SwRl2AvQOjCtDZLsy9A5xnzJp0iL0ADeKdjWWQvQHfxEaTrhC9AffDD4oN7MEB4GNm7/n4wQJB+WIrhSjBAiqnEIU9cMECYkmNNDVcwQMVRD6vrQzBASlLEVkOPMEDtpUNlma4wQOPUFQRyADFAs75yqPdXMUDc0eDPVA0xQDPfFHMPSjFAu/ZouebqMEC6JY83qoAxQNVX39vrqDFAKY8TzUhFMkCfpg2LVGwyQBKjvVJGXTJAlnnBQx43MkBL9S4HEp0yQJfs5Wy9mTJABWU4881nMkBDC8VtJQQzQFlYHQT10TJAe9JF78p5M0DoGu/51vMzQMdOOlZXtjNA6FzDGIoANEDcM79neRY0QBxBiy8OXjRA2QogNEapNECyaiU87CI1QBeLW/QVKjVAdo6OL9/9NEAw/cTRljM1QIndGVurLTVA33pUg31tNUClg/U4VIc1QECh08iZ7jVAJSG4iUOvNUAD+zZhcdI1QPnDdNaiozZAv9pkVufhNkDYXsvI35I2QHDpCGtErjZA6ECRn+W1NkBJ6w8CNdE2QBkHSarUCzdAMApY0oxEN0DkqTq/poo3QHn82KNNujdApL9fk3T6N0C8livhDXs3QJA2trTWTTdAUEsjkzrpNkB7TDOIw+02QPcbhGRMeTZAEPJ1xqT0NkAn25nOof82QMn8ZwhcVjdAHVUL7MAmN0ChRw6KBfg2QBWAhnxtzzZAlaeZtUaJNkBjHy3xhsg1QKjpbFuQMDZAUcaiTsvvNUBhG4cDKik2QNhwGlTzmDZAMUjhzMhHNkBIvvQrN1U2QF9qh25DijZAlT6USVAdN0A8LGpvft82QIsIsyQewjZAFy78XzRhNkAk8+/vhP01QDE0xKBbhTVAZQOhHFPrNUDsySnfjtk1QLiV64d9yTVArxWfb0qjNUAznVn1aYk1QCaIgGj+8DRAz4CpJ1cvNUC5v8Bra3U1QJO+/Tn+UjVA56uOsJeHNUA17+RGtmk1QFBBgdjnuTVA8GM1Xv0cNUCYgguSoWY0QHuMp0o59jRAhMHtMYJHNUAEE4t/x3k1QB1dbP0FAjVAYfg/VRIjNUBTNnckSrk1QA3PstfPEzZAANsjKn5VNkCNWOc1WoE2QMjy/PI7FjdArBFOW8L5NkAYDbY4YLs3QBmLfjtPbjdA7CAgzEa3N0BQH4ZWx8s3QBVHcSHg/TdAIGToI3dsN0B4cMkdt9g3QDM2n0TJEzhAlUThSkw3OEApDJpIZ9A3QF/ci0ubmjdALAjGrkAgOEARjtwKTxs4QBmt1QXaUDhASF4c0FwROUDgok/aUaU5QJ3g7CEMEDlAX5YUyG/0OEDp+f7UmeY4QGxzj82VvDlAZyIKDV78OUCXfzirHSk6QOiG4cW9/jlAmbmKKkW/OUDpc/Bv8rM5QAFhjj/T0zlAFLh1EIO8OUBEU9RsVDM6QGBlXFQXmDpAmWmfYHpkO0AI0ggF5Sc7QInNxSLRPztAYL/1zcfyOkBTIysBE5U7QBS+5hQo9DtAm+JQCF21O0Bpdc+VGBI8QLH4fLRCmzxAI27C5YLFPEBbgmr1Eqg8QNBMWju2eTxA0HuCa/+jPEBrNo41ZdY8QP1hux8KUzxA8OHvX65TPEDTdpvmwPQ7QB/AoT6mmztAKVzzmgOnO0Cp2v4aQvQ7QHeVf7UILzxAeHSOZ9BgO0A5ve6ukDI7QLEIzyEz+ztA96K1eB7xO0DsVSqpqv07QG0QzIo5rztAoITT0VSXO0DPDyh1dqI7QMFUhW4CkTtAfTpmKlt/O0BHVPXHrg47QGsH6ikyyjpAh2O5QGXkOkDpUbPsQrU6QLMvjpk0AjtAJ3E+V7fkOkBlY+7a53I6QAxzz+u1bTpATVWbNaKWOkCE60b9u3E6QDWX19mZxDpAcT03XCWAOkA36VSTsOs5QMQ7zEyiXjlAiCC2lpmXOUDFVwYrfvs5QG3iFmgqfzlAgxQ5PcEpOUCpFdLDcVQ5QOSUZpwxsDlAKOTSvY1LOUA1uppjdhY5QJ+d+zwAizhAzJ3/f3xDOEBlQrzTmnI4QN/Ogk92GjhAUW3u8FZuOEAw4GKiwxY5QIugsjtvJzlA1YFYUn6jOUCTU8meXwU6QHFuyD3tnDpAGcAQ6nYYOkB3kBc2/j86QBS7k4fGvDpAOxRGm6N0OkB7PIQmCN46QANwrJyTkDpALIOpxHSbOkDg1DqET6k6QAuG3a+8SDtAWNzSkiGUO0CV11ubBJc7QFODbGzSODtAtcp2TADdOkABpjtrP5g6QIyxr43tyzpAPbCYtrKLOkA50A3V1wE6QLCt7kFjhDlA7QbYfO5BOUCUt+8ElAY5QAHmis3SxThAT+APTlmxOEDH6iulIzg5QAMsgF2iizlAxHJcsjCrOUCt+GQrPX85QHkqHY+h3DlAbAlC5fPPOUBtBz72NEg6QKl1OgXF6jlA/ADrGLPVOUDh+N6/kv05QOWevoddgTpA6B/Fg7LQOkABWOEhCcA6QP8M9Hd62TpA7FSOtBawOkBIo0p+YZc6QMvbE3rK0TpAMdVSaIoEO0AlRzzbRyM7QKEzxbPVKDtApDslQughO0Bs3Opkmjk7QIBW4apxNDtA3XVr9GhkO0CcpF/Lr1o7QCxa8PtQsjtAJMSZn0XJO0CDRATpunI7QMfVFuxzWDtAQfKUM2cCO0D3EbymlJg6QIRMGpqX+zpAiW+F9r9HOkDn5YZfr5I6QLkckAq16DlA7+iSxGMhOkCn6IonKT86QH2obE4R7zpA0LKRmMPEOkCdUfQqozY6QKWjlvj4qTlAOzjo4asvOUCljr3Ye/M4QCR3uwgUjzhA6FS7/1RQOEAvtBoiF044QO8ulTxy/zdAzBS4JJaEOEBh0LY/25s4QEVk5rZiTThA8LbTO4U8OECI73TUgWA4QGdB33BsdjhAUSjz+J4SOEDx9e/RO903QHTIdjEUaThAmx98ZLQVOEA8NSGvajw4QNH9kBatgzhAS6K4dKPZOECwdQn6X/A4QKQUkHJZejhAsMqMGWyrOEBYQSoxU+Q4QMGUOa7tYzlASK3XQ0TfOUCND6Yz+e05QJDgYhXp/zlAW8DXrQAqOkCH+ZFX/ds5QEhdGmvgwzlAW/RdNPXjOUCn+2hxECQ6QBBKE1mfGjpA5PY+f4SyOkA56JwCsts6QA0pxMkLETtA8X051yTEOkDz/HmPhOM6QM3OJ8MrLDtACd/kV7UBO0AHrofUnfw6QMQC7f+yijtAJ4lXQTSKO0BYUgmHYas6QJXZ/MV+lzpApVH9gHRhOkDtKw1zSHg6QL/MhiGITTpArRAanxQTOkCcitvPTcU6QIBuOlwcuzpAZQrw938UOkBseszwKp86QMfHm5z8rTpA2I4ISSG7OkBLFXxnN4I6QJR1wKsdmDpARToY5eo2O0DlLP33zhs7QOA89TSs1DtAm2zINxuwO0CwY48GbQs7QFQ/vnPygzpAkf40AGIzOkAro+dmEW85QNcdTYQJHjlAFCxajb8bOUC1LjShZiw5QKdBz8xhLDhAGY78MVYROEAncXpY1FE4QFN/UaGqoThANxEt/x1qOEAXJ0+Fao84QFGHWXcJizhAoJ/BgTzQOEAga95ygiA5QPj8CSSNZDlAk0xwEydQOUDRWpiPkpY5QEucP5ZuTzlAee34INXrOUBhWeIrMNE5QFXPyUdN3jlAHZgHPFrKOUCjlMhd99I5QIGVlOpazTlAyIdTK2gLOkDcCIezyJE5QIC+81t2pTlAvJv5d3PdOUC8Zp412qg5QGvCJ4+qBTlAVG8G2s2nOEBA7qwQFas4QBEYJL2uuDhATLcS/lX+OECbcwnkxTI4QOExXfUhDzhAf83xIsBKOEDAkyCi46w3QIMpDP1S7jdA68gi+GMQOEAQHxXmPMw3QIuseQ7fTjdA3IlBP15jN0D344H/cSg3QMdflx4jQjdAZXkSDGmoN0BQA2Leg883QDURCs5tBzhAwJi0F9SuN0BtqQMHbcA3QFF/DTPGQThA0NQJW7cIOUCcldYoE0Q4QCWTpcsUxjdAkz+8hXyuN0AwZRB3DZ43QJleJZSYIzdAZV08osbuNkB07UqldRg3QLzea+fC/jZAgIsrxhsUN0D9ClC4JgY3QIQ9hEAH/zZAd28XcmwdOEDR3I90HCk4QKm3YgB1UzhA0+3Ge0lLOEBQv3GR0ec4QOQWIHX26DhAaR4Zq1LVOEDh6Doy9Ck5QMHdH8QsATlAeGlo2xbjOECcRb0BPrw4QPlXuPujNDhAGcBqHLNMOEAYmcbKgjM4QIzwXMZBRDhAdQuXYRUgOEC0LfFN2vo4QPiV8hXc8DhAU0FT2jGbOUCJTjPMimw5QB2Hi0ubwDlARDp4sSXdOUBPafoGDJI5QNX0a3q7MDlAyJnmWl5OOUBkJvIcg684QCEX3/pRLjlAzJ+bDwjaOECjqRNYtlQ5QKyZVt77HjlAVFi6iaHrOEAVHLm3Ah04QKHB31Y61DdAi+ISrTxYN0B92FYyNwg3QBVHrDAaSDdAoR1FinUyN0CTBqDbvc82QH9e8r8e0zVANH0fpELtNUBJcynFJzc1QDyHEtIWWjVAkGxXfvg+NUBRbotN95Y1QFcH9Nv1RzZA32mpJNpxNkALEMP100E2QOSXRoIX+zVAGxuPJDvMNUCH1j+5oYI1QHNcHrw2CTZAc7J6uOTgNUAJJqqOUII2QPl1/UgrJDdAk1K/zdk5N0DXp/VQwXc3QPBKxBGjUjdAKxLpwf4gN0AUbS7YWhQ3QPBnmFTyfTZAjWelhA4SNkBhlI33erg1QHWziKOK/jVASUhiGYAKNkDr/G+hH2o2QMOTgJ/qUzZASJ2N3V8oNkCFhfSweII2QIXiTLb6YjZAkAGZ5AlUNkCzkF4MYGc2QA/aTrsHVjZAH0e9JyUJNkArweqE3fQ1QMNrb4gDwzVA2JjuymWENUCsFkT4FC01QPUzwPfB3TRAVQOjF6rUM0DhzmnrdmczQOXlYq+VvDNAXcG/J53gM0CFAfwd+DIzQH9nHqov9DJAbdaheXfXMkDliqK5hiYzQIiaWfeT6TJA9HbdRE4qM0BezHC1jTMzQEHdcAT54zJAz5qczqDNMkBTAG5Q79YyQHbfqWtLmjJAcVvtA4K2MkCJyNcSrOMyQE2sjzyYxTJAoXFNtN2QMkBaGC35A6oyQE30h/z7lTJAgdW8PWgMM0A7Tld6MBQzQAMZHwwSejNAnxqsKieIM0D+v8oTFAkzQF1tSOzA4jJArVqCc3NXM0C9io2E2AkzQJ8cnKOcuzJA/zf7JQnPMkA5MWFQOHQyQP4elmRlZjJAr3QBljSmMkDVPviDdjgyQMkrQwhxsjFAWZ1oBANqMUBHOY08GIYxQFnLxwTUwjFAn7OqxszvMUA1sTHgKYgyQBca2ueJpDJASJWTOCceMkDMZKGCSVsyQOpsWhVU2TFAyiBdJiOrMUDpg1ZzzKoxQNmXfwaL5DFAFYZe528bMkDgDXxOr2UyQCqy/DoGezJAUVOcmzouMkBqB6lagoUyQLMTflkGWzJAB6XJ/2c5MkCBiLmqXmQyQOoDJFa3njJAze1eZNMtM0BRRSIByLszQBT9N7VW+DJAdrIuqEkdM0DmtdE9Rg4zQPemKfmsyDJAnYSFrNDIMkAxdhaj430yQFHPFrxmRjJAER+NEltxMkB2qv/OoVAyQL6BSX7TUjJA0YdfJY6oMkCNTcYORv8yQA9lvGq6hjJAe/Ac6y/OMkBPyxrIU0gzQBOQmloFbjNA9f5HOJe5M0DxEj+Z+JIzQJsaYh5lKzRA4cZtjUlBNEC9kM3OTeE0QEP8bqtoaTVAW2yvfrG6NEAi6gkGW640QOLsUkmoazRAlY56VkSuNEB8mOlN8m40QMk0QlJPLTRAaaus45VLNEAZmf6pWIY0QL8oWhTcqzRAz2WEqeiINEC3NFv2Og00QANeLCqIwDNAFYZ5ipAQNEAvXGB6oW00QBlRJrQezTNAS95YEFjPM0AD+bfCO2I0QKHDSJVXejRA7X5GmaavNEBnNsLw5qM0QAG+46wUPTVAXM1IJelkNUCOpLS/WEA1QPs9uUk9+TRAYEtyMJ7UNEAROWqAynU0QCYHNfdxizRAmFYDk1Q0NUBjL/YiZ2Y1QPBBk+O7QjVAs+HiYY3PNUDLJgkUfx02QNGNth/11zVAgGt6faqxNUD/nzvyjpY1QLmCDKyKYzVAEWcKAEFyNUDxqcMu/QU2QEkNRhH+WTVA0wXBJWE/NUDYA8RPNJ41QOOG3eSMFzZAWCm4smiaNkBDIs9pCwI3QMMvcxxdeTZAo/UUtAlQNkB1G+EMzKY2QL9G9m5nYzZAKNrDgWBvNkBJB9XKdL42QMNWnvWToTZASAeBz7LkNkC3/Vg7DvU2QGelPXNWvDdA+9Ch6+DvN0DfAHTVRUQ4QBvxxy2i7zhAI/2C16K6OEB11PtA9044QHneP4kCfThA6ci/KiIDOEAloRirR1s4QPONXhEITzhAoDDGrJ2HOEBLwbfyHEQ4QFsYXcIdOjhAXNtI/CSsN0CRck26jcU3QJBRRT8UeTdAcCA7vyw0N0Dhao+1uhg3QMwJXsWBFDdAgI2/W8GaNkCgLABagZY2QHDtTR/4xjZAEPVN1K1MNkBx6H47SGk2QMi6/sharTZAbI1XvolwNkDY+lRvJi83QBGdOxaLlTdARbvskqx5N0CQGofov203QDkRTHoGHjdA2Hk8lG+bN0CLyL/sfJ43QN2op6A3SDdACPncrVavNkB/GXFFYDM3QMRha/+0AjdAnGD8Cx24NkAEUPA/6bA2QBs613henjZAeMaBzqaqNkA1g1IEXrs2QA+vl83xRzdAoadbGmQcN0AbKXBLqSM3QDdlvttOBjdALf5Zh8sHN0A0yVmhKQM3QEwHk/fljjdATNKzD6eKN0BETguNveA3QBsS38LpITdANB2rTRgUN0CnSvvwzeY2QCEmo0WsKjdAiYkgtX76NkA77yxPDWs3QJuBjTi39jdAZUZUrxAjOEAtTDZtv3c4QMtg1izFpDhAHNObYDweOEBTihMd0Uk4QLCrfZ55SzhA2OTDTRQcOECzTsVq8hI4QD+9M3JVODhApK3fUBnCOEDoIF8SnVk4QKvK8UJ8JzhA1OTcjOfnN0DTWFqP6K83QMnXsp2TEDdAKyrc91BpN0BP/QBxcOo3QNgJwMesOjhApxZkHsZ3OEBJt6f9qGg4QBNFQ9sDWDhAZB84fe/bN0CkHzHreuw3QCzkffxm7zdAkAS1PmbLN0DxlThxqO83QGTv+NLcWjdAvefWgKLXNkCAxccmFd02QAu/v77sdjZAhO6cUMl7NkABTVVcujU2QLECxfowiTZAcAd3hOVgNkD544mjg4c2QPOIT9n/fTZA32LpvHRQNkAFYQPm7p02QNtoFZbe9TZAi4hWp0pvN0DrnJt9NlY3QKMjs+HYcjZAMYZnLXpHNkAo8w3yU9k1QJna5iyxnDVAGJEhqj7sNUBESXor0CA2QNf4P42pCTZAh074lxTcNkAp53wiT+o2QKv2uEM+sDZA+bOiOzztNkAJ80+w7r82QBiAuO5mQjdA3CiIHSSDN0D9M7A9Vjg3QEOSxOgmejdAeE8rRUfaN0CIr+lubj84QATtaSJgWzhAYOPWzS+NOEBNjFSamc84QMOGr8gAcThA9+NXUVnYOEB9IDu8DK44QNCcobxKGjlA2aesaAG3OEBg4mQj9E05QEeRAz265ThAkLHiKMQ2OEA0011vXT84QN92UwXwCDhA9zphH2mFN0AXwdJTYuE3QB2skkdQLzhASF5fBpKLN0B7BKvRGXc3QBy3uhiGcjdAocQdzF06N0DnLqxGUDA3QI/vuofxhDdA3ACXDgIoN0DA2+1ayUY3QKF6cnqTWTdA1QWNiN/1NkB4izmFuD42QL88P7omrjZAncltKv8NNkBDey1k1yo2QIFMnqi9QjZAyIj/BsReNkA06vdf3pg2QF25ebRojTZAVVZP0d/jNkAE3MjSQUw3QJvEwAvVJThAVZSXnbLtN0Bsr8Dz0sk3QFvmXr6/yjdAJWQZ9ZykN0Apas/FdaE3QAhFZP/p+zdAaPAkcoPmN0CNG6KjQ4I4QHXJKjEodzhAFLpkqGzxOEA5d3HXJoY4QGcZJAck/jhAK6s0BGefOEBsxIk7Nyk4QEWrUOk9qTdAVDc+wAQFOECw78wlbHI4QGPR/PfikDhAiFc1HWniOECta9oD3kQ5QH/k+q0ZOjlAWdNUXiDpOEDrpOSxerA4QCEx/AZ94ThAOW/hjdE1OUBc55buzT85QBkDhIhMTjlAA7dZzHOHOUCI/1ZJdAg6QPTeujJEpDlAV26rtb10OUDnymFzcZ05QDzDIsSY4TlAEfjfj6VMOkBhOhWQo/85QFidWM3vVDpAgOIXeEObOUArW7/6VJw5QGt2nxvuqTlAgf8ismd+OUDYZkMgbm85QNP1NWasajlAv5nji6lCOUDlUIHeqL45QKe46InUwjlA67n6ievaOUA3WNv9+Ro6QGRxhNUPoDpAQG4E214rO0BFvCZ8Mfs7QMGjaiQyfjtAoZBtjgu4O0DTon7bCPI7QLcZblUk2TtAmLPKK2DNO0BYgaoZspQ7QAeQY9A/ATtAQ49kJhCAO0DTbfNmOtI7QN/T8ImTMTxAcDCVQLfuO0ANrcOMvD08QATo99DNHDxAQb1FoOM6PEBv6d0Jo688QEtkuKjdtzxA1IF7v1GrPEDEsxRzOtg8QJcifMZyuzxAPLFPPJ1GPEBsHx7dVpI8QHzdQGSHjDxAMbbfCXHyPEAoOPrTXmM8QPcvK5prmjxACxlCSTQ9PUCb1fA5czM9QFjaMPGVPD1AxaXQWka0PUD/7YjifF09QFtnaOIrZz1Ae5oWqkESPUA1eMf1bsc8QGWq+Q+raD1AO3l1EeTcPEARg9gqCxo8QCdfXES0TDxARf8/x8EjPEBBSZIpwo47QNDxE0EnPztATPgS8Kw2O0D3shXW1WE7QOPbq9X5UDtAL/ylM2jkO0BXhz0NbgE8QNsRG8UGAjxAVYEuJjjCO0DwM+urHd07QF00ok5erjtAHWCP3jXSO0Av8FZDQMo7QOMlnkcigTtAhGQpS+NGO0BJXtCwM1o7QIDpjOHEKDtArB60SVXuOkBsCmnSnfg6QLD2St6+ujpA1+hFtGR6OkABDktDz4g6QBH2CGVmzTpATH78IZYGO0BRNlvhkyk7QHt7Cl6j9zpAkUl28666OkC0iRNaQLk6QGGs2tClYTtAVLoXxH9HO0A8BFP2pj87QF/DAGfteztAC0NENAvhOkCLOgrii7I6QLPWGKYiCztAzX2WsKZSOkAFw8SBB5s6QHyzRhb5dDpAJJYmunS+OkBzs+A+rXo6QI2ObwFCKDtAWQ3ENzDCO0C93CaZG5U7QM3qBkOZrDtAuFEF2Y+XO0BPLTppXLw7QF3pxbWgbjtAxQd2KqKLO0CQTJMPbcc7QNUU4aw26TtAHByMfQg2PECtdS/ixGk8QO8xCfDh3DxAd7iH1GIzPUD0aEpWD8g9QHjiryEJKT5AeRZvQnKzPkABKjrOQw0/QGu2GUv/AT9AUzpUIw9kP0Bb71CIHvc+QOQ9jcDHvD5AuMm8P+9aPkC0jTqlFMM+QEQPNqiwLz5Af4xwH/d/PkBfUl3YDoE+QKeb7le4xD5AeDXh/PYqP0AFQ7a7sCw/QFSRJrjOcT9AWbUflCEtP0A9Tem8/T4/QFVexNR6Wj9AtFJbxd9oP0CvyiYq+kk/QHNZqoPPzT9AXa+fpOtkP0B/UE6LqJE+QI0HE9rLIj9Am+oh5Yd0PkBDMs3Xnfo+QBN14jAtFD9A/PF/RM3jPkCoGPNY9QE/QIn80b5HKT9Al/ohGpL4PkCI66anq8U+QJmlNQ0Zij5AjzBK1mpOPkC9Pw5TqaA+QGEGEmuyoD5A776micoKP0C31dTMqgI/QOmOysCX7D5ApZnAe06WP0CrPUje2tg/QMyXv2QCzj9Ah4vTsXy2P0D81nGsnZE/QJc0Z8iLXz9AgL/ipmJeP0AwIAXe+dU/QGOrP//Ihz9Ap9p/OZ3XPkDD8rZNol4+QN+NcOa5gT5Ao+n5VO+FPkDAg3wOTYA+QLR3VSLIQD5A9z/ohMp/PkAbY1ZZDy0/QJMGpSKgbD9A4dFXHMioP0CByQOlU3A/QNzdkCprhz9Aw54+YuNdP0Dkv2F7mFE/QCvpl2hZmz9AoDIywoBDP0AzzeB5v+o+QJsq70BSsT5A1UDHYJV6PkD7FH+k6Vc+QFAsWpe6oz5AYddDPJRBP0DYxsj5HRM/QKBdzISCQD9AXELyfyPQPkBD46ckUmI+QFMzqHyT1D5A9eRtCNAZPkDrP4YeJtY9QMxDc755+j1Aq7CZG0CbPUBoox3FAVA9QD3ojzuUXD1AlJQhTALOPUA/Ie8oHmw9QNXCzu9Dbj1ArdrZa1eiPUBMirOgqWI9QEkGEIxXuD1ApRQF4GfzPUA5xGVbHkw+QES0PCCuHj5AjfCyau60PUCw50Cv6Io9QGW1dayxND5AqU4I+h8zPkBXyTmUoo4+QPR92Nhiuj5AAfPbQ9w5P0Dj6FuJdeo+QNGYYdq2Rz9AmFVCAO5KP0D9MYjS6/M+QJfkHLWV0T9A943VuomnP0D8NUszg+I/QDe9rFUB1j9AgHksg+ymP0AgsX6ZW8g/QFHnV2kcAUBA899vnsqyP0BocwbpKdM/QOMP5XhodD9Akwpu2JOZP0DE6yfX5u8/QPccBYS7GEBA0REkon5ZQED7YZlYdIJAQFEf8JTXWEBAS0tspyQ9QEAPlgWVmmdAQH+NV/jeS0BAbNGc51QQQEBDtjo7zUJAQDAiFMHzN0BAI7BFGqz/P0A41lwGq7A/QClNsn6IxT9AuzGg0mB0P0CTj+DXbe8/QAd5HjY0A0BA365QRgovQEBA8WdQXH5AQCbeM/zdnEBAIS5Faf2fQEAtLtrQG39AQDsUPCuCuUBAa5zcC4h6QECROAH5VNFAQHdH4QtaEkFAdynVhE5LQUCA2wVf6ThBQM9UF3vwYkFAEDloMxhgQUCPs7OEy01BQBfxP8iIO0FAlN0VdcYIQUD/L53fKylBQFHlR6J2KkFAX8+U0jqPQUDpvEGstctBQFcdMZ5w40FAb5bsa53+QUDN+40amQ9CQNfvYjv3O0JAm1Dqjo5TQkDuszTYjmtCQAEKQLehfEJAyf2phBVWQkAiqpmeaEhCQOCU9sG2ZEJAe35/7dhBQkB9VP8sUGlCQMfc26OAnkJAJNkPHzfrQkAsClEFCNFCQLn3HmnR3EJAJUOVkh3kQkAqefHMHdRCQE8q1E8H+UJARWH/mAYGQ0BOzpu/v8xCQGcU2oVpx0JAmNEki0HbQkD/HK3JfN5CQEi6rVVQ60JAiKp7ypLiQkDytKqRK8tCQJUiChuO0kJAZUiVRHnqQkAQn1EtZfFCQJk1uFT58EJAEk8GWTD+QkC22Y4CtP1CQDsN706fCUNAVHQbpODkQkDH70kAGQJDQGM/x4M140JA3tqb41b6QkD5jJfJjQ1DQLXJQCTOVkNAG40hUOOAQ0Cf7af3JY1DQPc3700QsENA/UTVMpJ7Q0Cb/rYzx3RDQGm+HaHIlENAArxZQ/6+Q0C7kt+yM75DQHdvFTKqoUNAnX3EL+rNQ0Cdeiual+pDQC2DUosivkNAQt3//AWgQ0DBSOC0INBDQIZlP1YV2ENAuwQJ5sy5Q0DNIJe4lKdDQJn5/nF2yUNADkBJoYOMQ0AQBfBOQFVDQC76WmLSp0NAtJPEPTLJQ0DVuE39RcZDQMtuOJvSvENAbzFzMpAMREBvkkeU9QVEQLlg4I1q8kNAsx02Ka4CREBrJllptjpEQN7XPmVFIERAffUOa00MREB+Ti+pQSBEQGzuS+yjAURAPStufazlQ0Droir+ehdEQPNt9bce5UNAUWexfFcHREBac3+6+wFEQPdQnyJOZURA4YiW8kGMRECKkfZammVEQFuIqxAuKURA65J0E1ryQ0BF2Tk+kAlEQOyqqESZNkRAS0iGrdIWREDNhqV13RxEQDXslW1Z50NABf8PYRbrQ0BJa1HSW8xDQDPKmMnVw0NAfJv4hXHtQ0C92o530v9DQIh7jNOhA0RAdk8ubEbsQ0BGDYlzkcRDQNa233t/5kNAX3Eq+6vQQ0AqVcEcMxlEQPemoa4QGERAsxG4GjUfREDxjYi0tWREQM6zeEf5RkRAZWtCDrwzRECv6rNjcyFEQG6bVAO6BERA14OCax0MRED5AHJTQO1DQN9mP4Tk0ENAGE8Nqay8Q0AdmvasFJdDQNH1bysMykNACPmLSWmnQ0DPkRBI4K1DQK2wkFOfyUNAWzVMLVTzQ0AyKX0D0OtDQElMGzVew0NAobduJQHZQ0CK2KzYJ9ZDQOQ47PMNu0NABacUHi+8Q0CqmZpM19lDQMacu9WXCERAT7h8j+QcREBhW/dXSiNEQKVmoz/OBURAZC6qGadKREBlD8Ecc4JEQE0u9kMsYERArgY6duo1RECD670s5/tDQOtwwm+37ENAU8yxiSjvQ0D63/EQ09tDQMRK4hcWQURASEboDKQaREDzqAuIf/9DQGJLyLcn+kNA/5kDNGcJREDzA5gW3+JDQHeaNs507ENArDAPbQa5Q0Dr0nxC3X1DQFjFki7JjENAjRA9cYJpQ0C8of6+f4lDQIo5F0bpRkNAkeXU0/xkQ0Ch9dq/UqlDQPtzwm/BJURAuDw4xQBGREBD7eovu3ZEQGr2r/hmg0RAKGv9GHOvREA1ZkTCYU9EQHEG+qQhWkRArVEDnVVOREBIehvgTThEQPArL/StX0RA+MYHLU9yREDhK7eIfWdEQJt8xHKPXkRAi+OsHq5CRECVF7PpQDlEQI3K6oAuRURANcI1mMpGREB9a8QAhSVEQMy3r3kl80NAiV0SzRcVRED18De7GDdEQPpDmVQJRkRArh9F1gYtREBOAqRy9NNDQAnwC9p/q0NAF0OiTSWdQ0Bkbnh37uFDQENGrcGUzkNA67tazN3IQ0ANRRVThb5DQAXTjcP6wENA7hviFMEFREDmX0K3DmNEQEfQwsgRV0RA4BeVs4AbREBnJ6DJ2ctDQONWkEBYo0NACW5CfQiVQ0DokeN8DKBDQA+DatBR1ENAEs5f+TT9Q0DLYOZ/dTlEQKdXLx65/0NA09fSAWnKQ0AgOfLIQCZEQJ25UiQi3UNANYtnzdwDREAtTQrOofFDQGkYStNZ30NA9cwWiNbOQ0B9WRv+RORDQK08i56A+0NA5YMN1JD7Q0C0CWB4VeBDQNToJsiL50NAnVtpIljdQ0CRvGS0ubRDQIFAA7VG/ENA77vMMNzlQ0CX713KY8NDQK+LhIzHxkNABLCnNeGVQ0BfntZPe19DQJGOBMebO0NAh/U91kAbQ0CQ8NKIAmlDQLk5QmiXjENA8pgHh2XAQ0AxHnw0Ic9DQH0f+YXKAERA88gDby7VQ0AlEEwQOdlDQEXQw+BBDURAj3pm9r8KRECCBw8+KhJEQLlR8GPMLkRASluq5oo7RECD3FjYMz1EQOZ4kWrNPkRASReNBVIAREBJSzg03AtEQENXHGBoxUNAvZtfBD/MQ0Dts9YI6fNDQDUIsQ0EzENA3kFNE1zVQ0C3mUu+kDFEQEOt8jyVGURALJGCvmwYREC2hIc6rjBEQIDm+YSeU0RAQyDw6R93REBvjr7O6LtEQFQ5MUxc3ERA8ZukWGbTRECBo6dBb9FEQDE2UFiUo0RACebtH3qIREChuPvhNyxEQDbK4Dn1Y0RAE2tkpqCnRECbUfN3TIhEQC0A5nMla0RAS4UqQmJbREBvYXeAU2JEQC+vA0HzJERATcuM7T7XQ0ACKLvfhQlEQFxpwY97BURAZj40U6u9Q0DaezgGn9VDQPLs8X4b/UNAjl3XiCwDREDx51PDETlEQKMV2wTYSURA/4MNf+I7REBk6YflYBVEQB65VNaY40NAaNh9TXXjQ0CNFNmIOLNDQPq3/Js0uUNAujQYwzabQ0AnxUb2woxDQBlfBfbt1UNAjYsBHO3KQ0AiUWfpvNFDQFU6n0xREkRAmeNVPb39Q0CnXF4bafxDQHv2W7Eh8ENA+4Xg3nPvQ0B3Q3RyCY1DQD/E1V2Qm0NAXzohfrmJQ0CUzkrNvcxDQMKZBLBD0kNA5UrHhLPNQ0AhVyqjO8pDQPE6G1Uzp0NAxI+SJqPiQ0Dqs1W3ROlDQAcbb7ws3ENATgYxzyD+Q0ChBT9wnvtDQLsDBFdl30NA/7xhC82YQ0Bw+mzDB3pDQG+2BTa9IkNA8/CP5IJWQ0C7iDfCkBFDQGksdtWLDENAdIxOjvH+QkAnPXeXZglDQC33yBf92EJA0NTm4YAVQ0Cz+5jrgSVDQFcAukU62UJAi9njjdq6QkCHYGo/Jr1CQOqvnArj1UJAKTo1UG+zQkAXUjNBs61CQI7nHOughEJAh2EGqi+wQkADcbZ7RclCQI1N7H9o4kJAHWIBBnfSQkACf23CCedCQF3Zj0st8EJAN2Re1vnQQkBZXDpgdMFCQJHwTENiuEJAx+LHCBcqQ0BZLpUiZddCQC13s57/j0JAi2uvDI03QkDmIRWzsA9CQHzu6O6a6UFABV9sYrYyQkCLaiSRUzZCQKO/K9chVUJAB0sSbzwlQkCn7jZHlgxCQDcu+gPg90FAuREf9Q7IQUC1G7EpmI1BQI7MY2zqoEFACS2K5CtaQUAd7gFeR7hBQKL7Lp+z2EFAN69J6FvhQUB78Cyu4uxBQE35ODJyDEJAr816PW3JQUDFXDkZubZBQF4fuJYWBkJA2XCBhxMuQkB+HVgFa2FCQI8Y2REDGkJAiS7FZ432QUDdywo5gYFBQNH4VXTlakFAS/q3/7aGQUD3K9YOWPtBQJHYIb1YvkFAXaJ+gxqNQUAn5Sl+rZlBQM8JJA29eUFAP/OyFHSbQUACB/VUbXZBQH0H6ugAo0FAidE4Vaz8QUBn5XFS9xJCQN26MqzDh0JAcs39QTWoQkDDJUT+0mdCQBk72TdRbUJA5a1k1phcQkAQUyhNhllCQOSsy8NN50FAf9GiWt7cQUDP1zg1pcpBQBOXbHOp0EFAMD4cMZjuQUB0htZS3SJCQLvCVAUTLUJAhyvxJd8bQkAWPXpjRwFCQEeocsNlyEFArTuWJyjBQUBjZf2aYM5BQPPjziQcrEFAZRPmfKf8QUB6QSXhZedBQPteLYv2sUFA1MaAbMqKQUAEuZEUY0tBQP/iM80DZUFApzmIZkooQUC7hAgYPupAQPMyqn/W9UBAEvLIOfQAQUBkpbAQLjRBQAlMJQViOEFAikJbJqw1QUDCWvyyjjdBQGWy/0coIkFAuryE1ZEcQUBjHQ5/ML5AQNp6Wdh/rkBAuijL6JCXQEBbj/4xidlAQFDZWXCFCUFA9/pX3pYeQUClL+uJjEdBQINAsDV/d0FA8w/ziA/HQUABcmUU5NBBQH20ki2a/EFAs0MHbFkbQkC7kRFGNS9CQGsNTvXY00FAuTKTXp/rQUDzw8DsCulBQAD7aY4FvkFAkQbtUdHOQUA9rqzDs7NBQHv0kIo92kFAAyGkhbPTQUAcjtqkY9ZBQJpzxTB2BEJA12q40fHPQUCflLVo471BQII/Xv7us0FA6GMpvOmnQUDt8gt6ZnRBQAgpRY5GgUFAvGWymxiJQUClN/dKN1ZBQKNnnMn2aEFAmEzRHG6MQUBOru6jccxBQD9vDxLcr0FA7YxXCu0+QUC4HeQBOzxBQPAIRijnOEFAeUsMuoltQUCCu3rYJGZBQE0yyJwDhkFA4LeXb80rQUD15G2UrEJBQG2Ivg7gNkFAyJdSPwEJQUDx+b6imUtBQPsj8wabRUFAu62a9ynDQEDd1CenKXtAQMPbFLP1tUBA5MKdSzWvQEDpKT2JRp1AQBloif7Rl0BAleZM804cQEDTFXYsCDZAQD/D6eGdeUBAFejeBJRpQECvXuC+hm5AQEND8CJzJ0BAfXqpBEkaQECRDXCjbUlAQBgOAQ4Tf0BAb0AKcct7QEB7Fw/f9plAQHUMmkrwlkBA81kfIX0FQUBm2sdrlxJBQPCx2NP5T0FAPulRY7NHQUA35YbOA2RBQPUAn+AWxEFAAsTmzW+bQUC1rgSHQaZBQLdfDcpJpUFAqYndo1mUQUDvK1sY1a9BQKjPrxIH3UFA2nbLsiU7QkCAX/Y7Y1NCQBt5vB31WkJAkX9H+jxdQkAqgFLAEiBCQLrCmksbCEJA8fSvq7UZQkCfcTMD5QpCQBrakMpkGEJA+nPpXdAwQkBEbDdikvNBQDHQPLTLzEFAVQ9G/6fQQUCPh3tvHNRBQJZ2xn4myEFA7wiZy464QUA5YZ3rQaVBQNX/TaNOn0FA2DkII/ihQUCtYzF0PJdBQGN7A9ZVzEFAnRejyBq8QUDUKfI0t4dBQDBEHZzRikFAWGvDcRd6QUC5tgzYLmRBQPf4RAl7ekFAT1iChE0CQUCBN3vWm/RAQFVih9gFCkFAru8kLKf+QEDVtTDi0SVBQNoty2jrCkFAIlj+9AIPQUB7p4i9HiBBQD98X9f1ZEFA3VRlnEI2QUB+jWROXzdBQKGtVlAL5kBAICL0VHniQEAWvt67oL5AQKIMGewDwkBAmTr3xy3PQECfI7btk+RAQNgHMfMWgkBAdfXm0udgQEA1fTRDU3dAQKUagWE1REBAF4POWDMgQEC5dYMV5gdAQITmhkSRxT9ArYUlZpnGP0DoXYY0VJA/QNsL2u3k+z9AILKj3hu3P0DUKaHbDQtAQME7P2f3H0BAKsrSZSonQEBqWmuEdSZAQMA4EGmsZUBAURYi09RPQECRgrLCzTxAQAdqewHbQEBAgIRUGNfcQEAAYtas6f1AQISNU2pOOkFA0xSukwBdQUBaw0mgxYNBQDnIZ6xjZ0FA3UI05h0zQUAhIadCESVBQFXkw4ehQkFAm12II+uEQUDiP49MUJVBQAuIdGBCVkFA9+vX88FrQUDrI0pl4TdBQJegXRgmFUFA+fJYM+r/QEBj1jPqcc9AQNcI+jqpxEBAiQfMyQHEQECs4JG5P1xAQLyUgjbAukBAU3fV5mvEQEDSR+lZNBRBQNBqafxKNUFADTc5XRtlQUDUYNAbFEhBQEmVt+H9Y0FA9tb7g6yVQUA/rw5mn6BBQHUPDfaF0UFA9Y8E03fQQUCM/nQfb75BQJmMTxIClEFA8wz6umalQUB37veIh6JBQMluOrR7hUFAEWerLWBVQUCtc9DwJwlBQD1tTrjq20BA0pfxbmsCQUBxTbEUsRZBQB869jOkX0FAXDK+vNxSQUB2fZvEs1VBQB2ftHxCP0FAdexPFe1KQUAjR1Tan3RBQHnkbYrJeEFA56zuMAeuQUDespId9L1BQPkBTfulhkFACk63DqidQUDBkRtiTS1BQA23XM+FKEFAy1Qj5c2+QEAKxhRWXclAQDEO/oMf5UBAV3/7RlnJQECib15r3LVAQDdg/HBah0BA+8DYg2HIQEDxs8v4Fr1AQElqiE00hUBA8ElKh0qcQEC0s8KbTrxAQNWThEsVyEBABUJ2sF6nQEDOT9ZPVJ1AQFP3jS+BrUBAVV3kFYi4QECSDQARtcVAQIMDs4Idx0BAsUiUSDQCQUDB7DFFIeBAQIkUW05W/UBAT4MqE8IlQUDD813nNyxBQO/wPYH/ZUFAXM0adb5mQUAPwJoPNUNBQDEdLEHWZkFADA7RGIs2QUB17GQNOj1BQJncCU7+UUFACzhFFsMcQUAgHDRHaSRBQGI0Y2mCFEFA401zF+X8QEAKRO2OMM5AQBIbKD9qdkBAKyioS0gSQEDr4wx/NxdAQFvDY9o5HkBA9kdZIyMyQEBbE9JpKPc/QCwoi45+Q0BA81MYgh4YQEAV6usQzEhAQBOXASLxVUBAp0aDxDoaQEC4OmVhjyZAQDv+Ag3qJ0BAWImk5eYIQEDruLzwlug/QIMw54DZ5T9Av8ZNY49dP0CBZ2I0Y6M/QGk/togK7z9AIb7WLXghQEB64hKmDx1AQOJAbVrnS0BA6R2owDAPQECh3FRWVwhAQHWzt3NH9z9AEdk5vswiQEDh2oiyzOE/QGjHob/nD0BAVOs69tOlP0Bk8DRt4E0/QOswARbVcj9AcRtXjVH4PkB585qiuqk+QH2jnZgnmj5ApL5qn+uQPkCnzXjqbto+QKyxZQ8Yzz5AsAt3VxqfPkD5da4TLHA+QM1sq6hO4T1AtYFobcmGPUD0s1He3BI+QAVFIkOtGT5AWQKLTIOKPUCkefhFLaU9QDdmcKAbzD1APNcowT/SPUCYiP53S4U9QN+9HMmHwz1AMKvF9G0ePkBNueLevCk+QLXwgXdveT5AdNGlool+PkDEpEQljjw/QN0M0D+35j9AYYtuNIvkP0AbyLhaPA9AQD1uKOIJ5z9ACzTP+p0DQEAjhCUyuuY/QBDsFuX3pj9AKSX4/7v9P0DsjTc55/s/QOyNY8915T9Ae9tOlq/aP0B8bKKwxaQ/QHge5j8cFUBALZ03E+0cQECx4rZzwjdAQONdP1JQHUBAmACOttp6QEA6c9sCiHJAQAWFIZEgXkBAV3aibWRCQEDYS5rd8CNAQGR2aKvElz9AqTyKQwGqP0C4S0Jpacc/QA8wCuW3tD9AmvIsZPcVQECnUFZs8xJAQGFZQfpHJUBAkYlNIjB2QECvV60XQaJAQIPKwTYqx0BA9OzcnuLlQEBz6NFi8iBBQDJWwNhiFkFAxsfVa5EIQUDlGV6OD3dBQCvi/d7eUEFA3/jN6sg9QUAaeEJWd1FBQLurme9yJUFAyz97i60lQUAY5IiMDiBBQNyP7Tkq4UBA/xY7FEZjQUBziBOd/0VBQCw3f15GRUFA1ASFiLiVQUDplia7k9dBQOhrKWchFkJAgX1LzhUBQkA304WkbL5BQKUslozB1UFA88E/Zs1RQUAScPfAAxpBQFVktTYmB0FAozJiiaozQUBqHbeM/j9BQL80HSmHLUFAbLc4AchLQUBL9o8IsxhBQIys9KOedkFAzQ1f3jyDQUCB+HgzJkBBQLfr66yAW0FA+PTWA6MMQUDP3JpkUh5BQMA9ob1QLkFAvlE/gjQ5QUDD+oJVRC9BQBm1W1CeOEFAV4dY4q35QEDueHvXggVBQIYmg70hSkFAwNDdKFctQUDb6zKewllBQF4oZ/dyWkFAviwUfqxqQUBPaJFBP2tBQE/vQeIak0FA/VESx5N6QUB/kxZw1k9BQIDN/SQVFEFAgMvNBhX0QEBslBWSOsNAQPkQ3qRgUkBAs/jcbh0EQECvxppe30RAQGuR9eBLZ0BAhMv1QGDGQEAJbQI5r3tAQIdA8tGTbUBA+Tx0iUBKQEB8TRqJ90VAQHirGRC/LEBAAwuKI4UhQEATn9GchmNAQITTBVy7kUBAw6mql1I/QEClkaTWOjtAQIsVBX5JeEBAp8b8G2qeQECIIE5IgZVAQJhQcoGEd0BAtaCnSE2TQEBrXuz9UIlAQHm9vtW0akBALrdDk8SHQED9E4waUWlAQOBCJekWSUBArX6s8YOJQEBRPD4TJYdAQKfaJ+LDNUBAx8ymRSEdQEDzQEqP6hBAQOZpY0qmVEBACwoGcK0XQEC+hG4aAQRAQKmMXJDLLEBACh6zSgsjQEAqKe1rQCZAQPbtiOdvFEBA0pLIpwVQQEA/gQ98CX5AQFAQdHA8nUBAvAkQ1/aCQEAzDdDtOoBAQMLZJ3t2l0BA/dWkSO24QEB5crgt5aRAQMDF5un/K0BAY54QQnUVQECTSjbAQx1AQFU7fD+Gj0BAVRWqaNnfQEDvsrzpedVAQGsdDN6i2EBAyFN5kMrTQECZ3VBv0+tAQCsf8v8BFUFACLQKAwsPQUDdlo6kvBtBQNVXExtrIUFAUaUsRqRgQUBrIDTH2EJBQAlB1Re5aEFA37CaKWmoQUCHAkIGNotBQNvsWF0on0FA0h0IjlHGQUAVxhuwGgNCQL/a+q/BTUJA0vjp1cATQkC82ujeqfpBQLlxmIQB3EFAJyrqRycwQkBpwVy51edBQIx/yPMz6UFAjRLUOAOnQUCrIWRhv3ZBQHij4YGQoEFAgzRARg+MQUDNxtEXqntBQKKTYE8Bj0FA3wyd7MudQUAPOW84YcRBQFZSqGtsskFASJ1U9mWxQUDXtUapomhBQP/RAJ8/VkFAbKV0/bdHQUCIdhKooSdBQIZYq+YiKEFAJ3NaytD5QEBU1EvgeChBQNQAn9VXAEFAhhSFIdTjQEC4wr0CztJAQGu6+MJD/kBA6JzZJjMOQUC5LHrO3z9BQIgFId7Vc0FAxYeMpMWOQUBTiVxpObhBQHsQWLUKf0FAxPZCOERrQUDQeiuqUoFBQJ1ZDex/dUFAHLR6vAA8QUAS0jm8GT5BQPbyXIktW0FAzmdWl3lJQUCVk3JsEH9BQGhULl7on0FAOyM2FgGHQUD+f/AWGHdBQB4yfKALXkFAX/UxSxknQUBJ7y7wOxhBQINoCvOpN0FAPib03owSQUBj68fceCxBQBcx8uUnckFAbFx7LCJaQUD15k0KqS1BQDABFahZ7EBARfojJYnXQEBXWuGr3MRAQAUUNdzBxUBA2P/ZH+LpQED31+B9KbVAQFFEbbITpkBAo377fGK8QECL8rPlvtFAQHxQQ1PDyEBAbyZvVg60QEBrxJVpM8VAQF8voMFFvUBAtU2hEY/lQECe12f9CetAQArkNn2J40BAWdBFHEuzQEAiuEZlNsNAQHHzlnxo5UBA5tXB0Na7QECmCOVd4tVAQJ6eyTA3skBAn6e4Hp5vQEBzP/D3ZklAQCdMG0tBRkBACV9IZZxtQECWMFlocjtAQImWnF1eHEBAo6781lpTQEBSlaA48jRAQF3sKJcTYkBANQ7VAO5LQEBJvdPGH2dAQCfLVWwxeUBAL5ng2jSKQEDFE6N4/MJAQCWkpn98qEBAz5UQcmhjQEDZWVrHh5pAQLFzbQ71hEBABjDeEsxgQECLVi9NKIVAQMvM7U2RPEBAn65wu74fQECcHaUhF15AQGMFp0hrN0BAHvm5Jd0wQEDrQ/kr/OU/QBnuqw937D9AnGj5BodyP0CBC+q2Nxs/QGNouDbBlT5AXaS8bYFxPkB1piL8EAI/QF3NapO8tz5APN97XqmiPkA1NLY8JVg+QMXEnPzb7z1AzZmrk4o7PkBv1i3mmSY+QPXXI/Brsz5A7NxuJ4HOPkB7qE2P16I+QGAYe5AaZz5AUKDUJHKFPkDDuIvWJN8+QMklz1XWJz9A2wPE+2VPP0DkDCiGno8/QAzPklXvtD9ArU85EwYGQEC91mfWpcA/QCWJ5Jb/D0BAdx2lyDYEQEC7a63sZWdAQAsjo0qFLkBAvYEuPtz0P0Ct8Zjll4o/QKQVDen3VD9A284ym0awP0C1jux50cA/QFfMtkA2CkBA2edz2E1YQED0j1PZ5GFAQPaNo0XTckBAI/xR8019QEABaxk/ul1AQOxwifMyJkBAYpaUSkcrQECncQUXubE/QG/xK2rhXj9AHNSZwHsXP0DDyfK9BA0/QIQa3E8LvT5AR3qjz0oVP0CYmTA5z8w+QCAfR+f52T5ATX6FEiu7PkB8XqF5HL8+QAykM8qlij5A02HzfMoRPkC3naTeD3U+QG05zfQabD5A35tof6MTPkDtp7fCYE0+QJhD73YCtj1Ak8QlcZd1PUC7fDGUxvA8QN0ZJ6hqEj1AobDbT7s4PUCEXHyjNT09QE/y89zjKT1ATYy6uMIvPUC/w4ESrMA8QI1eNYrHHDxAr2zxzSILPEDQZC9vhZc7QHe8I0xIZDtAZy/ITItBO0BhAHPw/gU7QN2LFPBbKztAG42HAQ3wOkCIg7JqMeY6QL2OUl4RFDtAS4lQrYUSO0AEviU2Ezo7QA8o5fH7fjtAQ6uaN0gHO0C3xTJ9eiM7QM2yM4OFRjtA9bZlEr23OkAj5/o9/sg6QPAKV1cCDzpACy8bcMA0OkCsevW7FF46QOchL/gJ+zlAm8fYy5BCOUDs4yiq0a84QFmKCuz2xzhAy6WJiKsxOEDR0J0H8ZM4QBQVpr82DDhAc189BGeNN0Bl5uVd/Xw3QAOi+YlFgjdAhaKBZTaWN0AUsE58KU43QLsaNq8ubzdAydwtyxdsN0DPh+ASXVU3QHO0VrT9NjdATS4izFn6N0BnacDyE3M4QMAHhBM9bDhA1x8oZpmKOEC0/frPSIk4QG+Omeb5NzhAka1xSxwKOEA9wZI+1jU4QIQZBgzl9jdAXR1YU3g+OEDXK5u7Wj84QDtxCT8JrTdAU/oOhQk8N0AU6+dwoMA3QH8Pb8B8FzhAF/ClgorIOEAs/PgDKMI5QBcigzrHBTlAlbeSkiudOED19kTs34k4QBte+dli+TdAiBzW0Pf+N0CniCeaSrk3QAl67Dl7RThAZ03p4pxmOEBUoqcbwH84QFzoyify0zhAsJl2JxjQOECEdE+PQ6Q4QAmbjfui+jhAIyA3LfVcOUCJQ5bJOQs5QDCLyecGXDhAm/W1qjG0OEB42a0TAsc4QPEi0fFc1zhAl/7q1wPYOEC4E1tDejk5QNW4L0gWTzlAfA4XayBaOUBjF/Ckzwk5QMdz3LkDLDlAlXn1lYt7OUCk46TkPKQ5QJjFeoN6sDlAAWmSuZUZOkB4oAV6e805QPO7v5v0JDpA3BHIt7LSOUDllTW2wtA5QJFHZdNypzlAiYAB+q35OUCs2mAf2vQ5QDh1yuFN6zlAQ7QlULEkOkDPJssXFJY6QBVJ9dz4/jpAiT+dl60rO0DIHZU6SP86QBWf7dZ0rzpAHeztvvyaOkD7+UZq9AM7QEh6DAhDpDpAMQ5vZZMxOkB/td03R1g6QHUiH1o1MDpAtJsM8KoYOkCXMV+sdUc6QDnya7xQbjpAjcTtLiZ8OkCpwQeCuvA6QKPCDUXrGztA/xSelmELOkBR4TJHoIA5QJUnxrd8NzlAoTIac0vLOUCUMtB9w945QIUav60rKDpADKRuD0OiOUC/Jr6zqK85QMur0ypz7jlAE/hX+UmLOUBls8/APrk5QAjcmbSe9zlAN5yWLT++OUBpAvZR5ZE5QGEzi3iSGjpASDI+qcLTOUCEX+MQZwI6QGcwAnkvNjpAn37IiH91OkATCKeuuvA6QH+tbSYAozpA0DO1oJndOkAlqgsH4BI7QCHLJMJD4TpAkX13v/CBOkAFAf/OV3E6QB9kaxcOuDpAyDd+WxDZOkAjimC2VLQ6QNfGL+ofZzpAeSFj2APwOUDjtjW1Jvo5QJB8i/4h0zlAX0V4qNm/OkA1zh9DYaQ6QPfpHSQ3vjpAn8EBMV0zO0BUOH1omwU7QPEgH2DjOTtAlZyQKQiRO0BZvq5AHn87QCyHDRE5uDtAaFxy3LgYPEA5mMDGSNo7QGdIgKRSIzxAmeXHooQKPECRqKfMH0I8QFy4vTXeJzxAx5UKNQFZPEA0w2Q+4xk8QEm/scfxjztAaNTGD6AlO0DFYrRvghw7QOzz4Dv8LTtAQzXKzOxjOkDpySEj/ng6QJz75NrytDpAZRr/AlL7OkBXVJzuciI7QK+8gpwtaDtAO+zIoTR5O0Cvvd9Q9f06QAcHxgfi3zpA4fDAWeYROkDppx8xUtQ5QLyCX+fv4DlAA1ZiQUwiOkBLan9n8y06QDGoB+G6TDpAVDUOfK4POkBrAywauH05QG/AtfAqAzlAz1L7PY0POUADGzgZry85QLVBtDeTSTlABPtQ4lyLOUCfW883Ruk5QMGNSCodrTlAUbow9vTQOUAzv7JF+s05QOzH11583TlA0yQz4boiOkAR48NU6UU6QCjbLto9aTpAXN8YIesiOkBnC99DM146QM0aGXRpUTpA6F8BKsxUOkB5eBmeyNU6QB384rLHoTpAFT5n6yPMOkAEUgUSw007QHc4nT5y5DpAFLjuRNA9O0DnxDR6M0Y7QCfNfXAb1DtAyfJm9E75O0Blp3Z7Qz48QLelBvyIizxAa8dddkeuPEBd5qts4Hs8QJfBOSn00jxAecJdVDACPUBxtK3tFbE8QIjybBd/AD1ATUbrLU7IPEBlVpUotOA8QHXWV5K8uDxAbNUIsSyYPEClWX9GUhk9QNQcNXvpcj1ATMI7kPoJPUDXJA65G608QEnFx8DtXTxAo+S20RgSPECDvtEImXs8QDsEh3EMGDxAyN/LC7tIPEChKE4/V/A7QGdDDfz/4TtAfAab7KiIO0AzI2/ypzA8QAwixY7PVDxAWdBOhNuqPECwOaHdsos8QJFvz8TYGT1AHy37l/+wPECbL9B3SQk9QKmzNyAsJT1ALfWHJUVuPUBDjAhtfQU9QLQAwzhAGT1A9w4rXLV6PUBncFckYoo9QMv39gM1Ej1AVzf0o1PJPEABegq9P5c8QGxR8cHVHjxAhRnjUHEJPED0C7t1QuM7QARjWAyOYzxAZ0LV1Hf+O0AVyUR0dfg7QOG/qOYkRztA1fDp6D+IO0BlSviJ3tY7QEmglqzzWTtA7M6hKCNIO0BBO/6FVi87QIFP3Wnk5zpAv8JwceXqOkBvsgCH6Mg6QKgdL3P9ujpAvwiuBEc4OkA3K2AHjEA6QCHU6k21VTpAYDMvacbIOkCkLj36iuE6QD+lEPii+jpA9JzBdLWTOkB06Y380sQ6QPTLJEnS1TpAbZmeit3POkCp1zeeL606QIOvTMoxtDpAoLVuTeoRO0ADyr+phvA6QMeaQR0ToTpAJ83Vg0XEOkDTOPx1CnM6QIMBCX/qVjpAzNvDEKibOkDDiDOFPz87QD3w1/G2YjtAgZTqd9S8OkBp5fLRScs6QEm3gciCGDtAGXqkh+SLOkDbSlz0M2A6QBuV9QPSHzpAhEV1wl69OkAXJ4O1o2g6QIjE1N21FDpAm2KjC8EMOkArJAEE+tA5QBG9V3JhwjlAAEOcJQYQOkBxPd0R29Q5QPsX2lbEEjpAOc9qakopOkDzmXGUAmI6QP2ZTxFZmzlAtK2iCeQ5OUCglxjPgK84QBjNrZ+IdThAz/3rUaWiOEBhcy31T8c4QHuWkMagEzlAL78N8sQ3OUCHkeSHRhI5QDlFuj/4szhAxDXaIZB9OED484jDDYU4QPT/MNlR2zhAcIzHf+/7OEA8QkCvpYM5QONY8OQR+zlAMKYrugb1OUCnprN8JP85QCFZsGWw4DlAsRFy5S3KOUColAoDPM45QFzEGAeKNjlAN8dFGs7oOUDbbcM/5yA6QMjcSxvOuzpAJPl+O3+hOkAjyQqUpds6QE8LsVmh8DpAG6PCZ88MO0AxcjBaqi87QLxGVLOLkDtAFOhF9WI+O0CAfgsuNCk7QFz/m1EVoTtACwwLy8y8O0DzX6rLrOQ7QCBMVzi15ztAUK51EZahO0Ad0m+CIsE7QJNjLuzczztAza+V9HAnO0B5sDEcZtw7QEliZ74fxjtA4wnrW8FgPEC4/VG/vpw8QA2OwbDibzxAcZTm0T3cPEAIa53Rnjs9QNFWbfbiPj1AxWH9VEv3PEDER3TPWkg9QAjml1+eZD1A1P8G0i0XPUCnJjE2LUg9QAE1YeJF0TxA+bOJTfy7PED/R9szS7o8QIti5sATjjxALTpADJvxPECxkrCWIYs8QJRuaR6QQD1A/RUKWv8VPUD7T2aR34I9QEQZ5wpKnT1Av14ULYW7PUDbIS8appE9QAxar1tf+D1AZH47FhJGPkA/nSgZYUA+QNMcRL0nUD5Ab9wskwRdPkCjW4xf0zw+QJVXqAyf7z1AZbUWXuFAPkBdT01Q3509QN++Ch+x2j1AN0y7GjWRPUD7QzFthUA9QGwrbv3kBT1ASzbtZmqMPUA4Au/3nCY+QMwZ7XHPsj5A34G2u/nWPkBgoQii98g+QC92zM23Lj5A8Lfr84elPUBoybW2+cA9QGQELvnrwj1A94Olmfu1PUBJtPFf/tA9QKvPnFtvqD1AoTaFRMfhPUAfau08f/w9QF1BxCG5qT1A/V1DVL0BPkDhwgjPkBI+QKPb4uaW4z1ArJNOxudFPUDYFRbv+MM9QKdHbStM+z1Az1K4dqfYPUALIEay0bM9QI8XHRiN/D1AzDvR2D1aPkC4yX0oYyU/QGlJvtImaz9AtNeU6vsrP0APKWI2ITo/QA2jdJiRPD9A7I51rscAP0AtOrmtTc4+QDdfxlRf/D5ARP05BLauPkB/P3Mr5jA/QD36m97o/D5A/4fjOJVOPkBZbUYq18Y+QC+5wTLLOj9ARTPWYYRBP0DUy54za8g/QHz75NMF6z9ACETTkvAEQECUXC94V31AQEGB8baohkBAYxQJUBaWQECcBzg0CbZAQNt7IPSJykBAgWOqH/2UQEDZKY56m3ZAQBSMbuaSg0BAlY5FntBaQEDiFrA8vWZAQLcEg1DSL0BAgwjzXxVAQECv5PhijTZAQFGuO9cJwj9A4RKHATQ3QEDPQ5pYt0dAQGVxH2b+NkBAa6RqT15LQEBEInXxunBAQA+VlBgAbUBAtzw0MUpuQEAxrFUqXWZAQP4z5sZhI0BARwC/a31ZQEAVU1dFqVpAQNfbxTYBSEBABKJ3jD5/QED90xK+KZtAQGI/nzEWgUBAfWdAaXYoQECj811TahhAQFc0vVgzN0BAF/bPNII4QEAdRZU0G5s/QESsnTdcbD9A2GIO6HR+P0C7uSkFzMg/QJC9JHiHfD9AI++TGj1XP0Dlu89M6Vc/QBdEJXpL+T5AKU48ZdLJPkDrwCwie0k/QF7qeoapDkBAI9JZmYRfQECZLuPIPX9AQFSBt85vxkBAJ8bdtoWXQEC9Y8tn7YFAQDl2kGwMlkBAIZ2TksmPQEB8HZInxZ5AQKAp9ltcn0BAeyLz3npuQEAQZYZZfLFAQNNb+VQ0/UBAwzHE9CfeQECx2vsT3eNAQENbY6pK0EBA1dgQZlzfQEAUneeD69BAQGrd7+yqq0BAJHKWq+uDQEBt4GkxUs5AQDMgDGcFCUFAyA5VSroNQUAJTPF1Ie9AQOSRboGw2UBAg5TbKG19QEAPfvpDS2tAQJU1D7xiS0BAo6bMtL5ZQEBuQTntFJdAQNe9y4g/3EBA7Z04LkUMQUCdVldp5xhBQBWterfqw0BA0rN9R4/fQEANQPLYy7JAQLfXQGEKvkBAdKA0yQqTQECHGgSJ9aRAQOvmftiPakBAzfV1pcpTQECsqrwNYDFAQHicLjjsJ0BAAdw1OEIoQEBfBmja6hBAQBU+bb9I0z9ARnvEP/YbQEBIf7xR1E0/QIk4EGoTgz9A9HXgVVvTP0BPj6ui2AlAQOV1x2zYEEBAAX3EWzLTP0DXKGQ2KsA/QCtO68mYfD9AvGpkqY8+P0A1Cg20C5U/QGHxnwuLcT9AdaqhvrHJP0CITuijB+4/QORDbiQP+D9AS6zo0fbmP0CLL2JghBRAQLqe2ggwBUBAswyw/jYrQEBD53oHhCBAQBofeIorKkBAt+QnjEhiQEAgiNahGGtAQGYzRBNvdEBA/43rA7FNQEDTqivaugNAQDHY+9IPLkBAJZ0GmyPxP0DuXXdXDCFAQJ+HulRYqz9AmysP5gy8P0BDjkwkSc0/QJ3aC+BP7T9AOXAkY3wHQECZqs28p3Q/QFMgwNxtMj9AYXSFqD1kP0DQeknOG80/QCWZ/yPQzz9AaX7+iCycP0Ax7laqVYw/QPXckVuvWz9Abe1hC+fwPkAbL+pKCaU+QLRSllwqOD5AH3EMJF5/PkCJcf0hi/M9QIWvI74Fyj1AM/1qmZeYPUBtbDFXG4c9QLkaF+xcUj1A3O0xW9sxPUDZCntCxJQ9QLD9syRvqT1AXGsEbRJIPUBNoO0iI149QEgqzSmHxzxAMD01j7MEPECcfxczpbg7QJy9lZSDdTtAqVroDNuOO0DUinHkcGw7QJAkhKtoNjtAqcVm4ELwOkB4+qEXHKs6QD+oV6MR3zpA6016prp4OkBjih/X0MA5QPmMX64pqzlARG3fUE+lOUDU5A0mGtQ5QMPPqOq9MDpAfy7O3vtLOkCowHcN2i06QDiBlyfxczpAA3aohpmOOkD0HJUQn+k5QCTTZYryLzpA9BwNmxnVOUClFihe5gE6QPOD5cVn9DlA+eCOkJe1OUCTnSS4w5Q5QLlR2a3lqDlAkK6wCxmyOUD3zJTxdjY6QBnM2u0M4TlAd4ZY6h/NOUCccq7V9SI6QMfmCavRSjpAa+ODo/eqOkCc3gIzH8A6QO1uqyGSeTpAVHbFtIKkOkDQUh5eRL06QPG74wkKlDpAXKhLyGkAO0BgkSs5mww7QGxKV+hM2TpA3WvTKNpeO0AjMCKO8247QP+IHP6U1jpAg9nufQkWO0AZodxbc5s7QLhLiI8nnztAPD6g1hcGPECjOS7taAg8QPiiGWQM3jtAc8cTVeeVO0BRgeIXp+Y7QJFei7UfvTtAkaUMF5bTO0CcHY5/Qy48QJ2iy4fd/ztAvw3DvLLbO0BvecOp9gs8QE0dA8a2bTxA4xbMrU85PEBTU5ruVCY8QHEVWaJjFDxAB1mVR+xwPEBRE2c2Jhs9QD2Vc9+6HT1A9x3wzmFpPUDwWVCdsnQ9QMlveKooyz1AlM6nsAn3PUClpSiH2mg9QAly752VCz1ArdaCkGzDPUD1lsiPJnQ+QCt7ow5dgD5Ay9cja9VaPkA50/98BqY+QDzxopcZpz5AJ7g8OLatP0BHJS2GQRdAQM+Ip/XAOUBAgRWgEVNvQEC73cvGCkVAQGnIAYktSkBA4NnNljJYQEBBDhfVFXRAQGfH7AGIdUBA5s/cv21vQEA5m8kUw65AQNntJi/fbUBALn1pf+mGQED3NaEUaEpAQKEz/QRXUEBANYY/tv/GP0AReG5IM7g/QOnEIfhSyj9Av3DdYJ4dQEC9sppq0y1AQE2LTfWbLEBAcY0EG00uQEDH9MsdsXRAQHe8y422p0BASbrwOlGxQEAiT7HiirhAQJfM5sNGtEBAkYzTGiiGQEA0U7TeWZhAQJ207OR3lkBANqBNCjKNQECpAqgb1XlAQNjbgzZyWkBA7rY17Js5QEBfR1Aas/4/QJ9x6ZDAOUBAW8bHRHwgQEDouf0wKNk/QEOKMc5Nyz9AM9d4leAVQEC+ARwB/UhAQLU5buJIVUBAf5tuaEtHQEDnxtkUyxdAQCqe+ZM/mEBAqZlnmRFRQEAdIOKggnRAQNjHkgJ6h0BA/cHyy99yQECroKND42FAQNGepeHmD0BAx4LYL3zhP0BnOF/V2rA/QNTErNXAuT9AsCMm1B4BQECsDpK3fDNAQBrpybLmR0BASSdhJc8mQECpUARA/Ng/QA+77lBKWkBAPNFEFqZeQECB5ETxqF1AQAyL1oRWRkBAqDQ01HliQEDRlSlcXVFAQPHExTU1GEBAMAuXwWMiQEBZOHxVLF1AQABOVepTbEBAK8GipkpkQEDDxh6b3pRAQJ+JtIMT7kBAVnws/g7JQECcumM+OfdAQEODfnRhFkFAStTdO+S/QEDG/qe27X1AQOaSk+3llkBAW8FADtmrQEAcU6cDA5RAQNudp/TwoEBAS8iguZ3DQEA2N0uPaaRAQDG1oIEsvkBAHiOdN3zaQEA4GgkdrDZBQFh20o1IO0FAIsSAMDszQUBix25qy+pAQL/5Rdj280BAl406XdwwQUALcKF10zxBQLRqC4lyKEFABaxTEJoqQUB5n4DnRkZBQIbLU1nfPEFA89CULptFQUBBhD/ViR1BQBGYgSwHL0FAX+HCHCSCQUCzoP0JMMdBQBuxhul03kFA0WoKv3HpQUDlL7UCHApCQGb6Cc6b/kFAwR0eTtT/QUA5VlwedCpCQE8A4t8IN0JA/at4q7sxQkClauqMWilCQNkAF/qZN0JAsdbM1DMdQkD3IbtbMExCQEcOgwHtcEJAdHkCwauwQkA2+fUBKahCQFG36Xxbb0JAbqNCfgpeQkBVhLxVP3lCQDEy7hPkLUJAS4sEUUhaQkChF7eyC5hCQFM+q2kDnkJAXaSVWN2wQkBgIKTO9OtCQNYTarUtBkNAnZv0D3EDQ0AXGf0JtRxDQCcCahDyKkNAAmmCdoYMQ0D/Pw6pRytDQKdspXSIQENAlTjbyLWGQ0Cad7RNwYtDQEgEV2HJpENAMV8CUev0Q0CzMrDikiFEQBG4ET8EKERAw4McGZVdREDDqv2xg1VEQNld8aKAVURAcaCwQLyERECa/sNrSVREQLnUs9i7J0RAQmDU9a77Q0DgkR3J3d1DQE9eMoyzn0NAkLOuMLN1Q0AVQFDkh41DQFsersXEuUNA4k9YCXnAQ0CXz5yq1ORDQMHfytmGRERAbZEA0r0oREBw3PcSXeRDQEQehRxKvUNA45SuHUvMQ0BfUfGucwhEQAsAgX8CE0RAbnOtCUK9Q0B1N9Byub1DQH+AD8IfdUNAqOwI5UktQ0CMA1lAnVpDQFUVGINTGUNA8dX6r0kIQ0BNjSxN+wtDQL+mKqGJBkNAlu+CtyQxQ0BSjRGXoSdDQMMX+r//OENAGYYQm0f6QkA5lArLKOdCQKIfwJjj0EJAovwEZKncQkBPOsG/K/BCQEk9zkAoxUJArIvZ8ZS1QkAZZsF76M5CQFEbloFmikJAVSQ2c2plQkAprIIuCPVBQAdc164S8UFAZSXCzuW1QUDr7S2X8ppBQOZXE1wXzEFAqyOGBykAQkBx68g7vQtCQE28+FkWMEJA79QZoRlTQkD1lhlUv1RCQJD5/wRIEkJAY903xtM/QkDrA6DUWx1CQHTJlvduWkJAxMngQUZVQkAgKfpc+IVCQEuupquXokJAVO4UfYCmQkDGNuOKJ65CQHlRV/dAvUJAoPgMnB7IQkBxcsTZX5dCQNlYtLJjdkJAofbmtPPDQkBjo8RwP6pCQOFoaXJ9eEJAkYnYuU0nQkBc6r9FwxVCQOtvnqWXWkJA1Rb57nwxQkDUjcV/Uz1CQM7XiKyYIUJAVwZZSC59QkCHwoeEtoxCQGRba5syeUJARqNw9itlQkDz01NuYrJCQGtd/uT5rkJAM7u6uTLAQkDd1omtQmxCQB0+mUajckJAI6oxquKtQkBXyR5E95NCQFxj1xqrjUJAX2Yk8fK+QkAVXQVx+49CQHGoO0LDfUJAZjSVMW5KQkBLIT3N6nlCQEfhqitmR0JA0AyMKHRWQkC3zxv4BWBCQBiOs9OOdUJAbWAC0hJyQkAqlrVz9LFCQHYYJVlax0JAb/s2e/XxQkC7STZ3LF1DQBCCTk0ad0NAUXhDH/JOQ0D5V1y8h0BDQKiBpW9nGENAWoeaPfb0QkBRqj2ROwBDQBW3tkiD/0JAKgeFIS4nQ0ADcyB5KwVDQFQif+hkJENA8SckG2i2QkAfTSYRJ+pCQKqwF60SwEJAm5KmcXavQkAC0/yUCZtCQNUPyW6hqEJA84gNeTO4QkBNFpQ/N6lCQP27FqOsmkJAgIEs4RGAQkA0T4/7nINCQF+lf3h+rUJAObzs3xRbQkBXxW9u+XhCQFUNb6tVTEJArZIL4RGTQkD69BN7I5VCQKndgcklrEJAQwN3kFbRQkD5dpTZY71CQA6wNrXmtkJAE7E7ZWyIQkDXo6ZOxqFCQFnrvKDFc0JAgeDKyy4pQkDlvdI36VtCQCxo/prEXkJA0OFpkXdyQkA36N/gpHZCQEcXYYGSr0JAuaOM4ux7QkCVtPto0fJCQKO9bE1M+kJALMXcbWHtQkBxO8d/3ABDQHM7seIGDENAY4a6g9P5QkDxyp+QFwxDQP8ZHXbk6UJAr4G+gGWRQkBM5EEq4clCQN7W535E0UJADBbOCjq9QkBhsW6T8r1CQID3MflgqkJAx9xG6Mm3QkCBait8gXhCQAR70Lt8ikJAhcjCXIaSQkAj+BOAarxCQA+Ga64fnEJAhaDZkL6mQkCLWiGPn9RCQIvFBx6Tn0JAnWdGcuesQkBiFors74RCQB5SgiZpfUJASWSZ4GddQkAlF68bWrJCQMmv9FS22kJA+jBsZO0RQ0Acj+j8kDxDQKuzmdU6/UJAy9TmTYbqQkD/p0JHTfhCQG7fIkfC+UJAYeHx2m7DQkABg7mtGJ5CQJkxgTXRoEJAffjX6De1QkDSsm5lF5tCQAl23CwCsUJAmZls9si7QkCybD58tadCQJ//NWtGg0JAapZmzAkJQ0AdIU/H9/1CQKCEL+qpm0JA2C0eNyHBQkB9I7PAldVCQNqpMT73nEJA+deg0AODQkAb7H08Ar1CQMVeoU/qkkJAu59ULYO2QkA3EBMvesVCQDPHHG3++EJAp5GMw3LiQkDCgxxBP8JCQMQ2NKmnhUJAu6lol76QQkDPuFLsMqBCQOledAEmi0JAyaWtpkqKQkBWxHOzUWZCQIM3VnuFb0JAMIP0noZFQkAyAF8SjSdCQF00X2sHJ0JA+3Ad+P7QQUCdxRZVwctBQMvTpYfN2UFAKsjg0QrnQUBJm9a58sNBQD2ySYQ0sEFAeV6tEBLBQUCoce+czqpBQPMp6WhNYEFAR0LTlUxKQUDNeWdRIGFBQLX8ZKGAkEFAj2Bg+uaDQUDv6W6WyNFBQFloC+Fw0EFAAZ++HyqIQUD8oXftrb1BQBok0xtRx0FAmall8U+7QUAbbR/tga5BQLGOPk3slEFAldsGAeymQUBRIpPDg4ZBQE/rKvPus0FAAIZINmXQQUDS65zY4KtBQNeNT8nIvkFAfrRrJRfUQUARtYocU7pBQL32S7SS9EFA7pXIv1sOQkDxsmHMhBpCQPmHA9KsDEJAyzrIyAZAQkB/DmMQezlCQPcfGGAULUJAQevuPjptQkB88dB2ZVlCQKqt/hsLSUJAPVWUnbwuQkDTM3wLhVlCQI43v9VIckJA42KU/kF/QkCffj5FIalCQGX5u8Y/e0JAUYl1616lQkDDigJsEY9CQHXQ6q2XbUJAwWz/jVCkQkAbx5O6culCQCdtrTFy/UJA96IjEDL6QkC7e1FPVfRCQGZCKjBh70JAwWEh0hrHQkDGUkZJB4tCQOHiWpOivUJAffExjemdQkA5oT2OvqtCQMUqJD9ZnUJAUyncmTucQkAfRZkozmdCQG7U3nDOn0JAfDi7g+m8QkA5ycVMxoBCQBNJOY9QRkJAp8Th2QdBQkD5eJmbRFdCQPBp6WRJSkJAioCFGekgQkCJC2n74/ZBQP0nbqW9CEJAo7+1PQsoQkCd1L6L2ehBQOPjT8IR7EFAgXAxQVQcQkD/jhHNzjtCQAlcX6hAVUJAK8VfkKBdQkBkplmlQGtCQDXq9KnNT0JAawOgOptRQkARD6wDZBxCQGcHyCH7IkJAJx+YSHI4QkBBuJiwDBdCQAX9b2dNW0JArX9xuFSBQkAssb4s35FCQD6HcpSyeUJAl/Rk6LJYQkBVqgiXnThCQO1qVC7/PUJAyjGbIxRbQkDoCw/sEjRCQAHRq55tREJA089zDAcfQkBd2GdorG9CQN0a+Cvz0EJAuAFW+UURQ0D076auAyZDQOE3VPAdV0NA/a6PMYVRQ0CBAK7W4SVDQCsVcnU7J0NATGdMQQ0yQ0DLmiY32ftCQJQVPPfDDENAoFrodEw5Q0BvBSpW/0VDQB4JSQB4T0NAjDM3JfxJQ0CLPFw0Oh5DQI/FBh3KB0NAj25yH5HwQkCL8A+jCtNCQE5ANb/m2UJA4QWZV4yaQkC1zYIruY9CQBNmugjwXEJAEuZ/lgpQQkAp/p2HK3ZCQMHDaArhcEJAVX9DzX9wQkCxrlJchn1CQJrtJcV0V0JAI0jC4VNVQkAjka6QrA9CQJsg91XkFUJAx58IPrIlQkCzq1DIwhdCQLFif74OEUJAIyIsKK5GQkAfbCnYkmRCQIcDHFXIcUJAmh35Yk+AQkBYA6xHP6JCQF0ddTAAtUJAYOWrdauoQkBXJ++D+JRCQPjK76smskJA4ZRwhDPMQkChyX0gNbxCQLs4jeGU4UJASSIZPOfXQkDuKtW1ALBCQNnEIgmF00JA6llhsA84Q0B6utycQ0BDQAOuz4fAa0NAcBrwE3x1Q0DHgsIH8ZNDQI0MKwPwm0NAWAtANnaNQ0B7O+hZsURDQGsT6vs7EkNAF65w1V7/QkAPI/affsFCQKjFKRThzUJA4dIssQ6dQkAglq4qkqZCQLEvrCRlpUJAq5IppS+eQkDA1Tr1LY5CQGL9j170nkJAQk3f8YiyQkB4TztZxuZCQCxLydTF+kJA0gUlFWMyQ0BFmIKad0lDQO2+7tOpbUNA4N33SoGKQ0DK9UsxqIdDQAFtwJJIP0NAIZI9+ZB8Q0AO74wcbyNDQDuCjs4W5kJAKfEY4CCoQkAeppc146dCQLP/OIUPlUJACS7l9XbfQkDzxpKnRPVCQFfvzWTm6EJA3FBeR2DjQkBN9IDCpflCQJLtyQrTR0NAMQWVFYohQ0ANIK2jwWVDQDItSl/Zj0NA0Q1Dz9m4Q0AV4zQ1trBDQCfSDcikwENA9P5WaRLHQ0Aw6vVGSeBDQDBFM6UMYENA7tyEQRJ9Q0CvVztVN7BDQICjEnYbqENAY3RsZ63VQ0AOjfsyUdlDQKZvnjTVfENAOzjLtgJ5Q0BzYjgygVtDQLv+ugavVkNAFL8h349pQ0DzCNGIO1lDQHlStXUAWUNAxIllhlTbQkBr/dBNVfJCQKfN3/RY+kJAmr4vFayEQkCEBQo2yqBCQE7Kz2f5tkJArfrxuAuzQkCFRN+FJLBCQPwpNMKlwUJAO15GwM+gQkBnUSSZ0stCQOOkisuUCUNAMiQYxxQKQ0Aj4Kr3FWZDQF1xHZ9NU0NAIfmtRkVGQ0B9PwgyyGdDQI96q7t7b0NAcWIWDW3VQ0DQ/kWQL4FDQFWtUTUDi0NAJcNxVkqEQ0A1w0+FbYtDQEYrRc14r0NAeWn5v3m0Q0AOB78FQU9DQBIlvgWLXkNAy4/DoipiQ0Ck9CO+VEVDQJfQOZO0XUNAgI/7ljhcQ0CW9H0yOS9DQF66kc75PUNAc2xRXTNKQ0DLHZKMcA1DQNkJS0peBUNAoIAsPef4QkC+76mGydtCQJEEEy+wEUNAcGHEEXq5QkDt+oMEFc5CQLMSfyYA5kJA7d/eFyXgQkDigQQofOVCQNfeVZznIENAo7ThaP0TQ0D9zdeZHzNDQF+jGhLsV0NALTfcXEq8Q0B9ncm1vJFDQHxjT+eeSUNA3tlfvidpQ0BFcUG92EZDQAues/QQYkNAB93gBB8/Q0DH563CBnRDQAU8GE85XENAuQCJLNm0Q0BTfLE83sJDQCFagGM+3ENAnrX+IOPtQ0DsKq4U46FDQKMS+P5/jENAf7rPwaivQ0C5EyuK53NDQLIbW2B8S0NAn9YiGP1SQ0ABYgFyn6JDQOeIlu951UNAU4pbnxnUQ0AUZN9685RDQOUZtI5BlkNAF9rtjsp7Q0Al2Xg7z1FDQNnrjxfvWENAlVddSIw4Q0DfxC7sbydDQLGZE6Ke/0JAEyO2SGMEQ0Driv1TrDlDQDra+fJJJ0NAbx+O9rCrQkD7DriyHGdCQEPCKJKEWkJAgVeFXeRcQkCTiE0stztCQMGNehAITkJA1+S2VMEzQkCzKT5h1xBCQL98QnbC6UFArzP69bftQUBsEuvf/w5CQIurRLsrGUJAH3+2y0wzQkB78KSQsAlCQNPLHwxA80FAfHrD3afMQUCgLH1EfdRBQCz5q+d7r0FAUEFc6cqtQUBOYjO53Z9BQFgvuawMgEFA8SxnqkFOQUBnGSU4ZHRBQDTQ5D/njEFA+XfdNlrEQUClCN8W+wBCQLoNZYQSAEJAInPGnMTRQUDb4h3hqslBQM1L3eoxBkJAs53Dw1Q4QkAW/Vm7YR5CQFTdcvdWGEJAVHumoIY+QkC6Bt+WdBBCQA/zdHu8BEJA1QS5NTA1QkDJekJmS01CQHfADtprdEJACchljziVQkCPuo9Yt3FCQEuGtjVjikJADmm7OY+pQkAE3MiqvJxCQOHFX4rirkJAtTceYK+5QkDXjiq4H65CQNa0a/8A8UJAse/eZZNPQ0DOQiij2iBDQJbGDWVH0kJAoAdCbwoVQ0AN2w9HAmBDQC7oISqffUNAzzCqi7NJQ0DWdhWExmVDQB+84yrHjENAy/G3Qg+YQ0D1cKLWeYFDQO3sGxV5q0NAgvgX/qCbQ0Azvgb50n1DQMWtu5dPX0NAgTVyoTCMQ0AT1P+Kql5DQKD7+RvUNUNAvOjvR/I1Q0A7PvihB25DQApgFHKdSUNAn+ciZfRbQ0DSFSKNEGtDQIs+WZjPKENA6Q9ovXkiQ0BdTNTcci9DQFsK/vGTPUNAA/b961FGQ0BVIEozLIxDQFXkTwaebkNAmz78n5R7Q0C5SPBnM3ZDQLZAxN9bbUNAPYq27JulQ0AzjEnsjVFDQGCyQ24fdUNANn1vHE6dQ0Abhb2aIbxDQN5TCL4vzUNAx4IDGZjFQ0AX8iWeN7VDQNleUSpxrkNASRK+F+2lQ0DHFvwwZW9DQOjM8PTP0kNASRKzR9e0Q0BpAr2V17lDQH9iTfKapENAFL4r/ziLQ0D0Kwc6tHpDQOtiknUmd0NAHtPvWVJlQ0CMRn+m54ZDQKtonrOT7ENA8bvx5gcJREDg2gBwxCBEQMkHM8MCL0RAE6ML5Xc0REDQLb75NkxEQBDjYQ1OdkRABXyf2upcREApBGb3kFZEQLsU+VmvTURAcxkkOpEjREA/TNJikSZEQGPexhJJz0NAXJJqP48ZRECPKKp6x0lEQK9yJfvrgURAzGlZF2ikRED1vbbMtFJEQFuUX9uQQURAmgVJMsRFRECT97exS09EQIVPPN5VaERAAE9jQ6lNREDMdpuHKClEQOFOmHvqD0RAMdZSn3MjRECM2zpqYkJEQPBSOjvJH0RAO4sGEvgpREBSJVtVuyBEQD8UNQMYfkRA5czVjrhhREDavhQ/7kVEQEM2VbJTV0RAqXrKgn1oREDnv6LYWnpEQLqPQeAwK0RAhqbzSmxsREDYahiEkm5EQG7TNEngX0RAuuRlXGZcRED9os4nUEVEQCsGC0XyjERAlGgj0304REAadAil4ylEQABhJhjm/0NAg23syTRGREAN6mjtbSFEQFUct2PjT0RAX2fM5554RED3qU04faJEQEPKrLOAaERAmXyXqvUSREAh5yTeNxlEQCrIlwAHPkRA+rYt6tZBREDzJXq4c4pEQLsJsXUzgURAyGaaI87BREC3ytZzSiZFQL4ufhMhDkVA4/uf2oE9RUBNoxIQeWpFQKcr4L6PAUVA+f4WeavrREDFi9O3WA1FQMnQH6/O1URAHh7VP1MERUAt3MjgjOZEQNsdgB8J1kRAEgFFT6qpRECrKm6+B3FEQHcfhiDiEURAo2zmN7ziQ0AXwT1rbuRDQAWmhLyP1ENACdQGx0jrQ0CgmPwd9OVDQDl+5x3MC0RAsbZPaNYTREBPk84Zxd9DQG069K/y4ENAlGpAoNSDQ0AfEoQ2GKZDQNvyVUUupkNAg6TgY0t2Q0A6ozYu61VDQMNvVhg1akNAmK2pcsSgQ0C3YaVpEUJDQDEbvBhuS0NAQ3AKS1O/Q0BVl53dsAFEQKvTcQ791kNAsyouZFqXQ0DdEKhoIvRDQOMSi+YFB0RAwJMjy0qbQ0DaiIXAJTxDQLb13EEBaENAgwzqqVK0Q0CR8kAdCMBDQE1wpzRXwUNAqmIZyMKsQ0BmxwyFmsVDQMU0RnYEoENAQTia3+urQ0AtKoEJNMFDQMb3xGVo4kNAFhQsRWwhREDu+TU5HA9EQFXYEGsxRURAlgOE1WYkREDKTK/uJKNDQNxcIKPIjUNAmHq3mG5YQ0C5j7DyAU1DQGsKZlcBVENAhZ+qEpZCQ0D9IdmdsBVDQP8kkTHnykJAyeTjZ91iQkBVYK5P96JCQMjZRP9BYEJAf03CqvFeQkDnl9YDe49CQFTFrAwwVkJAH+LtX5GlQkDfFo4p4vFCQIXQ1KbwCUNANYQLJjMDQ0DY4PdOs/RCQG10fXm+LUNAhWX6ug1KQ0AnzThyCVdDQNlwzwKwjUNASRUul3CFQ0CgKhIuAWBDQAvUBtV9bUNAoHpOMq5QQ0BDcQOLMPtCQPPC85wH2EJANsjm8gLAQkBzIhUGw6dCQNGTR5bob0JA5H/6+3F5QkCzTRzeM5NCQIA+vyiIjkJABbTlzVxfQkCh3cVg1XhCQECz5/x+NUJAQ5T9uJISQkBQHfMlaE1CQFXDRbIaGUJAlb10UpkOQkDisuuunftBQDsn3Gie9kFAo0JzL5DqQUBzGItvTR1CQPKREGtEHkJAQOtJPXy6QUCjxJZHR8hBQMjG5JXl00FAXKJj82z0QUDfF4+RrchBQEFMtPJCGkJAHC9Kh1JRQkAErdL1mGxCQOv8wzMaNUJAnYjn69RWQkBUsNNAiA5CQI3HBGNvGkJAKwiKSCtHQkBV6FtINDlCQEZhcQoALEJArPsttGUQQkDWFbqS0EFCQB8RiJShdkJAr2Ie7IP6QUC0vPDTGilCQCjr2wQqe0JAhibzgJEkQkD8HsEayxdCQBEzc7+Q2EFA8QSO3PvYQUAt1uO9vg5CQPrhovAz9EFA862dcMrrQUDMwoWCcSxCQOs2H6xxD0JA90tsAVkCQkBFCFl1/hlCQM1mNwV0Q0JAp/mUP+siQkBbR5nOSyJCQKh4f8DPVkJAkL7y1MJPQkD/w31duRxCQNZjiONnIEJANV99XRzjQUA1jwl1sSFCQK6cKfRwLUJAUIMnz9bsQUCFQcz8pshBQEyyA3w9r0FAQ2uAvIyVQUC1phzvuYRBQLBppjcmckFAKb17TO4lQUBkjkUQOfxAQOZpasj22UBAnSmbmx7FQECE/dpjkNJAQKiGGERa1kBAZHhxAwElQUDS0GzNSk5BQNEnYY5HPkFA15keKqIFQUANMX/O2TFBQDwzBRij2UBAn+mbrwPKQECrTIiyFwpBQDUXyCvHOkFAf0MGpQBYQUDyAvmcNmBBQIQRt5cSUkFAkcqTa/lvQUCb9WO7dDJBQPBH5rfBPEFAycZIHFdXQUARmp/GZitBQBfCw4ptAkFAp6Tky2vwQECFb5INtRZBQKc8ucSiF0FAjUN6fyMYQUCnlCbVLMhAQP1C5I8HsUBAjV1IFcLOQEDyk5W82CNBQIu+1kfvBEFA2jxaxfRjQUDr9os08E5BQNAZQdsKckFAbKWs9AEoQUDbxBQqPPtAQEOkTp1v3kBAZWsRhRHyQECHAjlg/BRBQKlcSZlgNUFAFZXADQ1MQUDStC5SBV9BQIgs6lNnskFAKr4tjPXPQUAdNGDkRQFCQPtwxfDD00FAxxcllf28QUBFko7r/bxBQOurF9K24kFAeY7KW3P4QUBButIMJwhCQCUSwnNyN0JANZ6VjPVDQkB2XrVZQHZCQBqjXsb+UEJAxeilsuNCQkDZ30FDKPFBQGuYeebW9UFAQQSLf6EPQkAzzVgFYs1BQCJ1lZOC7kFAbcoaPIHPQUBSQaa/jupBQEImyko42EFAyHJU07vPQUDvRS6RD/FBQGFkboGTAUJAWb0a7PtZQkAnfTU4RVtCQFsltdkNhEJANYipUqW1QkDFLuM/Q59CQBzbERjczkJALNvMUrf/QkBnC7Eg6zBDQM9cfh1VXENA/64ueVtAQ0C4vetf8jRDQC4BQfJQ9UJAjigNacHhQkA3iBCEhe9CQDOZxqdcQ0NAyscciGY5Q0BNZxUigE1DQFU8HQW4OkNAN1sKP2veQkDMniuV4PlCQJr//+LY7EJA58mbtmbmQkACVk6CHBJDQOgy0JkWEUNAjOIaZCknQ0BdhWILof1CQJhpUTch30JA9Q+/iHiuQkCJ2FGyco9CQEvWqRvtfkJAgSjUXkxeQkDlhzYtR0hCQB/WestiVkJACikrXO2SQkDCu4FuHp5CQOPiTg2rvUJAyj2veuXSQkAXGoXOgw1DQAPTKyob70JAb+zMn+7FQkDXnBsZFMtCQA9g1kAN00JAXUSAjzwIQ0CHv5J/RAJDQI4E9Zwh5kJAfYLevanHQkD667uGA69CQL3d2kanrkJANSpCnTKMQkAryRT8VIxCQCG9yfCFekJAITCXoZyBQkAninRz8WhCQCGzrveraEJAl6YXTCMcQkDt8Jm+OPVBQGvfISLFCEJAMbcbVajGQUAvWGMSbqtBQGVKqIdwmEFAMD7rcO5tQUBuAa+1/FBBQB+irFRaLEFAukc1H9ffQEDu1ZDYQ85AQLGSLIr2rkBAwdkiPZq+QEA7xDu6yM9AQKrRGtvN5EBA/rqi0kKxQECxl1ZNGmpAQMRdR03hl0BAr0xmD9W8QEAaUulc3uFAQFeDqcWjzUBAoIjrxdANQUD2UOtun+FAQPEyyqWp6kBAKvc3nIeyQEDnEQjlNUZAQBCe3cMQTUBAZV6U4+4kQEAZmIL2T0pAQN0Y8CqaWUBAAZ4c6eNeQEA0hNxYQEtAQEljJAiyXEBAkWVRVpGPQECOsFprsnxAQBu9AE4hYUBAgTvaoWBiQEC9EuDw4FhAQGnHL5nl6D9Auxeko2WTP0Ds54COns8/QC1GBYHWZT9AnKaReIIVP0CdJtv3TqM+QGEajS2ahT5Aye1+/eEUPkB/zmlVv7s9QLSfAsddpD1AAa7gLTvSPUC4nSN7Ioo9QG17X8kN/DxAzff8NJxLPUDRS3nunik9QCFTQvQn7DxAnSIeX2AnPUCFMI2INzs9QMXo6dGhvTxAETsRnRi9PEAbC2uz5EA9QJf10XmzAD1AL+FpC88MPUAdI9fIF9o8QJtMwbjYuDxApHl0NhJ6PEDcO74Fxow8QHxlCyxo+TxAd+MRjTyePEBklgJ04cM8QLdiPdVNXzxAjeoG0Zb6O0A5i/mkKKo7QCEuTHgPzjtAABDVEtGZO0Bg56iB4wE8QKkyFS7RnTtA61vWwBQoO0BDQu6A3RE8QEidsGPXgjtA6UZ+Z+nAO0A4+fxabp47QJV8Av8XiztAff7k7/vfO0CUxuQRJFA8QCOR/cIyljxA5M3yBPiJPECYyoKntM48QFUlSN1otjxAUI49KchpPEAj3WDC0aA8QGma5K45yDxAp4os0dShPEA34XOfoqI8QP0s8Jh8+TxASdPzTquHPUA4zY2ItZE9QIUJ50LiZz1AezRlbvBnPUBASWLBl409QMnZx5IGJD5AQAAVxiSGPkBobPVKops+QLEuezZ5jj5ApefwQkX2PkAZ2KC2HW8/QOsNpmaI2D5AMYmEhGZKPkAnHwpepxo+QGR/uwpv1D1APEBv1yuWPUA5pcOr8kw9QPmSbnRXqjxA/abBPbexPEAMcna0dto8QAulHe1kmDxA17Fp7T/OPEBIrcXyTSQ9QCsBGJW/pDxAnaBYOmG4PEBNOjFAip88QK0jSYiahTxAt0gmP6kdPUBR9+F9dTA9QOemmsAYpz1A3LvzXPqRPUC9qpR4KR89QO3stQHClz1AMC87CktmPUCtCTHS+cg8QMS5PN3CyDxA/XOR6WSDPEAvlOf22yc9QGcSmKZ9rT1ApQjXqreAPUDDGI2oSFE9QIi2irIq3TxArORLkKqHPEC9m+j0bXo8QOehm7LpqTxAECyfj4ZLPEDAkGqEhlU8QDsfazesdDxA+ZLhgaeZPEBsQASOSy88QBBErv2lwjxAjetoxSKpPEC0DcKESB48QMEYhF9P+ztAkTgltui8O0AgLVWRzMk7QC0Lc+ebwTtACR3SCJdpO0CJoy3pLZw7QF9gSN64pztA9WtBdKdwO0Dtrsa1iLM7QO+eeIRKoTtAkTXlwa95O0Ar3C4APJg7QP/E6k6hATxAwT2f/ODBO0DPIPsJM7I7QIC0H6I6qjtAtQoa4cOVO0Acgy0JDXk7QOmI8Je7mjtATSCMJvHAO0DFdfiSook7QMg1QDBHpDtAT46kCjn1O0Bd2EfqrQ48QP9KL4wGSTxAN7ASG1aTPEDYrCUYsSk9QNGkKU716DxAI4zoH2GmPEB7ol8h8TU9QONTEhe9nz1AXBnCr1vyPUAg45mMRtw9QIMTj1TkXT1AaNQJOSunPUDDGMj3/8A9QKBLUG2/eT1A19nyAvamPUA5Vu+MiPA9QN089LoM3z1AIWttxLQSPkAsGpoXFBg+QNwc7epzFj5AycB6PBFGPkAcZyYnyCY+QG0zo2Dmgz5Aa9kbGPcfPkBnHBJ7igI+QI/pETZEvT1Ap8JZyW+GPUBMkwNHeDE9QO1sAIhDsDxA6wlq+WnUPEBULRay4Ns8QMGzeEe7zjxAgEoLeIboPEDA/QPlfk09QBvuLPzHVD1AKyISfS5LPUCfQze9LS49QHPtiU0USj1AZS4DmTlJPUC87bl1rlg9QGPiYC/mpT1Afw8CQyKxPUB1gOBGM1k9QMi4UwlipT1AWJKg5C07PkBQqpwFjXE+QMFw7vfYOj5AfNMMeWgMPkBBHCGo234+QGNw0YFE8T1AJDUtNI0uPkAjYSml0Ec+QJMNRmLSRz5A7+1CMsf1PUBL0Fsir7M9QHeRuj5pDz1AVF0OUpFqPEB3s/Vmkhg8QDheboULQDxAwI1e3jhrPEDfkZrcagc8QHX9iR4jkTtAPeFqZINHO0Cf0TksQCo8QNPgvFDksTtA2D+DvUWwO0AXk38E2No7QFDMnZKfODxAnV6B11ZUPEBIUgRmoPU8QPvMSVpZ6zxAlQcUDsWZPEDpTg0EwcI8QI/a+wvtFzxAvXlUoIYLPEAp6JQKV+87QCPirxtayjtAFwbk6z1SO0B/MocNty47QCF5AyKNmjtACA9wdxgPO0DEQEewIQg7QNsYbvrZjDpA/aTbYAnAOkC1XyHl9186QAGyWU7OdDpA7TGKozBpOkDMbVSvu5I6QKXVntrhWDpAkCXA1NfaOUC1gkn8PLs5QBmj9kYZkjlA15Wv+w99OUBAa6PD2Yc5QBjBtYZsIDlAncHHTWN2OEAMMafU9404QJjw7PlpGDhAQxAFyOK3N0CotlJeUpw3QLwnHNNcVDdAwcGZe5xJN0BRG9etWhY3QAkiFXKUNzdA20RhClb4NkBkNul9IJk2QNM9djsn9DZANc7PPKVvNkA8rldhFhM2QLi4Td4V8jVAIQPp2IHFNUCUTYE50LA1QIRuKr9RfTVAF4fX03p9NUA34HswfT02QClCfAOCkTVAAadsI2P2NUAJ2c1QcGw1QMjc95cEpDVAhy9l9YCUNUAkEbV3mfU1QIwKANT0zjVABVRSVwUrNkDXq9nVlEc2QKHJrhvjoTZAwbElCiRiNkDJVACMTzA2QOtyFdwRpTVAb5rHAFKhNUBIAtkQvbE1QNQc//nssDVA00cn/YpUNkAFG344ld81QPSrqvWjPTZAMRoipFBMNkBfHXq1P7w1QASvwTg6dzVAgoCW0lUfNUAt77cTm/M0QOwjmQ5VzDRAx6SZm0cENUDF0jnd7Pw0QLf+CEBa+DRAL2ZHmNJBNEAVVsjkn8s0QJ/z+emRETVAxa+65brfNEDYutrNxlo1QMy1IQmzrDVAVRwByHTaNUBdMlho6JA1QJdnuM1pQDZAr3XSjJJnNkD/k8ccr5c2QKiSAAsxZDZAmQo2/5GpNkCIiaO3V/42QChMAp7OYzZAyLNiv1g9NkAHYEMtSEQ2QI/oU5dUMDZA2PgfFutVNkBHtNXkdvg2QLizkL+yAjdAW/zkDvoCN0APqN03X4c3QPVvX2ZyRDdAqNBbyjLONkAdenyldhk3QFUnZPRRMTZAK+VMyXk7NkCMVoDaCwo2QMe33QeQITZAnKzY5CCNNUCXfI2Cc0k1QMihD/9/8jRAmM3w7WBsNUBX8wkx6kQ1QLlkB0FEITZAJEh1rjOeNUBZQbh6IaE1QJ0JgSQF0zVAud2EFfOwNUBna9wuz+Y1QBVlDlJ7ajVA2akaEB7cNEClxYe2+ug0QJUFm2Sf2TRA37aCqmKhNEAgiaWHBLQ0QOLVqBtUEjVAr/gtE6z+NEAbP9eiLPs0QIgxZPp+RjVAfCsb4BcjNUCfTwUHqMU0QLifFQapjDRA66V95qH+NEAr5nIvqBo1QOew66OjWTVAucfWNc4WNUAxfW669tg1QN9L/uoybDZA0PUG8RRJNkBA+eJZLpQ2QPTd1ewDBzZAvUvPd6rINUDH+uVCrcE1QJxQjSWj2jVAb+WihsdpNkAJ5HGiTuY2QMw4083mmzZA2EJEO9CHNkB5Fnqih8c2QPjaiMGydTZAPRTV87VSNkAUnFFBDGI2QO+EF0CmlzZAhMDcXqd8NkAjFTriTag2QIlUTnP4aTZATce3VN+FNkAn/ZDnx7c2QJ/+rnNKezZAUBJP+O46NkBA5mxomM81QNhcM+hDXTVArwq9F1HhNUA9tMXAROY1QP+XEAvlGzZAqUZyaFXUNUAMVZbtyqU1QCCWH+CgnDVAI/+ly5D/NUCThj2+TV82QOUy2gjBgTVApYZreMOwNUBb7AgGsgE2QFzZ+Bv7tDVAvIawfb+pNUANRr/rTmQ1QNcjpyXIATZALBbKtq/uNUCwncp8dZk1QBwS4QO2nDVA63CNRU6QNUBpznB86AA2QPPp++8ECzZAKBoPskcYNkDM6rruvW82QPthSrsVOTZAd23fn3OwNkBh90J9rHQ2QJi8tWEpjTZAVcaD1+T3NUCn9YGtM1k2QAwnt87zLDZAh8uTg/PUNUA7aQ1UvZs1QN1WwNZezDVA0zoLSHb5NUCIyJStwlg2QKs7PapyMjZA4wK/BDR9NkDpoqPoqjM3QNypuQMYIzdA2ZeQKmp+N0D/oVBzZGE3QP/5Lbb9OzdATJt72lBIN0A5T7RM/Rc3QGiMY9TxJzdAZZsEwkUYN0CdSUZLEq43QIE6R/YZkDdAnJqRnUg4N0BbWA5CXS03QB10cihH4TZATdGuxMbnNkBxsWC/H742QGWLyyUd8zZAfGTjqIgRN0BVM5G8v403QL+fxVME5TdAfXUyK2iBN0B1AcsR7PA3QPW7a7k3fTdA69AE+5CqN0Bs1pZwUH04QJyHxZElkDhAUYmgvLR7OEC46MLvylY4QGkdhRMa9jhAsMyyOyiUOECMKiJfdyQ4QBA0v8Zf8DdAi0L4M4EjOEDEVE2+mfA3QFmEewEz0zdAt1zU4sOzN0Ab56Ce2xk3QI+2d2gzAzdAGTldktK7NkCnmtZn0+E2QCfeD/ABLjdAmM4CcMUJN0DFu0bNis82QCc6FGIM0TZAX9h+zVmwNkBVKOM3M482QGkhTpyATDZAbKVV5cMBNkA3Jj6P+jo2QJxwvCzNYDZAx07D+GQYN0Dk+gC2UEA3QPkxUDuo4jZAHFwI+oO1NkBFhwNt/1g3QOCzQjiCYTdAHxaYAVLdN0CfQCoMdjY3QLtZMqGTIjdAB330i/wvN0B4wmFCUbE3QI3177fAhDdArBl6Jc/BN0Do/mM/I543QL1MgfLmjTdAO0rhRFD3NkDMmULx2fo2QE8gmmBlczdAz5cJ76AyN0AXHdC111o3QDeZHfkOUjdApL5dHmlEN0BhIHXPS/c2QDz/lIRzhjdAk9+FLJ9WN0BPxRb9l783QKyf7+8zrDdAZDJoFQhaN0AnstxOrC43QDPJ27+LBzdAj+JmjlENN0AIrOPFv502QLk23u1SSTdAdHH7hPkoOECTSnRoxzc4QC/OM6WhqjhAm6tPUh4yOEDrK7Pj/9I4QPi6c0xTWzhANGuL7T3QN0DZBN7l1GM4QJjHZhcs0jhAJytT4SiMOEAjuct16sU4QLhgQEp2tThAcflBp4joOEAFpyJYueQ4QLe6ODQiyDhArxbnSIaMOECoAWRc58w4QPu2iRREyThAbzVIlR9jOEDd6rTRb+Y3QOB5rrFbcTdATG2qOMiWN0BrfLo31104QJQBVKNQnjhA1zFTUWqsOEC0h67ijsc4QESNBKAgDThAo4bk2P3QN0Aw99JibUo4QHCHP4HcYjhA/Vsp1OtdOECN3XPa0X84QHOP6eJIejhAI7MFPOM8OEAHxYMkJi84QCebYkHkTzhABN4Ob1z+N0BA/UfmGvc3QMP8LsKuXjhAccHr7feqOECFfFLW1cg4QLE4TiCG+jhAhIZ+E06AOEDEww1+elk4QP96117ZQDhAA6rm4hBrOEDLrK0tj+M3QBiGtZY3GDhAfWvTleH+N0C4NJMtyS44QB1kWmO0FThAQCDow9MmOEArV0GdUx44QLe7OYNWbzhAfdikTSoDOEBdbFTs4hY4QPwRh2TZ9DdAsRUusNecN0ATEZq1lVw3QATvj6fv5zdATPNtGcYdOEBhrMKOZN43QMmASklcUjhAt8oXR3USOEB1/stqn+I3QOW2b1h76DdAiZ4T3dJ+OEA91J2e14k4QEeThqiM8jhA/HsbXgaoOEC8hU/hxbE4QEAuRTwM/DhADJde51P/OEAdSqZFsXM4QAhjcfMALzhACLFmhs6DOECXis0IAwo5QPMvSljnHjlAJ9JaXc4nOED1qbSKjCw4QFOT0n/I+jdA/77C8A+vN0BkTksHeuU3QEXKx4TfvjdAUSvtePDCN0BJOkE6cy84QBxNr03GxzdAaVVnDL6jN0BsKhgfg443QOtkniL1tzdAg9rvVm8dOEARyXOwgi84QKDF2mW2QzhAeBA9O6XxN0CoDmlS4bc3QJlJeopbtjdAW9Ig3yjhN0BhgYsvktE3QLWvMy5rDzhAxPTu4vdfOEBbdiTMS2o4QCzh3cUztzhA3VYHUrg6OEBgqwCDQt03QFWlgM6KAzhA6ymLgO8dOECJ8UHEaZU3QJfiL1esNThASMX7huuGOED9kDO0A0s4QDUnE0wkHzhAjOCnYMNDOEA8zqvDZI04QNHmsoZLTjlA+fdWw9diOUBLfp8+5u45QM9gosMrqjlAZA2tEcb5OUDhkosYl4Y6QDjDgUDUJztAUfyypjYiO0AUtyv/zEY7QE03n7A0iztAx0is2VsVO0DhoOOXbeA6QIn5boekBztAzBRE8ojqOkCDFSA1G/M6QOteejItfTpA9Tqh3eVnOkAYEjffvuc6QN+JV2P7BTtAaMan1mi5OkAVQrkM4tU6QP/6P3PSBztAU3ohyYbcOkD7FRInDhI7QDd8lZab6jpAD7d5dhvDOkBZGcvPSFQ7QBvsmUexNjtAx8fzsP8WO0DQ7OMZ++k6QNQaqxpBnTpAj6TbXDnUOkCV1VTzJtY6QGuZKjao8DpA52AeEaR0OkA8ZCbEoVg6QA0PFfccLTpACyeYV1z0OUAFkOYiw/c5QOnYfVcHGDpASfMdbkBBOkAzRFmmnHc6QPdh6jUyUzpALX6LqoZQOkAxC7YvV2k6QCTFs5GzczpAkJ+b7LzTOkD0XY2A8Ns6QAyGpzG40DpAXxccwJemOkCDWjc54mo7QAlt0mMMLDtA4OE3XX94O0BnE8GCyd47QHNwcgBlaTtAXCSFLREFO0DXLrck8VQ7QIMHaNkrMDtA9w3LQiLAO0DT89bdQRw8QNsORoQVyztA0WqvyD/8O0DxgH/4Oqw8QDxDmQ/qozxAvegCGfrLPEB5Hs7c3dY8QNEJvPv96jxA5wt9UjaMPUAMvtjlCAQ+QOnuj83DWj5AEVVshiFmPkCsNTW8xuc9QKXHCtb1zD1AZMcr4Rr1PUCDpVfFp8w9QLjdESd/nT1AAAItqzHmPUB7v/ZPRRc+QJWnF7O3bT5A4RXba0PGPUA5XnjEvB0+QLXAnEdKMj5A6KyaKdatPUCIKD5/rx09QE0nSgcQeD1AWGnJHSC/PUCI8VjlPAc+QIWZ07UgOD1AJLUzBduAPUD8KlcjQM89QJ/YqM8D1T1AB3Y2psSMPkAfrjEuJZs+QCVyBwNHjj5AjJxI3TnHPkBB7yuKW2A+QAFh4JqtBT9APxskLDsVP0BglT8GiEQ/QGlCSxPzKj9A2Lv5vnhTP0CPo1O2jMQ/QPuulj9vwD9AEdG3XRHCP0CDmKPz0wpAQNeGucWfNUBAq03uNvNLQEB1pmK1NkBAQJTg/1MkR0BA0brmiNwjQEA5nUQ95vc/QMSEM3v7gD9AzZNBqq9qP0Bl2a+kAZI/QLwpcu1acT9AtcVOwHtUP0BjcOKobwg/QJWGQqpxGT9ARBZtQ6vrPkAcCCjKCYo+QPWrg8WklD5AxXjnzXATPkCQz2UIGCY+QPWyrDRT6D1Aw5/LIL3rPUBUmjZQSFY+QAQ0ED6z3D5ALBe7V0erPkCs8AMbgIE+QOWb2CQn0z5Ag3RQjdw1P0BnvzSs6Wk/QK/kCGNclD9Ay4OJayYnP0A7nzhJZfQ+QJUL0JU6fT5AMxqPzjIvPkDkUu0fGmA+QOQ+bu+MgD5AMLzUVjtjPkBn7pO1ADI+QND4OUtlFz5AOYsQoU2XPUCDw5t+h4Q9QLh0G/mqdz1AU13Dh0zYPUCRjWEBZT0+QNAztXmPDj9AEGEOi1+RPkCV430sRgY+QACxpVuS9T1AszCLGB3CPUDfc1M89qM9QJ9LVTXtEj1AbaD1EsLpPEAAhWgD/Z88QLTFqtKgjDxA+OquvX6aPEDxD2Ws3iU8QEQ/mxpGdDxAL59THn1dPED5qNbW4UA8QOO82Tw+2TxAz8FKMZdhPUA3xyEilDo9QAzG6C+qBj1AmA8i4mTWPECHjNPQLT89QKSWtf0LSz1ATXnRvX+bPUDnn3QIk089QJHuX5/b5zxA/9g4KDEsPED5PRYq4ls8QKwLPk39mTxAN2rs72JgPEAUSZKNUwQ8QGQNE7SQvjtAY8N1ZJG/O0CB4AXaM9M7QLDSIFSSPDxAuO/ZXbDzO0ArFDq4QmA8QHwBVMAYiDxAvJEOSNyZPEA5em7uzDQ8QJkgbPPdyDtATIeXALB3O0D7z2nC1Vk7QClFdRYFFDxAB3HC2HnPO0Cndz8iO9g7QHUc7RmC+jtATc1HsBusO0BBNaOKYtk7QA0hyvIE8TtAVU8E6LmaO0BE/fB9W/07QFPTCb3Z6jtAz6V+tzb1O0CY5GmtudE7QLz9p5TzITxAOTpBO9MnPEBJMG/DZgs8QDiF5ALUITxAaY4yDK7lO0BhRfMNQVA7QNv2yysFQTtAB7imzXHtO0DB55cnZ4w7QIB52hitwjtApxfUR/wmO0C9mhASGsI7QMR0U1Z5MztAW7dmFT2jO0Abr0Quzu47QI0JlFlefTxA4LalYtm9PEDH8zmZFVc8QP/OxFfJPzxAuKFs2d3iPEB5BDXX+Vo9QCC3Tf3CTD1APKXV+Gv3PEDDEBVkUoE9QNjHzkEhED5AJT1Zk3SmPUB4LlL0IEg9QPx84JK4lz1AK3sxLiVZPUBF4z8B/yI9QPSdZhSH1j1AWT88zCNSPkAsr/6dXDc+QDcMxyb1iT1AgKpgG+BsPUCws2fFbh49QHsWxAJj2DxA+JVNpmNgPUB45xjJLdc9QBT/oR4SHj5AZa+P4BJrPUDg3nOkT+o9QMF8QsLbzz1AuSaahTtbPUA4JX1FaF09QE2AJ6GJpz1AfcBtf+TlPEBknyToO4Y8QA10IDhHeDxAKQV2a2ZLPEBBlOODqwM8QAjTUqi3uDtApH9a1RaJO0Dz/rA1UVs7QItR69bIcztAxwbuka04O0DFNc1z3uA6QGB8DFnNSjtAdMp0CPp0O0DE3LUnME47QJNfKSuIHDtAvfE8rcMnO0Cp11gS1Zk7QIk9D3EBNTtAE9N5yHgoO0BF486tEqg7QKmgfVmF2ztAlbYCOAYPPEDzs80h0dM7QDzzC/ugRTxAOGUvK66zO0AIuMypk/g7QFgwSYPXEjxAL9scUW3AO0C0utPr6uM7QLTa0+SfQjxAIKDV27NrPEDw0LLlbIg8QOk+6y3hfzxAV9FcpKksPEDYyc4jDNc7QLch1yKHyztAcDxk5lxyO0DzxfhyYEc7QBiDeEWPszpAE3k+e+keO0DlHc7Ql6E7QAzVo2s2NDxApHe2GuhlPEDFDCH5LxI8QCMeoAh18TtAN/XqUpzwO0CJI/fRReQ7QIOvXnwGBDxAJ9evdU3UO0BD0hMdmt47QAsnT3knbDxAKFpCJLAXPUCnCiIP82E9QB+ULJmoiz1AuxsgniMjPUBneimXRug8QL3tQWUGjjxAWOQvnk3HPEClC0FTB6M8QI944qxcFT1AE4SPgew6PUBDr52zdLg8QOOcWjNEqjxAP47o6Y8ZPEAxEWfnSS08QOm+/+secjxA8Q5lIGWrPEC03q6n+Vc8QBBXB3JtfDxAFykScLDqPEA8+icNGTE8QOyikvVVWTxA7Uhfr9WHPEAXTDjxJAQ8QPXRwrRvhztANX+JdqKsO0B99vgvla47QOQlhBlqtTtArEJWchEgPEAfWIpPj687QK8xUrzuvztAWelwn5t2O0DV0tl6Q8o7QCuJHw4/gDtAU3SE9CDIO0BD6hcUA1k7QGRwGJPlEjtAEYEcsh2vOkBvAVooNbc6QAdOQYxa6zpAZIPNw5/7OkDYD647T1s7QG+8ow8LLTtAy7uoeadIO0D3pEYAzGU7QNlQwt9jLjtAYT0KI35XO0AhZAZ8+6w6QK1RjhCiezpApPxSuvKROkB/5I10Xjs6QPcquXu0sTlAKIsG2fpwOUC4YPBWg3c5QG9p817aYzlAacBSdT90OUDg39R3YTs5QCBol+1wETlAm9SbiVgDOUBkoCibrYk4QNnIO7ktxDhAdH/xRTIkOEBwhw3RAvs3QJs/0W/muDdA259o5SUxN0BEBRKXZsY2QJ+f6aLhGTZAKVYUpJuDNkBAkgIQ+/E2QPW7UcNGEDdAl/r5hxHhNkC8VU+yows3QN0EMn/tVTdAtRmNFPbANkDolW+r8DA2QPt9Ho09YzZAWTq8ppo9NkAROrZ6CWc2QFV2eFaGbjZASPvusN8lNkBNCFBTR/k1QDelafeTljVAe+lEmdhwNUDrAk9nq0A1QJU3pZTY4jRAoBpzUj/8NEDacSZ5sU41QHDlLZTsTDVAqAj6P2ZFNUBH+hG7iHA1QHi/+LtmjjVA57x/GdJmNUBkxQi2ZZ01QBvaISEj5TRALuVx4ec6NUDlYTauq6g1QJXhN9ViPTVAsp/PbDz/NECSpbfKfys1QITV/QWnojVAQexbodyrNUApBgdIjQg2QCMLQVQR8DVAZXbdwABnNkAcLuT0NUQ2QATGL4o7lzVArU2bH5cXNkAXnYkqAOo2QCvEC7tqqzdA4/qKIJCzN0CjR2Bqh6w3QCWagxyxIDhA3PS/WfTYOECYlG6e7MI4QM/rOZ6UejhA98T/bBPQOEAjFZspywM5QIyp0X2oGzlAMZ1bs9dlOUAtNm+8Zg45QAXV+NriyzhA8REslpRoOUAwSCvMPmg5QHNdrQ8dnzlAB4mS8fJdOUBNhG3mh0o5QB+gRQn/QTlA8CiBQlR1OUDwzPIFSp05QOOAnIqfPTlArH8wKgyEOUDf0QqaoDc5QBP/m1Vv9zhA/BWnOq/2OEB32cXu0BI5QCAhZgVd+ThAdKMaKIPFOECnsOWn9Bc5QIBLeyFEgTlAaak9UxqcOUDLgeLIMDY6QNDMdA65SDpAh1F9PJ8mOkCc0JVs4+85QDNqIfTDlDlAOXfWrMAVOkAAhGRLIeQ5QK+cshLO1DhAvKbbtJ4MOUAnhiyrRvE4QLSm04eHqThAX2EGmdmsOECTRnLQmR05QME1vr1HXDlA01VrL4E7OUBrylahiD45QC/xwziAXzlAcP0G0RXHOEA0DZ/Oa/Q4QJuOwT/mCjlAnHFXwfe4OEApE1nI3HA4QDuuKycmLzlADYNThtlaOUDk8l+XUlY5QHttTyzwVjlAMeTCl5ZYOECxC4tbdns4QEidEO0h8TdAW+eEwdGON0D1uNNfYJc3QFmYbysyzzdA1/1s4Kp1N0BgswJ0CRk4QCMRpY3uYjhATWtXRk38OEBLMzWbUpQ5QOd5hVLXljlAP7NLzE83OkB9Hfa4E+o5QFFroK2iATpAdK0pOg0COkA8XP/zUBM6QOytXsDfvjpAoJPqX6mdOkAVUMHqLws6QLDSaeYB4TlAvEBnBL0+OkCnfu5BcpI6QKd0jM69sjpAtXK9wJ2COkBxaAwMR2U6QPxJvCO+uTpA4GvMs5l+OkAno9wFlN06QPywnRS96TpAuVJRH/kNO0BbZCbpNwo7QNFgTrsEATtAw9ImsvC5OkAch8TrAVQ6QBt/axq+IztABH+y6XblOkAPtVujKmc6QNmdcZO2WTpAXPtLWCy9OkBR/o1J1ys7QASTwKZ6KTtA6MSOwLg7O0BF/zDhorw6QIC6e9nsLTtAICPXcP5uO0D/pIQo1XE7QKSXgHpLpDtAqeavfSOlO0BsIiLLXAQ8QKFzNRtQhjxAl3xehHSKPEA/tltCP9k8QGNx5o7cFD1AKdWEmaiwPUDxcmj3DMs9QPHftJHk5T1A3UazgBphPUCseSLL+gY9QDW6WKx+6jxAqOv/pe2KPEDgEh3ysTg8QBzCu8+MJj1ApPNYfrM+PUA04db08U49QF1BT2m+Kz1AqYS/HsBqPUDfKfYOMn89QHvrihI0ET5A8DHmyHTePUCsRGeYBcU9QM/5+eE7RD1ACP37T8Y+PUDj27+Ocqk9QJHWd96q8z1AIxoxtI+QPUCdDzb7E6g9QIdTSaP+pz1AYfE4nYeGPUDBOIl1RhQ9QIg+DKD/Pj1Az44d/2vjPEDkOPi8cKY8QIP8rNTObjxA1PHHtOEPPUAre7ZfSck8QIVN1Fjf3TxAaOMlFSIhPUDcUqKaLfw8QGj3IzwvHD1AdQgjZ+xbPUBgSgKREQ49QCdbu8ZkAT1AbBXAaS++PEDbP4/Mdbk8QDh2Eg9eGjxALBEZ6x+nPEAXLIL04m88QDDj31W9PjxAZ6GoiqJfPEAsZ4DWl/g8QLDySDtlljxAbRPftKx7PEDYYMf6uag8QD0hxxvWqDxAPDsXUlDQPEChFzp4+Uk8QGeGU6HLmzxApEai3TmbPEDXB2AgUmM8QI8RTupJgDxA6wzo6KtBPEDLOM5X1Yo8QLPL1r7+8DtA9f4QVywhPEA05lr/2Ss8QJDvIKLB+jtAgWhDwGvaO0A4iiXqyxM8QBn7ZpmFCjxA/Bw6ilbzO0BdOvjwiRk8QMTXezOQ2jtA5eRnzdxpPEDprN+bGRY8QB2IgrBUQDxA6RWCoKRQO0BLgc8zsk87QPAPm6j1tjpAK8dV93ygOkCzvZT8i7k6QJ8LiZLwCjtA+Ka1mgJnOkBRl8MM1Tw6QCsLHipGbjpA/d0P5mtfOkD1+zu3k2U6QBUWRvYnvTlAaEoEVeVPOUCHY9UEAK44QEFJdKVbhjhAvamsZbooOEBF1/LeWiU4QBfPufpr9jdAl/iEet/PN0CpOLqpCq03QDDS83ezQTdAmZ7MHIK1NkC4X4F38wY3QL3aEqEPLTdA2y+DJGQFN0Cvg3A7TNo2QHhENAlN3zZAzfff/ayKN0DTrulHe4c3QJcN38eBmzdApDOkH+QGOEAhuGCMSFg4QDhTNevTSDhAlznzU/IAOEChsWIRwB84QH3iSdVy8jdANK6MuCzHN0B01vtBLbo3QNi469fLLzhA+2Ge2LwGOEC7A3Fb28E3QGuvbJUMsTdAI7sTvsN1OEBtuhUq8zw4QCkCLxs9XThA59XYYzOnOEBtaxtDK4k4QFmxisgmrDhAwTIJqJKOOECBrYEIqcM4QBGvEqr1lzhATaF84pcfOEDdjo13HPE3QLHWdtEMcTdAL6KKSb1+N0DhGWOejkY3QIwmrEqyODdAX45baqSXNkDducK7cYU2QDMguHjRJTZAOK0FIuVINkAQMa3YuCo2QJgXfqXwSzZAWx2ACBgfNkDgiIKzndo1QA16VMMvDTZAJQwTwkoyNkAADqCXUkw2QFtdEQdrDDZAPegPaOiKNUCtoj8MpQ42QEBYEz72BDdAq3N4a0B3NkBJDX5DUuo2QPnQR/cEazZA8MuYHR7fNUBNmc/brGc2QN0IuaoPfzZASHTQ3idyNkDlsyRYoW82QKMKh7wIHjdAFAHIF+lvN0AQUt0rxNA3QJPjXAGkwDdAJw76+iBCOECkmNQPvuY3QMTGyJND4jdABLBiHNnIN0A/XyDra8Q3QDhwHoCz3jdAaYg/MKKAN0BB1b8a5nU3QFAhURkrcDdA1dhHNR4eOED04KgNx5M4QJnfcbhPgDhAvxgsvu4dOEC3/b6t5484QHeqhX59EjlA79O9OCC4OEAjO4q7taU4QKcY/JhqDzhArypDCeaTOECEZXANMrM4QD3SmxH/zzhAmOeZK/25OECl4WOp3L44QGC7oUFv7jhArXXV4r7HOEAhC000NJQ4QCNKEIJjVzhADQQfrXAkOEC0T14oR/Q3QGijbofcNDhADXEvid/QN0DFWc9t7Jw3QK1qn/ikqzdAmxPjAAWBN0CRURHgq3k3QFkNdEOfkDdA/AkLuqviN0AoPZDlydI3QFvBzjr/XThAfDvU/wYVOEBQoh95i2Q3QMFNwnXnjDdAiyhZmVSDN0DJU1j9E2M3QAhum5eX4DZAnEBkjT3QNkDb8EU1W203QI1qpUD+PzdACKkTWlcXN0DrtgfXK0g3QPVBtvHcdjdAeDM0nd/DN0A/ejjl5LA3QEh+hTdQtjdAc7icRuD5N0A4xJ+peOs3QPRsoyESXzhA5bGlRHqwOEAgbyNQa1c5QNwt+0oPZzlASB7fM87GOUC7o+b4y7w5QMgbwczL8DlAM2ltL+K4OUBXvRsRzXw5QOkzaBRPVTlArWEpXNqwOUB1mw3wtA06QFcMK1B5NzpA1I/+g4dUOUCUiqIl98k4QDFgfny2eThA3Se7evCnOEAZLhwjZZw4QHPob9toiThAQ0SIlzRfOEAtRF93lf84QDuQ3ZdDjThA+TkI8r03OEArkewFIdE3QHuovDwqmTdAgw1B62JrN0Cn09Mu5z84QEM5tXjQtjhA1JoHGLKHOEDIonDRqOo3QH0KHPZq7DdAmRR1JY3FN0A47Dkf7lQ4QPVUGQaZcDhASXXSqiCzN0Ac0P+6vWo3QF8EisrcvzZAGFwnbFRLNkCA4vQd/m42QDwOHpPvRTZAGLd6KU5hNUBDOz90pE41QG1zgFLZ/DRAiXQEveP3NEAH4R6J0uQ0QF0rjef44jRAuciTB9a+NED829qZHA41QJFy79/JBDVAujm+meyHNECYGZ1qw7g0QA8LqgZYnjRAxXVC4a6JNEDEB547cO00QNKvNCrCeDRA5D3O+xQhNECBEI4Z81o0QNmMGtq4ITRAkyCi0U7RM0DQHtcCoMozQEiKevTnXTNAmL+HkzcRM0A6q+5BT0AzQKv6pS1nXDNAiRmvuF5pMkDwW1zyIKgyQP8HIHGlJTNAk18N+u/TMkB3CE/aJdgyQNEmzI7eazJANdP+kK27MkAx6okZO0ozQIH13Snr9jJAVeWS29DgMkBX7qxQqQgzQMs1tholuTJAb89cNR52MkCSPosZAzQyQGxpZOnyHjJAmd16/VdQMkBTLiigVO4xQN075v/ECjJA+pt9S6EVMkDRhJ+AUcwxQOIJpaWLIDJAaCN8MRXOMkCubZKNZqIxQKvc9A1zCDFARRDRh1diMUByF2F5gb8xQHdrHjhhrzFAiJogx52qMUAGXA1nq8YxQGbcwe922TFA8VpkGjQEMkC5AHkmzZAxQBVyIwEAXzFAkVHFNdnXMEChM+1qBpkwQPTUCfstnTBABNkEghWIMECkCOcw6EQwQFQzkA3bRDBAekrvQBtbMECBMjDYtz4vQFzW2nuzeS9AXByI3lW9LkCMJscpWp0uQGRNRBxCry5ATIrBBi8HL0Czn6F05JEuQOPJZHc/iC1Aj5tl8UsZLUBRkL9UJGAsQEC5Xkf7sC1AxU/ET7PELEC7AkJuDtktQD//azE7Xy1AARs9gh0+LkC5NRigd8UuQG9kGhg4ay9ABIxtG9tSL0DDRY0EcqMvQMuw10XFJjBA2pBbGj8KMED5iZIkLmovQFVfzbiJoS5AJeQkrrqtLkDYJ6eNShcwQPye9DcQ8C9Ai4GJc4MfL0DhjL94Wg0vQBR3v18SLC9AE1Xia76JL0CIduQh4jAvQNtIxXaPHS9A5TtSsCzELkCgSuP/qZkuQDhv51VTKS5AYdojLaYwL0BCnv4LLjUwQB1VM+MGAjBAsLc8QuzAL0BPWro2PHYwQLIu+xEiPjBAIQ0w8I4NMEAtehVgDNUvQL+H3k9/QDBAdkdvQOVrMEDMptRK5VMwQOt3VCKKZDBAyt1uOTY3MEDWagIRNWIwQGKehrGpWTBATUUy/CYlMEC97Pf+zFwwQMkz/DrZ9zBAAxgc2KzDMED7Ux1LaR0xQILsqSNF6jBAc2dbGITcMEClucsnTNgwQIZBO/7+AjFAPeTmMLK1MEAGrABkRgAxQEFmRJWCKjFAjXAHI8LPMECRxiLrsyEwQNtJwMqadDBAbE2aLwlTMEAv/Q+lzkkvQB03tIkjxy5AKRfAOdCxL0Ck6BoBMKAvQMiETnGwNy9ABQdrtE2JL0AvCx+nKjQwQKBZKHXwCzBA5NQi7Ca1L0DIwPNcnjQvQPANVLhWTS9AcWvaBHEmL0DrSqsu5WAvQMVnOoZMEi5A21+H5zarLUDnYVHgw70sQEMxF+TIsy1A0RERIkfzLEA9YlkpgTosQCUkD0iluCtAZQIylq2yK0CtX9NF5eArQNPv+FLS4CxA6Y6+cqyHLEDFbX0MUFEsQAWdiYDtfSxA9HmhdiU8K0Csc81WIsAqQE3szEtOJytAqQuUdyaiKkCcmYWgruopQJ9GLMoHTClAI8VjXsaUKECo4umg7Y4pQDDOt8CFuSlAWY2j34hrK0C4qQqjTCQrQOvBdUGUSitA8O1JNNj6KkApbjFbuhAsQJysts2lkytAG0E3cyORKkCsjEeodp0qQIepTOeteipABcni6861K0AHGyzqm1ksQFuSaLug6CtAa0bnXpd7K0DHHL9IhyosQHcCjvXzqCtAPGcZyzfUK0BNNYcyZOgrQCQTaZfqOCxA+dQn2zQvLEA4S225cbwrQGxQR1fFQStAXMpq8MB3K0BLnAREQVYsQLiWrYdyhCxAiDDyAndILUBQMylYArwtQHOuWfRV8CxAKOo3d7gNLUBVIDFODm0sQJhAzw9GYCxAD2d0QY25K0D071lxxfQqQPgSNYJp+SlAJdBpFC+WKkCMFAnTavApQGySWmRglyhAxXr14BSqKECY624xeNkpQOT4iVxQYilAlbpwg7dCKEBAldWVA1AoQDx46DjFVyhA83vSZDlIKUDY1/DjphAoQKx07eZbIydAC/b/dVaeJ0BoqYW2BeAnQI/rBxvJ8SdAfKfCYaSGJ0D/7TNUUZYmQMgLyk0KCSdA5fNfZOBpJ0DUItQoOZ8mQMIuDo+FVCVAZawsgVmkJUB5HgR+FWAmQERj91M6wyZAxOQPMhp5J0AQT8sPkE4nQKdch2iXkyZAyGyY2rlCJkA7zrNj7JYlQL3Fa2B14CVAgKnJzgOrJUDkVJd8g84kQOsgM1QezyNAX/SkaEI1JUC2Edxw7iUlQCHpY+XxniNAmFFIPeQDI0BLzdkW7BkjQNpNLQ1HBiNAhrNb1ZDmIUDZlQ+FimgiQBCfyqNUkyJACNI49Zy+IUCHupVkiIohQAFzHRiJzSFASourtB/vIUBxTSKxmQUiQCMn59jVmiBABiqfazc0IEDDUB8YSjAhQKxpoRJy+yBAO44mrzhWIUB/CjKGahEjQEEnqAB+ViJA4BmHOouiIUAxWi7WW7ghQDKn4asjLSNATWstnvcUI0Dd8h5F/DgjQLN9EnYIzSNAT+2hbpW9IkCplEKZq6QiQOelo4CMoiJAx+v7OVC9IUDi7rITh3chQEVfwlFqZSBA8MdKc0T/H0CFeByY4q0fQDvxT7gy/x5ATYKQFQlQHkDR1PBoT3wfQISLLOz4eB5A8ztp05AYH0CYerF7riMeQPzVCyP/TB1AwNW2/E9THECfYBpcMv0cQC3yJCt/NRxAC2Sl6N7CHUBVwc+Z0mQdQDAFN2O0QhxAf7eMvHMMH0CvFuHABLAeQD3BlbRRdh1AfPiGsIZlHUBIOBrllnYdQPnvLmPPnhxATVjy4/kGHEB7s1GJi8YcQP/SVwfvhBtAWecV3YDsGEDJMe4GJX4ZQBXqVNOy/xhABdHJXRw3GUCfwThTT4oYQET5Q1MqmBhARY6B5Tj8F0BHGB/j+o4YQEg1pZaNzRpADcf5uHW6GED9YNbV0MQZQDml/UA1YxlArcWQIYWbGUAkfb7A7XUYQDzoeonaiRpAjZ+2gNKhGUCReXaMiY8ZQKv3jvDdOxZAD5Kn/jo7FkDf31tlJhMZQNA4/jkYJxhA42u7Jza0F0ARSII2QtUWQFdIjQgV7RNADJxBkoQeEkATse5v5z8PQInFVe2MBg9ASQT/XLTBDUDrOdK67n8LQMTgQi8yrgpA+GsZ247EC0BtHNmolZgOQLldhsJ9Ag9A3w4vkIQMEEAOv/AFdRkQQL+Qg2bEmA9A2PLqXgPyEECKeb7zockSQNVQqdSnWxRAKeD28iX/FEBLT5BE8LgXQOdkGbt0ZhVACVQqgKFbF0BjN3jvjFIYQDVIFGzcHxtA4Fa7+up4G0Dn/6d13wYcQFMJbm+6ghtA8IGWs2f5GEBX/ae5vJsZQBsm5p+DNBtA0ESggTYiGkB9jgvSJuIZQCmv9CutBhtAqRy6Q7kjGUCl953uG5EXQGGBy3IyzxdAa/FaZuOWF0CQe+k1qm0YQJAWV9TBphdAYIGDiXGbF0A1JkW0H0AWQI/BEQ36wBVAWZRwG+zOFEB8eO/3kn0UQD9MezvGWhVAX5jFWBazFED3F+nwnfIXQKvOVSU3shdApFj+mCkZFUAZQrWtmvsTQPlB63LwrBRACTXMVV1SFUCE2nlFMnMTQErJ2zpLUBJAaBjGANs8E0DzJtaXCpMVQLGAaZ4G5hVAPtVKz+QAFUC1+Eq6+i4VQFkLRLkWihZAT/xtWX2sF0AV2+mudXEXQC3BcKYkERdAq0FZnIOjFUBfQSCMYxIWQOcKD+UllhdAl5zQON0lGECV2GvZCYYXQH9vDy+NAhhAi+91DLmUFkCE6Fx2hwYWQNutcvMjoBZASPiFTCCVF0ADydB92oMZQH9ful4h9RdACLJ+r5GsF0CEq9yIa9sVQNEcigpGdxVASF1oWTR6FUDvJvbTwW8VQMDCRV0Y+xVA7BwzefjqGUBB4q0OiX4aQNfdsiv5VxtA1DslJsmHGkD/ZtHzNMQdQFkoa1LTIx5AsKARf5XUHkAMm7RM/yEeQHc0qJVqTiBAUzRQ8LMgIED+W9SFGxcgQLVy+m1sByBAkf5y82r/H0BU9QTIB+IfQD3/sxldbR9AlYqN5X8tIUDVT7qglEkhQCu3X1rpSiFAkU37HUlUIECDxwoU3TseQNCjzNOo6h9AD68KXy0eH0ARJg3bz7UgQLN0mc844iFAtSb7YczIIkDKW1eJr/siQCwLOt8rECNApHHujBfmI0BYkPQhcU8kQAOiFMrY4yRAByKSQCGjJUALksfMliknQMTwcgotUCdAK+36XC81JkC3SmMbHo4lQD/Mwswg8yZAXQXr2n9SJkDcjb3+ULQmQLl+4yj5sCZA6ydEPV0uJ0AnhEqe5+QmQJD2kTyw1CZABf/K+31/J0CvO1pc+zcnQJ/7nbqfUCZAGcqmWzcPJkD/YIXi0vYmQO1WmtAM1CZAjErVFo3kJ0ApXhx4SbkmQDF8+qOUKiZAaLfpv17NJUB/b21bk94lQPvnO0jfTiZAIcFb3kVvJkC7DVZB77smQNyjL2lGRiZAhxzLJT35JkAz5mamk68mQFesMnM66CZAuQShittYJkAvH1JK4rgmQETV2o6vxiVAmVI/dnilJkDcHRA2SuAmQOG7GjVmhCZAcL7V3s85JkDEg0cqm+gmQEMGjoJonCZA9Ckg8AVOJkB/IwxOS2cmQPfULLLU/SZAYWHQsVtxJ0AwR+2/X8omQLXQtQ+1WSZAtdXYTN2UJkBBExnZhfEmQFWtyDpvFidAnfhNPnM6J0DokPclz30nQNn6T1dupSdAzGJHBXRnJkAPFy/zBgomQLQPBqZyxyVAp1m2xXQYJ0D0VeXAWxYnQLvx5jsdFydA72sx/zy5KEDIjzuLC3opQCFbBOeXMClAwxlZ6F+EKED8B1d2AUgoQOPULffCZyhAl0NLKs2CKEAF2OxKx08nQDvdrCNWyCdAVMYGfrzdJ0DZwFE9k8koQI8uz3yzdihA72TB+NR6KEBP85NgBfAoQJUL8LEiAyhAD3Ki6cpDKED9hA9DDW0oQBXZ39gmEShAD6XL1fXjJkBrJFN+EgUnQOetDkic0CZAobm5IULwJ0CQZeezTAwoQOyJP/xsAilAJ0muHlPeKkDY/k9/MrYrQJ3BWa9QvCtAgMbj9q7DLED7mKAdGCEtQEEZSDjyui1AEVP1xnFGL0A3MO9yhmwuQHdgYuPAKC9AnwtQ0tmgLkCDGQKy7cItQLPmteZe/y1AnTrzGF75LUBj4oDUEmkuQNOrEo90GC9AWwjFGNh1L0BkztQYhdUvQPAZxw5rRS9AsXO5NIsjMECFv2s5bVkwQAf2nLFsIzBAgaB7UP5tMEATC4gYppQwQHJYAvqyADFAZX5a0QHtMEDFbn5DSscwQEOJHF9XWzBAx1PrlRRVMEBRtQQaGxMwQAdTo7aNITBAa03qAQSyMEDOOpcdXQIwQP10UzcMwC5A8DBRbg1ZLkBDYkWjC/osQIWF1Gj/dCxAo05IvLV6LED8ytaACPIsQLGs/DjvcCxAzWD4p/VyK0BfGyYxbf8rQNXqUFpupitAXRbjkFsnLEDs/5qVkpAtQEWeHwa8hCxAJO/4Rj9ALEBtP5njp7MsQLm0k5HOUi1AQL3Mh98nLUDYTj14RNgtQNN4myBJBy5Ay+C/5GTNLkDftw3nOB8uQHwbAQGEfS1A0d3P83NXLEBD0Cs2WzErQBU/h7WiBStAmLS+ZhJFK0CtDif96fwqQIiosM2/1ClAGMh6adpYKUA8PYy8NxkpQHOUmLuEJSlARW8et3v9KEAklN1jpI4pQMH9fXHbQSlAI6mzx/zhJ0Cp8KDbgSwoQGPAh8jD2idASwX4Vqd8KECchCZBIxwoQGjvnPCq8CdAGD5XAXiDKEAryBqJr4snQAMVCnTIQSdAfJgOnsqsJ0ClgTr5+SooQGXMVMD1fyhA76w1O3rqKED4mUDPdzQpQBFh2xPFCihAaKOftDS+JkB1y+JCIuMnQLiXcSAUnydAW3DcfZ+AJ0DHakHQalonQLVE9Ayw5CdA69fAU7vSKEDA7UqmKz4oQOSpW5l82yhAwYEs3y6jKUDFFbT8Yr4pQI/Hkur80ClAwUlTY63YKUBF3E1iX9oqQGzbF0ZEFitA3JVmUucNK0D0ecTOPkgrQMBhSfJl2ylAG2sbTfHEKUC5SqxZkPApQE3Bt3ce1ClA7KnQlZjEKUATkh5TlRoqQHCNUkKhqylA4LQqnuxSKUCkmR2ZYvYoQDmIURUEyilA2L//YTawKUCBun5rjtkpQEN2IvwWoypASASWUj1MK0BsSHnUjCQsQJVsaR1dEyxA0KEtG+bQK0CdlebxsZQsQJ/FUEEx6ytA6A2uBRUqLECBfne69nArQANOaJkqditA4BLoBW5TK0BvO9GeSY4sQKFPA+/r7StAqdIHv5rsK0ApfGLWyUQsQPO2fb2hwixAx+CXNW+eK0AXkgiVM4cqQF1Id2ejYitAqFmNojvsKkAoqh6y6/MqQJeHDESDACpAjP/ygoTNKUBrU74/LuYpQBsBysSq4ylAiEjTseXiKUBVDa7BfpsqQM2CR4quiypATYMK0wfZKkD3YkqTSQEqQDmUuY4AhSlAKLSlt3NhK0C7aIOYXiosQFzj6ezXACxAiNEL3gQXK0BBWKTawJQrQJP11XR4PCtAPYbqHCVmKkC88uwc724qQLE2AFEeIytAAZVf3Hx0KkAnXu15iI0rQBNV9r2tMyxAu2HEZp4ZK0A3vp6c7yMrQMTYyEOFcitAs/12gmgxLECEzIMQJUQrQG+QCKeryCtAuY8Tb1YjLEBLPsMPx6ssQDs7Cs/hNi1AuQQQZkv/LEAMdPCjTFcsQOk69JK3syxAHdvVqTOaLEDrhqW0TWwsQBf9hbg1jyxAodaWPByoK0BZ2OQ3QKsqQIiFmkxGtCpAIwbEE0kyK0D8/fr/Mm4qQFNbAnnudClAZQLkB31wKEBQez3AiAsoQKH14JgCYChA73dffHjrKEB85MnbmNcoQIinsHuVGihAufF6xSkyJ0B7AOvQb+0mQB8eMgcxyyZA6UmHytccJkCjZPa4C6AlQMqVivnfUCVA2OMchaP2JEB5qD/jHCclQHCE4ntj0SRATaAF7gbjJEDROfjx7x8lQMXHO12xGCVA5U+zLpI+JUDR6is0QmMmQLQ3YwRlhSdAwde0PYHRJ0CQkyswSk8oQIlDHocKhSdAkCYG5r5wJkC3fq9/yn4mQPxA+LERNSZAghY6egscJUAbZOhr+eEjQC3j1oEAfCRAWR+uRWmRJED8+b1A6FMkQI8tBX4RpyNAPtpwJfLEJEBVDnw+UV0kQIWMokWhpCVADIdGzjCEJUBeZJyxOsMkQPcJ63jd8iRAfZG5MusPJUDS4ySoo0clQLWjxGgmGiZAKGQRb6HOJUDxpBw09z0mQCEtX95VqiZAu5OFGG0aJkBvs9wXCaQmQAQiim91niZAo8cPaHTMJUDxKHRDFz8mQCOixgwM0CVA1As5m3OKJkDkRA59C5AlQDkvYgbi5yVAMeph/oqNJUDfM7BMJ8klQM/kCiwUVSVAvOp+pTIkJkAzf4milggmQFmTP6XemiZAj0hnBdWoJUA+GpN16PskQKfAHixRtSRA+2dG62esJUD4KY5Guw4mQAXceB+lHCdAqKzyAP7rJkDgQ2ToHSUnQDsFmtvidSdAQWoyHJcKKEBAXuOVswgoQAnet4RicydAQQyYLgWhJ0CjnSI4jY0oQNRGqcNJVidANS3Y1y59J0BoXMcLNoEoQC0FkszPiClAd5slHBO1KUCBNMk5z14pQFQzE1Z7cClARbKrT9bTJ0C75NS1Xs8nQHGuSzzlHydABB4gqTQOKEAxZSPxcnYoQEM+0cskMihAYd3ZO25cKEDzIWp6UuMoQHtJH4ax3ChAVyfxEfAMKUDA32cHhTkoQGc6Mmar0SdAsZ4V+JomKECYLS0EXuQnQNVGZmZnLSZAaIGsuxzmJkCd0+bQgw4nQBG7rErrLCdAUHSAmiKQKEBpOxEu4UAoQEzBW031NyhA35xwbOQ4KUD8DKmuCx8qQAhYcg4GmChAxL0BenzCJ0CZ54OJbIAnQBRUI9OcHChAa2yoy4bQJ0DQYS0JYH0nQKsUn1ft2CZAjc1+wWrcJUCfMlhjsa0kQD/W6HdG+CNABHdDug1pI0DddGHtZZYjQJNGF91gXCNAptXVGeb7IkBbVUN9vSQkQL9hfm7DMSNAPTTKWdA3IkCmginYMSkhQCuKKd/TKiFA2zWzDpgGIkCHPZpCnckhQLXQseavLyJANdD5LFF1IkBv5YQGlyQiQCZP6A1w0CJAW7G4nthlIkB3NoYwLiAiQBJy8JRt0CFAn0G2vRjhIUBLrP4GA1ojQFiuW39BnSNAQaB+39+ZI0C+fIo983EjQN0fEDhGqyJA58czhtbXI0CcUrJSxLIiQLvhCQu84iJArNOmLMw/I0DflAAU6uEiQLeQ7GGS5iJAf42J04OfJECcrS9lYmckQDHpaLydeCRAYCSXnDciJkBZ1jvENcYlQHVG5CSkJiVAMQs/w8UFJUBvk6W7uhYkQMEflEDTAiVApcTOnWXaJUB17dCEtmcmQEgsDpQ09iVA/x3bBuRSJkC0DhCzWv8lQB27vFYrmiVAhyutI/1hJUDllxlTUr0lQPU+IMTiDyZA7OMqo21pJUBB62/a4t0lQJBZTNZmgyZAxLsdYcfwJECnmkQmlX8kQBk+J0babyRALXGEG9TAJUDpEKxDRZwlQJ9XxNOgjiVAcIWEvVDcJUAN9qBaxfslQM0s49aNOiZAfacrxT+2JkCEQlQU75UnQP9OwzU1bCdA2OrOJl2DKECA9z8XkgUoQJOW7hLaoShA/3R67+E6KUABtDTopi0qQM9fOEc5zipAWEyZ9vudKkCMSetRJ0ssQNV6xWejOy1AybTSU1WkLUCLkDjtlposQClCAmJUBC5AVBWnq9lXLUCdvae9ddstQMVQ8oQjvS1A+MxaAcARLkDPTqbHbk0tQP3kw58dJyxA5/QhxbqAK0A108J6KXwrQNmNAvdJtyxAc4YsHX//LEBZmv1uzAouQExdw7ziGi1AMxG+U+23LEC93VjgciwsQFQhSn6tCC1AuRX06/YjLUBMKFbBiBQtQOzm7ZBbWS1AhC2VJ0yYLEBJJnb+hKctQPONY+7GuSxAAW09kCs8K0AEK+p0cPkqQC/PjuN7xipA2b4109zOK0AnelMrE5ArQMcWoqj/YytACNgI9UKHKkD3VhVutOkpQLexnyzQOilAj3Rtn94vKUAv/JQG78YpQM/A1P0cOylA3SQeMPtsKkB5ZbvtMCIpQJEv1ocq9yhAL2TSqHXJKEBVzmOM/rIoQIgHewXdMSlAw71RznPIKECYSZlkJPInQJvlntUADylAD8LeEdy5KEDncVsoF08pQKX4+ln8UylAfazcnDqMKUBjPIurzyUpQGVPr7/DMilAH5LpkOBLKUA8YsIqa58oQCFXkBYNiSdArYAumOI6KEATC1v1wv8oQK1+tnng+CdAkCsF0lbiKECoo22AkW4pQOMmxI8ELClAmXCASXX3KEDR2hJO9DMpQLk6036KOShARJoRQhM8KEBtPHu1jOUoQFNzuvEJJCpAtFL+pFtZKkBbMHu7ObYqQMdwSNR67itAkx/rgHIxLEAD7YTLXsUsQBUeU5BfQStA6U9SP7EnK0CP03nUWP0rQOAg7e2plitAwWDURYvfKkCF5WrIcuYrQIhVRAVRxitA3IHEkmx0K0DzfGGEdI4rQB0OO5/F9StAAGCGqTg1LUBYR1Z1PK8tQPeUg+k0Ri1A1M8v4PisLEAlofu1jAQsQHfYfMQNjixAa3azHsgVLEDkG7Jz+3ksQH0aZLx5DixAY4/WA+EmLECId9tcpjQtQInKbqBhii1AgdDHjkuULECoxj/Z9TksQAVLGnYH4CtAaS+8veM8LECPtiWx1cYsQA+Ug8RhxitAa4rNV56QK0A/QTzF/aEsQNEiAsT57C1AB+VMVlZULUARMzmvOywtQOlFgf8jbS1AG1eEpHBILUD545PY8cwtQOk2o3jPFy9ATBp7ZpPfMEBu1G8Y2zkwQHtViNhzWDBAuSAARBluMEDLBZj9X+QwQBba1ENjtDBA5QIwuOTUMEDPMQLzz3MwQPGDcaucpzBAAKeIE8+/MEDjAHCGuBAxQNwS13BrbzFA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 5\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"aziHr0JAw7+gXWS+8/ewv6C+rC2R8ZM/gWxsGGF1v7/wYv8Ufu63v8jdtLQKfbQ/fTtWySEr2L+7pGoRXLHavzuOASF2OcI/3Rr3G1isuL/hi0cs5ArgP+u1UW/D3dk/BO9LMzpK3T+LgJNtrmfcP2BY6wwZgu8/2FhfPkwO9D/FhnWFgazoP5ZfJiznp+M/U9Xk2z/26j/uWqmKUhHgP4NHP+RvWNM/zRbgIaH1179VsKB0J9/Kv2Un1hMntNa/BWNeVcbn37/QmSf2qom8v2ndx0MmVr2/RUKf/3IPkL8VAVYZKUmJv/PPOx+BS5i/VyU/ucINwr8VK20zhkbSP+gRatdi8+Q/8Zb8mq5T4D89y4N5i+rkP5Xh8NDht+k/80pb6ZB75z8JKw9i+u3wP0/dWJ8s7vI/b/hQh6/d8j+t84eDGNznP9TkT2/kb+Y/HblE59JC6j+tMMSeV9PsP0NYxhnBIuA/se2H+pPW1T8hSesguVniP+PRkB+w/9U/HULwkSaS6D8U2A/6e+HxP23JwK00DvU/edTNYK2c9T8wlZi9NmP0Pyz2QSBjHPg/XwZCexoc9z/kLsGDeyL6P4xHrHZQsfo//RPlLYYiAUCdG8jMZqUGQPtDZREOtANAx+QpCmrsAUBkz/hHbfX9PyOatk91VQFAzLZo4//H/T+vM+iQEbH9P+UVqAGvxvs/sxDHmiBe/j/NF5u8COz4P1g3OUs3nfg/EETptG/Z9j8DXEE6DMz0Pysjmdi93/I/C6nKFMe95T9p5TWZYWLsP0OAxtWAB/c/mBxrBhKA+j8gmFIiYc30P2v2FnzLifk/tPGvLwhl6D91JcbuzpvePyGD835lvdU/xC1e/xtr4T/c44FNzuzdP2fIY0bQAuM/JPytkBao0z8xdZrqcXbyP0uhw3IDCfg/u5+vNnel+T/spR3XEqrzP88PWosbrfA/78Z8YWv98z8o6iF3lI73P0X72O6XbP8/W4OUZT/9/z/lyAlChiT5P5GFgUGJt/0/8HOqCq6lAkAxugqeCIUDQBXbedjzWgNAq0N6iAKiA0DYxaWT/zwDQIdzFCb01wJAqYXHLQWBB0BYlpyUQuMHQBN1V3dV7QRAb/HsKvO0AUC1xS491ZUDQAVG4JzGJwNAg2MmExtgB0A/aobcPA4IQLErQ3uayAhAJ3IzUZSBBkAMlEGqwVgDQH/pA5Cm2Pw/mLg7vzZ9/D8oMUZ6IXT9PzgH6NjQdgNAbbSyaQOUA0AN5NXy/WQFQHnS1PL8AwZAoKZMpaXFAECZt1RMhk8AQIA1cc0eTwRA85Q7OnH+BkDFts5WzGEEQAX4XOdU2wRA5bCUJlrBBEAUDmrMSpf+P1CG5jXN3wNA1p15oXJxAEBDzJeD35wAQOddp5rLHwNAbSJ0QvQeBUAd/NGO+wMAQAQOtpobiwBAhm14oX3y9D/WIDwRaZ3zP8GbJ227ueM/ePxnB0yG5T+/daXtz6vhP/TPDydFvOI/QoOKpMNx4T9rRpL0/uW/P6VjpLCsGse/K556blR1gb8tZrsV/OzQv6N6Xw2s1NC/Yxy3W4NwxD+Mom3jX4/TPxO5Kp5zqcg/nVxUdCNP2j9bXegQ5CHnP0DxtIvyOt8/K1VVtN5yn7+7L7UrUBrhv+iEv/ICid6/Iwnd3F+Y1b/DgKoZVHTUv1teJ6gcGb4/Tdaejnw/4z+nyhvvdWHwP2y4QbvIOPI/WsjE1fvl8D9u3u+ksgriP+yQNX7PhOQ/whxCue2w8D/PtHtkkDj4P537qi0NPfI/UF7Ef1BE8T+j/HB8zUzwP+xBoCGhDvQ/jBrxEhyv9j8R9vKiodMAQCQBVoMZqAFASHJyBMAFAkDRwuRj3iUCQG509sTttwFAKn3LBhL8AkDzwJstEtIDQFNEupKMXQNA5a3C64MrAkB42S00AT0HQGXAmapOGQpA5C6C21L/C0C0+lacxwYJQBhYpOxMEwpATTdvC3POBUD4RhpxGMEFQK7SCisdNgFA3BbqdvGFBECsmrbKSiYHQHjK2O6FHghAIboIOiMzB0CTqj+Hq2wFQP0ZixTigwJArxFE/4NyA0BxaN0T6ccEQPWGWYXPKwpALE6sKmuOCkBYuWrxYn4LQB+sZ6QdxA1AD5/5ongoD0BVtUf3ltoQQMkYrM9Q6xFAvGo/hzXLFECFHQckGlUTQLRRjmyvVBJA+JH+ZtXbDUDUsK5HfrkKQLu7hFBrwwdALcpnApk7CEC3vmQaQr0MQIg3+DeDNwpA+ymisYniCkCZmDidp18IQGgy/ynt+wxAyb+zOef2DkBdKjUWZwwSQE5oo9ZiORBAEjEJCLL/EECDTCmtYQALQMGi9rBBqglAXYYo0S6PDEAY5xgZr0MMQL1qXZAB2g5AC53E0CgZD0CAqa+pTKsOQNcJ8BhWrBBANgSx8XF8E0ChhkK5qwkUQDkt2UBJ+xNAufoYoE0FFEAnACAUU1QQQKfyDiVgqxBA+yoNXCkFDkCpgnejZJMPQGFPA37TkRFAM1Ug1Ma2EkCI4e07x8MRQDCoOW8E/BFA666Wtf4KD0B7Pm6GZ0MQQJUeKZS+aBBAs05jb2SWDECk29q0HO0NQCdcqul6yA5AnYrWNZeUEUD9ThPucYUQQANPBOYFlg9AO1jr10RtC0BbuL47jCUMQGEyAzwKWQ1Atsz4aMaEEED/MDBgoLEMQANe7LEgKwtA5U7n/FOVCEB4cboYYUEHQIxX6QTCoQZA6cqfQB24AkD4NtZYal34PzNlqVS8Wfk/xYnTiH4yAUDXucBfwU//P585ykgtEgRAKQxJ8LISAUDfV8Zu4uUEQIEswbVCawFAVWEj9xd4A0DdZb/USdf+Pzw4KMyjLANAwFMxQjJuBUDST7YBAbYEQJtc4HEK0ANA4xDEuczYCEATab40GBkJQBMVKsRhMgZAE2hhaR/mAUCx/Flw2soEQCemDkjECQRATaCbsWOLBEDh4pua2iIDQB/t6dghOQFAAli+5GlbAUAfxJulW6kBQKZLvTCTSvI/A4Q7zgm16T9Fh+RCOsvyPzOYObMUYfI/Hat0uTay8z/oPFBv3r/zPxfKcTMNlPk/7CTqFBG48D+zK3tAFcz2P+g0SRT/5PY/MzyWGyl18z84fLLZCFroPwXNgAVZ8u4/Sa2VAM9S7T/LTfX0ZxXoPwSnMiAjvtc/D7TN5mE8xT+7mUB/dcTLPxg1K/GCINU/dV/e7fDW5j9EIRk5f6HnPweU0fL3ZfI/zCT1cGqE9T+Ao1a0JmvgP0YqJo/7pdQ/5c+pExDw2T9ofLfpHrTeP/hnjpTfJtQ/pfdL6l3Q2T97M00/uamxvzvcWCrNdMm/wyEwGTkGsb+bX7Ci7bXKvwtYpNfE8Jm/NWD3Lm280D8AyPCb46HnP1EDBzgJCuU/a090Zsxe4z/JJ/tG6Q7hP93IQKcNh+Y/dUVNuaG36z9T8cIJAjbbP/kLUMxjw+Y/71ZE3Aiz2T8NXPr1n+HfPwfZurDKruk/rDg5J8104j88eU4wUerlP3Yl1DGnPuI/1eJmhey0uz9/01IG65Liv910/+w40Mu/TCc++f630r/bUnO4QK+gv1vyw4liBt+/xzkXfUmO1r9kKTIbtVTwv5uJoycHCOa/eGqZRHKs3r9LmwX8QOrgv11ZH9h1vtG/v0fH1P/hxb8bYWzqj+jYv1mtFxwnhNA/DxkP1NYk4j9NS5s2B/DtP3XLnMLiqd0/TTK4aUEX5T+FiZ38QwLRP5momfs2F9I/N1B3wzNMwj/g753GNmrOP0z9f2Fb1sY/P5/UMWwz1j/AGjps7WDrPznmWilIRec/SYnlcs2m8T8XD25f2zffP9FQUwzsIuo/tFefBR8R5z+3B7Id0WzxP5sgq9hGZfk/9zWUhAUH+j9sM57OC4/7P4NKA5EmV/0/x8a8Co71/T+XrAigY+v6P/gQbsKlCPg/JJDyE4uS9z9rgMSCqfz0PxkG/wNapPE/EOH3ar0a8D9rL2RHWK7tP/uFikbkw/o/3/88GcUy+T+Qf3YIA6z3P2eE23O7dfo/sTO88Pzi9j99yacylP0BQP1nZ9XU4QJABVsBzlk8A0CJMUrViwUDQDnoTBE9wf0/mUy8oKtpBEAL78xDe28DQEiNRqZVRglAH+eDbAAPDUBMp7/numIKQIeFzdaDnwhAWaANbfFjBkBUEJPszAUGQPHSWTsTLwFAdul0JJhlAEBY5VgHBVn2P3PxQX/7Zuc/7Obucm7t8T94X4myNSrrP0kCOMXnCO8/OrN7VB4B9D/e6R918K30PyHUUYejYPI/Xyfv1YYl8T9ObXvoKkPwP3/KeC1mgPE/WWOHJ+QA3j9+WlDw1pzkP22mj5kPutw/NHnt6oKtwT9M7mnjHV+sP3Mb87YRAdE/UYnUo/Kd2T9cMiKOo1niP6uTLxvyqM4/5QS5mcl1pr9jT2ji7+rcv/R+LSSmROG/lcBqAJo+rT9o2Zcl6LbDP7XtEBSSw4U/E7t/picu4j9fKmCK81zgP0U21hTun7U/K3uaaZeY4L/LUQglCInwv1dakcwYRuG/Pbog/lrB7b+dqa3Khpfyv4WzTIlYBPS/L6gGRSlO8r+ZwFBjvLnjvyCkDdfKJta/a9pmYmG527+otQk48hTXvy2Ui+6XLOC/UAsU++ozsD8b2LC4Y1i0P3Mtv05Og7k/a9IZjovm27/luFeIAwbgvxuAQHf1VO6/+9E3t8nD+b9nqQuz4cr4v0u0YM9PQwDAN0X38c9FAsBB0vLYgToCwMMWVXCy6ALAweWmi7ETAcAFFcQC6NICwBejPri62QLAqGvemCOpBcA7EjiwN80FwJdezhXJTwbAkQPiielBCMDUOQuK0YgCwCD/KI7S2AHAATyx+5g3/r+JooCdSZD6v6OCnSGCEPy/m6H0Js2b9b+r/ARlnBj7v51fRIZLSOq/uR8ZojSg4b93SD3ZnKXkv7Mc3nzGKe6/J3nqfZtE77+rLnlIpjX4v9hemaK1u/S/RZavQ2RS9b9DAF2cbvb3vzRme1MvnPq/QYc83bT9+79DBsqniV8AwEbcnvuTrwDA8exl4LNq/7+zAAxEWvD+v5tI/JKKCgDAh06wksGP+r9/cVtzsPrzv7s2IaLk4vG/3xKOHhBI8r9pinu+7zPzvx8RiqIOA/S/SyS+awjr+78s/NINi5/4v1fvAeD7Lu+/awUzBGpf4r9IwEMiIDXHv9VpvepMONa/27R7ddzy2r+bcXuc6C7qvzBxU54Uu+m/011NUWv78L97OLvNLmjqvzc8xTJoh/O/Y6xmkADe9r/sR+4VbDz2v1MQGoZVnfq/mIylL/8o+7/34CXVfSj9v6z+FRc0Rfi/YcrVWIw8+r8crGWQJmX5v4soE0LBpfW/Q1q/b5Ta+L9/aLERW+Tyv335hnyT39u/D+Akii9v4b/IQb5tBW3mv/OG3vfOrtG/wCYRNLAmoT/zP56FPRziv1BlqE+IK+i/PbSrxqJc5r9Y2hxPj3/ZvzMPvMbJkcM/EPB2qvoA4z+Y8arxThvgP/Ug98NbrcU/SzvRnbAdsT8PlNUdiqjQP+Bp1p4v6di/K7vDFTSy37+Dox7xhYngv+U4MOIhrt6/7ZathShmyr93AyOR38nHv30nUBF+HL2/HEbO1DEOvr+r0rLLrBNLvx8Wqs59Hcg/241tB8kN0D8gp+O2VELcvwy+a3+xqOO/Q9w6IBP49r/ATFbMMfjtv3zKOuqWXei/ucmF2VL/6783oAFQT87wv7RP4ZAZidy/IyaXZam32L9jpp+G0hvMvzVEXDR1YuC/OyDRCqdE1b/4qxlVqnPMvzvRU0QbTca//dSrZUAHxr9g4s1+O0fZv8zaHpjvuOK/nW2uj1u82z/w2jbAdY/mPzWr6LmwQOQ/QMfsgJq87T9DdIIxdzvmP/swgikYTts/FOdSMe558T9nr+/nX8fxP4gWNVHptO0/sXDZygGJ5j/L6Ill97vuPxMa0EG89+c/KTGxCo478D8lG6j1+lD4P5Mz7eF8svU/QNkB+0Eo+j+amh6ft9sAQC9MkpkRbABApKEZOZ8JA0DA/xhFpcsEQCYwDUFTWANAz33QS3cmBUCb4B48KBX+Pwjm3+T5GQJAO4QyzvAbA0Dl1VL5QH0BQDO6yuBh2f4/xVJwI4uO9j9Pf+K3qB71P7hU9u2eiPY/qRXbuldj+T/tOc0LgTz/PxWGpgtJWgJA6xvuLdbWBUA4CqDdR8UEQHVqVKCvDgNA36k8iMgRCEDjSNqL0PYKQBWarOVyTAxAk1ssobSpDkCr92U97tcIQFEsdE2mIQhAi4mjdvPnBkBUv0LEeiYFQEnC3BxNRgRAYTO034ndBUCjaFPigaIKQHPG4gfH4QpA9c8XU9leDUD5n2foRVgQQJgVrEvvUw9A3NwpdIwWDkCpEeEb3IwOQKiI9M4Q7gpA9YZw6O6rCkD/SWnPtzULQMSBkm5TKAdAkNZEA2JvB0DEpStZYR8KQAm0ArJs5QlAqU7jyER5CEBc8ZeKengEQBsI2hqqHARAJQ4RF3+nBEBJH48zzF/8P5VKObBzIwRAKSHOwiKNBkD5eJstWocCQIqMQuRTFANA2N7GPKSQBUAFnA0dqsoHQHvhOWJzCgpA2OajX1MWC0Ct0JU3O1UPQGgiG2Q3yA1ATHsxj0fsDkCwQha3ZPsPQO121WlJgxFAtbTNvNavEUBKPKxszxgSQBPfq0/dIBNAcAxpOKjME0CLB27eVRsSQEscz2K36RJAmBydrQKtFUAjTuR8xm4UQF/jY9PLkRVAyqOAFbDpFEBMGAecmYMVQNLyWhD5CxVAmVsQve3mFEC4HFfcTjUUQKkTA+5DXxVAT3yPgsw/FUAQ0oLKadkWQDX5VYBVRxZAfxrG96iCF0BVUE4W54YZQL9BXMlmYRpABQcWU+TgGUCB1ROE5xQZQHx72DGTmBtApGVyb+cJHEAPpZvVdOoaQEOD3k961hxAbNoHf8uhHEAUXLWzMjweQP0ztWEgdh1ApcNOdYTFHkBPuyOCHeYfQJPGTAc47B9AC7brnHWBIEAnXQmlZQIgQEF6YHG73B9AqdVi7CkyH0DwNhFpnxQgQHk++pg0Gh5AK6xm/mA7HkDtpS9OvjUeQEXXifQ+jh1ATI1b9kBgHUBdcQupPTkdQPHiivh7exxA0Vd3eMp+H0AMZhY8ZXseQNFihHdg1R5AuPBFFY5YH0CXAToXPkcgQBHq1ujjXCBAdaRW3Pn+H0D1rw50JrgfQKQp5B7Qyx5AU489xu+gH0Dfh/ZElygeQGxgzpa60x5A5dMN1gu4HUBssmtAQk4dQCNbMmyYbx5ARRO/3KjPH0DYGyuUnwMgQDn++PN2qCFATxh/KHF2IkDVLWwJaBYiQHnaWN/xsSFAmd2SGP/nIUCchOd1wygiQIHqq8EX0CFAaUJ2+ZSeIUBnDZNw7aUgQF9efxMhziBAibsiF6Z3IUCiJT3h+y4iQCEv9zdx5SFAK5etZGCVIkAtbBAYSzsiQPAM9Nm3lSJAlTMxhmSdIUAsbX+8nlwhQKkPimG2jiBA6OSAczkuH0CPrpt/klwdQPG2+Cqw0R1A46PJmv3rHUDfPXe/yawbQHjZrzeY3hxAa4TeahguHEDoh3DK2xYcQL86HySzZRxAXSFDuV2HHECoSUnWFVgeQFj5F1xBLR1AbdfY7BOdHEDkfVsIN8AfQGcIGUmOQx9AAXFDPUrhH0BvTf/AjSUfQDvFPE6ZdCBAU3V2n+K2IUDdFadgKQ4iQLJJUK8aMCNAv3HLDCt1I0DA3T3PRNUjQAPL7Hqs4yRAQPni4l2mJUAnh5HB1t8kQNiN0MUtDyVAtb3SjAgfJUCfeO46MiolQCtMTVbrayVAxYucIobpJECtWzFs10kkQMmLM3ifeyRAh0lPA6DuI0CznXw3QqokQLgb4cAN1CRAAnqXzeUIJUDPEoA+lKwjQF2VB4zIMyRAP6XRkA5CI0B+GakWzDUjQAPEYxVBfyNAQS+ca/Q0I0A1Gz+Kuk0hQPmNGpu6/CFAusdd0FfXIEDE0JhyUAUgQJ9J+rp8oSBAk2jjVhAoIEDFMp+q05ohQE1Aak5ToyFAZltXv5MwIkBbtlkajakhQMLXQs0uEiFARzbn/EzaIUDC1CxwraIiQPd1I+ZOpSNALmcAxjtWI0BE9ZuoFT4lQBRWTwFnbCVA3Wj+iPHPJEBpwdW5744lQEBZcLKHLCVAmRR/xolFJkDHzJ0e6iUmQBeaSKELYyZAIBsM+oCFJkD9oGKg9JElQEGXE+TQLiZAaI1ofHPXJkBEUnPNrdUnQIQsUGK/3ydAu4kdJTUlKEBw0LggCzMoQEi8QEQw/idABJwJjuZIKEDwK2d1xpIoQAuxwNCzBClAdeZZ6hEtKUBbW+WGLbsoQJzkig8kzyhAoQwFkLW3KUAnWRvaOKEqQFy0Z03iKCpABbjxOWWwKkAAQd1e0EgqQIObPpcJ9ylAfT/w2qHjKEChicveLPAoQD8Mh2ZbpSlAM8nmuGnuKUBsMAjYXykpQHQrvpLmeilAAQkxrClPKECx2lVNtAMpQEApQ5fwbilAmRL1Hi1YKUC7DRR/3pMoQLyixwitoShA+yfNLutYJ0AE01SSvGAnQHEIfwwKyiZAzMhwFoPUJUC4xLyMDkQnQKWPyziOEidAqSGhpe/AJ0B3jIDzESQoQCAlvTn6+ydADUuSXAsNKEA1KZ/Q7UQnQAUeW9M0SydAsPfnhzkMJ0AjioTLBbUmQK8b2u4PrCdARPUza4v+JkDJRrtZPw4nQGtvqt5JCSZA735qxSQkJ0Ap+gmePCImQC2NDAjIjSVAF3JZqKCvJECrtkH9XLgjQKNI3H6c3yRAyLlW1eoiJUCQJuQvI+YkQA8lkqFHwiRAo2K3w1y+JUAUhoKrEj4mQFmLtVbo2CVAwZawNB7jJEABRwH55tskQB1XmL6KgiVAJOZm8FSXJEBnt0ozXXokQEw5YjKdRSRAj7iLmudaI0DPxDvuqB8jQEUi8NPQUCJAWizL8sKVIkBxryoMufciQPkS4mYO2yJA3lb05M6jIkChApjCAREiQCPDPCQSlCJAs4Le7Tp+IkD1FsnFNpkiQEpoi7HL6yJALeLXAHF/IkB7siYVkWUjQJtZN60AnyJABWFUZ1CII0C4066inEYkQHGGx8e+ayVAC19Z7GgMJUBTFdcnfAYlQBU+Ganm+SNA1SvYGchmI0BT1ao6DFgiQGnuUV8MayJALYcZoD6aIkCGORNYc98iQC/vQDfq/yFAn3zkcc5TI0DJ9kWqf3kjQGlzJghwvSJAxzG3zuVMIkDqgio4gM4hQAEcNHSx1iJAdsCtJYcRIkBVyNSSk0IiQL3q/6AnbSNAaVvNW7K5I0Da4HdyoookQHQh1IUhhCVAThkcNwT4JEA5tQPxPS8kQOCXqWk1cSVAyMElOBslJkAZfVYp9lElQCgBa7ahSyZA09W+7XuPJkCXZjLKzcYlQHO8sm/FuSVAFA7yOQtMJkAUAQbjHbMlQDv0lCPNjyVA+e6GkawoJUCh/uosqRklQG0ENlOjUSVAAOQSdBq/JkChNVbcrrInQMjAvDkN3SdAEZzlgaEjKUC7bPm1I6IpQAMCPEINbypAjOaG1qeXKkC3TGO1jN8qQLd/KivA/CpAnZVBy+DOKkC7gIWY+ekqQHmnDbBSmCtARDpP+lfHK0AltLyiQtwrQDscv8tLRytAV7lHcsynKUAR87yS/RUpQMDSzJm2TClAQUpnZ1IMKkDzlm6/csIqQGSn37Nv+SpAj21Pc3bmKkAleyMv/GErQDisjC8OvixARJNuhFp7LUBJZrm19FgtQJC7a0EuDi1A5zMRiu8wLkCZwCjAzMwtQDtZt9v+pC5A608a2j+bLUAU3uLsS3AtQBWeKi635i1AK1V4/ysxLkBFzXuMIk0tQMjklg5bwCxAJ3dE07ZeLUArknlQpWYuQOeDbHGueC1AEYy357p3LUCjs5QdGzItQLvP1XCuwSxAFUqiXvmcLEAFKAgFX+8rQL2c3uEl0ixAAyGb03ZzLEAsuwOjQ+orQJMCwLYNOCxAuM+EAfYKLEB/8XAk1SctQIR5IOUkVi1AuUK0SAH0LECRTHvimWIsQDQRhdADiy1AoVRZ7KQFLkDTLqia4wstQKEBTdQVRC1AiYnE9D+5LEBABw0dAkAsQO24g+9bUixA5VSRV7YwLEDbPZpP/2grQMQbwz2yUStA1GzHnCnLK0AL9Bauf1ArQE+CxkueyCpA+bR4ThRCKkBzXUsNN8AqQKCpwMM+ripAMxJLkyPBKUCFFozHMnMpQCdEl1ae2ChAVHZbV0L5KEDLr+6NYMsqQBv/noe01ypA0SoheQrXKkCvT6jMWjMrQAAXt96gjStA1JHbcM30K0DgsmsXbzMrQJds4m6NhytAeRiqWIrEKkBBB4a5kjQqQNUtZ3nTaylAeS6QtjVWKUA8bXc97tkpQJ8YdaTYQylAQ2pWlrl8KUBbRWMD9ykqQJ+4scBnRypAy8Puih6/KkAdg0Hm5T0qQMvm/ewoTClAL/Hy7fnCKUBdWZiXiW8pQHu9yLKH4ClAoAoffYEoKkDcvOVoL5UpQKczJpfdqilAF6KL9l6HKkCv+rW7mmoqQCv9S/8FHCtAdxv0xMGoKkANhUYMmfUpQG0jyKlZNypAwfIM0m/9KUA5eAP4Z40qQAB+v2jQCStAtZtu/R7xKkAbO6BxGIcqQD3P+UWfailAbxobbtFfKkAxUzGrqAArQAzqdsmizypAbBdL6u6xK0A3dLyvpXsrQO3XFl2kGixAZTugJpI5LEALNInEQGIsQBdx4L1VOixAhCe7iK/NK0DsL33v1D4rQEtUQ8TwVixAD83MZEO1LEB1UAmVYMssQHOFCfF6FS1AQfOBr+P9LEBDOGF+BBMtQLVt23ZJbixA9ES+rHgFLEAPCM6n2zItQNiyFRrEzC1A9Skq2l8MLUDhOY6EIrUsQB2JtqOQnCxA6WGg0CI6LECk36mZSf8rQDAGsdjpUCtAvSsrBPZBKkD7dwGK3gorQC3rnpn5wytAOOLgmUeZKkA0M6T6afkqQLH/nMngYCpACfCv5OyKKUC95ZYitQIrQEHlWaFGIytAZ6YwyTZmK0A9TF/ix+UrQMgAfS1bLixAIcqP8jaSLEDta09DauAsQJj8VVsDQi5AGcJC338cL0BnvUl+B5IvQJe3y6AR/i9AeKX/NpLdLkBD6hb0nwovQBmY9MBc1y5Al+RI3r0fMEBIRG6wI84wQE9XScQeOzFA8SLKBLmCMUBGpogy6HQxQI9oT1jOJzFAg5aEbjN8MUCr+pHv8D8xQCReEZdONTFAMVdeGhFBMUBbL9dAlg0xQGW9Rl8t5jBAfj15uoCKMEAjbOiGjaIwQNdLOD81zS9ArSRe0zYrMEBprtp2mnQwQGRqbDK+ozBAYThDoPyeMEC577SrjzUxQHpxT1+MWDFAl0wKTCjxMUAy2/bTMMQxQDPX1BSHFTJAaSotOZ+3MUBnHIaWIWcxQJNUdRzXrjBACRUO3zikMEDB0ji1ubIwQP8QlO0XdzBAJqiDSowSMUBrl74WFe8wQJJtNuL/+jBA/eQc1S/LMEB3/rFlC9QwQJVWBw/e5TBA/6erzGwyMUCkAl7cCcEwQIS91ZXr5jBA2bQfrItFMUB05YfMNTQxQLXp5e50njBAdJXF6nRWMEBcIXZ1RjwwQLhjQIHHIjBAYNwOsZtSMECXtL3g0VgwQIZzyJ9LXTBAzySz3y47MUBRTqui+JkxQHYSmpWXzjFAbfRT6oyRMUBvsb7I2doxQJl+Xw/IDDJAEL9GFcUjMkBDK5uRCBUyQGZ6i3RJDTJAvnNSGyrlMUCR4KgX9z0yQOkfmgR9VTJAsGXWaPpDMkBTO1jCwDYyQJVfziF1czJA8YPzVPVHMkCA1q7su/wxQJb1HxAP+TFArhYJ1WcMMkAJkQqqLGMxQD64vge3uzFAwzIe5FPBMUDCoZCia7wxQJHO9uHX3TFAfelA0YWRMUDAa8ElEH4xQOZWm01zMjJA7rgEjv4zMkDjYaaTs1oyQOUJY47eRzNAUJ6GAzSCM0ASWnsZuQ4zQOHtddsQojJA6IvnNNvUMkBSbAepdMAyQMQWzyiNqDJA16nijyydMkDb3ZODuAQyQFZM9u0x1TFANbuYebeSMUARkv80/GQxQEvOzFOhgjFAYiUuvCeCMUCLf+oFYw0xQMLwbdZ2RzFAZ45nzl3LMEBbMbJ4jbMwQOnoJAOv0zBAEmOuXN+nMEDvHfh7HeswQOnTadublTBAu/RZshxMMECLe2OWulwvQJJYGkc4CzBA9YuwaemlL0BUuiQEfFIvQFyUh8As/S5ABwxQ+5w2MEBxnSIUYwAwQDcDzO7G1i9Aj8ylvEXgL0CppZBkgucvQDyyluuQSzBA4HAWIuS5MEAPjuf3quAwQCuDLWVb2zBAJ+UiX2o7MEAz7PDZTFMwQLeL8oSbSDBArzH81iwSMECvrhuntn4vQGB+IAmORDBAf4UwsZxlMEC7oDlIvSQwQBeUloLsNy9AuxZbujm6LkAF70fJInsvQORXx7djJi9AZaFALKjgLkAlmejFzz4vQMEFlpvn7i5AH9sH5KJWL0BRmTG0XjMvQMxzZDfdaS9A3RIg2RxeL0C99ciAWEQvQDzsq7dyUC9AkO4WQxOMLkD5OhkEkk0vQP9YQiX4Uy9A4O9SllEyL0DDblgYzoouQMxo4JXyPS5AazUvpSvfLUBReNi8AmMtQNSUXeZtxS1A/WhMiXlhLUD0baPUrgEtQEw1rbfbdy1AUNtwYgoxLkCXiftVuOEtQIsgJrtkxCtAFGpdprrfK0APwN8kl8AqQAlE5mF8YytAdUB0OO8/LEAL6jwUpQorQPmgNkE91ylAASPzR8UYKUDz34sL0hkpQB0SK76JJihAsV8w7CWnJ0AJ19mejpgnQJuT6B3IQSdAqOQvoCc3JkCk/L7r+o8mQNkAe87eDSVAozZytIY8JUC+TaQEDBQlQHcakUBAiCRAcANHeXgzJEDHP21t3bsjQEs44eAcxiNAAI0/KA3yI0AJSZvBGqEjQJPrwTfMOiRAHYX3MmtnJEBBbl7vGQ0lQF4de/haGSVAyHULTilxJUBNwarIFjwlQKcoi+vAeiVA1wYuzp9wJEDNArQUcl4kQAtAfUFWDSRAl7T590tMJECZLWtqvPUjQPNhyCswZCRAyNGlj4TTJUD/Jxnqh9slQL0IKYn3zCVAO0FVtE4gJUBJfoIf3jklQNxdXn+PfCVADWAlPH8zJkBrR7raG0EmQLMjEDfsIyZAgBlbkNsVJkDtCTpUJg4nQC/7A8SYTydA3JEKnHlZJ0DX9PQXVCcnQBmmJsayMSZAZTzScp0gJkC1SPHnQ78kQDjy97vHcSVAeL7TshKjJEAdnJOGePskQNwRmqSeeCVAXALbqGhfJECOISl6a4gkQEdAVq5YPCVAz3zH8xIvJED1/PylDJ8jQG8rmZZYDyRAUubNpuZ4JEDP7lUXVAYkQDtGwFYD8iNAadmnx7hKJECBFR6JVgokQLl/lf3ZWSRAV7geAJlCI0Br+1jgh8EiQGRht3gu6yNAz0QWxNZoI0A7rjxhydMjQAAR9UNZ7CNAlQR2USPvI0An8TbQcKQkQBKK5713dyRADYHjb/P+I0D7raIilLwiQB/r4n0GkyJAcgEgweBkI0C9DbMkpkAiQN6DkZ/OJCJA1zM3Iin1IkAjkeTtkOYiQBPgktVI9yJA/TdFjwrIIkAhLjQLtOkiQHG2VYpppiJAYyY+/3hLIkAjWs97ai8iQGPbnWmVryFA/R2ecxi+IUCVal5lAA0iQC97J9374iFAS+zuQGLtIEAh7mw5rrQgQHJAszjH8yBAbAYEGoW6H0CA2hjuRRIfQBRi7VKNDh9AJbFbbb7THkDcIwY8/CIgQHBwJaytPB9Aj6by6CjhH0C3LhWwvLwfQIsYVCsTFR1AnfSQXUaWHUCoz/fSQLgdQIjspVvTrh1AVRRi7xOGHEDxv4OTBMwbQHW9ZBkY2BlAWTw4WdSIGUBViJqIznwYQEzTKQHYAxtAu/Eh6N/gG0DMChCKYqkbQJC46zCzyhtAP22+NTJlG0AVRygt4ZAbQIAIHOdflh1AO6z0hvf9HkBwDqZvODgeQKXRfq+pMR5AcWoJanRxH0DzTfY9F6MeQDPhu4AU/h5ArJl/UknLH0Ag4bqvfc4fQAqXp+3PHCBAwSbJLgSKIECUz4YO7BYhQJMXwbtfqCFAxagYg1fvIUBCk7J2NXoiQIE3Dqmw7yJAVl0BBH16IkDjn4akfxUiQAMpeEv3eCNAUwbpfVRHI0DrBVTBFpQjQKgagTEoyiJAesduydeFI0A3M61WiSwkQI8X4LSRgyNA08U9hu3nI0CXRRRfChwkQPOGpaD8nCRAlzLzfs4/JEBhGlF12ssiQJaDrriRtyJAg6jsqHfCIkA1F7S0gEkjQAmnXmIQiCRAoWOqItK0JEAP/FuzxDYkQOuxMXPfzyNAG1cdgGP8I0Ar3Arwt+siQALsNAUbgiNAa62vbUGJI0DgRC22G7chQLicz66HRSFAcNENrGmxIkCc2DTw1dghQBJf8GYXeiFAW2YU7qx2IUAlpwySsTEhQLNbXdkYRCFAtfsex/eeIUAN/Ra9cNIhQPnJlux05iFAvX6CQPfjIkCslYg/GrgiQE9kV6DCWiJARL/K9b46IkCEJycm38AiQLOQ2KDkpiJA8Z6P81iWIkDj4bkJmN4iQKvJJ6LXlCJAM1OJY8/cIUB/fe8gMqUiQIXX917pOCNADQNCnNQtI0BCsynd6MMiQMYglyRRdyJAcSqLsGuIIkDj8Lwc5b8iQA2MeiT2XyNAs57oC9S9JED+aqJw/8UkQHnf1rENCCZA3J0YWLtAJUDglz3gFyIlQCTkjUlIjyVA3P0ydhUYJUBZzE731oYlQHWDhZcBSCVA8AG3VFGWJECHSvSuO+EiQFMZtlyLFyVAo1IiimImJUDRfvW1gq0kQEpT7l5rwiNAy4dS30FEI0CzdfpaUBMjQCkASXRK3yJA0YMSah0AIkBpKsBGSOAiQPFIvMdH+CJAKgUtP/jpI0DPgoNqwVolQOQ0m88EqSZAeUCn4y28JkBfGag/xcklQG2QiRGioyVAxbUGQI9NJkDP8QN5YWMmQGBgfB0aGSZAL4c4mtlhJkCMz3lBY/4lQMuNn8ijkyVA0JNQkogcJEChgUMG7vkjQLUKiFumqiRAXv8IZrtzJEDfZEzNAQUlQOM9dgN+zyVAaLYwW6qoJUDPnVpvM0olQJuf9Z59HyVACESmQdjiJUCg3dC+RGsmQEGeXJCRXyZAa2xvvSJWJ0A8pK9Ts2ImQBPPOqPipiVACx5ti/h2JUBVnpJxMFAkQAvOzmGXOCRAxb1ES+/+I0D28I+ovSEkQN/46vB9yiVAQ2yegMtnJUAmk2LcLOcjQNE/xLD6UyNAaFFw9noOJEDRdCgDK4IkQHwJlV2YEyRAiz2/j8v9I0CQrUISvGUkQH9qm/OLJCVAlb+xarcZJkBHP73eKUMmQBGaSluVrCVA7JIT1G3OJUBTTGrKbgkmQJRmbdvf4SZAU48fMdx9JUCm9CSZinMkQIENROxKNSVAqhiRvFQ7JEA4n13dKsQjQJX+oa6zpCJAHLyNQP1/JEBh3Tiw2rslQGeLeYWolSVA3HdUWlxGJUAhBT2QayskQAmbYwDaTCRAlXhUxF/oJUD4agt6mPYlQAknk2XG0SZAxegeSDyEJ0CEtRDLtn0oQPfgQj1KVShArSDd3N77KEBtpjjd/2MoQHAMaUePSydAPLU4BCMlJ0AMm/BPZgUmQGde6cBn8SVA1OzAtb78JUCdtu372pIlQBwIwzwdCydAKcYohdPmJkB/PpKBt2clQENaZl2J1iVAsdr8prHoJUAYeHOggmcmQAH6H0Us9SVA8Icjg+c1JUCdSDC7VQAlQH3PHtfckCVAYPvnB1shJkCMuC1ODvclQC12Yb2DlyZAIQT2kLjfJkCnRzlz22knQG1XQwlXHCZALC9Dq9+XJUBF26vCm6IlQBW0sHRtTiZAE2DUXxd4JkBboMvJCt4lQMRPGy43hSVAZP148nAOJUC5WWcqyQ8lQLN8Ka9CJyRAT7auJV/2JEDUVlVVOWIlQMVnFdwzLyVARiBbliyrJEAr6wmIuuokQIwM8d0IYyVAe7Tf2pF3JkCR3edZbwImQHG1vnL7uSZAu5tA//uhJkAxGADTq7snQIAvfr2HASdA4Pv2O9M1J0DRYrXzsJknQCxsqy1lPCdAtB03mNbyJkABH3BiOZcnQFnPYM7rlSdAle7SAguLKED1p1cPB6IoQMkHoMvbFChAuyV2aXkUKUCPK5NsSosoQCCJqN7ujilAyUEn/vP6KED7fpoEnLooQCHnbFUP7ShAgK0XL97uKUBvDAqcHTwqQK3K8+2W7ilAvfNcMPlRKUCkkzhKNtspQFWg1tW1CCtAdIOJgycvK0CoEet/BscqQKGkbV4uAStA0RQrcp20K0BfVnxPcDcrQAuCeK3OIipA/xn83rGkKUAxe4vHg1QqQIRVcSRUBSpA0dr0ueU4KkBPMld9FXIpQL2auBTRpShAx+Uiu7h5KEAgtECpMVopQP/Hs7Q9qShA5SVf/GIkKECPds0WOswoQE9Ggg9YSChAVCM+8dPLKEAYM0eV+7QoQLv3EKBOaClAV/a0Y1nvKEB10TqS2iooQNDE/Y78NyhAnDDGJe+0KEBPQpzJV9omQAi7uf6Q4CZAENauH9DoJUApl68N3D4mQFsFl53BFCZAv4Z7jjR4JUDNTITFRqImQOUZmsqfSSdA9fanxnJfJ0AssDttrycoQOebkm5NiydA/fGyDlkMKEBT6i2HKoAnQEQoVWOqHSdA5dFFBpnKJ0CfOkEhrVgoQCT4LDVfvCdAoEfX7BSLJ0DROpbHv0UoQAfrPXUnjylAab5urzjyKkBrguGrxUYqQODHnWnQyChAK+ijsp5wKUBEPgQ6ILYpQJwNL/aufCpAURo86LzAKUBRH3ljVoYpQMgaSrFoYyhACUp5JMmfJ0A3CZDdCu4nQAgUeI4VpidAmBdsnmX8J0ARfUfhkV0nQAuDTDUKyiZAl9EWE/lxJUCsvPgb6lQmQEGx/FfnKCdA248J4rLDJkA/sv5h9TsmQDi62WXA9yZA5ClMq0s0J0BoSmZUiAgnQG1zdy5WnydAo6qNMinnKECrg4GQ+9coQBQf7RJHiilATFoemisbKUCcPI4+TDcpQCHSb6cqiShAOLCopxkwKUAPXdEa/K8oQGvNcq1hbChAZdk9AxT+J0CcNA1vUOknQHEKjKhofihAuwIb5rfeKEBoOGBw2JYpQGje9PDjaClAA8EMs2jgKUBt7RBCDbkpQEUrgdi0GClAoaUN4L/0KEDB0Vfg95cnQPxY5K6TTydA87whE1VRJ0C/6ZZ2P9EnQEGVIJ+0MidAHybHC19nJ0Dhw9XZgO8nQHCxovCiIidAH+5CQV3ZJ0BFCZ0fM5MnQHApEiHadydAw6vb2uFyJkCAcSMxAqAmQHMuFSDNXyZAWAP8I6P9JkCxktHTcvcmQJgZicCJ4CZAq0YcPfwjJ0DHxUcG4MslQKWCFTNXISZAsaiD5raoJUA7KrNUw34mQN9r4FPBuiVAV8eMhKeXJUBjqiPDftslQF9F7eaC7iVAi5uN6RJlJUAp78+Y79UkQN8NUnIx0SRAJwFYtKmcJECnqZw7xFUkQClcaZLpRyRAn1AeOhpAI0ClkykSvZMjQJcoVu+GUyNAP31rKr1yI0AFqabhuwMjQF3fFlfreCNAgPdD0nK1I0BVBp/gMCcjQL8z3QTM9SFAlW2vaan8IUB6bRry6A4jQM+tvviAEiNAm/KJS/0bI0AC/+PuBikkQAev5hBa7SVAIEvgIr1VJ0BcouWQTuUnQA+Z6o1cqCdAnHa1Ty1uJkDw9k2imYEmQCXRdXFI2yZAETozTUI1JkBlYhZU5y4mQKmRrZsusyRAALgHw4SfI0BNJMhDWrsjQH8rPXxc6iNAH/O3/J47I0DLkFBc+DsjQCvfRURioiJAk7Al8ixRIkBZr/5gTJkhQJ0+JJH8ESFA/QdZq81yIEDuRC9IwD4gQKPK+sUMGCFACsloyrOpIUA7OM34FTAiQLOeDwmZTSJAgenfqjUsIkBM/wIzZ4giQE9caHP+DiRACDviFdcyI0BQrw9pKO4jQPg29eYZQSNARk0ViS17I0CnwrTYaG4iQJpDqkplSyJA+7bevf+0IUBdDjCJ+qMgQCyNcuOb0R5ABfX9aS8nHkDYlPWOt54dQEQrTON9fx5AUJse8kdkH0A4W5VOwv0dQOlaq6lrSRtAqGkcUdkvGkDbT+minTYbQGNGrHQsWBpA4/K7az8FGkA3Pj1sH3cZQERarCOnIhlAILwm/vZPGEAoznJDIMMVQKUBCWVyqxRA36EOT/FIFkBfFQlix4oUQDy85L7DwhNAeQ/C0m9WFEAh9yfZSUMUQGm7qSRVxBRAUrHjD3H9FEDD/b8wtRsWQAFoRp/dBBhA7yDj7XtMFUDdN+jGdXMVQF+Od1ClmxRABLL4HkZjFEDMmH7BPeoUQERz09YBgRNAl2PQ9BFwFEAsXdiQIvIUQGfLo3QVUBVABzP68XirFUDXHxGu8WMTQN80SQLaGxNAwSiPt5YbFEC9qZNWwpkRQHXRV68KrxBAI3A/lfLaDkBeZqwvxhsRQESrLieFnhJAGTxg9x27E0Ala7/RapoSQEmnayb2ZhJACmo8L5MrEECIXYPV5coNQOsDR/IXEg1AYF1dYIwQCUCrXNygxKoFQJyj8cu8vAdAWOhq9k+yCkBbLpoyS88QQFDEsPyXTBJAkmRn+suYEUDHfLsaRUsQQLWrh07QgxFALlGF15mKEUBEBrCdO+cRQC/c2piVSRFA1e/RzRvFEUDNoaheQl0RQGW+vVYFdRNA8bXnPSTSEEARfrSwzVsRQBMlvGsqyxBAEOdwZX7GEECX41blQ3ERQG2Kf9ulQBFAYRuWE/9MEUCE0rDTNnISQIqkdQJ8OBJAIQ1NBDToE0CjzZC0n/YWQGUbyxkbIhdAzXCpGnrGFkAjlWZ5bpwVQLXnKlZpMRRAJzFcJEn4E0DVYJxob7sTQIiz+CUvAxNAFaZfzAP1EkCCytJxZG8RQNyBa9nfLg9AEZzd0uE5D0CnzdJ62DMLQCgJQzODhA1A/DViVBwaDkBNLxJJYGIRQEVTbdJg/ApALa65PvlUCUCMW1+v1gYKQGAhuZplgwZAr9opoaMgBUBXOGITgE0JQGXjbzujrgtARddnojZHDEAFxCmTmJgKQFl8yjE1lA1AQAAi2xZlDUAlk26ylMoNQJFYIgdozQ1AWb9kmgERD0ADLtpTrJkRQI/geg4dfhBAdzgjACZtEUCW9UlmXZURQN9QKOv+PRBApVJCD9R0EUD6tG+Gi5sSQIuxDtDInBNApgPQvr+REkD6s/M9HpQSQEtOC4vK+RNAJc1iAOBqE0BP8gLyCswSQHeogLEP7hRAFUd96eXNEkC0fZel5IkQQAuWNU6iRA9Ap7AOpYitDEB9cUfhiDsLQANE0USrJwtA5VAwqPRpC0BgS5rPiGkMQED/zzLZsA1AqNZk8VrBDkDgFm3N2gYPQGvKRsewghBAbYa6cm9sDEAzoA0BKIYNQC1mLnz/IQ1ABK//oD8XCUC9m5IylWIEQKc09LgT0QRAncQng676AEBTyMYeaf0BQD/7t+bRXQNAo1EDxDjp+T+IwInSIfT6PxjNaV2dPu8/b1/43TUK8D8hS7sbfivzP8iVBVlD+PM/F7j+qX6w8D9lNbAtBkDyP52jgXidmvc/SXdlWGHi8T+jkJCL/yH6P+EONgQnm/k/a1ZWORRT+j8fg8+Y+Uf3P4EZ3tJSYPs/r1y8w8qrAUAf0CK8NNIAQEMF10YmNv8/aojW/CUdBEBITZAvWW8BQAgCWE75OP0/YGDV+SEmAkBAyUoV1lABQHf3maknNQJANQ6MQUKZAUAR03VoX276PyTmql4pw/8/yebouYzKAEDHmE2jrqcEQMG+crpRHAZAxUq3GY46BECrKqbozrECQFsJCB7YWwVA3JMjmkDGCUAhSAwuUeoKQKkyhAB6vQpA+L3OM/zEDEB8iMjyibANQBVhKPqcWw1AqGpFcbL/DUCsOu+rdJgNQGNV7/xljgxAex3l71l3B0DsEEwDOM4EQAP3EqjDHgJA292IdmPvBkCVw7dYbC8FQKDbI6+1iAVAu1gtV5rdBkAVEQRg74wFQMvAWp5OEAFARWO1ybpQ+z+UfS/a62P6P3yYw9KCWQFAeQmAwmE8AkAdD/yipZv/P89dW6i4lwBASQvPGzsV/z+VmCdmOSP8PzsKgOu3vPk/gUtYAcduAUADy7ne4wUFQF1pYYaROAVAY05tOLRQA0CNLjVI3IQDQFBPElwq0vs/QT8N1f5l+D8Q815f9XX8PxQIZCYkQwJAUMdWbE66/D9rnatLbWT7P+EC/4BbNAFADDIbc195AEBAr9y4IZ36P/ELdchHsPg/6PuyknNb8j9hjDMlnTP2P0BdWUkVePE/30WlURd28z8g0KdEl0bqP1GWZ25oUfE/FyhfRttS8z8oYjH8QzbSPzWRsgQRLPE/996haGKq6z8hA5/0A/D3P3HwzgKqHPY/z6Dj7Y1h/D/MTd8fJAUCQCGx5QuNyARAle4+Ugc9BkCj+VIm5ecGQCCceWyd/f0/WAdg+Vpg/j/7DnXpAB8BQOfy2G/tk/g/LM/BkZIy+j/BWMLRDVj+PwKfIpEVBgBA2QLoXV5mBECsn4Q1pWMFQGCQb3fCgQdAVKXuBbTEBUApZPf77WcEQLfMbtSDVQBAL/SHJbma/z9WJxVFgSoCQAlq626OyQJAIvevgeDDAkDp4QphGQ79P3mXPYnk9Pg/47QkWYrv8T86KwuQc57yPyvVFfAApP0/cWFTfdGX/z8wH83kTPQCQBjpaGB2Q/4/1WcLCnkOAEAvv+ZBzDYBQOupuRdeaAJADaCeEHHhAkAbTXiMAAYDQA/leMRK8ABAsX0cUzCZA0C7FjjM5/oEQOt3g+nG5ABAQedvIvluAEDHPY2BxL8AQI2JD8W6VwFA5dmhtLHYAEA/1Nl5NoL/P1/6oYylUANAJBjxqxvQAkA18ix6xPEBQJDX3uE6zgJAk2jo89G9B0BPFIOlUbAGQP29PvrxdwVACYr/upvaCEBVKhtm6DsKQBuw3ix4dAtAUSt0z1QhDkBTDtThyxIRQCRBl9ENmw9A8CWKeqfgDUAdWeB0i+ELQDtOj0pdWg1AbD6BvneUD0D8ziJ8mfkNQGHaGrqhHw5AqQYfiZ8gEEDFhE7ExV4SQKHHi+Iw4hJAlV08d5mjEUDr86PyBnEQQNtsrW6MFhBAwGwpA9niDkDF+43cJVwJQF9WQvk4BQpAncjmmO/sBUAv/SLNePAHQNGbmGbtvgNA5Zn65N8RBkCZfBzGlDgGQCHLK8Z57AhAjYnToKtcBEB4/K14FcAHQK3ZAkdSlwZAWW1xXMHlAUCYmq94IykBQHi5zMb1PgJANV5kn52c+j+dzOUgvyXwPzRjjt/4J/k/mUvZHb149D/1n910zLv9PwTgEJnmQAFABZUeq8I3/j/pdBucI9AAQJv8yw3QagRAWP//RWGtCkCgBXpExaAFQJPm/odoNgVAz0kzF9dEBEBfX3BaSOUHQBhKTge2ugdAP8PyjT83DkARPvUxVn4PQEucO0p3XwxAePesHxo6D0Dfl7tQtc8RQAcUdh+TrxNALcpQjPADE0AAqUI/IjgRQHk0Ae22shJAXE4wz9t5EkA3tISzJuAPQLEgdezJNQ1AGPcczO76CUCg0YeXntoJQDst1WjAZwlAeFUSjkeSCkBACtn9rMUJQKO1A5RaRQ9Aq27wMKmtDkC9bipjetAOQIsTAqXJIAxAnW6NTPElDEBFQq2GIAkIQBV8y0i87QdA6yeI3SWEBkAdDOEJq3gKQIB1ZJluSwxA01Bk56lfCECppByH+9IBQPBEzBwClwVAG0Z5ujfqBEDdiSN3HD4GQKD6xIRfvgdAywHidu5DDEDcN2t8thsNQOknJDg9lgtAG4FjgS8hDEC/MCURFSkQQGH/PbS7YhFANFhv2QrMEUDtOn52+nISQPWSKJXXRBBAFa+db6vKD0AUeNM7Q7IKQC1KLjCCwwNAfXDPX5FyB0AJjGvp/FMGQIvviXM5Kg9AMWco48Z2DEDcKTTxGQYRQM2/WCaH4hBA4LbKdNgdEEAIbOULi+8LQPeCQ4ykOA1A1S2t2lP3C0AHRfvsAxIGQB2cG6arQwhA5YDktvBgBkCLBXq6HscIQPV3uYxhRAhAsEKf1lRrCkD/HBf4kEYJQCXs70vyswxAAA8t6AqUDkBfhdTHAowOQFhMyI4NtQ5Ah1hsthSvDUCtWYsmeagHQDt3GDNUiglAkW0v+8AAB0Atqsh4zCoMQBSW/69qUBFAnbaJh+gNEkDjv270niURQLn4vuDxIRFApeutHVekEUD9qYui1fcRQMEYU2u30hBASceb2eAREED7h/gOsxgNQH3aPnODIw9AD60/GO+eEEBB9Ahf6hoSQE0eUHDrTBJAm2Zo8rapEkBb4tFXBkQPQKHtFfQ7VApA3MgMKEuuDECsI9sbbEoQQAeihDSydQ9ASdWlUFWvC0CXv/Cud3cKQMQDMGQETA9Ac3xCQyK9DUC1I0Fi/5gOQEnbRe8xUxBAy7+e4zwQEUAFElpqNTYPQEzEEg6kvg5An1frrYZrDUAxPTjv6tUNQAu8GFCeOg5AkSl/AETQD0CNHcDKQiMPQAWaZHSPkBBAxH5z5NvpDkDMYk638o4PQCjqZhG+4QtAXLfY8lcwDEChiNeDAokDQOjFbP6llAZA4HhxOxRgCUBkGpdyNIYJQEm/qSO09ApAj/2hiHy4BUDkLhsLQ/8DQDWhnSaLXARAqcvEl2z2A0B9vSf6vvQAQAUUc6x7tQFAKbEQl8YJ+z8zg66BiPT2P+d92i3hIPI/ByWAk+8Y7j+/pPtEDp7SP9uBykaCHdQ/GGTkT9XA1b+rqBtS3k7SvwdAUfY6C+a/19+CRpmO6r9TrEj2/BDRv2vFTHSY7+S/1RfQRnrh6r8PVIVpamzwv3XfXhpAAfK/Ly5rGqsz87+TVHV0zqbwv2PuLPnS/+O/WNSv0PyN67+BlpdcTt7gv0nHHda70N2/zP1m3r131b/DeUL784Phv2l42hxwAcy/08Pkcd683r+hIHVcCDrXv1jXwqU9Mby/yTirsdD40r/flmhb+f/kv3v1+M+91ei/wWtUqIsP778p9pFk/zjtv2ePUBDauua/v74pQd8X5L/TPokfpQ3sv5FQTIIaifm/PYKBH+8k8r8hnf5jHxX1v5D4GtFVuPy/9aEOgVFu/b+sXStNOCj6v6FUDG1qIPq/tXPkyk5h/b9D9dVN+nUCwKdpqpgzkgnADLi58fiXCcAH+lGXrXUIwC3kqTAV4AfAnWXFwK4yC8BVOjOoE4UMwG1DUFpq9grAUCCC/3mQD8AoOZxm7iASwKY4z/WDbxPANLylNglRE8DBGaU1NlsTwNPP/BjkQBHAs11m2152EcC7glA8AS8TwMR2Oh7+/BPAyeg6rz88FMB7mrIlRnQTwJPCbr8/lRLASh+DMMniEcDTuld5PIUSwGt6KsR72BTA2R6m0vTzFsD0ZH9e3MAWwK2H10c2UBjA3ZFF4/QWGcAzCRQxXyIbwDMBR45fWB7AXBU/zSFaHcCtXQEZ8KEdwCiXuvbj6x3AJ4ueHkTcHsBRJANobx4gwDhNIZUsuiDA+znaQV4cIcBU9E8IGeYgwG98WzdYcR/AuDzKBLR2H8BQTRoKmCcgwH+xoMinhSDAIQY303zSHcATXAY6x84cwEPCu+8JxBzAbU7+AG3WG8Ac5DisvAwdwGVyGKKo/h3AeQAO6opAIMDzDAxdgkcgwP8tuS/4myDAB1d6T8DDH8DT9M8XzxAgwIxWOAllcx/A5fpgTyzPHcAT1s5Ij4IewIBz5kInqx7AET4q9SW0H8A9fLrfOxEewNPA0RyN+R3AW0WI1Wm9G8AIF7C30vUbwLQWY+uFWBrAgbE5UgVKG8D4LlKv8fIawDExgN3+KBnAAPlh4PmRGMBEC8cVN04bwEPjju9otRvAW+URb+/iGsDhdjvzOyMbwLMFpfuxVhnArYrIoTcYGcBZrKQ+MnIZwNy91pAvRhjAy0RohScbGsBIGeGrR7IYwJibx6u5fRrA7Byp49HWGMCRWB1lE1AXwBsaKVBhGBfAwPAd502hFsBLgAup9OkVwHjWemaF6RbAz0a/R5WCF8BAMhXhcsoWwLyVb8e9vRbA6C8ynWjMF8CzkTly1VgXwMzYglhzJhbAbXWCabzYFcB0jq3djFAXwMmVAnpH5xjAy62lRfZaGMDrsBfWejcZwB8nSOLmYxnAOJOy+NP6F8DpZ/jU7y4XwGAv/PPj9xjAMHJKvIGFG8CB5hEHk1EcwDzWqP8dFh3AGLzDcvPKHcCo6sJV7HYfwOSPBmYUPiDAxEzuoWOKIMDqd3y/CKIhwGIe4rIxAiLAvMbwnDLbIMAkLH8ly2QhwMNru94FcCHARzc3BAuUIcBSzfoWHMEhwDjqbS57VCLAL62fB/5SIsAfL/bQ/60iwEfU9RHxySLADa/rRkKZI8CZM4/BmFIjwKGOES/zeSPAUbNTy5vuIsCzMWu0I/4hwFvgrs2BJiHAQ4qmDfmUIsAlrph8olsiwEc3hnZvMyLAW6BlES1ZIsCkWftxnxYiwGBcN6dwtiHAl5R8YMsHIsCDVDbQYWIiwITsgYTDmSLAZfgPc39NIsBR8oyTNSMiwC45KaN3YyHALT5zNcMjIcDP8oWdXEogwPO7UZDD+iDAhF3xc++XIMDY2NEwvnMgwOUet30ZpyDAsKEYDZi9IMBXaXfQ4JggwDhQteamwB7AdRZeqPYiHcC7q9a9dugawJPgyp00rxrA00tJcMD3FsDpDvQRuzUXwLmbW70u9xjAfyBCGtTkGsDkUjwKLJUawFPEVr5hyxnAcZXEBCarGcCR2GSLTAwZwMMCtVRwbhfAUDmmX/FmF8BlAsC+NbsWwC8iQutxXhXApyZ4zR96FcCA0SumuUcUwIGyFbV6uhTA+eqa8QtjFcBbJYhXTuwVwOZhH+OQ4RPAGf60mIpaE8CdwLPIgr8SwKmHcX+/YBLA36mB+OiWE8DyBAWl0A4VwJ9ILUhgHxXAYjr2TVNvFMBhyaj2tXoUwLnfuRKkdhbAoMLGV+aJF8B/yfgGTAAXwNvIPKaSTBfAmZ2RjoFuGcCDY/Qi3zAawJmEkvoAUhzAY/r93HABHsBBh3X608oewFQAih/TASDAPTum0powHcCLbvSGvnUawJzgN7Jo5hrAyPmf/MykG8CnEOhp3NccwDiduRO/PR7ARI5oXEm4H8Az721ZvtEdwNgEoT7y9RzAc9BemGCRHsCsg4fmrn4fwNDMCNp2/x/AB4xHYZzIHsCA/nTQXVIdwAE3lJ0eMR3Av+f5J+SzHsBA0MMczwsgwNtQN8Dp9x3A4UHVsB+CHcC4YeViHLoewHO/VavZDCDAuHX3IL2EHsBNOTMLbjofwKvyPl2JrB7AuYW5b4PyHMBYZhTlbRMcwG1JbzOVvBvAY860yOAWG8ATcFMT/gIcwNN1tLAoDB3ABIQLMeoBHsAhQNaxQIccwG2wu68oHR/A6+Y9YgtRHsA9Ys4wZG8cwGm+VbNr4x3Aa14veEs5HsDxLkJug1sfwLQEQ6FJ7x7Af6gkM/mYHsCowUQAodcdwLATwXKcjh3AO+vVKUUeHcCdW2RXop0bwJGO3/GaqBrA7ZMe9MhmGcDMRMkTlkIYwDThFKSKLRrAj8A7UqK0G8C7DeK0DLQbwCsbTbdKsBnA9wKOFJpLF8BXp4PeXfkWwKR74wq2LhjATEvHjjRUFcAPhTFRExoUwO8ezV89ExTA2+67c33WEsAd/StcC4USwNP1kWs1IBLAx6Zv65m3EMBt3x1S1lUPwHJRIG2BJxLAjsPMYsjUEMBZxD67+s0RwG/Z+EYQPRPANfDCjW8uEsBCKOeRfUERwFFQKffWqxDAXm17xlw4EsBrAdyyqbQTwCG+iF7lyRPAFH+Tcr+RE8CZKqKxmooTwDvgB71d5RXA7Wk1uouAFsBFuno4SsUWwJBwG5vPzxfA9esjgJqlGcD3eADaBOUZwP+G/UuhoxrAg4QKLhFCGcAJra7cdHQbwHAbm617bBnABakRu0R5GsCZlKmO2ZsYwK9mTKbueRnAtZJuEZMjGcCUmG+tWFoYwLSz5NhL2hnAFZC7PxgFG8AnlSpTZxEdwA3zwAzjyhzAL9Pqu/NgG8BXlUABDuEcwAEzBtdPRR7AMaOUGmU/HMDhWzqhvlMbwJNmnNAPCRvASAWteGZIG8BEW3ibCGQawDOm2uS7BhzAF8KcNPmTGcB4phkzT/kYwGWo08Yc/RrAwZhvcUnzHMCVB5eZoGIcwPv+pWWIGRvAY2pV+CQuG8Cb/UfH3c4awC0UrmY+pRrAX7PuEIYkG8CrMjQDsOcZwEheQcu6FxrAmBGTU0wEGcCZaLJO2rMawPM+wrFPDR3ADXdTzZxNHcBLdpfT6bYdwNNiQKZ5sB3AwSoz7iLSHcCjv92LRU4cwFQcBgcqPx3AXfOlB1QnHMAj4maSEicbwAeGvJPiwhvAnFGx7AYjGsAoia64P0gawOwwwTAEIxvAWXD01ulTG8DEVnQagPMcwOGaU3/+ER/AvJ/T7i/PHcDggXJuZhwcwAzWvdJklh3AVW1dybq1HcCIjxbt/8oewJvXAJ6PqB/ArN/162X7HcCVv+qQDg8dwMvY8qckRh3AhWH9e3xmHcCAooePYqsewMzkkBoJdSDAK1KFIJLvH8AfPmtdeo0gwL37KQ8BsyDAlX7a3g/yIcDw7sHBmtsiwOvs6gm52CPAFw3V5WUrJMD9MJ2iBG0kwB861TGb+yTAA7ULnmF+JcBnS81hDPIlwISTGnptHybAyBP1mc7eJsBIuVQ3NLYmwGU6l5UZASjAZ4+94l//JsCxmPzHX8UnwJWIFwscYyfAjKu27akYKMBHk47KyY4mwIiDVV11JCbA/JbvfsMAJsDRTa29hvglwIv7NBgYJCbAUD9Nmk4XJsDM1ebc+jsmwDuips+1xiXArB7KcOQdJsBflwkDt8YmwKRmrn2IpSfAzE0m+1GvKMC/C+gir1ApwKU7qlPlyijAWwNojnmcKcAFcDNXWuUpwGVDxqB3zCnAiSWJePJzKcAEwnCq9KUpwK18htS70irArPmyMJg8K8C7ogXlzUArwGifmtyWASzAFabB9KT4K8C896hkFUAswDU+l68dzCzApcHKLecYLMDVl58QwkwrwC26I29lHyzA5GtLlmHCLMBFCURNua4swIgYFJ/iMCzA18R02rtNK8ANZk/mKgwrwA3gseq1ICvABErZwrhiKsArj19qM18qwEvz1G6k/irAvEfm5kFtK8B86TvOC/krwNDtmWS9GCvAyauCTQ+RK8DMvCj7vsArwEPJKyzhFivAs5AJHa4KKsDUAPqvmdwpwI3F11lDAirA0JzIle2LKcALrwhE6dUpwNxEMth/nyjAp2Ssj46+KcDldHTM/qkqwP+0odLcjCrAfBb00enMKsBQmtT1KX4pwECvp5+EwinA//RYom9oKcBNr6aTOP4owGB6cjoOWSrAlbNG1cuCKcCsn34rwTIowOG5+bLWzyjAK1JKatwIKcAZKchsRwAowNCXVyyPUCjAiSsd4m87KMCDswvTFr8nwMHtj6rOPCjAxKNHcs8JKcCMensB1QkowLGnVzOhLynAY6b1hJvKKMAUNMlkW5AowAA/8bskJijA+JmerQS3JsDZBjS1cM0lwAfWYr586iXAOSk6TQT+JMBrQNGxRI8lwK1ILKr5wiXA9y8pvUgOJsA1dTQtHIkmwKmUVmW70SXAj7FiEC5fJMAd2zM3oGYjwCjwhWtg6CLAs0bLjD/wIsDdGYRvCfIhwPmMgOq5WyHAWFzZmzA0IsDDRtkBdoAiwGtAFesbSiHAozcR4/llIcCV2TRqc4EhwCzeYstdlCHA+456GXCfIcDBRGyweu4hwOW4iR4EUCLAFnoRaB+ZIsBIg80dbighwIuV8AbJGSHAm1kb7+aSIMBxTdmdQ28gwLofS368lSDAyzpfzaLvIcAvI8ShN4shwJWTo9Z6XSLA8iyY9VTuIcC8yY1UI8YiwJnuwhTmMSPAM4oJxzlkI8BqD+iTQSciwM9ybQ7cayHA9emFfCK9IcB9XuQcVE0hwBceEUJJhiLA4aUg2J/ZIsB7VC+c8agjwG/8mA4qRCTAnIW0Gqf+I8DHa0syfaAjwKPKE2leFyTAPdq5pzfwI8Aprhm4I7kkwPbPmntXgyTAT2w8fVPWJMDIwNlY/48lwIuKeA16jSXAlcUgAdm8JcCvLnleCy4lwKM8cOIy+iPA6KsxPxWZI8A618DRn+0jwD9wCams1yPAD3Hmp2m6I8Cj0yqv9rkkwEmBTPWAwyTApeTN+AoUJcCxFrGV2A0mwGWUKuRYhyfA87WM6KDpJ8BH7qlu9EEnwMD6mONE1ifA3LseTX4iKMDFOu+nHgMnwCh7iNuuhSfAg6e7YFC2JsD9HkKN3LklwOyb+v8r9yXAaYDt2DckJ8AXEM1VbZgmwN8glQbS5CbA14p/Zr/FJcB1WfcdpKwmwPRjPi77zSbAwF1wvoMsJsDRLu30S6YmwLHFSQyCEijA+Gk3bU8rKMDsw0Um8ownwEiORO16IybA6Oghd5tCJ8DM8uB/2DMnwK8DB6oP0ifApIsD5i2uKMCXEtZBw68owHhorttK9SfApdaM4Sl/J8AYHH27lxEnwNCanYg5BifALye65vtWJsDTJAw+9eQkwIkUJ7Sn9yTAdx/3s9apI8Bj+Ng1yY4jwMdzNM948yPAHUHE4VXfI8C36i0sFYMjwKojSBqlJyTAb9QUqm+cI8AWLTFJtxgjwEh3i++bhiPAJio8cdwyI8DyfCnLO4MjwHFzV54nfyPA9YxA4xLCIsDjBpJgTE4iwLNBJHHHIiLAQ3yJnremIsCGcidgsJ8jwMdq9bv79CLA6nKfzs1CI8BoZwRrHwMkwJ1FMnkNPiPAe7qLDuvxIMDihzdHZYsgwMwbcfvaIx7AKNUjYTLoH8DUMCITQuMfwEcefY2scx/AO1cmlbFtIcB7MLd29WIhwFf2w68MzyHAz03FQ/PeIMCriDeG52sfwF0KuZIEBiDANWq+4Ss6H8CniQXWNbIewAS6MWGTbx3AtSkI1HYrHsAADvLIEEofwNwJXLiN0h/AZZaWaPR+HsDH4qUakmgewMDphnP19R/ALbSMhBIaH8CoP3hBhyEewBmT53HjZh7AA2PQJALdHsCo5FrR4sAdwKkbI013MB7AyKLdmUHQHMCpLiTd4ogcwJFrI1LPLx3ASeeYqhFiHsBfFGulxGkewKGZPLYBAh7AjT1J66cHH8DUN6m4vVQgwBjupUC85CDAIURMQJp9IcBrGXF0ZN4gwCQJvwZGSCDA8Qf5ugYxHcBLQ63w234bwM3bZzIdAR/Ax7njYV5HH8DbTALzUG4fwCfIhC8wzR7AZ8J7AW/uHcCxq4yIBQUdwOiPPKNGEx3ARS17AoNiHcBT3H9PCGMdwJfS60fKcxzAvOnJlaUzHcDLYuy5DfodwKD8fxFzHhzAGSmic1m0G8AMBAekIO8cwDixUi15BxvAHJDP2cAOGsCA6VVs1hQawEmzgQ/l2RnAOw/ejWl6GMDUTDVly2UYwPGah73bFhjAROrNGNw1F8DsXHsVdrYWwL/ciqiPuxbA2IoIEsaDFcBMXSRx7/MTwJQckFIt4BXAQLZ2aaR3FcBHZuORIMoSwNES2GiIphHAwhXp66MQEsAHzNbJYhMUwDVrBmH9dRLAjbdQukfsEcBbKDseblkQwN9R86YLkxLA+QnsjCq/EsAVfC23lqITwBw1STbhnRPAfbdDH/yLEsD76P9lO7wSwDaHubks9RLAPTPcZOtQFMAIkAz2LmUUwHFxe1N6eRPA6eiQCuLrFMDazk/8X5ASwGfknIdXTRPAeTZQM3c1EsBDoGIrg28SwLdO52e5hRLAKZFPBxFWE8BJX5QHAgIVwHbVNEVRyBTA1UePDuu7E8DjTYCqejgTwNmaLfZwJxTAmPvPJWJdFcChba0mN5ETwMFPxBk8cxLAoo4AMctEEcDDv7F29AMRwLkJzWtmyxHApSGEFhGHEcC7rqzhwSMRwONgjjFEERHAVclfqGTAEMCBTvBXK5ENwGNKByQe7gfAX800BbkqBcBZZTqfeZcDwDcn0m4VEATAucuiHXGOAsAZNFSjdCgDwNv8Rv0xpQXAWYAg04aHAcD5n4MfHtwAwFbj/DzitwLAkIsniKCo/L8DnGehIpr5v4m4zIInq/m/XGWpM+u9/L+PbhyKn177vw8YowCq5P2/MxVEpOt1+7/IR9cNfpv7v6RbLw/6Jvm/k/VMwA9T9L/jqN39uUPwvxMVjeRrT/a/gBxGsSOB/L9hN2QXOQsAwAdnccZifgHADiwifFEtAsCM9Ug6L+0BwBT9sZA7HQXAP52b4YF0A8BfZLgp0NcEwEGZQ4mdmQHAP62n1t2+A8AheoYJVTIDwEvfef7EAQLAACItuL5uBMCZ74dzUOkEwE8OGhWdLgjALSSK06siBcAbfY1muEsFwIuIgl3mXwTAndhw+LCgAMA9ex+Jg7/3v0SkE/EMD/a/PJnPFwHU9b8hq8e9maP0vyNdEBSwyPa/7cu9I+NO8r9tr/CDFN7gv01ZePICb9G/eTOs9p4p4L9lk+sW7jLjv3HvjjoP/OO/gGaHmTI5rj/Tp/wmKdi8P4y46EyzHuM/NRSjJjrU3T8THLf2gz7nPwCdzgsYbaU/4VGY14Q5ub+3/6R4hK7mPxcXXzutKOc/yGahbcRe3D8ATgLsKXqTP/3zD91NbqM/e4yq3w5T0L9VKV5tvBvZvzniwB7tQuG/A4KIXKlV1b81w1E1uSXlv43gaQoXrda/S/ow7VywtT/o2pEwIamWP9f/AD/b+dW/X8qEJ34L1r8sk6staEfwv0OZII60IvC/jZr/03jk9b9oca6ir1X3v9QsmxxAOfq/DIFZQwER9L85xKhpzD30vwOlobg0Pfu/MfxOU4Km9L9pLaANDUr2v9QDXspxOfC/zHap0Ux6+b/rh2PURPjzv9kgLCHWRfS/p0dXZgFV8r97eS5DIWrrvyMGc9XNPOy/PDCa6NMg5b96e++hJ63ivykAKZZYLeS/RbF/TSzW1b+b+6j9el2tvxU2aIV2DLy/46RVbNfMxL+IxXIsiQnnv5fJ8hmpjem/FU332aB98L/ckLDj6Wblv82s/+FVm9W/lecmvuOekT/otS9ijlDJP1nEGKkKhNk/v3hrYGQP1z9UQBKyjfXCP0VR+VSY/OA/q7Wl9Ks2ij+DqlasaorHP3yXLaywE9I/pcIfiuxayL+MqVz00ZrJv3xdbaG6d8w/ANfic2Rsgz+IyNb85dXyPxQ0egPqP/Y/De4usiik+j+nMISMIwL1P+i2udPpavY/IXUOwsmA/j/dR8SZCU0BQDiq90JlIgNAHgx5THPSAkAIFRI+LCICQPaUuzer3gJA51pod6r2CEDoG2dbnB4IQN9YaNK7YgVAW3sLNnLoBEAzE/Va/04FQCn1KuadLAJAxcYyx/zpAkC5O20xyqIGQPuTzq62lANAERdFGVI9BEBdxUzX2uD9P1zOIAQ33/k/B/0/ypZf+j/omTnmXZv2P69K2pihkPU/2TGCSeQq+T81uiOCDCD/PwhTmFTU4fw/a175wILABEClch0V5ykEQMcoWCZ1XQZAMCsUbWljCUCYdiLf47gFQJvFTAsI7wRA+4+z1jKdA0DIBkyLPmcFQPwL9NGzcQlAZ73ObSOPCEBT95P6YgwHQNUFJ1gZFgZAthfI5RDCBECemivGUj4FQFehhW8bhARATEjkkdhR/z/TgxEHiRYBQBxC6Eyo3AJAIOPMU3y+BkAXzV9u3UABQMVOwxSvdf4/OCWRHN4W+z9vgvpCOt73P2e2IgDJsP0/aN7XXwhF/D8QL5WD6yL3P49JgqlVpPE//R+9vNxc8j/Gs1GRqQL1PwXTaLdoG/U/P3RluTaw9D8FMDkliAD4P63IbTILhPo/IRHY68HS/z8JXtOGrfr6PwsZWCD1WPs/v/SQp9sfAEBpnb/B8sABQAMQm/DS7ANAayXqUSzIA0AIYBQtf28DQMXBbDnXGv0/zLX//R00/D8walDU7RH4Py2cA/d9RgBAS5RkiVhSAUCX2/UVvwMBQGEWMt6Gxf8/5rBjw1u6A0Ad9c3RNt8GQJjncIysgApA2+0D9C1TBkApd1bflvAEQMswDP5rzf4/lUABIYQL+D+45CN7Isz4P2HhMAGESPw/n1bXR3gE+z/7a2qHshX9P3B6JXPzR/8/x5NY27imA0BtAtJReXYHQEP+Ld2dqAVAf/ajqGHEAEDDn+wG0eD/P1J5xiKUXgNAcbsffCifAkANmef/5Q0HQHXJoxnw4whARw0LV2NiDUDUwTOfeKwLQMBRWJreMg9AaT4TnK2HEEDzBI/qul4RQIjJqOqBtBJAYOz85lvwEEC+ER/O4CoSQMBE9GdruBBA7xT7lAWiDUAt1ThRQ1QIQDVMHQw/IgVADIXXURjFAUA9M4H6V7ECQD8/E+N3DwdAH+Ebz2erBUChpLsBKCYGQO1tgSp9JQlAr9l0mcGYBkB5IFXTIagIQPuV+N5VhQZAe0TFBF/tCUBreMegLCwIQLNp4tekegVAp/bqQ3ddB0BkFEKrPu0CQKtqaJpC9gBAZUNPyyQy/T9LtcJNbZ79P6zZwGkZNgFA03++MW4LAUDbRFEUCksFQPZ8PjaIFANAoPmzI09D/z/Ihj9rbfP9P+8XfC3+yfw/K3hwnWeZAEC8ZkdyRzcCQDELI1jrmgNA/T9IAENrBEDsIMFV+C0GQFgCiQMclAVA1WFVHlL4AUA/AC7Fa4MDQN/mJa/OhgRA8yFDNb6aCECg12RdNzEKQBPX9daTCQtAhI9p6HA5DUCZae7QazsJQEAUfnbNyApABYtl5kIvCEBqkF6+9ksQQMQD9nez/RBA/fmwivx0EUDX/aaA2bEQQBs3F94X6A9A4ZiIEVq1DEAI/XsBUfkLQAm1lqHp+AtAO7VJvx+QDUCGofdKy8AQQGu+cZ5w1A9ArZAgze+VEEBS3CEoIq0QQAGHo1eX0hBAKTS2QD8tEEClZbEWzWwPQJ9AauudRRJA501aBzhjFEByivqRB2UUQDcbnPdH7xNAq4r64mrtFEAK75oFi/MQQLR/z5ngsxFAFx18+7LHEkBhzV5MK2cVQEVUTzKBBBVAr+XVKyPHE0AtEFcPKeoSQCPYiPyXwRFAmxnKkrIbE0AlRsEMcpMTQDrfRjujeBFAmLvldOu3EEAV1+tShwAQQGdSU0Qu0wxAhHLkgM2VEUAkZLXs82oSQCmfeX/TgRJA+zBZluwqEkBpRP3R9TwRQExoJ5TOpxNA9+7v3jWfE0ASy9810+YQQBVBNg3D3AtAjMqQhkk6DUDFj3DnA3gRQKf5JZ6mVRJAIyocYK7EEkBooOB/OmsSQFwPvxQszxFA7oho/pdBE0AX2D8wwHMRQNV1LPtjZxBAbrqZXFnKEEBTx6fm1MkQQCriEx77FxJAc+xl+WP/EkB1q2v7tswRQESRkJkXXBFAGQnKwZ8NEUC89rq5zhcRQA1c76gWgwxAxci1zllTCEBBbXdihb0KQGH1JlTirwlAE1m0J8cRC0DU2KoHv94NQPkRY/tiJxBAkkvomTIFEEB5DbU3nkgKQAAZRaHs0QpAXnG1FyWvEUBv+rL2SwcQQKFp8euIJRFAxpREETOfEkDChDSfuWASQCSGHD7X0RJARx39YrKkE0CzfkvzGakTQJnbaSGQYxRAVKhpBjKxFUAFj+Uf5JATQFyajWgXCxVAkK3g6bjoE0D3hwPSi7sSQPUmEdV39hFASp3t+HG6EkBdwxA5e0oRQDAoaM+zuRJAZewcuiE9E0DVJzfkD3EUQBLwyxqz9BNAM5aAkwgrFUDKWaBsDj8VQHjGS7DyDhdAP3zizb9rFUDLARuB8nMXQB3nH/XitRZAr4EQZWhgGUBw+SIuMrkYQGtqVh8zLhhA/0q9jPgKGUDdrFbYQb4ZQOPQmDAPeRhAZBIxAY4qF0C3HqGuRc0XQDSnCS1ywRdARKWC9zROGEB7ZCk4RfAVQOQQsQfF1xZAiPXI8AV6FUDBDApovHcUQNBGpUx9vhZALBl5phmDFECYACx4fhcVQCznt7YoxhRAHWkG942OEUA5VILkygcPQIiffE+2WA5A399XVkgcC0BD86KSFFYLQIivekUC/AhAL5bw7I9DB0A5dcNAf24HQGHyNrxZKQpAG9Z3PVRTDkChpk5gXvUSQPcSLN7q0BVAA/GJx+hkFUCZtzRV+ocUQBOluiP16RFAr+jLWrttD0ARJUvqooAQQFO38ka90Q5AK/8+rL1vEECw8TB+vzcSQA1nTPunLBNAX0kF6ZcYFECdJA8s5mgUQJ2KdM7d6RZAMGlzd2q7FkBj/vmalpMWQDEHVlk83xZAz0XtWB6TFkA1cPxvDdMXQBf1fVRvRxdAJRDvOZUwGEAdDGY5+FMXQHnRUXylIxdA2UyAJ6OpFkDShISo0FEUQFV14wfVLhVA2Il0e2aXFkAXdo9tvp4YQNEIxS/l/xZAQDqh10JqFEDnq0PWdOMTQLd5zwlLaBVAZ0OvIkU/F0DHRbEwmNMVQFIVCS++CBVAyNG3SwIpFEDTtKKa9LwVQFm8M7etzRRAdQWDxcSKFUCIGpPIY/cTQLOguxW1OxRAGcj8TPWME0DJyvytP2ESQHciV7nchxFAC7uLTfjCD0B0Ladyn+URQOKgQAtILxFAEQZIy1G7EkBxCmakOekSQB2AKGk/3BFAb/Ob45E1EEDAV+uQjYsMQECil5nINw1AiRBYS+kkDECg1ve40TUOQM2V5dKiMhFAV10tfdrFE0Dd7qWiQQIUQMOZ4kQjUhZAo1j6dTzmFkDLiJwJ9pYWQIl7ctyO4xdAJVUFuJL4F0D5vJ41T84WQAe4gLngGBhAh/0DCxS6GUCHmCyO6ukYQMEpT2JKchtAaNj4sBsEGUBBG64gOpIZQJjNz4kNDhpAL7eGpJWWF0CZtv9kOHwWQAVNAQJkEhhAsT0OFt2GGUCpGYlnJoUcQACcaAVeDRtAOJbbsoq/GUDjwe7OosEaQEE3yAtaJxtADZOSJg0LHEA5/pqjzWQZQNPyqDLeohpAXeECqCOlGkDV8POvhwEbQC0mjgZQkBxAvRZoHhh/HUAdJtmb8zQbQPW+ixRYghtAIF+MuERgG0B8YRImMgIeQInV9cFkRiBABKcm1tiQH0B5tnzACX0hQDBP6CrBFyFAlDce0TUGIUAPPRqKOW4iQDBqzfZFNCJAAR+erCrVIEBGqOq+0KYgQG7iG7yTcyBAJKrbNtRvIED9rqqcqSQfQMmoNs4Sih9Ao0QP/xodHkCvV3PtgcIeQKhfxy4n9R5AA47vPDo4H0BshfgKe7cfQPFQvI7b/h5A8JiGtTOAHkDb/72gVh8fQIsCKERWJiBAcTKgl9soIEDbU14+LXIgQJqMpvXWayBAd56MlD3WIEAgp/85aScfQFPsBfsVIB9AG2tsQOsgIEAX5ZVQz9geQI0I7DhhBx1Ap4vqd4YDGkCMVZH05Q0ZQCgjjG5Q1BlA5caagQnbF0D1+KBqCPwYQCwtVnRhzxlA48yBDTFdFkC9hsiUudoWQIR5QoaWNhdAyS+ZQy9+GEDcc/s2tcUXQOeH6Q3I4RVA0JamnezlFECwI8SHZOwUQDGmu/BWFRVADVaTvytEFkAorzMDUNcVQKlxpUmpqBdA+XEPjsieFkCcKmP/DIIVQBs/tORuARVA6ykJZ/feFEA7tf70cscUQCX+g1JXGxNACNHbg9SOEUC1BumLvN4PQJ8M8mJhpxFAs5tFWtzwEUDhKNxiyNcSQK/Ce+4cvRFA0SFmKWnAEEBvnPGu6c8QQNRCRq1QYg9A5cjJlwhHCkDpWvYXfI4LQABhoJUSQQxAjR9Ajs3KC0A5GL5PZOMPQAJZIfmvzRBAcVlc9NbHEUAjvTg9G18SQNHxQsea5xBAFy/Jk7AfEUDz7w0pXVsRQH0cx8uU/BJAd5gZ5SbpE0DvWD3FxAIVQFBaMKsMvxVAieNFreThF0C9oVnrajAXQDCLrWmQghZAoJdADdeeFUBr/XyOPjUVQHV9N0eU/xRAlPTiz8yIFEC2bin1OTkVQJv3dNQhaxZAGRSx7zjmFEBvAnTCWUIVQAgLFLNZ6BNAfYqLUPfdEUBhX66BRFMSQLNfTvY/6g9ARO77hVxsDkCb2OF8cvIRQByYzx5kmQxASI6hsLl5DkAR0z10ZV8RQC+dG06tuxBAUr7pPWgZEUAF3GB6yzMNQCSS6vOiHw9AfAmeKqsDD0CD/7b/flASQCKbk80vchJAUgLlNZdzEECHBdvpH2oPQFwqGepxVg5AQHBHeoTFDUCUuWDYaOEMQN1zWhENgwxAyU7xdzrzC0C3rt9+FCIKQFRFjJT5wAZAR01+v3OVBEDfbrSn38MFQI8LCuoXughAndAoe424CkBYFriDMUAPQExBB2fFNRBAbfDvPjrgD0D3ISjf42MQQKSiqgIjTA1AS6BIMfd7DUDLZpCRVe8JQNiZldOmoQZA7TwbTsqkBUASu+6MyHYCQEnjdaCvtANAGjKKVbxcA0ArHzodo+ADQEMhq9AxPgVAcKek+PE+CEB4Rr8F/2wIQO3UWTRq4wVAW4bELh54CEA44jE0/fYKQLEeZ8WyowZAQAdGfZ6uCEAo5osmcjwJQP1zO6OmLglAUCNic0DRCEDUuyqTGjsJQIMk8WpKOARACyXfRz9ZCkDJ6XTDRj4KQMhF6ftjHQxAY+ROM01vCkAjsAT5dOAHQKQs9p6gGwtAtaRpK2MMCkCDvr64i/kOQNA1EYNh+w1A2EveDv+/C0AseqQOvvoMQNWU4sUhjw9ATMNVLtx7EUADdlhAzp4SQCdf8dUDuBBAe/wTLs6+DED9sDWwxtYQQN3lXgIJwxFASbfZBywuEEAd7nXxS7sPQA/cL3QMFRJAYeFGUDVzEEAUAMAZgJ4SQKIGRGupEBRAUc7MIQM5E0DK8O0ZPIgTQJfPzufBBBNAVdYndldBE0BvwDLBLvgTQDmlLXpjCBVAjfL+Lb7AFEACoYssuyEUQOMz45UNgRVALZO0a6RmFkCEwbMebGgXQAWDUaKv2BVAJBGOomZeFkCgk8UWTi8XQEPUWH+D3BZAX9GaNcTUFUAf/ZZo70IUQPjDzY8FHBRAC6L6bQGUEkCG4ttWw3ATQCkhcO804RNAnXR4gHAWFkCRLDPb3PcVQHHiHFUDOBRAF5dI3rXKE0DXSd9mTn0UQAdAZZ+ybRVANM5rjCbKFEAdkIRrR4IVQOOAZylfnBZAJTlkY46iFkDFw7qrKgUWQEdujL0r+hZAWJKsv/8XFEAZJoRLRMgTQFEA3lSfVhJAGUjmiQ/AEkDjo9pPLW4SQBunJvOdShJAPen8Ynl0EEBs3Jspw88QQJIRtrnwJBFAidzsNZqREEClZx6+hEkTQKF/InntBhRA0ng9WcWhE0DC3chqa1kTQL30HPDa4xJAJZfcE3UaE0BSYngqfukSQIllWWgj1BFA6UE+5BBhEkA7lvb3z2wTQB01id+wqxNA0RU2uEbUE0CZuwaiKy0UQFWMBJTFJxVALzHI4xUYFEBr3ZSRiewUQB8jpGpyIhNAKwxw27wLFECtm0AwzB8RQNB0+dNT7A9AJE6z8f7kDkC/7OaBOFIPQGnrrONSdg9AF4pivog+DUBMtCzt5+sMQH10yRRTtA1ApKuzf8XUDUBsTtvlulcMQD8sTo5jjgtAZ7xq3BllC0CNxDC/HmQOQAyfrrDHwwtAGIwG+mlyC0DcR8mFS2AIQDyGhRtlXAtASyixiDpLC0DtKFrCY9gOQBgbFaZAdhBA08xmVdadEkATgd5uUjUSQAtPWKV3DRJAMZlu87UyE0C0hHmBZvQSQKe/Jgz+QBNA/cv4PWzyE0Aj2oQMzZgVQCnNdLuJbRZAj2wXthriFUAfSiqPufIVQEcyELtCyxZANd2JvWkzFkA58hyzbwwUQHZwYSWL+BFA59A689HuEEDB+QL0zLcOQDf0sYNTWxFAyRCSfSsCEUAW3MgLJvATQE4dp+xM2hRAtAG9UQ9oE0Cm5wFwaF4SQFSdMvS/AxJAXWl8IbeHEUBJDU9dUkcRQHPEQekR4BFABkP/IJ39EkC13iUSJesSQDDT3lV5ihNASPK4WHuZEkAD8Dt4zEkUQFAbV/I/tBRAd6fEAAkpFUBwdVNDeg8WQLGAWqS7QRVAV5HsuR3mFUA13qjk3DEUQHi+ntWZYxVAUSN8ekRSFEBF//N99m4SQKMew6qYvBNAV9PNQnWpEUBl2fGK4WIRQBtvfa5uWRBAlXruVHauDkBBZvj++PkMQA0JPUT1WQxAuBbTvf5QC0D4U+Ip0OwGQBUFyx7IuwJAXNPkoBMsBECx23XNiwQCQC3O1BgKmgNAa1MEUgu4/j+JSZBUruMBQEdQ/FX7dANA8yw4pt9DAUC9evHrHI0DQL3O+hFbsAJAbvLk7t9e9D+Ix9YSIS/wPwjDAoj5BPg/DN8p1LEO+z8BVe+1qhMBQF2awAPSVP0/oeVsatF8/T9nHx6BRPcAQPtN8+FDdfg/S8EWhmJd9T9bawxWMXvxP4eXDx0Tn/Y/lxtYbwTg8D9DyWTX0Or6P/GVv0csovk/nYy5FSjS/j9Me2CE2qf7P7yLDnEVtP0/Nadzh9Ug+z//sk92ouH6P6zCoe+4GABA/byxkNpvBUAb3OB9/RsJQIh/h3F5Wg5ASVFrgpv7DEALdTVmFlsPQGcswPAkmA5AK5rQ+9kCDkDM7JMuWQQNQK1e1SUxeQlAGAK7mhNiBkCHjq5w5WgBQPblFtLZSgNAUW0EnLJnBUAx7rHP17QDQFVIU04qAwJAddvdFfmFBkDzK/IrI84DQKjuFTguJAdAqPvac8HZCUCAsbuoNRANQNhY5+JGHgtAYNlzmCrkDEAnVb8hQYMFQKgmyL8UYwJARvh08te9A0B9phVQnED5P5/2M9b2LPw/8Ve8ko4ZAEARuv8NU9wAQBjicv7WowFAN9FCk/NfAkC1NJHFf1/9P+O1gkWhkfk/IWQJ5i0o/j+sYKIFTiX6P/1bBtdUNPY/3X0JSZs/9z+j/vfuOmD3PxvVYhPKZfY/UGiTLIYmAUBh8uFVMQf+P7kWLGBPvwFAc6YtSmcWBkAqnj5XmIsEQLXmiVOpTQZAAIquFyr/BUBFT1SwE7wGQHSr0kz1ywdAWYGHIdOnB0DL16GIYWgGQJ0C+av7IQVAWVE06ZCHB0DzLo4owakLQBdteV1EqQxAPAOqhrFDDUAJJtXwIZYNQPTpAopotA5ARTzYYm6UDkD1yjGqm5gNQBuyAV3XRhBAL/+tp3FuD0B9nXrZRFcQQNdGpcaoXBBAgZPBMY/+EUDhovxEicMTQJXzfc/+yRJAxF8H4+ppFEAlk+p1ac8SQDyjbvakuxNArvuMKDU+E0CtpZi3/TgVQNu0QVidUBJAuF+jzd65E0CeHqtOtqsTQC/exfwt4BNABEIG7eweFEDsvmv7nb4SQNq2KD90ARRApTeHlAULFEB9YS/+pjAWQGcVv4OsRxVA2NDiQrECFUAL0S1JG1AUQACj0V55VBNAiiaHWxKlFEApqlKwKyYSQIcu6Xd59BJAiLEY479jEkAfUFhk4YMSQFdMI+DR0xJAI6beRgovE0BT430nfxoRQFO/PsrTbhBA6VCcUJd1DkDHYBUxNEUQQEVJcdPXCBBA0MYW5at1EkA8vQfRozEUQBycOyJCnRJAqukO2AlWEkDpNkne220QQGEeTCgfVg1ATcTNzyV2DkCNu09nMzMPQONf9y2FThBAfUgLbbY/DkDUP2MDXdcKQJ+aNwlUvwlAUGutnMpjBUDAIfo9jgsEQIwiJIMlBgRA1JztCH/wAUC7LNpBQ88DQHkTer+diwBAP9DYDcMlAUDQD79gaJwCQC1418sY1v4/0bcGMNYHAEDI0UWavxj5P6UYW3AQ4vw/MbosupOy+z8H64AXhmcAQGNtHJ520gRAXcx+z3hWBkD1iyvXKmsDQI9PkeS33AlAI+k7q7PUCEA1sVM4VskMQHSuTwDKGglAy8VH0BkoCEAdQJZ77AQLQB31QhJ9aApATSo/zhKAC0AVetaIoJANQJmZ1pQT3wxAgEwQ8W10EEBq/sqeejUQQAi5cQq+rA5Ax8dJRje3CkBRfzvvjikKQMCy9/IaOQlA7CBc9/ScDEDH/kE5u7MPQPe5B/Gj7BBAihLF8jTvEEAc0SulNmsNQHlVl+Ph/Q9AuRENeCvMDUD0XeAtoKQOQElgm5Ckbg9AmG6hmrZjDkBwjXwPFeALQEZO9x1+ThBA2NBiysUVDUALyz/iNC4KQBiZdkL4fA5ABaWvc+KHCUCkqi5N20MLQFNyeiUk+glA6z0CPcF+CkCpZuO+PNoHQHli6brlcApAv/kP4EQZDUBf5C9IcH8PQCktpBpPDw9At8YsahzEDkAkiqvOdSIOQBzbFRb1FwxArJI9Q4vuCkD1HSXpMToKQNFstxV8FAtAZAYrp6V1CEDd7SZh6v4JQA+VpbanPhBAX4hwWiNWEUAYMtjbfnMQQHnq9xpt/BJAfwEfo1QPE0BMIt9wTA0TQKsym3li7RNA+gR8hEJrE0DGDdAblsAQQI966ZoQCRFA27or8xB1EUBwCOtwLJQQQGZKG5RqPhBAqFJmlnhpEUA/ptTs77sPQHEQy0pHbRBALwKB0utTEUAvJ/y5VBoRQNus4tHFRBBAEty632JxEkDXRxBOUYISQCv5nv2rwBFAuZc9jRBVEECa+vAniLASQIJdFVdkfRNAQNMDRc4ME0ANyo4C0ygTQNYnIjloARRA9ufS49gHFEC2PE7+AOQUQMUuJHbZKBNAMWNiqfaHE0Bcs/uN+CUWQO0SAs59GBVA/KHrAI/mFkDURuQaAEYYQBvg62Vm9BdAB1BS7PsPGEB1h98VzrIWQAis0LJP5RVAvyGnag3dFkB5kz6f5EEXQMB0gkX/vhdA2e6c7tw2GEAply7yLdQaQJitVrK8oxpA1BxmKIcCG0CkwQPwT7EZQBECC3vp1RpAZ+ogzWMjGkCUj0Ed8dAbQDgLu9jlXh1AgautH3bqHUAsMvgQXJsdQPt2BMwXph1AKSWI9yBEH0B1PsgRMvceQL+9mss43B5Au5UurLGfH0DYqZ3sAkkhQCmtNUMHNyJAr5qdnua7IkDJVgaeV1ciQPu75KQm+SFA7QRaLv6vIUAwm7mQqYAgQPee1Po0wCBAqZwmN5BvIUBTMdimz3QiQPg8gkzz+SFAFPaGKLf6IEBMp4NK50ogQEF4a8DvDCBAmBbyRpR4HkBdmEDEc9McQAFT+4INThxAsTVYxNNVHUCgdU0G+8IdQKn5bhiVFR5A82SfTTwWHUD1jejvpogbQGTFsjyDzRxAW1IW2fokHUB4kYKEw3YdQAcIord2Nh1AP6W0T37DH0BrONrGeMsgQANP7OT3/x9AnL3+7xURH0B3rZJz2ishQNHH3CsaeiBAYG9kqDbXIEAup0zc1M8gQKjbzMwtIiFA0lofyhJ0IUCgt93gt1kiQAHGR0FCZiFAR6Zww7lnIUCQ3OtPgfchQOmXdznjDiFAf/ujhbMYIEB18OMCdk0fQH+hhp7r5x9AdpmueLkPIEDEu0ll7ZYgQI1dUTFC5iBAzbfIHUutIUBZupvbYJMhQFVtfrvNOCFA/xUlbywWIUDYbTiMnjoiQIzL9U0TJSNASf6KId16I0C8of/ORu4iQLly5HNXQiJAw7ZwGibAIkAZ2rqkOzYiQImNEpkZ7iJAwb+8gQhvIkCLb28Nr1YhQLkubBbuxCBArcROcfr8H0Bd52ksAPEfQODdACbOZR9AXTWdSD4hIEBB+XLUQYAgQI8t6aAIdSBAn0boK3sLIUDVMiafP/cgQE1IN+daiiBA4VLQsUvEIEC3OM1CvcggQFNnkr2TwCBA7zz8demtH0DWWNrJzqwgQCq/4q+MwSBARXsGwosiIECCFPCrJXMgQAL7Kkk2EyBAzm7nu3ItIEAAiBESyJMeQCFRGzhsRB9Al+8YfQQCIECwMaperJEgQFuuMzb5wB5Au91WLr39H0CG4oukpGggQEt5FJinkiBABweLiC8UIEAc6WxUYKAfQE5jxQK0miBA62LRlsnEIEBrXaEwXd0gQIkyRCv90SBATdzldEstIUCAf6o0LnsiQGpKEGaqLSJAK1GBQ2PHIUDdhAFy/JggQGE3uoeokiBALc8DSJiTIUCqpPHQuPwhQLE5AJU49yFARqmxbVeEIkDh6FBWYWUiQO30yCsy6SJAaPtn1UAAI0BLo3aEqJgiQCkfukoXNiNAOdBMESRjIkDXCBz3/QwjQPKqjc9+NCRACy5L2SbsI0ADv88GSdwjQDuD9U2KoiNAKjyLQobNI0C5FXgyfG0jQJQiulbzLiNAhajxP63yIkA1M8kWZ1QjQG9BLpE7OSNAzzjiTOMpI0ANwzCpqLgjQBaTl1jt8CJAYVxu0e5yIkDjwpG17AIjQCYWM6y60yJALvXqOn6pIkDDQOsWilUjQOhfc8S6TiRAEr9W4y7TJED3N3XWgcYkQJ+yz1A1EiRA7Bs3G3dXIkAafrjkHgkiQAGeZDyIXyJAC2vDzsLxIkCQRiZHXu8iQFO+KkmHoyJAubiBA983I0B9zEqeKX4iQBaEOSeJVCFALFY7bqtiIED8uCBZj8cfQLgUxCv9xR5ATEhQWmoWIEAlI0jeOQMdQIACxndl3BtAM36yfNuTG0AVcRgW9W0bQF1sVnU9ARxAYO8+9e8kG0CTAhc0LpMaQDSsoRzoDxlA406cmxMXGUDEaU+Gzo0aQCQmi4OgHB5AhO0gW5n1HkDsEAPwVgkgQKnk7INHCiBAsbs9VHOVH0AbVcLCjGgeQLvx5V7qKCBA0DoBTjHeHUAb8b5yKZscQCAzkXbPAR5AuaClOfdMHEDDbpvPnZAbQPmJRPYyKxpADBXg+K3kGUCvk8QYkv0YQHShuX3V8RdAuIdYQhQiGEDrF/Zk9q0VQP35NsK1kBVA6UXkqZOzEkAZ6ic/XkwTQNnZWLiydBNAgzsCvpWiE0DDpvwj7/UUQI/Q2aIOLhVAxP13XFQsF0AsbfB3ai8VQBgeIF6h9BZAmxOUDYXbFUC69OMmIQ8VQAObgJNYaxVAP8JMMSJBF0D8bQTbVmkWQHkCC/caFhZAo/HKFpPIFkBbclKMiJ0VQL9MIJnGBBVAFV8q9l19FEDTDpPk4vsTQJ3TbVMKYRNAY6k0WX/mE0AP86yC4U0VQDNZjYJ/6BRAL5uYrDCuFUDlK3xL5tYXQDVB/YADIRdAVMchLze1FUCHMSxd5jkVQCPd/PdXrBRAxyIAisSLFEDj3zbFI/sRQKA/jbJNexFA4CpOmINYD0AoJJEPIlQRQGMR1ogNiBFAnntUI5T0EkArC+Go/yETQL6N2SKvVRRAmehhVDmqE0Btl/OyAW0TQG97/9vOuBFA6cUDjWzJEkAgV/iJWf8VQBNEGEF3TxVATxWS1q8PFUCVN/qWaG4UQNm1QHlTAxRANf41mfgbF0AhHFJYd+MWQPe8eRkxghdA/ysV0AICF0Dgx8nJlKgYQD3WcEPwjBlA/VwE3ZrvGUDQXsKF88kaQNUDnc8RFBxA4MSAG8QIHECBIfUNy/8ZQFWnjBC99hlAZTDyiuZTG0Ctr1CW4eEcQIX0/oWfCBxA3wLLPBPEHEDUHYU/X+QaQIGPIXGpGhxAMYqj8aBbG0BHHJFE5c4aQF0+5/N41xxATLVakYujHEDHLM69HwweQIthaaG4mx9AjftZYvcJH0Av8FINmc8gQEAwlCT3kiJAFUVeuZpHIkBZ0C4ZhGoiQDQDyUsgXCFAWNr069BWIkD13t/wqechQAaxGfk74iFADr3Cbs6GIkDNLhxo28EhQN8irR9vdSFAAUFLvv4mIUAYV8dQug8hQAKqP0YtyyBA/kcQnzaYIEBZlKAHzH4fQCt8ZrtvCyBAQ3NXXDQdIEC0F1v5j1ggQK0VKK+R2CBAoWGUOKqoIUAR40x5mHwiQJtMNH1ssCNA+mTOdO5zJEAUNUFTpwAlQIV6kXuvOSVAa7zluqceJkDQ2ztG3tMlQA2YovIaxyVAv2PuPe2+JUB5sPEHEDskQNSkBNw3bCRAF6LHtunOJEA1WpaeZ9QkQLrtGUcXiCNAqwxCgt6OI0CscIwKRFUkQONPLaJYKCRA1ijb47ytJEDmoVxyTEwlQJPH4bK3hCRA3wUxgLiIJEBjb8HpFrMkQKfKhaMmmiZACNLxpph5JkCM6Vz1WucnQO3BFT0JGyhAbbXUAsatKEARIzsbwiooQOHbsKi+NChAX8z61jYtKECtSZYE/+0nQHSJuSv/OCdAjYoH5e2DJ0BcAdk6EbMmQMnJ6BdgZiZAVAbFI+VNJUChhixdwi4lQDUGsdBMayVAiZbRkc4iJUDRyfBEn5skQGQ9UvZqmCRAd4uyAer2JEAs6pw/0sYkQFdI9S3PJyRAbaBsckJEJUDsAKfdNJQjQF8SAFtbzyNA/BbhJfKDI0A7sCb1aRckQGUg4C9Z5SVA+PFvS/MWJ0CRL90qbpUnQLMO5gnGPihA48JDz6PfJ0AvWRSy1TAoQFnv2MLsrihAIKcNmff6J0BHczJlfWYnQOSiziNjrCdAdwFU5TFcJ0B96hICBqooQIEpRV66ryhA+RV2xWz3KEBFD9O0GmUpQIyIDRc6VylAhNOsDKlFKECB3yOHR+EmQDzzduKsrSZAVCJ8tUaYJkCRjCr3VDonQGzxO+HkayZApabu9dE/J0AY6+pw0yYnQBxWaFC8jydAr4veUPwKKEDFCPVWj5InQNF46b/o9idAaSXQvVO+J0BFPckSUgcnQDj99xCoMSZAw0QL6sIGJkBdEmx+d04mQGPpS1shWiVAX9kOqYtvJkCt7zbN/nUlQBe/j4Bw3iVAdCzp8OGJJUDUfYnO5Q4mQKuIDuIgNSVAz3qO/K8yJUDlRwK3guMkQOXc+4pIbSRADWZZsAepJUBfX8n/LGkkQEVBsQPUkiVAuaZ56E4qJkDFTcyd38slQCHPuReUgiZAZX5PQv4wJ0ADWUGfimcnQPAePm15+SZAZEDiRzgnJkBkMmjVjR4nQNiztucpSCZAUSwFLWO+JUDv86T3q2skQDN1wTRJZyRAb6XVQlkeJED1j8MCo5clQAwiNZHzGiZA8C8HJooFJ0C0a3jCrNgnQNt/idr9NChAnX3bToMzJ0BHMqDujP8nQONDDxKE3CdAH+frz7iMKEDJEIjyHXYoQCmU2gdihSdA01v6oOLjJkBvEGpsI+wlQKiOPSOJAydAx1Ji3Pm2JUC/anokPbMlQAdSI3JYMSdAhT9vVBq1JkAtvpSptkUnQMjHlj4GQyZA6/FNowgfJkAl8VPMCnQlQFDcfd5ewCVAoGECKhTOJEDzwe+lVogkQOmIc8e7rCNAQQq/cVXbJEBFhBdt9SMlQLX/0mny6CNAAlQuPEqSI0Br20xU7mUkQF+0/2umLiRAd082B3syJUBg7uNWvH4lQO9PAO3hdiZAVyGStFs9J0CHrxIPzuknQK0hF95p5CZAtW9yn/ABJ0BE12C8W8gmQPPcYZLzQyZABQIcVdCaJkBNYN/k1oknQGA/9+jOLChA5DxPcq/IJ0DdaNs9iNMnQD9N+UD/jSZAdTi8dnlrJ0CT3BrM+BcnQE3JI9msBydACW0qiks3JkBTaUSrT6YnQLzYF/Hv+SdA4dwBs/GFKECE53lHGukoQNtGoimLNClA4x7fi1AcKUBnRL6FslkoQE1UmOWMHClAkQfZSvXIKEDknKHS+sYoQMuJXGHHTyhAmwOoy6p1KEDV91EtB5YoQHeT7dCVtChA7NJPRpqtKEBnte/sW0IoQLh+1qM0kydA/QxQITJ6J0DD9h65ggYmQCOlkghd3iVAFV04VJ18JEDFmp1v5ykjQOKEhs2SniNA2EosbkSnI0C4aZJlUSAlQCG62p9LbiZAYcRusN0VJ0BHzSyE23UnQOCWgxfM6CZA6zATWmFlKECY7nkvIh0oQKSSl9YoNyhAT6MIkgnxJ0CIF/w2sXYoQLCsqApl4ShAIXclJomiKEDni+jGn4coQET5ow8gkihA3zCG4FUOKEA7fakgBu0nQP1gxm2KQihAICApmJ+RJkBoNDfBq9MlQOdnbv6wQyVACQinhsnMJEBi+vA+TvokQDlX4DOfJiRAeW5+UgU4JUDMCKwI4ookQH4pLOrgqCRAheE9iq2HJEDPKr+TjiglQDPcWeLMEyZAH4bgwFffJUB8wFrUTaIlQLExIWgQVyVAd17DYaZWJUBZRzdWoJYlQJcXRoC57yVAJEe7HFO5JkDhpIJJdJ0nQJ1q4YYLHShATO9SxmenKEDZwH7iZAUqQCu3975R5ClAKRbx1Mb9KEAMWBd1/MMoQNuO5NoRhSlANHV8/KgJKEDA/uru42QnQKyIC2jBSydAA5Vl+wyUJkDQ9CVD+dIlQGiWDuMldSRAMYl7OG0IJECCcDRlKjIkQE+mmCPO7SNA7SoMl0RZI0APLs/h8RQjQIo5GDaoiCNAuDc4G8sKJEDeWwE7OzokQFuOaAS2yCRAOM0wRqhUJECjBd0sB6kjQJ5v58hIuyNAj20KHcCUI0BJilaQXnEjQLlG0RBwKSNAQd5sV9ILIkA/XltiOswgQEcTTfJd3yBAFs+ZgzQiIkAX8iwJjgsiQPUAqerlKCFAT+vrV6iLIUCPWlHwgeAhQJ/GPJDzeiFAzQic6d3KIUAzCNks9cwhQOiHVeJMSiFAV8ySD+eYIUD5xaVJBBQjQB8KTpgrjSNAJWft/wZmJEAJ5ab7OLwkQA0fpgef1SNA4ey6BFaSI0ACTArjS7ojQHRuAy6e/yNAf3qtOtlRJEAzqUoVFrokQP2ccJiO+CNAScMzUBz9I0Cjbi8kjrAjQMHUA/+NFCRAVTHow2+wI0B94b6h3askQGfA6I2PaCRATWvjexc3JUADGck8bQElQKqRxrRJJCVAYB8f8rFuJUCzmDkJ48wkQF3kgUlNWSRAcfxwISOHJUAV+bguQsYkQG9VqdTEeiRA6VR36BfbI0BXdeVOiwQjQL/+THLG1SNAq/euKdHDI0AW5uXRdB4lQDH3IjMEViVALxru8FSMJUDT6G5aKDYmQLgZ3A2NGCZA/64ZxC7nJkAb6kVhHiQlQFH4Bdp4xCVAU/ddxuQZJ0DFdezuWkAnQMhl8KTo7iZAv9YiOJWQJkC/nzSXTDklQEcagotzQCZAu8vOPgOIJUB5gjQ613ElQF/jPwRsfyRAXLrkIsxiJUAnOtJ5rFImQPCQksNtPiZAmBElsofJJkD1HU4YM3UmQNypVIVi+yVAYEeV6B3qJUCNxS3xhz4lQHUpaGeAfSVAAQ03m5lCJECf7KOxMfIkQIghrMgsjiVAB1cK8NwzJkDJWFJnW4QkQPAUqj2i9yRAVwflrK8BJEA5k+qmrpgiQNNhMh/UdiFA2W0UBoiXIUDg6eUmrq4hQH1OHTxEZyFAEIuhIih6IUAuxu2Zzk0hQP27suKiNSJADz4Gy7wBIkCDmqyOCDgiQO8mXtplWyJAUylfZ7U0I0A/eSqWNMQiQOSaxc52ByJAP5NbDVYCIkBCzdDp4DcjQKfC7sq0QSRA2yLZSoBOI0DRn+Xf9D0jQG+anfuQxyJAdhIDG+s7I0Dl+5880EsjQJBF4W255CFAcoUi8ExgIUBh+cxOe4wiQIWhBtyz2SJA43LHV1xhIkAnKZ0Mtw4jQMGB3Ei+kCJA+y0FFghjIUAzawuHCcMiQDXXFV12HiRABcAY5XGKJEC/FHnl1nYkQNRvJWqW2iRAM338JDBcI0DfZtGVWA8kQILuqsFtNSRAa83rtur4I0DUiGItEkQkQD8IdkUU1iNAAShsh4DeIkBcFFIUK98iQMtBwsHS/yJAJMHtzosGI0AAKCCXPs8iQOepruhkByNANLycy+W3IkDzVDnEztUiQAUljg+PoyJAJxu5rg/HIkB9UEe4PbAhQNlRBd0gPiJAXKRZa0COIkBFAL0HwT8iQAxhXjFN4CFA+kmguSJ0IkDo+1pwOwAiQGn0y1tONyBAtF8mwvJVH0CVfXCA4AogQN1HNp0+TyBAlGwIczotHkDn3QwcH3QfQHHePcHCxx5AG2Jr+Y2EHUC9UBVyyKYeQL8KM0J+fyBADkL5Cx1xIUD6s2ibiwchQFQIa1hyViFAaVUydNQEIUAGqHRSy2YhQPCyTa+AVyJAUH87QlDAIUDFw5auD9IiQCcVB+1ObiNA1l6DH5pAI0DQ0+OyOfwiQHxwgZysNSJAOzZ0MVsgI0B1rsaLGYQjQEmHmxBWkSNAkn45eq/1I0ARpzqbBgskQAUWUraRzSNAy0CvGJXSIkDjZiUFGVkjQKW3bjljLiNAg1MlHd+aI0ArjErzw5YiQEomoxCVMCRAea/DnoccIkDdvBdFwKMhQMnTwnjMOiJAiH66dggMI0D1bYjW9gQjQAwpk+LidiJAL3W2e130IUCRU/eqyrUhQM6K17Da5CBALJYkTNqmIECpbPSYmp0fQM81rv6VliBAK+6vFQCHIEDxR2W5Tu8fQDfzuN7EeCBAuJpuc8usIEBr3csIvZUfQF9ZDcvFlB9Ae71XfOEYIEAzZF5UcUogQFfNplvsTiBAn+y97VPFIUD1x1NohWQiQP68gpsJpyJAOfPcDx0jIkBDyUvex5YjQK2tJCKWqyJA6G2xfv7qIkCpDwXF6+QiQF1OtKuH4yJAnMhWdC7CIkB30XyIp8oiQLciabR/9iJATF7r96lSI0DdmiFfRzUkQJD/3Cc//yNAQPfaCsaUI0AabsNNwAojQAeo5wSyjyJAwdGkRwu1IUDjCJozqdMhQOyTcSm44CFA8cnncJUBIkBNpHkGbJIhQAEb/Ov16SBATTROLIpIIUBgU/VkLgQhQLmhtdnhpSFA4IGE11XMIEDTNoghn98gQLHKCBxjnCBACH60eb3YIECh6zBNIGsgQJnZntq4dSFATiEr8t36IUDxKoj1ICwhQIGKcefWOCBAvGaQ3Bt6HkAM5JscuYUdQDQBzG3afB1AM2L56cR5HEBFFYX0iUEaQA1ArVhb9RtADz/b8+G4GkBLhaTx7ikaQAyANtJb9RpAGcsUKtC7HUAlb2BFK3sdQJzUYuECfBxAExUQJsI6HkDrFd/hPAEeQHsfTWDEax5AufTpcxaLHkA9XcXrkZEeQFk57Zfnux1AuFHPuC6DHUD5C58Ehu4cQK1wRtkfox9Ao+UYYCjHH0BHgH2EHLcgQKKJMECQHSBA6TovRQn1H0Cv8SdHVeofQB92zwqZKiBAL61olrusH0BWZEr1JOwgQB0D8AdImCFAuP+7lslBIkBK4VRmz1YiQPhIFyfbgiJAG2fNITu1IkBcCjg4cdIiQIdXJs0dZyJAKa2HlluFIkD3JKmJDw0iQNYnMFzIOCJAI/FXcKwNIkDDN4eJ4owiQFUJZayZJSJAZ/RHs1DsIkAluux+PEkiQIK3c0udtyFAm+rKnLAtIkA32MzkRnQiQFOqYjDbXCJAG542PBSvIkD76LSgd/oiQHvxCnGkdCJATxRYYjhbI0DttBO1bQ0kQJwsgPurZiRAoMbTaD8qJEDR0M1y1l4jQPgULF/j9yNAU0zj7KbKI0AUms2rIZ0jQMSbaIc4zCNACzIGjJNAI0CJk9ejNU4iQBPMjarsSSJAY7f69eLfIkANQ04YTIkiQHLicoJ23yNA82ERRU5xIkACvSfSyu0hQI8IKPBr1SBAcdTMoNXuIECUQMXzKPUhQNvCC2xjsCJAEr/4qi42I0AMmeMWzEUjQK9s3WO4DSRAK4iRA11KJECBCioa7gokQAA6Jxt/3yRABtdnTc+sJECTp0pKtuAiQMUpvzNBASJApNXXLt3RIEAhXMKaDvIfQGfbfSyFQyBAcjMcAZ4VIEDjXhHnvLAeQMfkF8Gg4x1AXOZarZucHEBwioN5g20fQIwiInTAyRtASCIMcU1xHUD4JuiWWykgQE3t5VsnYx9ArYLUDm2iH0C6OYiW0dIgQHf1td1N8yBAdNyq9SNMIUA7oS8I1zsjQEvd/rfKAiRAJuSKU9hKJEC9y2VjN6okQC5tmMSc7yRABSC11lv/JED95ph+Z9MkQLVXxznV6SRAzjaaGuHxJEAYQarCYbIlQMUYQ2FYHiNAqTQYh47KIkD1AqTRoZ4jQBfnz40+TyRAxKGlRi4SJEC3flNz6vIjQNdU/qBEyCNAZwjUhsM3I0CLo7K3HgojQNUAQWIg+SJAQ7RDVXYfIkDhb8S47echQMiMwCF64SFAOytzxzg5IkCUNZtB1qgiQA6WOb+qoiJA20xelHUiIkCM7sCwAeshQETQYoNW4CFANXZBt+G/IkBrQjLG8fIjQOjxilgAiyRAKY+ssEUaJECNu8UhTbAkQPXG+XGXlCVAaOpHNwFhJUDpk+o7BdgkQGw6BDmGUyVAXsqxXHYKJUCQ9P9IJgwlQH/1pwfknSRAzOqQbQ6FI0BJ7bPPEt0iQI+apEMEmSNAg2F80EknI0A7uT8zEHojQO0XRZGhPiNA+h2tgmcnJED5qC6FGb8jQFczK7BwzCNAh9uzmlnmI0A3Iefz8SAjQKAN32/qRiJAa5s3C4ysIkDwmpEky7siQMuAMZqMByJAhAwVwMBXIUAoswjGmughQDMliyEqfCFAm48/EM5+IUB4PniXNmcgQE6HlkTcXiBAraU2jMYZHkAEkWjYTccbQHxBFpeyfx1ATL3GAHRRHEB3pwivLAAcQP0lO0ubvR1AOMZnXe6QHkBryzrTetMeQB/G5Jl+ix5ARAskQdShG0C71+n4m78dQGtJpM1ckhxArKoxi3A5HUDLYUyvS1wbQNv15Gv21xtA/VPykXI6GkD7yFkWxnQaQIRWxSiPXxpAg9WIcyksGUC9+7MT4VYYQLE0PTQ+KhlAWyyNkyBpGEBhWuiywZUWQOOg3k03mxZAaN4STG/AFkAzQJScZBgXQDvDjbtiPRhASK9D/NLdGEDoLHnwAiUdQJSMycQU7x1AaLK48bP2G0Aw7Aq6Hf0cQHyVPfR5GhxApSFx5y+bHUDdnMvoaIseQC/sRekdmx9A4wFSrosuIEB1gtEucL0gQETXSPMuph9AOfcKr6BKHUC3jpXeGPQcQDTzcID1nRtAXSXJQ+43GkCl97Fsk3oYQDNNxMhaYRVA7R0A9EYVFUCPFFWFqcMUQFG4eSv1fBRABe+kf3ULF0CQob/L2X8WQGMsb+5AwhhAjY0W80eOF0DXu4SA3LAYQOCLQQifnRhAGGu/FhU8F0C7jVzdWx4VQEWhKgeOehRAjY5G5Nu3FkDZlHJmgC0XQF6pJiupThVArT4ruKVhE0BnZcaZ9tUTQLZ5vBjgJBVAWzxLj8quFUADvcEOWl8VQM1h24crhRRA/Rx0UNRVFUAYnT+Ok5sUQCY2pld8dBRAuSnoMfM/E0DcQcMPC5oTQKpCYO8rKRVAWzF//SGgFECNbP7sXVIUQDv6BtpXfxRAfJlZpPa0E0DedVVhHwQTQJx7wpFA6RNAFYsjyDIbE0Ar1Ro7FIUTQAjTaEDckxVAOXj8H9XBFEDPYB/N2b8TQLxhJ7+eqRVAYe7wZxVLFUC19RHLPP4UQP+2mcdCXBZAIeNiCvqPF0Cl98a5SF4XQHuWH04oJhVAJ0etkkXYFUBHb6x3m20UQDtm5vPvhxRAQ2PlnoG2FUAWgx1scOMSQLNcHD7/MhNAOPr12E7QFEBFN1MyDWQVQP++deJrohVAoAU2n6nYFUDxDLP0iQ0WQGmJZ3pyXBVApemkN9V6FEBERXBEsBsTQH/JzGM4kxRAOdOpLDpyE0APs+noIpESQATRLH/blRFAPKysi/0OEEATr21LcoYRQMuPufxZ+A5ALZMRmbB6DUCg+U2+rVkJQA8aEHGHCwpAFGe942e9B0CneYsR2nwJQPx823/qQgdAAFzEpOJ3CEBhaR5k1yAKQGFzCiF3oQVAg4gvalb+BkAwLErV9G4DQAufWhw9jQdA9mKQ8pe+BEBZNFEEQwgCQKtVrtbSWf8/LP7Q7+Ch/D/Ns0nqzcv7P4dvBd40UvQ/xIRqfmk1/D+zx828kfb6P7A1EQgtI/8/qbw1BmkUAED1fkIPU2L7Pz9r7EHr0Po/RQHk1+oIAED/1m2SPX4CQGVy1XyBAQJAhictw4lLA0C0uA60XiEFQEsmji6PIwVAtInjqHfzCEA9G3msy5wHQIuO7U5k4AlAT+HPbWAeDECkhyiFkAUJQFtT2yk8qwdAC/dCiZNsBEBLWO+AhGEBQE8HbWTbCwRA3TJwq46zBEA8heeyr4MIQHF2pj5fuwhAHY5IoLLDBUA8puJ7CUMJQNsp0xC29AxA8cb/mvB6DEDQ0vz1ZhgKQIE9YYTvhQhAU6BkRNSEBECEaTP5NEEFQBe8D2y8WwVAVUaDR1qbBUCECcFfBkoGQF+GTCd0iQpAecjv3wrYDkALx6SUcjMSQAylkGLTbxBA6Kjf0ZckEEBDLXX1xvgQQFdniUr/kxFA1bjW5ndiE0DGT6D9thgTQIjaiEsTrhFAhbmbOoeBE0CLyL4JMqYSQDeH6OOmkRJApb+Shk9gEkBAjNXvtdEQQGvziiV73g9AQpf4qHJeEEABQ9/snYkRQI/brT7oRBFAbVMcsEV/EEDzweGV178RQMRSDvLTsQ5AiQJnFefBDEBrFvjop+4JQGVjueHTkAdAg8m2unZtBkD5x3PZr1cHQBeakV2JsgZAmTbcg8sdBUD4gHOsY1oGQHURGDPpKAZABFhrYPuDBUDUdgPIMhYCQEARz0Y84AVAFRur9NZ5AEBobSI/1G8BQGN/sDNQ6vs/EE8o/AFK/T9reY/6IP0CQKS3K/kelQRAPLPWq9FyCEB53eWeSRENQEQdHswChA1AO38DCbcsEUBhcxKu3KUSQCPlWIUiHxVAWUeOt7YvFEAqpM09s/QSQA8dSAXmORRArF/66y0ME0Bf/8LiEcYSQDB7Tyl0Sg5Ae2ZXIOdEEECb5vfbdkEPQEryM3wWKxFAUaNjlmeEE0Dt1G2m6mERQJ3EdiOH4g5Ay0Gqwb2LDUCj3V7SvTMMQLPAQOsbfgtAp+w3Tb2sCUBoJgiDb7gIQHg8yeY2EAxAN+NMlGwDBUA/ZyK2JsUGQNcEb3NApQpAHPOZ7+ihDEAdC9MovAIQQPxJ0/CwCA5AgxfG8z6/DUB8ismUPt0NQOV7RSBU2QxADHTZFfW0DUCBqhkX8MUKQE2LNgnuUQpA3UEZHf5/D0BFWYx/yAkQQAfrPg/n8hBAGY43XmMoDUBAgXzquucLQMh99rTYChBAUuT80xbYEEBXb8ApS3MRQBTyuqhFMBFAa/jlwIQjFECeCopse0sUQDGdo9M6aRRAXTB7ax6+FUBhBqamnxkTQGvGpRm0mBJAXRC/BUxYEkCg3G1I6L0SQA+xd/C+OhNA1GcR765GEUCo8OZtJ8YRQHYutsxjKhJAq/TWvc/FEkBz3KAuhkkTQP3l8kuoRBFAw+n0TtgjEUAhI71ckv8SQFMC4o4jCBRAkeTHSGzNEUCtGGH0H+ATQB1hdTaN+hNAyRqEpaCyE0DRIPiBHy0SQKu78gPGrBJAflTlEt1CEEBWhRMBsBwRQMaKINlk8BBA+1LTbGx+EkCYKOdSAmkSQCg2mcWhOhFAVjS7uZFdEUAPR343FY8SQNHL/u+jXBJADjqDQT33EUBT2yOo2doSQEkmhMeJSxFAflom5NBOFEB3VowN07wRQGo3k+zf3BFARYR4n2QeEUCkIxZx67YOQDWQW4J0pwpAjaQYF/vwEED7Sf9re54QQJwExg/VhxJAXzp9SKnjE0C6cGne1NATQE4wv7sSGBNAL906spYhFkDUIMoU7asXQDHSvHyPERZAd5sF4/iiFUBjIwgrUscVQMA/c5LxlxVAjYk84fBNFEDqQ0/J/yUUQDSP4t9voBRAVFqQc8sAFkBADrHLFhUWQAtXHSrSTRVAUC400wJPFEAKNOUOxEUUQKAlH7yT0RVA7cG+iobcFUAUldY9NOwVQEe7DnezSBZAZT5VKj6XFkChGPpm6q8VQLTidhPF3BRA/WvrTqjZFEA4+HPMJ1EUQLqp7hazsxJA+/7v38QyEEA34cv2BBIQQDpgMEd4hhBAQzZeSXQ6DUCnhfWJnIcQQAFmQeivthBAmeDKWNDREEBqLwkgt8gRQNJXjdarrhFAgWP7faaAEUCBw3cyNGQQQL8oeRmvoBBA3u/wIJjNE0Bbn/50uioTQABiJ18+UQ9Al0EJGBmUEEDZPEr2rekQQAywvqhuTRFAs6DSyTKAEEBhHk+wNTwQQKfIb9CKxhBAM4q2AgCNEED4u1cHsyUQQP+vctYyAxFACgyGqWNvEEBHH5iVpLsQQPeknVlHuBFAoFeYKrN2E0DVDSS9qt0TQFU1+8L0KRNAHYnck6EPEUCepwq7d8oQQO9nS61pDxFAu2Jb/pmrEUClhlLlbkERQI+dotx1oRFAfCS6EvSGDUBEYErIYIALQJcwRBegcAxALx/xPbMvEEDAaVz4rekLQG9eUTiNowhAbVOxC7dhCkA0ztQxH6MLQEOeKucYxQtAvVLm5y9ODUD3sqFZeYoOQKn5Hg+o3QxA9fwT4Mt9D0BMogNSI90NQA0rwYNtvg9Ae+bI5bfBC0C0zqNjv1kLQLPQLCAWaQ9A+fKy71ajDUDUUNVfQrwRQFnEriQsCxNATz4eyfq0E0BMU7SXePsTQIR3IjniPRJACe1mVqz6EUAuoFZlGL0SQM1ppIQFOBNAiXsLTRMvEUAfBMTKz0URQCWi5SiSehFAP/55cx1OE0DfBqTk0j0SQMQ3cLQBUBFA7bCecwNhEkBPxuHkKroTQOu6Z7yr6BRAQ+el1RjcFkD1KentdRAYQKk7GW/SlxlAnXVYFwaIGUCl2AtAwt8ZQACuy3B4hhpA4I+vPbOrGUBlWT4HTzkcQEtKNaePwhxAoYEJzMtmHkDjie+DesgaQFQgUg0HqBlA4eaLZf7oGkDN2L/mvsYaQLeRGaILmRpAmXrQwY5SGkB0mFv9s8sZQNQesvZojBlA1wA67NNQHEA1vhuMPzkbQNyJrrCagBpA+IFVrgT2GUB7LRFMPsUZQAyD+qwj+xxATdLsp/58HUAzfasvCLgaQNejMJiiwhxAlSYfkXcrHUBkaFZpZGceQI2V3piHXx5AzBVYV9fBH0C8Sj/TSLceQHWBmYf/0R5AUOMuVxjMH0DFSe0hEGcgQNQ/dFK+8yBAIhZmiqg3IUApl8Kz/wYhQIehh6UScSFAhfTJ3wiNIUDaiku9bs4hQFevCaxKvyFA8aCoUoTWIUDsXhpP2AEiQK2wNMG9KyFADaiyCLe5IUDXWgMpQiMiQHdyDFG35iJA/6T5ZWJVIkCf3AliGpAjQCsrmYJ7PCRA8aQvfaW7JUBXW8N1Y4IlQKJVDU9NCiVAtgZ1GDsnJUARatVJpbYlQLPjF5laWSZAf+vXpZC2JUAf7JKL3OIlQAla4GYKLCZAhXluaMBFJkCsxcGKc0cmQKsH3rSkmiZAyF34WrzxJkADjGSEmb8mQOMnhnVACCdAV8XvgvXaJkDkjrnCSz8mQFTrZUIpyiZAr7+F93HWJUBljoGv0q0mQJSoFQmWFCdApH/J6fKbJkAIIFrQ5SQnQATu35+KhyZAHEulDbEPJ0A5CNDrSOEmQJXxuRVdYiZA0HqivLKZJUC4rZ1GoHslQFQCqgu+USZAD6ces6xwJkBghZOEGy8mQJgVBgPYPyZAVU26KDorJkCIjHnQRbUlQJnRCBGTYiZAKKFz5ocwJkB5VeH741IlQLyw4CcbziVAmcgTnwKGJUB3OfaDLQ8lQC+yXloYPSVAjH/2mNVPJkBDDZx56ygnQGWIXDOWWydAnPr/ADp3JkALSLV4WZImQBT4yDYI/yVAV2VnSI80JkCErVWrKTAlQEvtxe32JSRA26Sr6Ba1JEDCVDRtHDgkQBT1m1QdgyRAr9ES/65nJED1GoWA+2IkQClqERZiJyRAqisSufj8JECXb5m/FwklQGCVKPx6TiVACa8Q2AcpJECFwYlpUDkkQMQZ7zTY3CRARZsb1tmfJEAx2DGCF1AlQKvRZ164aSRAS16f23AVJEA2k24cXD4jQC8XRZz6SCRAodHlhzKgJEBHjSPOLRwmQMhCN3R9iSZAN24HmLaqJkAnJCnMT/QlQGSQs2aekCVAj9K/+wMfJUCY9TprOP0kQMsJAsnD6SNAY2sJRJ+sJEB/RO/C1w4lQATwX961SyRAQTKsO+EFI0DLBnr2dfgiQOv/YtYaziNAi0LyfAHeI0Dj8wSnn+sjQL2ntubTTyRA3JkQt2vcJEBU6lPxRMwiQCAuIrrVryNAOUdUk9J7JEBhdoena88lQDyiZTtNOCVAqXxC4w4gJUBtqlXVW2ElQI8HMwdEUCVA08BV2fqOJEBpsVEYsy4kQAyEdt+ABSVAP8F2po/6JEBqnIcVcS0lQCS/3lLUdyRART/7RBLsJECQ1LwnAM8kQOU/O64F1iVAr+Bg8nAgJkDprW2uaJsmQP9C+1gjnyZAqAEVI5VpJUD4mAqqoNclQLMdrWOekCVAS7s4scEhJECt+I4yhIgjQLqAZxuPCiRATdvrMqz4I0Dopa3I6egjQORckEWRKSRAQbmtxMPTJEDZvQlKcj4lQLzm1LFeTCRAjcEpe8QOJEAv3zBHK7sjQHE0HBylJyRAd0YcHsouJEAh4Cg7xKUkQNwBPyPmmSVAacP+tlccJkATa86zJsckQP97S5viyCRAl0UWmMDeJED1f19IdjomQNY2WEQLPCVAdfk7OLt/JUAr4LOwuPgkQIucLtCjqCRAzX3WMrCGJEAVvsCt774kQFmb/rDJ9iNAVnSAnvpZJEAw/QCaVookQLM4S9xmoiRA25adj2Z1JECywt2vpVwkQF6dobUuECRALRgWzUMkJUDQWOrjCnAlQGCZdQh+iiVAsztuliJAJUDFhmT4+/kkQP7RiImmEiRAeamtmX6iJEB9M7bfcoQkQHonmAa8DiRA7YVtwHWYJEDc7B+JWGAlQFg5dfu7yCVA4yqLreOnJkCwEtl9SgsnQKAXD7w71CZA+8z2ANWjJUDJjHtszOUlQPkhi3astSZAo9p3FDrzJkDj8aIjg9knQNQHTwZwAidA0cnyRRuGJkBXybX5PTomQNFgidg4CidAw0IBXvfEJkDRZFa/YHImQHT13ifQeidA4CK+x0ArJ0CBuuzI6fgmQDcfnWRNQCdAU2t1IWLOJkD8k3CH2/8mQOwC2kw73CZAzSi52myzJkCZYquraRImQKYCfpCsBSVA1nHvLcwoJEApFzEbq/EkQJRNaWomaSRA5zf2RkKfJECOUkIp3XAkQE8tPNRVciVA62Nxi7XVJUAUjJBqN14kQIXPItrZlSRASRJVGSr7JECRlAcilFMkQDpfz0d4GyVA+gaEG0HyJEBDV8nktPQkQCikQIAkcCNAWIbbI3EhI0AWmqtMQ94iQCzzYgsdPiJA4fomNJ1OIkD/cF2vQEMjQJVYEufNDSNASWkehRQqI0D5v6hlrHEkQOXTTuvyTyVA1QJO7IgmJUCVQtsvmcgkQIU/0sfoHCRAMQ3o6SAQJECiEKHzey4jQJWbQQMemyJAOGLAS1CIIUAdei0cBu8hQK8t0aoluSBAZ8zMPBkGIkAggMalzMwiQEAkfDjOPiJAUSeqbm/dIkC9MTF3Sc8iQOVzM9tuQyJAFiO9Y6NFIkA9tiFhu0UiQE9Z68bu+iFAPQnjZLE1IkBlHE1XSYwiQDU4didmfyNAJxcIBShsI0AhKlnFdT0kQPSEOuOEICRAI+bVx+ddI0B2DUpl6zsjQFlh1cj4OiNAgfJ1DMQHI0AlNvy9DpgjQDPfEXqKwiJAn7GTH0UBIkDlVR6Vt5ciQBVt8SbNlSFARXETi3XUIUC3VTHTSpQhQAcRlu1nIiFANaVKXVbEIUDtOevPD3siQNYGTMi9FiRAfKNBmpshJEA4SG96PKUlQHPiCdD4JSZApH1h0pMJJkDASPrznGwmQKu+miCRWyZAF9K/F5mBJkD425z/CXYnQOzY8mQr+ydAuECYHO7RJ0DkNF+geNQnQMQLz9f4ZSdA2I3KlIn5J0AoU23MKQgoQNycimTuhShAk/1oertKKkB1mrB3q6IqQGvDieXZ9SlAH/uSsytTKkCQY0IOP84qQONcqHbtcypAKRK0QfJGK0AAhrVuqWwrQOfWARN5aSxAFaVjIVIeLECFGdnXbC4sQAGn3LaFPS1AI1LycjClLUAHfD6wltQuQIkMUqovKTBAX8FyrxKoMED+33dQuZ4wQB9SjfzXcTBAV1iRZ+SWMEBrg5uMyD0wQMXxesDyNTBA0ZlVkjKlMEDtvvSh2OAwQIVQCNXoKjFAPSfYCOFfMUA0ZKjmOnsxQA1IB77hezFACxnQkz5sMUAT6jMuUAMxQLnjNonZXDBAW7X+9DpfMECu0TSIKR4xQF/lTuRD0TBAi3DknyvPMEBj6rhDxLUwQAtMD1btpTBAiS8ekzHyMEB3B4t3eikxQNOZ8ycZqTFAa+j6ILJYMkB3NJ2kDmkyQDlKk/gTxTJAGEVJQ42jMkAFzCCiuc0yQC0ZswgDdzJAK6clpiZmMkAtBsfYrkkyQE62GMuYmTJAOv9OzGy6MkAHJahVCT8zQPZk9KzffjJAP7kMY6NVMkDOtL+wyzUyQCtXNz5lEjJA4RUwVP3LMUDVA4prwbQxQAGGVWk1ujFANksqSbJVMUDhmVtmgCgxQJBp/b0rRTFAAvP39WfzMECSu7EXKlExQAAPJpl+DDFAv8fOw1r2MEB7Fc9gdGMxQBIlUqaL6jBAyoUzGbaqMEBZMAUUgIowQDesoxaLwjBAmy4XafkbMUAVHsYGOpMxQIbEmZ/EWTFAomXwjKCfMECnryY0ft8wQFVLiIEOrTBAr45ldzfUMEAL8ZOMH1MxQMyZE1ZQNzFAfYfSmHkSMUAPpQKJWHQxQLhvou+UlzFAUBoThmNoMUChb/0snuQxQB1fWakvyTFArgxeIGsXMkAfdtf05C4yQE+UrpFgPTJAkTnexxSGMkAFg6Vb0oEyQOtsIZgPFjNAY3BmvmlvM0DUbmW4lNszQIMms2Tl3DNAL8olRPq1M0CDQ96kNJczQE01I+iVnzNA5K8XdFPaM0DJbE8wfdkzQJ4K+REFCzRAOTympS3yM0BUPcLdnqgzQD1qSftskTNAh0ak5ISEM0BDG7z18owzQA2XtUMT7TNAAOVbN/jhM0AlLSg9SgU0QEWzUWU9xDNABT/RnPoeNEDKZEnUe/kzQA/QIfSt4jNAujRB+N/GM0CFCLJQd0k0QNlh/P/KoTRAYBSKqneNNEC/4HVfe7I0QOofN+4+hDRA7W/dACWhNEBdW4+6vRA0QMpHbwZaljRAlxDdkaerNEAxxT9hFMU0QLF/oU6e3zRAgXOpuH4BNUDhvMRjSs80QF0+ru4mpDRAK9MXqNcGNUALN4cabPA0QAlgRsJbOjVAbNv62AswNUAJpTnwDUw1QFxcNqd6ZDVAMiM7kZ31NECLorpLA201QDC/UT/DcjVAqDtsTmcPNUAw7j/WFko1QFMljwgfKDVAgzw+9iRrNUDfLhRa0k41QNTq1xyVCTVAnzD59m3oNEDPBHevQV40QJGk7SArWzRAhdSQsgHwNEDnXRA+TP8zQBiQ9kM9ETRA3VOr8PqiM0A9wCanwls0QGVBshtJxjRAZ7uoM+hlNEAn+0ENG8U0QF9N238t0jRA+KdCK69MNEA7zd5jVrw0QFP4HZ/sOzVAMa4HXF3ENEB7QDt3roI0QPXMMO+iijRA0bqfdNvKNEDc7UTRGEw1QGerbWYkdjVAWJ3gUXBoNUBoTqrM+o01QDe8zelvrTVAs1qMU+IzNkB3ckrZewE2QDRQrzMitzVAOy8X9cwcNkBjcDhhL6s1QMlVk7mbOzVAv2etcvhCNUBOQmRBb/o0QK7Ef4p++DRA4yJrlJZHNUC1G4UBGE81QIVpQoZnjzVA7p2AkBRTNUAbXgx8COw0QN9ApT52zDRA/wK8FgRxNUBFzDCNub41QFt6x43sOTZAqVSEh0PMNUCQCgMNxdQ1QI9qUW9d7zVAlZP+6RO/NUBVU57mH7Q1QDWLkxc1nzVAhTD0Liw6NkCJYYju2bo1QMQi8x6eqDVALTCrOfo8NUBC+KTMbwc1QEGSwvI2LTVAy3GOgecoNUAIOjdjTZw0QLK8lbhY/TRAW0mzuY0/NUAAS1ASm781QExAsT5PnjVAz2oeT9fUNUC/oPY+z+o1QG+fCRC05zVAo9yymLOFNkDbk5fVdMg1QNlxBwAqzzVAOYupQ9oGNkCTU6OesVc2QPdkH2TYRDZAoE0EuYVGNkB5PApdGvY1QHVx9g7+FTZAJ40lA3s1NkBIPOWaDh82QLFqU/xGADZAg5A3i5zeNUClAUYABYw1QPm3r0vCADZAuxnzCobpNUBbrcVj8/Q1QLfqkrd5TDZA1dRiydVBNkA9jZhQiDg2QFvQDGpe9TVAnSeWk0SUNkDs8hmrvDA3QJTVw0hI/TZAz+WT+co1N0C7+0UfDfY2QJsdFlAXATdAzW3CUCazNkCP/q5GjPE2QCRPSFu3+zZAU3wTf8UoN0Awc8qo2fk2QGhHssGh/DZAIU0LTe/XN0BgfpqJRUo4QJUuPmr8bjhAK2c36km5OEBAy+lIf3I4QJt2iDo0DThA1DdrlJoROECo5ZVeGIg3QLj4I2RkgTdAVTXR9bX/NkCb8dQK6Ug3QEfeY5F+xzZAZwognZLjNkCw5drk+f82QBz3nTZTHzdAF6T/ZbeLN0AALH6E2as3QGTgoOsLQDdAJx51/bNYN0D0vbdCJTQ3QI/in6KwyjdAjTYYnhKoN0CwHRRU1J43QJ/rAOWFqjdAHyam6j+GN0BjlnGLlbQ3QDXjxhAxgDdA2DhfMJ+RN0A9uSlnKkw4QGD47zTfsThA68aWSzsKOUB7WqKMXdU4QLsTacd7hjhAfDLTW6lWOEC8/UyK0FQ4QKFpDIPzzjhAJMWQN2eJOUBtdsTCIY05QOOlGJQFdDlAm5dGEzYlOUBMB7hdyCY5QHF4bVeENjlAwLGPyyfmOEDNvBLmSMk5QC1Bz13NmDlAUwZv75TLOUCt1T6jMBw6QJuwV4jOQDpAfIzxGQeFOkAl7nmT2Zc6QEccDW8ugjpAcK1yYmraOkBvGaFtoRY7QOT/thM2ATtAd4O8R2AsO0BQKpv2wxw6QNSqaOhJiDlAiIqgcrziOUD0xjEvtPg5QEcH8DzLWjpAMGNAMIwSOkDbc9y6c8E6QHtYW9tG1DpA5dqNWXakOkAbK797nLo6QAOva0IKqzpAw29F/+Z2OkABMo/muN86QClWyeAC4jpApFpcs5HXOkDYlk7kKA47QD1UZ6vFOztAD5Hca39nO0DHkAu6nVI7QLj9UT422jtA4QiVKr1cO0DB34ppGz87QO9qGci/AjtA98TdznM5O0BHba77ztU6QBfPVMUM/jpA+3ATH14uO0Ap8+WF9zo7QCvBm/HnEjtAAE5pKVJ/O0Az8rWD+Yo7QAMvWyUCaztAXeKpJvKCO0D4XVzNqys7QME4qaR/KDtAnTler6UUO0DJOLTBC0U7QFwZkdv2IztAJ/8YJSj9OkBsAAXQh/c6QJDS0DNdUjtAqdbkw0JwO0CwPyotvpc7QLHkB5FTwztADGFPl5AUPEAcZ7PGvTk8QB/cW3GPVjxAwxlj0r0dPEAgebDUAaY7QFHS+1SUXztAK3NsctUvO0A4hD6VkJo7QNOGUbFG+ztAySrjrV/9O0DkUxU4Ly08QGz1zmhttDxA8dLdrR8bPUBXOipHdug8QBSO5StiLD1ASZ75nNUAPUCnyqOiUbs8QJynSvUBLz1AMW1HpMnuPUAQPDerieo9QFt2WzO4sj1AubQIl3rqPUBVQPy1MBA+QNCiY+UIBD5AlzyYcrDfPUCv75uTtvc9QMEQfxzE/T1AH+Yv+6r1PUA9xy++SnU9QPDyiZPAIz1ABTHQDiFBPUCPvKasFv08QMDVmKga1DxAjJBNwnbEPEDVjKuqses8QCztLd7g1zxAG4AZMpDQPEC5ivglKC49QFkwPFUFrT1AX1jlaguVPUA1Hfv4Q/c9QO+ksfPWlj1A/394BoPQPUA5B55EXm49QECcn29yEj5Awbigg7HVPUAL94diFzU9QKiJlWRsJz1AxCcuuFUxPUDNYCYQJtw8QPA+9o9WqDxAv02DSmlwPECTMCyBBDE8QAvAyj16NTxAA0UUOPL5O0DkhnYzkvk7QJG4ROkqojtArBlP1+oTPECk7OkNWAo8QIGvlMDSLzxAq2b/WSJ5PECIlVMWS6A8QFWH2Dn2gzxAuVBqwQWYPEA/ag4twYo8QMF401SH9DtAaZgUcRlMO0C/QNd+0Rk7QBQiC+jbIztAjJWFwe8OO0D50jSqWd46QJjUS8ogpjpADzSh5wdwOkDlt8OtO9I6QFykECs1tzpATD7PEkkzO0DA2ovvtEg7QEvNFz8lvjtAhHk1FC+CO0Blr+XbXAQ8QK+m0GhT/TtAg44fU8+CO0Axvl5Be0w7QBvpEv8njjtAi68ccdp3O0C9nQXT0y87QN3M/4QtQDtA7HqgV1oRO0DNRkkpz4U7QJBQiKVLXTtAh1EZ+KjLOkBgqmKEMFU7QD0bZW2liTtADF0+av09O0BMzmyl9WA7QOCBAi324DtA5an1683SO0CpzVECJ2o7QBnjOswvOztAEywPZiXyO0AUu7QVCow7QEBFm9PPqztAsShsWZG9O0DdUo2XKEE8QDE5jkqniTtAAAYsk3awO0A8ujsOTcw7QMPlEpCUlztAFYHWJxapO0DET2+QFfo7QN/p4KCkvTtAiGfe2RccPEAx0awHdmo8QNkPlJI79jxALKECjfbQPEAx6IZrAck8QLvacgk0ZzxAH5oD9HUsPECw+KEm7w48QHyu8a7ItztAxDugZ7w0PEDAnk9H5HQ8QL+fhboEoTxAmzWrkF61PEBnHxAX0sc8QM+IwnLgSjxAIIF8KT5LPEAz6OGOUN07QEBQBiOt2DtAp0MiUGLAO0DLaHisGnU7QEUB2gSa4DtArSqpTJrqO0BAUSh/VQo8QEAMf83cIDxAwR+xjrldPEDlNKLWdNo8QOVMGYEIjjxAy5nIB6KAPEBT2Qn4P6w8QMxXjEBExjxAo1hvXBO+PEAXZfATi6I8QJHjYU+yfjxA7RFJiJqvPEDpS1YGak49QOkAIbE8jD1AIA6LCIViPUC5vJ7dCnA9QJDdvK9LND1AIQpJ47MyPUCgZUCSjI49QIFCSFOODT1Aja8LHyrqPECHTS+Cu7g8QNsFNM2O0DxA/KlYOPsSPUBTBtRV5sQ9QDeDO9P29z1AxI0nL7REPkBfWzWC9HU+QFGTSXhi2T5Ak0hE6pfiPkBl/KXjCZE+QMPdejY49T5AoLKXY/3IPkCHULAaCBg/QB3pE+ZESD9AN9sMnB4LP0C7AwaKAEk/QOfQMKWlBT9AIRDn8baEP0Bp03Mp5N4+QDcnNezubD5AO51y7whcPkDztKZQ3g8+QNP8dacr0j5AVH/JrLL9PUAtNgN2A00+QMfeVfu5bD5AtWbZYKLDPkATEQ19LYo+QF8iMarLfz5AEPD4qUuPPkAnsbyoO20+QPlvE8AC1T5ACHElB/86P0DZOpIBCTw/QDSq3Em2aD9AGU2Xubt4P0C5fmWIx8g/QAFUxr5jCUBAs4lbf5pGP0CPMJ7PaVE/QOxYtowc+T5AH0TJwu/UPkAbaCOvLYs/QBccSfga8j9AORI8kwDaP0DJDr7ROx1AQMyZwYwij0BABpaMOKqDQEB2v/9yyTdAQJVgGv1qXkBAxlgRKbJvQEDWFgBHN4hAQDbRz7FElUBAogj6zO1sQEDGm01ffDRAQNl2MItf3T9AybeeOM/iP0CuER/IOQpAQDyAXfpD2j9AB5DIdZ2+P0AdZLRrsPA/QL1WHZ7ozz9AgXdRMP4MQEDXWV9tBjFAQIN2THllvD9Ab1SJ1cKMP0BBZ3oExCM/QKhfRXPHID9AtKSKT1BLP0D1mAijhHg/QNOmyiHfpD9Ab0oWbbPOP0AJ3VYWKM0/QBtu+49d7T5AzFTvRAkMP0A1VMDFBgw/QFvJCHk+cj9AgX44LMoqQEAzaHbQyjRAQB+6kE+HMUBAGv/BUdxFQEAm2h4dOilAQFmgRsk+LEBAPa7Fj3MSQEAk4jkkQP8/QEWryMafvT9AfDRg24LUP0DZPJ+8nvs/QDVtruMbWkBANuC30T2BQEBze4NzoGlAQBGA5s+sqUBA45m5h4E+QED1VOAA38k/QN1sEqZ9Sj9AG+HAPe54P0DZOv0Dc1I/QB1vwFsipT5A0a/Vznm/PkCbMggnvOI+QKFn65lrtD5AqaY2xr1iPkB3zC85Q/w9QL9f0zjW3z1ATSCeVvi5PUBzRfgnOp09QJlFKLIhFT5A1FmkkXp+PkD8KRPnemM+QONTVDNm8z1ABPW2R0lzPkD7eBHnlgE+QKGahf4zBD5A9A8L2E0oPkCEY3a4NO09QAknKGsnCz5AC7BWyJVxPkD78WD+qLA+QO0fZtJXsT5AN3CDPdFnPkAPhji6ey0+QFWccLG3AD5AwFj9utZrPkAU5JcO7Sk+QI28T7sFhz1AibAZWzCwPUCEcv5GgoQ9QGwXDjOwQj1AUXtbRxFBPUCQ07y/0Q49QE0Uv/l0oTxAvc4ak15rPEDJzQ6hZ5Q7QPEUa/nssjtAF4bbEa80O0BBvQGi7KI7QEODbcVXYztAWA9BPfhoO0AfungWmt06QC/02mxARztA4zAlaMeLO0BkVOdXYbk7QJheVPx2ujtAjy7y3BTfO0CvtmwitD08QIikZtlQgjxAp3rL+qPyO0CFvzOkSGY8QN94uNI3PTxATYJTv3W/PEAgFYfQG9w8QG3G+ztrWjxA8DWwAgZsPEBokbamUhI8QNBnIUk0qztAbBh/kOuqO0DIgsG4yeM7QKmczxEdtjtADyL4+zi4O0Ax/sQjIys8QA0hETenPjxA3C9e59pSPEBQoOm3ASs8QMX9y022tzxAeNBHt6/pPEAE1fFzrIU8QKFhPprDSjxAS/d+UrDSPECJ3RjKsfs8QJ8KWCXN/DxAUN2PbP6VPED3yW4bzk08QDD9TZKXbTtAoDk2lHS2O0A06jCghMM7QJ/8V6hVQjxAWEIhEIP7O0D8n9C7Yfs7QPEBRI4kDDxAyxTkO31fPEBlA2abizc8QN+CGIIuNDxA0auastm5PECkn3jq0gA8QGDqmbA2BTxAf0hixpb+O0A9XZs5zYk7QIHgO1uL5TtAF46xjxJSPECNZskiuXE8QOAxmjj1OjxA6wFVUyoRPECVVqERll48QIMGpjvyVDxAganAv0xvPEBB7RRzaFQ8QMDYbfHTqTxAE/cdBdT3PEBYFaAcae88QNewLC8HMj1AkfpGgxlLPUA848zvFZQ9QFGNig6J1jxA50V4fPv4PECXRhuS1N08QIHeKNTD4zxA/BnfdGTxPEATRO9bosQ8QPu9rUBFMD1ApQxDnA2CPUBBhP0Z3q09QPiY4+OIVz1A/CvTeWVyPUDBNQvwMPM8QPDaHOdevTxA8VH4pgNpPEA/0Cfi61U8QDDJ4hNPAjxAD/BN3MLDO0BEXF7ISbg7QDBg7jFGtDtApLdHRXA4PEBH1fhhiZ48QN+qzvDZ9zxALLY66VabPEBo7i/zcsk8QEQaGCCfSD1A3aaeXJN+PUCAGsxhMzo9QKMdl6tZAD1AQAlju84ePUDNtJvyCL08QGNgoM0knDxAiFm4RLF0PEDv7JggOG88QCMVsnufYzxA1HlJwa/mPEA3jdwfK8w8QMSZkVuwWD1A38i6Xek7PUBY02mFK0Y9QFDIDgLXrj1AU5Ubds9XPUAg5bJExc48QE2HCdUCajxA+UNeNrddPECTjEHzCHs8QJ22j+rjojxA19FFdc9jPECEolPpGNc8QP+0DbaqHTxAKWAKEsIVPEBL3XuVa987QMh7vhQ8hTxA9Zu1XZQoPEBfYKyCh648QJUWbngGkTxAqamso8/vPEAtIaRUgUM8QOiLkd39LzxAEbQSAl0HPEChy6JbWgQ8QGxAz/YyzztArOKJRqMYPED9B/kxVdg7QPlnODUq6jtAiyUcfB8tPED0I9RMa8M8QNtgqtghjjxAZLJ0+rHkPEBEi/NrgyM9QEyqdvRkOD1Agaitk6PaPUAYthYyTi0+QMlFkSySOT5Agbwxo889PkA5XEal63w+QKGwX6EjgT5AdCDJLv/dPkAJmVBN7CM/QBDgdgMhaz9A+XOjZuDUPkDIUtATWf4+QNGNcTg3YT9Auf1K2W6CP0Ds25hYQ8s/QFok6n4kPEBAnK0uxiEsQEAF1diqEfc/QE8zvdT+jT9A49B8Pi8nQEBiIl657xBAQEVGFrjQB0BAvDpP365UP0BoDdJrpls/QIty/bWTxj9AXFbKnqfDP0Afn2ETg8M/QLj0pPMjWz9Av0kPZIaYP0DZwXpEzPI/QEtIqhR6L0BASJQxnaAPQEAnhDlSXDhAQIfDhYvLmj9AYUF43NqaP0DBnSCp600/QIvZdDnrTj9ARyDxPkslP0Bo9dZz/cE/QOyoWIAUpD9A9eqrTKbxPkD5jv1Ajis/QMF0JSIJWz9Ax17sKJ+QP0BTIeNecV4/QA+Tqrz41j9AUJDKXoOyP0AzH6xLvRY/QGz9R6JyAD9A6e+uwOAQP0DFOa3KBL8+QAn3GqGrNT9A/ZPtPBdtP0Cpd5WQl30/QEkMPM6Ryz9AcAUibMQSQEDpkgjuK7k/QCf3FaFmG0BAbp7bLStVQEBCXbEBhTtAQM2W7HjlWkBAo7OJih9YQECdNoIJATxAQKbeUO+wPUBAUBISNrxdQEAGcTsC1CBAQMVbHO/9UUBAbc+Yoo4DQEAVpHK1v+M/QEBjNzYvjT9AC2y5K0bNP0BDjmfwDRhAQJ81X6uRUUBAiSgF8bYWQEAHDZ8XwBBAQPt5P64qAUBAqBBl8eEUQEA2LwaySjJAQNKEZteELkBAG3+ZPH/7P0CYAdguCA1AQBtPpD85WUBAjEL8WJyfQEBJKgX6VahAQNhHdWYc2UBALSVpAjKTQEDwF40jorFAQLYIPutGtUBA/0G4azjZQED2WdHi999AQJksm9BXwUBAQ+fIDxEvQED7SUvadw1AQPU6OYh9wj9ATeubxX++P0A/O+3oJ+A/QHQgQBu1aj9AWZceLgxyP0D1XPMcm+A+QOcEzbt1BT9AcIHOo2CwPkDbScuOIIs+QMBg2dBkiz1AGyfD4YPTPUBxoOxKzaQ9QJvryDpS4D1Ay1Mn0j/BPUDVYp2CCmY+QNGKRyRUeD5AFXp2PoL5PkDQvtZjWLE/QA+7ca/ELkBADM3GspFEQEDZo2dg/z1AQFTd+lXAAUBAVG8w2bJ2QEAukurh/0tAQGC/FGVQLUBAVMkaHeL5P0Atwc3dwkJAQN6LDFpYeEBAmbJhZIiNQEDFZtjpfX1AQGw/EpgQmkBADrju7QGvQEDF2wzxhP5AQFsLyn6zrkBAgXY5SxzRQEDMhcdjVghBQNRvrCBrC0FA6C1JNtGTQECcYjrlzHJAQMOZX8W0akBABbkqgjJ9QEBrh9LzUI5AQEyRdJX+00BAF6pa20O6QEBgWkJNyZhAQCTG8mL8vUBAJ5/iLbtrQEAWG1bZV2BAQHcRHPTxVkBA+fNepkZhQEBwNkbgxFdAQP4GgliFrEBAgzQiwyi1QEBJdFxli9ZAQMqo/MYtqkBAK6Bb+X1hQEAtayrTz3dAQIducav3YkBABdrx6bJcQECDoHiVry9AQFfQ4bEXPUBAaWbO0IFpQECfrQGIrmFAQOPdzPrcg0BA4Ts/61e5QEBTyGcuabFAQNN7bJ7RcEBA9f6wjRRyQEBhaBp9usZAQO1fjU0alUBAH7d5F4asQECMxZbXFa5AQLNeZNSwi0BAltWswSBQQEC1jvcgi21AQEdesMaZhEBASdw6D0pVQECqKpyXnY5AQE2+8loQOUBAbXLq6ZmCQEANUYCzWWZAQMOF3TZKF0BA65nfhYGEP0CbpxxwNZk+QEnCb9efYT5A/8o2aW5OPkDlYupALgA+QCNOtfya2z1AI98nW+VHPkAQ7nHfiWI9QKhpMk9FWD1AMMN031NjPUAjlDK4mEk9QJE1MYyBdjxAc23Eii5CPEC83vNqw0g8QJesDb0ZIzxAk/IOo8JSPED/qFsz+VQ8QH2wVGSZeTxAxdGSf90PPUB3ahyllvw8QANPaKn4Gz1AY0fe/uHxPEAQ0xBra+Q9QH3hxzmvzD1AvVR+SPr+PUA31FH3bzQ+QH/+xkGfHj5ASXBJWYEsPkB7H0UYLz4+QDdXS0SVkz5AV2gb4zllPkB8KepB8zw+QI02cMTowT5Am3InMiy9PkCkUmDELxM/QKdc2/q9BD9Aq5oZ5C81P0Btzn6+nIc/QMwE20nBmT9AdNhVP7noP0B74zrccEZAQOd7Ne8fGUBABfrQA6MZQEAlpcxpUVBAQLTrJW6uDEBAt9i5MFDRP0AXLPpgRKk/QGzk4R38Uz9Ai0VAWu6KP0ABU20VvO8+QPR6iTnXkD9AqVf7kyoCP0B8/Sk8EmI/QJUWHs/lGj9AXxRUAaIRP0CoI6wY3Cs/QOlNfrspxj5AnJW3toGCPkDdIctqxm8+QEeIuZD5ZD5AUwJC41+DPkAoapzGlQM/QNsz4RYfdD9AmATd4716P0C1xB1aFzQ/QJV2efDRID9A0D2FtembPkBbjN/1Pts+QH22tPEhtz5A7BGTrvBSPkDA8d+/9Z4+QKAcNaFcqD5A5xtIgoJSPkDBzy0tKmQ+QMeqrGuYtj5Av6kdzUiOPkDvSErOUrk+QO+JOwJY1T5AQAGhdHMwP0BrJaDPd2U/QA+x0jIyBD9AXd1ITpj4PkClghtgEL0+QAda/YrKqT5Alz2O6x2NPkD/YO0fGC8+QFSoEUwMMj5AgLtXH2KMPkBzm0K57Xc+QHX0HgiiqT5Au0JGs5zaPkC7htr2FeA+QGj9p7Wm+z5AAFlqBynwPkDdLVAKHgE/QKsuR6EbZj9Af5WHYlSHP0CkcsfGg5Q/QB12wKf5EEBAb5jEolH/P0BHoB8pZkJAQGGD25+lSEBAxQy0jsInQEDAK/YIkkJAQE82NvfsREBAURH1N1cWQEA5/J1RUbc/QFl7Y5KWuT9AQa99Tr7FP0C7/FhbB/E/QFQ/VuIG4D9AiNZDveExP0CxKKqDmXg/QBdGn4Ce+D9AnwJDeNkPQECICNErmgVAQDseY77xE0BAgFaWSeDxP0ClbVREGh5AQDWPG8Cu9D9Aea5I0YETQECfuDCdnz9AQH7X3lNKVkBAuz/VJZFZQEC3XZ19rTJAQAP4e0kpMkBAa3UP2P9pQEB3SWtCLnpAQBmx5thKi0BAkG74B9bEQEAjz6SyyaNAQCO7icOHdUBAe2cqECCiQECzUg0BN7FAQLD9owlGu0BAbTgzpnehQEAuOtiItppAQJzD/Znkn0BAkfz8KggdQEApB+4vUzJAQINkdn7gZ0BACJvrH848QEC3tE8SPz5AQC3YHcdyT0BAq8Te7SHuP0ArlPe/iG0/QGmHtq+UqD9AIDeE8E3UP0C5d+i8PNA/QLw5n4ZRjj9Av64BNqkeP0D7EmOj/7w/QP0kKtWWtT9AzS+sQAqvP0D8ZP3NsP4/QDIRqruVSkBAVnYRTFSiQEDF3kRkUnJAQJ6THjDAQEBAvcl5juIUQEBNVexOWHI/QKhrAYQJPj9As32fIOgGQEDnIYaV9hVAQI0bWTh8cEBAF6SmoKtLQEDXJnZwI1ZAQDM0Eb1jNkBAEf6TB6pDQEDVqTB1/WRAQGJHofI3W0BAn3oKHTRAQEAJqMd+gzpAQEMCVi0oT0BAqdb7269AQECQpB1IQtc/QLFyFINaFT9Aw27zfbIOP0B9qxUCfsY+QFeiTs6XDj9AXIDd9UnIPkAJKKR/P/E+QJCGv/BWYT9Au1HBF+/dPkDnBwG5BlQ+QPHYrxgK4T1ALwSUgbu0PUB70HMezOs9QLHhMZqK5j1AXQuWi5+6PUAnamSXqKY9QCe4GH3XXT1AdUACxNXjPUBs/tbJdvY9QJHXSGBsPT5Az/q1MYkmPkAdAVxdyvM9QI/ZsgSAsj5AQB/IJ2G+PkDBY8VKx68+QN8hw9OOuz5AyeuWtBjDPkCly00BoJU+QBl66jqKKT9ARP3x+mhLP0A4WW0x140+QF0zw8UOKj5AYWAX+Ck2PkAkFO3Mz3g+QNhqhvZZmT5ALXPsSryKPkAt09WkGZk+QPVpLvkIVj5AUQ1R6GuIPkBcnCcDvSk+QB0A4jeVQj5Ai7+XJaw+PkDxw4Dh1M49QAyb4NV1yD1AAVGlBjUMPkDU2I0GBOE9QDfnlNtmlj1Aw2ZZSZp+PUAfBpCN6Ws9QNdaRwoNeD1AtP6yHZgjPUBXdfKqaSU9QLnj6NFB0jxAIbBhNu+8PEDPtfKWwtM8QHcM3bVK1TxAyFTYOkwVPUD4P3xi6lM9QGjytAHiTT1AEL+ogSIQPUBsAbS4ghQ9QGgM0VNE9zxAGCEz9+4+PUDMjuUWjzo9QKdwN7hRMj1AqWIi2pGdPEA3Ux2ho5Y8QLhHQeyOvjxALTMgurIgPUCdDarCvic9QDMTvKk/kT1AQz+RixRcPUC0G9GHBug8QAihyNw2pjxA/NiC5A+kPECoc+B/cQg9QGiwcv+GWj1AXKFN/e6yPEDnHb0m5Ak8QFguUW/vxjtArMjrT2aqO0CB42Pdu387QIGt++X4hztAgwIcYDPSO0AtqklWPoM7QGX7p/fSMjtAAx+K2W8gO0Do6Z5Wljs7QFM9edMvSTtAr4W3Y+reOkBQELX+vNs6QGyTFT8zMDtAuyEF6+7ROkDd6O04laQ6QLzeIcmElTpAkZploROtOkBk3PzBMD46QFmrFdbpzjlAICUOa3tmOUCzzP3yRGA5QNFB+a2+xzlAsXQ/961xOUD09HGY4wU5QH9nuDpybzhAnMObfncHOEAU5rRRoPA3QORQ5ey4MjhATXzyJ9I6OEC7+mk3WO03QPt7h0w78zdAMP/AbgNEN0B7vXg2xr82QDBthXsMKTZAfXdhD57oNUDDAF9wTmc1QHvLhbYjDzZAyOMTyu7VNUArtLR2CA41QF0KB7JJKDVAc8k3sesvNUCrqhHJg5c1QEEk7Y0J6DVADy6kfIsJNkCnAWIIFRs2QEefveh0CDZApeOf3Q4BNkAZW6m1A5I1QAhjxUPemDVA6R596zHbNUDB68B34o01QFTY2de+CDZAHDB4bGC7NUDptYQ+PPs1QKh7RRqPXzZApNlLdykNNkCkbWfHQ8w1QGn2XAkdzjVAqQ2CjQAcNkBQMpGQfA02QF0xl7I2DDZAM2darRYZNkAtrugKWG02QKFM9FffxjZAKzsoVDzwNkA7asWBFiQ3QHhRGIBeJzdAuWCXNMTkN0BPe6H692E4QC9cc9c2ODhATF3tS2aFOEB30N2UCHM4QKnZ/tfX6ThAlwSYxDRuOUDPtr8a4iE5QG+GdkjmEjlAwA64noJMOUDbtUpgKT05QEDVaYJuNzlAQ8RwqZxpOUA30SF7zXM5QPGQsmUphTlA7U8SoQdROUBz7vlT/T05QMD0UGTeMDlAgFuh8Nu9OECUIHQa/S44QAghwFRD3TdAUyB8Ms8MOEDURW3dudo3QFdmEdYKvjdA71D7e9LoNkC3UfaJIg83QETUpz6ryTZAZU16v+HCNkArK1Zzgn02QB+i9jaZ8DZAQGkAku4PN0DbDtDM6Co3QO+S/q/cNDdAZ1ZWpr/zNkAsA+N6Ojw3QANbTftZgTdAnXzWEBzvN0Dcm/vWNnM3QNzsk+ilFzdAzWGZo38+N0CDOb8PGJ03QLnBnRlyfjdA6QmX8twrN0DdH1L/Bj84QChPTrtNKzhAK1kRZvI2OEBN9OsxPSk4QA9kVEo+RjhAxxnn1uokOEA7p+ihhdE3QAjVC6si1TdAM6oAOgLXN0BYHEC6+Aw4QIcrFPfOQjdAxJDQ8HSvN0AQWv5XUWc3QDHSiqU6CTdAbecjV0QWN0AokkQfsFY3QJeGGWvqAThAM2MmwFycN0D0SCBINt03QG24/d7OVzdA0FT6l1iYN0Ag759aS4g3QHUNTeRmfTdAtPx2eOHrNkCdVU8pP9E2QAeFtc9JVTZAEfLM70cINkCvX/nFP/Y1QMG3Hx0CWzZAOa4aqjOmNkBXkE3tsUA3QGi2XIfgrTZAhwq0RhO7NkAIiO9zvYo2QKnqMRQbKTZAX0p2q2dANkBLPlstBlM2QA13Kn0djTZAgBaGhlA8NkBhj7LdJnQ2QNxHaj3TJDZAt4x0yHOENkDkKhmXCMA2QAfx1oADejZATJkWmM1ZNkC/aDz+iQU2QAHsGzhvBjZAx17gMBsiNkDvZIN/10I2QLmoEltG5jZA9QY1c8ikNkA00KWjI+I2QKW1YoqnDjZAGZkB8WnDNUB/w7T0MjE2QEfkaChTCTZAWaW8RzvLNUDlVvNIOmM1QJhrhv+KxzVACXYG9I6jNUAY9FzELKM1QGG+NtIKyTVArKyvf0pZNkADK3mXDjY2QHuYicoxWzZALUWMATKoNkArNFySsXA2QPShtbr5xjZAWInFwWcUN0CzEKtx78Y2QFteMJDQEzdAKwTMjTjRNkCdBUEYJ8k2QE9X+Ja70zZAZA5dNVqCNkCYx+RRN/k2QARqDZ4jWzdACU81bAuKN0CEPNVwtM83QCcQR6sXszdA8aigjJ8sOECpKboYw0A4QGiO5pogqThA2XQZ//VXOEBtKz+7V2Y4QAeHmdohUThAz5gPi1lkOECBG9zNbzQ4QDPUaZMDajhABI+CEpaoOECEnUnrmf84QMjI3z9CtzlA08K20pA+OkAXEVDRjrI6QIOAyfw51zpACPWxuwU0O0CMUXJuZzQ7QDkDUeN8LztAt4ncBrt3O0AxgO3pqzs7QBdplt3V2zpAdUuWtSLpOkDdMR2o/K46QF/5CTPo9DpAKxAsGE3nOkBDzXJHiLg6QBfm357jyDpAFAsYgpWXOkCFbYkdo/k5QNS2wAXDkTpAVHsSQwPtOkDzbxUpQuI6QPsMp9qUODtAfefyvRY7O0CI0rEFSaI7QAe1a0RdSDxAYQAQJyS4PEALQBtcvkI9QLUdA7q3XD1Aj9EzeKQ3PUAdhJJ0kJQ8QBA9mJrOezxAP6Cyo/DOO0AH09rpLaU7QG8KZei2mztA3Sq8dS97O0AjNoTXIkE7QAG4HqaH9zpAZL0W3bWvOkBh+017Ffk6QE1QSXdsszpA+Wob7A+qOkCY1zlySFs6QKQPIysHlzpA94VqjOn1OkDEBI+KLgQ7QExYBmd6xzpA6/L3IP+9OkCdxVP9Ke06QJ/kDUCPOjtAZUGdB4jrO0Dk1kN8y0c8QA1O+jjVhjxA6whxQlhHPUBNuv+IXdM8QHPdA/Kh6jxAtKJb202ePECJfDq/cNI8QIzqy7pYuzxAn4tg8q5sPUBXCxoaFY89QNkHglI2Pz1AO0jbjf+0PUCDNs0zxkg+QAg8rUUydz5AtGZ6NkweP0CLm+MwJAg/QHyisiw98T5ALOOyhEOwP0C3XIh3adw/QGMneq3q4T9AvRKQZMITQEArYVPVqBRAQHvH3oclAkBAy8imlTCdP0DleC9WUuc/QJdFlj3EwD9Ap0k6B8QTQECWCpFmtydAQLEF1TSMi0BAL4bggTF2QED23xSxzlxAQDlmRiEQNEBAH7iWpeM6QEDv8xOkanpAQLx186smTEBAL+f6f/mOQEBaIh9MipBAQFffldNmjkBATWgKNh1sQEAqbp0OSCtAQD9iayulX0BAgJErmqipQEC1yB2xqbRAQPPoeEaHm0BAxjkn/iOsQED/a8GTY5dAQCfG38dtmEBA36S+LMiDQEBXPiRwHGpAQHn6MXuPtUBAPuBldZ3sQEDGOdWB3RZBQAmcZ8obD0FA7Rq9cxfaQEDriWVwTM1AQDkQGdVPz0BARfHbQ1wCQUAVG9NAyvJAQNmkf9kc+UBAcPle1ZD8QECfwGVkrxhBQDsMNfLYE0FAhqLRR1j0QEAhBBwfxpVAQPJE71bHgkBA29Od+MmsQEDkpuIXEe1AQH8th7LnnEBA1fteiGi1QEBFuI73s8dAQMX/kbC+vEBAzaPxuO2XQEDxojtSi7pAQFZqahUjv0BAJwEPjcF5QEB6Pu4vI2JAQC9V7rbCX0BAP8rDY1VXQEB/PxC/dDtAQFGuTVh83z9ANBESw67/P0CD5q/o6yBAQIVvdsl4ZUBAVRLDOiqgQEAwoh0hA6pAQKVm+WyUrEBAa4IPfpGBQECOIURpxKZAQM42j3Txs0BAXeA7PXzmQEC7ZCLuOAZBQJ95eurN6EBAfAjojRMuQUDBEbS8silBQHuztM/f4EBALGeJYXLwQEALGGtfgQRBQOvA3jPhIUFA4pHsNoocQUARfyc2jPlAQE2ke8L79kBAqwalAuPeQEAaGZpu9iFBQKZSoE7EFUFAts+WlYTuQECVra1s5FdAQMnZ4QKSUEBALMf+YaBrQECv8IGbRFNAQNgh+b5oZUBAXd+82+AhQEBMQSJAL0s/QFM+dzddXD9Ag7I5tAi2P0Dl8sFLYtA/QKXHXkcHUT9AzCn2qw6PP0CHZfEoBnQ/QFDf1X4uHz9AYcy1reBBP0DYJOHNhDA/QNlWiqi2kD5Ai+dZsBMQP0Ax+B6yFRU+QMjU/wPw8D1AoOJ1l5hKPkCEGpb8NLU+QLAHXi8rwj5Ap6YEzmzMPkA/NFi4JdA+QE0zNhZojz9AiDuZsJkgP0BA0CM5GTA/QIl0TmMs3D5ABUq2WOrjPkDNp1vyBf0+QI1kTnqJrz5AC6RXRUERP0Dvs+6H3iw/QDFxkrjwVT9Al4soBPJcP0Ags3f506Y/QNyL2RTD+T9Ax2uIlAaUP0Dvc/BTt9E/QN8QfVgKGkBAamKQYgAuQEA6Jv0Xtk1AQA0QLfDAiUBAGerOE8rWQEAb80I3xe5AQGEqVK+w/kBAHw/QkYi/QEC+zFUXxm1AQFAd8RAnW0BAMDb6D8lCQEAi2oVYVQlAQCkbr8cmH0BA78qaHcVPQEDQHkaMdzxAQLrlFXfoSkBAq/KmQehMQEB/LEB0pH9AQL39xB3AXEBAu+s+o4KYQEB0WKcEqbBAQJCSFJjzskBATRzkHLmaQEDXFHmJ7spAQAUtJuXG3EBAyBmyIqDLQEA0JtWC/uBAQAD7dz6bUkFA/ZaIAX6QQUALkU8Zrz9BQCx0i7zYJkFAvRltaCcwQUBjc/JfEP9AQBv/um09/0BA1bMlWw3dQECWFG0N98dAQPPXDiL11UBAqU5G9tTdQEBdh18f6K1AQP/LTII1vEBA/GN8DUoGQUCl5JHmAhRBQO82h74TjEFAAIfSgf80QUBVjVQVw4BBQPTpK9R8s0FAwBDGG9LSQUARoizF4u9BQOWqKzrh9kFAEx3TRkcJQkCt5uf4YlxCQNmnXqd3RkJApYhMfL8kQkCBz0vmQSpCQIOfrUwkDUJAbzIT/qvDQUBxOi3676NBQBpvPgmxkUFAozgvmYzBQUADgm32XflBQOGKih6O3kFA/RS9Z1XzQUD8s3Mpa8pBQKWuzBCD1kFALTe/hN21QUCX4yMawX9BQEfbLXaJiEFAZ+yjDFqjQUAwHGNmMuBBQEnnG0HlqEFAPKqdE+ScQUAzjljvP3ZBQKsPPJEqV0FAFJwg7AZPQUBujyLRBk9BQF+wlCFHIUFA06Xuf5HqQEA3OKvxbAlBQD7C0OUa1UBAHHj61rm6QED4Lnck+6BAQPEzosEiokBAI3nFm9XXQEC7cQ5fUctAQLMDte8TmUBA5SgYYX57QEDPonDZ4FBAQC3pTi6oUUBA6xS1fFspQEDSmdgtdAlAQAQ3bWKT9z9Ax4S/UpfmP0Dp0oYMfpY/QGDiLUL+Pz9A8ZZtb8myP0D3BGMAnv8/QAumLifWPkBAq/3rr5QoQEA1cGhR9iVAQFhr/boM2z9A77MyajcJQEDD37VMlABAQHEeJJTh9j9ANFxwNVaRP0DbXay3JwJAQBzHSHSE/j9A5Xyj+W4kQECcECgC2hRAQC1gvXU9zz9ALaNYBeMCQEB9Al7shfA/QKu4sEQ2PEBAV0eiHlHKP0BAFyDU1Kw/QJ8XcBphGEBAG/dl3+MjQECBikfYRes/QOBJ3p9Tcz9Aw5ydyb9+P0CIFR8nJmE/QOzFUxekhD9AmXIIzkfMP0DDrAgYR+k/QBHGpicf7z9Af69PCDWYP0CgwcT292s/QLxZbEyihz9Am7JL6P16P0AXClpXbdw/QFG1KwftCEBAfWB1TfU+QEDWEuyu5o1AQJqAMe3s10BA5SLPEJDrQEDEfuNqdYZAQPvXr3ACeUBAjep6PTzbQEC+2EVuIwRBQDFrJsnbDkFArwoaqrFUQUA6If6bvT1BQPX2fuhAkkFA4IHZsr6GQUDxoYkn0ilBQLEpjJWv+kBAtXS19X/hQEBXjm1BewFBQI1h0lAuAkFAw/Sg9GHzQEAeuZQByutAQNHe37UTHUFA4qPqR7M4QUAi5VdqQw9BQDF2Neqy8kBAC9DlxvnqQEChiRc6sihBQOGYMnb0KUFAUrTFya4gQUAzBiODVghBQAsF67qtJ0FAxXKr7IRPQUAZ7nMO8XRBQCbS0C+kbUFAKZF0F8mDQUCSwKzUWlVBQA9+tw6jfUFA4zEng+F1QUCpQK6NK1ZBQN8zB96RQkFAh9rME4RQQUBfFgkJK0lBQGZWcuXGekFAFBMZIS7OQUDlmkOD/ilCQEdhK2yrYkJAwPxQ67+VQkA3yAQy8XNCQK+MWH4vskJAcDyJ3fzVQkCBqPT/nNdCQBRo0VNe0EJAgeaLX6GlQkCyfDdkT4tCQKj57Mtj0EJARHiIICDWQkC73UDbUvdCQCy49QV410JAD7V5Kx3hQkCvoyHTWL5CQKtHIMP3fUJApTr3N2FfQkD5nJqrbLlCQEHqGAyuh0JAnYalI0tdQkAvclWQr3JCQDpvDWGSC0JA+AEDuhM4QkAttDUcdydCQK1KIWL3OEJAn/4MWdkRQkA1Qhj/9SFCQNcf2fDZQEJAofolsFxrQkDAY9vRDSBCQIFR24PpWUJADaJmrPt+QkB1zi6IG4hCQOSve6WPT0JAF7xUEP1ZQkCIMd5zmVxCQH2Gdbjad0JAj/oqkHNLQkD1U9SKXGRCQJ01UeIKZUJAQv4qU4mgQkAgI/FPX9BCQDm6YkXLp0JA1/pOFbP2QkCJ9MZHRsVCQCmQN0KAzUJA/SQasMHxQkDPQdxXnAJDQEPfFMOoG0NAG5fMjowVQ0DQ8awWuhRDQNutqvjqGkNAfYRz8TP4QkCTEKLKyvBCQN8bicuK6EJAJcx/ZV/1QkCUBqtv3hVDQABUkMz06kJAlNTAG/wOQ0BZd2+mQRpDQO1trIZ9PUNA4cc9B/gsQ0BkEl6jMVFDQEtrzytnLENAyR6Vxb8ZQ0C9jARxrBpDQEmAsUvK6kJAKkYBxLS+QkCMcukmbNlCQGnxXqvQ7UJAIRx6Nvr3QkAej4VazMxCQHnr2SLY20JAJls4eNX7QkALAHpHFRJDQDPt+KVWakNAM+Vo7qd4Q0BkT1pMMXhDQAcGALL7YENAKoINTatTQ0Cr/IFBljRDQLcwOZJQR0NA3G1HvUp3Q0BhvCiu6EJDQB9gvZFARENAT8sSa4ZQQ0AX+jdoJlxDQCoKSGpRhENASX5jScRjQ0DIO6DSiU1DQDFNOHVBF0NAdyyCBMAnQ0ChPz88kv1CQDQPFggvaENA99ZGVpYnQ0AXqrX6y0tDQAvC2tqWAUNANMXvHq63QkDCYOKIGAVDQGeN7XX+NkNAj+vmfiIMQ0AcXn32bExDQHQB3DiGiUNA2nV94hahQ0Ar5onhAItDQJF5ZEhWj0NAt4VznNRLQ0Dqp8s18zhDQDaIj2QAPUNAV68ib/IUQ0Cd1zbAEQpDQNtZDZZkH0NAZmQrsi0PQ0Bbrr8s8SNDQN8ezRqVKkNAj7a668IMQ0A3xmV5Xw1DQFxPRlCvGENAIiXkoJ0ZQ0Cxmx8nMetCQCMM5bdUtkJAPyefJ9IsQ0DZGYjzEClDQMuW3ewoDkNA1APYtXCrQ0AhGyb58opDQBPGmXb6mkNAUVGIMgBrQ0COQcqVPlFDQKpJp1ahYUNATTtdZel1Q0AgTOE/d6RDQLqHMnhfR0NACZsnb4IpQ0B80SNrxfBCQMHJHeQUDkNAocUrioSeQkA7i4izAnFCQMNIuR66qEJAtj+UZSN4QkCt1QHCKpZCQNGiCcx1tUJAxtg5SIaPQkCBZRQJOKBCQF8hGSmelUJAvbBpxCF2QkD9MjWjYqNCQJJbb/ZFekJAG4S3Ev2SQkBUUvU6Y41CQHNCYUin1UJAuLnoBKi3QkCNGRnZy29CQK/56+DHrEJAxQ/JUI1aQkABWXlduWBCQIuMuGQulUJAGq0eTBVYQkDlWNDVG2ZCQCdW0acQZEJApS+czFFiQkDb0xuXhBJCQPhoNETVC0JAHryYw1pOQkD0DXzPFWNCQELVNon6cUJAOM1C2EN0QkDIjwFCcEtCQJIiuwxqWUJAQj0XlbJmQkA3BBCoKYBCQJaQBNxFfEJA7/zzQNKWQkBUSgodOZpCQFLDifPLXkJA8Yo3h0djQkC9mZuNK3VCQK5YU8xXYUJASeeARsOnQkDp1gaCJd1CQH3SfI2a3UJArOzhDZDnQkCH8DAJK9RCQA/ldRz9K0NAfea4EqZTQ0BteFiXxHtDQICKqSW/PkNA2CCWuf+JQ0A1hDp/A31DQFkgG8Nya0NAOUloOGuNQ0Da1nUPI6BDQHFSlDbKf0NAVYYbPnodQ0DdX0PXBTpDQFx6IkjxZ0NAFFKkkNg1Q0Bts4B7d1JDQImu1H/SXkNAhImoAPY6Q0CepeKT8iVDQINXMcr+TENAhAlzklDrQkA30Ntw9dhCQGhnq/LgokJArgdxsTz7QkDB32KZsb9CQEouf/6D10JAoETJ3sAYQ0DBJTqq2PxCQKiRFyjS+0JAZB8fdr7uQkB9pkhnbABDQC0CtOfV1EJAVmARPIqTQkABQTHot4ZCQDQtd0IMVkJA1lkmtV85QkCd842MgQ9CQNU0vl3kSkJA64B73hcxQkDp3B8VORVCQKJcOYXHaUJAt9rSl1Z8QkC0Z5PmlnlCQDtlw5s1ZUJA/Xq2wNQtQkBl5/x44gtCQFeGJEOlDEJAizvw7yYfQkCyFKONgQdCQJpR0FM2HUJAqRRVpTIdQkB3HlAmN1RCQEFTfoe4hUJABZbZaupfQkDn/nUoSW5CQGGQu2nSc0JAk8Ja64aIQkBty6q63p9CQEm1ZPNEwkJA6MbpJNDpQkB3RG9Xb8BCQPlIjJcsg0JAw8i7SSWnQkCOPrKz8oxCQMMEGQP0rUJAg93QFx5tQkDMzmCvK0xCQDLwFDc1+kFAyOJN5SsmQkDWrB6E0gVCQKSpb5+eo0FApsze/Z6sQUDBQvMAnbNBQG0VSs7Ok0FARsLCHBSFQUDaRiCiWrJBQMmBZlZ/3UFAMbRgq5PjQUDHdEUwGMpBQKDikR0du0FApptKfLKCQUB3JLyOzaxBQArWSm3b4kFAkqPQqCqyQUAqgbo8O41BQLTLWL6WrEFAfSF1U5fOQUCDYRvJtOpBQJPv+hPDNkJAnKUUGSZSQkD4im3YuF9CQM+55aDmUUJAY821Zb9eQkClIfXiKjpCQB2aflbEM0JAEA8/IsMJQkAJcPfhm0ZCQM0PeY+Kf0JAloKLjimJQkDRrDd8O4BCQP5dgZ5RlkJAeYq8INyrQkACk1DYpbdCQHNHthjakUJA0QHYakyEQkALX57fjVtCQJcv7hPlmkJAbGxbNhFfQkANhlOqbiBCQGkYuMBwI0JAY/EjHecRQkBJ6NH6fxxCQJ2yW9J/D0JAhdoR8d8UQkAUtWW1ZzxCQAkbuJnsJ0JAVqc+0XYwQkDxTZsZHllCQGgoCffrakJAl6KcQHNQQkDPE6duY3pCQJanjWVfrEJAn3p1t9izQkC9uWQSjqVCQLg50DoOfkJAdQm8QQbAQkAOR1fWbI9CQAVG7rA1kkJAVrmWDonLQkBZ6AllIr1CQErwwMYHs0JAlUwDdOvMQkARrnVA8tVCQMFawhlHYkJAYRtV+ZJHQkCKYA+KJDVCQJrliAYN80FAnyW8AJWtQUB50sH0xcJBQHeL4VRXEEJAOWkrcCwPQkCURn6AP1pCQI13vzTmUEJAecUR/RFOQkB5ZI8ZqDpCQDkVla02/kFAUbwtAgPcQUAap9toh7FBQHAo69uFjkFAEX2t2uDXQUD11DLrIe9BQOdlGHyFB0JAG25zSG3nQUD28kTqg8lBQJ+ru8sUuUFA2PvIrddzQUAZMAfICWVBQN1dRDyCV0FAhgofVHeUQUBXamUSkMFBQPf/lvh31UFAu3atBBgOQkCqqs6WE25CQImDstYnhUJASNbwh0uqQkA5zJYo+pZCQNs+S6T2a0JAKWFN/VBOQkCeMcEcAjhCQN8zYg/YCkJAWdf/F9LbQUB2V/9XLuZBQAG9/whUpkFA7dyTH5yeQUAFOjG/wsRBQAJrPoPYuEFAHInp8im0QUCU7FLnma5BQE0L6UXc7EFA34azO+X7QUBUPj89MnZCQGCqLQSUVkJAWq/UGXaGQkA3r34Zv79CQLV5dSNwukJAZWib4QWGQkCjFrvfF3lCQFkcAIiYXkJA68kWRAF+QkCmyLlXeWJCQO/Me2U2aUJAYty6YSUVQkC/fIDIex5CQOv/w4EDSkJABgpxTXdbQkCbWvPEGo1CQAgOULWMg0JAnsOZ+zRsQkAP6VMMyjhCQOcDuaGzaEJAlvmL975CQkAU6CPhpDxCQGnBPqWlF0JA3+pM2moBQkD/OEOycjBCQI9TZQXhbUJA8EPsOqpyQkCS+g8z519CQE18TeAUkkJA1+lEGEJnQkBNaMRzq2BCQAY2p9DKKkJA5TmjF78lQkDJ2l2vCy1CQK/n+pTSTUJANVRKz26ZQkDh6nV5U69CQCSFOXdE6UJARbMdhBnLQkBF86u5ccVCQK2RekZY+EJAT4bskqwRQ0AD/3N3PzZDQDkN67p9OUNAPR/neudpQ0AHWXb7FlZDQOyhkVIcY0NA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 6\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"f3arfLCx0D816NTFaefgPwPV8JJgEtk/R/UXQhxM0z+FHReIK5XkP+tkohtuTcs/FWopr2tO2T84E+FZx+XMP4ofX3hKosM/zZTDD5pP0z8JWhdfVbXKP4ABDYIgo7y/OKcuw7Wtzb/udnaNPwPRvzuzkWceu9y/8dem7//w3b8wJ6nQMjbMvwtQhzyD9ty/YR8nQpu55r+9rHlGQIX4vz2sFXxwTv+/rx0GfXSWAMDn2jAHDeUEwEza1bKTMwXAxTJjvkvvBcAMzJ3huU4HwOkmlG36GQjAsNF/HUUhCcDrl+YfBIoHwK2zMqHQGwLACafCS3vJA8Cd3nNe6GMGwAOImfXrNgbApYNRGdw1CsDbmzcDjywLwOHZ/8KpXgnAXcVJ1WHPCcAYg8eZ2xcKwMCCCjV9ownATyiaPVFuB8CNEdyvkYcJwLxFs6qHOQ3A3YXhUK0BDMCs3yTsvvMHwBAz11SKfwbAUBJVVA7EBsCQvBxgMcEEwHZkm1IlgwTAREQaGy/nAcAlg5lJ2DYEwD/8CkLSzgPAO3x8FKRPB8Aepr/T2DYEwKfIVi1ufvy/XbfZ32CY+b8RqvU3QS39v6H5g0UoZQDAkcZ8EVuGAcBsUMoBAPP+v/mvXXx3hPm/PCzq7FdO+b+m5LIki031v1ky+qPjovi/+PTNOwNj6r/X3MR4HJvtv2Uppvgcm+S/G4qRFpss6r8hU3d5PxfZvzy0xlyyv9K/lL7PXkOL47+vTSofQwHdvxXhZMmcf6m/SzddycX07T/LEyprpjnmP+2RK+hBZeU/6DtTt3ph2z8t+CUpWwviP0WwYE7nm8w/aMJi/2uL5j+0Eq0pdU7uPw+dLeadOPA/u3tltNTV3D9r8kKF5xXoP0jsWQn4n9k/ixYJ2BX15j+JZxg+0NrYP8iC6EKmT80/oAQAdajDrT+rh7OqXc9+P0NFLkqlAMc/t71gYppExj+X4YXSadXFvzxiNuFwgdO/ZYCydBTctz/ZtZZksUyyv0wU0bv3suG/wH/GFYKx7r9rQ8GqjVHxvz9RHL1rV+6/ESq5EVPo6r+BM+pJH/7ov72Ht4QlgO+/7KNP4rd+67+7Q1bzEjDaP4TtuVFcR+C/ZXSqYF8L4L8RItrTiV3ov5UuGAVFV76/5DFQDLZzyD9rHnh49oPcP6hpk/JgdsG/+W7CBVcL1b83i9KiGKbhv6GTirLkWeW/GKwIqYv4xr/lZeYYMqLjv+DoTL3NEtq/BSzTTFp36b91Tdq/AZLwv1s0UNK2sfO/gwqhoGv99b/0ah4Uh2fwv8uDx+M/1/W/C7wuM7hG+L8U3ZlywKz5v2gKHQcym/S/J3+24pG+9r/7WuqQVTH6vzBfj1NvIwDAsTEQ/WcWBcD1IPeRGxYCwJP+s+Fyzf2/L9WKwI9MAMDXl9JZtkQBwFNke60sFQLAe70hcFy8CMC52XQjPykKwIXPiNtdrQ3AEW2w+C8bEsADVlezCtIQwIB5uaa+CxTAVQs6negbEsCRXyJhFEQSwHDpYTHqyBDAjMYJtXTaDsA71GCy0nMQwCF9da6AYg3Aa8HvzEibC8As0QMYB80HwHXgyP5oFAfABWJ1HVyqCMCdBpxFXogIwJvUqWDccgzA5cc3/RKWCcBFqUABOnEMwIfkeeTi7QjA24lClfPjCcDVToLpAVENwEiCUY2kggvAdL8aJEhXDsBX9zkdS8YMwNnQJIMoeQzAA4hWByVuDcAY74EVpCERwJftFRPk4g7At2TRV5EsDsBDMMD5O+AIwHuMz6KyWw3AuBeamBesCcDT/a+PX8EKwN8Jt7opPgnAkSaO725pCMAtr69vHWYBwFE78njBWAHAHwwSlwRFBcCljs90knMCwE9f4UrpIgHAxJniUbwXAMAEnImsthwBwLdAYy6f5QDAtlLnsZM9AcBon+xfGXz4v2QQdd6DtgLA2FQ7rPAzAcA3n7Ur+usAwB7K2x0VVgHAlRyG6ZZjAMAyIe1HuIsCwH0YQn46lgfACFv9IJt+BcA6344F4nkEwDVWQmzpUwTAhCnPnae+CMDE/q92hn4KwHHshthbhArA7c8OsEB8C8BHgEpU2CgIwDcETiKU4AXAX0Q7AMhmBMDcdBUs+bQEwGuO+XJu9QLAFSYlmjN5AsAZa/CgSNcDwAMaoMdNJAXADfwx5tgqA8DjMk0xCVoCwG9sBzkrUAHA0OpOfFay/78wbSvIsRsEwF39ZDkcewDAERkVbPG/AMDGgPmbcGcCwKPzXomfWwPA3u9uaOQuAcBvCS2rRc7/vxWdgDzot/y/I1sNIPtK/79wT4A66o35v+t5oB58jPy/RTUnZjlX+b8oLGSX5W/+vy3ouI4rQgTA4WR4ZBiEAsANrCw6REcDwFHjlBb/swPA9kQz72LzA8AyQziDLS8BwJeObkqPwQTAHWT05LIZCMBn/Yqu4v8LwJOEZU3ELAvAc4gIRL6bCMCcA4CM40YHwI3D5ydIKAXAm6rr4ZIhCMAIgjiJs34JwGwgIrlBHwrADQaJlT3uCMC7w5vEYG0IwA1KG3Fb3QfAbS8WzLfLCMCbIO73UuYMwOx22G9IaAbAKFZw3V14BcAp/0oGhysFwLk4EISovQPAH861Y5n/AsCiLmpAc2ICwEvNIC6k4QDAVZrayrEHAcCLg5uUBt8BwGyP5m/yIwLAGcjQCdOlAMCTVonXTw78v3zerFktxfO/FOf2HQyN/L+vLUeaAKwBwGcOIvqRfgDAs7nT5pHLAsBy5qUCZS0CwE6WQtM2GgDApPz1OSnkAcD9pYO2/3YBwBx1/6NUhgXAFVkJVHOMBcDx/fErAnIEwGsIKCDhdwHALd8gQ5gaBsBxSDa1kBQHwKucAhcZIwnAd9NuR+70DMDV1a+VDmoNwAyKBUuKEAzAo/kA9bcdDMApCrht8bsMwJsI5RBFfg7A900kNajYDsC/Sjpp3BQMwOhm0XtRZBDAucvj7A3QEMCzpQ2xD88QwPNrFw/lbxPAR5EGIUiQE8AS5naKQGUUwN+J3GqmhBTAvO6JiwZXE8DfJCRyUpQSwER5LOPsChLAtRbJ6z+iEsCc3BVmroUTwCnTtXNo7hLAwYrP3GCkFMB97G6VfTQVwBjkoi3GYxXAmdIxODg2F8BkSmmyyCAXwHcazCyp8BbAJ49crXGnFcBFA+tVqE8XwDMZQkuNaBbACAOOmj+xFsDuhFp/PycVwBiTp5UAzhXANY/5jD4tGMBr2AGCfvkWwMVND3GYmRjAf+Zjv87uFsDnvt5ndbwZwCeXyHqkrhfARW6WH7SdGMCBNw2jS7UYwGfulEZDvxjAiweWJCDqGcBv59t4a3gawD2tvuO6WRzALOHNS9IgHcA3hLg4xiUfwJmLyJ3otSDAqz6Bgz/3IMDF67+nCHMhwARKwd5naCHANSgRqmKHIsDq2m8MoRwjwNXckhhSdyHAw8/n9AHvIcCBLoYosvsgwFjHZzK7tiHAeL2y53/AIcCpGR4XNa4hwDBKUuzNFCLAZRoHr5+6IcDtB7/RxE8iwAe2ZV0NbiLA1mlIr+UWIsBHHDj76ggjwOQrRsKsRCPAP7Nl5xxNI8C2lYmia+ojwAlHqCv/gyPAflO9RNt0I8B8zcQR0MoiwBasPIVIyiLAWNTb0UG2IsC3BO9gqwkjwB2Ng14vWiLA9Jvelm/kIcB9+fjKYt0hwMXxrEvdAyLA8eD+S25cI8B/2I6fQh4kwGZYgVGCyyPA546UR+vAI8ATu6zUcfYiwBbm7rSGASPA30PRcazDIsAMsHsqh/QiwO1roDqv5iHAqY8re5tBIcCBtzwIw+AhwKvdZrdUAiHAL/+b+xuCIcDnNjPkfXUhwB3lIUKJWCHAdsxXs+HnIMANR6o4QTUfwK3rTzxlux/AzdZboRa9HcBTEnN133QfwMQVKcSWkyDA1Fjf+4VqIcC557eei1AhwPLQ8gSdBiHA3tR+AjP6IMDBcEnL/sQgwKg8CavP3x/AnOsdRuJSHsAQRr0E6osdwJMHUJsOqR3AQIw+FPPJHcDs+pkpisMgwOdk9VWYXx/A8Qpl+43uHcCMhYnAiCIewPtASvvvJBzAl74pML6nHcDDM/TYFYUfwCsqe9PFKSDALIKMjlxUIMCAC8Ig36YgwPW4BTLg6CDAc2xTPVLtIMAOHjJzk6kgwEzatSgmpyDA6t1jpoJeIcC7nKKsLBciwN2qYXnS/SDAoT/SNmV8IsCxIN3VZGUiwI3PQlTwzyHAk7qzj7XmIcClfObEGJkhwMI1iF9H9CHApZdq6Dx5IcCuWyTComkjwK1hMs/2pCPA0FieMb6SJcAfRdN5sDclwKBnjGE5tyXAuQW+tTtkJMD3Nh6XDDkkwFFDQcgMuCPA6taO/Jj1I8C3bvgqqVskwLe0Z0F0GyTA64wd7YkgJMBcM1CjFI8jwDzYLpNEryPAU2YvZGd/I8AyHRvrRRsjwPWhhsw8TiPA2QYEu7vLI8DMfMcS5c4jwB3l8e20gCPAgXX4EKIQI8Cb3lRo+fwiwGg6fYONVCPAd5KafpaZIsBeLIGmyLojwAkRzzGM9iPAJHTX/p9mI8Akt+zbWWsjwGcahbOQsiPAsZ0o+mfjI8BI+3mwPyYkwCqZzCBG3yTAZGsNNExQJMDJ+1P7/wwlwMtL0joS1STAmTCQmOdZJcBUYfiCp7wlwHXx8py0UybAh6np+95iJsAQzL5Cu48mwJ8xKMFA/CXAdzfrv6rBJsDDnjT2T2ImwEW/5yNg7yfAHJ0BWoVZJ8APisZa8+QnwBxbK3S4/yjApF8tDw5NKcAb0Z4f7GUpwPx1wnrBfinAHFxu3WF+KMClBIMfNhsowBDmSLFW9yjA0RwjE2ODKcCw+0A5m2cqwKS5ep5NOirAfKlNJZ3rKsCX+TjEC1gqwF/j7coQ5SnAfI7Qa0DTKcCJ3BT0t5sqwBhVKdfKbyrAF9v8tpolKsCNTGRBDH4pwMwKMXKGjCnAjDk8nQGAKsCbBG9NhDEqwMnP2XYGdCrAcMTOwKqzKsDbR+rnnZQpwDkzOrs6OynAlDqOJxU+KcDH72wK68EowA2Iv/QiISjA4QPnnL/pJ8DJ5V8lI/UmwNtPDq2HZCfAlANE6sGJJsBNAT3l6YUmwI00kXumICfAU8RWPsSFJ8BNnmPZCj0nwL0pUkGNkyfAzOL7VKVuJ8Dk4fygVxwnwE9+JDTf8ifAERPnEKvOKMB5v6ErGxEpwEyiReiEHSrAp2G6XxDrKcBp9uLCR7EqwM+hZkJh9SrAk4GLTGuYKsB4GiMP8XQqwB3HYagvvCrA88rD9TBnKsDv1hXInRkpwCnkjA8YbyjA5D1BfJgpKcBMxtEzCPAowMhBVD48ayjA7NC28mLDKMDZ2ziDoZAowCCiIo5bpyjABOkUzxSIKMAZbMg2kUgowCT3SzWriinAyM7/aIOFKcBwu+8Jp00pwHNSImF+qynAZ1OKM0v6KMAbWHNUx4oowKz0LO4evCjA7xevq2slKsAJ2BD4X10rwJk4JVu6EivA6/yfhWWwK8A05lf8qQwswLcib2E9/ivAX2Jxek3KK8ANIK4opEMswCdH/a0Z0CvARyKVHBKuK8Cpm50wAUkqwG/CWqlEqSnALY88wur5KcDTPzmhSSUqwJU4qoeaGirA2fypbCgWKsApl0gLYnoqwJt61D1sACvAT+/owDUQLMAt9VV2v+YqwIsVWbHmFyrAYeYskdY6KsCFG4cPoH8qwDAcz/Rz+SnAywgdTsNDKsAP81nPIa0qwAXst+k9vSnAr5x0KpuYKcBTJ7Z+JaopwE+6iN0iXyjA9NT1Do36J8DwEenbI8AnwKkKeCB80CfAWcDWCYvPJ8DLB2bWbs0nwK3jjEJFlyfAuZDQJcH8JcBsEIWhoj8mwKzbLiv0SCbAdCPTu0raJsCnu74GH/4mwPmjf4PsbybAoK5kMmqpJcBrtD/jKIglwInUpyim4CXAr7iYhCUnJsDk9Jgqj6smwKNZ5pHcCybA45iaJ7i9JMDTzmd8FfwlwOh/so0iACbAr8jDKkj4JcAgi4CareQlwIFGJtiMnyXAjWy2G9W5JcDpkviEfmYmwBCYoeRAoSbAYRXLKuqYJsDtB43rifAnwNxcJhaoVSjAVUT/6y4KKcC8oD4Hy9IowB3tWXe+TijAsbpUgTomKMCl4LfaexEowHjJ4jGRiCfA6M7p4SC/JsBD79iFynEmwJE8rMgHcSXAy2nf/2WiJMBsqNxKegwkwIWpEHL/SCXAD+HBjasfJcBpxX40bRUlwNc6QMQVSCbA53B5dOSTJ8A7WdnaiUUnwNh5WfpjaSfA1aTEM0/bJ8AYoq7C3y4owNgre6ImiifAL4fldC5VJsDnPPYzur4lwOFrXdSctyXAscEh2t+BJsA7iSaBPbIlwPHa8YtdLiXALxNymmeUJcCraraFqKMmwK8XiLr1ICbAQ3UVpq3jJcBzWeZdSuolwLeMRY2jECbApHWTzB4BJ8AAFJi29hAnwE9BFId+UifAydVUSkT8J8D/rnendc8nwBMH2miXMCjAQ5mKgj0hKMBcBlc1HVAowBjAhsiSZSfAhFN0d1glJ8CP2mcy130owFcOFhLSFSnAgU3QyurYKcALsey/YmUqwMS/upZNqCrATx+HLEBsKcCRyrZFGo4pwBSnk3KVtCnAR3eaAR+iKcAnEINIR3wpwJnawe/e+SnA6ON5SvbHKcC/dTsnfAApwKwUTQ3mOSrAqxlEqSDDKcCITHzuJiAqwKEXSsMmUCvAqTOXIRR6K8CDdi+c35ErwKXr+lj2VSzANOhuBoKGLMD5/rwXeuQrwOP/MdN6CCvA/a2W0yqPKsAsj/BtK/IqwAVpFV/rUCvAkObtUn5bK8CELyE9NS4qwHcgo/oGsinAoOb6hWZqKcBVqpr1yrMqwOBKUypAiCvAIGroKDy1K8AQ7BeYkEYrwPBPVoehcyrAaz3tg/TeKcBhV/5f/mQqwOO5+gKTxivAt7kgZHcyK8Bbb9KepEcrwNF7q3lk2SvADKxiVLISLMA5wsG4nwEswJsVmNANUS3AQH4ovLn5LcBUgCsRYsMtwN+fixDmay3Ax7TxflLkLsBLPqXocQIuwKlKljPxMC7ALatg/tXNLcDUqeDHYzIuwLBVKx+z4y3A/bozZ3KALsA4LQio43otwHOz44mkAS3A2CCcG67YLMAgtP8N+JoswL2//1YhbCzACV6ozse8LMBkiwOMZeEswH3gw3d7KCzAZerX6O9CLMCbeqKK8/MqwHfWBucNjSrAr/AThXKoKsDM6mrr+C4rwGMm49jVrSrAe85xKUa4KsChs3whZHgqwLgsdmeH5ivAJEsWdp37K8Bs1DL5DRorwNXjzBbLTirAYaCboSFJKcCnN72ytjwpwDv0WrtpkSnA4BrQZ/3DKMA5MlCvd8onwFFW62q2PynAIOazh7YuKcDT4+rJTScpwFHwqIjovCnAZRWvMLTxKcBsPfmcUS4qwJym1h5pwSnApLg6tNMdKsBbN8QuHvgpwHDYom6xDivARQSsbufNK8AIT7lQaqcrwIMRNjW05irAKLe/u46rKsBzx28qWSUqwCQFy/E6YSrAZ4bIl7QZKcB98yaX+ysowFsc++TviijA5H05RaGDKMBfTepkYGkqwJ8vn7UlrirANwNvu/+TKcCbf6IEmO8owEQvfiRShCjAPZANCuk+KMCUs8joaksowAuYeAvQHijAm+h+qdO+J8BrC0hNEg4owLCGbkQeOyfAzNKwHTdYJcBtu33OVPskwP50VvB0XSPAw4O+HguQIsAbPulacI4jwEmeyjSrBiPAx05ZCOqeIsDJm+Hr5iwjwDASvz0FPyTA/zm4qGT+JMAoIdNJwz0lwLOrI7Q2SiXA4CqRWZScJMBysYNw0vYjwCIY7Bk9liPAjT5P4Q8bJMB8aDqMyQUkwOTcqJms0yPAcZQtfcOwI8DNehfnWcQjwKeQwd2ivyPAf1k17DaKIsC7XSypykgjwA2CAMtwAiPAgfLW0X4IJMDDgUGChPgjwHsFnXw0lyTAuS3nxUfUJMCNhtVxqfckwMSbbZOhoCXAcKpcBDEkJcBDZM5d8V8lwKeHIyr90iXAkZNV2niHJcC3YOEKWiAmwCCT3WcTnSbA/wUlXe1QJsBh0bFLoAYnwFN2XODjySbAbX30pvw6J8BNptSW4g0nwHM8K0qiUyfAjRi1lNxGJsC8hzqAp5QmwGP+XLJvJSbAo9/IFIbZJcDa47txA7wkwFI7ybCEpiTA8WnjX0T/I8BHAIGCihIkwENtgSB3GyTA1bFtEhscJcAnIOOPA3okwJn5vilBFSTAOwZO22isIsClfuQJBnYjwHYcba58uSPAFteY4CWlJMCnX6d43xwkwAy7ykkpOCTAwdIe+Qw/JMBjjXsL4CYkwLc/nuOwBSTA2uboECDpI8DzNMa0kpQkwK80XSgDziTAYK4AJkVFJcBuiuZBxfAkwLU6zVRUUCTAR2EKlBIVJcCJAOD+XJslwAuhyBUOEiXAScaYxxhvJMDMK7u621ImwLMd0kglXCbAASYP9yzMJcCCkO9czZ0kwF+X/wZA7CTAMNvvNvZQJcAANItjNIkmwABv2duyySXAcFC1ipYUJ8DcEDNxcJUmwLs6JFEqUibApKVs/Lw+J8DI5qoTWL8mwP3ASaHdviTAsOM4ZzCNJMDhXwGJlOkkwHEYYXKvfCTAM0Nq5OUFJMBuxNIEvg4jwOQfjQs01yLA9BFJuBdrI8DX+zXCaosjwIcLVwZFviLAmO283A24IsBf14IftwwiwOW3T2AfvCHAX2uziqlCIsC7kQqeOO0iwEWSlL7AaiLAc4G8na8sI8C00LBJKWwjwNmfVv+BZCLAFtKBlbgtIsAA0/U2rfQhwIMqK3GuJyLA+zRfRrFQJMAzt+62w3YkwMOVjfTXfiTAu/M003U/JcAsgIHU2n0lwNV462QoqCTAqWaZSrebJcCx97ywn30kwNwNiz/WbCPAxWCRAvMUJMAP5/ijEgEkwCsbjNPH5yTAh5s1+N8bJcB59xI5IyclwIL8kqzHFyXAg8TrB8Y2JcCvFQGqUIclwFX8zkB+yybAGGY+CWTBJsC1i5dRfGEmwF2Rp5M5kybAExhg6BcyJsAAlPL4IVglwPSNdFwIeSXAB+1W/ZCpJMAfVed4jvYjwKSBdV6poSPA46XOO52tI8BZai8a9kwjwEyZgCfMVyTA5YsBLxWLI8CjR8ItQ0YjwG4DeeXBmyPA9+9IEzahJMD/dBcjZwEkwNU7Vd9OTyXA9mG85RhLJcBbEtb29CQmwLt/PuefmybArU6qNMUCJsAdZR+bFFAlwHumlvcj3SXAVL16OSjYJcDB+axfx8EmwCwVge9oByfACBiWviBrJ8AI2Qn0rIAowBgHR6kzDijAJEyIPb5yJ8BHagK+/a4nwF9cbhcMHSjA8P5nqsnzKMBYpr9usBIqwK95ldqXZCrAqYZ/0wATK8BIuOTT1mcrwH0KVGmYTCvAz7NOhr19K8BJL/HnsUwqwCwYhNq2fCjAgdL7wKqaKMC/tVgNgAEowBBPmA+nhSfAs/SjmaVRJ8Dsh16XNgMowCiUNBpG1SfASb6yEo5nKMCguyNOHZUowM9/KEkUVijA9T1sBIWDKcD7IuyCIWIpwLHeW8EbWyjAn4e7fbbLKMB88GqDWmIowFw+JZ4J6CfAw13k7ZZ5J8AJynHWBeEnwHvXpj/dsifAjRJw4soYKMAIKCRYy1snwElyv9a0sifASx+MralHKMAUxx8plMwowNzefyPIKynA0L0Vn80CKcAD7EmKAr8pwDe+/HVhjirAiG9XV5mqKcBBsQgQjKgqwLxdfGl+ZirAC+b9MzfvKcCxWO/EaxgqwFCoGMXLySnAbFmLLQ0DKsD7Bu7quaAqwB3Eksd5+yrAf12U3tHKKcCpoA7ZtespwLhSpz5jyCnACPwJFzssKsCR0VNOFRcrwOCfHcG4HSvA6FIDN7EfK8B0UNf++/wqwJXkI7OasCvA3W+5NaJQLMAnBO0eOTMswJPJSMSlQyvAlIVtgAi0KsDF3qLuY9QqwAW8Dbka8inAR+jdlje6KsDD+D/J98spwJtRcR+PoCnArOjNyMtkKMDnggqk6/0owGCEPLbqxijApKb2o7rYKMCrm471Iv4nwDPVW7JOTCjA5z9DNNbYKMCo9Q3vQrwpwHBuutldnyjA+UI+H1FJKMC/qmfxgBkowHDEAC2nGijAfQwr8hhjKMDVi3XcW+wowE8e2wp4FSnAWPe36ReJKMDBlq0qn1QpwNUB4AlACynAUVvltQ97KMApSv+FPbonwOCTLtLZGifAUCHzbjk/KMCv2Wk8fsUowF0TyrSCCCnAZO2QQXkOKcBvS+yR9sEpwKvb36w82CnA7aqBaPI/KcD3TqgvhPgowA/Wk0/h1ijAkFvCn2TrKMDNdK90J+YpwP90mR80PSrAuwSu+vgZK8AfBuehy9AqwOM+DH8u8irA3KGBUjpxK8BtfQ1vB5IrwODU2W1OBCzAkKvCrW5FLcCbtg2xKPIswJtC5cCOhy3Ap/5t/38qLcAhqKwWWv8twO0SZEijjS3Ad+t9FBbsLMCU7wN8vlwswPsC7Y3nwSvAIJPISWJuK8D50ZNlNMspwCM3nMocYCvAJMHi/1KIKsBklOmxNeApwONrhOYyjinAGN/+xc9vKcCVP5m09XApwPhX25eafSnA0/csDJjSKMBro/ivSE8pwEAM9VdiminA1MUWk9H2KcBUJgjTC8AqwNcmEv3i6irAuUR8CJQHK8DrNQ3hKN4rwI0AOtAn0SvAN/mtxy8gK8DrZxKxD+8qwNvaeDR2oivA7ZKne6mjK8DRjPmRMjgrwOWWUFrLYyvAsYAt8jngKsCnUb8Kg2AqwGDZqEEWLyvAJ4bwc4B6K8A5PzsIqtkrwDBNUbiRayrAd9nCeyrBKsB9/aEH04UrwA9elz8mwyvAlJ5EuKrRKsDJeO/5h4YrwLSD+b/ZjizAQz5X96+/K8D9OxNbREEswL9CBjjT4CvA4Ti/av4kK8CNF2NmeCUrwNefhi1HEivAPPOpGo3EKsBRx7CYyEwpwKeAaD8LZinA6RoPsBbsJ8BvoRKXYlIowIMCrVS7XyjAJyhpCsZFKMCX9nN/vOEnwOm1F3S2KyjAhyEbVNMEKcCjrX2YOFoowG+BlYmBdCfAJ3e9oPL+JsDAEiomX/8lwFNv3JYJWiXAYqXcvrHRJMBBbdc2L6QkwLxJsBwdoyTAqomoo0qWI8AlmmuJPkIkwOLef53c1yTAxqek27oiJcAPhxiFWXAkwIeNuC6lByXAUzLVMkm2JMAFKkGZEx0kwIHq7xPQ3iLAKUgRLiAwIsCx1Ymtdq8hwJOhmxPUASLALfTDY3KEIcCv7qQ8hOUhwAQZLk4gXSHA4fgT370RIcBguToRnucfwJjHFpVwUh/AHX2XC08WHsCJHk+UveMdwL8pdCFVjh7AXchkYkwIHsCoUIXMHJEewKnRsV/DeR7AtXGopZjsHcAhiVtcK80dwH0Cdsz5LB7AfTIDvz/1HcCk8Dj9BkYewE/K00ZY2h3A/Elz8kwcHcDdyV5OlhAfwNiqxjIgHCDACiXbadsOIMCwdlskBqggwDlt7qTZcCDA4ekS5o1FIcAcNFy3dBYhwDNo1fjuzyHAoRz7rZLhIcA1s1tb/H8jwKF0ISNuNiLAJ1YSSX5aIcAJ6pPUjjEhwL9yim8mkCDA26PRLT7PIMAQ1l22ZZ0gwMze4y5ZGCDAkjRBGJ+8IMAKl7mI9wIgwJ/rqihyZiDAiN3UPX6gH8AhQpz2Vm0gwOu+OVAoLSDAvlnS8o4tIcDEk//MJiAgwKTv4MNcoyDAtGEi8g5WIcBHiYhZ8G4hwKknSOPOpyHADymKS97sIMCMfXP2WmEhwIJ1M5y11CHA0aYOS99pIsCTQndUksAhwKQdvzlGWSLAhZY4UBPTIcC1HsIxrcohwItaQ07X5CLARRu6qxxHIsBc9rnzWfchwJW7HLI+qCLAkTMnXfHuIcAkaZ+eJjchwMBWySLcWSHADbzS/U1mIcCi/xr/UmchwG+TL+Mg0SHAVuLs7382IcBKiRC3+vMgwAqD4e8dySHApAKlL+vXIsDfymzIvhQjwDMvKJaubyHAm7EsfcasIMDxgqPnLYkhwA+jjL6V2SHAZxPXzM1vIsCH/xEDMc4hwGl/J/CO7CHAlBH1RxP6IcA93XOZBOsiwL2a+yM/biPAHddwpbK4I8BhA1riZBQkwM8g8oUa4CPAi2RkDdGbJMA12RoHLagkwIdcFMzD/STA8+Q/so7oJMDlelDEopQkwP4JkI27CSPA1cmA0cdfIsBiy8P04SIhwOcCTqb3ciHAnQEWOuMWIsCBF6XcZdQhwPD+jGRSCyLA8xBtVyS1IcA5lPVVytshwEhUm/TFNyLAtYo5s2kVIsBb2+qvKtciwA0exOBb4yLApuB0tit3IsDJuFV4z7siwDMOxnQdxyPACkoLpjSUI8BO1pD2ab4kwJQkNRaofSPAf2K40V2vI8Ce/Ef/rRAkwNTKtBCmhSPAsETsb/a9I8CjybSxCAIjwFdwtIqhtCPAkd8caxQkJMCZDXZK4vEkwOvJH95fRyXAs6HTeQI0JcAa9B/mpi0kwG2X6zRSkyTAj/pAjkXSJMCf8nzPsQYlwABciduX1SXAn8NurP9fJcChV8KKw4ckwJETPMtPLyTAaf2dQfFCJMCkDKMUZskjwFmIh2tj+SLAHaFtAEw0IsAgz4Hozq4iwCiHbSLsACPAo/Smjv6wIsB13VV7L/0iwFThaM9t/CLA2sRqWkGYIsBVvznBvWwiwBhQqxLHNyLAAxM9c5uYIcC5prOYoeMhwG8shkuu4yHABYTKZOKlIcAEg5fFbh8hwEXqnJyy3iDAo/nzKcOiIMCDutWEpGogwJcddv8rTh/Agw6JDehGH8BPAQFYJCgfwCiesw7CbRzAxMN2Q0OxG8C7UHKQqGAdwByShQPMFRvAdXdQGrbkGsBhHxtzOdwZwMgykdhRoRfAyCMbLsq/F8AcmgpSnnMYwL0EMIrBQhnAH3MPyzcQG8BM89r2btocwBdqiZHGSRzACNIas9prG8DJw1dSH1MZwC1x3zzzERnAKFyTDsklGsAlNE/A1lsZwEN26iqQNxnA743X16ZcGsDLqIiOJYgZwFengPoPYBjA9avwkyR8GMAEaTPwhP0YwBT1jLyXpRrAEd+B/0pRF8Bwie/ccgwYwJGCsJp2ahbAvAfejNUKFcDgwEqP9BMXwEXKNpq+sxfAs1jXTcPbF8Ck9XfYpkkZwGmEf/aeARnAOEc08/L9GsCg+d2GFbkbwAvwvkJ9WBrAdANOlWATG8DRlvHYxNMawNSZ1QXaexrAiKLDyWO1G8B3JqmzFb0cwCuoaA17/BzAqOq9nBRrHcARfWdLTbYdwLtTopEabR7A0+Lgzmu0HMC9O0ZigwgdwE8hvo7jZRvA91g1CX4RG8CLtOVnGj4bwIQfN5Z1Kx7ARQXDYjRcIMCDl+zps8EgwCXUi9n0CiDAN8P094bgH8BVLi162iQhwIV/wsahyiDA45+I3+D+IMALeWtVyDIgwHtoxvq7gx/ABOcd37awH8BQyCdtPBIfwDiMPpkrPxzAQQHvn3TMHMDLw7EQum8cwPW6+y45MRvADU2vQi8PG8CBb55gPAsbwCvfE4uSURrAjMdLohSLGMC7p2UbQ1QWwLXOo8WjcRXAIIBRhbBkFsBIN+4SxFwTwD9CG5uueBPA46tEI2r3EcBSuIGRnPAQwHMaRam+KBHArIzDBbGoD8CAfmzbTH0RwDSQhWTxfw/AnMdGI608D8A9QKbL6vMQwJTS57tUqhLAkUr0ea7qE8CXVYSGFFoTwLVsJlIpHhPAmfuTozh8EMDrNLSljLkSwNHt6s6IdBPA/ebWvTkBE8C/pkhm3+MUwF1+aDSJ8xXAOzpWzsCjFcAoa9anwgMWwKyY8etDaxXAIWDEcg+xFcDkgS6oXvcXwHvfiZrzdhjA0eC6dU6bF8DAzejtom0XwPyN3wmVnBXAY0xeBwlOFsDAMybTjS4YwA+5t9fJwxjAEKhqU1czFcAzZ3djshAVwCWKzl2izRPApZ2HuDZ6FMA9jiT6blwUwHBkgctKhRPAM1tFx/ICE8DNqOPN+wsQwE2oKKfWChDAeT9S7LXTEMDQnmfyB18RwK6vhQnNihDA6xJ6liiDD8Ar+l12gooOwIqjlBMqfhLAq5AXiNYvEsCzpNUvb10UwJB66kIbyRXA59uVy5uRFsDf6KrgppMUwLsDOrgnpRXA52R3m1XwEsDwtUAXYHkQwJTq2b8ToxHA5W2B0uoZEsAdbdmOVr8RwAVnCU6+uRHAFG7WscKfEsAeE4aqZ5ISwPqR3VqmlxHAoyWUAmZeEcAHrtbbXYsQwHLXThNRnBDAbdkFg55AEMDd3oJzohkRwLAekigU8BLASCoacWtkE8Cx1TvapHQUwBLOvmzJZhPA8suhyM7vEcApe6QoWusSwM2Gmx79ohTA0bI3ac4RFcC7zTEca1MUwAbFL2jlGhXAn/EluVPvFcCZxjkv/UMTwLuCVYtw1xLA4umxDkN2EsDEV9iimi8TwNxVLolFkxTASQOR2Nv2FcCV+dM1GWwUwBACMndCBxTAebe0aWEVFMDfCnRw684UwE0PuWuoJRTAMqvEs8hTFMDFsGsCKnwTwHVe72v4bBTAj8wGlXUFFsDhu/a1UVgXwGy/U1HG5xTAuRiEFOuWFsC5v8uiW3wVwBDM2EPQWhTAqivfBOnkFMDxmOEuD/4TwJ1XF1AEzxTAFGTEcAgxFsDLHmSQqpEWwGOHezGINxbAH27U5aKCFcBAC+qaXMcVwL3cCltBMhbAQwtnk/QkFsCFt1NeIKkTwLOtV0r6nhTArWCeDicvFMAwX5clJGUWwLrUzY+TvhTA/bfJR0SnFMAoslNS5NAUwDWevHV93xbApRYDvnZ+F8CfmT95r00WwNmKInOOnBfAWB4k7Kl6F8BhHZSFd00YwPznn7J9ABjAbHxff0HiGMAp/cEWgakXwJxurM+/TRjABRrP5SN2GcBd8TwOnqcYwL/34oohRhjAT1wfCMtJF8BnZZYxrM0XwJUB7AVoiRfA0/EKsutAGMAE5Qf2WLAXwBRrnu75YBfAiSoLI5AXF8BD/Um4viUUwK8D3ZchWhXAD/iBqsBPFsAjbovnR4gYwFWughEJQhjAxc47Goe4GMCj8Rwvc1QYwHQb6RO8nxrAUf7GNfl9HMDj5zKIvL4fwNEuULzZDh3ATWw47BZOHMBg6p5fGLcdwJk+ryTifxzArP7mjWNgGsBRHbtfxksYwMQT/uIRnBjAOe2D3sPcF8AfaHD4R/QWwKeeO9UJVxTALEgAs7KaEsD0JOhYTn0SwL4/kk9cjxDAt1JuEuzWDsBtuvM/GDURwAfe2LtuoQ/Adbkz/KctD8Dm3n+UFiQRwHRxbs9YHA/Aaf9yBd9/DMAhGCsZ7+YLwB3RYB/iag3AfB5B2+vNDMAjH0wn6eIOwPziUFq4/g/An5/C4VuoEMAqyGifDfcQwIuEjEIpdBHA4YZRT7tlE8Dlmd9wa/gRwLvLY3svAhLA+r8PcpOmEcBXXzvnWXARwM+bred0eA/AiPqWY3rYDsDxp0kFyJ8QwO34kzW1aRDAeweZAq4hEcD1zSr6NwELwKfy/6fIaQzA2XqFxjwFDsCrr30qyz4KwBQ973cYZg7ARZa/JZX8D8BO6Dmcuw0QwF7dpxGSlRHAoe+EfeXLEMBit4TsxdYRwE20deaWARPA/z2xU4AtE8AXb5Iq4XQSwF+UnleGohDA30lyTa6rEcDlrUqs7IISwKRwWWzCRhTAzryznTHwE8AjZGxnIQkUwFuDE/4FohLA6aHQ2HLMEMDPjnO0JeQSwKbWxIh46xDA5wP0+gsrE8DHWVZg4AYUwBeK2lo9GxPAEDcwhnt+E8A+71Cai8cUwOzbV+JWahPAqYYmZSQAFMCBUPWfyrYSwO0KOWqduRHAGpoA/oRNE8CO9As0rdYSwF9bIhe8SRTAocLJ5aIPFcCtiGaM3eATwGs8wxB9/xPAax8FkFtCFcDTcVdcHv8UwAo6uqmgvBLAfwUjO+TlEcBKPKOeIPISwEEAV0DcBhTANxk1r6AOE8B+zKaVg0gTwCGgyuNW2xHAjoiSLcOsE8CZhe65W68SwJ+fBuJWQhHA7W6RwhpyEcDTOnpQGuoNwHhzTPysOBDAGG1CZjwrDsChBv7BIQAQwL7qMQA35RDAZV4YrEyxDsD7JQj0ORARwI7LiQJxdRLAX62gaa24E8DNQNiGq4ISwKRCfBFSEhPAvAPMY1VJE8DINwiVzOQTwGsisbD7rRDAqeuxECHqEsA7v86OPHkPwOSrOryItA3AMTD/D8WuEMDIVbzodNkOwFXRsQgDHQrAhbcwRtq2CcDFZjOviZQKwPSW1e/hTQrA6Zi4GpYtDMBNb8EYKkQNwD/oYn8oRw7AIf4KZOzYDcDzL1mZD/oMwFSOgqtizg/AYzkWGRw6EcBpS9riKRQSwG1OarWrihPAjJBKwzjhEcAQp55zkYwQwCgaBaJvXBHAJfSd/OMrEMCUSZi4t0sPwKgN4Kcvtw7Ac8p4fjAsDsCAJPnSO9wNwGLRXUnWUBDAb+E54kbAEMAnVlB/o28QwIiawMa3hA/AdVCRu6deD8DxsxJR1t0OwBsfz8+aoA7A112ZzJdlEcBFmyvao90QwHlbaudksw/Ad9p3Yu/fCsBbjQ239UAGwBS9HHUoJwjAKedNJFjKCcDBzzRF1AgJwDEE/qG/jgbAuI5279LQCcCggcg5Fk4MwG2vS1jTIw3Ag/WE6ebgDsCPaG4tel0MwNTPHgPYPgbAuLEskyW1BMC194eRnE4KwJw/0E7a4QrA8WJVMBsXDsDdJ0MtSPIMwJxLR3rIMgvASHXcfSxLCsCBCxc/HvoMwJF9jOJKFg/AtSMjSkkXCsDk0FmU0FQJwCh7RLKvAQjAWxD9Q/NYB8BtwbUnJUsKwAjfhstRCQnA+4Cbs9RNBcDJQBsnZI8GwB1Cst1o6ALAAg+vLYIJBMCFNenUks0CwNXSprl77QDA8sRMHvLjAMAzyGzcozv8v3RxErPvDALAf08TFN9NAsCJBrSEzuMFwFdAJB8nfwXAYFNeUyKdBsBbwG8nwKIGwFKVbdQxrAPAzaoaPlYmAsBbEjvZdi0BwDYPuELwOQPAFfAAVNjUBcA35KZcPdkBwBlgIsAt2QDAXw3I7NP0/L/7SQVDZHr4v8vcTzaWevS/K8LDQyDr/7+0IamT6Hb/v1pVrqTSAQPAeVHABXmKCMD3WKjJZrgIwJDYr7xN+AnAD4KMsPJXDMCn3MyhpOELwLedlbmyfQnAAbdixzoJCMCs7hTsVdANwJc4xGIecQrADPb3yHFfC8CHsmOeOtcLwDVb1iWbLQ/AlxkshVmIEMDVozr6zoERwDOJpcIeDRDAMcAu11HjD8DvFTPra8AQwD6a1bWXyBDAQgJjxIaEEMDgTSXnXq4RwFFTnvERwg/ATDkFrL5TD8CfNxTKif4PwJH9cpt6mhHAgGPyXQrnEcCtWqRVuZUSwIbAutinhxLARIM0k6B+E8AZA3o48aMRwGl5zlD2TxLAg9SuHXzEFMBZlhGLzaMTwHXu9My7bxLAF1J5X9qCFMB/1tECjZUWwEBTrEA26xjAnWaRp804F8DfFo0+ay4XwHSFqLAw0hfAm+oE/bd4FsB/OpY9PiIWwDaKihMQURPAz5ZB4gQVE8AZthUUZOQTwIwFylYiOBXAYwJ7HNXYFsBp7ohFaYMXwBcWgqzolBjAuFKlTJ/wFsB3xYfQX3MWwBdF/wb9+xXATaQE9MU7GcCh046F3kkZwGhpPSVP3xnAPMTqkfK4G8C3btle/MQbwCf3dwwFHB3A2ZqpwMzaHcBp5dC6rhogwGw1YRmiCCDAB7zAPPSNIMCl1m2YZ4IgwP6Zi1V6gSHAfxKsrPHuIMC27x/OkIUgwAuh+pyy/x7A8SeE9BG/HcDoeAj9v9QdwJ0AqaZJwhrArKo/3HbeGsAUyfuhh3obwPfcvn6NHRrA8575OfPFGsDjPC3pWkQawLddVaX+5RfAUZDbbiAJF8D/7/lWZtcUwJH51WORuxbAf8LoZmhwGMCU9i3H+ykXwL/zojBhuxfAF3mylIiRF8Cz0looYbwYwGU4/Ic2kBbAhXh8PUMYFsCQMTy1rxsWwPRa9vq2AxjAuAgwBf+AF8B5QypgEX8XwKuyfKjLAxTAjReVWelrFMDHYi8k/woTwLQYREDO+hLAlyLU8WhzFMB54CaG51UXwFmu1jhHlxbA38LuAYGUF8A3PRj7joAWwLiO4RerKBfAobaTTjuMF8DTHdPNS/QYwC1No88FWRjAo8Yiv14+GMAsgvOgS7YXwIzVvKaMqxnA64yxNBdjGsCxRVu0T3EZwIk1FDCpghvAiGnJu2quG8DbtcoI110dwGBDoKNPHB/AOYsnacTpHcC9nX4F+zIfwMtCbJkIOCDAs1Ow47BOIMAZ17FpcGUhwKMusO1v6SHAsetojH/fIcB9S/2UMswhwEHmZk41tyLAPUcrR7zlIcDDaTKaM7YiwLXmjf+FLCLARTR70d+CIcD1QpJiLUghwEpNs27joiHA7Lid2WD3IMBxZA+37AwgwL9FM6EgnCDAzOdy4kqZHsDX+VGgy+EewPzfZley6hzA/KQO9gEeHsBRXNtSPSkfwDcq/9Ijfh/A2+FgDhY7HcDAMzW+NOQcwAikWp4vTRrArDnDj//LG8AA12I7sMgcwGHy0vmjRxzALe+GredXG8BLrYPPclocwGAWtb4JvhrAsLQ5RdwFG8AhzwWKI7AawACDhY9UERzAcHI/L1alHMBM0Abe+CkewP32N1BQGB7AOQu0JcxVG8C3a6TPzqcawDy5fG3DBBvArUP0Xp4zG8B/rQ226bccwKkT9h1zvRvAvbetFUN/G8DD+gPHpy0cwCPBCOSPcxzAfbzdbyFEHMB5B8gvSUMcwNm5tlTuOBvAd6HHDOwOHMDzXKde/KocwDSkO4zKuxzAcMdtYAPhHcDI6KPFIiYcwJdzYqK38xzAyTXadcQtH8ANxkSGTj0dwE3NYUeFDB/AnRlOS6fjH8A9uZuGO54cwA/Q1rdLRB7ALxHZHHauG8Azt/CUQHYawAtCfN1UuxrAeaALCOLFGsDTa2g+3asawB3cPP/YXhnAKH51xeUtGsA9ktkZ1IoYwFASuEjA5RjAWZ8zxifnGMCninHW9ncawB+kl+wwVBzANcr3F+yOH8BZgdivp/sgwNue/nR1+iDAecZSaarBIcC9ThFkYPwhwNnFjWx8nCDACWI27q+YIcA0Jho/cYQiwEFeHOHI8yLAk9U7SCt8IsDCPENyeJMjwJcfWocrSiTA7YfIkhb2I8CbzbTbZPUjwJaxSZFS0CTAgWaZ9wqmJMA8IRlzNBUkwNcYoE4gjSPAJFRCkgMhIsBZ8ltdX1IiwGU9mxh/riLAOBlHEA34I8ClcBGTJz4jwBt59xrFNyLAS7AZ3NtWIsAS5Mgtb0IiwKTm3yH8FiPAkhlV3xUlI8CCNSEO/zUjwLFk9ACQoiTAo6pqgU4NJMCgH6t4EPYjwD4QCnTT/yHA35HPUpaPIsDbtbB+sUwjwCb2aJiF5iHAY2JWEdGxIsB1y6iXB+ojwDO/wryWfCTAYnmscubBI8AnwJbo4MskwAUk2nn2yiTA9fkK+Ah8JMAT3wyR3tQjwFSYlHSmJiPA6fkd5K7oIcBzaqvWQwIiwC2QHA5sTCHA3xxl3CC0IcAVD991RHAhwBNJjJcTMiLANP+/305NIsChTGT2gO0hwHZMxuaFtSHAgIQLPlocIsCJTfqkyZ0iwC1wFDLVWCPA8Hy/EFjsIsBVKKjSx1EjwPv/P9Sa5iLAMMRxq2lzIsAP72s+wwQjwKVpp5vRMCLAyh5KuNbuIcChW54/al0hwD5KpX7alSDAeyHzSu7YH8BQA333mAogwDtMuz768h7A/HM8dHdWHcCNGPjgwiEdwBW0Y8UD3hzAO3g5jmUEHsD4L3VmiO4dwHnGgP6hCx3Ar4+EQDThGsAtQcoxN7sbwNtZ4Nt3+RzATFel/WWoHMCXQCSk5W8awNtJoQScmxnAyHxFznbtGMDTsrjefcoXwOgBJKg78RbA9ddUSES4FcBV+k6suTcXwClWOiVTzRjA4yxoyrLcF8AzFsYYaqUVwPBH/0g/ThTA+RwczCmPFsCZz/K0nlgWwJxu9O/8nhfAcUeYqQypF8Ajmcb0nc4YwLdyW/ACwRbAsdMJdVhQFcAf9F30TTkUwICiFWbA5RLAF6d8hQSAEsBMFapbG6UTwKuJLodsrhLAQ7CzIilkEsBYRUWnN8ETwBxQyHLFkhPAGaMCJ3QnE8CJJJz1NqIRwM14oWZ+KhPACZ4xU9D8EMCCtxKpHBIQwGCU06Fv/RDAyx86+8pcEMDUMfCcrf4OwJEYVBUiUAvAf/LazHgODMCtqvPV9MgNwDfkHnbFTg7AqY5OGvceC8B3DNg8HTQKwLiYE5k/0QXAE0fYEmcOAcBtmEZ/FEkBwNdoPPaL+/S/d4vATuYQ5r99QzLFm6jmv5XDTzuo5vS/wgdMYW/g8r+oLUj/NQnvv2GAoNnogPC/iQ0wkoWM7b+9ZIKq+tbYvwNpLaQrgPC/fZWq1PCh7b+pOPgbJ5Tfv00GgPTxWPS/naMIOX7Z/b8hlv5uh84AwDWLAgf7ggLA6/7goUXMBcAgQP+xwaQHwJqltWvU8wPA6SqpEcNDBsAl+42LRa8IwDjiitMdvQfAG/zZhOV5CcCZR/6VmJ8FwAgNIyy/EAfAP2qr9gmMBcBzWZl6buoDwH29AOdF6gbAkIRTjZ7dBsDN26VX3gMIwFFfPRNCkQjAJ6kvbJjJB8DoEWnfq9UJwKlMEzeHog3ACyhYoA55DcCVD9pzXtwIwE/uX3dUFwXAoTuzk8SEC8ClE9CASXoLwDgNsfATBA3AMUGuGFHSDsCdoI+141ASwNnJ0ON+fxHAHfYsvlwkEMD4tMSc2lAQwPBQDAaGyRHATAw4GrhYDsCPUUS0pvYOwLAGmQn/LQbAleCyoJE4BMAQKSouNdYBwGDTyZXHLgXA61JxQDlxBcAh+JdQkhcJwPA2N/z/kwrAXFwnmzEXDsDYTfUC+L4LwEPE52lQCRDAlUggo3PWD8A3CJqPyhIRwIzKbpoXKxDAPOK1iHckEsAnLhgUAsURwL4kKW+dVBLAz7og6txdEsCURolPOjYNwKkw9JmBCgzAJ+JqR3ZEEMBvkJglKjcSwBJODkro7BHAmc0K6Cw1D8AF2usO7dgQwMtvWvQFVQ7Ak3Tn3cMJEMD5GhSN3fEQwOxW6EpfDBLAp/IyncoBEsACQ4P0dpMQwM2tbMWApA3ADfKMEilbDsBpmr+DGvkJwJQC5rJQZwrABRt9Qpe5CsCXBZqTtdwMwM0c64Gbyg/APcuOYO6vE8AQQFUXK4sUwNsylD5RshbAnFMwuUogFcB5xP+uzE8YwP05vxsNHRjAaJmxhELlGMCRpXLQf0oawBBmaJRVHxnAoPHa0BgxGMBNvTkHmS8YwCNmRM0GkxbAc7Rf2pPzFMCr4USg80kUwMqPp/VyqxPAriL5CoC8FMDLl+G0jIgUwDdUjaOfeRTALz+MU7RDFcBHgRYcMY4XwIFI5lZCzRXAS0XrtoVWFcD5IuE4u10VwC8orqWOphnAz4yK+85gHcCIAZIUUY4fwN1tfAX4TSDAV0RBwF5vHsB50po+6aofwA0FKnVNZh/AmyS3FSjfIMD7fKm1OkUhwDFqFmdmDyHAegZqOINfIcDuwZQzeyYhwA0wTl0xmCHA23j9iSQyIsBt0Tc9DbIiwIHHNKCz9SLA5NSGUn2/IsAPr/HPXAMjwBxZlPhMbiLAyzkXOs9xIcB5apjAX48ewNmE85JMeh7AaQaf8OHBHcDFB+ukMoodwOVNB4qYJR7A4cgsmMIRIMBRt3Zxf64gwHvVXnYBDiDAu5tsWRZaIMAM5Zh0tG4gwAAleAnlbSHA5zUvOC39IcDukrMyZl0iwKRzjQftCyPAzfeEmK9HIsDKPyO8CX0hwH48hK57vSHAvaclvviaIMD/iN22RVMhwEjyfRul5yDAUnKWYhakIcCJ1/2aJv4hwECzQ9M6ViLAU7GH5wxaIsDhW9ouY08iwHGipx9arCHAnwgeG1VpIsDGOZkvfZ0iwOJ6elJQESLApFZUpyeHIcC5bt99rqghwD0oXqtqqSHAg1+XDbToIcB2oFBEGYIhwJ93oPP94iHAcVoWIadkIcC1XznNBEUiwJEjQ8mB3iLA6PCOnYzIIsBiQuOlGz0iwF901iN9gCHAh2DFtZc7IsBCK2NPwikiwJkMNAy+3iLAC0AD9HiEI8DiGZXX4/kkwN1IBq1pNSTAZbU7s0slJcAPZN/Ow3MlwITJysNN+yTAZDl4I5RaJcCju7t1trgkwB2ailffRCTAMi0iJiOlJMBMB9tH06skwM+4MjXAViPABzDIuOLLIsCHIBOz260jwBG7bAW/kiTA7I0aDuyzJMCL2NHxBOEjwG6FDemVnSPABbntZOCgI8DL1uTHLawjwP+GAfMP8iLAyl0FCrWEI8CNl2Ksa3YjwG0ikX3ciCLA3mnvoXn1IsAwwzpLcYkiwH2BKKyAwyHA8cDIznoDIcA/Td0EHlQfwOGxVYyclB/AH6Xh1o/jHsAPAcpNTCcfwM21VlnfSxzAaL+itaq/G8CH6oh6uf4bwPBfhfZvfxzAaLCH/uS2HMA3wNXtHJ4dwOtKk+aD7hvAKfZ1j6L5HMBExCdyE+8cwAxOuiPeQx7Ap5U4UNtBIMBz+5IRYFkfwKe+WFgh8R7AXzKBebjhHcDb85P4mh8ewHwW6JEr0xzAAci/vP/XHcAVvWdADGQcwNyoPid75hvAR4Iw2uydHMDllwKWETccwJVwHe6GnBvAPQY4wzY5GsAV/UPzhpsbwJlOdazrPRzAu0OP0zGcGsCQ7oLvPyQbwIQhCXUX/xrAsTBmzVYMG8CH8LckcVMXwM2qpsi+PhjAqxN2TGeQF8CESz0ZKEQYwEh6sPBk7hnAwdcljeqiGMChENoIu8wYwCRnchbrlxjAwyDYmjOdGsBlbjQ7gLAbwFGSMy2DyhvAXLqeRrwrGsAPMvOW9vUbwFnEmABEShrA08XujI4sHMChYmwYWVwcwF0+7TtBZxvAyYVoUdZ0G8Brf5UdE2MawAcyAmA+/hnAz6wDoHa9GMBB7/gIrhwZwBcOQ2qVlBjAfNx9lMh6GcDASLCM6SsawA0Hi9zP2RrAA3/0SbaHG8CDkw6VBAscwI809YwAGx3AwCLZPJGkHMAEyzwxgw0cwKPHhXa4Mh3A9ScpMEurHcAT9zXEj3UfwCv1q44Gjh7A7VdbXEMCH8BYL2T7si8ewJtzf2vL8h7ACFfFYdU/HsB1UFVY11cfwBsomyBC6R7AZPtcZ0uYH8DInpiDeTUdwAnhFlrg6x3A/QI+fFWrHMDPsHc8p1gcwE3/ybGmlBvArfRnVmvLGcCEBqtPB+cawGQG2uXo+hvAU851o5Q0HsApAWt61AcgwClULsQC0SDAAY8ZvWITIMAPisD1dEsfwI1RJkkxjB/Am3gLBIrXH8B+KZAivmMgwI+FpPC2gCDA2EEW8ANBIMD0q6QRJsYfwGFceNl+kR7ALD02/BjSHcC1y4DrSGAewGFXzFGT/h3Ae4SPTtsDHsAMhHbVK64fwGfVuA/7JCDA5ixdNjI4IMA1erOImM4fwDlDkE6V2iDAjAXrh7+hIMAoFI1Cvs4hwAF/3z2pKSLAJmPi8YMLIsBPkP+DOcwiwDIzng08eCPAH4sNnO+lIsArcOQTGTkiwCcTihB+sCLAl5IuAt5YIsDxLOGnQ50iwKsUS0WZhCPAARkvIJlwJMCdhGR8zFQkwM8ejCF+/iPAyf6S55/eJMDkiIk307olwDSRRqPP6yTA0RVw5lv3I8C1ZKv7tCAkwN8CmBVO4yPAuxR3chePJMDXfzG6zVckwCO9XeZXYiTAqv5r7IjgI8Af8gx0Y1YjwNRzbQPCvyLAVzzStl+EI8BVLlSd7MwiwB+z8KXhPiPAUx+pLVBAI8Bran5RFP0iwD+b3S4gdyLAcf3wD/6zIsBEe8S7yH8hwFQ12I5hqCHAh7wbits1IcAH8g+HZsohwNoXGQnKAyLAUSsbc6DpIcCIo8J0O7ggwN+42FP16iDAgNWYbs65IcDSJykdyEkjwM/eS2YFGSPA36FYngwZI8BdggintP0iwC+HX36HyyLALJE6xsHTIMAjLguhpSshwGeiVzbDYyHAeRQL6KgFIsCX08jIoR8iwODXSZKrfCHAgEiWDJJ9IcAtZmbgFRchwC/iubqV4yDAr0UeJfpXIcCJVbBq/BYhwJ7sqn6oDyHAvxqbbuzBIMAx6DzSsGUhwOtqm/lDOiLAkUm77dKUIMAPFzNP7V4gwMcB76vZYyDAEAZ66/ofIMB3CbNYJ5UfwLt6nT3WmR/ATtu6f1OqIMBhCr8UuuggwA4EOlutMyDA0MAV2bFyIMD8Rth787wgwFP1a0LbOiHAd+GIEWUzIcDDO+p675wfwNOTEVuIWiDA5XZodl2iIMB7k+09MAEhwI1uF8lSRCHAQUr/qcjXIcAN9lZXVXchwAQxcPjXySHAzv/ZPphMIcBlxM/kw6QgwN1/6gXkyCDArVvvmwqHIcB3jC15TNQgwP+r+4QQJiDAlYky8GB8HsDV6JEss0YgwLSOEUGR1SDAtP6KeQ1eIMAhjfDxWKodwMDBtShMKx3AYFkB4DwqHsDXMWxXzIofwH9VKByIJCDAs/m5dtjkIMDZzv0yv1AiwGTtemT7miHA26deq+e6IsCNZrD1kXEjwMzboJ0zyiLAv3jr8T8tIsA3g/jB0uIhwP8ofuoCfiLA8Tx1JGe8IsApTY/iYrEiwPSzGfoxkSLAslBWuSOrIsD55l8whAYjwPLO1ZG2fCLAANk7wkteIsAFZsJdQwIiwOnTcYMSfCLAeFA+coqtIcCLTMHVjqYiwNqpAZQ+GyHAsVnCKL2dIsA/WazGYbMiwLUyJQr63iLAlyou4ZEsIsBpUEk7kpIiwDliWG2JgSLAZXdxA6nCIsAhld+hUIsiwJfbU1dydSHA9fyQk9SAIMDEbYJddSkiwMzBgFQznSHAxb31o4/BIMCaUfk3BsIgwFxgMvfCsSDAB2XcK8X9IMDZoJuTYAIhwKpHmI3/FiHAVW5yFgb+IMArnvpyNyMiwFlSgA/qnCHArF9XieOHIsDPZ4CdeSwiwMFjxXxuAiLA21JZcrwmIcAZaeSe1p0gwEVkXAEPfSLA3GWdv8LEIsCmLzZe4K4iwCeKH24nGyLALl/engHsIsAzMz/+e2ciwB9DsYjQhyHAaRXTDK+nIcCpLAWPVA4iwNvDLlNb/yHAy61/DEAQI8Djt/C2BaMiwFzz82qNyiLArsMuwowWIsBi14WX8vEhwCMc7KCJgSLAPUWctHaJIsCiTcOzYvchwPAVungaCiLAfxCNMAOUIsDBef4r9Q8iwEVgDNBVoiHAK7y/I+fmIMBeEjq1WwUhwFOFZisQwCDAlWtrfxf9IcBTovUwcBAiwNzh5si5siHAw1fevTuKIcBIyIAb/rMgwM22bKpvaiHAi7QQRCV+IcCuZaMH2MQgwJV8UdSNrSDAuOdIK7hbIMAA9Rl9QzAiwPUY98kukyLAm/uOlfMsIsAVPfIoLV4iwDE+vHA2tiLAJV3ce0+LIcDrVcZ6/00hwJvzR9O/1yHAbqMZjtv1IcBrxakb15kgwEms0M/+XCHAHO+LKyfoIcATsMWcezghwP0vExetHCDAQwmCBONnIMDz9vZ3sD4gwO9nuIaNyiDA18oIU5A7IMC3A1nK79kgwLrWeiKdoCDAL+ViYLMeIMCl+RtM+i4ewMjMOlIhwB7ACJXoxFNfH8B/iV9gDnscwBybq1cR8xvAsVEEbppqHsCwJ2rgwmQewJUnTXDWBB7AszU6ocxIHsBEAlukFzIewIyURJefsR7ARYhk0DbwIMCzIulnEXggwPCsOwnXHB/Ar2OKfQlyHsBns7Eg0XwcwM8iKX49ax3AkEIRblukHcAbhi4HcGocwGt+AKoqkxzAqRS0Tw08HsBgZYOXbBoewLAVwJYu6R3AJPFM8VUHHcBhoEeqisgcwPeKSRCDkBvAE2wuMlfhGsCXz3upm0wcwCGOh/lPih3A6cKctMdcHsD0hv7gvSsdwHVrrG7MxRzAiRSGEU9KG8BLNte4TBQcwNlYShwPBBzALFD5WxgWHMBc00ueNbIcwFgESDFYryDAE2RasEnGIMCNIZHkWwUhwNDmc2aY4CDApqr2hsc2IMD4Sao3E2IewLDdjB6B6x/AOsvso4iAIMB+yxNc/A8gwIx+wyGtXCDAdr9nBjxhIMBnTwC4V+MfwIEhTsFITh7ACfyoYVWKHsA5Ev2pDmIfwFTnu2Q+GB/AQwG5ax6HH8CH9AlgdC4gwH+d13BRKyHASAy4eGbzH8DTJ/OSo/ofwAkyd7XvwyDAxOc7ycCUIMC3wIlYZjkhwHfbGZAEtyHAkM3KjLcaIcAXE0jVJ00hwHkN1HHU8SHAViCOteB2IsCSghPsJ38iwCCK+FI1oyLAFMWSfk+sIsBHK3NmN8wiwPKgUFsRJyPAPdxRIkcxI8BW4JbT308kwDGJlCWeKCTA7CmGv63dJMBfDACCxIclwGcvULJvmCXA8KtdPnoTJsDAl0OsszYnwHgdpcV+ayfAccYajv5wKMAULQEVTV0owPtcd9xxECnAL2oHi6/wKMC/VPZSeLwpwISj3BoNeijAAFC3WU5BKMCdSphfws4owIxuEDp6RCnAtSJWgzRiKcAnC2AT2agowETJy5uiCijAK59uYukvKcAR59+azdYowNs+s9OTjCjAbTpwwNt8J8CsqnZo7PYowIO8HvMLqinAj3E2rbnCKcAt6G9QGwMpwDUQdhx8pSnAFGDenSXnKMB9VBEXt7wnwACQJmK7ECfAO9gVDWiPJ8Cw5J7KYR8nwBsAoyOzvSfARE2FDWceJ8CQDg4LFkQowKx7JFey7yfAIaTeLgbgJ8B4Okdic5UowFuRJZdGaCjAjSL+fecWKcCHLV8847kowIGlUXVHxCjAtUFJRYPHJ8CcsoBoZ5knwC9jYH/IdCfAfKWf9zYEKMBdnWqDd7UowLzJmyk5GSnADOypJORGK8AEJ3iqH+gqwIXQoaDpJizAA2NuxZv0KsAtQM/bAmcrwDy+IOuwhyzA84P1bq6KLcANvL9U7WwuwMcxvhvh8i3AW0pZy+bpLcABx2miRj0uwAnwZF89ey3An8WPbvrFLMCBDmi7ZMIswBlbZfqoFSzAYANwo6dwLMAXel3YcD8qwF0nrE1WvSnA1L/4dQRWKsCjnnG2xWAqwKNb7pYogCnAeJQOevycKMAcfEkUzM8owPSnZRNpnijAATcxeySMKcDcCJwuZQopwINioHEDtCnAEOXHdZQyKsBYy3XhkHYpwKVwCDNGGinAC/BZbGeFKcDwXmOryAUqwI3716Yd8SnAredt9bumKMAAwAiJttUnwEwxNt4g7yjAUBI3el9JKsDHKDsbnsIqwL2spLjObCvAZItIKUO7KsCF6Rk6RksrwMA2QwSbTizAibPeIbQILMA8z3E0C44rwCP/V11owyvAT8MNiZ+FK8D1yotqs7MrwK3g3OiaWizA619XeCKFK8BnHbEpXzEswGlwO8P8VSvAbxxBXuFJKsA96Pj1mOMqwF3Sg8dv1SrAzaI/Rev9KsCrk0r4F3YrwCn7OWZd0CrAW43n5CU6KcAjtZefAkQowOWcZFM2NCjAfS2PvXUzKMCYqtBLt60owMwnlx9vaCfA33S3UladJsBB5T5SNfgmwAlBY0mbCyfAEf44sfJDJ8D5nxlxns0mwNf1X5wHzCfAwXD2QulxJ8DD0Di8PDUmwMkmv6tiRybAbzCxhHOwJsABP8GM1ZQmwLFEuTjGESbA8zsdMyUHJsAX71W1c+wmwBFb8nJeHibA49PZnWmKJsCXTzHVYKAlwEBITMfKDSbAkziWHO3PJsBkL8DlvRYnwFOz4MD7tibAyG45FNq+JsBA7iKBQRknwNO96Tld4yfA5C9aDFZ+J8D9xRrMQRQowARNybBiUCjAGXeZt0tKKMC4UW3RhWQnwMgnvKTcmCfAScQH8q0NKMAwUZ4qmBInwDFkzF3wJSfAuUXjCxpkKMAY6X9O/DYowBB/deqMtibA4QhA5VrSJcDPcNJ8gNklwOHIRUNsxyXAKVVE4oK3JcDU4N3foCwlwC3WJgkeISbAbQSEI0B0JsCZTQ2ikQwnwJC2h39vdybAnNIqC4aUJ8ANKysHqHwnwP8YVzzKJCfA4yvzOeClJ8AF0M/O14AnwKV7u1/XNyjAmwuHuTJeKMDPJnlUcCwowFURkFgzMCnALWWTzrXvJ8BlQQeTriUowIDuf85DgifAJH+CAH0OJ8DRAoSwww4nwAcCdWAt3yXAx1XwU0KFJsCIoT+JE64mwI+DFe02FSfAWSZgBsmTKMB/8RFBZ7gowDN2HGU2nSfAyQTD47t9J8D3Fsg9Di4nwI8hJ+6Q9CfAjFgtRsUuKMDsFqdSVOEowM3is7FZxijADRS2DzE+KMAMmaMRCqAmwMFn++lLRCbAWyi3/xp/JcBREjqdpvAmwB/GzzASVibAk6q1SBjUJsC7fFemZ/klwBXHoHixAiXAgypPt1y+JcB7E0lgUEgmwFu75YuM7CXAI/waJ77QJcAFJHdzE0slwDd9vLSeUSbAwUSU4ytbJsDjdPlZMBAmwGd5NHwHnCXAO3SdhSDQJcBAbvaomOUlwNgbxPcT7ibAIBTMNFknJsB9406V9mUmwE0zfUj3WybApFCnms8xJ8A/UlcJkX0nwJgr3qmczybAXPGN6tNtJ8AMVK9ghwcnwHy4cpNPnibAUDPCizEiJsBLrEXEQkEnwFiyttUbzSfAWYrCH0eyJsAldsHekVkmwOAnzPRsEibAi3uFz8kEJsCG0GCGux8lwPSpTnRdgCXAqcoPCeiKJcAvqQ+tvcQlwJE0ygJaeCXAYyZLF+riJcClAgQdaAcmwMht1b4QnifAxMFM1sDrJsDUeI30TRYnwC+bE1JXGijAvCERMrLDKMAjSDQUEeIowFjNByzXRSnArwSMwLBaKcChB+oeexgpwA0ZrYF7VCnAcadOYsj8KMCL+ovJI/IowIhW6F60nifA9bV/g9lqJ8BlR7Hwo4EnwP/hjfxOpyfAe1ZD0saiJcA5dq+vrxImwCXgrow/byXAy6iTtq/dJMCNcOPxrrwmwFt+00jRFyfAx278nE98JcDDTHFw+NEkwISlrABfKSXAg7wHQvNQJcCrRY6zWbYlwI94Q+UclCXAhaJCxMdtJcCJv2X3gy8mwOA7w2u8LCbA123ZFHnSJsCd3xq1xNwlwEPziGVHiyXAudHy2F/DJcD3HvBj4eglwOWfSU0spyXAMTRBgAwEJsBI4LF2wgsmwF2Ts8dlqCXAN+IdtZ4DJsDM+3ZhhBcmwCkR3IVueibAXytsnvS/JsApEYFEc2YnwBSCCEF5SifA53Xhs4QdKMAMHBRFUH8owOtETxQTlijA88DnUVzlKMDlcT2fZPUnwMFvRMy0kyfAsARR5m4DJ8A3y5o+kh0mwLwgqWdrNybAx88Usn6rJsBsmOpqgiYmwKyOohxtUCbA8K3Ap2h1JsAkeYs3mqslwOWjrahkpibAkKFu/slFJsBXIkHTtRonwExbyIfWCCfAbwXQHzA1JsAon8D1kCcmwGU2LZ6djyXAhDiMDCZGJcCf+y0/JpwlwIDdme840SXAWdSKY2bTJcAsz6j1EA4mwGlRmF7sNibAsdywfAVPJsAnC/7ewrAlwEPXVDHzwSbA/XoWX/JFJ8B82WPF6wonwMXkN+gwKifAT5nrJaxuJ8Apt7h9r6AnwJ1bswjZ4ybAMKaqPkA9J8A4cKu/+awlwJVt0vV1qiTAHSNzYO2NJMBwo42xc1kmwJGhXQQKRyfA4ElfDJZPJ8BvI6Y+u60nwOnzZoj0VCfASCftomF8JsC9IGhdOgUnwAtiY3wcYSbAjTf5QkheJ8CvDGuf7CAnwO9Gp00adSfAAzS8Cn4KKMDp8qRHWsAnwBviqGHp/ifAHGE1h2SzJ8BQZqv0+XwnwLUKm1U7MSjAzTZlTJ9dKMD31FNfk98owO8kQhtKgyjANw5fCmuIKcAwoEAXU9kowIlu7JMuHCnA/cDCW5DEKcDDqXmpKXUqwFdH0ZsUeirAOUFd3nKZK8CJncenseIswAhiTOjAZS3AXbN71f1dLcD84mV+9AwuwJjQU4ZHVy/AuyiWlAfOL8AMGtkoLkMvwBXJ4SRm5C/AV2fL4wISMMBkus3TKWovwEQuDDY95y/Ak+ocInk/MMBzsE0wpycwwBlJsQhg1i/A8GwFnCE/MMAayGDsqTUwwGCFp0mNSTDAUso1YWnVMMDfbEQRumswwMA7YSetqzDAJy1tSyBOMMC0iCLHOkIwwK61okUnNzDAU8qwHN8oMMB/yqlJ4KsvwBHBXzcZgS/A132jiEiLLsDfXRFnDH4uwG2YJB54TC7AL6oGT1RnLsA14yCjR30twEebL+IyJy7Agc73D4tULsDr3WYmQIcuwOUKHuJrGDDAelIWN3ZfMMD91h1N8IEwwN6rhxfLijDAVlZs/NwnMMBPD55ypCEwwHsRRosaMDDAZjhBrrWjMMDbkLCVkqEwwKH77eCeSTHA2YTKFy99McDIqrHWXlQxwCGVqTog3zDAJ59cb+QIMcA521i/6PowwPUmNKJqZTDAKALtqnlFMMC4iz8Pr10wwPmXa/oKBjDAhTVUZDpYMMB1B4I6xnYwwHSS93VXpDDAKZ7ZZpSVMMCz3R33LokwwPp2nVfpDDHAjMwUb6vSMMBlmfqrftowwNlMU5qOPjHAwH9kfZJnMcB6QsngPokxwHxbNkEYzzDAQiaYTuQOMcBzsu6fEA8xwPhLGLqzBzHAS7G2OdyMMMAfYe00uj8wwMUhliIMPjDAvzI/JUFXMMDWaqyVAsQwwJjLHxgVKzDAnT9VFskCMMDU0kDYnKgvwPEaP7qZFjDApg3VP1MTMMB0tSMMYK0vwL9aGAOBojDAAIRG98K4L8D0ijVgLyMvwK3ktGiv+C/ANYFlEttYL8DEPod8Z0kvwGlguo/RpS/AFXOTpy3iL8AU81NV/tQuwE3KET7L7C7AN0Ot0AN2LcBZkVefwUEuwIkmoQoFmi/A5xriR1HILsDVOTz3NU0vwGiS7MPAKC/A/xoYZzJAL8CoYHvUUNwuwD2A0jcWoS7AFVi8D5odLcC8DgX4WLQtwJSp/Aisyi7Ah+WTWPFqLsDgr+3AQV4uwLeUdI8oEi/ApFl8X324LsCVZWK4inYuwLWStkNXBS/AO0EtUMjsLcA87UAz9qQuwC1SxynZDC/AoSrj6V2MLsCR0p2NLQQuwIRzPq9fUy7Ak769Nzm+LsBzQK5n6uguwAMgDlkokC7A0IPQBicOLsCYk1SK/mcuwAAxFOuNOy7ApA92u+DHLcAhUNVxmUMtwPzGoiexGC7AOTuS4bqwL8DR4uY1prAuwC+j/YgFDi7AWw7Bpk44LsAj1vafWtQuwHEgBdd7Ni3ADJMwbO3XLMANCvOwc40twBiqdRPSPi3A2YBADpCiLsCpEj7J+hEuwHiCW/bntS7AxA24LvCpLcB1IRoGP0MtwKGpV6WScizAkA5rYwTCK8D7TJe+2owswMcASLM7kSzAywmHwj8CLcD43u+msUYuwA9wxkejNS7AWDR/WRy3LMCh6czZ5iUtwPS/38rM2CzAdNK/rG/PLMCMrDQ5fSkswCn2/sHpaSzAN4jiyf65LMBXhBV+SHMswGRmfm9ISizA/bxo3ZIDLMCwXgn4RGUrwGfhPz7/8CrAtHilqC8wK8DQ1zm25/wpwFmGZDJALSrAEdJv83PlKsA3X+HBD4orwG0c1X+VWivAXMHlN4S+K8DVJ0M8M3AswIwZ2t/gEizAfEIl/0K5LMD1HrhxBdUswFBIr/TT5yzAp2maAp2eLMCXFmgKanQtwHMc02aI7i3AGXoQUpJMLcDbuKGbUxgtwK3UWpQAyy3AAabiqTmFLcDDuUSx2QwtwI/yZTix2yzAARsHlg+dLMBrlwUeS44swDEiFgMAOi3A9VqUv4EzLsB3MTYu5nAuwKGRddgOaC7AtFFuM433L8DnZJ1wCdEuwPfRAVOrgy7A6+CR1n22L8D43/HjJvMvwKWysRGhPDDA7JO42UCAMMCvIxGOZe8wwG0vHM7HojDASvvoNeujMMABuRAAbw4xwCDEcLvSqTHAtOEW/7+bMcCqk63Xh+cxwFSl7DMnhzHArpBkIdUMMcD1FIKgAhMxwDduMAOdFTHAGfgZurM5McBj+An8kFcwwIhREfPCfDDAT7T49w3AMMA9nNry97MwwEk9t5e6HTHAszwgQ+UgMcBHnbHwOzgxwBBFl6OlozDApyayvql6MMC39agoHW4wwN68/tEoazDAL7BrzOc1MMAy11OD0yQwwCXH9OnAIDDAPDejwcCwL8Bnig+6CS4wwHVxGC2yYC/AaC2KOF3eL8Ak/o7E5/guwAmFG6hojS/A5CLelpjeL8Cp+wWYUkcvwLyc39dOjy/AAaZkGYe2L8DPam18zqwvwKwiXg7XZDDAtT9MA+5QMMDkPQROskgwwNRUPhvWZDDAijKDYFTAMMAXm7S5+ZwwwIoGlld/YTDA/1pOX9RcMMD2JQP+50MwwACrQ6nqGjHACRHd6J+uMMCVyn4vd4kwwFHi3/SCdzDAfZ21pYFiMMAncEKB32owwEo7icT4xDDAl1IClkoUMcD+0hzvgo4wwMJ+9FMY3DDAxn64w9GpMMB5Xs5xhbkwwCG8OuIdNjDAV/R6oBNWMMAKcKoG8VAwwGnCWRD/2i/AC10EiZlsMMBZ6S8yDZgwwPFOpTINoDDAEQOgZF5sMMDtnjNLvVowwGNc/ina1S/AHcrFao8EMMDLVIH+eGkuwLjmedrCWS3Aib+aLp78LcAQ7kzNgkEuwD95EyIbaS7A3Oqu1JnjLcAgfQUnsJMtwJ/ZGChLTC7AERYr0f6MLcDT4u0mp/8twA/053Z18S3Ar7be5FF5LsDEKW5UGQwuwBDc+ExBYS3AxNqR48NSLcAVqZQDS6ktwJD+ZN8rjCzA82QTnmIqLMBJO1bybyoswN0Fk3dF+CzAh0i8EMr7LMCYIgUXDZotwDEAu9OuUy3AW+f96jlaLMCzfSWkYtYswJFbhoOD2izACP8zbUrxK8BzTVHJ0RoswGMmlFKgyyrAAYh5LO23KsDcH1AlyfAqwJmmgdiskirAFEcbZXKDKcD0p9e2DocpwFEzWD1VTSnA5cK462pxKMAX/Wxib8EowP2cVad2lSnAkNE2qp9UKcC1g1hZwHYowFUB3BDT4CfAY8yjaHNRJ8AHTlXrmCEnwMmrun0s5ybAPEkqNHQoJsCQFz7wSy4mwD2l13fWfyfAbSjUgZyuJ8CxVzC1x0EowL2s8W6sYyjAjHn37m6UKMBH0a1KfOknwDfk73EmDCjAMOLsmTatKcCR7GCDLf8owJAsXfXwMijAUG4nDMZyKMB8PjQuhhgpwBSv9tzcgCnAX+wHH9DKKMAVKza03gcqwFOQlvET0SrAxcEU3HTjKcBg++t0RukpwImWC3exvynAs9V23SVZKsCfwKT5ihkqwH3tnnTQDirAHBfVpqIwKsBZ6525qM0pwOmd4BJDkyrApR4KaBlgKsAYGdzsJ0YrwNR6ZD6msCvADPDKwQCNK8DDDFbQF7ErwCkf2evb9CrAEwSQ7sUfKsDraam83gMpwKlCtIwEgSjAR4w8g3erJ8BgfzBFTD0nwOPKezc2qyfATJKPK8UNKMD9ByM611wowDMB/hgw9SjA81YBPh1SKcBgAyYHlgEpwP9gm75J5SjAoX0LGDLrKMAZqeNlb98owJPWkhdIeinAxySfRNRtKcBPls/lE4spwHiWpDB9LCrA+NxZLryyKsC/21i3v8wqwDT7EhA++ijA3BvgUtFEKcBNKUUjlX4pwP18Bb4FICjAmIaoR0wyKMCfJLKWUZ8owNnUieD5iyjApW+zLxrHKMDHexaeg3YowGjCPb6dhCjAhQiiygjyKMD7wKzru4IowFMj2jnuGSjAANmWy+oNKMDzK/1/vxUowDkDw2HjxCfApa3POEb3JsCBH51t5ucnwPUtjNtVVybAF4B/12q3JsAtu22NHcUmwHP9c80P5ibAAVKIfp8QKMAbVWZWHdsowBmNqNBfoCnA+YXBvL5SKcCtHXKlVAUpwLQGqjT4vCjAYI88lfujJ8B1JX8sqYwnwPijJrC0hyjAH5i5WKpMKcB5ztpdghIqwOTLx4NlqijAfRmQvtFuKMBr3Gp6+S0pwC3lAuq5hyjA12T2JSutKMD7010WVqEowIC/28z8lynAHyKz8EFzKcD0SCzlO+kqwDvlreqx9yrAewrVfYwdK8Aofw5t80srwK3iEmK7pSrALHiwSymUKsAcHta7dSQpwJh9/HuWwijAXQFqu54VKcBFr1aFeMApwJCwtWDjoCjAbBgfU7tAKcDpdKIynR0pwHlauWGa2ynAueoSZntJKcDRZrXYd5cpwI8gT2v0yynAH272t/ppKsBF9mm3gdErwOMWs/vQESvARUsl+vF+LMBJoe7CBA0swDdRd8h2oivA1wvqaQW7LMClk7WzokstwEPn9+aT+C3A/HRGxh+vLcDEHvZkkG4uwAS6XUs/8S7A+Y3CSzDsLsBstSy53VkvwNjJvh1GvC/Asfps2XPHL8An4TXwb9suwPFAbRvtIS7AAQlLZRUKLsAFc33si1gtwPMkhygsSyzAaUVNqn4FLMBwmQy+ZEQtwNMGHSynPC3AqEYkFc+FLcA5QRrVW7MuwFCF0EAFMi/AWJqB0lwLL8AXHcSdFWkvwPepKJTK5S7AnLQ+l40WL8BtEAOlucwuwAvQ2mD58C3AY7U9siWLLsAIyx8VriguwCmBucAOby7AhxeEDE4rL8CEwcRqLO8vwIxRmm+mdS7AqCuLM2jsLsBD/mchitIuwIsO+rp1BS/AjS3jLZD6LsCjVbicJawuwAX8r7Bcki7Apww/A4AgLsAUA/4wPaYtwJk06dzAKC7A3G2mjl6RLcCzFsuuVFUtwFUbN2T8YSzAA3/k9Bs6LMAf2aeopXMswFNH5gayAi3ASDSvwhWHLMDn0EGE3cEswJcB1hnk/SzASeMonxh/LcD41cdsViUuwEuib+5eEC3AXZqOn59iLMBtBK5RZKQswNMNy/Q4fC3AW+j572TDLMAlj6LkwaoswGkCifGtzizAyZm3aW4oLcB8HA9H3vMswKmpYUgVDCzAY9XYr7aQK8D5zDQU3YIrwKVhTtFeCSzAedbbaQ3UK8Dfj0bUjckqwKd3vDn4hSvA81FeWrA5K8DngLbZowUqwEGXpMVmBivAXJ7yVo50KsCtHzIiY74qwEkZf5NfPyvAwcYZuIZzK8B0/ZymSMgrwKcSfOXwNizAhbpzReA1LcDX9cwST3ctwLi5SZRnsS3AKcolzM8PMMB8JYo81L4uwASSYNMOry3AhUitvbZ6LsB/6pCQwesuwCcXqztZDy/A+GtLFhtWLsC4z6pNcfMtwJwMqxmodS3A8JhuFZZOLsAPshI1TbQuwH9R2d4kATDANBEGLJtzMMADy6AEvT0wwKve1POeXDDABZTbY8w9MMA56OQi4C4wwIKc6VxuETDAv+b8FIpyMMBS8OuV47gwwNdVoNMYwzDAIestCacEMMAhYv1lyfUvwBhx4e0vBy/A7ZCQxjWrLsBbmV3svkguwC3dAkyH1C3ArxD4ZCx4LcCBikJBF5otwOmCRlO0mS3A1xVRoLIiLcBgbYJOEpEtwEEK2KbGlC3AW6bv6E1rLsBwaIeNd+ktwO9cHDH1ui3Aj4EOY7XFLcADBKsmcxEuwHGgQ/51lS7ADXIMvAGdLcDVNRkCjekswM116FW8CS3AK0lYNLPMLMDRoUl16xstwAvRROkHtyzAFPHaIlNALcBltgNVAPsrwGnOPqarGSzAL0Aw9v/ZKsDtL894SA8rwA815dz/YirAoA5y5gj4KsB/+1hVoXkqwFtbwj2WmCrACSoSF1WKKcDD9JGYzmAqwFhU+AZ6pSrA3BRLnAF+KsCAskXDxK8pwLCtrYp24SnAkPHO0RNvKcBJtdnkwhAqwDdvi/gaICvA8xZMIYrXK8CsmrHUv8gqwGwofZAe1irAWLzu0ApdKsALI3kyM10qwGm5ZN/D9inA9AaPcwxHK8BVEIlObAcswPvwQNU30SvA41lMUN2aLMDz5X9hQeErwKPn8ERBDizAGII61kKfK8D0vcIMK4orwP+HNWzXmCzAw0MWVAR2LMCUdRNln2UswNHEsbWx3CzASPgFZ7RkLcBhPRwQruItwAf1GMjIii3AHdAOmq1VLcCtYE3Q+SMuwK0Kv4Uu1y7AO47seUsUMMCPe0H2p+QvwOFK0cFsDTDAO9gKdZ8PMMBJQE9T8zowwFglTIkVFzDAF274UGm6MMCKDNxX98EwwDMGW4ysezDANhkxWuQLMcBoMx2GCaowwCW+pbiqJzDA3Fw+E5cYMMANvCmgGDIwwOq0VH1yPTDAjx2jRjAjMMCbKiNHgDIwwCp9I54OfDDAGYvEoJxkMMDHio5pjhYwwBs7QgmCATDAlUMdR1BMMMBA55AnzoIwwMV5hHltujDAgP/AaBDiMMADTci7vgMxwA19N/cuYzHA14na966FMcBGaY0ZVioxwDW7gWuCYDHAUZSPoQoNMcBFYqMFcZkxwAxiY24tdzHAk1Ib8V5PMcBlVfFtbRgxwHC2fTLbfzHA8um5pmxsMcDZ32Kl+r0xwB1qbE18mzHAcvkETKy1McCeFe30aaQxwKbUE4MoJzHA1ZiHWvkoMcAlLIBnsHYxwOuu4QlwjjHAgiLQWMHkMMAZU0GZGS4xwPHq1iUuMjHA3apG6brAMcBja+hWmSwxwN0yt7kDDjHAMutpKsQtMcAXC8YiFtowwHk1TBVI7zDAKehpyvHGMMAPKRxW/BgxwJHQrBp9mDHA01KGWzLQMcCJyNOILhUxwCj6XCjNWTHAN73S5UXAMcAXhqvoFj0xwO1Gh1HOAzHAYcKDGpUkMcBt5wgpupwxwIcoyiKhSDLAljQMoepfMsDMRaNAimMywLPwtJbDDzLAU+eCZykCMsBw5uum5EYywOv495nzNjLABYakxOOMMsDFG5JyuSgywNDi2avXmzLAiupluC+qMsC96NhhCBoywCIyuS/E5DHAnwkbEU21McDNymo04rYxwBG725XArjHAI6bjPkliMcBT+POBYAExwJNOr+Js/zDAsMKxC21xMcDYVziJcMwxwFfB9CGWaTHAJdoN2HGGMcDHxt1BgKgxwFvXx34q6DHAcyxcIBalMcBvDg+/EPwxwOVnceqVCjLAg0uMIzTZMcDlLjegKNAxwJOr22gfsjHA/FOgznhmMcBS/vW7/MExwOW3KDmpIzHASm6Uq55GMcD1Kt6Ma5owwCQrwBWsPTDAXUxZyoCKMMBX77+bKmcwwAtUd2jvvTDAQUcrAIo6MMBlk22V2oswwJg8PAC67S/AWV1I5vSfLsD95DL8kCUvwLnbEKNdqy7AV0AdeXp7LsDly+ZWBEIuwNcrjOsn2C3AC7t35rSdLcCrNzkHUsQtwGPNsOPvwy7AGTq1rLc6LsB4JTMfgAQtwKS1VwUFeizAT+qi+PDKLMDPc9PTQ14twMxGI7P+SC7A6YuVm/k5LsDhBo8JcowtwPdnsTL6VC3APKw0LsGpLMCbDcN7I2IswGW4IuF2zSzAdEJ8XNN1K8CDUsPdXqcrwORiP95M7yvAfVLDK2OKK8D1q2gm+v0qwMhB/eDikSrAuAU+tq8/K8BI3YZW1TYswEO+6+xpJyzA77YY80Y1LMAIRbeZzCwswAdMUB28TSzAKRssx/DfLcAv7nBkYgUuwHXhGZ0X6y3ApNGKIrEiLsA9QhnNGVstwDdXYLrZxy3AkXC6wQKcLsCINl8BxiAuwDxWb32UEi7AgOsO8OJ1LsDACSy9v8UuwC33aLSxdC7AL8KF/yp7LsB1PlCmt30uwNQeZwTLYS7AQav6CiDyLsChhMzGRAIvwLRLNkQeVC/Ahst2OShUMMBlIAzP2bEwwDMcDIUKETHAKUuYThoyMMAHT7XrwbcwwEoQ6I199jDA63ofPVzAMMAGBWkMgPAwwP/oifpsLzHA94j2Ke1MMcBdk2RRTBQxwP3IxwlhrDDABY2TNGF4MMDaGxVS7HUwwOFGKpQeKzDAb/j9AiIyMMAcwwS2zR8wwGwQHnkC0C/ALicJChElMMBRRhrkUY4vwFNV7ByVkC/Aw0JZQGCML8CYuV6E5dAvwFFqGfWTDDDA/2j1v8mtL8AzpzPrXeYuwLUBe2cwzS/AqADAVMxsL8CButLMjTgvwGDhEVINGS/AOPM7MSyVL8BwSkBBn5svwJAQi4TZ9S7APPzQPGSkLsCbbxbPFDYvwDAtzV9lQi/A8UPEm2OSL8DPmShmwZUvwOyTU261Uy/AAfdDQtghL8DGTyk5IgMwwL+8yxpBdC/AEfGs3Zm1L8AtiCpEfaEvwJsJBwtEny7AtaY1CPiELcDlq9hk1QguwEwSDxqZyi7Ay7kzDlc9L8DN65sdCSEvwJQH5SrJVi/AMzzuVAmfL8A/1u3hrbcvwNvoNViq0i7AY/yNy0tZLsD186LR8yYuwF/zwZY/4C7A+eb4wvSpLsAkMBW23JMvwCARFm+PJi7AhM3wRdaWLsC3ji7xXnstwA+PpFLqyizAFb6ooTBjLcDjHHsZrXMtwKDwpNPKBy3Aj9btDzJiLMBhgCY2oFEswByeXi7udizAp+yghq5lK8DdejqOrjYrwPVK/2vqrirAvY7eO+3yKMDTlNHxG+sowG28/vQseCnAgL/gDbwfKsBLXOLwSTcqwCP/fN6oOCnAnJ2XA3GDKMAQkUAsXsgnwJxo8MrYNyfAh6iOj7Y3J8D3gMrqU/ElwMBwRXrXyifAe/OxJTQcJ8Afql//g9EnwISvDX+yWCjA0CgHZYRwKMB/6hPaPHAowHSIBT+bfCjATWtw3caXJ8CEhydTmOEnwGXpe6Ja2yfA66jUz0yGJ8DM0hUVFBEnwLieQ807HyfAR0DYC/f3JsAUCPDONfQmwNMOH5HgMSbAgAdXWURqJsA5bYlXNBsnwI2spgLuySbAOUZef5PGJ8B9jG1nqownwC33yfnzmCfAF4YKcceeKMDsCFH0BpEowJ1q/orrjifAPVHMBb4hKMALyrL1KUwowJkB+/7l+ifAaQ3XUopqJ8BwfL/85ZEmwPtg6ljRvCbAZNkN5R1HJ8B3i8VS4lEnwCi27emVRyfAjMu9CSl/KMBNiFEeTgIowKs89EycAyjAa+QIUKm2J8DbFQnhfsoowG1qQcfWcCnAA2qZf9pAKsBpJrhuIN8qwFUBkhgpHSvA6ds3MXgqLMAAe1FG6P4rwIX19r3eWizAELJ90axNK8Bjnj8efhsrwKGJ1r3seyrARUF2kpOXKsCYEcGHdbIpwLclyMkraynACW8Sv7qfKcDzL2UXdUEqwHOmEjBqpinAK7DipiygKcAED3ZCRKgpwOehB2eG5CfAz5CWJsBEKcCBcBOKWwcpwChY+Q2YpyjAUZlgfctTKcBx6WNIu20pwGBn7j6EVCjAWYsCD/+cKMAR+HtYOoUowMsTguvAtSjAR8+0r7CxJ8CD1TZe4QMnwGTzaFMCUSfAsFZV8IKmJsCYv8bcuXQmwEDy4ixHESbARPn9FR/HJsBzDPujT4AmwCQy2qHwqifAHOxjY44WKMBcrl2nnWgnwLSA/Rz6ZSjAZLNyNkD4J8BMQuKhAHkowFuBp58v7ifAK+XU1uP8JsDbFHQcjSAowF0uoV/vdSfAELDwPMfyJ8AnAzrzI18owBOolClUvCjA5zoRtOcaKMDJBhYyQh0nwHD6hg4g+CfAg/2nJmEPKMBtthXZR18owPuaoGFPbSfANM8gqJ+5JsDcCRZx6VomwAjWedGGsSbAE+DME5CDJ8BsYV78WZwnwBnTdUQr3ifAh0gCRp3IKMADz0r55A0pwOu9B/XejynAh1dZ5ovQKcDMul5NFVUqwFOa8F7QhCvAyVWfnRa9K8A1C62dV1grwJN5F2EO9inA0c2LNMqFK8C0vL/GrfcrwDG5uxRBzSvArPeyKBEWLMCdOSACfAQtwCGnRddeuCvA/Z6E8xZILMDr633UqUUswOelS9vy3SvA02jtSdcFLMDndC4cnrAqwLv+VeppSCrA+w/F5uV0KcDw5VIEBDgpwPxeptEknSnAbOoCQC+bKsCkql2Zy7QpwPDtJc8ezCrApAU1elb1KsCZ+OHHwiMswI2s7qxJ3SzAxwKc9rsDLMBgJ32/MYItwIU/785KFy3ARcN38/OpLcCJAeA7oK4twDA9QOY42S3A2Dsldq0QLsAAVTlbXr8twA27oirL3S3AxOLKRayjLcA4+BF4DMIuwISFItF8mS3AF50SOQcDLMD4uw0pxLArwFsEeKpUICvAu10uPalhK8AcOSAXxR4rwDF3E39C0yrAhQGZ1gWRKsAZqgmyGL4qwMRoonoNDCvA7c+Mtl5CK8CIepnSDhsqwLThB4edVyrAReYU19qIK8BNkuEKSRArwNz5pp3KASvA9eHOWpM9KsCPwTj4sXIpwCNTxcYzAyrAJPz0yxueKcB4tytG1R0pwCm0n6klwCnAWL2XUHcAKcDMRwm/OYIowCNy/AxhlinA1HcMBNiXKMC0XsX+1D8pwAv5uOUhjyjA6LmnKspaKMD9ZZkjC2wnwCCkjGx+1SfAiQLdKKy8JsCfw/YXCicnwERMeoRjESbAPPnspC7rJMBJj1gJKKUkwCnvF5ti5iTACVbmIEL1JMBXRoHrKVYmwKmQfWDDOSbA3A26vWmgJsDMWL2StQcnwP1xjK1gWSfA+dPEA+MuKMC1FW0U55sowBdvnKvm9SjA9AUcLLr/J8BYJmiFr8MowJ+diabTyyjARxjUM5fQKcCPjL5PHxEpwJPwPJ+pwCjAyUSimXWwJ8CMwDc7CyImwC1sHmhYrSXAcbzkIQDdJcBM83ytqIglwGizvks5HCbAIDA8nES0JcAY7vk71vwlwHX39xu8ViXA+RRta6BhJcD4sBFz+E8mwDyxo7k9VyfAT6jNc3cvJ8AAQBROvw0owPdOAZefjijABz6h2/QYKMBtTVENLZoowPiwDRRv9ifAHGTosvlcKcCgUnn92uEowLWPbkcB9yfAQ0VcCtf6J8B5QiCwCuAmwBNiSijM/SbADb6V+siyJcDZBR+G1GsmwJs1ez33JCfAg6BctcpUJ8CMDp0QsYUnwGlyv+6uHSjAb2A3kkddJ8Afn3mmjccowJTb79r8RCjA/SnZJ9EHKMAloLKBNRonwGnIDB0U1iXAITyxcX7DJMDVQabkFHkkwJ1nUzsIMCPALTkbzB1rI8C8eRpiT0okwOJ5ui3upSTAA7OQphrxI8Bh3r18i1gkwO9ffDfn/CPAwxk2d/RgI8Dtev0Z2qgiwLjneG5ElyHAH/HyULtXIcD3hFECQAcgwNl+xgPZvx/AH3knf/otIMBI2TwJ+lcfwIExk2uvVyDAsJ287PxuIMAMoHr+qLYgwBBQwiOhqCDAnJ/fDDR2IMAs2ECmnHkgwA5Fnol9UCHAZSJ9DLByH8DN+xIqh5gewMUYZLBzBx7Aqc1bPhj7HcALVDU9TnscwEQsr9jrexvA8Mgi/QqpHMA8rKrcHjIdwADqmaWA7x3Ac1GqsnJtHcCUYHUKmX0ewOGqusB29B/Am+VJ9II8IMDXN7zoEsQfwEEpn1RHSh/A2dEAz/TfH8ARaiG1tWUewNyHYqSv8hvAhT/Ss8v3HMBwLemcrVgcwGtgy+FQ9B3AGt0hUISKIMAYIbhZC+sgwPVsNhY8AiHArAvEbv8FIMCT9leYeXwgwB+qVyAibyHA1XusvRYHIsCMs3eR/zEhwEOHo0y7JSHAkWij/dmFIcBZex88B8YhwMJLlwrvISLA6Wz4F2BxIcCP3e9VyzUhwKq5tTnbmSHAiRTupiFcIcApu2dzYoQiwPMSrpYlXyLAF3qM7VcQIsBbUxRMenIiwIeEgeKf8yHA4EUxpq8gIcA7+FvzrhogwEkPvr3X7iDAt0vgEmObIcDjymDDALAgwIS6PTr8gB/AKSTRKqmsHsDp95RUypwdwNmII1zUSh3AQZMor8x2GsClcQSm+NQawOxWWlJv6hnAw1iEaWMvG8Dxi+fXr0QZwOBKKKFayBfAxUN6pgwRF8AFSH4jQ2AawNf1+eP4EhrAVSmLBfdaGcA8laFlN9sbwM0n8dkzghvAwY4uqnHpG8Af6zse6BUcwOmYnjngQB7AidQWuZxbIMC2zzyrvlkgwA2rCtFfwR/AL2C6Jo3OH8BddO+UxlAfwFzNmLdb/h7AhWEiOoTSHcAVTJijL+8dwIX/VhLJnB3AjZjFX0lbHcBM5m3qpKcdwGVgY0jF4BnAFU4uo7gDGsDcRDvkIg4ZwLQbVchprxnAb5wB08HGGcAwL/t/6bYZwNSgupbQVBnA4INsbo2rGsDnVbeKEd4bwNNmZQJ7ihrAEZBWLjBEGcBoSuseeoQZwFcCHLvaghbA5VQoPf2EGMDoQSQSsNIYwNu6Ucky/RnAdd3DwTWBG8AcnhD8racdwO89WScWuBrAyI0y78GlGcBYgtS7v2QbwBRH9KAWXRvAh/N4pqR0G8BUhwQ/VsYXwEkpsiPgrBbAoab3TE8zFsD5OL5oSSwWwJmic/L6HhXAeXxB7g+3FcD7+P9gywAXwDD79PrmfBXA/SM0f61+FMB0N4Nv/VEUwOMzObkNtBLARzHZByfFEMCbINgmDvwQwMDxlwKB3hHArBLpmj+GEcAncJBu7xsQwHUbWS9QoxHAPLeKolCDD8Awv0WZ6XoPwAvGIGAhDRHALT6zH5neEsDn1TTipEwSwFs2gVzoyxDA1jmgUnJDEsA808KLWrYTwIuKoEM4GhPAPZuRw1EpFcCrZYh5d4kTwAPoR2lanBTAhbJGAQEVFsC/2vANOQ0VwE1OeT8L7BPAYNVM2kpdFcAFRg0uLP8WwFX/SzncWhfACXPsVWgAGMDEIFTm5aMYwNBF5v/SfRnAuFE3V1JXG8BBKqcCeyAcwC0U43AMIB3APwrq+E6OHMD4pLKY2UQcwKjffzqPdB3A7X2UL041HcCsjhKJSdYbwHU3g1y5BRvAGATvWgK8HsCUuRogVSQfwHVMBap3HCDAWRf2FsD+IMAN7AtjsBAgwB8XjYlr1SDAZ1SwbG51IcAoanJV6EIhwK12gzaIMyHAm3ukAIeQIMA3Kncs8dwgwE86cY40ySDAiZ4kMww8IMDirtdMiuEgwEk/11HLYyHA9EvSbYiyIcDyB4fBKBEiwLln8S7oaSDAVOVxVT2JIMCQ4FErhWsewKC66fCF1h3Apefnq50tHcCbgC0JT1McwOBoiKSEEBvA8biueepoHMBkp/BdEjEcwB/UNFLjyhrAFTaKbCGFG8Aroy/PBhIfwGwp89XImh7AQ8aKY4v9HsBA2j8e5VQewMCr7DUt+BzA4FhxFZxhHsCRjjwnSPMewNnk0ZAAsx7A5Bg1leRQHsB3kIR/PhEewPOSv97d5B7A2Y9eeS7cH8Co4bmks5IgwPNSiPRhwSDAGU5FM2+YIMCifdWLQjohwJdxdOiTQyHAzcqWLd3VIMAZmg1UjLoewOQWXHEkhh/A9fBDKgs1H8BT5PlDKnAgwCOZ6tpuOSDA/8tVhtrNHsBdheQY9H0gwA/IbN+e1iDABJCilEyOH8AZHU7mv6AgwAP0Fnh6ECDAgc3K7DjlHsC9PZZ6Zs0ewHFELJu9DCDAsZJSvSGBHsDvUZuC36MdwIePT24YxhzAQVGHi/tHHMB1Td/9B2UdwGDg43Cx2xvAjxPj6cJeG8ApiedusssZwBtEJCxHBhvANDe7bZdjHcD4ybK9WBsewFzpm+DEIxvApOOI7uB1G8BAHSUX5NcawPEq/r0dTRrAmxfXSVbrGsADKOX2lUwbwETAnkoY4BzA2P0LaPzlHcAoImglSkUdwDkm8bsrTR/Ao1kwp/zbHMC1teRbo5YdwM966gMMthrAO5ao4rCOG8CoKbV53QYcwICO/aNqfRzAa2xLWrMtHMCca8YY6kYewNNLHz0wIB3AcXDV5J4uHsD05JufoDYewCfy5kFZoB7AWjq+J8ElIMDnUR2GlUkfwPtImyaHxx/A9cKZxsHRIMBrGzwRURgewA8w02H1WhzA95KVBonRGsAlSMH/1Q8cwC8EmLBtOBrAt7nhCWHZGcB5TzjJzj8ZwDSH9fKRoBnAvCb/x7meGMCdMt+UZfIYwCXl6IPELxrAG73InbjQGcC/X9bVKTEYwLPFwDkdHBfAlx+DiuHDFcCPsjvE0U0WwMDWNZM8/hTAKriEvhg4FcBjRB/kNYIVwBOutNs1OBXA7cz947JaFcB/rB8HjjAXwF3XR/Y6QxnAr55OtLZhF8AxYcFZlagXwJV99dw+ThfA4Y0IzH5XGcC/IT3iXTEbwFGzC/u7oxvAcxofS4MxHMBwI8pVoIQdwLXaNCcQ4BvAbTCh6cQ6HMCUCCsDQlcawLdgMz0Y5RzAVPLL18m/G8BR1ApnGMkcwH0Bzpn+xB3AUS1QIx/iHsDljnWUnC8ewAlZVFYcIB3AVTwgDafbHsAV8j9RWcQgwEuheCPcsCDABcXX5c6NIcBnAWQSirUiwIBJFpSn6SLA3OZFTXQGJMBHftYEvxIkwJ8hLElRhyPAj+n2H9DKIsC9e8eUZFIjwHSRHepxIyTAp+f6TQhuI8ADkLI5vocjwP3/Wclf/yPAz+NVSxfwI8DEbO7kxC4jwOMG6j3YvCTAEGXxsqJHJMCbgIbbDColwP2xk46uAyXA0Xx8RiKYJcDp6iX85qMmwEf4dAXTXibASeQDN29dJ8AjbHWVO/EmwMNLiqIXVCfALVKWHGMsKMD8AzUUJwgowBSqW/6eICjAZ4DZYAeRKMA72HFfGVUowEMRI9SAuyjAvbmXhCcRKsCvG/l/cW0pwP+SpEYCIinAT0moR+QrKMCfItlrha8nwBADTP0ZLSjA40Z5brmEKMC8+xCE1D4pwAC1h7L73ynAnFAmVSv2KcCwebwmq+wqwAwLnwhCwyrA1e3W/an7K8A712mgzgQswImfVe24gSvAqBBzi61KKsCfSTXRWrwqwNNIUAapuyvApcV3jiPeK8AZAUMtxK0rwPDeT1df8CzAHYp/Sle5LMCQMkBFJk4twIy5QD2nBS3ADFu25AhiLcDFaGo3CqMtwEkqHHpNHi7ABYoVX2V9LsCbwnI4crstwACgtbsmlyzA2EVAOWS2LMCkanBbWwctwA86qjKOLS3AO4naI54zLMCF6AAtsa8rwBmkX6c03ivAlUqipIDlK8C86mpGgeArwEHM8Bn1/yzAJ60TtE+NLcAMKJXsVpYtwLkBudXtoC3AKGg+ijC4LsB0B221CTsuwFSHgvgW9C7AFf64kswmL8BczwgQ0jgvwA/gtQWTNC/AsM+CNxvBLsCxiwCw9jguwAmpZVqxBy7AQVvVCns0LcAtAW5dWtMtwP+vkrt+mizARecQ6F1OK8B9eTWHjogrwDPIjICzBSzAJVD79JrfK8DpwhW8La4rwJW814YW3yvA9bfr7es+K8C0I0y5cBsqwOsFLCN0dyvAZDZJF3L+KsBMeEJ4MYUrwN+a0AoMcSrAW/cx/S5QKcDxf4tVnxYpwPshQDezPijAzFd9zfH7J8AxT3WrVMsowL8OaXWOByjAlKNKVfk9KMAXiDHQeLAnwKsSnZZa/SfALw1KxjV+J8CoGFr08hgowOexCC3HxifAlP5YgiC7J8CkTCHKvPsnwKnwNoNoxyfAP7iTk4/PJ8DlVnwsX9InwJeVk/PA0CfAQw1B9CMnJ8A7HmGbBc0mwPy7Gy5iTCbA2CGJCWADJcAR7o8QrwMlwL1tfGl1VyTAeFl2JfbrI8BUAxl8TUEkwEjcZJzp0iPAqdb9LUOYI8DIT9b8ur0jwMG3cVGqkCPAeXLZiUYDJMDMiMJ8pQsjwNQzANokwCLANGp2yuWQI8DXP/LDqMUiwFWbqK2iSCPA892fuR9gJMDXrHs+BjgkwDyhdoodYSPAT11akc59I8C7dGdKBkYiwKHk7FBK7yHAh2tpQy40IcDjhn+jqrUhwOP0OcYLxSHAiafKArWnIMDsrTF7CFEgwIdCGR3eDCHAY6wZlw4KIsCFQHG+OGgiwNtZp4yWVSLAuebWMVQBIsB14vJudEMhwDno2mUCIiLA9IyyTUTEIsBp/fOHcisjwKeRf1Rx4iLAr44ntc9bI8BtyUwOAc0iwOWCYf4pSCPAxBn4tAL4IsDg0GckMboiwCYT0EgqtSLA49CB5m0yIsC+hEIGxL4iwCe0CvOU6iHAaLCDH4ReIsAW9KQVFfEiwFGbzb/7bSHAzZlk0OOsIMCJVxpxCgAhwJSnOsjw/yDAF/yc5vUnIcDt07UipzQiwOfgaxygQSLAqupChJEbIcA1lrAc1h0hwArzmwl29CDATxweV0myIMDnQ6uJFfcfwOnczz/F6yDA0E1iq0YTIsBnTHVQiTkiwO+pbt8MGiPAE0FRtClPI8AV4Nu+NhgkwIhmt194vCTAhfcimTJ2JcD18zkiihslwC24xVCT2yXAUMVTL8gNJcARrLxEiuckwHCauUwbYSTA1nDoYVmJJMB5zKs/I2UlwBWNsuXWnCXAHXbbDqVFJMCxEvDWTVAkwAduFGIS2STAf4JtC5npJMCGxkd7R5IkwLtf4aKbpiTAnpYyiJpmI8DR6h+s2OUiwDoMXRqQTCLAxOIsCRheIsCE3ILVd8ghwCI6EwThMSLAaP4+K91CIsCzNF9ggyQiwHlma6riHCHABzez48+PIMBtWDqGmQIhwNAeckiq/CDA+obevFI0IcDpC7kOMhohwCBReTLHCyHAUfrqaq7CIMDewgNSeo4hwEMnISIOZSDAnwvkmUlKIcAYTf8r08IgwEGT+8FroiDA1Dx/ByFnIcCIvBnZR/4hwOVoiR7fsyHAQ4Q9rjWdIMC1Lx6KFeMhwNGqgRIwPiHAbEsc0FizIcAQHsAxyjIhwOaHDgo1dCDAxPAqz9Q6IMBRymMThXEdwINnNux3hh/AG9DBzuUaIMBKmkUJ330gwKfIeOKefyDANeOzrv1uIMAGbNUWmnYhwPWYcx+ggiDAHW6jvBjmHsD8jCHjigofwPMEHXhVUB/AIExYZrRuHsAzV3dHHdscwFxqF3IvpR7AtYdB/fAxIMCQ7pBZWEYfwMBYMuEA1h/AopxIrh0AIcBzCrz9mDshwD3zoUosjyHAArtwzIUeIcBn9unp3gQgwDj/0f8yliHAmxpQCaDvIcABstN9Jt0hwJ3B2Yyi7SLA8bydOplOIsBIN0S3TjwiwA4XOeRHPyHAN61Up58tIMD9hPpvvNggwNGtsjyU7yHAQ1iZ4r5yIcAgs5fM8yghwOeh9HeysyHAMd165JdhIcCtQ6tV19MhwERaAypexCDALfqoBddOIcAcrbwKadkhwNxauEfiXyDA5x4rD5wqIMC43Wq8wY0gwOU5U5Z3BCDAadZbzE1dH8DdZzumjwAhwKduP1ylqx7A7Umme9cxHcBdKOJZUvQdwHENMy/sRxvAa5HVWsjFG8C3w+aCDfoZwFMksbCO8xjA4ajcUHb9GcBQaAdnj5wZwGC6/pSI4RbAfHyKnMdNFsBNEGPsW+kTwKfrA1jxMxTAr3qPr+XOFcAFqNLCqn0XwNPXrLh+oRfAgZYg/fnMFsATQSZUXBYYwLdXnSCvtRjA+Z+PZYG3GMCQPgneaSoZwOkqj7JefhrA9R4WyV0cG8DrXrH+/kAdwBXQZkN53RvAwc8uArNjHsA/kuSB6XUdwACk3lotjh3APRnoHKyJHMAjEPEC0C8bwHAOjQcy4RnAN26bLxtNHMDHY2sPg7YdwNh6uZwukh3Av3kFjx06HcAtjTSMWEoewLGfiGKYyR7AE7/E6zAZH8CtM8nUoLMewGeTUCIvNh3AdfuVLcwUHMD3QYsd6jkcwCmJcd7GoRnAP8K7vrDSGMCzVmwlVQYbwBVMpkW/PBrAv64txajyGMCktKHjobkZwBmvoz5afxfA0JRXQvssF8CcelPeQlgZwJQyND7wDxjAr6xVCrPgGcDdOHySQDEWwEsUPcgb8BfA/5r1uvhhFsA1iVxI56kXwIEaVZdAQxjA6HbZIEbiFsAUvPnHMjQYwMAgYc9ZtRnASEQg9EWYG8BN3L847tYbwO2q0epn/BrACRq3fNWwHMClmNZ8slQewM1OA7hHNR3Ao29F07JyHMAg0VOqQ6gawPXSRvZIehnAsO0S+nSvGMCFNqTdqZoYwHURPXHycBTASD190epyFcBR3gG9y+ATwNNQ4cLYphPAB7DwXFmsEsBs2di68y4SwLW9XSDjcBHAA2xzdS+/EsBMz/MPQiwRwE/NE/EZCxLA7EFQRFBLEMAnVDuXPCsKwJHsl7491gbAxSiUYTM8A8DZ+DOo9zwAwDH9TM1srvq/jVgPqjv9+7/3aPnY4LH4v0/F1uzwa/i/+xdf+3dZ8r/L3SnC2wD3v8tE/k/nf/W/YCu6T/dg87/ITo0iRwnqv8d1oza01+y/DhUWHzqh4b+BxmlRf/bjv9BhUn1ALd+/TTBB2hrd6r+l8bsxu5ztv9mbIOTVN/C/ryfOS+jF8r95MiNmBXXuv6XVQjWSH9u/BSGvtkNbtj/DWj4447fYv8GQiFvQUuK/4OD23oKbuL8QGoaDVOTXP7XU3Yr8+KG/TTVTXgxY1j+LYRK1y+LjP7fWTRYxkvE/RHWVoqjf+T9XsGrOGan2PwTwD8NvZP4/tEgxKpt0/j/9a//yETwBQL2WCX3L8/8/9UUUqdPi+T+8FA8lZuH3PzhKfNPT4PU/KN+XFRSA/T/VVf35ctkAQHBS3smpiwJAIB1qLcUZA0Azoda7RCcGQG+l+ZX/qQRAKLGGLaCs/j+pIqckao0DQJBHQYCqNwFAQa6G2KhMA0Bf8FZW6l4DQH3xEBAFbQFA55X9MdaH/T9UTmqs6qj+P+3+rLi+kwJAU9S0GvUxAEC1Us9/rGD+P0Tb7gdj2PU/A/tyhtlq+T+PAgDTp632P4mgun1+L/A/65FJPHCG8D+o+ZLeYe75PwXncYMycfc/e2/hkgrZ8D8F8LqDKFHjP4ED3syr9N0/tTvRYNI87D9rvyS8QirzP9TyZEWP8/M/BJOWr4GF8D8B6qH6Paz1P9CUYc7zo+I/aCuvviav6D/UzGtyO5bwP8VnAV/wM/A/0OSNRfHa0T8jRBY1aDTpP2nwvOTPD/A/cNN3p3xw9D95+eOd/yXvP1RQeXxEBto/SEqMsutd2T8FlJQcmPvvPzP8Wxbb4fY/q9MGz7XK8j9dBvBFcGLrP0A+6gD05+k/aR5slGcW6T8lKGpVTF7gP2uVxIQnJpC/0X2xH/SKvD+ET7D24k7SP2fLWiuQCPA/q9jw3QFFqD+LnK2pfq2/Px9ij9Clh9+/uy2QWyHm3b9lADDS3JHxv01weiVm7gHAj6Ju8Sp7AsAHsaLAvpb/vy+qKZisfvW/qfL/KqkE+L8FtXWrpon6v3hsakgJ3PW/9FFmwJLD8b/ZubDwcnnxv1SCrRI2Hu+/f8ye9JVm7r+c0SeitArrv7ecVq0IXee/XdX2axf94r9xbrEGQGviv5WQ1Fc+kte/VUJNZjYh6r/gVxhPgr3pv2Rf12GzruW/tmdb5Ua14b8Al18ZJdeQv0yF+Xcprdm/82qiGve/5L+kZlmmcw3ov6Tk3lfXCOW/R5sfIRBF8L/w9UBXNIL3v2N3ZzY7f/i/RfNefPs27L8OxHz2XDLzv42R0VwXhPm/D+qrQsWy/L/MZ+xgo1z9v6j4mSiO1PS/SNxpAMnO679cw3tbGpvtvz+57QE3APK/rbOj6t8L8L8DdNm9eyv0v4j3T74yGea/5/8uUFZH8L9NHpeLdPDUv6qTAFj7Y+S/BCtyUaF26b87LVf1m0brvyRgEkTn/ee/0ASohDLu878wLqQcPIYBwF4pmXBhBQDAodR4IismAMCr8hDbYjn/vwTmwYCl4Pq/fUKfxqii+r9lm0YmG1/8v/2GOYY3Dv+/j/1oXZUd+b/vtXhXNQcAwCCsd30b0gLATRZJHnd6BMC0obhkooIGwDAsqg/jdQXAkSkmRmbVA8Bh7574R4YEwHrynhnllgLA8PE4cxPnAsDcfUiSWKwFwPIPg1+yYgPAIBovBnOlCMAbTqHjo+EIwNsUdV/5gwrAGWKThXUGDMD48Sy4Yj8NwNBZ+D6fBg/AV9XRRKdKEMBCruaqWI0QwPd60yZVYRHAC43HFRKlEsBTRbCdugoTwCuGCqkRoBXAud7wqq6EE8ACx4haad8RwFVaE5SEZRHAJL5I63v9EMC2mMQYemkRwLkOZS4EkRLA6FiqfJGgD8B0kkcgOZgPwFGxzvS6+Q7AT2GFFawUEMDvnBwRBIAOwFUJcp4U9ArApAeqTDpWDcDfOo5/H2IJwNfCsKryLQXARaXzimBeA8APokE5CEsGwDlkTK5FAQPA1/q5ur8ZAcAvd3dJVs8BwC10t9oMYQDAr5oHMfgiAcDrSip6ssoAwPuEvK73IwHAn6WyVx/6+795lb5n57rwv8fZvk7I0vS/ZL2FLQH48b81NYwV1absv66lku/7GuK/IRdd70dd9b9vPlAe5cfwvx2fkqEj7Nu/dxWcLs0h6L9pk6wzkqfpv8flmP7Tidy/e02AY3Yq4r8IR2Q/nLXmv9kT8Gu7IuG/Cal4UNUG5L8ReKcwnrHyvxprBfPq3uS/4GJdJJeS6b8PEuaWLknsv6CrxATVYdu/475/4gC64b9Q8TJEtWHMv9ACgjvWO7Q/MUaI7wgo4z9JYihEAVLoP+xsYCCPauc/7xFJAsi68j9RKVWGHv32Pzcb6ycLPvg/44cjqKHP9z/jp0wNQCz1P90otkMj+fs/ETieYh8cAEDl3fk1TCMAQCNPpLXyxQNABDK6qM9MBkCFJh8tSEkIQLxQ/6yp9gpAk7puhxGlDED3DYWyb2EQQIvdrOypVhBAuOJF/PG5D0BVeY3CjU8NQEfvOJme5A9AudEK+rjgDkAZKUO+ug4QQJQEBnM/QQ5AKD841O+dDEBhVVSccU4JQE2zAKq1SglAi+lFuDilCEDoFF7zr0oMQMBp8JnP2AhAGd3W9MLtCUBoYctxL8kNQCw5knZSZBBA4ztx9H8tEUAD0jSRjxkSQNjnIjdI3xBADxsf3ML/EEChVPNETdMQQBV5k9MaSRBAoz22stqyEUD9BIrNobAQQI0ChcnGTxBAuSogeFh+D0DQisDORgEOQPJ/znfwIRBATFIxRUF1DkCvEq91fYIRQFYEA0XbZhBAVwGUsTe2EEBzGuYvMp0QQHy6lNg7OxBAv14WBnArEkAyUjwjYEIRQHi4pcRMgRJAabtwaG4RE0C6Bd4KigkSQIR2oe+BahFAXPLGyJwfEkCwVSbybhcPQF3ityPPfg9AafNbXSkTDUCZvscJVXMLQIwhW1AIVQhApOTAcIsxBUBwv8977HEFQPf+CIzAegRAZtj17HmBAkDfoX3PI+UDQE80lZTeqQFAUUsnwwGVBEBRVe58Y2QDQPUUYWkphgVA7xYPTbe5CEA9zIgaeOoIQPj2tDxVoAxAwA7fA0GdCUCd/cuD28UJQHwo3GfKwgpAS37b/Q+dC0Cki1X22fcIQEH+Zd770AdAECmKDP8wDEC/VejC74gKQLPSNwFR7Q9A36m3PVmfEEAYHTuFJBURQPw2f5v9Bg5AL/dorPQQDkARLcrWGgMQQHWArwt9/Q1A+6wHDs6aEUB1w4z+/wYTQAIHCE8NohNAoaLPHXSvE0ABmnC7y9wTQIkcptnzixNAYAJUJBkpEkDBw3ZG8v4RQFXrgFGLbBJApXSW2D+0EEDjwCteoqoMQIdQ8W1ACA5AgEYJH7EbDUBVWQUKNjMLQE3cq0NgaAtAz1pvk1/8DEDbDLFqikoNQBVMsLNPMA9A9bl0JfspEEAtp7brJdkLQEUaZ/UzmglA+/Y8gCP4AkDjPcxU1lsCQJ3p89XncwBAMQdKRHimAkBJBqQBA+0DQNp2fUFUDQJAeIowRer1BUCBZFsNlSoOQInWlpsOIA5Ae+oGhlySD0B9Cxs5Y9MLQFjP3JYUtgtAsFIB0sfUB0Cl4CbFzHcCQFMd9HlTuAJAzI5eXcz6AkDJTfFmL2QCQG/sf8bSLQFARDqSjxCC+z83MGsIrLcCQP+KoRqS+ARABdZDgC4FBED1Y+OcnswGQPP3QXChtAdACFNPykh3CEALqLNEr8cKQHl2FHKc7A5Ahp7IWy4aEEBPmsxkQ5EPQA9E2Q1knhBADL73GKtxEEBCmUyg4YwQQHROq0uySxBA8zrvJaXYCkDXqjesuWoQQPC9E2iIWxBASuFXYwdvEkCFk2NAJWwSQHFL3S+CIBRAdI9ZU6CPE0Al/ej2mp0SQPmzx0LXLRBAsUJJ9mZwEUBVdCuq41sQQB0XhflFCBBA1GRNatmvDkCAsWlZAYIMQBmwYNMLWQxAh0kRL8FMCUAF4UE89kIHQPmM/IQy/QhA+Fg/OXaVCkBENN5XjMcKQOXWD11bfA5AMOmoL6wSDUAUC7NVSu8MQDn6R9Xalw1AxELeT5TGCkDbBnX00a0LQHcveE6YzQ5AmMffCi1EEEBldU5paVIRQL9lsjOBqxFAzUNO8u/2EUBAVAYpqOETQLN06+VNqRRA5g9xLahoFEDzFB+Sr/IWQLTkI6LoYhhAxOvhNckrF0DbGBH4ULoXQAfmu6P2mhhAhazF4IfHFEAl1LHNA48VQN/BUTPhSxNAHlhSVgHeEkApFnH8LvQRQBhijc74ZxVAIRTcQ6u9FUCFv+22HNgWQDzgm04Z0hVAKaPSfK+jFkAgGkOv0dAYQGBO2vfX4hlAOKTTX+DFGEBxHB07BBgaQAWhuzDI/hhAXWSdmxM2GkC33WhZQQ8ZQDSr+DNkRhpAtZ+8fj33GEDN0wE4z1waQNPvQViKbxtAS/8ydY7pG0DMqapp/88bQFPadlVylRlAVR6RYYrBGkBwmFM8OE4aQLh1LHkBbhpADepGJcKTGUB4C7RcE2EaQADH8gftSxxA16Gai5eWHUBv3S4QuVwfQIBCupMhRCBAhkER9wTdIEAS+lkpyCohQATYZ0R5QCFAAyIh4RtBIUCVgXsqGhIiQIsAGhv3diJAgpFLmCMUIkD+b/LiEYMiQGmgZyyqrCNA8Gw7vVRjJEARDUBV4Y4kQATBJLeLlCRAzVoM4Xq7I0CLVaCMru4iQKExFH/xWCNABtPXWrvAIkATgNdkua8hQNlPtk8WECJAUSDWedRII0A7HZfcPGYkQKVy4L+aQCRAGHH6CCW0I0BRanLlQ30jQGr3+SlLlCRAq+086nR4JUD4cpa+wF0mQCSVASKmTCZAu87jVBmsJUBA4Nvx/MEmQFBUabveRCdA7bGOk5DVKEAdPztDFpsoQGj6Srp0FClAe2T8LNqoKUDXIYQvp1cpQI07T39psClA5IPa4LTyKUAAitDbz/QoQDNZSZuI5ChAN/nz4+kJKkAwyGfp2UIqQM9uqkCHsipA6V7GB5SNK0CzZTJOwCArQAcSJpdbaSpAR6n/BTxpKkD4OTunlzgrQI2DLFKN5SxAAOVYKIl2LEBZuQFKSZIrQJX2mZOgYypARZ2x0bduKkAEnU8XD7QqQCfwVkNWxipAvGcDrOzRK0B9T5773vErQOH7eO42YyxALbBuaRDwLEAQbLmF24otQBfzHAKHBi5A+WCKGvPsLUBX3bIIcf8tQOvvrXoUdC5ApXMwJgJVLkAnWs4pbegtQLQmio5KcC1Ab6Y5rXQILUAcPAY8hgwtQIvfY33u+yxACHiFPIysLUBYkX8SkHcuQNTF2JCs9i5AXysC4q1FLkCNqH3+E5wuQPtyAnVt5i5AkElT4foEL0Bl2QDWemIvQAEDn9CABTBAHL+ioiBOL0Ad5dxuU5suQChH1uvDeC5As5l/F6gFL0AfZFZvHFYvQKvzjTG7LS9ApBFAEiqKLkBttPX5TYovQEHikqqPKDBAQ3XFaeHgL0Bl2NAlgIcvQEnFLEgI8S5A6S9HoESsLkBYXh/yoTIvQFlP+rw8ly5AN38AWVFKLkBpHI2Hg5ItQH1rDjT5PS5APSd73S17LkCd14jqk5YtQDmGT0OzMC5AwLMHtZ3YLkDV7oj17T0uQLhe2/VaIS9AEUbC1HdaL0DxFholyh4vQOGlaz1uPC9A4QYA2ssnMEBrJNNpEs4vQNksg8v8xS9AmEwlzxzZL0AHkXKYhPIvQMkT+PqvZTBAKc2y9m3nMEAS9PgmTPIwQI+5ka0b3jBAwjXP4z5iMUC1SRsPnj0xQCyXMBzX6TBAqMYkor7dMEA5H8iZl90wQLM+oBIg8TBAfoDUrBsVMUApRgGj+HMwQEkEmr2ctjBAJUi4Aq3EMEDyTrmHgNowQDeBsbA8oDBAGz4Z4syfMUBCZxhm19MxQPGts1RqETJAvY0ulb48MkCTiILOOj4yQBkHRi6WCTJAWY97urSwMUDzmeFfyOExQLxGsc638DBAMRkika8bMUBVmakkcr8xQOsa/Os+wjFA8SqJjU7sMUBD8r5Hb+YxQP+O52VcyDFAHxZDYq7hMUAJw4SjPyYyQGunZ9kcPDJAt/i+ZwxuMkDYNPlVAdEyQLldo4gM9DJAqOa6+ZQVM0CFrBvQ1vsyQFay33w1FDJAwXHDzcAkMkAPH//P0OsxQMsJ4Scy7DFAacWQ23W/MUBjgvaOP5QxQBX3AwEKjDFAx09gVCSEMUCBjE/Y1kExQMUnDAmoFjFA9RgCFiBgMEDLjO8RMkkwQGFHVwtU2i9AlOYF04zEL0D0WH+g16EvQCEpWB2XYTBAAae8d8JiMEDiXAwgADMwQKdGtO3BgjBASxL8X3wQMECXkAcr7FwwQBXsgLzvTTBADciDNRyPL0A0Z1G5B68vQKs3c4pchC9AXX3b0cFVMEBFnwQLS3EwQKoJl8f4SjBAKezUnzg7MEBXza/M70gwQPN7EyrO4DBAg54pgAgWMUAaBOnCzTMxQCCdscjrTjFA1G6mNID0MEAwpTQDsuMwQJ5aHoEoRTFAWyVKkcAOMkCbr66k1kUyQNdNHXaZXjJAXvpW9EFuMkCEYkEhAhIzQNp7BExa4jJA85jo8iHWMkDH7M4/FJcyQF/glwVNjzJAw1GYPD0yMkCYarAwFEcyQFqqX+qiLzJAO1b+B07/MUCpekPvrJAxQPoFjwiDtzFA+bkUE3F3MUBtvTlGsUkxQAIt4CjQDDFAKy+LKW8RMUARe9SP8sEwQDMXXs5b/TBAEd4DPKIOMUDq5kIblz8xQGelfB8sLjFAT554V6zuMEA8JP5t2PowQM0GYy/ZhDFAiTIAexKjMUDEXdcj1bgyQPUxB1D+TDNAWjT+VSNuM0BtU94frMIyQAk5i15QOTJA99huoofuMUA6gAK59j8yQICC6ettOTJAA1zj29sEMkCdU/S9DY8xQH2oQXSJ3zFAKLNQmdI4MkDFzez5IyUyQFl1iRLGBjJAFgD3f9B8MkAqWwnjK/QyQMWQ6x6r8DJA6GFkyh3zMkA1FGiQICAzQIGM2yo8HzNAB0BE7LO0MkDnczqgIKAyQDSsViXWJDJA62UeaJ4RMkD8Y39JiRkyQB17aAtC7DFA2wKCTtbwMUC9n1Wd82AyQEar2APlfjJA7OMLNtcDMkAHfWPcPZ0xQD6sSATWqjFAFTlivcUFMkAQ6zjiScsxQB1lrIAB7jFAZ8EKSEguMkDKA4XqgYAyQJG4msYoBTJAtZv0F8/ZMUCGXEEERuUxQFIjaaLduTFAb5ArX8heMUD74dpF4y4yQPjeon/6PzJAubEfRzSHMkDH7BUfTIAyQEwwiZmQjTJAxmS9yJftMkA/BKbEIeIyQDBbCd/KLzNA2NpifIJeM0CQuCg75LYzQPSLq4YLvDNAXWTsjjsANEABLqwf6pIzQAcvY+c3ljNAQDvKtUxsNEBndktFr8Y0QJ+XIkjJPzRAm+cS9OXjM0BZzW+GaQE0QNd0KyIQjDRAF/HXyAcONUC8+Kzc2Is1QEz6bkYYdDVASxGjv/+4NUBsDPRoN3o1QKjcBq1zLzZAmZ3oNRfWNUBjFwSn5dk1QOChaDPZ2DVAixPN5GFANkDkRcntNuc1QBN7tZ3T5TVAjeLsCKPrNUDXtRo42d81QDTk54/I/jVAg5AQHk/lNUBtmjxGiV41QOQNamFlizVAfhtmH3U5NUB9/7RyEhE1QI2dq9beBzVAAgLLR0D8NEDxjVH3a4c0QMnai6D0FTRA85Fq3YvGM0AgCevg6jY0QCfSG8NpPjRAsZYKDVkFNECmu96hOoQ0QA9f976SLzRAT7NENia+M0B7wE66hNozQOyqkRoZzDNAM42Hp5b5M0DoLup+R90zQCeLdQasoDNAwSlyXux7NECZPZlwLJI0QB86Xex2uDRA1bnxfZb5NEBH1fvFSVM1QNXLGMDq1jRAyQ8xxX0YNUBc8/Acr2M0QMs+EazUqTNAfTj2gmViM0BRL/m2FzwzQDO96Xo0VTNAUzcIF293M0DHniqkIK4zQLD3dc1TtzNAhhH+XYSjM0AOSLcxENszQE0rpehp6DNAjRbsEgLeM0BrH7lmZ6UzQMUdLkzBcjNAGQHcfzqnM0DPL9/hsrwzQFnI3KwmUjNAUU26uNVZM0DHybi8U4QzQI3tOmnpnjNA59FzArCQM0BipY+2aXIzQHD41x6CyzNAWr5zcTDOM0D+91ciGm4zQFPbYT/GZzNAdOfX/1HIM0DoedgvL7szQP0gT7MJvDNAdzdbrRpjM0BJTYnqIskyQA/LzauGnzJA2EjDdsd5MkCjhoA+iEgyQLVr1KKfgTJA46CjTyuSMkB1hh9ekYUyQE23O9j/YjJAtOSWPAihMkA6HEc1aI0yQAhcn3UvlzJABgbEI16tMkDJVzYme44yQPOgshYUJTJAb5Tr5dj+MkB7NzoGBTAzQHrcgZG5HTNAH7BD6B9VM0AzPt8t3iAzQGN+S7lydjNAD/d1CySXM0DlSGS+35IzQI8OZ46jUjNAtWJqy0wDM0C7+qVk4OoyQHGOTrBB+TJA1Vv4IW8QM0BFCaCtNjozQNFbTKw9XDNA8Ykkj/WGM0CBPGNsIEYzQPbiCVrAajNADs9xixsjM0A4HjLACfQyQHGAonVwiDNAG0xFrLxFM0DCXaZz6TQzQAj8E0ivhTNAlwZ/WuPwM0DeaF66lIszQDEzu1lPyzNAN6nnkQXOM0CdPhfhV70zQLHQw2nP3zNAu2D2GuCYM0DJtyniec0zQALsO8ROUjRAv8ky9n15NEDqkyWc22E0QB0NjpzHNDRAGgMogNkJNEDPzACvLDs0QK+x34Ix+jNAIebMJR+iNEBi11c4qD01QCLbwl31UzVADsEc68IkNUCosYmcnlk1QKRZCVzDQTVAoRxK0ya7NUBN8XE/Q7g1QNAi7HGhPjVA0Tfyw2BpNUAImfTST3A1QEZO5uZIUTVAkR7PCXMZNUCcRQIE/R01QBTyQzi7ZjVAu+gAz168NUDMxD116ow2QHlQFfoCkDZA8y4hst75NUA95SUsuOU1QCF1ImdahzVAw/DQg4YdNUDnT9bYg500QK0mW7EDqDRAc9CStS2ANECvj4CRhWs0QFf+CRi82TRAISJS+yMzNEB1lNS3thU1QCmpmzOlszRAToN2SGLlNECrDMMeRxE1QE3zy1BI8jRAz+q0OYyDNEBF6CVSL0I1QE4XKdR9/zRAHTePXnLcNEAvuMNaIGU1QCG5+/J2qDVASfO4Z6nzNUAVCiR1/PE1QNtcZ5gnPzZAqyc7rYVtNUB4r5HCBPA1QI/sglQnzTVA3zOoJohMNUDyafE1Npo0QAmPjnQhoDRAnmaiKe+VNEDFwdKsPCA1QF3DF6XnDDVAEVX1A+n6NEB1GrfbwsU0QG0u2BocqjRA1KpkFbqbM0D7GanhuAM0QKH8AJAQIjRAxkJZ9i4YNECPrGbHmjQ0QIoJQZ5kujNAzA0Q50V+M0A89NHqckgzQEsqAquedzNA6xc3xAy6M0DrulzWUZgzQEukJ4J/nzNAXLwaltu0M0AH7xH37qIzQC9jpSqSRDNA11i19gzIMkBK20DKOekyQEfP234p1TJAqaHKwCjuMkDZTb1oZjszQAN+0qKzFzNAAsq1/9KNMkDdEWYCeoEyQKCf08WhQDJAJYEOzTNJMkCYSgwrBisyQL35+o5eWDJAaZvv4izBMkAPHfSz0OYyQKxzflLrkjNA099isk+ZM0BTPRwl2fYyQP335sxGSTJAS0LGLkVZMkAb4cS7Yn0yQECGgk64BjJAC6GAO+jSMUDoTloIlr4xQMlqha1lyDFAGP1N9qzWMUAHPlm30AUyQBHpV5xjqjFAPEljjwrLMUDYoMoy1z0yQJUIXtOUujFA3cRFlPN6MUDLzUKYrW0xQC+VeBOLdzFA198enDK+MUAWGQsFbbwxQLjE5Llr0jFAotCOHJ6fMUA8kY/M/2oxQOmBARBVLjFAcRR4vi7GMEAB9kif9WAwQI5AbSMo0zBAP7/SdLChMEBsiKrG9dwwQEPuenq07TBAGTyDw5daMEB9O2DO9VMxQI+P8Ea0aDFATVpspvGdMUDDuyTB93kyQHK3iVyYyTJAr+dKOmTrMkBNbMvOzl4zQPFftIy3ajNA2V2iZhtwM0C5+AjWqiMzQCcRMnSxPjNAnQGiKLtwM0Cxil+I2e8zQOlyWriP+zNAbyo9Dk8NNEDJvR721ZozQPe+SrKScDNA6xtcH1/BMkCzQyEb8IAyQKdyi2qvFDNAwd66zZAfM0BBKU5LbcgyQGT5dRtcxjJAH6Cie3QnMkCTqyRBTxcyQJi8BIVi5zFAsU84Bv87MUD3x+8WDCwxQBp1j69i7DFARQD0v53CMUCiLl5+pkgyQCUQQDLnBTJA7MNxy6l6MkD0UiVTKdwxQLRYlXgRmTJAA8zRHWE+MkBqwoBKriQyQN3JNt8XZzJAcoyXGINiMkBbDNjN3D8yQHnXHSDWyDFAl26HTFjOMUAZs/y5yWgyQPfBJPQMzjJAaWDGPSRwM0C90A+EtM4zQCWbUNdj3TNA7n+Ovk8ANEB+8FLX9vYzQF6vLTEnfTRAf4u/VEiaNEB7FRWe+2o0QPU7J6DJSzRAsCPajfIXNECTQ1uGbT40QM5r8RTFwTNA4gVbsK4dNEA7+2a1C5Q0QBllAzDJJDVA3TzQLXmzNEDmzXhPFtI0QMekvCuUGDVA60hmEjEQNUByMdsHkC41QL9cifshjTRAIZhidRFRNEAucuGddb80QNNt7KrgvzRAe8ToxV6dNEAi0D5yzdA0QC3vEFiKqTRAf/LlP9JtNEBdn+FndHE0QBohl4TeQDRAYL9gPjYZNEAPOZC2Ix40QOPDII4mXjRAs88NDJgdNECeLIkNpA41QO8FekFpUzVAUOGeE3tWNUDZ0Kn2eiw1QA3bS9aq5jRAlmbQjfp3NEAuUSqwAHA0QIKNhujuBzRA3On3RQuqNEAFH89uIgs1QK95HrWgBDVAYPmJHyRuNUBNmdAbrIY1QK3ZaqulBzZAERSzM9kJNkBHVPztqB02QNADdEQ0/DVAk57nui4pNkAgcN6nR8U1QKxwgjUyjTVAWEgZeTFdNUCXbM3u0vs0QF86/7jV2zRAHT1ai4RUNUBSob9HoVI1QPBRd0MlbDVAqJghuwmVNUDHaeVAfao1QMHBX6GxJTZARzn3nRs2NkDr3gcFsYU2QKRTaDAosjZA0EFVHCfdNkCAIMzqPz43QJWyClkoDTdAJTB+Jif0NkBz+90Hmrs2QPnYkqD6uzZA79Qpse5GN0CkClaA7hE3QHm+zvjVEDdAELwNQ+h8NkABo5kJ/NM2QNm32Qh04jZAGAyg12q9NkAzaTw426s2QA/eMstL6TZAAEEDCZFBNkD749mB+8o1QGsk21DCoTVA6ET/08jcNUBkWVH2nvw1QGhxXeCkGTZA9/uscc/JNUAAX3goe6I1QLwSJgGl4zVAPMV4ExEcNkDQ8ecIgZA2QOCjfFi1mzZAGQAkw0eBNkAYX6Cp3Xo2QJzWhbr64zZAGUeHE76ANkCRHxto4lQ2QE/BdOdXlDZAwCEFRuJGNkC7xvGjymU2QIO0PtH5hTZAaSiAqlaPNkBzu2ysVys3QCw+r4gW0TdAPJ1Bxy0SOEDIvTnfJ/03QDxfQMlGCjhAGRNVC6tVOEAwYlQXKwo4QOmcCThcKzhA+/c+dUtCOECdkIwHoGw4QEULnGVpvjhA4QqeZa+EOEAZnLyKgKM4QJC57TKzyjhAD+cUQtMvOUCHA5smF2c5QEkocAt6wDlANBfBDYc0OUAQTZobf1s5QDwh3R+7NTlAUDT4J+F2OEAT7yATQnU4QI2M6mCI/jdAd/kFqLMaOEBltvL74GY4QIPdct1kQjhAzee0Seh9OECAUV0XzUk4QPHo+rC1zjdAOH+0ydTNN0AHGt5T6M83QKHVOseE2TdACbEHS2YFOECF8ipogxk4QB++N/prDjhAM6ZcOqsAOECFHG8XKa83QEk+S1tIxzdA85XmTH2WN0AJi7xkELc3QOeaFPENWTdATbpq4hvAN0CDC+HAdXI3QJC63N74djdAuCNJy8urN0D4/c/dNGY3QIFROjSZADdAJ5ZFHHtBN0CvGWMdhx43QHOYFnU93TZAx97JGjylNkB3uUM3VwE3QAVzBtlg8TZAj5z8BZjcNkCcV+tKvXg3QNE7b1NsHDdAN8uQM7obN0Az8bpIizs3QN1x8SgsNjdAyd2lgQHxNkC1Y+KcQPY2QOMBkHCluzZAKQxxI1pPNkD//VrsyRI2QIFQtMGvazZAYfDLlyUqNkAkxzBliTc2QJhvQz4AijZAIU9X6VPfNkC4nDSN3Qk3QNBeOHcGcTZAzJFtIx57NkBZXyitApw2QGd1iE9pOTZAvbrHFKPbNUDzlAXHrKg1QLBYVEqXDDZA2cpLl5HnNUAsp91STAA2QGzukxfkOTZAwI02R+VVNkDv8QOAJmc2QLcz81frXzZAKPsU0pxdNkB1PhsBuhI3QMM8wtQMHjdAq6irpEkzN0BU0dV/OaI3QOnQEniRsjdAQ6XflR6oN0BpE0WP3Cw3QD89fC5bqjZAzfa3eifJNkB9VrnwDMw2QJtjGx1cjDZA9wAHC4TnNkATSVs/kiY3QCfEZes9CDdAqfEbDlCqNkCvwxpwRPc2QLA7fwq68jZAcNThxXBEN0DMLdJoBmk3QKyTF1pQTzdAtdgneTrvN0ATn1nS8qM4QHC5mT3NhDhA1GMwcTphOEAVoSqmNsk4QLvLBdODbThAo6aLyuP4OECwxEo5WsU4QGSgYbSS0DhAKYVIxPjXOECIej9wMMQ4QJv8RQDEsThAnDNVYY3QOEC74TngvqA4QH3MM4PAETlA4869gj7OOEAh0J3fKfg4QLD8okptOTlA0HcttS6xOUCfTONeaZk5QO0icovCczlAnHOFB9MaOUDg7NCErOs4QMVVeRCmFDlAfK8pRSp/OUDfFP3yGZc5QFA/860A8DlAoWQPQN09OkCbbz+ox3o6QMljsHwbGTpA8Z2DGDeIOkAQCygw9/U6QL8JlojeLztAVN9NePGdO0CbUXcNh4s7QOB30MMRmjtAERRNHSj/OkADy+Osk2c7QFcsPsH2oTtAJT6J5+G3O0DYoHWpaOo6QDuDW3VKRTpAK0H/0WE1OkCvzbvd1Bc6QDnH78yyHDpAZHEKvT7cOkDFSqOmYA07QD9EdsiHrztAQwkD9pl7O0AFwNXOEOU6QKN8DKz/zTpAwK2YEL8lO0DIc0Dg6Ag7QKESrENhjDtAB+vhS/XDO0AcHLXbYzk8QFU1dgiU3TtA68+VVFQOPECwf+PQVb47QNV/EpBztztAoR3LEtDGPECkejm1AxM9QLEf9LHK+DxAM0gQvdQMPUDM2/PNxms9QA/d1cVylj1A/aurpIjEPUAcpBV5gz8+QGTZRqsCRD5AlHeyR3QQPkAgon9l7Xc9QDRyHOFPET1AZQqPhx+KPUDAq5JNtSk9QCg6guqmwTxAu1Azsde5PEDonkEPwwY8QJtmbLWwZjtA36eNqmZwO0ADeygiLWE7QNWscv18nDtAnw3xYIlpO0DnAmMtxLg7QIABD3D57DtAxwS+GXuPO0AQlDhk/N87QH+GZF1yEDxAFNbTKK4JPEAffI3FrBk8QHBXAouLNDxA7H6PLvFNPEA1eK9y8Sc8QG/Yhnq/NjxAKNjHj1oKPUDI7idEVm08QLwoyalmbjxAEKVU3qF/PED8i8hIP5g8QEjaH3BNyjxAmTnVOJaRPEBtcL+jQDc8QAG48IfqXzxAX9IZXqVGPEDYDIyZqqc8QL1EucukQTxAzTWZFHB3PECTXnhanbs8QIwtNc1iFj1AUHa+RoYoPUCDp3N11UQ9QDXigTTvfz1A2RjnJEXNPUDs24uFtpI9QNfXcEZWZj1A70laAKRoPUCYqON1lNg9QODdq11lXD5A56hMLMfNPkCfefS++NU+QO//9KYy/z5AjXtBmtzbPkBEYP2O9D8+QEPdEVhwgD5Afduij1D9PkDDesUuRV4/QMuIIYwGDz9A35Uh1zseP0CgG814LHc/QOASMVRooz9At4NlbLvXP0BYF0+YnCtAQHfIDZhSYEBAtyzlQoaEQED3NK5AXq5AQKFXJ7iu2UBAOYGl7T8bQUBkBIrU4nRBQGAk71VhekFAzuZQSelVQUAVuVi1BzRBQODOv1qQhEFAG1QPEMe2QUBIe3IFsIxBQGORsoKsbEFAG8fqsOSVQUARY6kEZMNBQIA5IdqcgUFAjeJmTWd2QUC2tDBdMIRBQE0OQouWikFAmyP1YIrlQUBShEJgRfpBQLEMI2m880FApwHMzqbuQUAg9bkoWbVBQBYfv8CquUFAM9VZ1ZL0QUBLW9RCAu1BQEfezJ1WtkFALd912CDMQUDhwAGsQL9BQNntjHssskFAAoKOr9WLQUByf22W+ntBQMQaI1CbrkFAaV4D+2WXQUDJCvKzqaFBQCXPxPadskFAOAm1J8eUQUAcp2HXcpxBQC3XBbiCeUFAZjGPYcVbQUAZs3kdoyVBQO7yktnl/UBAjDBOwBeRQECvVsLh8JZAQM6CLOKbdEBA0qqX2xB0QED3wdhk/oVAQDCzqaEbfUBA3ks61tCgQEAPoBuF0kVAQDgGqq2PQ0BAFoxMxpoBQEBM2zMrneo/QAfJyQcq1j9AkJGq/m6YP0CFbuiATSdAQL4DE3fxOkBATcA2aZ9qQEDEr5mnXltAQDw7LnDsT0BAWd0O5z9uQEAlxfm8VCFAQJdFbgW1E0BAPLLf+9XXP0DR4bKVT5w/QPeR7GFEqD9APQMg1gcUQECcuCVAFGxAQD8aRKDMXUBAsnB1O9FLQECDf/ObbD1AQBnzA/42G0BAic7QlUgLQEAlQY5DJLY/QB8eEiQ9oD9AbbwU8WueP0DwCt3T2w4/QGVbwMtqfj5AJfDFaqqePkBEeoZDhk8+QAy5ueE/Sz5AbRtLqLInPkBFaT0RXAM/QG13Cyq/Iz9ATz3b+khiP0DJFXtlqk0/QJCgI4UtHD9Aj/1UIpZoP0AkmXCRTrg/QA9+hrvlQT9AO0OZF3tdP0B4aWdi1Ck/QJEbIHRLlT5A5+MY2BXyPkAnnGO6auk+QCfvl1b+oT5AzYgl/naUPkDLWoqPpqA+QH2HBM+a8T5A1NNrGRj1PkDIsDIeaug+QH2Lqmi9AT9Aud5FNHEeP0DnxK4dx2E/QJ+df69caj9Ao3vaH7ueP0BlrytATf4/QIQZl4Pjvz9AE0nUfZRCQEDLe0mm8BlAQNgrVBqaV0BAK3ojW3w7QEDw5OedlJBAQPq8Tr0r6EBAlPhb7i7yQEA1YFvYazVBQOesc4CDJUFAczxk0ybkQEBWBA1vjONAQJyz8fbi7EBAvCKjg7LqQEAjxVjP5M5AQBfwfE23CEFAQwgdhI8yQUClV5mfDkhBQD1L1EBhFUFAUQJLqdwGQUDTrgNj9RlBQF3ZWWVM5kBAmZaXncfFQECJN15swrtAQNMqDvWbqEBAJknd9D33QEDLBtybOfFAQH9cgbBeIEFAvRGgH1cLQUBrUUtsZRNBQE3bSR8aI0FAahUOIRUzQUAbWNRCDDFBQD7zE4UJHUFAFDLTQS5XQUChFdmFRBtBQE8pkFEQ60BAndUx3JTnQEBh6B5xQiJBQHxd1npK80BAs1T9b0AcQUCFd2hbo0VBQNSANKpWXkFAkOib7+tlQUAJwGFFmHVBQIcJIrosmkFA+5CwiKKXQUCkFVnabrxBQCRjnzAjfEFASY8G63RQQUDwbJJC9thBQD40q5XdtUFAdMlGf/XPQUCRSZC1eYdBQK/JIZmqi0FAxH66XeJNQUBJsao/n39BQBAuP3qZk0FAI9q2vztnQUBVCIQY8W1BQNE2ai0fVEFAbf239sIdQUDypkazTSxBQAg9L97iLUFA8RWV8ZpEQUCxjcINNEhBQPTRHShpfkFAMybCoDp6QUC0A9Rcm5RBQJWy9LD4jkFAQo0ZwDOiQUCD72xZ8KxBQJg5rnswnUFAWK8AWmh+QUDhzkv+aFpBQNMUOrCcVkFAihogvP4CQUAbKl83dgRBQAuEfoLiI0FAgME/qsRGQUDKZd8fnyNBQPmRzoFV70BAW2fPz+rIQEDlIL4SP+BAQL1D0ZYH9UBA0SkmIEFYQUDVucv4SFpBQGmW8mLWsUFAXcBLu+rcQUAnN7Z/ptJBQMToLpJH70FAYOfusTvxQUBP8o0lAOJBQFQmB+wwtUFAP1uOUhKuQUBn+i755Z9BQGU9Y627l0FAL5Sg6ojyQUCV7ohoAhlCQPa97d95A0JATTtWXLL/QUAc3lGSPEVCQKVlCORULUJA/d8YSDxsQkCQYbNIhJVCQEyDic7enEJApDKQXtGKQkBLncye8XVCQLPc2JZPO0JAZ1yBDNI8QkAPXMMvEUJCQCFdCJVOH0JACxYgth0fQkCNNsCarxdCQIHXBvVg5UFAu0YUHbTnQUADFFqK4t5BQOIIWSNf5UFAuQIOXfwGQkBt6bybZ8lBQIHZPcR1z0FALTuxo/6YQUB5T/Sefo9BQD5PHBE/ckFAvGGfpaqBQUAxFQnTukNBQFmcigD+JkFARDIIG9T1QED63iNL5vNAQDmCfIji80BAaUrdG3cuQUAqTcmH7gdBQLVJUY9wN0FA2UKdn6lOQUC9yNv9d0JBQA0ykGslrEFAdv0plgWKQUBvfBY46ZFBQBd0UDl200FA6ZiFeGWyQUCd3lRPk/JBQI0y0PnFREJAFzNwjkJJQkDg6i7KvpxCQKeUWewtrUJA+xHy7Z0tQ0AXFPYIzCBDQB5nQisG8EJAyclcTgL4QkAPWcffg9BCQEKUNMWH4EJAB1FZleQDQ0BvDBrNeBFDQEt/vELERENAE70XG2n5QkBQAjxnmK5CQKu64YK/tUJAlUAGUshjQkAJ8O1il35CQEd9zTC/nkJAyzIazFx6QkCBsITbUGtCQCikX7Xvm0JAPoWs8zynQkDjwhMFpaFCQAdBPGjatkJA6OzoBKi3QkCrNEILgdpCQFKUosWqtEJAEDOiGO3EQkCvgtBxSMlCQJaeilRDs0JAlKwXduqPQkC9g7YxtIdCQMt6DFzFUUJA9Ezhh2OJQkDigPpCJINCQPK0mHE5lEJAaB375s9jQkCVok6uAIpCQJUy+WxeQUJA/dXV0Ug+QkBa9iXjf3dCQAM21EAIcEJAfnMfBhlTQkBT+fFfA1dCQJtQAZAlWkJAjxBFWWNzQkBL3yeyIYNCQB0c2IvXjUJA0fswOeJ7QkBK7/cLA4RCQFHdnK4/qUJAg+ntU+6OQkDDc2ONH15CQMiVLRi7BUJAvZLLZjAIQkA43uOsb/FBQPm5+ldy1kFAJD6EzpPfQUAwpClEzvpBQMDcACp9AEJAHU6x1ULmQUCejhuA+81BQJJaSY8JHUJAobOhreWTQkDPPcFAAZ9CQHO0MriY0EJARV6rWlzXQkD9dXvM7uRCQEdq141wyEJAtk/p2rsKQ0D/CT1Hgd5CQMVqH1v8tkJABhXHHofIQkDYASdsSeBCQJzcndgL6UJAy2+8gcTxQkDWNopmVS9DQBUHQdveY0NAIp3kmvZUQ0Ap7D8UKodDQP12QuIcuUNAMBe5LfSQQ0BPVVvfeeVDQCsuvVXKM0RAw+dUs/bcQ0BJ8Aq837FDQOOPbnPtq0NANc+29t6VQ0D3ZAqxMEdDQCepT4SlQkNAXXeRxjYVQ0CnwiY3LGhDQKVGcAvda0NAzS3lTbCDQ0D5MtiMl69DQI/8Uehk7kNAD4AhcH07RECGropxACZEQKcbvZL710NAv1kqQcHUQ0BnH1veJMtDQDtQmDJQ6UNAFelgxR7SQ0BbMjX9qYpDQDWW3VG7gUNAHBq+fQyIQ0AIFX6MiXtDQKH95XEbmUNA54JrE0R/Q0DRu8Bu6oRDQLmAcz6jakNAa4uf3rNmQ0BGICtEmOtDQGOZp+2uu0NAVR7vI9bHQ0C7t28atfhDQI3RdhqU6kNA/6QpW2neQ0B83w4EcqtDQMvlAH1zgkNAI67F/ZW6Q0AkeSgSu89DQJ3KY70+A0RATxQUc2u4Q0CoADn3guNDQEDva5finkNAYK+xSVp2Q0A5cN7zlU1DQIEC/KyFNkNAG/938FhJQ0D2o9FnIiFDQBSUshRaVUNADeMqhpSOQ0Dd+9hJCWVDQGi5j//BQkNAW93P82RJQ0AtyWRQLmBDQGMeONzEl0NA5zNAlGp3Q0Bbq8ZzlIBDQGiH8bDVv0NAyP9lW3CSQ0CyQGHPmp1DQPvpFYD6dkNAjNrwZZGZQ0BOZmcRXLpDQCxViaUyvkNAUcE6/aKdQ0C0qOQgqMFDQCa2s+WUiENAQak+EyBrQ0APKbtL3EZDQOtVQ/laI0NAHngW/eBMQ0AFcuXfS2tDQGSuEXiILkNAKUIlg1AyQ0A6dombE2tDQGjiJ6C7L0NAE/ry8npUQ0ADH/7d8mpDQDURpd60YENAaxmuon2MQ0DmnTXNzI1DQKnVv2uHsENAtspjh44PREAPvySi085DQGyT52vl00NApmUVvF3RQ0ASPnFiA8tDQGWSY2XKdUNAIEurfFQ6Q0B91tk2yVFDQM8+VLxISkNAEfVc+x5cQ0B9jcNxyytDQKMsF3cWYkNAG+/v2d1MQ0ADqFNp821DQEmrDpfebENADa0ygyVbQ0A52EpKRFRDQGpFN1v0JENAMdDcnBzYQkAuAxY9GuxCQN2aBBQo5kJAYCLFCTUtQ0Dtm5rC7fhCQA/tu0oV/UJAjOAxBBjZQkA1Rcek0pxCQN7Y0Q0el0JAzEIfX1y1QkBrVY03b9JCQIcQ6CQXvEJArOPryMjBQkDnz2dCyqVCQOEpysnppUJABZyLs0uWQkDjxBa0P29CQFs5HXonqkJA12PnSY/bQkCCOz3miqhCQEVsF04akUJAg3YLphFEQkB7aDnkrVpCQLeOOx+uL0JAZCp7sKdLQkC3ZeEzNT9CQAmUVxi5M0JAU1uLEZrrQUAKe6zX3NFBQJXOkF18+UFAwQSZjBUgQkDqHQhMWltCQCkuNABtqUJAU8iyu1KGQkC+QZJiSUFCQN+k/6MoNkJACcR6zQFXQkAUNoVSfmNCQPicqTHiXUJA8XtaRs90QkDCOwZpfFNCQDoAiNKgTEJAlbmHAUhhQkAyFjFoJENCQPmPNpZhTUJAHj8e+dA2QkDnEnmP9U9CQDA4tN6cMEJA3A2A7NMcQkAiAv/E2dJBQHU9gb/K70FA1uD5cdguQkC4HBhWBPNBQNuBSPa4zkFAI6lccN2qQUDXMX7sgtdBQA10fn0Fz0FAHetg3zaFQUC/PwrytHNBQN+zfR7+ckFASvBRrDFsQUB/H2hzACRBQMGbVUv6+EBA4hb0ikfUQECygt9EkRJBQDF6C0J2JEFAEtCuqAn3QECeDz+SjzJBQEhF5kha+kBALRK7mbPbQEAVV+abPcZAQN/9E3Qds0BATTFmYeesQEBRn7KJcYxAQBe0H8kWeEBAe2koHqVDQECzP0+w1BdAQBqZ3kc2IUBA8x+PEqQ7QEAnn47URAFAQEPO7JeJlD9AZysXtFsFQEDHG9zua/M/QCkh+CUO1z9A4xF+5aIzQEDJNXGbCEZAQKwgVMvPbEBA+1YZYNKZQEAQR55O9YtAQKc3GE7Dr0BAbK27SgnWQEBgogOXN4lAQL77zq+Zp0BAj2dkaYyyQEB+OSGgEKdAQNnf0iL6gUBAs7Ji2kKiQEBa/2CTW1tAQLVbwmNCLEBAwWFgebkGQEBcrDq99jFAQMlTe6NRK0BAuGL/bjFIQECv3atbikVAQMYu/jDPckBArOVXxShzQEDpyhkgvzJAQKVLbAoDb0BAH+uzVKmAQEC60dtUuXxAQOlY3J3RkUBApfJ5wdyYQEDSRo+yShFBQJkZ563iCkFAmxqpxco1QUBVY4P3pidBQGk94f9mHUFA51Jh8kfjQEC7qszeHclAQDc7xtQX+0BAx493l+fhQEAl7JjQY+5AQLcRaF1mtkBAOZ95dx7UQEDcHoxcNeNAQMMLrCgkxkBAGX2AVRp4QECBHEka4opAQNsJfCvAmEBADsu9eGGfQEBFYqCWucZAQDGjmZl9sUBA6x0EXIDEQEBrkrnLvcJAQBG5TdsX30BAKqVSJW6MQECje1GLC1xAQHgafcnNzD9Au/zrlokiP0C1ygdSKVw/QDQg/VG6iz9A38JQr1znP0CQlKo10ew/QL9h2Ubn3z9A0PbUKhEvQECeAu9JK0FAQD3NPFkJIEBAQBYVMIcsQEDlTJftYS5AQAB6WuuLL0BA53Q+K6NFQEBTdcGOKB9AQCgOlwjtE0BAXVmbOIMxQEDkLqtclD5AQAVeGmgvJ0BAb0Vn4IVNQECQQFzmgERAQBX36ZmRY0BATx/SFyGmQECUoMYXuohAQLXZoEmGjUBAJeUqupCyQECgPo5qSu1AQB8yk2g26UBAPVIqJqieQEBEWAoBGndAQKWkRxVkHEBAM5GOBCjrP0B7BRt0SNk/QJzOBG/DHkBAgyXLLqIVQEAHKVVIVnNAQOucwePfBUBAWbb4cF7/P0DbjpudrN8/QF8exAF0fT9ADXBq1Cv4P0CzwJZAadg/QNELZxB6fD9AXKqc6I2RP0Ct1Xm3lnI/QMvoDivsID9AJyakIWRZP0BBh4A42pw/QKAGX+zwkD9AqOt0oX3VP0Ac9F04MaM/QClM+DXzDEBADwlVZ76hP0AzvZaaD2w/QHflDhLeQT9Ak295kXKVPkABomIFAuU9QMzrMMENYj1Ai1MeFY+SPUBDhZ8W5Kg9QLVEC/lhiT1A81HAI2o7PUD3ze5WkAc9QEC8fuXamTxAvLbG0q4RPUBFs9LjwJE8QFFNo5tjlDxAme7iSPoJPEBdSTiVhFs8QKhbiE5N4zxAKUHfO9utPECAWMProf08QAEUzrcYlj1A0InKwiaYPUAEu7KVKro9QBvIChhT3z1A5Q5XRpjJPUDfH9qo2DI+QEEb00j/NT5AY54wOuw7PkAZyGpDtWc+QCB2EiPD5T5AM1tUQNLqPkBd5ycvKHU+QDCp4f2jWT5AkH8ND9zLPkDQWl+rsJk+QIGiuR3ScD5AeIZqtySOPUCw1J7Q8xQ+QDQB5dYh0z5A86XkPxG2PkARyYi1iZA+QHHtHbmeyD5ADSiDZKDzPkD03p0lKW4+QHypUBWAcz5A0LKbKSasPkCAp1Ip7xI/QEy7xhz0RD9Au7NsdxSKPkBUhrGKM7c+QEXPI/uRUz5A1TTozgG6PkBxy8J0/zQ+QD3AiAT9Tj5AeB9pmnbEPUATuWG8egE+QC8asCyH7z1AcT1yrNjLPUDxBNEyErU9QDkoR53dqj1AvSKvGk+WPUDMXxp60DI9QJeVj/79+TxAiQ1+MnU8PEDZH69CZLI8QNE8GiToAT1AvZMAJqlgPUAJkKPwSrw9QLxuwa598j1ASKaD2v3LPUCNKX2WF549QJnoTl1qTj1Arb8k0RfKPUDDt91iLc49QKSIr2V0qz1APKweUI3fPUAv0Uxy4ZE9QCl2FsJIdj1AmSLa+CGrPUAVB3K2RdE9QPm9+f5v5D5AbQLu1B+wPkDvkN7hrZ0+QEVrfgueTT5A/d2QtrsIPkAJuLcMFPw9QJWwnyny2z5AABV1Eg57P0CjUTcM3Qc/QDfzH3lYDz9A/GIi8GXsPkAEE4sX9ts+QO3AJZxBSz5ArCT18GN7PkApMWceZcQ+QEeB8BcPmj5Am4BrlXQMPkBgngj/CGY9QMcb/+tt2T1Am7jPq33aPkDbG0Li9TA/QI0ApyWgFD9AM8rqIvpvP0A5wd05xPQ+QChJhZwHhj5A5e6FI1w/PkAZH9jEwt09QIxINkgdyT1AVGe3wLfpPUBwxc6M818+QD1PivlQTj5AlH+vbDNFPkBQWfiIWTU+QNeCB4Oxaj5AkNIRQrF8PkB7nhMYic09QDObEva+QT5AR9exbjHRPUCEdxQylqw9QNFLwEWX6z1AfLMPaCf+PUB9nr/jRWI9QNnu+Lbq0j1AjymXIBEpPkDdtknF9XY+QDwWR9ECYz5AafJPPTYTPkAMXqS1wQ4+QNn11I9KkT1AS+QctKYxPUCF4MN15A09QBlu147WXz1AzU8OPF2rPUBbI3k+NBA9QFD/+JzzBD1A82sr1aW4PEAAPw3OYNA8QKNyMYcrnDxAYLIamAtFPEBLuaAyStM7QOQJtZ5ANjxAkdwTSb06PEBLKi7WeMg7QJ9cdIs6zztAHKC4D32iO0A/bdZq81s7QGc0dt31XTtArWUd/gk4O0CITYqoqoI7QEg0hyHaZTtAQdgA6+cxPEDY+QfJFAU8QFN6fcEBiTxArJVKiMZqPECtW8eGoZg8QPtkFE0LvjxAI+ZcfuqhPECr9CeoHFw8QFtxBsdMcDxAeUKQLAaOPED9CxIWk5Q8QERQbNb6xjxA4NWUEvN/PEAT42B0qns8QA8+B7krTzxAENBCC8l9PEAUVmqsgRo8QClrGuI43jtAO/qiWHMiO0B4/Hjf62M7QMV8L7o8JztAM0a0JLj3OkAVRqK8nK06QLtGDvOJNDpAFItsmqMLOkDZtCxXzYU6QFhEooVqRDtAm4+4stAEO0Bo/7BrHtc6QOS83wwU7DpAWTIVAx9/OkB1zf0tdoc6QDnibd57NTpAmbWBp2hsOkDtYfT4sYE6QEtO4KMu0TpAUFuN9Sl4O0B5lb6YxIw7QMi1c4BneztAIXUVCWfmO0Cz3SXoBkk7QD8fXv3MKTtAWaFJRwfhOkBrK2OClOs6QKBKF1qcNTtA9Yzequ9JO0CzwAYgiQg7QFS9Uxzq0jpAMcQMBmiYOkAxXycyG/Q5QGRfUWdhLDpAJ5UqqRhyOUCvlJM3l7g5QOXk2DT//zlAA7/VV9bjOUAzSjMdBHs5QINZFD7QOzlAxQ7fYbAcOUBZNc8CFQE5QG+y8XXn7zhA/6pV/DLGOEBnObkZSdM4QNmaWvQeGzlAWLB8bmd6OUBh87+ABG05QGVPKhu+QjlAsb099Yi/OUA7uJR9nLE5QAtVbLqcfjlAKywvDfKrOUDzGp9sNsI5QHAkTF5pHDpArwE/MbAaOkDp859c+kI6QOVLkh4kTjpAS7yn7jRMOkC0TL2SZu45QHDbbd+2ezpAPX9+9K32OUB45be8zXE6QB+0lpx3uDpAW57j3OWuO0B0nng/OvI7QO1b/pv+pTtAVIz7dy1QO0DwvK+I8BU7QEibBXjJeTtAeeqG4nZSO0Cp9IeTxCg7QCnyy+b6PTtADa6AidgzO0BDqiUp4qk7QLmdYA59CzxApFXjKeFLPECgCFe8o+k7QOUiI4+xuztA8FrkhIUwPECTeP0Oc/87QEPX7HJIWDxA9Mk7GMRiPECcuiGY3PQ7QKGEwCmN4TtAsHf9QiikO0BPHvx52z87QNl2wweNVjtAPSCJBm8QO0BJJl9KyFU7QNEZKioPzjtAdP47Y/jwO0CMBFpDrGM7QIRJ1MIpsztA3KDszrRgO0ABVlR6Krs6QBVPP5e9mTpAiDfk+6/1OkA8UA6+Aak6QOCJKqbESzpAjFtPvcRqOUCrjtotal05QEUMljlZlTlAa0akwP/COUB/bVt+CKc5QMD4mqz/UDlA5OTLmURqOUDptt1jZms5QFwabt/+XzlAcajIqkh0OUD4u6zQRpw5QFiGstAJVDlAv2GojO6FOUADYxj7zRI5QFUUYLxXuThA2XGCXD2ZOEBVRFVVxlQ4QO0OBLpyczhALDsI+ES/OEC5EUJvD844QJtnPR9n8zhAiLPsGmEcOUD0P9RYipw5QEsfVeR7bjpAEEsxMtpfOkCXMwkQwRs6QMzEqo7i9zlAw1vo5swGOkBwDKDcqeQ5QLFYqb9ytjlA/+EIA5xsOUA5dw4sbhE6QIlEPgy1yDlAL28g5ENJOUAL1eN7o9s5QCUVpLPs9DlA6AW1VafmOUBRrFNlqm05QF3jTO+fCDlA/fpamyOGOUDQ2muhYtg5QDUohAMtXjpASdaf2NaJOkBPhYqU6No5QNMOSQME4TlAefOEXwCoOUCtjw9gI5I5QOEmkkEigDlAsJL4wZ/sOUDJGqaqnro5QP3woNKAlDlAf9ZMyi4OOUCsm9aXrCs5QEd+3wOSYjlAqBd8n4QOOUD4Q3cWU1s5QN+gcHcV3jlAgclvB96+OUBznlqoGJM5QGxYYJFvpzlAxfFUV9bTOUAx0YsrT4s5QM2+x6pSDzpAC8gAQHDuOUAhX6xBdIU6QIXcnBfhyzpASw/Ts56cOkATrNwVSLw6QLiY3fTV+TpAGQvWumRJO0DU2v2ssRc7QADiwUqy2DpAnUsreQXUOkC3euuwNrk6QPQouD3NojpArQGJ3/iwOkBcNcXOcGk6QNs5bcS2cDpARBhdlrtoOkA8NUIdDR86QGkC99r2GjpAYf9z77+DOUDnh++F3RQ5QCjh4/td3ThAY74UkEeDOECjzbLxzNk3QMP3ioZxlzhAKXZGFypMOEDFqNWOPII4QNWo2SXzrjhAPcPtWP5dOEC875EsboY4QFXkQGh1fThAfQsxEoZyOEBPrIz+kRE4QLNNy3w7njhAbJtyctOdOEB/arO39Pw4QPwxUeb2oThAk/0U1d3DOEDskfrwAs44QFQRjTgGzjhAWcH0mwCeOEB/hoBQyaI4QGHQXTzWqDhAQUv2eVkuOUAZDAew3xI5QNzLvp00ZTlAYO/qzpB0OUB1njRYg4E5QJRsWuRlWTlAgSw//z7UOUBro95OMAY6QCBDglS/YTpAYMPFAwKFOkAfNw5uWPo6QCHD+saJrzpANxcMsfdOOkBY17GDOyM6QBjh0SowTzpATTnQwDaVOkB/qisnaec5QO8IXjyNcDlA/anuiR3VOECxqxzgqnE5QD38ZqO9BTlAeWFXaGx6OUAA/J9Msfg4QFF0gbxiUjlACDt5OV8oOUBLnAnB/ug5QHuKcz86ujlA5Q3cfZKAOUCFp30yuW45QCSPdloaWjlAeVqwqlPfOUBTAhMSxo05QBlTSfpCjTlA8Y2Y8PSgOkCs+h0x2vI6QGut9TwAATtAC6Jc2EVCO0Dhl/GqKz07QE0EXNGzoDtALXpuICkTPEDBrgvuI5Q8QAmSNIyBCT1Af1ffZarcPEBguuUxKxo9QFDXQustLT1AwU8FrPVfPUAh+SEqzf48QLEJPSHPNj1ACBA6vPkxPUC9uw906oY9QCBJXIRMnT1As1XfW0ScPUCUK3bpuCQ9QOg4N2cVlD1AVPWZWQzOPUBsm6SwCmg9QPjih0bBJD1A9BJ022YQPUA3KODmWD88QEQfxFKuKDxAqOiI+3gFPEDN16ooS608QN0fpUyyQTxAHPvRRYWdO0Cva50ueqE7QBQOCMc3wTtAYdO3h9rUO0CP75aZP0g8QFmlKc+UazxABbJvgiEEPUB45Z04sd08QOwR68xc2jxAz3IUKpx5PEAl84WroTQ8QAymyGuuUjxA/cdOWhSrO0BLZgkT+n47QBsrIfpIYztAa1x5yNhHO0DILuDySyM7QKPzKKm/hjtAtZAEqig8O0CwHQvQtSU7QE+IcxI5MztAueA79suLO0BVjbt4OCU7QAWNp6XugztASGG2jxmjO0DLdq5G36E7QMOc1YdtYTtATJx1IR2hO0AIWjz2Dgw7QAteX5PtVDtAv3C2X1TFOkCQjVczNPo6QIB7M6htWDpAm/R+UhmsOkBIn2kpTm86QLGAC+dAUDpAQwnVvytLOkDbg+uIF4U6QFE7so4qCDtAXJsTA/hpO0BgI/ZJd787QHzk+N7c5jtAISJ1eOo1PECQHSL3MTA8QGWjFNXiUjxAKU6yIZ3jO0AUdZmIViM8QKC5iuzNFTxAGLEUAYjUO0CNfuy7ljw8QGVeYJpMmjtAkPjTta7FO0AV5oZGqO87QMh04pGJPzxAAMY25Bk6PEBZq2XwVtA7QO9K3E/kITxA4VLC9hdGPEB/WUXHWi88QPQhOD7+NDxAp0sz9Wv3O0Chj1NVma47QM1uT//KcTtAT5NobgF8O0CcEoyVh+o6QBWFrWToQTtAPHp0s0JmO0DJ468lKdo6QKMJXsSyOTpArB2T9xIvOkCnyCvCtSU6QKuO8zhkSzpA/O0sQqASOkDn4yAeSBc6QMh3rBWO+DlALIKte9JiOkCf7G48FWw6QA0JsrQfCTpARD+iUzYAOkAt9pUOqYA6QMSh8XrGbDpAePTz2IOMOkCxktuH0Js6QAEDXdXSwzpA9Y0M0fUuO0CRsp6jxgc7QP8Wf4N+cjpAoZHmHhuROkDEtuxgEtA6QFs7x/EC6TpAsdU7rv8ZO0B7lRkw5J06QLBiE1RZvjpA9boeS7/TOkCENvpQrMc6QMAGqUj/CTtAD3jgiu/6OkBbxZkfcj07QDN5EDJaPTtAhZWU+4epO0D3WyEHQLg7QJnPR6NNgztAsS9QgTiSO0CfOp9qB2A7QEwnL0BYmDtADJN8+PbzO0B7jC0g+a87QO0sXfngMjxA9KXzfy5HPEDBGj8xNks8QDFcojXPHjxAVQWLm1sRPEAYbGPshU08QCQkRJVKzDxAQ65bytsnPUCDYJ9a2Aw9QE1X+zuhLD1AD/CMIoVvPUCXqBU2Xuw9QKG72GuIsD1ArzAb5wgIPkAcL0kpSec9QIONFSdGqz1AKabvKf3PPUDz3JIGttU9QAzxDTxNyj1AgAN6+xKdPUAFbI2ll9w9QNUS7jrkdz1A++ecJY8hPUDzwv09LIs9QN9lsQXpGD1A/WX1fkYJPUD3E68Rj9k8QMSt3XQbRT1ADTf6C+DKPEDhHb2Z5nY8QMevNVgF7TxA5IGabRXzPEAAY9VsIW48QNCPcYHQITxA5cHn0xWwPEBTZSb3lm49QP00hvceOj1AoLjY8dDsPEAxZaEfCg09QD/vGkhoszxA/e/ckqDUPEBhz1Sic+Y8QP8WbWebyDxA8aBsoKuDPUClYV+RIXE9QINyIO9JZz1AIRAj5u1sPUDHSDtp63U9QCn63hyKsD1AfFEF0r/PPUC8WoUNrHc9QEG4M9Nj5z1AJ0s2Es6OPUA7IeKaahc+QLPLw+r1vT1AhYrMFuO0PUC7FmarGXU9QHT+UUOufD1AVM2oH5bWPUAopVgtblo9QM/UNL5HOT1AycFc2rrFPUCb2UhIF6g9QPjC9njpzD1AOfKT0MvNPUCRuiSbhp09QOw1R7fPgz1AD52HmLOuPUDdM1q3XJo9QDgPOw5y6z1AVCi9yEgvPkCQQXJB55Q+QH1DFFErRj5AuyIwMtnNPUB7gkX1zqs9QNPARm6W0T1AxfqL5TLwPUC47lOHB5c+QH83gL6Opj5AwysnyVp9PkAIBISe+j4+QHNeWVkdlD5AaWGGj2lLPkAxnjJ8944+QHDfBZJt7T5A3ZsJmH23PkCNWClWCHo+QAmHnc2zqT5A64Y8snbiPUBVY1WcdxY+QNutzfcNED5AczRrrNj4PUDkeIbLh00+QM3Kbs7gsD5AFd8ZdYHRPkBQxqse5Do/QLw7uXFSBj9Aw54IPhoUP0AH5wI/cSs/QE2QzkGXjT9AR2icqwQaP0AXmyVvDgA/QHlcJf7KVD9AtPZC95lTP0BYrtPJlDQ/QFVedsukhD9AF8/TSW2qP0BVY6KOFZY/QFmhgIgcWT9A6dWwwTbBP0CFnRYE9w5AQMl3cHTs3T9Apzt0fTBaP0C91vDQlRY/QJG9kMxwLj9AXXZVhmr7PkA8rs7U9/8+QKAIRu/hDT9AX2+Zg7nfPkB9fbbLivs+QDuhVvDcKT9A7DaYF3l+P0BccXqWvHM/QMh2C5q4lT9A55VHLpLaP0C0tyn04Fg/QCvEw9FuIj9ABDxs1N6aPkDlBMsQ5JY+QLkrElqglz5ABPqxaJB/P0Do1Qxp2As/QGsrOq1ytT9AAUuCIxgiQEB5RlnkHwhAQCkl5Ta7IUBATgCa/hUtQEAk75AbrR9AQI0jZrp8TEBAi0pSdyUdQEDVWLu/aRxAQMEKq89t2z9AY4pr2pspQEAv7WdS9ChAQC+4KN/x6T9AIxpPDuOKP0CYtGVNfb8/QCyCFTSn6T9A0XSYbLXRP0BgduS4gh1AQOd8hDkRGUBATKQoE/YOQEDjhjIASidAQGld0SdX1j9AovyusA8nQEDfJWBy8AlAQF363GIkOUBAEKh9cJISQEDE+d4oPTxAQDOAE1E4XkBAmq8bYRBXQEBoTTFMEnFAQGYYHiN7XkBA6dcxK79iQED9xsVd9FhAQNSqZKQ2Y0BAWzoCgp8jQEAwxjl/g/8/QMnPnNPrCEBA86IfB4P1P0CoNMafjSBAQA8rTqhJTUBA1YC+Na1BQEAFTc+7h1lAQP27DxbXQEBABS6xNQgyQECRomCVlFNAQMZRvpk5WkBADewBFBpiQEBrdkFx5KtAQPpR/dOUqUBA4clr0TJuQEC7xF8ggUJAQJcNLSEKH0BAccyMd6xXQEADr8ky92hAQGmo1HcyEUBA27qD5KvvP0Bnx7i8HU8/QFVr3SZsgj9AgQjJ88Q0P0AsH7zqrwU/QCH5Xv5j8T5AbaPTAhPxPkB/PYDetTQ/QG2Oxiu7GT9A7VE5wF99P0At97E2lVw/QD9P3vLf2T5A989Q3KcuP0CBq/e6ILA+QN15gkWkfz5AlarrrfkGPkCrnl1pGck9QNPk9IMRAD5A0BbareWzPUDZAunjF6E9QOEy8kQVsT1APKWhgnHNPUDU8IpD4d89QFOatvXchz1AURAHnLYOPUC7UtHiwsw8QAC5nc3qbzxAfWgril8VPEDtUvT3uYI8QO/U00HrljxA2FlHjW+3PEDkAFtiPTc9QFzkWhs+hj1AnOaxzX9tPkB9dS21Ltk+QCF7dWd+uD5AzCeSpX3WPkARrrAkE9k+QH1bWQ64Kj5AAIqYjDSzPkBdBESmUDk+QBGSgV3abD5AROIKFsORPkAQVefnZLs+QGOu06QK1z5AjzjHxFCFPkCjPAjol34+QAhhviaCuT5A9brle20uPkDZsZnxmUQ+QMQYNsPJRT5A17K8TiDrPUDAImfbpvI9QGE/jR+m+T1Ah2YLtqFYPkCUbe7zT4o+QF8O7yBhPT9A4Ex+LaryPkBQzyKaALQ+QEGEA17GWz9AkFzCMipnP0Bwan+sjyZAQJ4nufoZTUBAz8eNRrVVQEAlE0xtCBpAQIEh543aIUBAn62q+s8HQEB8Jpq0HwVAQLyMjZvP4T9ATbI3Em0bQED58bLqdwlAQDMrBy313z9Al2WGOYgZQECkOmr9uuo/QHHEaNceY0BAf4Lmiuc9QECt9ci7f1FAQEett5sI0D9AIMkbaC4TQEBAj14/UhBAQLFpWKKDRUBAQ5cpWsJzQEBnUVWq8qNAQIPG5pO8sEBANz6ZF/xyQEBtqZs80XFAQA2nw65fIkBAejMrne4BQECL0wAXahlAQPtB+oaLMEBAbTdYdkA1QEAJnCv9cCtAQAS1WGmlREBAKKpWyIQmQEDrVgf4Gl9AQOhqKFPhGEBA4ZQdZjApQEA5w99ZsQZAQF1EeT+Syj9A08xyayivP0ABMUGv17A/QKVVcCakrT9AvPr0InSzP0CPAJvjs74/QIBS10N7OD9A3cuRzivCPkAZK2y4Rc4/QJgCcqLfhj9AX9XhMkIEQEARTnXMU/g/QFzKzbjroD9AaFUNYa6OP0BL7/6RNUo/QLDezxMTbj9Arbfk9eHjP0DJ7s/G8zE/QD0O/PjuFz9AJONkEhMIP0AHm+QcvJg+QEx6/gMXpj5A9abigg1+PkCZ3FcpD7o9QPezHV4NwT1AiwoAFe7UPUAEX21enGg+QC84BvJ4rT5Ar/bU2JinPkDLxAd+DaY+QP9mSxKKvT5A8cbJLivaPkDNKCCWJ5A+QCE8T6l/HT5AL/2TBfsRPkBP67wpuEQ+QEMMY3iytz5AKMz5tfU+P0CLh+oDAM4/QGsXMXeaS0BAkG/Pals0QECDoVE+b4w/QLF2oS8g6D5A3P9HS9A7P0Db6wmvAIU/QFtxgQFCnD9A/fcMJGpHP0AMFU57oDc/QMfp9mhwCD9Asbo5xZEOP0Bdu8hM708/QJS3+MAOgj9AtEIFUDtRP0BP9dGVocU/QPQDIkIHSj9AHXgrqWbZPkDg0jSkG/I+QG82X85b6T5An/3zQYcNP0Dwc+vzGR0/QMTX/OF+7j5AUErSBz0YP0Cz1NJubnc/QMmvusYElD9A3c96SRW4P0A7OQKUriVAQKMtv7iYMUBAjDbLtOc/QECPqK1jhyVAQGng1l8tYEBAMq97sNepQEAb7MYxX4dAQJ2NwtATeUBAeeVbLk1MQEDkHJm4ukdAQErXY2rDJkBAcdbKBb81QEC86iM8dyJAQDPElP6mcEBASaR+MqxTQEDAb3NoWD9AQKml3rrYWUBA7Y2Im5aYQEAgMvlaAahAQJ2m/u0EpkBAb9U57gguQEBUTmAOme0/QIBHaCv5kj9AO9nACA9hP0BsxOKm/8I/QI1/hyezTj9AbheaxM8bQEDbywhsbdg/QEexJj3Yqz9AAcNyrAimP0D8EY13xEg/QMfEmTQzMj9AZJEgZrQDP0Cw8OAtcZA+QON77/mJBT5At5hTBT/JPUA72+0goJM9QL3tcpT3gT1A84LRKXTKPUDsMSSulPY8QAgIXM19nTxAwfKe8AGDPEBEf+Af+BU8QFCVsc6pWzxAHDnUtfY0PECX5QqeaIc8QCVusTqF1jxAB4WeNrWKPED1rjhOgc08QF0/0SFMBT1A/HvDUAoMPUBzxT5BT4k9QIhn3U0olj1AgYbXNp/YPUBRoalLH4w9QLhFf0Tlxz1ADwwnx0ciPkDrmPpS3eg+QOWvMcNamz5Ag5sqo+iBPkBZksLn2uI+QIGGu/U+yz5AHzR792UcP0AH3E/9kSo/QN3L3IjANz9AbUJikpQMP0CsChCBiW4/QMw5+XMrij9AOxwt2eThPkD8ciRL+Ac/QER+lU1rij5Atx7EhXHiPkCUTr5k9y0/QFUObR08RD9AP6WAV12gPkDHquqY3rw+QAD5wY2Oaj5AbAWSRr6MPkAhriVCusM+QHDdJwx4vT5AfGFFK5lgP0BApB4hr4E/QPsYqgra7z9AIMFnA+TnP0DFKA6SNxRAQANxYXoIU0BAnOXDYJRDQEDG4JPJshFAQCOd0BSOmz9AvVFVGWGSP0D1UhBbjOY/QJqoDmXbXUBA7hD2tulwQEBff7MJTXBAQCkzd3BgL0BAVfnNDfQKQEBVBeD8QLM/QAsjKVpRWD9AGXMgQZSRP0ArQoUexLk/QBu+FXyu2z9A95UOjgeyP0A1bgK9w9k/QH21UmpSeT9A33id5yC7P0CZefdYXwVAQG/c+5lAcz9AKDWvpACEP0D8Tif6omA/QK1nlVlsQD9AcK477u4YP0DVbQMDfGk/QI3Cbor/xD5AtZOmW8ywPkCxnZX0Ot4+QBW3zSQU2z5AiKV5bJBlP0CXYt1YYZQ/QJ1mD6c+Sz9Ax3FLrF9wP0AkUktEvsI/QB3A522obz9A9bkAObg6P0BgEqwcmWM/QLmzqYUL0T5AvzbJMO3aPkCFpwDvDq4+QHyAUqzS2j5AKclIMJ4JP0Ad+rZt/bA+QO/mjlQvGT9A4RN+7voJP0C/GBeNtDw/QEHKrn3BqT5Al/86VcWdPkAAklZzQrU+QF0IJh2b2D5Az0PVASvFPkB8r5DNv/c+QBf9xEVcWD9ASNswiRKDP0DoZNm7O6I/QCGBOeWl5T9A4tgJ8b1EQECx19wUqlpAQN+Wx9BIhEBALFXIGrxgQEDT7AQjdWBAQEnDj20Kc0BArmCJ2VqXQEBn2jeOdltAQI+kDa++c0BAY5ceICJCQEBZZ+f291VAQM+2/SxBeEBAw6LeVnaJQEAE6Fr0tcVAQNa2GZouvEBAdCZNfjr7QECTufy6bv9AQD1wIa6y+kBA3GS7VgPcQEANiHV5nOFAQE7/LtpYHkFAvTlIix0lQUAe4Ji1dSlBQBg2HxzGTUFA09//nAEmQUAvORtqMCBBQDy70A4POEFAty4tQrxGQUA5hyHM0VBBQGt9nG9BXUFANDEujPVMQUBPkZLuJkZBQKFA5QCoOEFApbQtjDQVQUB/6PPgZ19BQBx9FPhmX0FAu58pZcVHQUCdFJLu9UpBQH9SDBwagkFAndnVTiSQQUC3PLCSUbVBQM8IrXx8uUFAt55HW02UQUDBuiHhv4NBQHtMMRQTUkFAX9IAxNFUQUD3G7sQCl9BQHE6ifZ/RkFADWZLreAbQUCRLBUzkvZAQBcMyRBY+UBAJbeWu4sYQUCNecFOi1dBQOSFLY36/kBA2ORlspvWQEDg+GGbR6JAQH+PaYJttkBAby469T+DQEBELfp3R1xAQBORqIqgXUBAQQsE3pEzQEC28QnJAE1AQHuE0C2IFEBACZHEqhytP0AnDXs4REY/QOQe+oCwVj9Au4QoJucAQEDbQT5an90/QE3fCnrZXz9ArOwMC5AnP0A0YKCGvpY/QMTx2+VYYD9ArGEpuzYqP0CTRG+K0RE/QIF2fkWWbD9A5xxfZ4BGP0DNQDlK/xY/QFxI6DaXRz9AU9iofmKGP0AbigMzCWI/QD++/t5caD9ATIu0KVq4P0CT15laxh4/QH016JlBzD5ADcHs7zbpPkBLcV0UBd4+QFc4W2C/lj5ApyrpFYfrPkCYO6BBDnY+QNNqt2CvNz9AsMTjH7XzPkDYvCZqNPY+QMvIqzEiwD5A\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"POS 0\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"sb3j9on32z+gtnB+uUjcP4cKuf/u4uw/E8pi7wSX8D8PwZLD/JnwP2nqUbSdges/4BFEas9R+D9hb1P6NaL9PznrxhtXKv4/32iIOGeN9j+R5f2RGFnsP2TfkrpD1+o/nzE0I1rG8D8tRmcJbaz+P3TdTSr48/o/vE1X9OsN8z8xR3JWr2z+P9nTVuLZOwNAVaAVD1AbA0D0gWf2Y/wBQFH2DuJQpgBAi9STHTD9+j8MwLUitcj+P3gE0Hn7Iv8/s08xkvw2/D8pxhXFk1L9P/Us/jYU7f8/uJVv+WyaAUAzBe2m/HYCQFoPCmboXQBAiyG0R7gABECo+lYSetgFQNV7YI4akQRA6+csW/Z/BEDrQcCnOdUHQFljXcUGowVAXzOZWdzABkAAwYB0qfIHQKVJ7JPBwwdAEKaY+Z3dA0D1cE+D+dwCQE27itDFoQJAnQkIrD2QAkCtmOQmsbUDQCWTeVsphfw/TBByIiDT9T9pdUXz1q73P4Vzsb4veO8/TKyoYwFH3j/YmOcofIrJv2OwhHibM+C/KMHHCaIJ2r9A9IP+Chyjv5mxSZtxxNk/jxuJW54t6j+VoLlzOHbcP+zVnA0qRNE/ghX5MIG61D8NrKjR9hzZP5lKjjClPtY//VgVCpf/2j8FG79Qj6e1vyHyJrcD69Y/5RORXGJ5wT/0z1qVYgPkP2+s1BVQf+M/8xcLHY+R4z+pvrfSAfDtP6Xcqrsxn9M/FSMVUE9DzT+jzGOObfHDv8wt+DTsS9o/CNz0Qgxl5z+wDVuUs4nuP9luK9zvsf8/n7l82yFIAEBMkCURQZMBQMiJ6CmTAPo/pEoYZVaI8z/BnunS6Pr5P8yfWVgqKvc/J6Vur9hB9j9I6w7rV0b3P8ELIWXTfP4/c3S8PZpABECdS5Qq0J8GQMhZfMIKtwxATUpKi/RCDkBgnTxDCPcLQJknuEx7zwxAictuOr45D0AbxI7lNysNQHk0L+gCGQ9AhNJn8Ew0EkAAJ1dxv4kQQDx6BgpmMxFATwcsE/K7EUAJmBIj7xgTQBbAGSuU+RJA+TyHupamEUDHGX01x/ESQLFCkKvPdRFAlQgI/ff6EkCXucMdkMMUQCUvo31Z2BVA4dv+kbzlFkCNnA7nHHQWQDNzaAhaEhVAoWbjOkXxFkDLGB39Xv0WQIMOvrvwsBdAq+ur2nWBF0AJJXeeCAYYQA859dUC3hZAlPRA7bNcGEBov5KXs/4XQG8X4hpbrBdAdGMQbxhwGEAt3h0HLkYXQI/neCTQfxdA6da4wGF2F0BP7x9n07MXQPmJcLFBmhlAvwlLMCdzGkDIH3PG8pMbQKBDw2+eCRpAedLwsjtUGUDpKT33wWwXQGVIu2QOlRVAUHUTqxikEkDBJ6rNmQUUQPUOgVzt9xRAw8oN/i26E0CZb3XXI9oUQKA1xPFthxJA/br4lNBxE0Dh1WDcl+ERQEEM7cX4/hBAp84Q85LsDkDk3lZCSeYOQCyYOmHoiQ9AxIqS+CUwDUDwZXRqxA0MQKsNfsQRnAtA7efToCJaC0BNkPxUBGUJQNmwS3XDfgxA1HlpUjUbDkC9i4OSVJMKQIvt7dWeHghAOSyDlrAGB0A3M+1L0rkKQM9DWcf4NAdAg5xxiUFzBkCko2OByeUHQLlJshTCaAdAUFHd6yvTB0ANolwEjcwBQM6/JXwN0AFAUa8BxfIYBUDhKYKYAFsEQM0AxDC01wJAYCFGdUsHBEDThPhxxBwCQFarTkRHVwBA38AVxxo5A0AJMAijSwQCQH9QnV+5cQNAc18RuXkSBUCrqGD4OwYGQPsuCgtXrwZA5OUGkqfPA0CxOETLk+gEQBvAhoOYVQVAlbHk5kuNAUBQ+2sd1978P9tbEMj66wFA360apKysA0BJDcILdokDQFWKpxejNAdA0IKuvLuoA0AMkiCPOG0FQIcil5phmwFAKHgnGhj1+j9DcMtnysj9P3X5RqDjKfs/ryDXclqN+D+V78/3M1r3P/34tVGTUfE/xgDTFkZn8T9BHB7qRc/hP4VDGiN7Ydg/sABml1vJ6j/NBTuzs+7iP6uqfkLvbhu/aQMTdEuN3z89CMS9bzjaPy8AFXizHOU/WxFdjb5T3z8zZ3/Asr7pP1Hs+LuOYeI/tJLvsjPC3z99+e9f8fznP6devexZEtc/0WzFLF9J0z9FlbZLw9PkP43+d7+JF9U/dd/wDvfc4D9/HEkGkNvkP3dfFBlbtuU/xbCAmsNe8D8z2FH8PH/qP5choIqj/es/58AsBXG48D+txKdJ8FvtP3culKV9VOk/AdnJRuLk1T+7N+abZxfePxzDdZHpNuY/HAXxeujB6T+0RocMW5LvP7cx1j++vPQ/fWpZl5tb1z+vitI0ivPgP+ASJGOGR+Q/SGOj9RZR0D8FqipTGZK5v8ixa2HFSa0/gUd5Gjb/mT9DqxQOFj26P3AOM+1t076/3uq1Yk4L1L84V5g3x6Lpv93Gxi3aweq/e8LhCXsD978kC0czJoP1vzS2ElEXUPq/gHRlgCBS/b8XwswU6bH7v9Q0xD5s+QHAUhsZHZwxAcAT9Q/j8AQCwOUCWiahdQLAUesQm85r/7/56Man6JwDwKXZGzjBugLAOAiyyt59/b+L26S5JggCwORkmjHtLwHAP7BPQCbl/79x+u3zWijyv6tOsqqwmfO/+1kYRcq/7L/ZMOWNl0bov1kgNovB3ui/SESPXME17r+vmEwQ55ryvzlDhMrZEvO/XaSpMM6l5r/ZWuuIlw3xv2+H0gUeV/S/K77tlC1u9r+E8s+TlLL3v1MQkixxlPW/PDwMhafE8L8BUmvnXKrnv306OtqAHPC/YMC2ZMNm679YTU7yaRPlv539T0Yym96/UcabfZ0dxb95MK+Gd7DVv1f/q/UTcdu/8TjtCwcj0r8H7CkOO4Xgv9VYJijJa66/ZVLrObMqrT/pkFmay1nTP9jFf3KqL+w/tbeH/ecM7T+D52vThDTsP6zrJcuxT+w/QAk6WxDp5D/+p5DXVwTgP7GDVTT3AeI/uAvywJP35z9oB00x+HblP+/decIWePE/J/WxMLzZ8T8vt5Xg8EbwP5ANfgKdPeg/gMkOJgR70j/TmmBjaRm+P1i39yoPiNA/e4E6ZrN22r8QGn6BEjXRv6D4JxTVuZw/kJLizUxC0b9wz7ewd521P9mCG+9TjdI/O9rYHys5179U5hbv5jDtv8seDzV8Ie+/6UvgWyZj57/3QARqOmbrv0d4XZETsOu/JQ6prIU44b8Y6Lm+P2jjv5xZ8yp1fuW/nGgLmvvF87/sv0yCLJf2v21y5Zm0ZfW/q4PkD1jS8r8dGfKqfzL0v2JSOvnO+/G/m30VBKa86L+HrLSgkX3Wv9xvbDgExdy/4crdW1wH4b9B8E1G6PvVPzhpdWWJxs0/073DlS+y2z9VzaPGxLO5v92rSvzoCeI/GwSvSzmjsb/hLyhwJ53CP5C7HZp3ONc/o0nynU7Y5z9jOxEUtIbnP6zIj1DtkuY/cVjn4UHz4z/pHBRMGIrnP0OX5N3b7/A/j9tZQJ7X9z/UJv/1JFDxP10IW1FpuOk/HN1gJPL24j8TupXs/AXTP7VqkmBQeNY/I+LPrUPvxr8DOFToXRXxP9VlNOvAzt0/x5ZMcCUT0j9Fr6Xt9q3iP4sODtFSQvA/8v+eWdl08D+sfqMARibsP6V+cJuvJfE/odeKMddY6D/Ewd1/UbLpPwOdEavJbec/se7JQZVY0z+I7zxIB4fgPyNaUzQwGsO/vXaGBcaitz+gYtZyn/jeP3crea4w690/6dzxWln34j/lG5BbO5bSP8Eh4TaCL+U/9Q+opHDt5T+Ty5melXngPyAgs/kYxM4/n5jaN6BQ4j8XUySkgDfxP/s3jCDZXfU/y9+i+27t8j+Xwg0vlBfqP5EHcxvoRvM/UPDdcvKV8j9xXJrO9N3xP9hC2rszMu4/DStPuiEO5D884SYTdlnsP2Ua0SmH/dc/RX/vfdi+zz9/mAShUy/RP2shPH2m5Ig/SOGwzIpsfL8sHc13k962Pw/2pAvo4eI//HSPKh0j4D/gRBY9sNntP4d3QqoLCeY/7z8QJV5x0D8QaUfnOlazP7VmcPwYFM4/Jk7L9qrg4z/QQMXyNnneP8VuZ34ERrk/b4FX0IYBzb9VfK1tLWWDP4ux06ate+E/Cc+/G0yM8D8gA3pyFZb4P3F+dLlmY/Y/ubU/aIVb9z/VRMa29Bn8P93+MsZFF/k/xG0FMyn7/D/VGYMtl60AQE1XYzgqcP4/xVnOo7oX+D9/QMxp5YH4P7l/SEXp5uI/I68v7iRkyz9hQn9QBnviP8Q4xFkeIds/cSaTEIFMyD97NKG5wcTpP9dMEKpGzfA/I3V4dE/f9D+zlOVNohTiPwvjD7EFE+o/0wNDRfS41j841lPmZAG5P+2t+jhHVsg/vK1o4H0u0j8/4xibkMDNPwHLwlsFqse/aK6vVcbf4D8jmUNWszTuPwfa841yBOg/rxBbXaeA8D/s7PNfZ2T1P+k/GXN+GvY/xKj6UeTz+j9N2Mbtb8r3P73onDmnEPc/RYx2SG/u6z9QcSrGl5LzP4cI1pEkPfQ/3YeTJ9Dh4z/Ql8qJAXn2PzdDY3hLY/Q/TiVfeZdX9D9rj3q88mP8P8Fpe3gmRv8/rcUGQIaD+D881N9fKZP2P9enn2m+Pfk/D6cR0h/E/D+Fny/m0fAAQD0xZo6WfP4//LACdzKz+z+AlrSzTEgAQDLkvVEISwBAHZBtE4H7AUD41nWfa2f+P2h3U99cwPw/CYvJb+tV+T/dOWtTFwX7P2cTPcKoQ/k/EfFo0yfLAUC/KTsMMsAEQOjwBdpXrPk/P0bLikHU9z9ttcv83Dz8PxVNIJWz5gFANKQgLBAxBUCn/I4sTzAHQNjDu01CZAZA39VbnPnvBUBl4qVdF08JQKgD96jDHwlAP1TEeq8lCkC72uRY9igIQCFKuhzzRQpA210tmGQ4C0AXGP8P1PgJQBTi85hltQtA0SsJcqqhDECwb0kigakMQFM0hBeWDg1ASVM/vgXNC0AzeDngwGwLQBGlhDATIAtAYQFrGqKmB0DXVGULvqwEQCQxHsUxaAJAyFPDRu1K+j+nr98Lt6f7P9c/b8d5oPk/OKkwCesH/j+VM9qZYPr6P3twF3hLW/U/aDzBBKGu+j/537TLmMv+P3XJemPJ7PY/+O4iG/X56z9HrzK9q1TgP6rTgfC0OOE/nTHFQgf16z9US4L82GvgP8HIX665R9I/sPLF8jU42T+A2cqg+muBP8guoDhk2r8/S3rdfQrX07/dw/7xQaPFv2mYZBSUT9K/RbhO1MBYsj/tzmaHdZXYP33CHLeOvtc/c663L4d02T9t6AY054rYP5M4j23dYtg/xZeknK5guz8On9mgwxDRP6BlzbRoBc0/GPm8YGEN0j8rVAiVadPhPxy4DqcdEc4/1XLGcFxHpj+DLAlKBz3lP1vFi4mRgfE/BVkyeH+E9T9fHDkT8kz+P/m28glkZvs/w/C8JsV4/T8gNPKJCY/9P+VBZldPpf8/PBfAYbs4AEBom709s+n7PyW6LhQ17Ps/9EXAj7HG9j+UXLDP2CDrP2TDwg6t+PI/9ZYgPXTz8D+0MmfykQ3tP1VVffC+b/Y/OTk6H8Fi9j/1r5okOrX1P+d7d0kQRfE/oN5xpAdw8T+culynexDoP9He5KXN5+A/c+LsU4wH1j8xi/kgN/7zP7wVKcxQmvc/lRCCzTmZ/z/EZGl6M7H/P0QAevPE0f4/A2F/DQBM/T+DHEqTjpv5PxkspuUl0vc/01oERSiB6j8EsW9avjzqPyz3HV66+O4/fFPB1NGw6T+ZYfLua2bxP2Sst7f/vvg/LCKlUxUq7T9YdvsxXezqP6XUMpRUi/E/7TaxQ80T2D8bByeXtyzkPycEK4m/T+c/lfgQD+pz5j8m96RDSj7kP5R9hx3KSts/0EyxjwGF8T+0DbVpXDbhP5/+2PH5c+Q/ZV5JzWgV4T/4ITCNFs3MP1ULLufQkqU/P6zmAns1wT+Xd9Ruk6fnv6Aw9Ks/tue/E/qVJh1K478r6IGi72rGv8Q1NTjoi9M/3zRsShsQ4D+NPAYbKsXrPy82NaZiD/Q/vSopb9X79j81NI2WZoDYP+eq9xxvFcw/AZoEwLec0j+AxtZW/H28vznjX6G1fdc/xdMcK59g7D9RI18eSBf3PxyjL24ZhPA/LE7WvOmr7j9MEmbW7dLyP+kny2Hp9/E/UGglZRYy9j/l1OCFy/D7P76DZdqezwFAF4kJCMpEAkCWcvUn1EsBQE0jwcg3cP4/bJsPVr/1BEDBfK6zDmYHQKsV+TRtrgRAHzoodT5oCUBhuY4yCigHQIJeXVkM9QRAbCFccXfpBUBvdHfSIVAGQHTrreoB2ApAY2FGjodsDUAsWqe0Us0OQO0rX+Dc3QxAze4A0sT2CECZNKIqucsJQPVhw9r/5QpACNs9RRvpCkBjP99zc3EIQLEX07K9pwpAnO3L7YDFCUD7gTbtbtkJQDM/WmGCSgxAx/rlwyCoC0Br7YMJPrIIQC+axFcucQpA4aL5UwJaCUA5d8LBV9cLQNQTiQiz1QtAzHVlkS+gC0Bt4lkkomsNQB3j8zBYZglAlKoIKI/kCkAoI//ShacKQKEyEFk8uAlA/+h2O+kWCkAPSuSYahULQNl5bQc+Bg1AqEHmpyl5DkArdKsnkQsQQKCy1HLj7g5AJTRO/M2cDED1yu3A5E8QQEHW2j+6kA9AIc2gp12bD0CRP2LdXDARQCv0oUAqdhBA+qk+65MMEkD9BlZ2EywUQN2yyoGZFxNAsOeVdIjnE0BdgwzTfmMXQPM51+n3WBZAFVpKgMYAGUBNLBGN5dYZQO3OecxBFBhAaPHLUj1xF0ABSMPkHhEaQN12XQpsHhpA30TcowTpGEDPucXOHK4XQIV53Fcv3xVAsJJZiTkdF0BIkkl4NcwYQPtd9vlLNRdAX5kWAvR/FkADOWsqg2sWQG/5+hfCaRZAwO0G/5ieFkB8bZOh3NYXQKAGdp1KDhhAwCxH+TxnGEAt1uOLX8cWQIXIO/022xZAxwF7H21ZF0A5b6JI9f4WQOWqV1ev1xVAHCPt/RD+FEA0zXe8Ea4WQK8VVUxOKBdAvkGoJ709FUBs0NeJ/WYWQMit/hhkxBdArTe67EwTFUC9BE8UA38VQAP9iUO00BVA9WYDuQshFUCVxfcVFOwUQEBpZgAB0RRAC9IVg/L3EUAfNQhm/joSQO+EZTVZRxNAIdmTpP+nE0CfTZVr5J8SQEmmtJG4XRJAjw27jVjWEkDyXGNe4JASQLzSgEnYIBJA1Z2dsmIkEkBVilfriq0SQEEzbOcN1hJAjWRnM8B7EUCpYjLgTBgSQKd8IgVsvRFAxymXImBZEkByX3+oQoMTQPl8UPNFuhRAVfXmOpbAFEDHAnGpNqoVQIq+NKW3HhVARTp3bjnwE0BnaMtsg0gVQIMDEUdexxJAaLcmuLo9E0CnNz9JTfYSQCfXOsvO8hJAunQK3DkWE0DvEdw2fM4SQBE5IHhefRJAGT0DkW2hE0ALrvL0CT8TQHH2o+t2YRJAsZ6ELGG3EUCSiWFawIATQKl37JpOMBRAfX+A06ZBE0CzU/RlgfQSQD2Cr1G6rhFACRpV6X1oEUAffCRHQsMQQO/qLJZnsA1AW/nCuo7BDkB8uxjTsg8NQPieQKX8OgpAyOEqgM7aB0BzBkAs8wMHQJl2DG+CyAlAmBfL6FyhCEBVLXNlCBkIQHVQkG2OpQdAIQjeD4qoAkDgH+JwwA4EQJPPjw7hIQNAWWszILog/z/WQ+bYKgYBQOOPDuoEnQNAmHZyybg7/z+T4/61V0r9P8dij+fV9wBA0XUpIhYK/T+YFZ/9vm37Py8adVC28vc/cfHPmrPf9T8cpHoM0p/9P5bWpHt83fA/QGQYeCMZ5j8tkL0YWET1P1Oe/ymJRP4/ikaK0zdUAUAQGXTr7kr9P0+8Hsm/cf8/2fb0jFoKAEBET5MNly3+P3h+0y3Jcfc/3yn3UveOAUCrqMwMeGIAQEAO0z6gYwRAWIxJSpu3BECPZn7zixYHQN8YAfDutgVAdJuVCmHRBUCrK+wCONsHQBt/YPpQ7wlAQ55WzyNNCkDJkdGRJW8LQOFfGthNrAxACCt/ap+QCUD9JqJN9YcHQKR5Yt9s9wlA39Z3tbWICUBh7snj+CMMQKQMp9dbCQ5APNiTcYPuDkAzWC7gUxURQFQQ3CTMhxBAQzcLIY/fDUD4IaCBzakRQPQSFH+1PRJAXz6ZWjAoE0BRvFQKkLUUQLFpfAN1UBRAfU2hjIffFECECgfJCCUWQBAYbCrX8BZA8Rjw48nLGEB78ecxwmcYQJXY5sM7mxhAd+gX6k9xGEDhTHzJjAsYQC/gw50F6xZAgXxYwMWgFUBUWSREJF4SQJrx6RuUvxBA/5F4fdpXEEDJojHXTmQOQNk6d2lJUAxAWHUImo6vCkBQsU64xWsKQC6iDHodhxBApXFpAWvdDEAFf/Qla6oPQBt82uPxfBBAnCAjtBnUDkCd0OWIcPsKQKvN63BaggpAlOVCciTtDEB/ymu+OPUFQH2xkMqRGQVAP1ZsdfhkAkBUrbsljvoAQG8PnhnI+fk/lya6LFTQ/D97LCliWuj6P4Q87f1Lm/Y/CZe9BQVu9D8da3Jpt/L/P+sJMO1FB/0/f3BGaB1P+D9X2i0bq9n/PzUj8NaqbABAQdRHr4tp/T+w9fELDg4DQNRoZMevNQZA9y7dvxoiCEAQ+xvAqyYJQD+nUe+OcAdAaVPOYTQfCEBVf/tw4y0JQKlR0QZltwhAz4dJ0LRzBkBxchWNVZ4DQEhObPBixv0/w4afzI5K+j87x5IiN03qP0duQqThW+c/dftXytYp3z+kEqXVqEfSP5srlRvOLuI/4TTYIUv41T8sYjHufsDuP1d+jDgHud8/MwujrJY+3D/049t+HwnpPxliPxpV1Nc/sCOr85512T9Lfovd4bvZP3WbuIWcMbY/M8CswUjZqz8D7hG0FLLdP0NqpDN2ftM/a1LS4kI52D8QpCig4BvnPztNwLWQweM/5ZS7fHBn7j/2NO5pHWryPw+xk2OxVPQ/aRPZ7XUw8z8ByuqfTOHvP3R2YzGD0OQ/jWWJVt3S6j+EdRM6nK3nP3nNBnVvQ/Q/TQh8hFUP+T93AS1Mvt76P892LGvd7vU/C3Vs9i0M9z/0Kuxv/SLxP0eKHR/R3es/7Q49OwFv7z/wWS4hFFblP3E+F/+V8eE/cyhO+ELrwD/CcxBu6WfCP7yh27ikWNi/rBG8KFMj6L+3msGpbz7uv3HqLd2gnfi/9Huh1XBC+r/BgSZ5AUHtv/vuSn/zUPG/CUngTYwU4L8Y1rZspN/yv3nHjIIJrPq/B7qPDO5YAsDl37GKnssEwPu/JcZoBAfAaT+RYqx5BsC7hEMbA4sEwHNzQIqTNAXAc0iqwzILBMAGsD0hA0kEwGXggDPfkgbAuSgtcB49B8DtMRUQEPwHwFwcbi0jXQXA1Am8E77rBsDta9tOey4KwLHjm0RylAXAOdg5w9pvBMA3vgcGDucDwLWiOhAt+gDAQ+xpEQ7t/L8YrjIkWPkDwGdsGi+GewPAh/d51/FaB8A74AvFGBsMwIXzFWRYLwrAG7KAuTaoBsDByYHfc28HwC3MOgxTQgrAPCWTqZgRCcA8lcrjzdsLwFWlGuqEogzAMNXPy3LDBcBl0xu7Kn0GwBHOv+tHDgbAZY3c+/WEBcAxucZx47MEwG7o9gbsZgTA4+tkOke1AsAXiXVKYioCwLldMqVSMwLATwNmwKdFA8ATsvBI7mL+v4R6OcVduwDAmx4zyKpm/b+TPzr9l9gBwKovYyll6gPAs2Qq/mcfCcAF2dhzzOsKwPH9qjsAPgPAgVmk2j9LA8DDI/vuMFkCwHH0NWq91gHANU/xuywcBcBhzReow0kDwJ3QStV74AfAo81EckOnBsAJaCIEK/sEwJPZ7obmtATAsN0R7vBbAsCoe0UVmhcGwJf6eZr2fgLACZ2RKDKiBcCr/pQFQwkGwCdaYw4kDAfAwVURHgKhBsDRMCTjSQoDwMF7g9OjSgHARe3ma2vI/7/IqJRc18YFwK8tGETecwXA+75QfzInCMBgPDu3lE0MwPMU9nSHnwfAhKBcv3adA8A7763DS78BwCcHJNA6OP+/K3DH+MA8AsAvfyIhO94BwLElkhvZBwHAfck5/PceBMBs/47cPZAFwGm9nUZ9NgjAT2wbMPsJDcDwLrEAS9cLwJ/7NvFgVwfAbxBylZQ1C8ArTP7/92AOwH+YzN+HgBDAXu1VqIlDEMBTWfHBDWcRwPubymk4SRLA1ZKcDyhTEsAcemrpVi0SwBmSjlqDUxDAwExslDM1DMCTSQMrCfIOwBRvNDfvbwzAfGwie4JADsBtd0by5/cKwKuVAhTS0QbAkZk6ct3sC8BMX/iSj04PwIdci1HnTg7A6BngROX1D8BvtQIVmcoQwBSIlJtIDhDAuVNNNtaIEMCPA3GPdEUOwC/KqEG7sA7AJp/RXmKkEMCh4tqBDWMSwBA1kFg4NQ/Ag+RvJtS5DcC/C76WmZcLwOSv8j/FTAfA0YapYLwBCcCN5Fr9gZkLwBHIAAb77grAi4/GLzkLB8AY08GgV2MFwB7iQx4hPAPAf+z0/dh/BsDTvjwZnOcOwIhK9ZkMqhDAjyF0IdwHE8APv0YyUo8SwPReIumr0xLAjHW9dC5tE8Ct2zjmtu8RwMOxhUQgRhHAWIylIItTEMBaPJnY2R0RwNK2AEpDrhDAV/3fVs9dE8BPomqM50ERwKGptGOjqxDAPeGECV8YEcDl8AjFI1IRwFvASI/enRHAN7o7hE3QEcDfIQaBVlETwEr7W85ophLANlOI57XLEMDNBVUvQb4QwIUyCIFzyBDAs8+RbdAtEsDPYijtlyIRwG/uKQNDqRHAtojKpwwNEcAXURjS7tcRwDf6gFbSjRDAjrYa1DZYEMA3TWWFpaEOwFxtzyW2Lw/ANHenXebUDsDixmCdFMUQwAX4/tomWRHAPwv5tpr3EcD1uJtJT3YQwI9LDs+HiA/AEEINJCRlDMDfl9x7IV4FwMQyuVM0cQHABFe5SNge97+dM8YQmSz7v0GvB39Cd/i/tSlXI0vw/L8ZvGMfkUoCwNX5po964QHADkQBoHoSA8ATKyl/F0IAwKXSXYv6cPy/EIre4PS0A8AIlY/3URMGwAXQ7yU7vgfAJwAcCw02C8DgljWHjmEJwL/0KxWHNwfAp9reeX8iCcDptS8N0K8CwKC378eMcPS/BS0mtjKY97/A2unUDcv7v32LYJ4zB/y/REOrgUJy+7+zCqyjIdL4v9Gqu8YDafy/7dXu6q+q/b8xbCwrC9/8vxjc0AczwP+/hCK5Kj/A+787pLfL7NwBwAxdeCtokv2/cTBOfDUeAMARF5X410UBwCOSztpsjvy/3e+n1Ft8AMCwqkWM6goBwHXrnfL5KgDAXcVdJFAmBMDjUonpJLYEwBuMCbCjyALAKVkBJlVYBMAz6ziT/CAAwAMVUX5bb/m/M+C1ZM5F/r8YyISF/s7/v1mD3nshZwDAY91YSpZp/78Q4UD6IMYAwEvuPNm2o/m/MJcwVdqf8r8cDC0Y4bX8v00+HBYYKAHAvyCXbNmBBsAbpOvSM/4LwCkMRgSyqQvARP0+VuEiDMA53tC1bsQNwIl5IZFm/Q3Any6GSQonC8DBs2gMp1kKwOistmZ9XQzArFUnkiSKCcCzi/a6ArsIwPcJaQDh6gzA+Sn8xuy0B8CQXVUWa+oKwOs1n+JaJwnAMf6LvJ2MCMD8/bk6w8MFwG9B9nAQ/gTA0GNBC72f/r+IpCC2h938v8v5HELVef6/4KBd8C+H+b89n73DbkkBwC05/+H7swfA7cEhiNrxA8B/GvXhVn4AwP2YFD73ZQHAsPHvl/ls/b/l5nSOAHv3v2GRWXTICfa/A2LGgsu2778Fm/9WO9/kvySshU5Y5+S/s9pvge4z37+NyCCmeQHjv0NhPKThbOy/r4a7u+Bn9L8Hjvk4hoLxvzHEXt1PtO2/VaGtykAs6L/YRm9mNZP1v9Aarwnnh/2/EyK+ZIJV/78LwnqmFb75v4ddkff6oQDAKxoViAUS9r8d86Jr3EH+vz1mczIfuv2/RKKQdnZg+r8oUWw7hnz5v5dALlvzzwDAG9aEaURNAMDT1jlNYS8AwGjaypBBwPq/OxeMEEqW97/LmCdMZZ34v2Xdv41rXva/HrrZ0GSk8r+oZXvbBeDnvx4Q6nIqPuC/y3Bxux1B2L/j5Ny4mtbcv6WpniKYlOe/re+9WIcA578k3koV0UrWv5+5hIpjkeK/vZJuuRhI8b81VuQgwcP9v1VFNAg+q/q/qMF0fHZW8b8w8nleQwXVv6duHAKIYeK/3SSva0t4578cAGS4+3DgvxRv6sTe+M+/P5H/DLUUwz9r2RTVKLSCP/WktcPkJ7O/qd39LOKQ379tFyZx9KLmv3QK3K7ust6/9axhSQaRy7/5b3UwpXHwv/UPcM7UpvG/Ny3oamBg8b/rTWEnDsrtv13FNdjJ1/W/WPo2EUOv8r/jezy3Jkv2vziINaj1/vm/lStz+osG/L9QjXYy7qf+v6SKSfFSZv6/05d0XVfk+b/00B6ulCj9v0zXaZ6tL/y/nSW6aMcK7r+zE1YAMrjovw3Q7kk7Y+y/Ec8a/RXx6r//uOF84h/svw1MLCXOruu/TwsdewkO77/uA4A78XLxv9zlFzWwA/W/CIXyC2DK7r/ZT8qgdXDfv8Dxb6gqTqo/zSY8cIB+wL8VK0EcWvSyv9RbMDj+69Q/hGpB2a750D8n4+Q2THjiP/LoC34JleE/TL+5LPDP2T9YMf7oNHW5P+WkcxUxENg/2fAW8EYR4T9EUNpKmt7rP0F6gjXrxNg/YA/5jr9X5T8wDYk+20T3P8sDw3KFz/s/gFtHS5Wb8T+V53r0Ljr4PxDGN8aDdf0/QwIu4IstAUCTPUyLHAwBQDVeM1mB5v0/u/OhODA1AUAeFd9FbAAAQAAYtrZqVQNA81tZcuEOAkBvab/JKbICQENhd03RMwFAnNWzJAit/j+DDcb6ap4DQK23rDLxmwNAUgprBBCdA0DJVMJ4RtMGQNUuJ584ZQNAHCLpuG/N/z91dlgbFIP1P1eRJQ2+8fQ/sbMjUdOU8j/ZV3yl4MzuP58w+pH+oPA/M9l/pZiH9z8li6/Slhb0P0jXOP6hC/g/eHSukqoa6j+dWJU93djEP4C2GyQav8G/oOfTVAfuqD9kjJzKX+vBv1Uc96DmF6I/Byw02MrLyT9Z18uYhLDVPwOn7CfNYtU/huW1Z3Ky4D8NXoPDS/zzPyyPqswP4fs/7yWd2PyZ/z+fTPz4rDkAQI18V1Zrk/w/bGph2v/ZAUButAI3uk4BQLozhAK5dgNAH1FvA2pBA0COfeScs1r0P1xBMSifVek/fWlblzhU6j/aaiBI6tHzP2Qv7V0ro/s/TP3DBrnF+D+FG57NJuD4Pwzbr654Rfg/6Yt6A39b9z9UR6v+Ry/7P413XNRVrAFA35lhdXPx+z9h0FF3SCUAQJAliXuCfARAeLhiHhGwBUAo04Q3D2oGQEXvBsHthQtAz0AYntPWCEDjsk11fWYJQIe8YKlauA1A55MtGNrEEEA+wvgeTlgQQBu+9P7lIBBAm91WoWRfDUA92Gtevs0JQIlseHLtxQRAoavvkVeOBkBwbiK5GBgFQKWMLmE88QdA/U8uaNDVB0APa3keeSoJQB9M+JN6ywpA9Xh1cCugB0BFMxiIubENQD0B50LLZxBAZGFY0t2pEECfbUf/YVoTQIxXg7aNQxRAOCDcMQ2nFUBMEfyAFQQXQEgp/vNufBZAPWx6kBQ7GUDMDQ4fxN0YQP1pW4l8vhhAjRFOYtelGEAZ4b+6rBUXQEmsGZrZhBNAuV+dl8YWFkCLoDXmXeEUQH8lI+9RQxVAN65pCD7BFkDlH4bff40WQF+BHtsUfhVAHX9wkSRWF0ANgZgPkBoXQN1nOrh2SxhAa7pyke2CGUDjvDj8ihAZQAzG2hNCaxhAm9gaGdyGGEA8uw9Bf/wZQEgyhFKhiBpAzTXY9iZ0GUDdcnHD9c8aQJ0KVvf6phtAhOm5rtspHEBlIa5zvQUaQA32wIxDPBpAETNRXhuAGEAFPDbv1eYVQOfAot2r4RRAe7CXPrVRFUBlWDjR58YUQEjn6KpdXRRAKSST1g0SFECyCRvLBdgUQDNBPfm77BNAfZiSY7TzEkANmLLCoHITQLF2tNblSBVAwokM9C0+E0DZH9x07MYSQN4BhGInNxVAPJsUeldaFkALjf5AALMWQE/DnZGgnhZAeSTfJuCfF0AU6WYRHY8WQDGFw6eVmxZAiEEaxLWfF0CNHFfQ6ZsYQMMKIg7muxlAUYrvwN8MGkD5AMOzRsoYQERDbfIv9RlAF0L4bWBaGkDllHtTqlEaQPEqBebSLBpAMTN+P1NYGkCt8nn4uiIcQLEMgwvW3x1AeACegWAGHEA96Nel3SYfQCttJRsU+h1AaMprQE5cHUCjg/3vXpAcQAMJWfi9OxtAFTvzDQMjHEC1/pxr1UIcQBt9T4q3IBxAx69/uuO7G0C3iSaHWIIcQBvxhhBWcBxA2Nk5wzLVHUBJP26tmFsdQAvDfV9EZBxApUyX2YY+G0AP+SWNBnMaQE3/7f2QqRxA79tgZCklHUA3cw33tgUdQDeLCQXwgBtAudGe4lBAHkBBHyThLZEeQIU1YoeIsB5AtDIwhevmH0A1n71TdAMdQC0g1hU1JRtAjH0cg1KvG0BzHtd28HIeQDMpnEwsaR5ANa+0SjJoIUD9jPV7KRghQBg8t6rbmCBAeste4oRrIECb58uh5SMgQM+XPzn/vB9AkoE8zz4PIEBfdS8H2WkgQJhVI5ozcSBAiAQcXZEEH0DGqGo3cXwgQMcmdr2Q5SBAsXBdiAhiIUA4U2yR1PchQMNf3PcwRCNA3FKT6oREI0CT+iTHOWsjQEmQ9yfFuSJALXw6gnXDIkA/n+p5u8wiQB8UFb71GiNA2+MyobTAI0B2QOv0/HAiQKLI/YiBHSJAVeRpt9NMIkBHncH0kzIiQHnF1RnhjiJATOk1fmTUIkDBrrOxrKsjQB1L5SXCsSNAzD2jcGKfI0C11tg9ApsjQMMk1Q9CJSRAi8VnUXnFJUAoFij63FYmQHsTmPBSuCVAIV2Y/CrsJkCJmbomXQ4nQAi6t4OKPyhALyo/v09JKECzdZ1QIeYoQNcw+BAb4ylAXbge/ZoWKUCTXcQ4rW0pQNVtTeCSiShAV/BALDErKEAxQWmXbTYoQETj90PR2CdATVxGVuyeJ0Ax25qGxFAoQPjJ9ronIyhA4K1T2ovRKEA/cIvd3sEoQKQjdWIzDyhAmY6qY7ASKEBtAQfVSCYnQJf1yoR3jidAzV7e1PECJ0DbB80em0UnQPwgpJdeYSdA52CRJxITJ0B98qWCk5YnQJtG6I0WfSdAb3xHv/YBKEC7ecrUyionQPUYiO0rLCdAnRVQxYfxJ0DHv07qQBsoQKt+EArCXidAJ/Ta5OW7J0AUECscscEnQKXS5g7GwydAG6DbNPP+JkAJWChkwPcmQNmQrdR/nSZADdshl/NtJkDzrtizRVMlQGHlrTyf6SRAGM2KSRlmJUC6LTPVB0AlQP5GnqxFciRA7PE2G1nIJEA29cHjZJQkQIP/TgidUiVA0HH+JFj8JEDq74A5jPUkQFVkbCASbyVAgc8OoQiRJEB/NqSceGYkQMOEkC6L5iNARlK5DRC1JEC2D1j1T7MkQOmDbHr16iNAZc9+c7G4I0DWVW2KVH8jQEn0uDzH4yNAAxUzHeA/I0DSnNrwjSoiQIElg6+3GSFA2R73sDI9IEAl7QyiFEsfQBuLUELriCBAt5eypio7IUCHxtsaJ48iQG/spX9iCyJA+6V5Lk6yIUDKUNI4jX0hQK1RLetdjCJA6u6jdb/IIkDvUA281YQiQCsNjlZxkSJAS9jNMSPQIkATzF5sMXciQJNhvoETlCJAMoQMWdNDIkDSGv55eecjQK8mvdIaDCRAPY1qeKWLJED72I+HDz0jQGezulXHgSRAZ2n2HUwvJUCvarrBro8kQByj2FVPdSRA3Y+bQpnYJUDRDuhjQe8lQM0BwhN7NiVAkwI1Q4RTJUAJ78XL17MkQEtCcf0scSRAequjochjJEC1Yal9RCgkQIeK3G51qSRACXWwWla3JUAt899WX9slQMkJ3u575yVALyediZxKJkAPvsxDOfYlQBixeGE8mSVA+AJ6FC4WJkC15UBHjrYmQCB+IlF1piZASXIpv3P/JkDg+x9quWAnQFlw9eejWydAp4o7eY2AJ0Crr6EB/fYmQJzESxcIOidAwNBBb0x4J0BFMxr9obInQN16PokcBShA86ZF0k7AJ0AXvlbg1LYoQDiiXvfkJShAHM4h+9LnJ0CH1ERxFMMnQCyAYt02sihAR9lZnxYbKEAXCy2Quo0nQITCEl4zeyZAa+8F7AWrJkAsWCvjubwmQKBlLKQzpCdABR/K2sQrKEDkZ9tAS68oQLX/vtu+gihAuw4pD+VYKEB/2jU+iXEnQFWBQq/H/iZAe90PsdI/J0BL0uM0xFMnQPxH2FliOihAmey+upkyKECDrT6OoQUpQFka8dscTClACGegLLaLKUCddHQ8hFUpQNh9cEaE+ShANT/viJL8KEBB49O8FxopQMzQAOWmailA5/1UQqBEKUCYZdumjbEoQP041cBuLClAq6TuXW6mKUBrRg+DYbMpQOhY3VinoylAjIF8yS+5KUD9liSC9wwqQP26sLFTnipApTihTvDrKUC9SnAf+FcpQIhYbHQUbilAQ1Q4AS8mKkC9z/jhl4YpQId297Q85ShA6XvkYh1YKEDPM+gFAkIoQN+fsGAXwSdAaZ64vp5vJ0BPw+JygMAmQBmoXtJRwCdAlCmFbWbOJkBNOJZfaYAnQMW/G/7RKihAy7imzZDwJ0CIUFdEVgcpQAlA9/q+ZChABLWt+HVTKUA5xwlgSYgqQOysYJEgICpAuU1IDZLHKEDQbxgz8wopQMkMo9iG2ilA83FY1mSIKkB/TwD+87QqQMTRZXVEnitA81lYWGxkKkDrcq3S5L4pQMFEoUPxeihAS17inw+QKEAEoSHldhQoQBBaV0h8/CdAq7NEeGZkKEBgSwgPLbAnQFduJnf82SdAtMOnODq8J0A1H74244smQOclx99CNSdAG3Ye4qYPKEAVSNP2j2snQOA69/WdcidAdw7o52eiJkBtYnUoAXknQF2Bslb/0SdAUPf3L17CJ0CFoySc1B4nQFkaEU3bNyZA5ci0W5HmJkA/jMwXHp8mQFcoOFtdFidAVy2Z/VK7JkD5bV2WgD4oQCX/ei3yISdAsLGJchgrJkAT51yfnJImQJ1LG55KjydA+TNalKX2J0CV7iebCUgoQC/9NpOMjihAbzuZp2rsJ0B1uAOyZWwnQE9gAAeMWSdAGVT6LzXIJ0DbpT/iRlAoQGRs8PZ9+CdAo7x11SboJ0DnLaJdPWsoQEQLFveGJChA/OlFhoU8J0DEZYCtck0nQGW4u7kYvihAdUnaKrFuJ0DY/hB45Y0mQOPusjgQgyZAtSYdNXc7J0ALUPo2RoYnQJ+uqGnXIihAHwvs0Wg6KECz9N03I+YnQG9u2dG9uydAWKJqCrFCJ0BfGhWG1Y8nQIzO0Ba87SdA/N0ZuMD2J0AsGfZ9gCcoQF3LjXOHJClAGY1iNEYNKkBE0q+k/fYpQFPWtMbOqSlAzBBf92wqKUBI+hWgKqoqQO/lyphkASpACfBDcRpQKUBt1ZkHpUEpQH2mzSJGsSlAAea7N8qJKUB7UvdgWS0qQMsxlgqj+ihAaS+e9oSjKUDQqpUngzMpQLd6JmkF5ChA88ynNo71J0Brl9ELLAYoQMTg1/HMECdAebRHszbaJ0DMdhAy30ooQImNcHjABilAwzSCL7jQKUAFUT865e0pQGjg/rdsBipADywVOS8uKUDcKAzg4WApQIxKLU8szChA7yyXVzJ6KEC/ASO2BO0oQF1u7kjvgilAFKgzz+J0KUB7z8uDSCspQPN4KeRIwihAVNX3RFgcKUC/HYcUCrkpQCEqHnuwBSpAff8+W3NRKUC9asP9bpMpQGhpI0VQ/ClAIfnlZxsrKkBfVb0jKLUqQEm/PqTCrCpA3UTi8ZC1KUApn7KKh6YpQAXNuwJV2ylAcFdfN3YBKUD4r1Xfma4qQCWA/LuWWipA9/io7u9gK0BsEs/Bm+kqQI0WRN6zWCtAiAY7vJSbK0BF3QfsFj0sQFdk1mH3UCxAP+1LtvygLUA5llfDTBAtQKM+0BdJxyxAhAKk6CtlLEAPGqNbo+wsQMlfoy4MlCxAn/IHvN6xK0DAtPanTrIrQGOUmFC+9ipA2/kljpFEK0AICFYyrKUqQDhG0DBihSpAnYXSDSIIKkDA9SL/mboqQP2RPQ1HfipAEYch+V7IKkB4DJoYB2QqQEt1jGcf4SpAscdR7i4vK0CNvoJpQOkqQByf+kVrpSpAm00eiZ0WK0CclGNOJgYrQDxGmgp5GStAeFYbDkSHK0BnT4KX6h4rQInCMV7KDyxAe+F15nCZLEDhrx5SREssQOQNmoYHFyxABN83cw9ZLEA9XIImEO8rQKWMdtPedCtAeAcLp1zRKkDPinQ0uMwpQCE0Kk0Z2ipAodRtECJ0KkAYEOzF+0EqQFgl3gqRpCpAAZdqIYj7KkCHRkf/a6UqQGTME8908ipAf4Yxu1VNKkDnMKx2+2EpQNWvy3OO2ihAS9PyrXtgJ0CNN6S3gZknQD/8QEWyzCZASYQlgTPvJkClkPYFAM4lQMrVrnkjnSRA2dKFZm//I0A7y28LsZUjQLM1Vw4u6iNA2Rc5yaQOI0DBPYXuq7QkQE7H8Uq0NCRAHOspb/DUJEBV62ah5KAkQGPNczWQcSNA188nfEWwIkDFzXoOn9khQKzRt3jbICFAt6RDunMKIED17xxfC4QgQB2ELW8Y/x5AXSCJOcl6HUAFMgpWyIMdQPzCjQY5KB9AK1WC0HDcHECVOEEB0E4eQLO9YAgZeR9A9Xu5Aob7H0Biw2/xGwghQG4wjbx7mSFAWVFwspfDIEAxN2BajwggQH3zVZGtsCBA+QqwQeLmH0Axzq845ysgQLMKADS9TSFAK+UBg6yDIUCbKXM4NUYgQG8cYcSmciFA/FExbYU7IUAH0bHoaJchQF1EHtgZ4CFAWgtg+TZoIUCkAMtek8ohQIdkQ+Y3byJAJIrvxM4nIkCwKpkOCNUhQGN5lpGCJiNAScMahZXxIkBhBC+z6MciQCuHosenFSNAdYak2WBvIkCM6/2bNrMjQK3yL+SihCNA0cb9bodkI0AV/NUfa+EiQCTkJ9xLGSFAVIhfF4m3IEDJdUBNy68gQBfu4ABaASFA59+AfoK7IEDEDF15Tj8gQMyQaJMS8iBA/cLaCwxdIUDVjIetyS0hQLEF9NU40iBAFkHBuW2hIEA3Kkl9bQkgQJRqNg6HPB5A8yljTLCMHUCnNjpdZOUeQOKTyjRllyBAUN3T5xuFIEB0k365pkUgQLCZjtylCCFA6Pd0cNjoIED1xDzJukohQG6W+7u1BCNAScQNe5uwIkAq8TiCJtkhQCzZJdzNeSFAshIl3u2vIEABvhFvMlEhQFYKWfxwSyBAE+BlnF8yH0Cb2MjRd08dQBS84W46pxxA96Pg0wJkG0A/upotl5kcQGH9v+5FRhtAIHIqNI7VGEAALq0k9OwYQFzHNR0xSRdAa3MBW/A8FkCLGPFJ0zEVQDTpose/uBVAnae+XiVvF0A94QSDdKUVQJoN6mFK3xNAWWo0DT0FFEBP1V+wGzoUQI1X9ioDZhRAL/iqXj+dFEBwo8Si+2EWQIf3OYfAkBRAhOlG15VjFEBSjG6qGB4VQBZq6OwWiRRAz8jXnZ5EFUAlrH+NVUkXQBPkd82coxhANxYV8sSGGUCDYfDNi5YcQGyB+3G1qBxApT5bHM83G0APq2p3rCwcQLxCXzDwHhxAd+KCyvRNHUBZ//pHXEUcQAx0Lh/NUB1AlIO1ZcyPHECdiTChVkQeQPT0HZz+iB9AYfDlnYjTHUDDQzlsgh8fQGFggNOcUSBAxhIr7thSIECjxVORGPIgQKMF4VsN9SBAM5c2sx5eIUAndP8vTi0iQAva+dhxxiBAz4mUWCsFIUBcFMyKEUUhQNRl8AqC8yBAHDtV/w2sH0DVFINUMI0hQAsSe9uNiSFAL3hNMbT/IEB47BUTzR8gQC3PBv1rXh9AK/m3SwEPIEAcXUMuDYcfQIh/jbLj1iBAYN064nBDIEDvaNWgLF8hQGEtBld09CFA7Nbbo1eFIUD5L+/k9PcgQMumo2HgZyJANiLRTcOhIUBGJ/Blr9EgQMcrMLnsoh5ABDxg+ytHIEBRGZxgFIcgQCKec0yxGyFAf/UwkqnyIEBAYFiq/G8hQIFbv6FuwiFAFbGkPnFbIkAVvDUw21ciQOqtoH25eyNAV14QAs03JEA0nh2t+1IkQKvuIredQyNAhQSYZSMVJEAE2CSPJ5wkQL5ELgBLJiNAPQOKJqaJIkBOcfoc0fkiQHp0IX8oACJA0vgTl6LmIkCxsjuF8WMiQPEPK/sjjSJA+lXrmZAgI0CGn6lH+zQiQBY0Tnn0KyJANt7rIJo+IUDEGpSohjQhQJeXy0ZsUyFA3PTemjRMIUDDGEmGxi4hQHzZl49nwiBApEnPZSB8IUAnjA4xhsIhQIXtzhyfFCJAWPFLAHHdIkB/LAuAYdAiQHsag2OM2iJAoCJnI9bSIkBqXOsi8GIjQB24yi5dByNAvWbQxe9IIkCZvyAjzQIiQPvuxiuWsyJASi2KYIipIkAXHQy0HzUiQHb5/lj3DiJAVsgpPlHuIkAKG9pimDAjQA3F0rjBliNAKXm7CTemIkC5vdODPKkhQHMaU7a+zyFAKBuM3FCuIEBZqCInTQkhQMhLetXcqiBAXgschVohIkA0hC848Q8iQOMTKyZWlSJAq11mWPJGI0DP3R99D2AjQENzw85P2yJAvz5Ax8ctI0B5cwyPlC4jQAFqv50Z9yRAcBepzk0mJEC+tLk3REckQI/vfzce1CRAm2KK2iIgJUD0O8zz56okQNekh5QlmyRAn7CWEdWTI0BTlJChBQkjQGEDz9ATPSJAEv8NbI1XI0Cb6m7LlBMjQLAqhce96iJARiKjQyWAJEB4O6bbMp4jQJMcMzdiIyNA0jKmyfcVI0D12vptgc4jQLY3FB9CuSRARWPilvUCJEAb8VnMSakjQAe4RtVaWSNAB6dkgKKFIkCry++c0AoiQKr2DNjmuyFALWb8xffCIUB1T3tTmgEhQHjTO8PEsCBA54vz8PjDIEChbXK7eK0gQB+lLqLYxyBA5SvjUypQIUBCnLOLhacgQIlvVjpJLSBAHAo3sVS9IEAg2AsO5Z4hQGHidjzr1iFA5/4nlgfEIUA3wbUad7IhQL9xBGJgpiFAkZcq1/4/IkA6jnQsj5UhQCMOuS8JYyBAIeHdqDgXIUCA50SSBhkhQG++qks83iFAOw0ymC55IkD4zzB92PYhQJEgIb37ByFAVTN+EnIDIUCR0hTnAH8gQD+5q+O8PSBAEDppwL0aHUCEE/eh8xoeQGD6xXoc8RtAhaeaDma6HUC0KtabZ/wcQMfivLNwJR5A4RyTxTXeHUDNu9EpEwseQDUwBvkO3htAEApAG7SrHEBsF69xjLUcQAWsW49DvBxA7Y13xBN2HEAFfx6iS3QZQKumzFYOLxhACW1gSbpNGEAp3Y4UR68YQATGwJyAVxpA1TmpiBzjHEAkfCl5lJcdQFHmY8yUsRtAa7s0QAl3HkDe4YG3OnIgQPQF3q3KzCBAC1VNrKz4IUCCoi6a/LAhQP2WnA6KAyFA56BSvOHCIUDhcrtNhqchQJO+oPOVRCFAT13d3FxhIUDJjQLkTDEiQBvjmiASIiJA6XJZWm7KIUDLGNbw/9shQGPMVXQlLCFA/D8N33JvIEAsR1SYWiwgQODkjXh0JB9Afc01yOI6HkBcXDz6aAodQLifuWnX8x1AqAeCneMrHEDP8oTFEd4cQEi95gT5XB1AeAXoL3RSH0BtOkF+wE4fQH18qRgnoB1ACHWvgTLzHEBjBYDXZoEaQFBfI0xXgRlAOaSHEY9jGEB9CT+B/LcaQOFn7AJtNxpA+VnUSY4GGEBvJauthmUXQKjt2V3VThVAyQz56nuVFEC/4s+bg6MUQB02XgT5CxdA3+s4hWlDFkAdPksjXY4XQGtqVTvLzhdAhUonoMhdGECwsyemn7oWQPxNWUowIxhAI/dG1FMzF0DMxlszsZwWQFusILLjLBhAXDpJFHmoGUDox1GkoJYYQISUxYI5rRdA7e0Zi2WsFkChhB/2TwgYQJPyUYQz4BdAV/gn7vXhFkBowa7LtisWQGG/Eqz3RBVAK1efkbVVFUA4akOGUAsWQCeG3Lk5fhZAR3qNJqrFFkDUzr89GsEWQOhzaRxp/xZAJUMTvqiMFkAdjKLPPr8VQJNWUms3zRRARrrBqWmTE0DhSn8PCFMUQAtRv22GrBVAh2wG4NkLFUDCFhz9nIkSQDfgJ38WnhJAR89D9oH4EUAV/8++yuAUQG9ekQcmNRVAL12dthd9FEBNyyucCUQVQBmescKzZxNAjfZAZEygEkBJi8loMzISQGZaPCc9VRJAz0X+iQ1DFEA5K9xdNKEUQHvEnaDyUxVABwKWdmREE0DqKqUbJbsTQPmkbP7ACBRAec3QJTbUE0ABIsMMNScUQBvkLnXWxBRAHQHRd/+eE0DRdCR/4pcUQHMmXi+rexJAr4CpT2IhE0A/ZX+0blsPQP8GRDYfBw9AvW9L8lTXEUDNgqU9Fj8TQC6FxCvvoBNAhceNj6OhE0BzpJtW6TsSQDQLfN5LmhZAuTvVafx9GEBU5ZKK2kwXQGzxcuf4BRhAlOZIUcyjF0BLGcxuTJIWQGy/SAehDhdAawU5VratGEDhbazvAiMYQGigHxznIBtAy+VuZXs+GkBM6f4jr+wYQJvni6YnDBhA7x+ZQC13FECDfnEB3toTQDs9bRSevRNAGWj2mEVVFUDRzt29lJsXQBs3wRCsJBhAC/PreT9UGUC8caM/mnoYQDkhMaQv7RlASX7Ng4oPG0A5g/Pjb1IaQJfZjGuxhhxAx6Qo5GirGkAUcbz3pNsbQG3XbgLL6h1Aa0GKxuzbHEAtm9bzOQIbQNBf8JEiPRtAu9W/vDORG0AwCsozjvsaQDdTy6vxqRxASU8aUFHBG0BtXR9lwCccQMiqKqkn9RlA8XbENFZvG0CP4UMOICIbQFVnTwBn6htAiIVdQQevHEBvaazDKoEdQPDlLMyxhB1A48W3jxLMHUAVx9nfE9keQAchdOqMuR9AeSia45qEIEDXQVDIeEAgQG32LHXvziBAOMdtnFBYIUBkofpD7dsgQNnuFeeY0iFAZ/n9X+MIIkAfx+JBpIohQLSFerj9ZiFArYCd0VItIkBetVsaAZ4hQCcj0LBVRiJApUwVQL74IUAtU/NYvIshQMv8vrwynyJAN0YHJGF1IkBHrKou3MMjQLPzcZRhaSNAOGZ2gLLQIkAngk5lZfchQDahSQ88WyFAkK7tfen9IEAzWuFSTdEgQA2hBc8u1SFA8RT1gZ3dIUAZmQb9K/MhQGRpA15kWyJAD5RZAWn6IUAbhfGCy6IhQDZfcSTmfSJAgbTpuJPKIUC7WrE51DQiQHUgTtgEUyJA7LvYpNg1I0At1oc2R/kiQMyxGAOYQyNAP8ZMBYohI0BL5NWOcc8iQMLVzYPLyyJAuyRinv+OIkDZDxdkhtwiQDIWRgV8FCNAG4N7AdoLI0ANnMDKePQiQOM/RLKJnCJAj0Gzn7ltIUBhYfpwmMghQLJY0qoEdyBAa92dlbJGIUB3ZKHDQBQiQBt44ybOCSBAKSiC4E2JHkDPsR72rEcdQHF5th6nLB5ArWE2Kxh7IEB9ZJm037YgQINimSM/KiBAwn0L9txDIEBNp6GqQccgQB1gJtqDdyFAjHFdb6y9IUBB0viEitshQDXNRayX1iBA93t6XUGtIEBh+rZjnocgQKewP4Ruzh9AWWxWmqKQH0CsKWjq0QUfQBfY4lYjFyBANYAfQTGGIEBV0K+GxmwgQG9e2bnsYx9AZRqKVw/1H0Dnr0690BchQLpEzP5jTCJA5gAM1NY6IkBxAV6s82QjQBSAgOkINCNAqVIYA3TVIkD/UGhoxHgjQK/m3P0zmSNABT+kXMifIkDJhkKSL/ohQE37FxfJhCFAqXwEbm8cIEBJxmvB9H0gQDkZzKDsgSFAWjz/i6n8IUAW0g4zX64iQItsjqI5/yJAOecaSopDIkAzQU/prX4iQKXkYi+0dSRA50pbY55MJUDeez0S1IIkQGWogwmsnSRAC2pDWzXrJEA17rAIZXglQLFnA2eDaSVAodjgzpJxJUAt3MYMocskQDeYHZCdjSRA3AHU9lAFJEBMuq5urFQkQD4+Cgl+OCRAH5wl22VuJUBRoTPlKYYkQMhxWYOe8yVA2b1JijGRJkDwQccvcdMlQIehnCrcRidAr2l4rnbBJkDzzb6DkFknQBninDy8QSZAx0NrGkzwJUDQzzjsuxMmQGXH28rfhiZAaxePCX4QJkARR4AzgTolQFEa84ou/CRApulhW1zwJEDpW87xfHUlQLsEP/aWfyZA4GAY/WMmJ0B9PX5AQhMoQFuWqdLLYyhAYXGFdqSZKEBhbqxaXMwoQCBjhy7+aShAs8BrJqXeJ0C/hYrlNwsnQImaKcU85CZAUBJa8kBvJkAY7QDp9oYmQH2l54ZTVSZAAX594SmiJkAcgccyZ54lQIMdQMQiKiZAEVRsjOU7JkBfypHYRGEmQFmZCoCRfSZAWI48bVZ8JkBYjTrovSQmQOwojpsXwyZA3drbNawQJkCBs2r921YmQA0W34uLvyZAc4QHGz3LJkDxL5REnicmQG8hBrUR6CZAqQTDj41aJ0DjhnypGEsnQN9f7Nsb/CdATGKqiwAIKED1JybQevwnQLhEJcWECChA1IeffwIwKEClW4tXrVgoQIxBJ8qEAyhA9N93gNBUJ0A17EbA0FkmQOjCUFGsxiVAmchaxIc1JkCgUZucBfElQCu7pRqHyyRAA6vOIZluJUDQIrkUpbMkQK7k9cblRSVAf96IjCxcJUDHaxM56W4mQI+uJM6NiyZAoWbeQ828J0BM0axfmb0oQLn3U5OlSyhAXXjRbiSnJ0Cx1NRkCjsoQC89tRp4MyhA/Cfjm8HfKEBoDQ0nG1UqQMdU/PEyMCpAQaI7+mQeKkB//koPX40qQJkQS068jipAWXfeV6azLEARnYg5asYsQD0jfngRXSxAad+PlGRoLEBD2o4zRMssQDCBodtElSxAyUMVFalrLEAXtflUAp4rQDiIqY5lCy1AAwaIvQ+JLEDvN6i+FxgtQJ92vLOyWCtAwWOH4ZvvKkDVmTTbSigrQOQtEKVcFCxA6N22v2jlK0DNbmFhX3QsQG0ikROlYyxAEMvdQk9hLEAZcQBKNNIrQHiQEwU4TCtASEkxp547K0DUz3RjSHwrQMyR3AP17CtAV6f4VZ3jK0B09SiZs4ErQMB2Oq7KyStA4dnUdD1TK0AYFyefNlUrQNP3LZ6xTytA9dtzFxLZK0D162LWxZUrQOSxFD5lvixAQRP3isK8LEAccYtZMqwtQE8aha5jcC1A+PmTXRfdLEC/QbpA+0ksQFMYmwFW+CtAxHbn6MIlLECUC7NfClsrQBs033xCCi1Aa8wV5KSALEDR0JB67HItQHF38Z3vKC1AYAWtcY7PLEDrdwaDgxktQFlsTbaNFC1AhDyNi9xlLUCE44tp8t4sQAw/rjTGLi1A10t9F6obLUANj/WsRAQtQAMO5Khh4y5A3FjTIJFhL0DgMJWrnOEuQOi5iA8zOC9AUEQ756NDL0B5ipkw3gkvQL8vKjPQ8S5AuLdBujj/L0AwFEtUhNUvQOFPl/KntS9AETGLID0/MEA+wCWYl5wwQJ1ZDdhGgjBAB5HYBYWBMEACSjtNOAExQMtlywKF1TBAhecsU+5HMUCCTGwzVQQyQLPkTegNyzFAw8xDYhDgMUBjWSsgyzwyQDkUbohaWjJAx3sM3kkOMkC020SdDvUxQMlgBLWpTDFANZHIRrUhMUBKUTLr0aoxQAN00w9TqTFAxyJZzYTCMUBMzQnQNSwyQPf2sXH+ijJA5ZyHpA3TMkDpAe4CVCUzQGuF2PIslDJA8/yM9MlXM0CrEXcvpEAzQPzqZaxXWjNAP4x/WpNtM0Cs7volOqczQMOcUgn50zNAFY2PueJ5M0BrA1soyiszQPHeNEw7EDNArJdHb48jM0B9u2MZHiYzQIt9Ee+M9TJANQ9O0u31MkB5eZST8NYyQFHhS0kX9DJA1txhy9rzMkBPXWIblcwyQHrsi9LfFjNAo+H3FPIdM0DvFHct4/gyQF3J0hnVkzJAs/KnSOHzMkAbwNHxKQgzQP4WfKB1kzJAnJaE23sOMkBMilCqFLgyQIxU04EaSjJAi+O5BGw7MkDs3ypcl5YyQMqnkw/q6zJAaM74C9W5MkCJQ8yjT9AyQEsi3SplKTJA7R5L0mHSMkDct53DkuwyQJFTpeO5sTJAd28wo6fPMkAFJggt0hAyQF8c4rCdGjJA72nu+xntMUBks/IWw8IxQCWCSs967DFALogn9CMrMkDnvIByZ7gxQIr7ztD7vzFA39H/3DQsMUB3ShLuhDUxQF2ZYQT7KTFAxDJASGCzMUC5HYMcwyUxQF/jLQk0NzFAnwnv3QEjMUChjhyAl4gxQCUCHPuaPzFApdBd9IulMUC5MFcg0bgxQH+ZrRFyeDFAb9Bma/CmMUDbUAc1An8xQGJPVMFtQzFAOzmdWhM8MUATcjmdy/IxQK2R/W3mETJAK2idQ8UcMkBnluZ7/OsxQCP2Czrf/TFApxNFp73wMUBRNiDF2Q4yQPFTa82+UzFAeREzm2brMEAc1tDie6YwQEXo7v0XWTBAeiYuUv6HMED9/F6gOswwQOXBF+SwAzFAghLdmSlfMUAWiNE4oCkxQB973hkl9DBAuXEtwN7JMEC9xiSizgkxQKNknBJRADFAiYtZ/uzGMEBNcCFijfAwQEZ3gVrqrDBAeJK2HOkEMUDQEKMEjN4wQEgzsYBkBjFAFYyGmLVTMUDHyRJifWMxQHNyjJUEXTFACX++fQlGMUC7yLRqSnsxQJuDBRH+TzFAdzSOUEnxMEBJVgbOHO8wQE+/fXUHgjBAruiQLPMEMEANzF3h/MEvQMUTasfQfy5A/F5jTqRcLkCXuPEvd68tQCy/lN05Jy5AFyNou7L5LkAZgcFT+c4uQCD9PWaZnS9ApgT/kEYjMEBagPL7MQYwQEvo32Nl2S9AEQWklAHHL0DUDiE+qIowQCHn//GmhDBA44k7r+41MEDhD3HA9s0wQP03dOcN3TBAPojU4abXMEChmtLPap4wQKV5LYMg5i9AZ9lBcURfL0B/nrmxc/UuQBbL9EjaKzBACq241KdGMEBA3HHDwzkwQN9vuHteHTBA0ZDaoeDPL0A5Y+7FcUcvQPgZRW2gvS1AZVFDxSNrLUClmwlLTEQuQOeeheC+9C1A2X0uwH1BL0DvdwDqVPQuQJmedCFVlS9AnoIsJ9BGMECoc0SxTo0wQC9U7amdLjBAt6UfWTO+L0DUtVbAl4cvQDXLtnXr9y9Akz6sEpsAMECTDMvYIysvQPMx85N1aS9Abhywp7oNMEDMo1c8BPAvQC2eUIx/sC5APwZLixsMLkAZHk+NfxcuQOm1Qq5vhC5An8WxxoxkLkBzP+xB1C4uQA1iShUjDC9ARVno7rqMLkA9569VnFcuQG3Xds2LCy9AyQ2d6/h0MECN075TIdAwQMlZ4ZmfwzBAcflOD90YMED7QnEl2b0vQC1HiRtmTDBAiu10BDkkMECw0dBjzQ4wQMgjol+vfy9ABWD39M6hLkCgmknwWX8uQEk9i06avi5ALTFfup0wLUAvGXsqML4sQPQ0Qp4KFS1AHF6ujpySLEAtdVMbPa0sQPio+dSf9ixAowD6YzqBLUAd765Zf4MuQJG52Ht/Xy5ADKP0kW0sL0ApAi43lTYuQO8iHTLF5y1Ad/uuILeILUDQpRQhihctQIBCwfU2xixAT0BP8Dc8LkDs0uhz9WktQK1u+4GJOC1A7xXeoqsELkDnldGuqqAtQP3wYWJvVy1AhEZb7IyxLUC9Cmkao7svQGclqe5aCTBAybDWMcbZMEBaJ4sx0wYxQMNJVCnT8jBAjs/t/BBNMUAZUcJNqOkwQAf+XirNlzBARy/HPuYMMEAPknA5aj8wQBgweZm4oDBApmqOHGWCMECtIqJwQNQwQMa9oyRZjzBAZdCw6udaMEB747TFkyEwQEW3yUPbXDBA/wizOVHVL0BzZYJz+VwvQIRWl7xzYS9Ajy19ohg9L0AxwQ4yAVcvQLtK+vaC3C5A3Wo9BCoGMECPLqTUe1IvQIFka12eOjBA28zYCm9gMEDhjCtt/VowQCmAy/NOijBAuxBypmpxMECcD+sDSAYwQEdzQIzLDjBAcx1Der8eMECcBbHAooovQJHsRepbyy9Aj7S3hjZaL0AAEgKOb3kvQHzCWZ71XjBAYes/ch07MEBLuu4yDnowQAXu9RgfgzBAhy+4uzlUMECG2E9NFU4wQIdr5xh/CjFAv1Ia70DnMECtR4DRu+gwQIu6K6GIczBAyb2fQM94MEB6v2MbZCswQG0A2DOTnjBAuwRvGlt9MUDircUldogxQLlVRps3LzJAzWJZ0Y4+MkCiGj3pUdIxQAKWWbeuszFA1LiFmynIMUA5bQCG3FEyQD+KPFJZpDJAT0P9tqXzMkALca4ILdkyQKepNhREqzJAnuv20i/JMkAGVRwgT9wyQDWcXcoe5zJA/0LQqrr0MkDIk/1haNwyQBZdU/JWDzNAcGWkyXlLM0Cfix698UkzQKvbyO6ghTNAq8/MUXRqM0AyhgMAbWczQPGfmthPTjNAeTyKpZ3SM0CqRy2+n6wzQEMF/NQrfzNA/91EmkzqM0DGe3nsstEzQJsGCVOfnTNAPjN59cQdM0BHW5xr4e8yQJrUTGpX8TJAa+9rl/3rMkDKtQ9+qu4yQO3Aai+1wzJAea+O4sVgMkAxPZKR+BUzQM2CupWltzJAEQS2pWXCMkDaeJWYy6MyQJFzeRNc0zFAYpAhPvIwMkAW++f9zBoyQGYbiw6PmzJAGyu21NdzMkCMU8j08T4yQMMGxbH/yTFAS/vP8yGyMUDZqwTxmPUxQHcl6+qHpzFANzegMi2cMUAthAxtrKUxQPgjiUtfRjFAiKwUuoBDMUAnPB7NyDExQJUXJbDNkjFAh65xKBkoMkB+aWQep8YxQPKwfgU4iTFAWedlEwfsMEC1Mladby0xQM7TWU1rdjFAnVBV5z3WMUC7DPS3qGAxQIw1GSPIaDFANzPzQGjXMUC/+O+n7UAyQNb6UTS07DJAX7ZI6MbtMkA883KdKSIzQENBBfejNzNA2MxV6HIGM0CFcqHmPT0zQCcMVi8djzNAXBbuTU1TM0AewrlMoUozQAmcjKk0JDNAtrFhxq7eMkC72LDk0sYyQFVWIYKJrzJATcIq6e/wMkDlSJkvzy4zQD+6jS/BCzRAEZlTA4ZvM0BjvQ0b9sIzQEGUfdeR/TNADw+U2knYM0B72lE77eIzQCx7Zrh8mjNAab8SSYVXNEB+G2RG+h40QGhChGL0WzRABfB5WFHjNECy39lXvU81QAQuRJCtejVAbV+lTLGZNUDkToBnmCw2QCU72vPlJDZA0ZmTSKhJNkAQq1vQ5OI2QKyhGBGdrDZABYPcbRCRNkBArvDLGcg2QKcEaNOqgDZAFFBiyT65NkBxXMyWzII2QJvIdJKz5DVAr2BVXK+QNUCwE8luDLM1QIBDx97f7zVA9T9skMa7NUAjq6DLwnA1QLhP9/TLmDVAgnuxyZb1NEA91FlCvyg1QNjIYg/UaTVABY5ju+5FNUC91ZjXUv80QBJzn+Un8TRAp2it9uhxNECpeHhdsig0QNBMgdDGEzRAkazcuRANM0Cx/cvt9B0zQD77uoU8LTNAwxVC5NDVMkAZr0i1gpMyQCKm4pUwuDJAVfMYhKISMkDudmRv+gYyQH2QJAnM7TFAGx+9NCJxMkCVTxs/qt0yQEFO/ymFADJAylQb03gjMkBPXkZ4we4xQBVaCgRIGDFAw4SYc4p6MED8YtH8+CIwQFRQ+m58CjBAqWNeZwESMEChtZRcwcsvQB1fLuJnBTBAOfGdBNUuL0BR3anzZ5wvQB+jeEVvNDBA/w/aeaGLMEAYh2CCVe4wQMAdI1ys9jBA0YiGuGdZMUA7wXCoT+8wQN1gpfHNuzBAGoNnZwzMMEABadJxiuowQFpWueTNSjFAgjfTIn83MUCaH4JSl3AxQFhI4s0sPTFAP5/uPC2lMUCbVFqA1WUxQEcXDlhd1TFAX26x59uYMkClfq87TnUyQIHWT+wquTJAnPr5yUoHMkCfchSIiOExQFXmgmVKPzFA0U15Zzc3MUA3475DhMExQB5Fz0YznTFAwNcjBmJ9MUCNOWIkt0IxQHPDDnhZJTFAj/XggS46MUAbR360MaUxQJH8/6HMtTFAfYu0372wMUBHABm30UExQGCfOpf1MTFA6F4998LfMEBjBIkSQVowQJjNHokMSTBA+bG0nI6kL0Dkls0MLbkvQBOLWR8dMS9A8en7rc4zL0CAFOzm3/kvQKVdF3iXuC9AFl38ZwtUMED5mktOp0swQBVHnFH9zjBABsmUVVqIMECcBNZo7zYwQAtJ6rr3ojBAt6PZwh7GMED/uYqKSMEwQGJ7XcBX/zBABrBCqWt+MED3iveS9x0wQCXXraTAbDBAqTavv5duMEAlBAbu2gUwQBggv+3lVTBAe8UiDGbmL0B/P44IeNMvQB0ROe3aSS9ACVOEHcN3L0BGBzzOcC8wQAEqRUqj+zBAAlw80/uJMEBOQ8WqPKIwQNFHa7SiGDBA4n6lDCkhMECkMgz9ZKgvQI8eREylsC9AbJv1R046MEBcqd6jyzUvQPQULzL5Li9Aq7Genr1DL0AAgF93USEvQEvahIQKwy9A6fADYI4vL0ABcK3mGqkwQNWAFl+k4zBAh/MnB6EIMUAc4EC+lVQxQHf/P1oXGjFAoEtRkwISMUCzY/hbQvowQHktt5mJCDFA66PhPWERMUCfEKhTYdEwQOW3mhq71zBAGzJCa9+6MECxZEn9JukwQMdWeOYrnDBAap9jiBpXMEAYEWafci0wQNO9flCTHTBAJQy3kgQjMEA0sSDrI98uQB8BE3GMHC5AxPuJNj2oLUBrFhtWSY4sQE2qdjXO1SxAACd945cJLUD3T4rkahgtQN+pKldmyCxAbFaGGsrkLEDwUu35NqwsQABrM8NccCxA4eOXvJggLEAkRfZuj08sQPgh+rA+2SxAcFWdyvLLLECFFTrhtUMtQNnvAUzNTSxAvCcUSO2WLEBlgjCGC+UrQNM8eOpyBytAmdvjivnTKUBh3bbxiBgqQJ+Kd/6DgilAhaWbryJ6KUAsaqfLS38pQHvWuCDeASlAON0A2sxoKECwhsG8+2MoQDj+JJwZMilAA6tUFlAGK0BR42L1XyYrQGDyFwgbRCxAUbKznOdhLEA/+F4EJiwrQB2ACxY9ZSxAx2/KcWgULkD1gISrynotQGPc5iztky1ApY+Z15jILEDre8XeckwrQNzOy/pTTStAnCHMpC2zK0BIsZ4CksUrQF8N9Y/nqSpAY1gUyrCDK0CgI21i4cIqQNwepBuY2ypA/S48ZOP5KkC4s4l+w/YqQGkZAZujtSpA6CntvrlcKkDPltRiMXoqQBtOwPKDsytAbcwOtRu3LEDsmdKMq9osQPzn/qSmKS1AZ87RJrjQLEBZQo4rxAMtQJFSrqbMVi1AGYgOJcr2K0AnqqaWioArQOH+g+xzKStA/0/ZrAT0K0CPPGURYpMqQMBzHb3uQCpAPOvV6zQmKkDd/I81q4QqQKzI9C3oBCpAM9I5w3p7KUBw8TdtSmIqQE9Z1HFTbipA3N+TzwqyKkCMaFewpMQqQGjrMfqE7CtApWxOQ/k/KkB3JsB2KsEqQPOY3++6TSpA7d8I8zOWKkCsuTUTuLgpQMTx24Ux0SlALGeq7b1aKUCBoz7ltNEpQLd3drD7oCpAYWYdI4HhKUC5VWTkybMpQDOCsBLAKCpAFEcAv22TKkCwROITLDQqQFAa2aue5ilArQDZ0MHjKEDnkN6xQ50oQExFo3uC0ydA00AgOPGWKEAvBm+HR00pQLw42MQycyhAizrmy8NwKUCYsOudQ+koQAXFAEnyIylAyHovJ5U1JkCrd9jX2m0mQL+JoyX1pCZAm+AXNACIJ0CTEv2iDNEoQGPByaznhSlAR4UFWXiDKUAMFP+wNVkoQJNr07PnHShAfb7L45RcKEAF6QQGqG4oQLDSWED+2ChAOwFe+XwhKEBBhqCeNrUnQL3D2Wo42SdAHWULS7LcJkBj3PjEqc4mQC9oZcGtaCdAyPbG6GuRJ0BD6XBr7ZYnQIuC5N600ydAyQwPPnOVJ0C8MyP3aF4nQABzEHCzvCZAmarMaLlEJ0Bbxv7fo5InQKFcY5mjICdA0O2j/reTJkDn8ZF2RAsmQC0vQXwV/SZAgGi/Y21sJ0BJeJ7WdCsnQMDIYXLUFCZAe3bO+xV/JUBdyygT9komQCmlmgig6SVA/NMlPb5nJUDtd2la2cQlQFPZ2zpVYyZARADmiGMNJkCk3d5I9k8mQGHQGcrgbyVAxarRaZJFJkARe0wxzjkmQH+vXe073yZApXJuWuTtJ0Dhsb5xXaMoQOirSRLXvyhAG1PECRYUKECw4DLYk60nQKNQBFf+2CZAq/Tn47hkJkBB4hJP/+AmQDU0rct7vCdA1DL5xEixJ0DnMnbcN9IoQJl7cE/6UChA+FYluhiVKEB8/JMj+d8oQHMg8E2M2ilARChdT1GgKUCJOCBzxVEpQFCmWjfF3ilApzUdrT3GKUDgf/W9MFgqQJN5lwL7sClANVoogNezKUDsTb2IfkcpQBOAOhypXShAs+B5boywJ0C7+twX87UnQOvl9L9EOyhA2I6SD7/gJ0B1IdztSg4oQKe6h3KExSdAlNdBP1cXKUBbDft22p8pQBTGsUGi2ChA2MQD6cYrKkCNa/QeK+kpQFdxV1sKjipAIZMKpcXfKkAYNAuBEbUrQMe0eU8/LStAMQx2kokoLUBjr2giXP4rQF/uwDmrNCtAdEIbbm4gK0ARLuSTVmcrQGt38fQAUStAHBTO2O6ZK0C0mxE9ewYrQM9tFCb0RStAy/jualOOKkCfaA5kS4UqQEEXD4VWpSpA3NpNpsiPK0DzmWntjDAsQHGnPc31OitArIM6VGxwLEBJU6sQBbEsQHXF9IGy9CtAmKUsLRsMLEALD5eHlIYqQJvZulCI1ipAH+PgE+S9KkBciA9CNQorQIwIVJL9oCtAHJE1+0rSK0CZirBzdIkrQBVHsL02XCtAp9CeiWGyK0AvZfAR9IsrQDxLYo/03SpAocXsnKc6K0DVXyt1ErsqQH8R1cf6RCtA3UypsLlGKkC5oEnAqycpQLsYs3GJyihAWKd/AQLpKEC4G3I/oDgpQHsoFAwaAihAU7l5iUn/JkB8vwv0bwgoQG+bwiaMEShADXSeHxgKKECw0y2F22AnQMEsAJdlMSdABf8zSiPKJkAUIFdKmZ8mQBjd83r+FSdALGvSbjySJ0Bs9L68y5gnQMCb58XVmSdAPWCBv7vFJ0DM6qOBF40oQCMBCNDBTylAKeuQQKgEKUDLmIBQTJcpQB8IsEleSSlAkXcDkkSvKUBAGpevtNwpQIGG6x9bhylAMzJFJZZ1KUD0DylQ30kpQJcrmZhx7ihA/G38q5PBKUBFShAtBAgqQIuz5MXWZilAFKrvesvxKUBYvyZWfwMqQMhInSLqLytAqLLIx5vMK0BpLrErr1grQEPZPuLwCipAcJ2yFnyWKUAMuOmU4OUnQNfKihFG/ShA08apQ2G2KUBXGSO8404pQDAGaeYsUylA4L+rKUUaKUDrhKbUtlIqQK3OJJalnipAvErdHAtMKkA8d/xojIcpQLkszo1NXSlAhyWYD8GBKkAb+Sc3oyEqQGg6yk2KNipA/yKavp2JKUDLDO4DMpgpQDdkOZQlcilA5ItMtRaoKEDcIqgh4fknQHCjUK7KhyhA5551nV2gJ0DdpMyO1AEmQNt4WrxIZiVAdhiN/sfJJEBSkbHHoNkkQCHdAP8/siVAsEf3FN5XJkBXhETYYLsmQHtV/1qHESZAhGAkiL+XJUB4BKnykwAmQE3blDQoYiZAnFfbAP3LJkAX0AHmR2QmQD+JyZ/oOCZAJmxzDNXGJEDI6tl/XJokQFjK78p/hiVAK1sY0SA8JUC0q/O126glQCn4MrHLYyVAy7Zkd1qCJ0BIaKMJdBIoQG9jrJlsAilA0MYIJu/IKEDFyujxa5woQGsNsMlwByhAa05OMGV6KEB/KPmG18IoQJlNzJj27ihAncm6QpFBKUDDHZpPBlgqQIVE/OtijClA5EeAq4sKKkB/zk96eK8qQAeMAPj3ISlAr/RS3BxmKEAFRybcZJ8nQDQ2Qs3cyyZA+428Uv5OJkDBmIkJ9twmQLsZpsgPPCdAtMfsLtMvJkDH8wMEM0ImQEgqac2osCZA049dtu3/JkBUPU3MuqIlQJ3WTC4DhyZA3ZDpRN6vJ0D/83mNqQ8oQAnLKRg93ChAt9mazKr1KUBDgMzQWxArQNzkXuXdjStAfCCLcQJfK0Ajpi06BIcpQIAyMpCanihAWDeeqflrKUBMBhHS/4MpQFyebPpSoClAFO4Gwc40KEAXPL7VRAEoQBfPGJ6hUChAEJPHLf7MJ0A/+zjYGosoQKdp2UmsxydAFR3/aUDEJ0DXT1dVVrMnQPC2quQ6tydAQOf0Io9kJkBs9aMiYt4mQHQgi2i25SZAdNySFD5SJ0BJEywigGEoQEdNwcuSlyhA2EONkh8BKEDkTeRxWCkoQA10d6oyNShAlZzqAPFQKEAR4hTdJyQoQK36iw4+iyhAo3OgUN+YKUDXU7oG47YqQMkgwCAw2ypAceDizUGBK0ADmyWsIbMqQBNYww5bYypALWulXas1KkDElHPnkJMpQK309e6fjCpASDY2ANI/KkAR1KJ1uj4rQCTmPaH5ACtACIemS0YNK0Br8HbciyoqQD38gWTWOChAd598yZPeJ0C5lNLWwV0oQAypowc7BChAyTTi3AfQJkDw/239rq0nQNdPBFDDWChAh/SWjkSAKEBgNK48xMQoQHyvUGcOwClA8CFXK8XhKkAET7yFJmEqQPtTzC/xXSpAB76VFWjMKUA9ma5eMWgpQAvpMfXQEShAb/3DAzZrJ0BJPg4eBv0mQO+4ZNj6jydASbz7buv6KEClTAeVxtAoQD3MHBh4UylAwwe9JmXyKEBHLAbgNb4pQLTg7AeaLylAd/d6HCGDKEBoPuHth4YnQEisdIHkBidATF/Tr38XJ0CQRCeeJyEnQNFgp5yT3SdALFMsu7CFJkDtvp4umlQlQBFnChlAZyRAHC0O7B2DJEDZCimL8ackQJuYzFOUGyVApFa1UXluJECJWYoh204lQIl+YEEeviVAxHvr3luXJUAksg+pcgMlQABLPojpvCVA7yvEtxHMJkCIfUDddgQmQLjQmScbviZAZ6XyzjG3JkBZxqk0l2gmQLs36I6dpCZAlC/W47dKJ0A4QC1z1HkmQN9ORQ5JAydASKbH7ZYQJ0C0kySq5KomQJ+3ZrxLESZA6aKc/JabJUBUCCL/sPIkQDyioi1lYiVAmfyViYqjJUD7cDfaH/UkQAIYtdjEaSRAdBpixcWbJEAYNx0AuislQFE2YkcbWSVA798I4qh/JUC7SO7BZw4lQN+zkk0qXyVAnXMA2v47JUCPCYfJSjUkQHUvAs3vvCNA46lN24k4JEDb+C7RCJ8kQHfYyiAbuyRAbaRp5GTwJEBHJlBmaIskQMlOwVSWSSNAX5f9yGmII0AvzkHLbwwkQJFzXF3WiiNAhTyxlMh6JECrNFPcdaAkQFmJeKoltSNAsweP4/pPI0Ap/TLmzswiQIdVtZChriNAG1OFFjv8I0D4WAH6/g8kQIkE9qGdWyVACwgaB6d2JUAB2JkYzaklQIBggwCt7yVAWVyh1gX8JECNE3YlD+okQC080bsgxiRAv7wnE8KlJEDB4sUBiAMlQLMiHpVxEiZAmYDHEV4mJkBk0oDX3YYlQErYqjWDHSVAFcsrIXDRJEDdUa3FexsmQMNajyncliVASJ3ROHm0JEAuhsc72pIkQFfs3Ro18yRAvfhhkN3IJECdVmNof9QjQD9WB1r8xiNA7ulfaBL+I0C5r0+Sr8skQG7NhGrsyCRA4474EvL6JEBE5nG0QFclQMN2egqjFSVA+erRBeBLJUDJpLIqbCglQClg3WCpfCVA5LjbcdmlJUAn4MuACq4lQDFSCLDWUyRA3xTay1oiJEDT0JqfX2wkQFvBW0dOuiRAt6BXmew6JUArH84Rbp0kQACqENbhMCRA8SIXrIJQJED8usowp78kQCdm37CxtyVAd4KymkR4J0BZbMHo+3MnQJdXyTVhqidAq2PTbfePJ0AoHcoDuCYnQD1foLgCPCdA8Q8wigj5JUDDoCng444lQJDwHZSq3iVAcFXiz9VkJkAZuRQRetMmQMNBIw99UCZArwDuJw23JUDmJXoRexMlQJ2PiUUUISZAFDNI8+o8J0D/n52paMMmQKEOcSZ9ziZA+Bpg9upiJkAXJ9d/0LQmQGl80KSu8CdA1GxeBrpQJ0C96FvXM+wlQFvQhm6klSZAQedteUXqJUDrOkS2a9slQMwJxrKQXidAWx/PeYacJkBkMi3L/+MlQNvkmj4mHCZAxZ1hPIGEJkAVHgyC5R8nQE+hSOSw3CVAFSiTuUnNJkCZMw3ltu0mQJmciYuytCZAqLven0YIJkDbsRZ1izsnQEHrpXfi+iVAp2YSTEw9J0AIuXD6rlQnQDX9ZCbISSZAFR4jwkZPJkBQCwf3tZwmQNwyJODWIidAlIlx9EF0JkAP7nYg3YYmQNSmUOFNKSdAGDYY2UlwJkDzTk2gSaomQMBFoWmuvyVAx6/Z33Y1J0Dw4yLcO8YnQJcRaNpAOSdAvLw9c5zOJ0BFTJwKJgwnQHSa6cPfKCdAuXbZWmDQJ0BJsMrCaUQnQPPNKBYr8yVAR4L0EI1LJUC9UcpeKK4kQIZjHKPy1CNAacYDYk0GJEBI19f2ZIwkQE9Wb7sEjyNAQv8HtsamJEC9tH9b2+kkQGFnhYQciSVACGST/YkKJUCpUqRWpS4mQBcoP5nM1SVAt5/iYB81JkBkfzUnhDAmQCsCoXkcAiZAuDcKnimPJkDWsiqbjE0lQEeNI2E5qCVADx9ZrLPbJEAphaPQcLQlQD9nF0pXyCVAgWAmANQVJkAxvEFrf8AnQIHx7/DiZydAjJEYwGBBJ0C0XQe8w/MmQAiKczMliCZAdcjkul5ZJ0Ac+nrhHr0oQB2OHmh8KCpA82Jfzb8XKkD4ew93530qQD0jc7ndvSpAfdPwU1ByKkDEQS6ISswqQKG0PBaUkSlAMHlM5kJlKkCp9abDaf8pQJQJVv9F6ihANcPz/Lf0KECHXzkFaskpQNg6jszrMClAXyOZBjMIKkCLI98dx4spQLRsr2meyChAOaB66dp0KEAdb1Jm9xopQFPCPyO76SlAk32lpm+uKEAreUx0RW0oQLkDSyeA7idAYXRIdVOEJ0C8ziLJ+mInQCsBmtD8ByhAbOOw+T7xKEARq7fwfcIpQK9fMRYZQilAKPiyofl5KkBV04hQxswqQImUoganDylAs8pv4UjlKUA7s4RvKAwqQFXRe3aMaypA4SnC3M9qKkDv6jGMhLMqQNx4Tg9jxCpAe5TW5w8CKkCVDzC3BUkpQCieIHwncSlAG8fb1eUkKkCP8/7OkQEpQOOjszPfRShARLRWzPpeKUBfLgInMhkpQOgwOfggMSpAy5MNGXP6KEAXXYS1YcsoQPTYm9oZQSlAyRx45JMoKED5XBklyDYoQJXjjnoKMihAzZ0FP6hbKECFEEssYF0pQJcLjp0eFilAY64VGbeTKECd2AmV2FMpQE11akS4eSlAx52muqahKUAXoDoLnWgoQCDMiAof1yhAAM5croXhKEBckLgVex0oQC2eXTHGeShAs5FdpcHrKEADyg38LIcnQE8yA+xyJSdAaDQm5kTAJUDHcmH1gTokQGCbgH2/4SRAucCDZItuJEAzOf1kHZEkQC8UdNve+SNACmlcr3NcIkD1GZOxNUkiQDtUr1N7ASFA1KNjDSBRIUD6qI2gK0giQKtqnNQ3wSJAw8bvSiP+IkA3uZJMAtgiQMVmRxQBNyFAqHdX1hkwIUA9m6tcngcjQPffRVVI4CJAoEdkfwwlI0BvjTRW0VkjQMv8cppJGSNAhYlOEwKZIkBzNRuNMIAiQH5CAfiKjCNAwdoaUrP6I0BlOaGrXiMkQBbwKWjh9CNAonWUc3EmJEDdq+kxqs8jQMU63Hv8MiRAo0plHHHWJEBXxN2LYVUjQMsr8IuWuiNADZv2kUfoIkBF/USPPwMjQB/chAxR3SNAsYCay3czJEBDtaOOoiwkQJVOh+j3jyRAOCG7REt3I0B6Ou5AaEEjQH8EA6VjhSNAj/OPs6BiJEDp3Nz+2oojQDSi/3NtByNAN8Z/f6DeIUBPUFejDewgQJthUeooWCBAkI5wPAR4IUC07XBLkBEiQJUDnt3rliFAEtJKTvnqIUCG6xDE828iQCUFzwyymyJA2FIMel2nIUDjit+kYpohQHvROSvE0yFAn701/6TkIUDRA+wTlJIhQOI9ufX98CFAf9XwABMgIUCLmML+cXchQFbgjTpUJyJAjwQuSSlKIkCZA25wVLIiQC0U7SgdQCNAFk+6GJWTI0DhrSgaNJEjQB3dRowmcCNA0/PfSB7+I0BPuAia1AgkQGfIW4UudCRAnYfEvDO9JECH7c6cbKokQFPx+Qq79CRAtDrh70O7JUAYP9uY1H8lQOlM1r4cNiVAMDVJljmkJEDdBqCPwaYlQOfe256VySVA8YIY2n4uJUA31mflJC0kQPOMPYeIUCRA3Z3jJEEtJECj73rLCwgkQHGCQdNBUiRAXAyZ+rP0I0ApjYp8JVgjQMvoFl27YSJAT4mZrcP0IUAwbIR9ZeUhQI8IulXpgiFAR7RAf+fRIEBQTyHTCJwgQH0L9ZNYgyBAZ+1YrrG6IECExhUVoPIgQInoYMAl/yBALgjhko9XIEDkZHDLkucgQCNiMQeNxyBAiyWXQu9/IEDzecaIs0khQBWRazg3ZSFAkylitQQYIkCHmBxRVCYhQI8I88/mAyFAbtfuxmFFIUD1+wQXL3EhQOV4UQdWsCFAM8r0C1AZIUCNiJgaf2sgQOGP8q+hIiBAyOCAhR5LIEBvL+H6YxYfQGffj3RfzB5A1NUYUJKxHUDEKnRs+G0eQLV2QVG6CyBABcfPGUaZIUAzRB/DSwchQFcHN3R7HyFAIN9hAI/aIEDqPiIGVAIhQKVAQcTwbyBAnM4YwnplHUBDPwIYF+MbQDA0ryzO8B1AiLG+RtYCHkDr3yrteykdQOwQUCpetxxAlc6chlsmG0DDPglxbXkbQLgDbOzo+xlASeDzxwkzGUBW3Sz4+CsVQEQaYDxQrxRAjajKSSqaFECnGfkn1DgUQGEWMlRD8RRASZNJlXjaFEC/TcmbkxsVQPrCkTDmpBNA4PvI7UTYE0Cf95uM2lwUQMOXwD/MNhVAuWrZujtKFkB8lzRcf3UWQK0q+NfsJBZA+PeSyF+oFUB1fEx5MIcUQFPRMkiDwBJAWwgtr426EECNJSs1754RQNvKdvHIExJAaMejoyaxEUBPx844qC8PQEetiRYKnQdAR8P6EXpGCUBQMUHgtewGQBGY6vA1YgdAtE9uLSkNCkDgypAK8YAMQMQCAqTRBRFAN5IP7fpqEUBLDTpvtmQPQJF75fDS+w5A1DfSIlOiDUBnZk+stkgMQBO6VmbfJBBAV2yqXiaKEEC9yrq0jcIPQKEvgj8zYA5AO1LO4QeUD0DVlAQlhkIPQPGmiY7XzxBAhDoWNcM6DkBfGQYUUp0MQKplzFSuKhFA+ijzLfFEEUBPm2eibpUQQNkags5J3gpARWehFNPBB0CP6Knlqa8NQHvnaRgNuQtAQ6+/K3GjCUDY6iXn1zEMQLj61Do6IQ5AzImOm7FGEEBBfKd34EoSQBHdLifnPhNA9Ivvl5KzEkD7TKXQKH0TQPC5jzPgFhVAF6iVuW30FUBpn+vd3bsWQDEwbd7yCxZAHxrjGMr1FUANx5qdjr8XQPshTA1y+xZAPFg+OUcxFUB8XRipCa8WQN+6I+Bi4hZA+z9+RkNuFUBtzm6mOgEWQKdRHS5tJRZAec3yjSaCE0A3dZqTJa0TQAWOucr+nxNAcb4h6fgPFUA3R6ZB988VQA+hn6abPRZAJW2YKyJ3FkCUJvYJUH4VQHg5rDYajRZAcwvz5Wi3FUCZzwpBRmAWQAEBo+avsRdA3I2Ydb1sFUA9exlamh0UQHV7qH6W/RNAaIbtmdLzFEDcYMedyt0TQAVIFFaZgRRAEA9vjfUMFECD0zEiQg8VQL6V1zWSMxNAD5VHzbDtEkDbGxRtK9QSQDHq2bqbwBNAmPrKkj9BFECtAhJqmwETQFPSWhAZrBJA5yDDzioeEkB5RLPKNgUSQG3eMKynQhRAkac7iBdPFEAFzHJezPcUQOA4IJqcVxRAZKcy88pQFECx2fxEoQ4SQPtib24PvhJAD5WxmZSYE0DrktWrkfkRQAMuVbVQ+hFAGZIv38moE0Axlkm1NIMVQFqIA95nuhRAgDwUE0QFFUB9pcArIQkWQK/WBrjx2xZAkabzAst/FUDkUxZ75VMVQJIWZSh3nhRAU5CM4DxlE0BEH94alGwSQBkj74cRQg9AGVsE+HMHEEBpTZRa0BcQQAkgNMPppA5A5Wkhv6qRC0AVx+Sp2w8IQAepB7umKgdA5B4szKhsCkDLof4+q5ULQH/UeXtQAgpAQXwnftzcDUAJF2pxzEUQQAAUIUgJGQ9ATRYQBEmBEEBozoS8gAUOQOn8qZPRoA5Awx1sO18FDUCvC0sfARINQOku0hT7vwtAfcKnBqY3CUDVFKKfmjANQHu6kP8x0gxA7Uvqg2yRDUBwFcB+w+oMQGCv+43XjA1A8RPBK684CkAXBs0ToMINQPPO6XpQkQ5AzdYI8y0QEEDFq3z4kR4QQEWqV24D+A9ArJe6XW7ZDkC7ooQMeREQQFM/iEKMWw1AQ3WiUZCEDkCZL36++s4MQKiShLMU/QtA1VLUBT9oD0CXdlglATgLQH2scvmjIA5A4a7tG3WDCkAXxeeywFgLQFHDvRx68gxAuJgqgmncDUCbxxVaIuMLQBsyW0nIKwpAvylZzTAgDEB3QDhA6EIOQGjDVfjSfxFAGuWhTxF2EUBp50UksXsRQDHRJQzreRJAzRsLFSx/E0DjAzlLdvUSQKan8AzN/xRAXzrvSpBRFUBDgZxnjskUQC+YCNk02BJACasd3dWnEkBvEIS2Z48TQMPaAf7OqBJAfx31Mol3E0DGiEB1GssUQN+Xc8StaBJAo94l2glXFUB9c4OKer8TQJsjOUoJ0hBAWiY6gNYoEUABB2BcIVIRQGHMiRVCHBJA8QXSdGMYE0Bkm58DEUITQCX7D4G/wxJALRCbz+PyE0DBHy8+njwTQEMhcWBWfBFAHLXWuH4eEUA/MIwnx1MQQHAD5CK6rBBAQwTjWjuiD0Dw+2jvLhgNQA+kO/w4TA9AiK57DTHaDUD9KcWcia4NQLGvHhStoQ9AEBFqWseQCEC7Cwmzb0ULQHGsi/a3nAxAfTrNf+hVD0BxUFTL1VAPQMBa1tcUyg9Ap70IYO/UDUBsz+aiu1QHQNRlWjGYLgZApFpbcQATBkD3vWVTU+cDQK/rBe1yEANA30XBbx+nBEA2x6O900YFQIShWfC26QVAL3nueebACUBx3nRzhpkIQPvBsI2QiwdAk6Ol28zuCEA7hn0wJJgFQFux6QhqowRAjZU06A1gBkBjw+Us4kEHQOAVQedstAtAZfpQlc/PCkCgtP1nUUsJQLFJPL+9CApAWyloLPQZCkBLt/eHmrQNQMMW2T+bqAtAeeNlMGc5C0D/kEFKUpUJQIN54DNIoQZAEEunYKcyBkC43ghKzrkIQDXmTUmL2ApAe/a25MzeD0C4bjCRg64NQKj2BXc6ygdADTS7WUCiBkCjIV0m67UDQGaSiJ89sANAxMZlyh68AUB1gUVjqGkAQKByj2ZJVwBAlM2+DX3w/j+IiPpK/6f4P8WjS46cz/0/W0l3cmPU/j+1Xggk20n/P+qZ8ZAMYQNAySppbv6UA0B/r2BPW3ICQBGx1Nt16/w/vRIYHyGMAUA/YpUjGlIBQHi/NbjjdfY/aLrgznIZ+T9j93Ufe6X6PzOrQRNibf0/q0eAtz5Q8T+ncTieNNDzP/gjWabzh+U/Sep63wYh5T9X7n5v10bVP+gW1A8G0s0/xq9C8tE3wT/7lmTCgwjPP6y6cK/Ncrw/KcZSXY7Dzj97YMpmCB3aP+NS/vB/Z+c/q3zp6gdVc7+fw+10UfGwv73EojtBV6M/59yIEIXP5T/9Ip/evYPjP6ByKIYJs+A/2I/2H95c6T/9p9h4xBbvP7MkJxTB/uk/oJ7WtJiSsT91sUkslLWDv8j67yxfC8e/bDz+8BNXy793V9/dQIXov5g48DvsOOq/qvZ3WBRa8b8bTWVP8HH2v9MAUMCN6/W/X+phdC236r/YcRqblObrv/THPb2xUea/Tzt7IeDt6L8Ifu18Bo/cv7XtB480raw/4ESLy4NXfr8jOH6ps6XTP083tPRkeOU/PXyoK+sc4j/QFgfcQ1XsPx8Aovy71/Q/mEfnOqcm8j8UGXxa29P1P/tnjlPOXfM/4Aiqy8zE6j8FClRzNT3pP8Kbuvx/Y+M/KzL8+hfErr/LIHVNEQ+/P6l0XjLtA9Y/gBzk4RI/jL9bStOb4FfjP+38spM7C90/fKEY+0Xm4D8MEN8tb2voP+WfnM1DK+E/LfZ/Ou7z2z/r46cZEtPZPxD/tBfnAtY/e8yAOr0K2D9DdWjU+qGwP2mb2q4ZjKs/KN421BGfuD8NMR3urZPFP5fvWKYC/sk/O6rBSoGP3D8UFrD+nurgP5MaWdgR8ME/LM2q3BN8w789aj0xdgqxPzreHGTYL7Q/7hMSHAv74D/bHFtgBYjnP4073lCpO+I/JSZt7Jp87j/dr8yFYE3zP1SrcHcDEfY//8CNwj6T9D/VQbWDrCX3P/k4UJ7uovk/nV1iv5BG/j/MgAmKK1oBQGaObpippwFA9P0vYU5rA0CnXjuiVqsCQECwIlPlsv8/sw8HST0m9j/RPyUGnFT2P5H3dim1mPI/yImvyGQy/D8VDgeDKQD9P30gl7Wqd/g/b8285fY66T/o0G9nD0nzP8cLnvatqO4/sS92LNCU9T85xXVuLAr3P6llCtBRRfs/1Ywvmq3H8T/AXAmoJ1zyPyOee2HZW+4/VXGsW+bS5D9SLjDGRRPgP90bDzA/Wew/NFvEt8VO3j/LZjRITtmxP6fSElwKKtw/y4JAKZyDpz8vvRTNADLWvyu4uTkKrsa/AAJbT9w5oz+LKib21B/Sv1n4ZarpE9A/hDQXfl8+1D+8QJYXrajjP33IyrvnAu8/a+Hw4tzy7D9L0Ju9UuHoPyUcS4z0euI/edal7Pgq5T99zxcocQLUP4eXnGYrzuE/RADG8WhG4j/rVn/GjlGnv7lCALa2786/1SkGLu/Gw78jdRIKCHfKv+NvhwULqMO/U4I+VEp6r7+zkdOfhDOZv/0PY4Kvwrw/oKIv64js1j8g2guS/DauP7yUCO+uHbi/04pcwt5P1r/aAWj1DWrkv7/AY/Iptey/XwphjQHP47/tf0Ouem7uv18ga89NEfW/B70YPUvD8b/vSoq7cw7jv00rBNT60Oy/1wXUQLHn+b9daham+LP3vx/P+zP5PvO/X/YZkL5XAMATR8sTrRz5v1XACjLAOP+/vCiYDS93+b/Q7EOpv3T9v/37eZuIJPy/mEE06eeZ879TLMP4ATn8v0XlSC40swDAudedoznVA8AJ4gl42FwCwFcNmhzDjwHAVQB7JGXiAsB8itYQrMAGwB8PmLHKJQTAZzMlfxTdAcDvK+EoYCEBwItqErcwKvu/Id+1X+T5AMDTSsDQ1E4GwD/IttvEdgjAdyylW61FC8B9w7SFCcMNwLi2NLbsVA3Az0QGhtJbCMC19/sWN48JwKsquARFZQzA6DOv4kutDsB5c5wR7R0PwFRz0C+T9Q3Ad0hlKnfhCsAM6DR/lAoIwM/g+gZnxgzAIQjWGw7XDcCwq+L4CYwMwM9peDxQUxDAwUU63m/xEsAtejwEsLUSwGGoM1Pv8xDAcRM5yvXPEMBjJ4mwUOEPwFuza8fX0A/A/KzidHYoEMAlawiNA+0QwHzoq2YWPRDAkQs1mQF2DcDknnT2SRYLwOHzScDzeg7AuPXDEXruD8CLvS8OYNUOwEs16gAkYg7A7F04lk5yC8CgSpe4YpcOwLsAdVNY8RHA2WT2oeH9D8AjDDVc2rQPwOlGmunNoxDAgXm88jcxEMDhdv7AzuwPwJWIHJDRGA/AOZEVh3IuEsClfjK4VQEPwHeQQNt1fgzAW3VghFyRDsCvZhv5HQYOwJcCXkfrXRHA2V5zfe6KDsBEIApsV0sQwP0VvO5Vuw7AeGGMBQX1DsBjq1IvTmoRwC78/27peRPAF0otJ6l8E8B0KQZPeUYUwPno+rk6hRPAYCLk56zoFsBfgRRhmsIVwEGyEu/b4RTA6/GP2rfxFcCnjn3zwhgUwM/TQFunxBPAQ5HLRrUyFMDEZ/o80CgSwB3yWLfdmRLADZU4VhWmEsCgkHr8hncQwNCZErKRUw7AznTf62DCEMBdBdHhq5EQwFQhoHyUuQ3AT9QggKRnD8CcvuAstaAPwH0Z5QNSRA7Az+s2tB+2CcAvz+/FQ1IJwBxlglJQZQrAc+JI/70RB8C8E8T63r8HwB/MPNVUYQrA6E6KnQ03CcATcBCLE6kHwEWVGdgKiwTA6z/dhwAPBcBgEApnsDr9v6XQL3pDt/2/QhAGJW1dA8DZWwxSxuT/v4eCgGx8MwTAX0mJQRx4AcCjul/DD0EBwIFkrHz+VgPArQR2ffke+r+AJCuVwYP3v9BLSt0jHf6/fEfeglfk97+k0zDtLabxv8XOpt82a+u/oxJAKaMF479tu7K4g4Luv8AXnBXmgOy/kBHHlZOn679rdZysXtjnv5MzTw3x4OG/p1I0ijoR4b8AHEI4IWCVv8t4d1m02rO/M1sFDykm078pmxK7DMnTvxUJFIBMQKQ/YyrKzpga4r/cjxF94sjgv/h+upGFoem/SUKIgIbb7b8sL2lqzTHqv+iL8YzIpea/T8MBLY7g9L+AetItO0/GvwwB7kOiEMu/HJvIfjk94L9cTPo6xLDbvzNKT/Cqqtu/HsQVQoMO4L8Mvp0YNzbpvy8eh5vL0Oy/g+ppYjuh+L9ptZVGwW76v5GE+CxwmPe/pE0+g9MS8L8Yt6IT///iv2s/pG/ifJo/R/RQsG7pxL/1Dk7RpaORvytH3KtnId4/J3kvhJFe3j/RDdJagLfWP+sqDHhORsc/1wtV8+WJwD9NocqQM5LkP3UjciNQPrU/XzT0cjPcz79f8gSGJUDJvwBMRLw8mOa/dSPqqbZ46b+zLwtRUWjFv82D9YzTZ8S/vSIyEp6TwT8ViqteWTnlv0+hMapFu+W/sRTUzWJZ4L+u5orQ/NrSv3lQrH2Uy+S/EIyDtd4a4L/vEASJIr7Sv/BU9ZDyKNm/cZqpyq1uwL+1UQU8kHLGPwEdnU2jhNA/FJM+OG9K0T9DPjd27WPKP/VkxU7j8+Q/AKbluwko9j/cYfdQM4r9P2xWxWfRKQFAR9TC5RHHA0DgVBOHY50GQDD2GdKu8AZAe4madM3KB0BvCMjFSYEHQCX2cIdx/whAL9/4vrulEEBvidtFgDkOQPCH8252mwpAncecYnmBCkDAun9VITUNQBTMLWixxgpAzwCGQGQiCUCjyqKRpKsHQNRUSKbtQwVARD+PJNo7BkB87rqp1B4FQCc0iCebJwVAH9F7PiCaBEAJKJlsggkHQCFUXYVRCwhAA8i25gqeCEDrW/GHpzcPQAix9cqb8QxAz8zKV5+DCECl1FhEPCQJQDNowLMSMQpAiV0+IUnfCkCZNtbPEd4MQHtpIaV71QtAaX3hufBWCUAjq/scgloJQJdyuqewxApAPShPFcN2DUBNWjLaIAQPQFCOG7DyQQ1Ajy4d5WjdDkDwTc9rEEoLQJOpb9f64w1AQU+vt+xqDkATvJcYWRQLQMU2BXKJzQtAXyTsMW5gEEDFtAYpV/UOQIwDXW5z5w5A2LU1+FL+DEBZr+eVl/sJQL8FNdYZgAxAxLVR5QobC0B8U3nO4lQOQJmAZfYt8QpAjTrPKJTqDEDwaT/sADkMQB8BY07Tdw5ATMCYnXUWEEBRkAGJyngQQEmL9pp/MBFA5ISymNd/EkD+n4GOX5MRQGPO2SitGxFA3/DKrbgWEEBLGLCgYQ0PQPXyR7dFoQ9AmeSZF7/hDkCfnLwm5NANQMW8thhooApAp3j+gtc4DUDsj2Rf6XgNQGTcxxV2PAxAK3FD8lR7C0AH28x5IcwIQEThIC90IQlA1IMik3R3BkDFqJReQ/oBQG0c85Mcdv8/XUdWWP7K9z/VM9yGsJP3P2OkWTHPieM/TFsUY6Q28z/9RzGpqiT2Pz2kYr3rUfI/q7iAf5sU8z8wkeU9W8bxP5H75EKHUvY/oEHITmQ09z9FLEGLExL7P8SBcvTWSP4/qy9c1vJpBUDNqHif+SoEQBDnWl/aSgZAVUMvErjyCEB48QM+VB0HQCfkw3XO9gZAbT4yWdOfB0DZk61vSnYIQGMVlZEKzAVALYg3TpoXCUDFQa/Gz1wHQG+v65lMpQpAnS/QK/xKDkCrmgpyDiALQClavw2NYAtAnff0QWcqCkBPVDJuwCQIQA2Ip1b+HhBAtGXVk7lDDUD9yuPLLR8MQJG2/m6huAtA6K3kmo1WDEAL7GbBOO4FQMDU73brIgpA6SyMt/tEC0CsvLev7BwKQKMzq2V2MAxAyV2eFKlOEUAnncXoRYMRQD05jOOp/BFAOz6a6v4oE0BVALSFVTcSQB+1OqNkvRNAlSShMx99E0Dxv3HjbKYUQFVnwSrmYhVAD5BGbjGWFUBjNRVvwnIWQG02Zn1jDhdASSTCUHmZFUCtsyUYAUoWQBG/pUe0mhRA72yAILLsFUCVX4ULELATQEQRbQZaeBVAQXEfvnnmFUDJ+SgwTWEWQEcxpN4xFxVAEydnH/WmFkAn4YbOhLMYQGMRfLUx6xhAEBVLXbcgF0C5wzavK4gVQAXbNovI0BRAj11XleYeFECrcDuqLvoVQCC/GgUEpxdAx7xHDogUGECbyMJUw7wZQGNvmcxpdRpAiNHrMcNAG0D1fNj5vt8ZQGz/B/avoBlAbD5tuJv1F0CrLxz+lasWQJiMl38opBVAACHwfy74FEBvh3b2SSQXQFC5f4OI7BdArUJlJTeDF0DhhhRDWU4XQFEi3eEPTRZALCvU4uICFkCh/p5CVdIXQGOYQcz/1xZAeC3Fd1KfFkDBal/UKfAXQCyiCSohfxdAbsvyfEg9FUDYzCTY9RAWQAhC/NbbexZAsyvopfFTFkANktG56vUVQA1VmTY0NRVAFP5VGxBhFkBGna2EeigUQBR0z44OuxVACxQ0fjtwFEBP9ppkDr8TQOU9Sip9pBJA5ZrVdE5CEEAbdEgnTZQMQC2ivMN2IQlA26Z3V7IBCUDkDmswbnIJQHuGKJh/2QhAjc4uUJ0NBUB8URc2JYsDQIdUmadwBAdAWOi5tQdhB0CdrR10G5MJQJg2SzEUxAlAFQjC4tLbB0B4XDK8KSwIQDVNzwmQpAVAj7hXJ9osCEAYsFC6TRAGQIt4/BWZxQhAcz1antJQDUB3fqYR8UoMQMjyrDJcrw1Aoa7hgIsEDUBLn34sJI4PQGRqH7JRYBBAYCiGxxc/DkAknyZp2m8RQBZCRHmDKBJAY5tLK6HSE0AtgX2gmUkTQEOCZt/J4BJAP0f5XnCUEUCbwTVAxtYQQNuE/W78yRBAzGk2CE/cC0CZgQjSUqYOQHmRwfBD7Q1A7+j68HfwC0DzzqmZxX0KQGcm1AqX3QtAdY1Gfw57CECrInSbywsKQKiv5bkTxQxAs4LS/qZBDECDfXAR7BwNQPOd5CTbAAtAO1gbEt9PDEB5emlnrMwNQF8foLQoAQ5AkIPaZuDJEECdf+hcYjMQQH0bqLPLOBFApyNbKdbaEEC2ltKSBNgRQHcUYt2IxRBA4R4Np2I+E0DMhHdyy7EUQL9U5ojI2xNAt2kUxGkzE0CPEKhsvOMRQMlIbzwmZxNAYcPEOERkFECLB00qfWkSQDBTB+hhnxRAPxvr2TJdFkCUnMlwSo4WQAATsPuWrhhAAKja7nzeFkCIPOTb1X8WQHGWGRkv8BRAFU1ka8FdFkDkE0iByx8WQKHXxY8UMRZAfYYkeV/VFEDIF6fGo4ESQPQStuKSnBFAy7/dl+lFEkChaX76CKIRQBrgA4L3pxFAIfKZ4RycEEDs6q0HDJcPQE1IPAgnIA9Ag5q9bx60DUCl62bpxiIOQE2o53LNMA1AwyYD3+nXD0DKVCHY/EERQO+buBk1txRAgVNnJ1ynFECzW+G41UYSQDEzYLxTxRNAsB62dPB9EkBGbJGeGfMQQKjFeJRdww9A0V0i5aCnEEA5k4CUe2URQMuqlaY/FhJAr5JKgNCGEkDfBQAZySITQE07a9jm5BRAu40RwJTME0AI7AsMOC4UQIgVMyhxfBVAJvMe2My9FEA3rnkNkb8VQBDOIWWlKRVAGNS6V3YWF0BpVltG/0wWQBE6+UzvNBdANE1uMXSXGEBhAvE2pgcXQBGGExt+hhZAL563+Kh0FkBnsTGfEHAUQKzoEi+zJBVAF5kXjYcVFEC8n/3T9EAVQNuqq4V7kRZA/cHO+XD9FkCpsyvLq5cWQBXUWPAPfxVAU1bWyxl+EkCfZUxZlMESQK2uPgydmhRAK4bad7fbFkBxjNBgU60WQHnG0urFYhZAXPDFcrkyFkCT51mDf58VQKGCJ5t8pBVAX/Z77dZBF0DtOYG/nUwYQDEdKibQXBdAtKxh8US9GEBcvKR+me0YQDlgXdNFSRhAIBfyGakNGEC/E8i3VC8YQO2Qyrl35xZAXUnz8tlyFEAmeRGJknQTQJtDc6X1ihJA9fJ+uQvbFEBKn3NgvLkSQCNsLscxGhNALWMprfLBEUC2WZ9B11USQFnfysqCgxJAV4w0LVIPFEA3fApxsiMVQK8sjtHgahZAKKl7gyz1GEBoBMA3qxAaQBx9luTKThpAVzTlm2KCGUBUoZM3JewaQADgPLaYwRpACJUuhUlkG0Ck5n8gkPYZQByTyfmp1BlA/8mJ3QfuGUAZJCs8Q2MYQExS3agH4RlAdBWCOZDXGkDtM3i74vEbQAUBmDNi5BtAt9RISgNWHUCzZ65VfhIfQGAzHBF0tx5AOWZfMrDkG0DQ5cTzlMcdQDM+8SS9OSBAbYVrLmoTIECcOWtp4FIfQA/J7LV3fCBAjDMavBh2IUDDzNkIuXIhQNstvZTazyFA3jEvLDsgIkB5UHkt4vQiQFW6mMhKTyJAeym7VX/IIkB2NFvgbFIiQFLf7OgTuiJA3QO4jBAsIUCnz0rGcD8hQPlFQCfwZiFACNe+WYmbI0CXlSrTrqkkQO+Ub27hGSVAmYYRzVwFJkCXAtAw1DskQCFzJ25WSCRAYNZihQQmJEAf50dxmiMlQOU0CjF7WSVAJaEkYIfqJUBbO8b4WsElQO0n4OW6tyVArZuYU14OJkBLPfesp94lQF2DsEG+/iRAncZSN1PXJECZ248M36EkQG1paMlb6SNAjVhkmPVNJEAVUYKChd4jQEYPKaqsSyRAs4gjUBeBJEAxiKUVxRolQBW2YAZNBiRAx+Ti+ujEJEDAoznDVy4lQBxZ6H+ecyVAtdZsFNPjJUBQDIBI1lYnQBRfnzBsLyZA3cFfPkWlJ0Ao1j2XR/8nQPn1RS9FuyhAZP/OzEQuKUDlK82ko94oQMwqv3EmdChAcUoFY9vBJ0B/WeZ/ddQoQJOwu9SS2ShAsCDe/KscKECwp2+HfP0nQMmkXHWXhCdABeDaPQpoJkD9jyszZBgnQOBfzLIUSShALQ0TKKbnKEANavFGW28pQLQDkZdeYChA1SLYeC2cJ0DLl6vLJr4oQKh7ctST4yhAlXhwR3ACKUB76y0x98coQGBUv+wpJShAUd+mwphIJ0BrvKisAbooQPirPou8+ydAOQHF496gKECzDTgJJWwpQMPP/KG3GilA0+XGjBnRKEBdXdt7u/QoQNmk4rmOEihApxYDng3NJ0BDAfFgpUQnQNeBlk2JYyZAVHMOERZJJ0CJ3ioCFuInQOuJL2gUlSdArb8eVyz1JUAPEnRlqVMmQOeO6IFGNidAfEfX+vDWJ0BUsXpJRlUnQDiXBu9/oShAkUKyHaKuKEB1MbQJw9ooQIHRDZkwyShASbQ46z9QKUA9/4MX23IpQAnamT3hOilA/8K2UZxYKUCYkWvFcNQqQLiu1XMXGSxAEMBf+0xfLEAfacaMor4sQAfS08n8sy1AOYi6eY8JLUANzdNsVW4rQGggtmjVECpAKV2NcXF/KUDv+8juUy0rQD1AUPtbGixAxOYa9xm4K0A9d++j68QqQHM1jnFltCpAYJdKaUEmKkCrzdfmrZspQAgkOL70/ChAxMrWqsPEKEDNkXXdJyYqQADMcYMrKCtAGB5SzYT7K0A0AsJd+6osQAjE5qamQS5AGb15rBuULUDbCHI3CBsuQNHUGxYt2y1A/JZxw4r6LUDkAQnEQ9ktQHRgqW0oLi1AjPY4yTstLUAP19FXvPorQNgMYD49qCtAsZmq8YVuLEDcdvQ66pAsQJMPguU86ixAvVo/LJQfK0C1oEG2JlorQNXvmlDF+CtAoSq9W0LXK0AEcW2imQosQB0ThV4pBCtAg/at5Ru0KkBrZ2DmFfEqQC+agG6YVCtAySccEkB8K0A8rCXujW0rQIzb6QJMBitA5QrN99qpKkCoPmvE2xUrQM9heYxA1StAUGglhG1pLEDdcJh4nzYrQIhiNCQfWitA9P2L58oxKkBPT/1+k58pQKHH8j/T6ilA0eMDobsJK0CkJiobaNAqQNiW69nrpypApMqyUI5iKkA0F/KBdPkoQC/1sC9b5ylA6H++OdQdKkDk7s7eTxcrQLEXjcplLytAbIcdCWo+LEBJKuIkwtArQIGfwobvGyxAD1N8dd7HK0C72/ewRkIrQE/vheY4VytAN6IZtk8TLED7Dz3aHJkrQHiUfvioaStACSHlJiTFKUBd97/ZQJkpQMiG6CRCeipARfWBOaqXKkCdrfGyeugpQKg/HulS8ylAH3Vte4aoKUD9a7/2spopQN3GM5sPAytAKRh04JkAK0ARAcXl8LcqQLl3BT7tAitA4wzNlFeUKkBH5kCm8horQDCynlDXsCpAHzpD0s+WKUAn9vivvUcpQNHw/dUbOipAUPy/cmSpKUCASsdhSM8pQCPPc1E6dClA6eMnubpAKUAURiF1Ov4oQPkIdDrg8ihA6E+897I4KUD7Lf74h+opQMhv3A4/filAKAeaa+tMKUCBbfuUTmgpQDkXi+7SDShAofbams3xKECBkX3Zq9UpQHsvrrpIHSpAfwn5a5WDKUCF+cYrW9AnQDxWP94E5ChAnT5CsLaCKEBrCz8k3jkoQGvvrpR/cyhAfPR3OKxiKUAjZashh6wpQDTQDxM+filAx/VCgLvkJ0As/Bf4YjsoQAyGCZ1WWyhAA2p5bOWuKEDQaAr7UK0oQBx1UQTzDSlAJ6YrZcYGKUDcdXgTB6QpQOFSbXW7oilAv44EgG2zKUBM7SVIh9spQCQpJyGmzypA77ljOYf6KUCQDStoanUpQOzmrzhWsSlAeJ3LS43EKUBnu9A16O4pQLE4RoIWwipAJ6Iy9v6JKkBpTlLZKScqQKF+Q8KsXypAzxt6NXdaKkDACMCzQn0rQMULKNLMLCpAvUpWLCKQKUBPktrLbBQpQHNT80oHcyhAS2LGVUI4KUAnLuJCCNApQITcP6469ylAcAKKQWQ5KUAXs12ietcpQD1825BujClAp2PpZ0sxKkC0gj77u3kqQKXqwELNYytAA005Foo4LEDFDIcBW6EsQCT5oN7fJCxA8HXppJ6QLEBzsuAxlporQCHp1mKKzypAUMaAa7YHKkAwfB52e70qQFigASzdESlAgXAwv/YOKkA1iZqZ8O8pQDRCtYk16ylAjP+1ChvZKEBnWaC3UsAmQJ8gsVXIAidA+ODXbgMGJ0DcnZr0XXonQM8fakbqvSdAVTVEvwMYJ0AvG181Ji8mQA3ZGL/MniZAME5jglNqJ0CTq6fdqhgmQMvvIamQciVANLPu2UFKJkBXoavlwSEmQPA7h9J/zyVAbaeTb9wCJUCzJGjgx2UkQPvx+ti1ACNAit0dR/SjI0Boqt/7rwYkQGYrjSvipyRAD4bTZ9qCJECLpChYxg8kQM0UrFqpbCRAPo7Jx8p2JEC4BvT7/sUkQBtHGrQhTSVAqIX7yrKQJUC+cXePaDYlQB1U9JohxSRASBBR6YgNJED5oagrhCQiQL/vV77CfiJAK2dO/eHXIUDc4U1uHcghQMmYCpE+MyJA4YEqLiQEI0DfHMYGEcojQCfzBFHLaiRAtfnmcHc8JEBRU3oevhUlQEO+VFDapSRAZgIrvQ/II0D2n8bdPMkjQHkHE8CvWCNAgzGrStDuI0A1YuMcZxokQCuEetGEXSRABazspYnLI0C2DYpmsHIkQNNp5iaa1SNAR7ZPoY9ZI0DTD9lCgIUjQCxxK7E0WyRA6SBBIuaYJEA7yly/b3sjQHtysiGidiNAicOHBrnnI0AdiCkbakMjQKVJEOwLESNALSCWFpEiI0Cwh9sKZZojQKDChUMDbSRAZBTqFxt2I0AdCMlWafsjQG1nB2XqfiNA9ffcgLYKI0An9WZ5koUjQOlvOPPZZyRApL4CDeKWI0CK49XUZxgjQERbGHy6ISNAbUdx9LYXI0Cn5XzhJVYjQIueu0ia6CJAyQjVNcj6IkBbHfTHmfojQFvywWHZwCNAl0bu/2mxI0DrXOj3JLIjQOy8yUpqHCNAfIJUaf34IkBhcKdrsy0jQF1VbyjcryJAPXlNARs/IkCxBb2LoegiQHXrKrX/xCJATxbqol0iI0BsadW780siQFAiv1o04yFAU1FMfNAGI0BRjjZ4sP8iQCEH8UfEvSNAiaf5YxjFI0C99tsiuxAkQESt3vD4JyRAP3dgViM0I0DjYlgtphQkQPc2YCN0TiRA20YArOOdI0CrfupA5s4jQFzRaEB3qyNAC11GbPfTI0Bh38CJTqAjQNLNJJEE0CJAbQxCkRkNIkDwXXN6PXMhQAyy/M1SGiJAUchJUGDgIUAV5Bqj5QQhQLtfBxAvVCFAWs8w/VaYIUBJBoo+CfQgQEtZuWR5SiFAncKg1DsVIkB6/s4S3a0hQE2QJVFoTyJA984R8ew/IUAGrT7WCxMhQCEdn/A3HCFAMhYbJOMaIUDSzld/zCgiQE4tqeGKAiNAr7YYpYukI0ArvMY0ZmMjQM8q6px5XiNAIw6Pn6nGIkDRjjd/cbYiQHydbYzChyNAf32UrN6iI0DX2QR8ECcjQDh6GWTh0yJAZTY9oggsJECAfK/ZFLgjQBzB9aoIWiRAiAiucz3bJUBDyU9wzngmQPemyMSspyZArPIjZt7/JUBZfLaQSuQlQMsywM568iVAT+HvhPLjJEC9g9hrIoQlQOZ89jgivyRA77D1GWs4JUCtx/4NJuMkQB5A2gMIgCRAAfPdBYtaJUCNjLqtfr0jQJhHWncFOCJAEapZIwgIIUCIgAVzzTogQOuWar4YAiFABn7LLu4BIkAp3HwPzNMhQBW6gMa6ZCJA0wxGgUb9IkAfHQWD60sjQFW/AsY1oSNAW+nFqYiDI0CKCVwaL1UkQOnjOF4vcCVA1btP7/6AJUDL8NqbPLUlQNv7qGn1xyZAuBsZSSgYKECAo5a2/6wpQD2XwlVzYCpA3RdYVCsFK0C3l8rxU28rQGBFMkv17ipAc0dQDqOEKkDBNyZGq84rQOTlivfqqSxAXGqlbdZXLEAsi0VigxktQHxuZfwvky1Ac/8G1+JTLUCVOySv9V4uQBFqnsinaC1A2TwSaiqiLECXS+kAQT4tQNfucWGsii5ATECdW9bHLkB4a63c1HYvQH+pz3J1oi9ARIwu/ytCMECRTnQoCQExQCUUo2WPRDFAqc1bYxDQMUDFZ/gfvlsyQMBYenBvEzJAbIR1YvQ5MkAzPy+22wEyQGklqfy4ODJAbcMKq6EiMkCReKA6zoMxQBR1fIluTDFAb4wWViLzMEB4u+wEYwExQN1aUfXn3jBAh1QIUfzRMECA9cqdtGcwQLzPlGurbjBApaH6ZxsiMECD95lK2ZkwQPHNNS/MnDBA9YLVWVo6MEAt5VfP+bMvQM8xvqKMDjBAZqdQR54kMEBMcC5Y1WUvQFyVw3FKJC9AB3bT6E/EL0DbMd8BHkwwQGFvXp3sizBAzpbMoRlRMECx1mlLOUYwQP159xBWmjBAuYC7ZooLMEBTgyNN++cuQJBM9+VWci9AHZDOxLbsLkCMEF8wFoIvQCCfmbSAKS9AX6jm1phFL0Bhkj6ob/0vQJVJ2VfInTBAxdK/gC6fMEB0MILZQ3MwQKuBjNRgRTBACYDt3hhsMEBULyK8c9owQEil5IDV8zBAHnu1vgC1MECIeoDnftsvQD+OHX0Aay9Ayw1Acq3lLkDU2U2wCTQuQGh0wd2Hzy1AExQZ+8tZLkADH/J8xVQvQKJolyMdNDBAt/F3POUhMEBez1/GqoAwQETh2qpUbTBAO7By5qPRMED9ZOQr9NswQBptkbjR6TBAB8NiLLSxMEBoReXup9wwQJ/QMxrs9DBAVSjGIjKHMUC+8k9A6kAxQDiFc+2vwzBAUzvOMsa+MEAb5r+vg8kwQDK8G6adbzFAgmPZxI5iMUDjCydiVBIxQHGs/UA/WDFAqd5VpLjMMEA7Kx9Rww4xQLeANokTgzBA2+FJgxawMECIBJm/VbkwQJUS/h5agTBAk5nIZiqiMED13BiEipIwQDOhxvgH0zBAKY+3P8e/MEAGdshQHNEwQN8S9ZD1RDFAa3rbJkFBMUA4v2RJjHcxQK6vl3WJizFAlUHb+5fGMUCjuGCcjNQxQBB926na+TFAN7nMVx2qMUDfYYhRck8yQAyf/4+0YjJAh+w3VMi+MkBX7zdBs2cyQPb+6nsSuzFAuZm7IZpFMkAwcMtvDV4yQMXd7i4RiTJAGZW469lfMkBEg9ORi4YyQC848TjdRjNAEkG+/lVdM0A3Gpq5wNUzQHizMHWMfDRATpxzO8n2NEA0V1tWqhE1QO0RotH3hDVApZw83XfaNUAsn6gz8qo1QASjxAAcsTVAUtOB0lsCNUAUwI3cCv40QI2WfptG7TRA050uIxMyNUDcPJY8aYo1QMdN4aG8+DVArSJQnKRENkAr4jd8Fgo2QCvxDU6eTDZAfe5ElAdfNkA5efWb31s2QA0sbIgAijZAucopLsRANkAbKu0R2WA2QKvRbuVhhjZApeIu6Qc6NkBlATUR6i82QHCp4FQ6HzZAt+t2Mt3/NUCYbEwPxFA2QJs7jv/A4TZAlNS/56QfNkCAoTOkQTw2QNRSQlg6gTZAqcSulCZ3NkDDBNiVVIo1QF99DSbkujVAsL6EMUVYNUDvw/UJmgs1QFtDbLRLZjVAz4PxNbFiNUBBazSyOLU1QKnioQKiHTZA401iB6FMNkADZyhs+XY2QPA2MNXlrTZAHRVvl56UNkAUx6OOBeY1QLgAP0vu2TVAzKKsEJymNUCYUoeVcBc2QJ/R2CDOmTVA4H4r+/8qNUDn1X0lboU1QNygrNxk8zVAUFA1yQkXNkCX8SU2z8A2QMF94HprtDZASeKDXG3aNkAj32IT1+w2QClZhvnwKDdAzAmlUxY4N0DpLdzc7jw3QKWQwiOiXDdAg3NjY4DSN0BlBoIRgC03QFHa/uaTzDZAS3K8jVBEN0CFJoBr+uI2QD+JRexpRjdAK+Z5v8n/NkA/oU4ldH83QEvW/ncCVjdArfOQo5k9N0BYXHL6Cak3QIeM2icE2jdAqXu7WB+tN0BxsdPgKgQ4QC/z5/323TdA9HjCU8HyN0Ccszro+i84QCdBygxhPzhAKd3umYBtOEBTa3U26HE4QNX/5+4y1DdAhzozUmHGN0DsGH7jtmo3QD+VVlMDFTdAyPhN5ks2N0DThKHDXy03QJA3Zft6YzdAkPRiYfD+NkAM5d08VPA2QIfpHOjxXjdA7NiVvrC9NkBU9ZbTtRE3QHQnkNi8yDZAUKwzidH8NkC5NIeE+vk2QDn9wmH3FzdAsalH7gzUNkAlFLlBe8s2QM0Npakk5zZAmO3E15D4NUCd8+xJzGw2QKEV4wF3STZAwGgdM/xiNkDHo7plMXA2QABLJxIAwTVAOLxppJb0NUBMqLQ0mQs2QPh66aq17jVAtXYU3bW8NUDEML1lm4U1QJ8BOSSdPzVA8vYSty/dNEAR1jLra7M0QOlnPcFVhzRAM/ZeoNZiNEAn4UayiXs0QC70KnL5TTRAFCgT6gtwNECz5uLcMRc0QIvm9j8MfjRA1e8Ug4dFNEDVZITpL64zQIvFeQ3hczNAIahBWCzKM0DqSOEyS8szQCpUE6K3MTRAimfEjCq/NEAkMPEZfvc0QAL6M1IBlDRAn16ldgXVNEC4i5s5fpY0QE1OK4tiXjRABX31VjTiM0BtEw1Fmlc0QAny9LaEjjRATdaO9UKANECyaV7K5rc0QA/V9lf3SzRAPK++BWgqNEDa4eDyC080QJMIWT00DDRAWYPRxZpbM0BpxO/xmIczQM2jxkVZCzNAAidR3WjGMkDtdXwYuGMyQJKIWcQaGTJArCvHYvYrMkClpngjtRAyQF9OxiifHDJA//14k60RMkDPDVo5dlMyQGXR4gr1KzJADNf+mLw2MkB3DeTLbDQyQJu5dqHuMDJABywakUU0MkBbBuYueB4yQDA0kgLc5jFAADkJpTlwMkBRzi+dQ2YyQP2xvM4vhTJAUX9b94IkMkBKdeUZA/YxQLiHvCEULzJAY7dnvDydMkB7ZZlr9V4yQEaNjjasCTJATlwqeRzcMkD1vm1g25oyQCiIp3RsyTJAH2+H/SCkMkCIRdI5YcAyQDuDUCQ57TJAgzJUXR8rM0C3agMDwCszQA5JZ4t3FDNAVHJ1RM1kM0ATeXZLiI0zQPWI6qXRBDNADwy2fQWoMkCLbO7VWokyQNOup2+/BzNAu/or5Fr5MkDBEP8tl7YyQIssUmgRkzJA+slgDjOZMkC73fM78T8yQIIdW1CmMzJAm6udeAztMUCSozLdnyEyQL+xw4pNBDJAaYT3yFGEMkCL3suriYAyQH75QxqLLDJA29B3qOfDMkBxkwWgvDoyQKvh/Lnd4jFAaReC6g/vMUD2XiATWeQxQJb3Ron1RDFA10/Lh1Q4MUBe+UhcDAcxQJXKwwRpHjFAcsFCIyWwMUAkld9p1zMyQFRjGCZ4XDJAAyM/xmmeMkCgeihCNuYyQGJP9qW77zJAWExxbFQMM0CQI/kyWqQyQELQ2oWlczJAocfyURpKMkCTRoYboEsyQNYPIpM+6jFAn2FmTggoMkCNUFysBzkyQBI4ZWN19zFA2z+MQFzWMUDp3QvqJ4wxQL/3INHu2DBA6YbPsidXMUDZmxBfGgoxQAnMB4imEzFAmMbHoQ8cMUCjYEb7U9AwQL16tL03XzFAsdmA9qxwMUAVODAsrbwxQMODE/AF8jFApNh0iSv/MUA65D7uLE8yQFZfd3EW5TFAInKZ5DDXMUDf08LHh4IxQMDddtJqUjFAz5fpH6PfMUB/Dr8AA+sxQEpNqEY9ljFA8se3KhBQMUCyQMYpCmYxQNmnGg3AVTFAOyPpsCMEMUArh6QTwtgwQGXaH6zQzjBAzu34ROzdMEA+YytFewwxQPGDKcoLEzFArafw4pY7MUA3DqPWy9QwQJc2nDqjPzBAE6SZJ4RtMED7XqBa88swQCopBc6AoDBAvYwfI5eEMEDVmx110s8wQG5iqGkioDBAaSW36G3aMECgDuen+XYwQCQHlffU+TBAPcitw9gxMUBdOSkKzvwwQFTZaQhUlzBAbsvWorhIMEAn7qVHKf0vQISGr0JRnS9APiDHDRgXMEBao4sF0iwwQDFuUeLZ1jBAr+dtfJkEMUAMcFVUPOswQFM9Wg4bsjBATi875mrnMECBKtQO8o8wQGW4J4psVDBASO0TenFVMECxZUC7mwUxQN9VYYqJMDFAAu8b6f1nMEAnWkj6fXgwQD/FD63aiDBAc7agYfFlMECihuyVszAwQHxqKVhnti9AZeiH5rEZL0DB9DS7B08vQL1EfU72Yi9ArayWpbMXL0A/Hr3Nlu0uQGVmYxzE+i9A9NIgeF3jL0C3ZT0f/2AvQN1d4F4p3y9ACObtQ9aAL0DLfe/OB4MvQP8i1Z18dy9A2LM+tdbiLkB0LimX0RQvQCv+DA2nQS5Ap/aOcj2+LUDZMLE8l44tQKS/XE4veyxAwFgRduMSLUCkOHaX2qEtQB1SIWNaiCxAWWoyZaFhK0B/yoZ6vusqQOWvCsDu+ClAwZtOQNZJKkB0un9XmkwqQFdLcQyukClAI7HtO1W8KUDvgO9cjBMqQEC0fJ1apCpAQw0oCK9aK0Cr9YdM81grQChf7Zno6ipAzLjXqSn5KkDHPup//JUqQPPwtfI1mCpA2L5DNlgIK0CLMHYGbr0rQNlAezbjdSpAEF/6vOB8KUBoBP1FY1EpQIS6hF5mFipA9GeyurmYKkBwZDoOLsErQG88XYRIMStAmHcd76giK0Dpm3xaj9MqQLfC/Alb6ClA05JdcUgrK0A8NMwYt0IrQLln3GwtTSxAhMoIXqT5LEBTfMjJxs0tQNQFMiusCS5Affc4VADELUCJCXPKouMtQAhXxIjG6ixA44zNzkcxLEAXVSPMauwrQDP8FPIlJCxADYlh7zCZLEDDQhEkmwQtQBPvjTgEsCtAjwtMZSN1LEBc8GkHQOUrQJWFtfcdvyxAzOVknzSZLEDwHjFNbSAsQIX/t0m04StAEFy1uyH4KkCXIeo4ohsrQC/Y2KcebixAmw19SYfSK0AohqEXBZ4rQDh5GMurFCxAhYAOmKDhK0DZQ8+13ZwsQKnF9122oSxAU9AvQCOwLEAhPbexZCssQPGk9cRgaCtA688pStWRK0C44lixFP8rQHFV/Zhi0StAgG4PclkRK0DLWOqWaRcqQMcv3UdUFypAGbipyHdGKkBNjnTeZoApQCw8ecptoilAgR4Mr37sKUBzQOX0BFIqQBRRGmwKBypAbAnsnklnKkBs3j8LISsqQBsocmqjeyhA71WIAUe3J0Cry/IyGbYmQEsSEfl2eCZA8IgtULdoJ0CVG/kb2NUnQFW8n9P0aShAA1lC++GSKEDlm2k0YfknQHHWHuFDeShAX8ONaHXWKEAYmqTL9aEpQAgvV0psbClAaCSPkuANKkAdreWx2vopQKMiA4axuCpApeVO1G+YKkDskeh5mo4qQJGFeHy6typAI8NYFux3KUCrd3IbgP0pQCE539DIFStAH08Xo3QQKkAAb8X6mmsqQIvjMfIcZCpAuyyyqFHuKUAge5+UhPgqQKPlrQmHRytAhW6wDFOlLECjGBwBXhcsQJhsYYmUdSxAoINZblTiK0B4e6fdU/MrQPwNf5dkAytA62mkRgeRKkCd9WqtqugqQJwZfV6J0CpAuwq1Y5nfKUBrArmYJsAqQNs50TRB2ipAg5BqdyLnK0AzMYGrsJEqQDnY7kOXECpA7LiqM4txKUANBscGWkMpQDR68C8LVilAxUVqSItRKUAJNwN9aF8oQLt5DUCsbidAA8HvkAAfJ0CL/DvhBHMnQO/nMWTREidA5QN3Ec+2JkBRs2Ha2egmQOcTPd8GZidAOVb7+rEQJ0AflgLFzcYmQOvfE8nTqydAoX4Dxc2TJ0Bkle6UATUnQIlBN4h0mShAxMsMtMwOKUCTAFsT+LApQAgoywcg1ipAzddD7O2XK0BfE7QT4LsqQI1zKIM+4SpAu9kl869ZKkCnXsEspgcqQCHXxZk0AipAZRtrYL+bKkBbT1mKjGUqQJlarL2WqypA/842yqFqKkBR2AP1/AEqQGjI6B7jZylAddoz7+3rKUCRo539yhwqQATs3YPOpSlAi63c280MKUDpJFd7gRIpQAW6CN79jilA116tUsvEKUD/Zf1Jbq8pQNe4xNT/BStAYdfgpWRYK0CVrcxi4QgrQJ0X6+0R/StA5O1ZWF6ELEDtog6KuEAtQMcxWUexsy1AgzUHEFXWLUAxi6FZoZ0tQGkLVEIPFi1ACZ3R14JnLUA0J9XDYhEtQPVL9S9YXC1AbykjEU3oLECsZ/QmbKctQJtbsUZjDy1AwVp1uuP/LEBP3GIleWUtQPhTqa5FcS1AcVBk5kOqLUA9RnQmKEktQM9n+ZEU1SxAPKgNFdQZLUAMIDkbHRUsQJiJP6BDwytAyTCCdcVnLEDIudgYtuosQGxM4L9a5y1Ae1eIdZrjLUCbZcOBhKAuQGm7yUNH6C1AOIc2hDQgLkBPPuqyhvEtQAxDbSwSUS5At5SKyNOzLUDEnZtwLR4tQA8OLzWRTixA+d4e4QW+K0C0S29q2V8rQDzrxX/bKytAFYUbQoWKK0DfdPMXBtArQKEAM5QsrCtAzLA6kJV2KkDNrea5+RYrQMkDAr7BTitAfF5Se/NcK0BIeLawytsrQBgJ5nSoKixA0GD4NnDkK0BwxaZVp60sQOP3L90coS1ALFuF8JHGLUDwaEsPzLEuQH/wdz+e/S5AtHeMw+lnLUD1tdxC2s8tQLitPMlc/SxAmJ7i5A0ILEAT8DJ7fAosQIfi/oPJWi1AGF19b0uNLEANIitnGOssQLBj2T+4nStAw5UV23d3K0CMC1Q1Ci4sQN8jEbYPHixAEa2sj82cLECIxW0ie3gsQMkNQmzDky1Aw+9as0cILUBnayX3vHQtQEwnWrQBhi1AzQltKhRxLEAD7Vcghv8tQOW4fk2HsC5Ax/3FR7RyL0ADCMEYISwwQA9bN58dYzBAfYY1+943MEBfqXh2UHIwQG13LiXAgzBAl3XDMG6LMEBzyfEWcnswQJ07paND9jBAo7vDXh9kMUDLpNzHwYQxQGUp+Hx3TzFAyUjGcqQPMUAcEX+sAuMwQCjs7Hec7TBAtBQKEt3vMEB8hZHRSc0wQCGW52GO1DBAKR5HAoyjMEB79W4MmGIwQG5xlaeStjBA7DhFBeS4MEB/9+aWXPYwQBsC8jO0/zBA8PVnoA6vMECEP41ptjUxQA1S7CH45TBAQ6kSnnSvMECyMaZuqG0xQEsRqL4/8DBAIsVpufrYMEDtl2gFkZ8wQP020y+43jBAIJ5Fs8IBMUAMnp/BZmQwQOdBqntvSTBAeZl1UaKDMEBjKBm+yFkwQBOn4t6KOTBAv5rYmgwdMECZj9mw+bQwQGNVNr5ScjBAUMR7xNfRL0D+I5pNM0swQCkBQzrRpDBAIw9Nh2m2MEB6my7PrAAxQGVoTA3VUzFAZeNrpJdBMkDHVn/tAHsyQCftX/gHvTJAo/NP5/0/MkB79lrNCggyQKZAh+a6RTJAh8+ZG6WGMkCjCuTIFi4yQEziZB6o7TFAux4JYT8cMkBFtx+K7zIyQO3ubMIdDDJAX+woPjJKMkB4YaPbuTYyQHPAAZrDfDJAPeJPzD6GMkDq5BvHk54yQPS3vTRYWjJAvWW5mpiLMkA/KegckHcyQOYmTSuRfzJA81Ej9R/fMkAjvMA7WdcyQAZ7bFdCXzJAGStJASowMkBNvuneoWkyQKZdtJSaMzJAGRzqAHokMkBhv3Y2kskxQJfDUEr66jFAGFMVhukTMkDH9gD+wtUxQBwxtO4N0zFAeuAK/iDoMUB7/hSHEb0xQCEffCvwTjFA0BGC26cGMUDLDGSCBS4xQGxBaemsvDBA38OeAq16MEB5NV/QVAAxQNR9DrJ7HDFA3CXxqgIHMUBv9iCUP5swQFHrn4BCwTBAahAQ1Mo/MUD3Zu2A79IwQFsiU8eOyDBAye/Cl7PlMEC6BPRB1sswQJ31HDTvcTFA0aoSPQfTMEC/7hIXvZowQMaWmCJPZzBADdJLGXRsMEBbgRXAGSMwQEXka9clHDBA9KLTA2fvL0CL5+NZPBIwQFpshbp9QjBAwbgcee/KMEBgZEX0VfkwQBMyWR2X7TBAWbjjzCWkMEBzNHH2ZuAvQHnDaun70y9ABbIRcCRjMECb4XRduRUwQPbkj/Z3gDBABqGgglygMEC1rFhqD5EwQI+1eTCTSzBAbYB5ey4VMEBbua75nX8wQPAHJWYFbDBAwbw4Zbu1L0CkIwWuBC8wQNutHtmwUTBAcPGqPCwYMEAJW9d7nZcwQCNSm1FZvTBAF+nhbpsKMUATb3iRmTQxQC43ePkKsjBA2BRbQOiFMECPNxaFPWcwQN1Fx+6M3TBA8ZDksGc9MUCI+3iMTrUxQO/EFzzlfDFAO+SmcpvEMUBZlpOH7D8yQM9WSINnNDJAbtC4F2wjMkARNROKcZsyQDeF9q7sPzNAYkshTfLpMkB2zLh/x1IzQCDkVgTo6DJAHz8/+xqpMkD03qGcYesyQE/FpwSs8DJAsBAzmdgPM0DNGzstSdcyQJEJXdNvyzJA14zE7pzOMkD0AswiwOEyQKk/9GCI3zJAHqBIuxyPMkBsV1eRpVcyQK2qo5w/wDFAIcnr2NqrMUB9sxPJs9wxQMfK1ZK4fzFArfpGeONQMUBCwN2N6KsxQF1mFo0nJTJA97jjr6CnMUD6E2AXzUsxQKt1u2v4fDFA5JZ45X47MUDaZXhM710xQGrektRIJjFAJTH1x+d0MUAnMXc4wJMxQEgcVnDznDFA/FUzP3SEMUDLoQgqWzwxQMkh+XOxCTFAU9ge4C4SMECwswEGbt0vQMcsHPxP9i9ARd3FrXICMECz9OxbAQcwQHH3aEdvEjBA2OXGbinyL0DvZSiTBMctQEkNdr7n1ixAVBfSkHZpLUD3PXOTWDstQBfwTVpwEi1AgW+4fO5wLUDPLkB6XgsuQMCaMMJuNC9Ajy2RGTAGL0D/gz2PGFEuQDXsRxJ0xS5A/CFOxuPhLkD78eJf/3suQGnOMZOm/y5AW0bc8WP7LkBrM97Ww6wuQHQiiwi2uS5Aa0OEyEb0LkA4fIjaTGotQPnhNERwsC5A4xjW4juTLkAIS5231CMuQNB2NaKBwi1AgSaXmKBuLUBHPEarLfgsQPjEmGla6i1A9UCkb/cMLkAc2W3diPAuQIckhZ5iwS1Aa5CEz9d5LkD1QE6q4KotQAsAD+feOi5AZb2Rtjt5LkCQDLS78VQtQExEsmCf4yxAt08uVb/9LEC3bq5HZpwtQHHcXgtkCy1AIR39x/0KLkC/ZBw+WL8sQLWnPfdxfSxASDbA2iIZLUCjUtXNz8csQHPT+9OIzS1AEcTEKF9dLUBkZM7wmKgtQHea/P+iTi1AjK5obv8LLkDgvZxsimUuQJgUbvu4Hi5AJH/+/d2MLkDZ/NZYsLAuQHvvWf7rpC9AnLYhSUwyL0Ckm/7c0MsuQPtfvnbK7y1AcRQmioCyLkBhqcQiTXgvQFTyryU6rS9AEsghlFgIMECUmx0SJ/svQG5ApMQ3BjBAHrsjP+JrMECchM4BL4UwQAuyJqBuujBARgHJol6/MEC9+JoUxeQwQLCt7xa+DjFAW5uFExgRMUAhVAxrx5sxQGn+GXhfNTFAOisyW5IDMUDdM+0WsxExQCnOpCGAHTFArQIqorvhMEBwVWAK74kwQI4sw68SfTBARlRuDcf5MEA7mrjJRwIxQMr4JegGYzFAfbcoeGg2MUCZdZpy+MgwQKsf6WqCwDBAneetkjrdMEC1/db9L4AxQF77K6ut6DBAfVuwMx1sMEAamJwF9hAwQFValFCiNjBAnd8HAR7uL0B4nuMxjO0vQAMbuedTJS9Ap1H52mpfL0AnBPj6U9MuQOFoKU08ci5ALBm9TE/KLUCtIZC4B4AtQHlF9fhDEy1Au2eX+EiDLEBlpCgtaAosQGmEY9OEPitAje07I548KkDvIygg10YpQBRKJl+MgClABJyRQZLjKEDAp/Z68RIqQIx/JZIWDCpALPQcNiUYKkDVQWuYajsqQD9/JPBpWilAxPbbZ0vgJ0AldHJEF68oQF10bVPvCilAdJeJSpToJ0Bfr2q7qgYoQPDPamCdmyhA5fQcQT7UKEDbiaXf7FMoQHWv21/PMCpAn/DDBdfjKUAg62treu8qQKxenki60ylAsQMIT3JUKkBnEGS+KPInQFegOpHBAShAgCloO7NKJ0DPIXxyO4MoQBepfbhzFChAWBf7ZDkhKEB0wKDJD6QnQAPdEwQ43yhAfwtavVi5KEB7X7chWDsoQPm9vDD6tSdAu3rLj9zKKEAbgt6mnYgpQDlxwSrNCSpAZ4jAgYw0KkBjUqpfdnArQM09uQqqeStAUzqUPoDrK0AVaFiaNwssQISr675bKixAcJYPNwJmLED5CgaxJYErQHFzCUEBbipA9DV5hcp/KUCI7eN9B2woQDA8ngd1dChA5Tc1rC2wJ0Ak4OoJYS4oQBTvghp2KyhAI6gAvZCOKEBd7O7PmMonQANYLzkdMyZALEBx/+VtJUBrowknMaglQLFP4b7UiCVArVWX9+Z2JUBVqOtrUickQGLtB2Ib8yJA1aoigSkfJEB7k6BEYsYjQDDWkMV8qyNAC2Gb/TlZIkBltdbJrLchQJhOA+PIOCFAOFITCDzwHkBhYPEe9voeQMD1DfeY7B9A16ob0KarHkBodb3t2RgfQOaM1BqvRyBA6i7AkqgaIEDT+Owneh0gQEXzVYjG/h1A0FDZNgGTG0ArxTlwe6QaQBHhmpyz4htAUBcrNS37GkC9opOe5cUYQAw49b0ujxlA+P1TypfBGUBIFHjNa5cYQAmAiOcdYhhAvSu5mJE8GEDAPkXqBN4WQPlHmmJanhhA0XX9AOEgGEDobOdjCnsYQJl52+nOphdAF/HCTMjYGUD7GcbPw3sZQNxOtiKYRRpA7x7EIsRrGkB/CCRap6wYQBcwkheHHxlAdGaiKM0JGkD18ECAygYbQOHBfB6heRxAXAMYcsYvHEDXBkm7UZscQFcA2Fk0QR1Av09XCPpIHUDNovtqENQdQNR4bYK69htAFya6/Jp8GkBVKWFhCjwcQDHp+iovVBxAix54L1y4GkBXHkkzXXobQD8cXdUEZRtA0HNMVYQhGkCQ/d9kZ2IYQGwqVYYCXBZAZ+zrLx34FkDYxYzjMVsWQC0/KFjM2hVAEf2Up4MiFUBcxWdTLjwWQNfNlp06nRZAMR/POLVsFUBVh+x2/44UQAqeF3SP7RRAevo+x2csE0C8uDKwPyATQI5pdSRIdhNAu8fYQ6ZhE0D/0OvDAbwTQCfm7Ghm3BNAbPhGI4d6E0DPK1oaAGMTQBumZSDeUhRABMaCqVupFUCY8zw0NOEUQHtVntwCLRZAq2J02BuAFkDhzw9iWzkWQGfO70cnGBhA33L6gPylGED9XJ8knOwZQKfJsWY5/xhAT5SC3JtoGECxd2Y6jdgWQCl4tJ+IpRdAJ31DlVIcFkDS1zLiJh0VQFfk4MadWBVAc38KGBLvE0BEgJh0eCIWQDHPO5k2ihRAL9liM1UhFEAvBoQAOB4UQDth1JKIZBRA5j6IHtf8E0Dk5gjoP2gTQAKNzxI3LxVAWbrzfJh9FUAdUcleu0YVQDwx336Y0hVAlby5cN9CFkAIyMOFHkYWQK24hs7dPRVAB7wJr/0+FEADZm0pmvgTQGmgiENlORdAP31UzuoVFkAUjPZoTAsWQKVVXyrVbRVAq8UAkWNwFkBLiL2dfoEVQNrypjXV1xNAaSwPjRd/FEBnelBwZ9sVQL/AxjdMoRZA/yE3yqGaF0AFqPP4UmsZQNti0eTqORhArYrApfVqGEAcMJyjOfcYQBXlJ8guaxpA7xfh30SqG0BIJ0AR97caQIOnFhcWohpAXaHUG9RBHEAIG4wnA+UcQOn/FsSfbxxAsy1YUPXqG0C1102ptb4bQL9wuVnDrBtA5dcDw3VJGkDLX9tnatcbQMtJCtzrpBxAtxQ3HI2iG0BIWlUQrYcbQGeBGzGAgBpAFfdmZLYpGUD4brOlElgaQM29muu+YxlAkMgJrEf5GUDgVh01NSwaQJyiLhJCNRtA4OJfHPKdGUAABQnx0jIbQKS+1fehcRlAbePXQA/rF0ApRwR5PUIXQMVUmFSNoxZAW+HFnIxWFkBw+ZeboswVQLuSDvqPkhVAoec4ddDhFUD4usTbeDgVQMWelYzmAhZAM0W4Tde0FEDTN4gukD0WQCnVQPvu+RVAnCDZOIStFUAG1OBz0PIUQDFUvAtJ6BRAZ+D5WBv8FUD7C5fHkB8WQLPX+ZiD0BNAj7qlKkBCE0Dcvhzy6MMVQIsmLKB2chdAw+mLTkZ6FkD/ofLIPaAWQFPfJsrtWRdARG+5k9WvF0B89SlSW4QYQCgYz21nURdAUZ5qOWjwF0A7pcEg7cEYQNuSrR0poBlAHOIQ/p2UGkBtzIJZI7cZQM3VgHP5YhpA05ckZpRcF0A/8UmoLFwXQLcTT6Pw4BdAKXBGQm1DF0B9wtvVuHMXQJMadOWtTBhAwAEu+HsaGEDo/vRh+a0YQOxCBfTkQxhABNNPMiMWF0BjpqWsgU0XQC/EdTaoyxdAwxgB4xk0GEBvxtgBLiYZQPh/bKKfGRhAY8s1huoMGECLqikdSEoXQP+cBLTYzxlAjMpLma2MGEDINh3O3pQXQElQeTvWUxhASLX1EJ96GUDj2mRAU2QaQF3hqsdZXRxAwC+p+rjGHEDRBT9f9GweQKMo2T63vh5A96CItz3WH0D/hI/zIXkdQFEwqOderB1A8yaqMQZ/HUDRhtImUyAgQA2JsV5FYx9Aj2a54lFBIEBj14wGfxAeQMe5vmiWPx5A0Namj/67G0CAZAeg7pUeQPhGqfAQhx5A0FUcydT3HECzXr2gg3scQGXaILoUPx5AIeGVNMBcHUDvHsFts9IfQNGsRLUJrCBAJ1pbAfbvIEB/0bDEM8ohQBB2GD/bdSFAbCzm3gbfIUAue5DV1BwiQIdNNx5BoiJAmjNGE5a1IUATJZfUM54gQMF/Jp8hFSFA07d2c1vBIEAzkod6bZAgQGvhvT5C4yBA2S0OcorpH0D/h2d5ytYfQGU44W+/AyBA3U3bHN3KHkC4yJifPewfQGFuzMzsfx9A017Ag9keIEDhvXIvO58eQP/qiTZf8R5An/MpppjcH0ATmUY6E/4gQAN2+jKP3iBAqSaSRfp/IUBnvE6bw9UgQLFQO9lmDyFA599fGjMTIUAx8rgXMPwhQOC3RN+2CyNAMYL5F8MSIkAvvswnnqsiQM/dYXOUuyFALBLf9CTaIkBpthhVQQAjQG6tdEKQOSNANeXG3abSI0BLtJGZm3QjQIpWyujP1iNAmRxmgPqXJEBCYfz5/+MkQHjv1NuvPSRAkhv4hwghJEDIzzjNajslQFSn38l6xCVAzLbf7a94JUB73NEq5ZMlQHhrxWUfryZAo51u1IbCJkBkYdqSLzgnQDXLDBDNdiVAqBMjJeFiJUDiZfpz7TwlQH7rc7ptUSRAoenBkXXdI0AB7yI3trwiQKOpuFmOniJAduXurTI1I0BbIOeB13QjQM1FkPKmIiNA9n/yQoeKI0C2VClixGokQM1bIlcJnSRAxXSSG7uiJEAW0BWi1kklQOmqIxh/TyRA16C9yOhDJEAsb+2vDhYkQNO2umpm4SRA2xJbfLcyJkCQ/mkj8PMlQKOVt76IhSVAjYL5TQ1dJUD9cTl5NXQkQCBa8fxVISZAkH+VECIQJkAUGjeL6AImQEjKDK61KyZAxIEzcUoCJkABJJgFbzYnQJX+gvvXKyhAI+1cngSJKEBtk6m19QUpQJPOje6vsChAWMBWdEWlKEAfn2iFDFwnQICz8cF6lidANTctVy0/J0DsncoL7FgnQCXR0CqZHCdAcdXQYGWCKECJyzScUlgoQDi+dKBEXSlAqXs7yFpfKUBJ9C0nPWMpQHmGgNc/JyhAFYQqLFiFKEBsbrYqnHEpQDsneaNMCilAL0MyiwFQKUDHUUW5rw0pQKtkm9STBilAnOlemD/QKUAnwN5MDiQrQIBpe2lxCitA61Qe5I6KKkAt69puVfwpQFAS9AMuYilAYQEh381IKUBh+R9bJzwpQJUs6QxJmilAKZr6PWfOKUC4x/PdHkQpQNjn99tkjClAmbjJZcHMKUD8IbfD4NUpQBkteuBnTipAcETvx6DIKUDR60Lot4YqQEP049Y1NSpA61MJi2c1KkD4LrYGdc0qQKUl4Is9VSpAgB8RYoAYKkAZ1aOAfX4oQK8vvfF4mChA5E/+hiB5KUCHcgtbpzwpQDO+kIvoXClANNZw84DfKUD0SJXjgsEpQCznU7OpGSlAk2NpY4WZKEDEkht71QkpQNVoSFzO1ChALTxIWx1yKUA0MzSvo9QqQDW/ZX1LhSlAo2+ST61XKECJuP/9x34oQCsm57APTCdAgNb1Z0cWJ0BZK91O/10nQP9D/4tgOydAgFgUp35aKEBdDPWCsiIoQKvSzokelCdAWVixq7jNJ0BnMV7lnhgpQG2snh7R2CdAp2w+XkCDJ0BsrT2uNyknQDMyznS/SShAzdBN8vWRKEDDIAwj1xcpQGQvg9GF7ShAmxQ8svj9KEArLOWAfuIoQOhgwSquWChA7BtLXq4cKUBgy4RywkwpQBsKvm/ATSlAXzkE19YNKUAIUD8DVEsoQG1G+iWxPChAVXReHJhrJ0AtnXqpj4onQIsFGKA7QSdAC8VwCD8HKECs6NrAPzcnQCjSRpJpFidAi/kc1TVBJkAQVrVuH2QmQDxNWuWt0iZAAGqAZSvDJkCgiGtuKvQmQJw5ao9obyZAV1Bef74uJkAnOw9zQZUmQP0YLv6TvidAPxjX0yM2J0ABlajDmb8nQCQFqf13pCZAb1gcAfkyJkDU6ukl/M8mQMu/p8+ypyVAZTH8VLGYJUDn7wGrf5YlQKEt+YH6hSZAjL3CJkI5JkA5kW0vLTAmQHD5dRXHUyZAID52rV5lJUBVYcgcB4MlQKt8PtrwnCRAXTbEDF38I0Cw2BrAMXsjQEdCLt8IHiRA8mEz/KcjJUDpaWKRLjIlQLsGGGt+LCVAJSJC7S+1JEBIZnxAKSAkQLQbxFwTXyNAthOK6WZnI0C4ad2E90kjQFDuso5IOSJA7qs6HZzjIUALZA/KPJYiQOxus+M0LiNARwcBxKC1I0Cw89nRD2MjQMd1VsQRJSNAQzyf2QrqIUCxo1Y3wEUjQPvaIWUQfSNAhejQIx58JED1sMk8u3AkQFp25XZEtSRABdAVlgixJUBh7cdvaVcmQFQsHsMb7iVAG1ugr8LiJUCFGqEyRXYlQKo7ZZ+xLCVA33YXb4ZrJUAVOzwmgJkmQLxlYY1ZeCVA4JC2bpI3JkAsLG28KnAnQJ+cRedNVydAxXwUquyTKEDIGT8f6tsoQH2o6Z4cxihAaUv/yp3NKUCL+P0wUmcqQAsA62d+aSlA5eFnavLzKUA9C1nGjAkqQNvXp97OJypAEXpbidiEKUD7ZqkkgbEoQDReULM2/SdAcM+TkOf6JkCjlnUfv4QmQPQBvYjmWSdAg7mW1RZIJkBkQzuOJ3omQAg6Hv18UiZAqMEqxDo3JUAPqQC6erklQMoWgXTL5SRAMFfBpmigJUCN43V5A40mQCM4UXaNECdAc1q3XcfNJkD6lmf4cEMlQJkXOTjJzSVA86gKO3CSJUDtQqfLEmwkQGR3/3kGDyRAIUncOpHQI0BrKlRR/p8iQFLhXrZ1ViJAcVj+TYSBI0AUwexhqp4lQHWPHFaCfyVAC21g9MxYJUBgSDOWRBglQHTbyN7ofiVAuZzafYH0JEBZNXt7CfwkQEtneJBSryZABGg5z/pnJUDNlNpkJt4kQHl4nyYnXCRAfC+rzo9NJEC9EagHaSEkQFU3QdUqyCNACMA2N/kzJEBluakc3DglQF/vr9JluiRAUZI1GCn1JECdQDkgcs8kQAVzmkicmSRATKOzsqZuJECgVqdZuBAlQDPPn8X+giRA0NAeP7DIJEBtgObCVHMkQHV7Mh3fgiRAYqd9fPTtJECbLAjgKfEkQOPoGeUx1yVAzy5cGg07JkAsvJN2U8YmQMEn78+nQCdAwK/yg9q7J0A3Ib5wV6cmQCDeVAkbuydAXOLml9jVKECQHLJXgbooQAyRd7wt+ydAkMBaUVZmKEBrYcl5HXEnQKAh9YvHDCdAKNZbUe58JkDEOaiJDEQmQJNJqad/7SZA1FvYMocuJkCtoL46HUAlQE6TP70w8CRASbJf3ngwJUCP6uvbKf8lQOgysBtu1iZAnXbLA5T8JkCQfQ3aIFgmQAyGnP1+SiZAcxukhWCvJkDDm9eNB4QnQIvNSn4wJChATXd0YSLOKECE+NrGb4IpQEmSG3czIypAsLQ3huiyKkDvM8rVotYqQBFwbBidDyxAveoP18ieK0Dp23ThiZQtQP9em75VlSxAGAHF49ihLEDVd55+B1ctQMVn8UXLeC5A1c2D2OZDLkDXlNQwg+csQFhJUdfd5SxADCdUyYAbLUARIQs0jd8tQGw3dwPIcy1AmUiW2mZ2LECX48NQLAcrQIAGLHrhFypAfIXgxjJrKUAIt+1aLTsnQLEU2BFJEyhAKDLttwb6JkDAa8FmNrEmQEybSem5CSdAUPT0X9NnJ0BA5aW6YRgoQG18dhCGsydAjH9DEIFMJ0CnpqyEzZEmQFhk2dFhriZA0zIkAVGjJkBND+UInMsmQJ9DJaMemyZA0RwQ/3JnJkA8xF3U+u8lQIhnuJgCViVAKlrEmH5vJEA8/LFB6D0kQDA5Z/JgkCVAtxlDeoppJUB0ggufb4MlQK+sdFVinyVA3Ktk4qtDJkBIsANuI3smQJnnmQwIoCZASdDg1VcEJ0Bgbm+q2DInQDQU7C0L+SZAqzs/MTtAJ0CF0Ccx2z8nQCBoe9pTCydAGwSSl2JtJ0CEC3amOGsnQLOWmPiuWSdAwM3RkNhyKECQOXDlEMQpQPkPFbO2rSlA6SdmINRbKUAwKWPg1ooqQEgyJX26vypAWWt6Im18KkC3AWW9q2crQL+OZOwp9SpAgQOok6B7KUC4W4RSpJMqQOdc+NU7xCpAI8OtcZydKkBduSJMrmAqQJ3Z5FzodypAPakt2PxmKkDIWdbN2MYqQHwMcRmxeitAuGac0ix8K0CxKmWX7D0sQDReOzCYeitAk5iJ/PsCLEABKR+iChEsQGcnKe6JfixAs4emush+LEBLw5avBl0tQNVpl5l51S1AFZxOLidCLkDsNbkNoMUuQE2x4IYmfi5AAJCtiLipL0Dr0TLdkZ4vQLsl8gv8BzBA9dOUl7sGMECNmT8ZZBMwQEeSITsoOjBA7J9YoCnqL0CFp2j+t8wwQFmtPewNpzBAxzgIfrBoMUAx9+fXB54xQI0O/GRrojFAs8OK8bgLMUBVZUGn3rkwQBGiHF0XHzFAu2TEcAVkMUC8qcw1c/0xQBSKteW9tzFA/Rs1b5ohMkBhSuSPExMyQK9wc117ITJAxyrLXSkIMkAZRf6GuL0xQCu3f7sZRzFAZxJx8QmCMUC7gPT25LcxQApK2tDbizFALn+cN2w+MUCPHgH0eQ0xQM9a5HGyyjBAAJQ4Gw3UMEDnm66MfLcwQDkBas7VWTFAPT+8i9d0MUCTGKDN+kExQLGFUCA87DBAYpmY0U25MEAJ9ByOmjYwQCyHN9o+GDBAeyUrFq2zL0BzlcsYgx4wQLAR6C/U3S9ApPyPIRIoMEBdZAGJ1Y8wQFgrHF9bEDFAOebScBECMUCY/xuyH9IwQGs8FpN0eTFAKwo6IeiCMUDYHXYHigwyQGfcbhfcOTJAb5+CZuIPMkBd9OKlo2cyQEMYpRanHDJAzcgRcp89MkC2t/XbLzMyQAo1+MRoFDJA8dEVg+iSMUBJrhQP/bgxQF24NnYctzFAU7Dal/pYMUC7/Or45gUxQPWZlW9v0zBAUhtecWPbMEDcZQyFetEwQG2Qn8UXFjFAooTMIan4MUCOR4ihd/wxQHAU/FaCGTJAKx7HM+ifMkDdYcxbNEczQNKvCV9cvzNAoepKaGX/M0Bcl/sITvwzQGN2LawdxzNAcphJZYuQM0B0QF5pfwAzQO3kpDx2hTNAOXUV21zLM0BbOp2y1mAzQOEWIIWtADRAk0au/stKNEBl/lDM+S40QKgLG1t3/TNAPK4+3i3rM0C0oXR+YS4zQCWTvUKw2DNAG81+L6OuM0Dl/cwYcFwzQGmBxY8SVzNA/5sR2UQFM0ARAnXJj8syQI+/jGozvjJAmfsKWioTM0AmHgAXRkUzQEFUMfKMCjNAvKkMo1U+M0DdyxML55gzQOBJP44XrDNAxyUivIc4NEDbU5n4kKQ0QL36e2XHDzVAh/5SbxTcNECh1VhPgvA0QEZVe/W+/jRAqP0BcsqYNEBBQPWM0mE0QFNJKbuFMTRAF5wXfFwDNEArRBNTcVA0QIqSoBAc3jNAO87ieg1tM0DHZrGL25ozQKeJeIXabTNA5KsncLVqM0DhMwQLhnIzQE0nYd1uDjNATalbeLVZM0BdEX/L2jozQM+cn9i+pzNAnhv25AF7NEB/gdkswLA0QCkah2jX2zRAdyObbqfjNEApRowF5DE1QLKoEjy1OjVAaAhHL2VaNUDPVSTJSXE1QN1MW1F/yTVAR49MAr5PNkDPZrgkSIw2QGsEo2f7RDZAHTgk05dFNkDY8tb4i9A1QMSH3uJx6jVAcBC5F5jSNUB5BF7NyUs1QNeexxd21DRAu6GXFJG0NEB/uEGG2rY1QOw8QQjJcTVATGxng0yUNUDZqDonvaM1QNPLjNs2ATZA7cSEDGsfNkB857Gfv7E2QJcLKlbIcjZAqO1qu+IiNkBUXjtvTYQ1QHy7jkamezVAJcDf2iO4NUCRGcL+kuY1QNeo81PN4jVAJ9Ui8+yZNUABKEvA8rs1QFOqjk/7RDVAG2S4splXNUByhDa4twQ1QFl63//t9jRAdQAQQ3WgNUCt7zHwpzA1QKIaT8FKLzVABcwqHvuyNUB4USvweYA1QAvNl5JDBTZAt4YJvlgmNkBowScZFDo2QJtDYGdbCzZAY+LEM7BlNUCxJxH7fuA1QKmRn/wzCTZAv/MMlgS7NUDRUROJoPI1QKN6sqYu7jVAVDbjfkMQNkAVjtGiA8Y2QIAkXwg84TZAwH2GmAvuNkB8cpSdfcE2QNUynGMSsDZAsJ8H//HXNkC8f0Ntl9g2QAMsz9EQPzdATw5pzOlCN0A1vTwnGBM3QB/PQ8i75jZA7DB1k28aN0B7EHD01U03QPAN0+EenjdA8RJJdq6sN0BbPxhqYWM3QAPIShZICzdAkdhEpQPPNkB/IimV8MU2QDAOQ7ZzNzdAWfjQJCNCN0C99Kp5OVU3QDihtgb62TZAy0ijmVkvN0C0d47JFKo3QBfb5Dz88zdASD3ph6UhOEAvr24fQys4QHAHNpSUoDhAr7E8ZfCcOEA9vTW6kgY5QPNZBo5qFjlAR8BWSQeAOUB/rwxi+lg5QImDGRFTGDlAoGYqN1kOOUCbsHlfp7s4QFNpEfyhIjhATZLYkJEvOEDcWNb1vvE3QPw8MjbT5jdA4Zs9dNx2OEA4zUKUsXs4QPGhlVzywThAlCm9cOydOECL+e7rxJQ4QCD5F92xRzhAEOnE0pX6N0Dt3xYimCM4QPWfV2QMUDhAPQrhMWkmOEA4DzROgvo3QFhYTYoR0TdAFPwDt+ltN0CkqGUyJ/E2QA81GCtRCjdAk9qmM2PCNkDRYo3Qccc2QLR75POVqjZAs8gwGMzYNUD0lH1RV5Y1QMlCEeoB+zVAQVkNLsl+NkBzw5//6XQ2QCQhuConFjZA5OANmQjdNkBd25xzJjQ3QJOgJVhb2DZAWy/7sAYyN0CEod543MM3QO3swS7OnjdAXCU2g2dBN0Bhg8dBoeI2QDECB+6VrjZAsNrnoJbUNkA4rLKYd8I2QOBVX0Vo1zZA6L4kYrp2NkAoRDi9dYY2QB0H7N5CyzZAHBDlq0QyN0C5rbXsNC03QI++HTzS4jZAUeq+Ab2kNkDcDSN0shg3QPEmgdiNrzdA9OdhEwXeN0BXDMlZFZs3QCQynhMk3DdATLGUu8IWOEA7ZSJ+3yk3QPVdMd98XDdAG6pMDgkVN0CEPbYwY6c3QLT1ZB3avDdA66lzDOpnOECJAwo/uEQ4QJD3X9yInThAhAvnYdwhOEAYfs2HsEo4QEU75ZHl9jdAHQfurTB/N0CTHpiJT3s3QC073tDraDdApWHi0NHFN0D7OluOnFM4QAxGosbUfjhA1ViUsv3qOEB7LgauNUA5QJc/Esq+IzlAe/tvHglhOUB0wE7nU9E5QC1T4zEaADpAWHeZfwCnOUATaRRgU6g5QPXkB1tnXjlAaWZYXD/6OEAPCgbapT05QGUzNRhG7DhABAcWpinbOEC5PVh5Mik5QK3ZbJdI9ThA/yNuhHnOOEBj6daZm4w4QIOYDmShkjhAR4gtfaqfOEBAszwxRx44QGhesfe4djhAoNuCUV+qN0CJtajD+ts3QG9SqNlx7jdAuKiVvg8XOEDzZxvcbgA4QAOB2QJe9TdA11KOeQo4OEC0ZdbguFc4QLenj0UP4zhAaFbsxjqhOEB7bSvMORI4QJiB5lHTXzhAn7m64lbXN0A1nUAV13g3QDNUaHBAezdAUFYnDa3QN0Ap4uOrGz43QPOI0BLDbjdAqBhqPAmAN0D/5n0Gsig4QJ1nngY57TdAG8J12JvuN0BopiNd1fU3QO3CKxrq2TdAMDTN+FqnN0CMH6NRNCE3QAmjAbi8FTdApDqe2D+EN0DrQNQSvME3QNz2mZw53zdANya4OIvQN0C137dzx/c3QN3p3/VPhDdA2ML0vXy5N0AYq3EXc3U3QOECXeRERzdAHOQG3h3fN0CNB4OJBNc3QJu7IXNBhjdA1ACpg3eFN0Al6V/7v4g3QLOSoTqfOTdAZd2ScEPmNkDVVe9/S9M2QG+qQccpJTdAxXugEqeCN0CAz/uuwoY3QNGcHLRSTzdA7IJoC0gEN0BVUU9A8TA3QA1kVtkkczdAbczIaj9MN0A5/XIsqzc3QD9Us/NUvzZAa6ccPkn9NkDlQRwAPfI2QAynxZ1+PTZAjxzhlluqNkDn6Y2dh3Q2QDirnHWiRTdAZOPkueuQN0AI9G5QddI3QFGygUxtajdAjIaDbdYaN0DR0MKD1uQ2QMAE9zVw/DZA91ZEdgbnNkDg0ExZGc02QAhV8G88/DZAwZRVnB9mN0B3eLHUnTI3QJnHgOC7cDdAX38aLDXPN0DjMfdHq543QPdt8L/DczdA135ucf0QN0AMNz37hI42QJ/Uawv0mzZAJ/Imlr3fNkAfnTNDJuE2QP/jtbNoWzZAWWRThYcjNkD0UrSNt801QPkq2vwUejVAwX/fM+TJNEB5YDu9nW00QBvru+ioDzRAgU0ZprNZNEBrn623H3E0QD9nEW5ISjRAvaapqF4DNEB97F7qAKozQOOBVcL7pzNAC3PUS8n5M0C64U6H330zQJt1KbX5PDNAlal74ZUaM0CxpOIa2VczQKDW+VmkYDNAraUfQdxtM0DVjslORvczQGWJitkauDNAL3/oywTfM0ANZUKV79IzQO9G6c+d8jNAnyWiFyNJNEB2uCwXRLozQDk5jvCWjTNA2mIWkRx1M0CJ/coWG4MzQMtQOCnK3DNAeq6kPx07NEB9/cKKJUw0QJ2HNb2HSDRAXijegG5VNEB3zb2bJUk0QGPmlpzNHzRA9Ax0DwhQNEAN0B0AzS00QI/ZbAIc+zNAXfn2CC7YM0BvhUpGd3czQGaVSdUF8TJA84+zsfMFM0B9PtEzqX0yQNHonoFDlDJAzVU/rXeQMkBb//tbf8UyQCdpoFVPQTJAP+elx3tgMkCtVXsn/2wyQFbyZy9AsjJA47QLJwYzMkBFyO0SHuoxQJ1RlW+XBzJA2a0qqnecMkD/mkN1EhUyQHz+bRDd5jFA84VgpgjdMUABbjVWeUIxQFqV5ml8SjFAB5vgCzAVMUCTuzqLs3YwQGlxabArCDBAn2MUtlm/L0DlfUxcrtAuQEzvEurjuC5Ax3KMVyqJL0BUZff96lkwQKWdGIhDPzBAlqkG3gZMMECNoTnDENgvQE27CpL5BS9A107huGWcLkAFsD7YuWYvQHMok+qWny5AaKjSeEeMLkCEFYcYpuMsQG1RUrTnMSxAZ8OEpKNOK0D/fsXVB6oqQOlt6K/aNypAv0nCsR9aKkCsSGXDh5sqQPNh4/YcLSpAIyX4k5bzKUAITOTIi+QpQNPjOJzteStAy3b6u2mRLEDZ9nQtYpYtQESbwnnXSi1Ag60KLhiNLEBzWE7w3QstQGELC66pZS5AWLiMJoZ/LUB7IRVbDZAtQFtI42e9lyxAOGPYfOIpLUDBFhbLcu0tQLWQfoqrni5AMexZHoSELkBQzwxuXwsuQMV46gLihi5AIzrZm5OyLkDHqchCvLMvQPvyoHn+HTBAtFac7VAyMEDC2FboJEIwQPiWDzN/KjBA7mnfi6JUMEBhrs23C0AwQHbThQiiLTBAVtcHGDieMEAG7VV3CoIwQFwYrgdhOzBA42WF4iB0MEBD7zc7QKowQDPafih1mzBAEK6kr+KGMEARgOdXKwkwQLwE5baSiy9ASHPHxMlaL0CBmUZl7HsvQD1OjT1xui1AB7E9q0IwLkCZs5mFJakuQKDZkChuii5AwZPZ3EN0LkCMFt5LKl0uQOD9Ffv4Py5Ak/ya1PVsLkApvug62yUvQHm0/oNW1y9AHXrD/tmuL0DMglQCoqUvQCHXLJSmoy9A4S6luxnFL0A98rqa4UwwQCOmiaXmRzBAUY7uATomMEC06onxeOAvQCfd79pfwC9AXCLCAnleMEB9j7t0KXcwQBracWUbFTBAh7UErp5QL0CrbZ3CGaQuQHFf3IBwRC9A4UBEMFIrMEBQYPh2rSAwQCAFe8j8RzBA10LmLnCwMEAdrwEo3p4wQHhNy0I9cTBAY8AY9/bLMEBw5g2OBMAwQAal44e1tjBAIxeY4lPVMEC1O8vIQAQxQIwfFpdmkDBA0ElQnwi6MEDP1tneaK0wQKuluUFCxDBAHBRqS3OxMEDZ6QWWxfQvQKebpoqKqy9Aiv/y2lwrMEBxPCJVF5IwQOpdoyb7nzBAl6sQvwSMMEA2RBIip1IwQCMBnmxpoC9AZ/Xe1I5WL0AlCFlQgLgvQNOh2bAf4i9AWa6C59XLL0ANA5kLt3owQK4diqku2TBAZRG3iBiAMEC5HLcH3oYwQHF7HpM8WjBA2mRfEd7tMEBaiCmGtQwyQLrVidXnIjJAq+uPOGWBMkB/Wq21oDoyQBmI7+QzdDFAraoM2KBKMUBXB7CCDQgyQD/4PWJjzzFAz3M5OxnJMUBDVv2acTcxQEHfEoMffTFAMGJCmZN0MUAr6Qn3Yz0xQJsTwxNAdTFAkPBXBq/AMUCDH+zgs/gxQCtZD2RNGDJAG2pO3TNTMkALp8DYaEQyQPCXPo7BCzJAjFSbDV9sMkDB4VwZFv8xQHdOJkmxszFAudU2VmCiMUAgy9b1vlQxQCeZ6BX3EzFAg1hG31hnMUBLsztqc3IxQPEdDplaizFAQnmuum7LMED9cSwP2PQwQDPYQpjcRjFAaXgnNhJlMUAFtGEaFU0xQKYgXrPFfzFAoC4wHSitMUBEHMX81q8xQBRqfsxR0jFAAqGFbkadMUBNLNH4J7IxQCYp7Nl2DTJAsv/NYSMcMkDLrbjivM0xQCdU9cpFrzFAyQTws3c+MkDFO0H5WVkyQNzwaAilYjJAA4Da3wXwMkBdSRGJc5kyQKV8Xn+d2TJA2fjlWE+1MkBr8FJ0zoIyQBtBf5v4BzJAuzSh1IARMkAHSpxPfqkxQCN7DGUjpzFA7b8DGwy1MUDryaU145YxQCavfM+qKDFAidU+0sbhMECvAfFwfkExQL9cgaPnDDFASRtFp2NeMUBhxBJyz2YxQGHvrXnzZTFAF1nrzisiMUAdHIJjRCsxQFNnwXoVdjFA+5ODrgthMUC9mSfNLV0xQAKs0QAloDFAECvhEHpNMUCgBWPsgU8xQLteRH299zBAWzXGcrdRMUDoMRNV8L8xQOnt8VqDzDFA+4lD8imgMUBIgXTC9FIyQFmNfQpaajJAOPM7mnF/MkDAE/ZIUGoyQDvwHrkXiDJAxm+RlCYUMkDG6mbbpd4wQIHa3yKBeTBAPAtL2dwyMEA3AHluJRIwQKuUvP323i9AxNKWQPuvL0DrU/8H00guQNvYjLJ/iy1AKJpju6E7LkAjgwoLeNMtQEHRZeQdsS1AdxZDrHqoLECVDRqMmgktQDtmNhUUrSxAYdawW/fELED3klyPasksQCSZQ06cbixAwdFqZFiQK0DRFjoODsUqQPfoBDmX8SpAMyMmlywiK0BbNps7PcIrQC/Dz41rvStA92G8PoAJK0CRNjcE+h8sQJ8J28b2FSxAUaA8isMrLEBsy4TrAoosQCX9au3NvSxAC2s+KrVDLED8igLIv8QrQDD3discVCtA46pZjK+DKkCtv42d7ZIqQCgAAIvlKipAr83jqWKaKUAA8qzVG8QpQH0D3NRY+ihAWXxMYSGEKUAYvT8Xi/UpQE8ux6QmtSlA1AHAksqiKUDndzDX/2kqQF1LBBNLTitADNGQ2lxCK0CxTcGKErErQETLV+XIkyxAX3EssiMNLECnh/kBVfwrQJTn5gQXACxAxzJeDdFJLEDAkyoDEhQtQMmWiOQ7oStATEVesDsWLEAsq9l4GwUsQBFuMqgwvCxAH0YLCfuJLEAbDhcelOQsQOeA//GVYS1A7wHCEVSWLUAAWH+gHLwtQHivki627SxA3dRETrWhLEAxNMcSLrQsQJNyAe+eOitAbXNgyNlTK0DF/rWwJhstQDuC7ZQlBC1AO4t9jQ3ALECRkyCFX1gsQLnLwoOErypA22QQnJvyK0Cx3bPhCGsrQPSrkWOchitAvbpCnsUuLECxbURrGPEsQP8DiolUkytAI9Is9cu8K0DhZAMXqassQMDtgUtOdS1AwyIBldjJLUB/ElrpDl4uQBmmTdRchS9AGwCaaa44MEAsqSIA1p0wQJnNEoEb9S9AUHabAso9MEBxT721bpMvQOt4X5/+9y5AmDUHvfnAL0BzEj7uKPwvQNtiDTaCaS9ADUwpbPcYL0DTx9uupyouQFDVR9ohYy5A2bGPoQDrLUAxwLyvixIuQL9SWKzPHS1A2bF8UYMfLUBhDvLZjTAtQMw6hEYvOC1A74sL3cMNLUAVO6x6Zc0rQAkdqWL8titAFxysuS7wK0DtOO+Y56osQBdqna3HRCxAK7D3XIdfLECblZqUQ2ssQCPVPJM2cS1AFSXacxpgLEBLc799TIYsQDjZ+ppSPi1Ac0C+CBTeLEDcXr9Pp78sQHe4117pdixAA8ZaB42HLUBx6q1mXI8tQNdnm2ULPy1AaeL7OWO3LUDTTChRRkkuQNTCO/s9wC1Aa5V97A87LkA5LLLeUyguQFF5/3EAzy5AQ5+R6lWOLkBTtaLdlLotQBRCG4xjPi5A/OhR8g5NLkBzFnKAd9AtQFydPuqACi1AXKVjOIfhLEAdJ+XCCNwsQCV8z5RBky1AaBG2RWvULUAwRJHrY7YuQPjmpLqliS5Amea/VWNsLkBrkpieN9kuQN1izF/5ay5AR9ZUjOkPLkDgst42vmMuQCvxRjPzKC9A7c8oyKUjL0B8+rG3YXsvQDiPeDfTzS9AkeuMDbz8LkAH+9eBhBMwQN/8cUgCQjBAaH0Hjjr5MEBBLTlfUSIxQJlJfBAgTjFAic+tHDWKMUDAWFM9ilwxQKHJeVMr5zBA0e7PVNAVMUDejN2J/+cwQFFmR979czBAIvtqAri6MEARHOi8axsxQN0RgGI4GTFAQsZ/YTUUMUD8HHmPTU8xQOWzcJrFNzFAGseMMLv0MEDA/Y66ox8xQAEA71FbzzBANAazXXESMUBwIvrNtU4xQEsUuUnwGTFAAhw8Zr0pMUB/6oj6JlIxQCeUY9Xu+TBAq3hcnH+sMEDOBfnLLjoxQKX3xGGj2TBAxJEraQMPMUCoUuMurv0wQJldg3andzFA0aUOzyp7MUARzDWiVEMxQCg49jLDnDFA8CYxW0x2MUCRCBIcD5YxQNHchQn55DFAtRrpwVkaMkCoXeYQjdUyQKy4+T165TJAGJkPdsCJMkDFFWvMnMsxQNkKfryPwDFAD8G1ErLrMUC1JkJP2GgxQCR0ok00dTFAaYQoQczKMEAney0T8XEwQCksL1cx9y9AfRb5WdL6L0CeFLFUWEgwQCTefZ39kjBALbPyYRxyMEC7az8DN00wQKtu1IsEfDBAHBaS1ajNMEBTT6P+ZDExQPmhPtFLQzBAKlOx64B6MEBdBTvaPOcwQCwRt3O82zBAjNdYjTdjMUDIX6VSBjkxQGgoXHudVjFAeyx9XWwmMUBdMItiXyExQB/yonsVbjFAqRFeZ64dMUBw+Jgo/Z8xQJVEm2fDmzFAu6+lXAsAMUCl5kC/IS4xQCgqnYHobjFA/GBJhJ3mMUAj1b5o750xQEZThb3h7TFAf3dRZNNIMkB5NYvujwAyQLPE7gt/RjFAjMX44gL/MEAnvinh1hgxQD+mvWW0bDFAlLC7XepfMUC/zNUC3TUxQCVRm9mTGDFAvfeuH0uxMUAWG7avCoUxQOsJM0jkvTFAC6jeNf6fMUBjjOm6amAyQKb5/Q3aXTJA2wsPLIt7MkCSrzb4kuwyQJLKQJ9FADNA9c+LKGFTM0CrgrxWTA0yQNDXAOIFLzJAdlHJYNjMMUCfARdh+YsxQNhG1xfdhjFA14NlCEOSMUA/GyzmzfIwQKDZHC/ttjBA9b/9kPzcMECMooMGXZMxQKssUVmIQDFAEa+4F8WcMUD43JiuV9ExQMrswLCkVzJADvPOHsHOMUCxJz8ggewxQFkLjwKOFDJAvelYydZgMkACSgdxaHMyQLu+PNvanjFAvvwYpOm5MUAeki/PA1YxQB3TifU9CTFAPiY0n53MMEDjoak8FugwQEqANTFytTBA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"POS 1\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"MwzCxtgf2r8GwW3NtnrUvztkbOgr2ai/DP45yExuyb/Pzm4kqo/RPzVUXxCtNt8/aNVuonWb5j+rr/ZgY4L1PweGDjz99/c/6LXdiQ7q+j+bbNdeO1j4P0ROxR+hTfY/L0IP3yzJ+T9LTVDLcFX/Pwvw4TyYP/w/Is4wHgSN9D84HRhFupX0P1C0iJGG3/I/w9iLW9s+9T88xfpHs1j1PyN/mecGMOY/YKJe08KH+T+082M3PGMCQH3CE8rspwNA62AIdFrmAUA3d7kwbNwDQOhglE0HjwVAATECohs6CEC4maN7lU0GQDGiqpdaRwlAc6voTDCTCUCk2EkQyEkFQLI+o9sB5QFAe+x2Vg6M/j94dxhkDEn/P6FpTGIoJvs/LCrPyoBt+D93FlryB3b5P40PIRQho/Y/WerVCXGn+D87WxEvhWD8P/AdCdEu7vo/EPVZiPFiAED9Ras70GT+P8VKlMV5kwBAXwuMPz0WAUDP77ERgXcDQGUScKIHUgRAqWAOysWnBUAMddUEvNwJQFl/wsPsjAhAcMpu5Lm5BUDhLUI2EZYDQACs/Z/9KgNAMQfCSv/JBEDphBNy+1sDQH6oSiE8jANAm3wqWQjcBUDv+mqgfBEGQIG5o7olrQRA5B2khQ6wAkDJCIGvxH0EQBlO7I3+zQRAVGSOasxWBkCVlwpeV3UCQMB6UbyrbAZAuOtSXcw6BkC5DR0TYwIEQEB/mCCi9QVAeyLO4OQmA0ClhT4BAgoDQHjjUY/baANAJWFpig32AEAkqNV6Onr/P6BvodX2QPc/ozh3NOnUAUB89LPA3fT+P/1I+aTr9vk/q8BhJWOA+D/1I9wXWw31Pz+HZue4l/E/qzfc415t7j+IdQWdG6HpP9HfNO0o0fA/xqgKaNOd8z+J1rwMCi34P8UcmGw/vPc/Z6JQy4yI8j9CuaRA4onyP1+XrOWZ1/U/LevGq8FT+j/lgRBNec77P0HcZWh8i/Y/rPclQ4jA+z9YLfXh3mAAQKXlDkBplvo/HJL46bng9j8YTxw3MSL9P6t9YE1Iz/Y/Y9swLp7U9T+IjquWd0H2P88JYXh90fg/m/eaPleX+z/I9TtW9lT6P3n2kJuAlfM/eMZccQaV+j8lM9vbYYv4P9di66CVJfA/nCkQEi+r2T8BS5u01DLSPx2rN4rjat4/4UtmQrGl3T8fEcvpGi7NP3fH1f4iUMG/O/eeFvqkwr+l7rgyrnbov7wG1wr0j9G/2GsImsTj3L+8AgLACbTmv3DieXyKU+6/KzJQBQOb9b9bbGl43Jvxv+HNnVraPPe/VBPLgPNO9b/LjoBkxX3yvwSu1QJ+T+q/jwC0sMw87L9F6LWje/Hlv9wRzq+YVOy/dy1EmAtN4L//9QOhyk/2v9WSWuP9lvC/cOs0puei4L+7vzRStB3tv+zamULBhfC/k1Y8X3vC4b9beqs+w2Pfv1VpynAEROW///SOepBn/b+Rc/hmHk4CwGFNbc8gkgPAWOvOQAfQAsDb4wvfs8MBwLtFnVzqAgPA19DjDuaeAcDgaN100SwAwDXrb5uW/wDAFIkL7GqpAMBT1y2d4Rn5vxfFVz7P3/a/i0cJrqr4/r8Mbd/tdJD6v00s4OG9WwDANXCO7ON6AcDzuHrmrbYFwEEPxH/CGQfA19y2+peBBMAR36uBUkMEwPdIwCYCPQXAlxYP9hpeAMDVLJUjz5IAwDp0AYzCnQHAPXM+6+Y+AsCtBNCoyWEDwGu8mwRkiwDAvS6pitoEA8CHjNgSOToDwD+zG8wwdAHAtimAgFqwA8CQhgcqSO0JwL0Z7tEJggbAybOLZYCeAsD0nLPuR/gCwCH2j01/HQTALSIqIaFbBcBrGOLKpoEFwOb4djxdmALAb8t26jTmAMArS2PcIDX+v1yIJAQ/Gv2/ORYw0+MGAMB8Zb+mdJ39v+WUAAOVLQLAtQ0OqHb3B8BtGOcM5IQOwH2V8FBzJA/AkQx1cmbjEMAMiE5/GRUOwKkEwmu76xDAEBN/tTgqD8B3TnZSe28PwGF03FINtQ3AXysPMTZkEMCF4Hlp6fMQwOPE+kY18hDAD9xGu7wvEcBubskg1d8RwKkxfztw1g7AGzcoPj1VEcAZMyc1FkMSwGBRsEdOPhHAdliXN1YdEsALgj8OjhMTwJuoeifR4RHAE22EcDliDsANqwbYkX4OwHHxbUR0EQ7As5pB3yk3EMBXfo7yvVQRwPNjC2AHQBHAG9tmofS4EsD85nO9dO4TwHcHUo7r4BHAGiTPEkwJFcBtYVwz2zoVwI+prJTwVxXAe84P3bEWFcB1X7pnUR4WwFm3WSkPhxTASQlIjIyjEsDTLc3Nd6IRwNCAZMZt1xDAu7c2eY/sEMCtoGwukYQRwF97sAuOkhHAJeEUJvdHD8AHNUcX3GYQwMUGrLENHhDALdm4ZVcSDsDANg8JHOcJwDFDUx2uzwbAXb74VTrRA8D3jbQZKS0FwP9uPzRhfQfANMD8UzzHDMBEcgY6wAkRwO89y3TCDhHAeHBVEb1aDcDdGTZcr1ELwEQEqGXnlgjAHCKSv/hzB8BviSoBwogGwM0n86APdQnABVIGYrRwB8AA3SdIPTEHwH2owozVbgbAgE7qiB1NB8BBDjX7j+MFwElZlAw47wPADi4pl0hvAsCUmi4dNwcFwKOp3WmI1QPAne4mlttjBsDBnO1+8AgGwIkRGn86mwLA0LJkC5LuB8AFStevnHIJwJHipsZY/grABEavWRwtC8BT8IAOhGwLwEs2sZJOLwvAZdN+5efMDMBY0l1tUA4KwGMslhPnVA7ARcHuWKFGDcCwh1FI+e8KwNjOnmBquwvAwQLP3jQVCcAvgmvs/VQIwEjPBKPo5AXAH50S1p3eAcCtgc626kEEwM4GfwFM8QLAV2Sw0X+HAsColp7Njm4FwAf5I9xt6QTAd0RuZIGWAcAf5n86owwEwFk0v89QvgbATfZL/UhwBsC4OBglaGYHwK30XKxR9QfAjewrZeBNBMDB5YduRC8KwOFvjiJvvQ3ARX3cSdEbEcAIRZaT9HIPwEU2r8IgNg3AoZlNfzZhCsCTYSajHIMMwKH3tl6H+AzAV5ez5d8qDcBEpsAqNNAMwHh/Et57ygrAJWx5wlavCcDgnSmOrJELwABAaSK9wg7AgKq2b48DDsA/zQ+K5tEJwGzFtk1A5ArAf9TlA4RmCMDZypnLWQwFwBUq7eQrtAPARXt1o/BKAsDLpYYmZNYCwOmGH8pHMgPAQ0GTiizFCcD0pf8WyI0LwFA8ahapWw/A8/zVLqmGEMCVDdQo020OwHmEp9VarBDADixkst8oE8Cjx93VJgQUwLPFutgvzxTAuWL0EBaOFMA6SV0RFgkUwCBFJCtsehTAtXL6I9shFsCLIBJAQocZwCScGV+e/hvAZ0ZMSEg/GcAURvKEqI4ZwGxFhbQ3rxjARdK/S8aRGMBB136EYNIXwJGx9Ev1LxbA9C9MYQRfFcDMPHUgWAAXwKkjMNDQXhfAJR1ckXlAGMBbGlLCfxEZwNHW2htMrxfADe8XEfyBFsAH0CgzKk8ZwG1HzVSgJBnAPQ2QDsl5GMAhxM5olN0XwEEAVSfm9RbA+c9V5l5CFMBTwWyW6qoTwC8STIMsphXA/PRfumQwFcDXXbK6L3oWwKliHeW/rBbAsH+K1usNGcBrq82iOawYwE3Jq4tK5xnAiFldAHTyGcC8P5mElg8cwMEJtzCmiBzA89BVzxunHsAjCQRwpDUewKhAp7FlyBzA/MDeFROjGsDvEJ/TnGYawH//sstPVBvAG9aoNXN8HMDP3UFG4V8cwDSgIfCuBx3A34kNTKiTHMAD2vhKze0dwDAbsuWcjh7AT2bvTs0eIMBw+dVa0BgewKnl96ZTDiDA48CpCvI0H8Cb2fGy3fYfwPXxiUcFlx7ARfla+Uv/HsB7zEi5N+YfwO4K6qBBTiHARzQ9U0QkIcBw1PNF3g4hwBUEDxZcJSHARIN2USUYIcAc48T9w20fwJC/o/2rsh/AZa7N/JFUH8DABjsRy9EcwADW8i2TshzAnJO6TzYWHsC0AsCwt0gdwBeza9XR3x3AEOQjzMi9H8BqvL3ne/AgwDNOMrNyfSDAH7FoDddvIMDkOc/VsXwgwDeWlcJTkSDATa/i/5EfIcCXRCzM1yAhwDNnj4cI1SDA9T8hyF1CIMDOkiI/joIgwIf0OBa7diDAs/zAPnOKIMB5LYOGGxggwPFtZ2FY6x/AMHHeoTCAHsAl3ikm2VkgwO0VPuQHrh/A2eGuppz0H8CVYHMlChkhwIZCgXyYLiLAn/2zn1TDI8BbpJuNr7EhwMjF/YLEiCLAnA7pjvIAI8DluOTVdGcjwJx2+ypuxSTAP1QmX03SJMBA9/HLQFYlwHVCw7dyoSbA2Q1jyoV9JsDAYyGXx8EmwBx1Q+vjsSbArCTvhRRtJ8BJjSCs7AAnwD1Rtc3uZifAc+/xnADoJsDtUkbwgq4mwGSn8J2/gCfAqNWRxRBKJ8DJHFMBBHQmwMDxEwOV7CXAr28fR0arJcDlHvnqP6skwImNlWQm3SPAhDFQ3TJnI8DXmEmAh8klwDdMUGFa3yTAmCbBYjvBJMA6O5uFSyMlwOGdVXEPkyXAm8tC5XY6JcD2aheThrckwBhfXCbAOiTAHyBYR3KCIsBTFoeaZhchwBW0qm6FYyHADWDmVGOlIcAf9r4mZbAhwCRVyUwR3iHAb0pm7BBZIsDg9h/GnKYiwCWdqCITtiHALylDfmFBIsCN0+Bl2bAiwEbKy+Bp0CLAhb5Cqh3KI8CPl6seEi0jwHjpqvGtliLAWNpOf5KgIsC00kbRDaciwIFua2VpqSHAHR6dHz/rIcCWFSegniAiwLGV+GTV0CHAEv3138t5IsCBAXE+7nQiwIyo9EBTNiLALChXqEpBIcAFoGMfHKogwFtOOV33ch7AAW9AxN3MHcAl8fTUJpEdwBVIniQynhzAsPjD9uccHsAN/vrtfcoewLy8XHpfoR7ALhTnYBhvIMD9yd6g5G4fwPNQMYHYpyDADOUABsnOH8AYew6ipGIgwBULRw5VcyDAROlptmFYH8DtjFePbZocwIRk3spCsR3A62HXkaABH8CwgsUbPfwcwFFGG3DfwR3ACOazQhpMH8AJf5k9UEkgwFdrQNFkiSDAwnle8CN2IMAq5iKAZHMgwGjJS1ytJCDAr/rYG2eiIMC3sKRUH/YhwBnNAEEZUyPA2xH4+UcvI8AFG09c7ZMhwLszbk0RhCDABO7bqdSAIMD7gFNl9V8hwEsBA+4zhCHAvfRBpGlSIcBeHYpnUhUhwD/ORIWUMiDAT0cueuGBH8DCpoS7Oj8gwHs9ufzbbyDAiOQs1GgCIMANJsZimqogwFgZFmWCuR7ATCTRqZ/BH8CAvM4gFvYfwGMTrlftAx7AN9JPtj8XHsCI6dIy/AMcwNvi7A8TORrAhSq3omKDGsAhuLf6+jcbwOjMdIDfKRzAE6whFfNJHMCXOz99W50bwEmyd3Gc1BvA0+L6u0XIGsA81vb/VxwbwOAtR38i3RrADcYavJGuGsCt8u3GkYQcwHuxd5LHQBzAkITKCgtWGcBlDAfKe6oawLBqKgVyyBrAYW1eu5NlHMDxmjp0qCsdwHUut4FqaR3AMbCVjbBgHcCxA8UrXMgdwH2oVqOA7hzAAMG+hEqNHsCcqwK0P60fwASnjeu/gh7AWAqcmiR3H8C1Kk3UlgMgwIziR5v7SR/Aaalu7eAlH8DPZJ6+5mQdwGB5QvBbdx7A8D/B4bjXHsDkdl3HEK4cwJvsF8tReB3Av0umckJ7H8BFlvIqIiEgwEsn2w0mKyHATXp9IU+4IMDaAo5hhZYgwKQp6f8QWSHAK7qaB0gcIcA1NKkI/M8gwPppEBStMCLAdQyn88acIsC5HgvJDNkiwPQgGdjqZSPAc3S312sZJMAF3Roet+IkwNjDoI/6WibANeblGK6oJsA0uqUl+YwowJxc6DUXRCnApD4eb1LqKcDdLD+JVsspwDfVV9r/KyrA2L6lSrk8K8Ak2PiWaForwBeF7IV5BSvAndn1tBPDKsAhJ/8YxscrwFRvmtYYMyvA0w41O3PFKsCkU2C+AkkrwLjj6bZ4fSvAYA1EDarKKsDDj60AUnIqwAfU8cLebyrAj1eOMB8zKsCnwvl0BnUqwCNwHQEYDSvAKyr89JUmK8Cb47vkhG0qwOVzmsnUiyvAP9yjZYj1K8DZiBKYvoMrwIxDBPc9XSvAIdIXgDG6KsBkI8V4EZwqwCsrUD9ylinA6c9FR5uIKsAp6Vm+kWsqwPwONLy0bSvAgXKl38Z8K8AFgMbH/8QqwKD+Ub2iLCrAVXwRyJRQK8BA3/ldskgrwPkVM0VZHyvAMUe7zO0OLMB/rvYlRHQtwNSvMUV5Ly7AqMizQPWBLsCTYk3wyt0uwGx4Ymvmti7AxJcnjYC9LsBwBuC7jF0uwOF0zwHU9C7A0FcumoeYLsC7m8u1OsktwCAmZc43gC7A3SRrSguaLsCQhXb6gfIswKvf3zphdSzAE9Ix1/9GK8CzicsTz+8rwM9lsWQhkSzAm9D4Rg5ULcA18Dm+pn8twFz3y6GBCy7ATxt/0+jJLcAdPcFh7swswFfXmcbb2y3AG9ZvAXjYLcBPn48p4w0twDDYS4N/Ny3A6a/LC0COLcClOhb1cikswBEhioK/UizAA9cnoLV3K8DD/2J97fAqwA/zzW5qWyvAkw0KcqOoK8D0+GoUlPIrwNBtKF0miSvAWAbposWNK8B5IxIC+2grwNfVy+FExCzA+TqujVkeLcDzQf1EE/YswAkfgKBZkSzAh/dmVohQLMDDZOrl2nwswBESfpqUaS3A8MVftcYNLsDjB6NWSbUtwG1/aOU3VC3Af+69qgEMLsBT9SWvEVsuwHA+tAtlYC7AT70DPculLsB8kGz8F3ItwACMo0sLWy3AiRtHmFcFLMD9EURcraErwCigx/gdyCrAp2OrTAVsKsBIhv6DwhUqwG1bIU13UCnAiI5fNGfQKMAxN+TNmyIowKs6jmBzxCfA3YnWCEixKMB7yP6DH7oowMOpEu3zTyjAWNL5zodCKMDD26Be8oUnwGn2KihS6yfAcCmqMviGKMD7eT/hsYEowAkVd/8pXCjASLIwiwo1KMCQDvJR7m4owMFxmvRC4SfAUZPcoycYKcALOp3fLp8pwOkg8x8s4CjASeCLI0KWKcCgwJ7wl74pwM1UCZs6OynAGMuR1QkUKsC/OyHjksopwPgEJfsmsCjACy8wWcuPKMBBUrjGnloowF2NrhM9LSjA0D1BKSiMJ8AX9qHce7AnwF0RIIIhIifAlHfd78f3JsDZ+SxNtdMmwJd/Ln75WiXAtL9tu5s/JcD7OfpHo2olwG4fOoln+yPALG57ElaEJMBUNyXTaAwlwOKuzgCtGSXAAXChvxItI8A60IPCuQ0kwGIPduc13iPAdZ5BiceRJMCwOjcSAYojwHikhMB1RCPAz7IbpGC3I8CgF/SVF4IiwMEdgzX1XSLAkfS4XQ12IcCDHdLJf6shwOUyt4z7zCHAqybxGZztIMCmHrvvIAAhwKbkV7rLTCHASGeatfOiIMDZONqmNYIgwI2BKS//+SDAcT6AMD47IcCpk+2xvB0hwOdU3F1g3CDAlQpNTKboH8As2p4AqTQgwH9T78SblyHA1UaY22aEIcBUV+y+Tl4hwHSAo9N3jCHAq2h0ozlOIcC/7HCwjtUhwIsOYTsJwSHAJnv/YLvPIcDM/zVfPDAhwElx5vds5iDAyEX2gZujIMD5/IFZYTAgwHsOLTOj0x/AkPWscrHOHsBV/oxMyLIewPhDpYvQzB3AqPc9rH0pHsDzf0jrrQwfwIldNJtfHx7AHSfvnXZtHsDvkKNqQDofwLM90lXxUyDAxQEHF8tdIMCQWrzUyBwgwCxLRo2AACHASZTQYGIhIsCPPgjVXt4hwEVbaFdaMSPAqw3CytHSI8CfVafF/DsjwM8HpqTgHSPA6bU4h/t3JMCHwS8+0iQkwBtaIG0AoiPAeCDcvE87JMBN7rJVwLgjwBVPaTKTmSPAYtAwxn3kI8Andhc8zvwjwE2G5bo2YyPAJAdQlw56I8Ajr0p0R58jwPmDeZuWYSTAG1mXlEEeJMDVa9F5k5kjwFdZX1FW8yLALa4c7iRgI8CjAulaOiYkwJUmnwzcBiTAOmn3Vz1eIsB2FEC3XikiwJcPs4Q1ZSHAsa1GfnDGIMBI8gXCxOggwBE2NTe+5CDAZKRMYcDBIcCbs9B/wrkhwPFoROqS1CHAb6lrKXzpIcBBE2xrQoUhwPhqA6loYyHAdme6sLxBIsDEQFw+v9EjwDn7a9ZUJSPAfld9XAnvI8BLOPm4FB0jwMkmiK8rNSTAeviLPXPwI8CBwn8Zq9kjwFl+HD7BdSPAf8mQkiFyI8DqowkkzAUkwMO8o7RYBCTABPcZBCCEI8DjTNz6gr4iwNgbjwoAGyLA6aUIPwn0IcDJtAFbex0jwJDKfYFuHSPAVQpflawqI8AVufCJcAojwIc7n4gRLyPA4k/1DxaKI8CRjg3CX/0jwPsKZs9H/iLAawYo0xXUIsAD8rc9xiojwI0EiX1ALiLAMT0nRtsBIsAIsRca+MsgwIAeyiJfQiHAgE+XHqKSIMAtvYZVOIEgwCdd2bEbxiDABWSMHRFbIMDHUwfanEAgwJM+DlzZTCDA8UxJ5Tx4IcDOGwNnj+AgwNmdfdKn+iDAA9iWAVB4IcDV14hh2WEgwEXuU69hth/ASxDSkVCLIMDt3x8MPNUfwK2DB6QEMCDAjG8oCkFMH8As1mUecrYdwBS+ARPdZBzAsWSG/Z2SHMBLqxumB04bwElsaTPWshzA2CAr/mJiHsD7x2lV8isdwAyoWR0ssR3AjGg9HzuGHMBXr94TPPwcwBgl4pGbtBrASIcLBWCfF8AQlHDfH9kXwElp5yoFmxfAYflCvFJlFsAg9Ks6CyAYwGWdWCZEyBrAWJGZbbGfG8BoQb/JUF8awA8JkOMGnBrA4YHua1HoHMDsu2AFdF8bwFvPvLoRyh7A4RD2CZTLHsDpIB5iLzYgwAWkeQfSjx/ATGWJUQkuH8ANFyeJkrsfwFyiwWUM0h7A9CAafC2BHcCQzst6DogdwGzh8QGqjB3A7IYrYTdXHsAtPr3pUo8dwN/9ve1DnxvABxhgzcVrGcB0AUBk8VMawPBPOJ31cxnA9SjC98TUGcD0DIXD9KwZwERsN4VGNBfATKlF0AZIF8BNH8XgAmoXwPfgdwwpThfAQJbyH5+1GMDtuiqqNg0ZwAOxjPGrjxnAzbqt0WzfHMCJRhdzo98cwKHF4uxw/hvAN7Un6fvVG8DpZk9EEecawM2cWJVSzxnAyzHaUC5NGsCJgrVcAj0YwJ85lmGLyxbA/eodNF9TF8C1eNXsK44XwInIuNw1whjAJ9+pyIP6GsD7dFh86REZwOCaxgGEmxnACyPBo8+cGsAB9mM8g7kYwNsS554EiBbA+3fY1eEhF8ATpP2vNH4XwGsniu5dFhjACI70EfCRFsCZyd4/CpQUwFE78WY+dxTA0s2YAxQdFcCFJ9paH1wWwM/yYfYB6hXAuUtHT9QXFsCJtg0ul2EVwJELawr92hXARXQNDVOlFcDdtBsl80AVwBvRitvK0RXAt9pjDzV7E8AIwhkbre0SwLCeqkTo/BXAaNA6DHXKFcBZw+f2askWwPkhQe8n1hbAD9XxY3HsF8CYLAXsstEYwE34yGMcvRnAeRn9uvB5GMDLcesd198YwCcK98aszRjA83IW2FSjF8ChIJzFghsXwLAVb5q5nRXA+SXIhFG7FsBZG9hfesAWwIAb6PN0URfAkCcOuT26GMDV/SjPFRMawF1GgHaDCRvAt43PwAWHGsA1pC4zYc4dwDFrP1bGCh7Aseng2AT3HsBga6zOC18fwON0yUpOkB3AfOJ0KLoiHcCdEZOTeFAcwKezhsuIzhvASXpG/2kxGsAkTQbFXYwbwOGaKpVUGh/AVwPsBg+BIMBj+k1irWQewE0WUmJRnx3AcFQEhSboHsAU076Ot0gfwFuyBXs+Ah/AkCA3/7y7H8CwHXkpiCkfwMzosMjeBiDAsY5LgplKIMDoLx7rphUgwL+aKadlRyDArfzwOgqgIMATqG5JU8wgwFUc5bMWMiDA/GW3kZ0KH8Bk8hPh4jIfwHFkc5wIVR/ApJANtqjNHsDMwt6wuGEewLfyFPGg5B/ART3iA0B3IMDLP/j46nEgwCfpoMcx/h/AEwRNoW+KH8CTkosiCCQgwM5YANOeZSDATb6edAsdH8BBunqFgPMgwHkSNjrWOCDA5cUQZZzCIMCLAEdGjgYhwAHIB59byiDAbB6Y+tKMH8AosDOO81MewEiO0v4jlx3A+JlIyoaDHMAA+pe9aCkdwPVoeSG5TxzA5XsAIHoaHsD51sC7GAsdwM/OFVVycR7ATJn+lXRFHMBhf9i24yoewFvnx0uNYxzAWP2BT3aRGsCstcWJ+W0awAcWXC0yVBvAyd73rnuXHMANPF6puGgewBWPCgawMB3AZRxSLM3FGsC7KvmGOMYawDOA509jKRzAD3m5MmOZG8BxL/0uQQkdwFv4jnp35RvAaAvemUcdHMD8aoE60c8bwDA076/bWRvAR2Nq2MgHHcBrVZqc6tEcwCWVaPuUShrAgBhT0zvGG8ATfPA+HSscwA34cfv+/xvA7boa5LMJGsCwLvgp2ukbwMhaLhYq0BzAiBRK3oTeHsAsFCzJa90ewBcvXaQQOR/A/K5osQS4H8AAPyBKCjkgwPlpPDJFMCDAMN0BtkG3HsCcCgPc5GggwECbkbPpFiHARgqxuOLcIMCgjImyDXUhwBIpz4hkzSHAdbXY1TEPIsCDUZ+OXqkiwKcBwpnVuyLATf33wWRCI8CpFVmYBNEiwMU0RvNM1yLAndFH5QkWI8B772E3yochwEOJ2zLEmyHAJzzg3/0KIcDHUAqATiAgwN7/gFkjtyDA0yNNhNl5HsBJ9JN+mx8fwBjanRokUx/ABaML7oCDHcCBu3vFuiIgwMsR3lst5x7AYbmMKjyAHsBhdYTRTsMbwPcTP8xMWhvAnyRy5g48HMAIRNArOMEawOuuR7saKhvAyEKP0QKcGsAd+pZeo+MbwOmTWi1GYRzAfXSQHmSjHMC5/mSFIRAdwBOHm42FRxzAX+4amu68G8CMrwD9CY0bwA3kOcPu7xrARAHKN4BaGsCsE08ugDwawCiSbziHUxvAVGrpFpa/HMCPEKemT1McwPmPLhbsRxrAMN1ULmQsG8BYyeNZtxkcwKQ1BfJ/tBrAMdblc54/GsCwAJqGJz0bwMv0/tJSAhvAsTaZBPg+HMDrWeMNAB0cwBQxrp5xih3AtLhCsVL3HcA37H0GN30ewFdfMQm13x3ALLFTMUYOG8AH2jCBaysawDsrhdyFZBfAaPIiCsANG8BUcSZEy64awCV99uNZpxvA3Op3X/CAGsBI5Sv4ZuEbwB9LFAnvRBzAdW9kfp9UG8BXx1lYnLkcwF0pVatiQRnA+auQYG89GcB9mSM4WfoXwFHElkCoJxnAx7fdT+tMGMBUKrvHszgawHy/+Z9krRzAn9DObmkfHMCva9S4eQIbwKW2aRNybRrAi1W5TTCvGMAny2S4Oc8YwGP6PAh2uhbAtyvvP7IHFsDV8pHAIY4VwPSkiwIwlhbAhYcO0ovoFcCwVgBY+L4UwKwb5qN/bxTAAFJ+QkV3E8At0kChYgQTwFv9TYeithLAsa0Uk2g9E8C+CCJRPvoTwPF/w3vmahTACaYkAZjaEsAhb1UrzeQSwKdlGUt2yBTAB3ytxdznFMBXWJpQH0oSwKtUr7m9XRHAxblk0aT4EcA7jYfOTmITwLETRzhjshTA/6y9b+4LFsDJ5mkmZkcXwEnQY/3W3RbAlf+CL5zuFsDjJj6gtDAVwOjZhpk+8hbA/J85nMhBF8DxVyHK3+cVwDVtaNcTJxfA//PiLno8GcCrisYqw4MXwPVcuwfZOxnATSDj1b4uGMClkpTs88EZwDX3BKVS8RnAUJx1lhqvGMBbQjjVP1sYwKdCyNHBuhnAjwcG/zOAG8B5MPcLtdAcwCtrPxhb7B3AEHmmHSIhHsCgMzgCNZYfwFzh/O6otx/Ag+kLK8wyHsD/EWe37MsdwGy3iqYMHB7ANxfmixezIMCqiHfYIi4hwKsGJOW+gCDA49cHUyMJIcAVu6ZxL1UgwMfSia1WNSHA3JYE6AZZIcAUjBYaW3ghwGmIoWZKxCHAygrp/xgBIcC0d6rTo9UgwO8RxVN9qx/A5YRrIOFNIMBBN0W03rkfwOGra6oc6B/AnUjyQFT2H8CYo5nSUfQewKV6VLR/SyDAVVKMnPptIMCByvGNRnMgwLmc6QU0bCDAbRHp+y/jIMD3wcvvfhMhwAbw8JfvLCHAyMlLjFjMIMD8OXZWJRAgwNhLIwCgLx7Ak58hLLGyHsBTBru21/ccwDCRXJGZMhvAOeP3NOdtGcAkPpvSG0YYwLMm6nJdIBrA1wWjSvLiGMCgHjbZZ9wXwEQDA1uejBfAdUmAh2H5F8CLGFjAYXAXwNC11E2GsRbACYivmorbEcDjoHUJspwTwO163vep4BHAD770zgHgEcCY4tBoDckQwNtXsJuqKxDAHDu68lMSEMDYiljdQiMRwHMOVY4wzg/AeZ7mIokQEMDcVcDTeUcRwE/esXlA9xHA/wX/OiGgEsCljnhWsTYSwPH6l2wsLxPANBrut5LQFcCbT07DCdYVwAfY9CvcKBXA2CDOKgN4FsB3RJxfFkwWwBSDeJBSCxbA2ITDDW9jFcBk/eNy4U4UwB293JAKDBfAyMcP48ROGMCVZpSNpggYwGSQ0fEBbxnADWKTE5tAGsC80ebGH60bwN8dh5L4xBnAayzXKW2rGMBo11ayZ+sXwPzGSC4vABXAHG04hqqzFMD/zoT/V9cTwJtE7yz10RPA+4k1wXtKFcDZWIIy86QUwACYBA5fTBLA96ErdEqcE8AcN4gdSEcVwFjJVnJKABTA2VOSd2CMFcDxx/E4knkWwC35lZpRGRjAWRg+NwDsF8CVrxly3aMVwHEyuO1wExbA82nPdQSwFcCRRNyzh3kVwGGmyY5J2BXASkyi+/3vFMAx1+weMhsUwBdIWX1LoRTAMYz2WOTnEsAK2zmg4JESwBfpk5B94xHAjxBnBs8zEsC6pnloh20SwCswwgBMTBPAD5Z+cFizEMAlfMGqkzMTwPTh8jRltBTA7EfyExNoFMAQUTG5GpgVwFcIwFXe+BPAPkHun3niFMDpAmsVjq0TwIexDP2MFBXADfzd0GwNFcB68/pusOsUwPvN2lII+hXAUb0+oYNKFsCbM2Z4+BgZwL2zxm52aBnA7eGpe7hmGsAEufbYI5UbwMUtCzFHGBzA9ZcftoOkHMBbClYp2DQcwHOVn3o1rB3AZVuZQWpxHcA9CRk7QPMZwIBWfzsobRnADz1wRYC+GcDXWRZE3FEZwKsgkYsG8BjAx7t1z6C9GMAT5K1xTFMXwB2rvDaBTBfA8eCX8sMDGcB9UnLlTpkbwCBtrgJ+7hrATCdd0dmVF8Dxf02gk4oXwG+O2wmu0RjAJJqA490lGcBhTVZOdE4YwHnPp1XJVBjAJ2rRqbvNFsClukYcd7QVwJGdN9jafBbAFG28jXegGMCJXfcHRggawKhakJ1HuRrATKpyTTHEG8D9nHOQkHMbwL/h/ug0QxvAk6qRuNTBHMARL3a0lmkdwKQnXH352B7A+ziRGdqFIMBoEirHi/AgwAF7+xlGvyDAqvAyutx8IMC7DCWPY6cewFdGAgtush/ATXZBhLfSHsCUUPD4DXkewPFX9yfXXRzAIEiAxrnZHMAo2/kiMCcbwOCpi9rjkxzAcTU/iJ0IHcD4Yz6PPbgawCAXyXGMnxvA1ctMwjPzG8AscqjL8fQdwMdbX3+G/xzA3LFcksFIHcBniIi0Gr8ewJUvhQyGFB/Alb8Kc/ihHMC/f7SXjn0cwESIyZZEpB3AicC4BOrQHcB01NyOCLocwDNO3rfQSh3AxRq1K7pnHMD8CIL57wAewIOhI9njDBvARBX0kJdRGsDZ3zwUAokawI/Ogr0cXhrAzA8dfB7cGcCVEFl1Q3EXwM8AzgbwhRXA1SpVtVL9FMCGmDngOaoUwPEV2xNpHhTAfBkGheteE8CneINpOlUUwHXXKSBWDhTAUwKVl88iE8DUde+v0xQRwCdAYs68cBHAPmdAkf0MEcAkOMmC8V4RwJGuKvqLKgvA92YOdtxHDMDT2oh4bUQGwHMnH9Tv4wjAFMAPIFadC8Ck9IT/Pq8PwJAJphUtDw/An2JFziU9DsB98Ros+CAQwE1vn2RK8A/AG6gSfWXxCsAUG5Lz46AKwF8qavM30gjAo3QDXg+0CMDlg0FU9FAKwOsVoXXd/gvAjeDI2hH2C8BE981oCO0JwI9fGevyAgzAePsthFTVB8AFYSFyeJQJwD9zJUkEKATAe1fy9jEzA8DQiT2kABgEwMxrDL0N6QDAqwF0pF6yAsAJeMAarC8DwI0xolekWQPAmcDGSjVxBMB4dhrBf1AHwJU6xfd9WQbAd1VBw9VGBsBR0MvO3dMHwKUUcSA1wA7Aa5KqmWcVDMB/z3iKYlsJwOcSHfiY1QjA8N9aJQqjBMC/0LJLt+AAwDT+E1XfnQbAoT3JtHtKCMAPKd/fqe4DwCkPz9Vl5ATAtHnyeinkBMAPNoVjG6T5vxWC43mOA++/JSVq17VU8r/dBu1K6sbpv9uhsfQRPue/QABtWxhV9b+zuKBGa1b2v5nH+Lvl+fS/J4fXMpF2AMC3vMDsJe/zv9bk1b11jvC/0PF31wrb8b/o2G3j2MLqv6MbVvgwbfK/tEfJjSno9b8Qc55e54bxv51fOhEnEfK/rbCv3wlY97/tEuMu/MT3v/k15Qqi+/i/U7mzxLvU9r/7kJMPc2Tpv9Wd19DeOZK/9CnrAYIhx79LRmIiAWXLv63oxjt0Pee/qBOBWG/z0b8gWhTWDP/sv6lczuP60+2/pSFg7X3w4r8E9U2t7Yf6v2eL8c+/5Pm/I/7gxG/hAsCybJduAXECwEUXiz1vNgTAlfbHrx3mB8DHtSTfCa0FwPUbwPXOAAfAvdpWXr7KBcAecfyr5c8EwGx0hhc04wfAtJUKo4pyB8A/zjfShqIFwPsGduxlQgzA8CV2BB9tDMALl5RNZcMJwG9jGBoPpQTAO42roWZvBcDtGz3YD6kIwPNFhClHjgvAudKF/jAKDcAQzisGku8LwB+DaOQ9SwvAl2eDPTkID8CwrR4AYlUPwOPapoaAcg/Aflh7b6IDEcDxBVwBgKIRwCMWdQwoVBPAoApDexB2EMAnRmtF70YPwBjZUWoNpw3Aq09Gt2dyDcBkgxsL448KwJt5EEJ5hQfA4Fw+x+P7CMCJYzOUw3kKwImCQjD+5ArATO8sGdnfB8DB6DGXIlYIwLWqyxG+LgbACAMUHmhPB8BroBZa9jIGwC+Bz/owNgjADLi4EYHVC8AtqJHZG4IOwBkn6Qxxaw3AOb01dIXND8CGlV9JJgwQwDX6/wVobA3AJ8DH/psGCsB8/LEeZaULwOcEY0/DzAnAI0+A9a5iDsC9w4oqMzYRwOWh94aRuhHAs/9PrdqGEcBpQXEDEEYTwM8LGn/IDRTAj5MCLzO1FMA6XrBOyyIVwEMcJRRtGhPA8YOXOGMNEsAp1Fp/3TQSwGevc8pwxhPAbfqn65KTFMBFzfMPihkTwF5RrpsTShPA6UHH6I/NFMATNWyKTqMSwDRXg6PFPBTAI7URPPL9EsC5xg1CqPMRwMbGNDoxxRHAHfnqp0oYE8Dcj6C+JpYQwJwqW6YWeBLAjUIStOXXFMBIA00vYcoVwHfzPC9aSxfAjUx7JgnUF8BHGvzxRXAZwCzrJMDmGRjAY3pb8YQiFsDdpS3x7VEWwFce7XSIYRTA5AfljTNUGcAkHOO4WkgYwKnXXljOBRjAA61I/ckkGcCjNyYLCXoWwMk2GuG/JxXAY8GGyP5lFcBb8Sm35bYTwG/4kM9GuxPACyEb+yf9EsAGbDE7Cv8RwDAzfRR1JBPAK0bgM1r9EsBrMAj4HPoTwDf8k9NO2BPAf7IvPLV4FcB1RvNl/EMWwPDNSbLR3hfA5NRDIYQiFcAJNHQ5XHcUwENfd7KF6hTAEUBhX6GAFMC9eMQTvo8SwLCi2t1XNRLAK2wpBXZVEsBhhrwrjR4UwFImhX2qRBLAee09ykcAEcDx+9N1wgISwGGo0SSIvg3Ai6jZ2f5TEMCQOPAYIyQRwGtEeODVvQ7Aafsm2QEbEMBro4yS+xQPwFOMKy02wQ3A7NSL/lg0EsDRmCGErJYTwL3W8NOvYBPAlaRpUzYhE8Ak7TnnEZ0UwOkiRNLUbBLALg0RCRHDE8CVg/CB4Q0VwMYw26qnvRTAFfIOhGQmFMAJfLb4x/kUwGGNEry1dhbAKDK4552dFMC3f+v2GsYVwBI7Z5759hPA8dWdW6fVEsDz9PTDOkkSwCxr1OgSwBHAxWdoNA1uEMADuPxTosINwDxAmkCVLwvAwey1bq1QDcDDRd8OsqoPwLuQprQVCRLA540aitpcEcDFHmR/ZuESwGrQ1oliKxHAmxOEPs9CEcDGeOwAWAARwONRQht3OxDAffY7goU1EcC1/lg4shMQwOBQx9biyRDAQ8geyx4NEMAP8wOG/kIRwOIf1LC/9RDA8AU4H8huEMDJW2wOdbMPwBgwyFPX4w3AibAcLZWPCsC/zIuFL4kMwE33uYcbLhDA5O3XNpaaC8Btkqh3VPEKwFhRG2IGzAzAeajSyK02DcAkVP5pJnsOwKmpYwqpcBHAt3BWnNkNEMDxSxxK/SAQwDtaHzd8fA3AIyUFdpRsD8Cz6c6VIOoPwO2U2EJLBQ3A3CJVAsppDMDj0lOQ+VoLwBGK1OzzARDA93GCUsiPEMCyQ1sosNgRwP3B8jco6BHAsUTn2D1BFMA/x2BJ924VwIpt4vmqphTAbj4D91aCE8D4EuqF+kcSwKC2y59SvRDAzlPtScT/E8AH8QIDQPYTwLRV6Wbo5xPAjCfNDKcVFMBvXVmRJXoSwF3GVifA8xDAY4BjwbHKDsD3ssvk1gQQwDuoX/bQcw/A67i/sIb2D8BRx/knLeMRwHj0A2DguRLAFRiX0LDCFMDU3bNnggsVwElg5Jx2ihPAk5PAqeYWEcBe3NhV+Q4SwHpLIwO1GBLA1eRiuDR5EsBaeIwlsikTwJkCIQISvhDAKXxNBW8nEcDBtENYcFIPwOmtzkz2ChDAu+yu+ur4EcDbycSKHFUQwPdxIx9pLhDA3OU1W6e4EcDAMmvCt1cTwG+oukhj+RPAFjXTIqCKE8CZwyR40uARwA38Ui6HexLAa9h8OhD4E8AxDKhxBkwWwLxLV9sAMhbAcyZ25S2vFcAUOExq9lYWwLtwFaL9/RbAYyifHWMjFsCSM4aVpjQVwMor8zhCOxTABNfx0ylIFsAEoypIuP0UwEuMForPLxXAdP9zPQs9FsAA3ISNzWEWwHsFgHGZyBXAyLuXdtBpFcDB9kHzf2QVwCmCbwnUSBnAw3O36QP4GcCpGEZtsIIZwLVG8mkkaRnALcvYNRpjG8D8YepbaokawKcwbiMo4BrA+ZqZmVo5GcBMXy1gIckYwIytHXLY/BXAtD+taXRGFcAM1BhQty4XwPuKZnnz9RbACdoqq8GgF8D1EB1T31MWwHRZoSRYuxXACPRQvJ9tFsDsIZYGXSoUwHXPFtLAmxPAmd+Sd4ZSFcA/lf4qi/8VwIjVBPrLPRTA9f9+MNybE8APV+xsIokSwE+JFzaM3BXAp6i7P15VFcCLPwK0NGUTwCtwsGnfvBPAXDoZFYm5E8BA2ikLJpEWwJi/zC+77hbACTN2tAYCFcBE82t/NZkVwBt2YNwL6RTAhC5CnBGNFcD2nnfI4fQSwCW6Wb3N6BPA/KOg/tHhFMDZ/VteN2wUwFEYsYyf7xLAQRRrtyNQEcCA2OGaKMcSwKzlvI1RoBTA1Fejwsl2FMD141w5iq4SwC83XQYLhhPA/ZsqtwZIEsBZrlq+N/EQwKeK1XkXiQ/AwqnsqkNsEcDhiLPOGX8RwKmNvaiUmRPAw8drpWdNE8BFai5fv3YTwIaOhbP2SBTA+gcX2baTFMAgEicUBnQVwAc/aOZ6mxbAjZ4LSqdJFsC/Ls/e8RkWwEmnQ2bSVBPAqtHZBDOzFMCXnVYSqf8WwMG4BlS61RjAjdjZRvKUFsAlw6kH37YXwLArizJoZBvAHfz65zUfGsA0JiHRZg0ZwOmhr5bs0hnAXykj9oUuGsCVKk4QxuMawA2JzeuskBzASSV2eXCrHMBrImuQFbEcwCspkhXM+hrA8Q+R2OSZG8BE3URtlzkdwGsF4cdoARzALCDmFXQNIMC/yLf0WyMgwOzYflbQWyHA2ac8QYg1IcCnLsX7msUgwAAVTLjC3SHAjKqa6pmgIcAB8jpwC+0hwKwKDiA2siHA938YGBQPIsDt/cgjnJAhwL8Gm3j+hSHANBR/Y/9tIMAN9vrCt2wewO0Q7kMmcR3A4Gqkf83FHMDHetNwhm8bwJjS/TTXyh3Ax5vvVgFjH8CTGYbqkLgewBBI/3Iz3BzAUBARY8tOHsC70MPQxwAdwPWSUQK0jxvAb3q+KzoYGsC4d5i8bTUcwB8kZAGO7xvAh/pfZzqIHMBgB7GbJxYcwOFFkT+IJhzAcI+16b6CG8AcALznujQZwKB1CQ89cRjAwNUEPl80FsCvCiFMDHAWwM3VBkyLtRXASvWrTjZxFMBH6Z+e77cWwKgOoSFJkxXArWK0CPYiFcDAe7qVuNAVwLuUJe9ThRTAoVb2ca88E8B0RWalseEQwNjiG1klCRDAQDjWy7aMD8CtaJvQvXANwLR5aF6EHQ/AjMJmhj+HEsB8Ifq12gATwCjqANNABxPAqNCVuAa8FMD3Keqjk7cWwKUem/e3MBjAeGZqQ3PsF8BFNlrT/eEUwN7H5cTfpxTA/XP5EtYGFcDxLOsB1DkVwCWGffGh8RbA01tzGux4GMAgJmQd4n4ZwLw8nkvm6hnA0zOEkTqdGMBEc5exxrMZwOUaSzimZBfAzgPm5Xs2FcDTeQRipkIWwJw1vfPnNxXAFD1REYxdFcAV3kdlak0VwFeYQOlgHhbAI9LxOGtbFcDvOa2L+AYTwAf0KJEy9hHAFhd2SHRZEcC4ur+Zn+oOwEDJQ4NykA7AZNtiDXi9D8Aqaf97bIcQwPkZyjDE1BLAm9H1ZuKqEcDrKcjS1QsPwJOkYf5xWhHABa23BHYREsByxMi99YYSwBh+O/qZAxDA8xKHXx20DsDnIVWHNp0QwGkeB8J+tg/Ae57PvtxsD8AjELgeH4oQwDlPlysxxg7AbLDekzPBDMBE5FHfhlcKwMlijzUHVwzAn7MwLxIbDsDwMVxQQ6AMwKTNp30qIwvAN43PrxreBsBAmblNh0YHwMjP6r/fQQnAAZxheFGdBcCIdjWLgRQFwIWsgkpDHAjAYHTOK0yTBcB//t0/vcwEwEKU7d9f0wLA1Y5ErgUt/78tHAb6Mu4BwO/wRiF0bwTAFIPg3R2TBcB0oqgFV8kEwH91U+zDAAbAv4z/TA6bA8DjKViy/J8DwDbW6k5rAgXA725nuAl9/L+h2oDQJ1D6vwEEOMfGxfe/GO4C3vZN9791cid6JHL9v9vTk2LwTwLAAujqlScsAcDXwYPFirwAwNMvMxQ5OwDAKeBXG4LM/L+JXQtHpx/9v63aMYhgFwDAW7govUrfAcBPO8WpSdT8v9optjF1UAHAzcpNwpWRAsAc8uuoewsCwFUSAHMHLP2/J3tg7EyP/b8npApuRW4AwLfv2EgUrAPAvfzaOx4qAsAxCvvwzXMEwDfJmANuygHAhLOjuQ5iAcCTjKQpNUQAwBUCWwu8a/y/P7BxRKFH9r8bzrMSYWUAwIfuC2DJc/a//TDUabM18b9TVxYp5+j1v0BiKD2nHvO/QwI3DPsQ7r/1s3KCsqXgv4Aa5o5i6p2/CwSK+bPmxj+lOsAmcuS3P7U7dKw2bc4/A0qJUfTp5j+dnqH42/rrP4edgnNvutw/VQoQRpTJ4D9pce/Nf9vePyDn0ulbnOE/JSoElItBwD+5uN5tnN7jP2+xV7Ui7/E/LKzXgFd95T8LsKo848HjP1CeLEBxpO4/p/2wUBXw9j+Mgkvdior0PzX1GKPnuvY/bo6pH4GZ9D8dnF/KmAfwP03Kd+1KSP4/JTUGffxlBUA8UQBpFPMHQAHg/dPbWQRAEPnu5iRpB0CwSqteHUsHQM/B5nooIwtAUE2wJqxUCkC4IeLvUOQJQBSSkunAHgpATbBYEcb1B0BRQsgwscMJQKv5PnSfDQdAJItbn7vcB0C0dw6iKHwFQARNvxiilAdATdnp4K6yCUCddLmbiHsIQKQsgOVIFgdAsRGOF0fdBUC2FEQQCK0EQAlDzFtEqgBARwYoSQOx/j/MRtWkx57+Pw2vNv7+mPw//OnrYdgX8j81XxbiZaT1PzO5LBEtcvI/w2JFr7Co8j99SLoAGibxPxOira5nPvQ/hMwO14pk4D/h5vnkT+7hP+PjXLi/oNg/y7swGcVswj9FnVIvMD/HPyQGkiYlb8k/Pt9+9q2j0T8U+lCxmF/aP2hbToPsUfM/B8uOm+8v+D/4eDH+04LsPwnL7dPWg/A/BXACGTtO+D+NhkvGERr0P9Ny7eqoT/Q/fb2y+UTv8z/nmP5KjfH2PzCcMSpJCe8/3wl5H7g+4j9nGPEHqjTlP4swL7Dm1vA/fEKGDcbB7z/fd2JdPuriP2yLE49+5Ow/566OLVlw+z+JerlPkaf1P9QMy8yPwfY/cOErFZhi+z/d2aTa1/8BQMVVZkiSqwhAj4/1i/fWCEDVQM0lyzIFQARMiu3AbgtAO94SHjVNC0AAf7IZrGIIQKwcHCu03QVAALTwgVkvBkBCUF/3PKgDQLHMuSn7KABAWe6hj7UJAUDWS9LfGE8AQPP8s76+Hv4/Twd0eGiGAkCXnUhDjvsBQFSKHOaZ5ANAyE/FDlsGCEDU4q+SczQGQEc8+TNdIghAV8ABNtDDBUCYTDW70BUFQLImkLzddQRA5bNRf3kIBkDjCAt8Iz0HQOWOyhiybwhACOFTIj6bBUDtBz13xeAHQBnpalqCgQVAH7dxJvVgCEBJ26eQi6oEQLuQ8CeNDgVA4FsiLppuA0A1YcDPghMAQPUmZt/i8QBAmX0qMdDD+j8PI1k6VDAAQNgH0KVsHwRAnnpeIhmJBEAnrKEmMuIFQL06LSjHngVAPKoVb1qICECFBysnfYUHQBGKgjUFewdAWEsmfUY8B0C1I1TEocsEQDO9Xw6JIgVAphkKRnT5AkAJj1PlDv8CQLAXvNSdhQZADaKucmwaBkAuJ44ekXIDQONiE+UveQNAiUY0H90kBkCgLyht/+oHQDFujcwWpAZAV9FSgJqtBkBkf/7gbb4GQIX4VHM9DwJA1TDVF59o/D9FU8RUmRn0PzD1zCfBRfY//JcigV9M9D/HSxgA6v30PzECXBFHuvE/IjSFGLpE8T/HrTw6TObdP8DCYQvAW+E/K2XDHPw48T91XBDF2GvWP/qMt+bFYOE/DHQ43ZZP6D805LgjkhHyPy+0F9betPI/YFKvoPeX+D9bcn9+MXz5P0Gp1SIswfg/bKIM4pHN+z8NQoNZeBfyPwkS9o2upfI/wGBsCtQ59z/kGWPkCi75P+NJgxuNheQ/Z96C1+lk8j+qaDkfc8XwP23mRy9hcug/n+nOAmMu7j+BPC7mDfDjP0DfgMAch+Y/8Ie+eWF13z/QugP37YjGP6+EyMRVauA/ie81Gb0J8j8DIb5aoFb5PydydkCwaPc/gwRPHKm+9D9wnLXyE0j6P8kVPcC8dP8/Ve5lACBDAUB3ifZ0ZskDQLEdoPL61wVAy3Bh5Nr1BEBDFIqWxCgFQElcfIl5uQZAk69T3HFtA0B6uswr040EQO3Bm889pANAq+8aPJQt/z/dHq9VwLwBQEQuxjMBrgRAVwIzuJSbBUB00YCe7VP/PzNeHR7Oo/U/gYuVoOk9+T/Jdicwf17yP3/yD6BVEfU/ObxpCtkt+z88RlDXJb32Px3Hdr3S7/I/H5QpS4Fs8T8FqcE6z77xP/G1htYB1/o/XL7LK28b9T9UbgUGDej5P8NTQeJCnv0/KxszXmNk+T+z0B7SdZz8Px/Qd5/ZJv8/ZRY0KhEd9z9bbe5jJqX0PwEf/Nnt9/U/YD/khkL+9j9jnQA7a8DvP7Wa+qxZaew/09hgsZH/8D/dGywS9h7xP/KEh2CyNvM//Pd4RD6P/D+v4zDX8fn3PyuRmKJu0vM/qCZ85HSQ+z8cVo0jcq/zP7SkzaM6BfI/t8DgsRMl9z+E0eh+T4TxPzxy7dNs7d8/rScZ5D9N7D/jLocPs2nnPyzRjcNatdg/ODpAOKDP0T/VLtvWvJCtvznXA9lvN8g//693+Rtu0z9avkj0xg/VPw8H9o9fOc6/V/KelY792L8PmCvCfqLSP6AyXfatFNg/9f6s6UUWyD+p4ugdQrrBv8bFOgiqAtE/+nyOlV5g1L+7DHxAoa/Jv7yZ6+BNoLy/tSQAIJC/w7/12uFhJfHiv/PiXkroWPC/8dpKfX3A678FkNj9Fgv4v6z2oajfPvm/UISVuU/K+r8DLHJ2plABwI20Cx9XbwHAuXYXtd6C/b/LPHu6ZZn4v6NiuIn+Nvm/GZsgh+rA+L84w/aVmh7+v0z6QC765fy/vfOG9gCxAsBfTAgl7nMHwGU+sgRORQXAK1rslNptBMCIUQX+7T4HwJ3HFEg6nQTADFZgDI0rBMAY//9YCHwIwBfGATpGqwjA3yBn8B9cBcCRjoneIcoIwCwOukH8FgfA3CHm8Lg/DMDYs/S1EXUMwFV+BTQsvgTAO1VPXayDBcDFJPbMn+oDwJDJJV44AgTAJ4xBZv3aBcDh31ifkx0JwBvLhF7NVwfA40Cq9zH6CsBf7wtU4BUJwBhD489regjAVM6QcbJMBcDou/g4nwYGwC/zIVmBGgTAGc7WeXu4BsC7CgOb+78EwPe/xteZZgbA9PkhzZu3BcDQrwZpMZEHwCdYuU6WGATA6nEhiKAqA8COzmXmkNkDwL/jxp+cWwPAB2NBPP42BMCrhTyyyooDwI40LPJPbgTAa79URxz/AsDEtaZ+SL4DwB0k9lMxbgPAPxlui6dMBsCJ3wO+u0IGwGLwZkF4EwPAfm0P9u/OAcDcMDIzeIwFwCkTCzvnlwPAt8H8qjeUBMCgPNvKm74CwCfJ+bkFDQTA7ZTiZlyTAcDQa9jF2a38v7j865tOUfq/L4CsYEIEAMDJkiZhlwf4v7uwBDiTf/i/5fvEcLS+7b99Kn+erMjmvyf8eHEmneC/vFlBuODg6L/F15wJ9JPpv5QPtwVK7eW/SS09EQqS57+xaG1QZbDnvyUXshfCk+q/+0oQDxpQ5r/B1Vho9CfZv3mzOIVpl9W/m5bVhypnob83/V0JpZvFv8HEuYT6IdW/sWirXAjZ178LKAkiN+ewv0m8pRsYyLu/W/Dq3UlQt7/TzPe4mjPXPyDrbm2Ucbi/3+10Wh3kvb8zHVXPlU2uP5iY7uruAs4/CQsGq1D50D8LnIdi+17HP1mXTQsYFOI/rZEKaZ2+6D+gqGbn5kbkPxnV/mhWs+w/5jVU/gpp8j9ddsBK05PrP0tx0POiHeE/JFsiddaz6D+s7HDDDi/yPyilyu1caOw/CfVs1EwZ8T+heYNj7QToP9jRV41SZtE/k8q+i6PY4T8jP1TBLwr2P0ML4o7aMvE/xLZ7ppzj/D+dWEhf+/H+P3vS/YYSVvo/+TuyEEop+j+VDPSrimz4P1PUtVBeevs/zxYIXnQa/D9dxLvFdTIAQOHPPCKemP0/U7CeabzN/D8dQLKABvX2Py8fecYK4PY/U2IovaVz7z8RbILR2evvP/FGqvnc4/U/d4Xb5NOe9z9ppB2Nmvr6P/D+2Y6M6/c/7OM//ywx7z8KZDiSPNPwP2igWAh4yfY/NKkB694b/D/Fnjcuj20BQCHH8bZK0wVAx26sPn3qB0BBGAaZWvIJQAjW/LBoXwpAjyGcpPATCEATnZkRPCsHQDN/ZBt0qwhA6czk6wb3CEDvKXwyY8UJQNjOfomgpA9AsTQGPzjHDkBICSkEr4kPQI3OZFciQRBAtHA8r/lHDECXGhc9mYcLQNXBA+k1gwlASSz2YcWOCEDANuEd0YYLQJd9cMhKqQxANHdnOh18B0DzX0/B8K8FQN1TcSClTgNAY3T/UJ1jBUDZzken308BQJ9spNekyQNAsWrwkcINAUAgwgJCZLIEQF/p4cj9YAdAaylGDXfOB0AVWQBc47EGQMVUqF73XgZA0QJWm0raB0BxNG2k7I0JQCOMJes/fw5AS6J+Wr0zCkAhQhDDjPYMQHswqCdPfQ5A9e5UWncTEEBaSe2kQM8QQD3/tUloBRFAuAROjr6QE0DK1wxWb/MTQPsMe4gEHBRAS1EcziJnFUDn80mraZEWQP526SFwJBVApQIW/5R+FUC4hsR8UGcVQDjSJuTADxZAN0cOH9oBFkAEsJa7s60VQOsR649CZhdAfHrFcUHzF0B7yEDnHSYXQJefEW1QRRVAkYVe7B3lFEAt9YdMSjQSQNUfEwCEbRNA9OymzGvIFEADK1WmI8UUQBU2m5gD0BNAFWJeHI3cEkCCHgcx3FsTQDvAdxcAkhRAE9VCNS+3FEDdmn5VqXIUQBGXEIOQ1hRAawCJV3eEE0BtvTig/vETQLvkav8HuBRApCJpzuTxFUAiAzfAVAUVQPn06/ZY7BNARseVlDRDFEAofFylMGgVQNbpAUWSdxNAwwkVt5UsFEC/RGzs0cATQAWA+HSsohFAu4e6jy9jEkCY0uxMYeERQPMYfeF7qhNA2xBqaShCE0BzY8duBRsUQDJ8Mdel8RNAXGoSQlEgF0ALcavYZfgWQIXNoO6U6RdAVxfHkZkLGEAz5H0s3KAYQD9iksPvPRtAB6dmmABOHEDl4uLXts0cQMuEz2Z1AhxAGVc4Wi7eG0A7AF9Fn6IdQCMMQC5PmRxAW8AhBeANHEC9pN5i8TUbQKlR46RqThtADZ9RnjdvG0Cs6RR1jPUZQBP4uMZInxhAxHuQJDVTF0C8zZDdYiYXQCyyVPBmQRdAMFBb9sNeF0DviLdt/XsUQKZNi0/ajRJAr7A5HbvZEkAhoou24h8UQHfmKObLqhRAnB71xh6jFEBVFvkUrYESQEfpZLcUYRNAsfvndk7/EUBZDLhORbMRQE3Gc/3cjhNA3rQCM8NME0C/5TpCsyYUQCVW+6VxyhJAeR+tE7srFEA34jqC3YESQGk3C0Y1wxJAcYxVdeFVEkBlCquJO/4SQOdJhHq55xFAt7akdE+aEkBP7laDYJgRQIRayJNLGxBAlXu8FQnPEEC5bFoPM0IQQCDaf2T2DRFAHyhV4oGREEBpFL1FFDkRQN8v//SwjBFAaXdpj6rWEkDJdBxQMfITQPFhkA3c7hFAcJljjrsyE0BJb1KBo2MSQBZK36C8YBJAWDlovgsgE0BGncVQo0QSQMe+5PevHBNAORxt2cteEUC52jwwCQUNQAtx39sQZAlAc3a1mFPBCUAw/4Tvl0kLQN1RXNZ6dQlAmwVgVGIVB0CQN1DC0JcFQMsAXFofrAdAL957degZBUBw2OnYf28JQCxBg3xtPQxAy60qJgAlEECc5jHvygwQQAg3DmnrrRBALdgMg1c2D0AZF999HfwRQHVkY7tM/BFAocn3UzGgDkCSJ9+SQAARQAD5Al5sPhBAWkt2rw6XEUC75UjepZ0TQJ9bgWtEKxNAJcZXblF9EkAH2nGP8lATQIYywOaY7BNAJwYyxGQzFEAZr6FtBhIVQJLHJcEC+BJACWBn+JPRE0C0k8K+1LYVQPkbWSdRoRRAnD+DfYmSE0CzqrZFx2QSQA/oI05S2RBAGO2sdykXEkDd1CVwOZ0TQJM175fLhRNAi5R27LpDFEApIiaRcXsVQPRZPZxKhBVAFGVgeZdoFUAxrHEt5I4WQFMXE/e/sxdA+4BMmeNfF0CxpYVFL2kXQJSjA7/lZBhAcO6YnuqtGUBI1M6lwQ4ZQPi5QUAI4hZADR0XL9WdGUCraUdYk1EZQK8VNe479RhAe/VjJQuuFUBIPVikOO8UQCeXhoZJFBRAP+SvPhJGFUDrBZt53PcUQFi7DX5Z6hRATLEAmx60FUBZ/0lFXZsXQKhZ+IvIoxdA1figejanFUBxTkNurxkVQLF4rSU/AhdAw3m2VZe2FkB3+qtVDLIWQDD1JVoLVhhApItPym3DF0AZZTKpWOIXQH0+K49SHRlAfQEPM7moF0CMcFXi3gIXQBF1FXRc3xZAAfUvnMTKFkBFt1HBeGMXQJuS6t9+NxdAwVbKs5veFkD97EWJ0TkXQH8UMbEO3hVARyzsY+eSE0CYGvlrhLoSQGoG80YSrxFACepz7FYFD0DNWjN2zVoPQDhB+VrlFRFAQmg3vvpJFEC8+lGazXwVQLVWhE5KKRRAMpRtfqO3E0AQcZ/jnFwXQOvaZA5mMhZAT5gUfrTyFkDbWsn/NA0WQK2Eca5tKBhAbcg/vJxqF0BPxhkEJxoYQCsUuXn9mRlAmAcjNoA+GUDRPFQvQ9MYQF10RBDbAhlAzcD0cLIOFkBEU5GwyZAVQNdrdJUAFxVAWwS+XrIUFUArrwJES+0VQM34XW7pLxVA4KFqr850FUA9LnWLrJIVQPMq9+MK+RRAj/ie/8K1E0CZSWuJUH0TQCOcIatZPxRAjIWxINhTFECbElyJgaIUQKFKG4zwoBNAzHbVjxYXFUARJSwKnNAWQLWKakkKiRdAY97Nim0zFkB/L5my7I8WQEfgkoKLzhRAn7ZXm48AFUDB18eSF8oVQMWTXdgw1BRA8KH6+EDvFUAIfd6C1LsRQFkbkUOF6RRAcPK19Vx+E0CUyzLjc4oTQDPSdE3/VxJA02qKMntuE0AttK+NGgMRQG9uatggEg5A6Bj26oRfDEBXQSWRFPEKQGv1WIBWTAxAk0/KJApaDECDXyiFzskMQOcq1KmU8g1AY6A+3pmECkDPs405vNwLQDXsPSlV7gxA64aCHHuuDkBvsc08rjUOQLu+VMspjwtAUB9qBE3JCUCQlkM9huQKQDTvLzGfOApA5b2khLXOCUBIhZuaGQ0IQDiLhdh7fwVAEM0ylSqZBUDnp6yKsLoIQJd0F+/ttAhA/YQvOia2BkCdCAQB/tcDQISHyA1x/gFAkqeUet9EAkC8LwqQ8UYFQBOGeB/8mwJAGY/Vwzv8/j9/XKMIzmb4P2r+UYqPAPQ/DNmaPfaO+z/TNdHCf1X+P9EV4Mnjjfg/w0Mwqhe+9z+VE3u91hj1P+GXKwEOCPE/XDtW4WtS8j+42CxGMC7wP1OrYoY7le8/1TCE5hvg5D9XhZyBa1L4P+VfFIDvGfs/6yUzO4yL9T/WWF7O8zvyP4m+Ik1btfA/bZBk5D9c8T80s2XlrwLuP3D85cCFn/I/mLCRoiUV7j+NjOWhW9XtP2mGqwM44Oc/GKFzAv556j/cIoNz797qP6UpkJWNs+M/X7tc2GQK5z8JQxqWbtflP4g3g8Vaw+k/3Vz8AgEl7T+mpS1fhPniPwj1FWMn1ek/kMc62AId2z+BnnNObD/YPxU5iDpzYb0/s4K2Pgie1T8ZKiKtbnfAP23FR1KP5uA/SEghRpdp2j9/lvUG2tvpP9vhRPD/5+A/nDmYAoLn1z+oAB0V9RLvPzRNiLSxvOs/tdL18oqA8T9jR/XsexbiP6hriTaa5ew/lF0asFfJ5z/0nve0iDrmP60IboJSZeI/Y8nuFipx5z8se6jtKvjuP4nw3m8T7fU/G2HbafsB9j8l0XuNcvj0Py2DCwqg6fI/CFGAUXSr5T9Jve41uSjhP9SW/Ivt4d4/09kphimf2D/Mta565R3oPyisOL+hotA/S+Mg0iX54z89AJPT+27hP9UK/vNPE8Y/JHtj4C9q47+97hCSR0nqvz1F+RARjeW/nMbEKu356b/PV/TvEzDjv7NTt/CmKeC/OawMiRjL479rD0WI/Wrwv6TqnrQYvve/7v1AnzQQ87+K++UAiEPivzklCpklROW/fYa2WzSq2b8jRPISSinZv89e9LsrNuW/5OVE3quU6r89rm6sZ2L0v+pSbmpBj/S/Zarm9HIj8r+IJzm0Zp3tv5ujwKXK3+y/6ZTrZILa8r9Bm6gFgwfxv/eSMQcsEfS/9UE+atig5b+XHaTHGK/hv9Ip8Vtn5eO/LW4hNHaGxb8b0fIx7ovPv1Wq5yUcOdE/1dpNDQRWiz/xFOxnqD/Hv/kwFwiTPsq/cwxQiyZO2L+IM7C79cLNvxtdQsjnU62/U4pLUBiMsb8YkeEm42rbv1Tr8WKd/tm/J0hw6loNx78VxRABwCKJvwev4iISf8I/UBIwb0ahoD/rDhWucRTbv6Utx6MboeO/hVx+ho5vvr+LufpCYXnOv5V4ntpud4Y/a+W9slWq4z/xUxiXEq7mP61jaXma4uc/S6wjYeVs4z8JhdoWDVPgP4QkmHNYYvA/vYmesDrZ9D+jsFO+aT7sP5zLERUhoug/wfI2PJRv9j9I/QHAlan9P4eKGx4O6Pk//Nx9zGzj+j/hwQBYQ5z3P1Fuyfxw4fQ/SKzM+Tjx9j8QwPRFWPH6PyVO6GvQxvc/BQ6d56Uj+z97ZTS4i4T8P1VS641RxP0/FblXJVhIAEDJZ7QqtIEAQFLbz5601wJAE4K+Dd7kBECQBZiYohMAQMfnKOd9vgNA40Uo2eMmBUA0AHTW7QICQA4BruhoUANA756Y5GutBEC4pIYvtZj+P1MRcLa2YwFAgcqpbg1CA0D9ZopP2wwDQOeplFjPCwhA4RXpd9DhCEAQ4EL8pr4FQGkC1XDi9gZABVvRsGPxB0CVVQRWPCsKQAAEFGhtTwxAmKNwediqCUCo178aHX0LQKcRYovaRQxAmNQiKbHTDEDnh5hZy20PQMXkj5OqrQ9Af80UBI5LDkBTv9dEn6QOQFh/Xebhpw9AULKab8gLEEBX84pGodIMQCUUS/2k/wtA/Wg9H4P4C0Cs5MwlsAcOQLs4Inc1sQ1AlOyZPoe9CkC/Ssiz/QYJQFTOFeoW5A1AzXeLtyXYEUDncFfUFiMRQI2OIqSEahBAKA0b/V0mD0BYBNOD1AYOQBNYoRuXeg1AVfts2BQWC0Cd1gUroTYQQOBtwsedZhFAhCYZfK+AEUChswRGexYTQEMZs623chNAITIPJt9uEkBhpFjYPioUQMNe7hKXCRNAuJp1kwBjFEDoyK6SbvcSQIXq6wRaoRJA9DA32zQ8E0DpPQ1/Rw4SQA9rgRN0HRFAW+Uh7aJ1E0BFwMGPAxQWQGPt0F9ekRhAHR5tkZdqGUC8BN63wbYZQJHxNOWY0BpAfVSnBZiHGkDhryZRngEZQMWrXNPl8xZA3SRanlK4GEDlYB4mWBMXQPO8xn6r5BRAwRkwr53jFECzyz7j574UQHCr7DcHbhdAZx49KP9/GEC97FJzEMAZQEtu9xUaMBpA04//keqWGkANNju8yyIaQDCef4a0+xpA5AS1RM18GkDZC5Yy6WYYQG1O8PXRehhAgFfFt+z+FUB80l3Lz+IWQMjNPAMG1BZAzx2fR5vsFUB3ofzL8pQWQBBN5BJ+aRVAdJHvypN5FUCjg9uUt/kWQL+gDbg3NxdA2/Hy4n1SFUB3y4JUkkUVQDBhs5l+dxNAgc3LSe1EFUBnnt46vpsUQLyqtuHaoRJAB85Su3KYEkCER+K7moUTQOqMnw3TZRNAa+e5xjcOE0D3PAxLWswUQG0+hX5hGhVAa1X1jocKFEBQ06TdkPUWQAzyzCvs0xhAOHGZq8ieGEDr+gXXvl0ZQDf6QEyU7xlAbaEyA3daGUBhc00c868XQBNWMeli4hdAAGZaEjN+GkBNxG5pApgaQLmowXpEmRtArG1H7ie1HUCVmvCTKFIeQKoXs+VYPiBAOmceInlYIEAR5eBnF8ogQFBf4mmvjyBAudv9KmotH0BUQFZur0EfQIeN34fIpB5AjzP2/OdBH0DNEoMWPi4fQDdV7vqYIx5Ah2Pyy8LDHUAzDRYyEcAdQA+THhx/Ph5ACea3inXMHkDZOXKSa/kcQMz8onApah1AI5PLIj5tHkDhDJY/eKEfQLitciGolx9Atyoo4rtzIEAdcOv37asgQPEyit1jfSFA7ZwmRcsYIUD1D7ZZ6LQhQCyQGt5JUiFAkVUOKaqmIUD/jG0LYXQjQGQWizLuaiNAVdCkuxQjI0D/Pbcg1M8jQOCRmDZ04SNA/8X1kWkPJEDmEnoIsIYkQLzRgLtVeyRATpipVNY3JEDP59BG+D4kQBz99f5dwyRA+XDC7oOFJEC1l3+4QcckQH1Pfi7wAiNAcI16M735I0Cpwc/NaRwjQOtolbBUCiNAt0hyQzOoIkAdWLFmUFchQHfKoCPDkCBAgEfh4SKQIUD5PfteUSIhQLYid0wOACJAXVfU2W+yIUB8w8ky1qchQDV0jaSFciFAGrTqp5tnI0AL+AUvODYjQCPg9Y5dlSNAHcteQorNI0ClU3AE9lkjQFXc9iZ1diNA5dn4s08aJEBg/duvbDQkQGSLSVg1MSRAdPkpCeHYJEDE4LTnZuklQI2zBfliUiVAO+yakKDPJUBTwGT09xAmQEgMV+GVASZAJXncd461JkCDXvjurWInQG/l/I+qyShAZ5JEDOYNKUDZNdK9JP0nQEQBgEy/tyhAValIWF+GKUCZG7u1q94pQKxFePxMaClAZZdhsBcIKEB4774i818nQF2AF1EydidA+38NSnxBJkCcLIFksKAmQP3qaY9h5yZAacfDFu7BJkCLfz9weFsmQHcx0CLQKidAAegHdsmwJ0Ddg95znN8nQBSGrLyO9CdADHefm/+zKEA1Ji0d2CIpQNxNzKYwKihA7WhyxKdMKECfRGGqe+YnQDVgSNeKmidAmGMhml31KEADJCICrBcpQGSC95ZsTChAJ7AuYUyhKUCJLaD9ef4pQAT4+y03VilAEcEeDq5xKUCvz36BFdQoQOcBveH/QChA5aOrFB1jKECZG99QWi4pQO8bNYNEsShAkaW8H6wuKUDAHS9DWWwoQB/0qMrsWChAnPhfhjNNJ0DBCSgQWUsnQGlHdwDDWCdA79rm7DOfJkDxajH/sLsmQDPK4U607SZALRVRq3dyJkBFDwX6DqYmQJhHRy7t8iVA3dkUoOz/JUBPhyk2mTgmQCPFJydzmSZAbMY1gXVXJkAIvmRL2z8nQF9mdV6teCZASDP40buFJkCUBdEmLiEnQCvAgnYl4idAdOC2ohg/J0D7ka6VQhcoQI/U8assAShAuUp2zRTeJ0B7Ou38qCooQDAcJUvvWihAuxMJ/DOKJ0DT6AjoefUnQGCeziWBiSdAxGZDC36RJkDQKAZND6gmQH89scjA5yVAHbuar0qrJUD3IHbVPlwlQF+ISJNQdiRAlqjFgGHWJEA1eQFz9LMlQAEEFfw3LyZAV/dGwITqJUBD7tG4BBslQBNrqh3JQiRAOBpjiOxMJUD5UPrmSg8lQN8Dbwxp/CVAKfBfiYWIJkBsm3fZZhIlQHmBaki1PiZAfABW9TMGJ0BPd1J3eQInQHghEJAgnyZAoDsKK2yjJkBVL4eiQUolQDjMc68hzCVACQYUqp3xJEChxvW0MxomQJvnUhi9AidAAdTSQ69bJ0CoE+6mthwnQEgdo7eEDSdAhHeZH3JIJ0DkAndA9KEnQPhK9V18ESlA+9onqaMBKkDZB28rLmopQAkbWEcDjipAg+qlJ5pVKkAwHDZvg5wqQGuxFuCcfCpA97yGPIqlKkAxKDcjX5EpQEvBIwXz7ChA279xpM5LKkBPrUmPD3UpQOyZHJk9fylAKHdw79cZKkDAOZMSkgkrQLQq1RexcypA3OhdI0TNKUAQIsVP1YUqQMQ6gD5q3SlAkY2MTKIHKkAEn+VEvZ4pQExB7ocunylAUJRT0OfgKUCHQZvi1kEqQGEV/+6Y5ClA0J5Bf0DwK0DFzSVFiLMrQOHLdnqAuytAeaOQjHhFKkBQ2Y+kEEYqQHOdmkJxNypALBGCSPaMKUAcd8Kocd4oQN/IaIJcRClAVSR0aqX8J0CVqfWX464oQPCmqwd+rClASRr8c+/PKUBp896SCZgqQMmLtsOLCitA/0dJpni2K0BZZIAsq04sQDjRmLdsQytAk2vQ87x/KkDFpuzze3crQItMGYmf5ylA3bdPbyhcKUCf0uduazMpQHkbrdHioShAcTp0EWtZKEDvkcluW+EnQHDfTL8GSShAK5Dr05c1KEDZPkcd2iEoQMVANgBdEilAaAzw4NFUKUBLV0nM9jYpQJwpOAkzyShA0Sruf/iLKUBLmsWfX5IqQNTdK9VB8ilAqH8ocI4hKkBo9lAUHLUpQF+m1xaNfipA55vKTZCtK0As8bwFrFcrQGxjZxXM7CtAOaLi7ZVGKkC5BGnrCTcrQGkLHYeFKStA29LIjO9gK0A5/E5SqnsqQMgXUJ0VQipANXoqnwUeKkADnuo8n5gpQCfmnTu3aipAAGX4fdfBKkBNbpJYBfQqQKemMV6mjCpAcT7AGyuYKkApDlb/NSAqQF/0FLSofipAFa98QeslKkA/8ruof7cqQIB5nt+csipAN//hMMlOK0CPUVuUi5AsQI/wp04ECixA+9WSynK2K0D3aUQDaawrQBBR2F5IVytAtKCnH5f7K0C7YBju/XErQB99whUL/StA+7Exz2VALEBX8CXaaD8tQCdkSzTNPC1AfNckg0/tLEB9Kuek3QMtQFgOocBBvSxAt1W/iFQcLEBJ2EjPomksQD0yp63lrStAI3/UkcBhK0AFzuBg0H4qQPAnbFaolilANzbtFqctKUDs17WGhg8pQHv/tHC8pClAC69ZdlwDKkDIIzPhjrsrQA0kxpCN+StAiJewMgoBK0BfWI48Cl4qQO/m9H33zypAbdKIBJ9oK0DZpcVOboQsQMG4dEsYnCxAJDZG9QPtLEBVeaDBKEYsQBmKEJc3ZStA93PsHeBuLEAJ7hPrSkYtQD1+qqGOky1AT/SeemM5LkCRJlHRbf8sQFzaXmxr8yxAF+MjM+Z2LUDNf4z/piQtQDOLwCFaWCxADFo3J2fdK0Ch65pRlD8sQLM9CBcYGS1ADbaBpq3OLUAnZ9QHxq0uQI0EdGxQbi5AnIvkLoQhL0BJ9vZwFZsvQMiD5RlN4C5AUCuiqUsIL0AN5KK9MPIuQEcrwrjiKC9Ab8d99zhMMEDI2NqGbfsvQHkmNMBIJS9AIOUc2pAEMEDTDnSfnIYwQJkYHzWdVDBA/rhrb/tOMEDcoF9Lqv4vQP33ffrtxS9AZVG6/wTqL0D7oXLIl1EvQMSc4pzMFS5AOXQTf7FSLkBZnJF4L1EuQH2Jm70mXC5A19jXkuCNLkAF0gpQJ0YvQJ/4RCHyNS9AXY6UJShhL0Av1f9KVNUvQF6Kd0xgSjBAe+eyS+aYMEDBllUw/TwwQGYUTN07HjBAC3zQA8XVL0DtY7Om60kwQGMjOJxvrC9AX/v2Kux3L0Bp/nJ8QBkwQPkkXaGyeTBASTZjU+IVMEDjaEVklTkwQOSAvABWizBAC8pCmDx0MEAAfVD35mgwQMEIewQWaDBAW6UeEjf7MED3qhR15SwxQGkm20FnWDFA3d9A1EwpMUBBeRwxUKcxQMdmczVr7DFAkUEVcx2mMUBdjc1gsloyQD7rzMt53jJAx4vfguHLMkAOA06uAhYzQBhQywTRnzNA0Q0NOblvM0B5tHsm8aAzQOb6sFXDpzNA5RjKVWXpM0B6NpxYlRw0QEIkVAPpVDNAO1clOrisM0D1iSRy3PAzQJUBeZnTyzNAWC5YJ2gINECp3Jpq2xg0QGyekph7CDRAlclRL7ArNEByV1YnaZI0QCWfJ+Ne+TNAdLmQOSJzNEDR3GfnA4M0QKPp0nNzyDNA+MQDze+ZM0AhTSpCSCgzQEmbEd4t1jJAVxfoLtgsM0DZByB/XbIyQHWB8iNkjDJAAScpJ0gpM0DjNUFDU/8yQOFQ7Shh8DJADQVFIGJLM0Dk4kSHfC0zQHN1d8EC+TJA+28YbwPfMkCrq7YybYYyQHC9ZvxKYzJAitV2zUO2MkB10ZJ03Z0yQIWlbAO39TFAqjsJ7sy+MUD8do5x81wxQL85xpqlTTFAiliyZIijMEAG9ipfA4QwQNguf1GUtTBA8UCNR1L9MECGOvXYcMUwQG+cgU9eUjFANs5jcA90MUB4/hkTxzcxQNwNi/wEXzFAydrY2z/SMECFjIl7wBwxQMPdj8rIpDFA1OX4DzngMUDViLt6dvkxQPWbmKap8DFAaWJ3VMI7MkDUFih2E5YyQIHj4kD73jJApEoqDqasMkC23akLCYUyQI6UiIaGbTJA2a/ZmdI0M0Cx+JMQk1wzQFFUVwkdqzNARNWPbdsoM0ATRSbT63kzQBkpqZwggDRAH7Vvb498NECs/xWw3Ew0QFWeaYkPAjRAi5ntUpi0M0B90BfT9bgzQHUusdPerjNAtxbT7YzfM0AfV/ZZYsQzQJvokzGMyzNAXwYnyZ7rM0Cl/vcENv8zQBlaLGRTIzRA8sAmfzkeNEC1cV3nHB40QKMlT6e9eDNASDTozbaPM0CIZ33g+3MzQPgCBVLtRjNAdzdoPvq+MkAI9PZI8UcyQH8Nc2oJDDJAB85X8N7pMUBPgrav4rsxQIM70wuQYjFAxAVFcNaRMUDq5/cetpcxQCddRNdmWjFAQ3h9zxS3MEC0vQ/UYosxQBMyF5d7nDFAjpsq9N5jMUAvbPXOk9kwQK33TwLBzjBAzdxa1IIVMUCne6IfreUwQAB+8j54SjFAmo0csFw8MUC+O49P9z0xQBr3kIq6UTFAJnTrJ3JBMUAgdh9EGTsxQA+vzoIWcDFAhx1/xOi4MUBPjbPU674xQMalpY5O4TFA36uuFxSpMkC98FwsyB4zQIRqk2zolTNADeawrgOIM0BnAPzgoTAzQLN0fCVebzNA0ZNkpgJyM0BVlo1HkpkzQDcbtYDNxjNA0HTxL2CdM0AVYWBKJNIyQE7pZzeh+DJAU9vdSFQZM0BBWN34npYzQMc7vVkk4TNARex93jX0M0DZa82eXSE0QF1dHbpNQjRAZ1glDMNyNEA3QWLFinU0QIh1LK1flzRAcz1uX52NNECGLDWtgGE0QJVzxrWbfzRADOPIzz9+NEA2tg2E0a80QKHEkb4ZXTRAXcQQMoUjNEALYaqL3uEzQM3K9LqIMjRA23UxB4vyM0DFG3TQ4fkzQAj59FrJ0TNAGlYybC9JNEDtetiUIJE0QNDtcQoQUzRARzXRBpMdNEDdZIhZfWo0QPEIGnMzBzRAtcZfe0RrNEC9fvF1bXU0QNt/+YWQ/zRALJceyDsPNUCVi5RsHuQ0QLdS6JTgNDRAu95CN/vpM0BtTAc6RZg0QFtos325+DRAdAxYZdPeNUAzPCIlbdY1QOgewOP+7TVAQ7MHYBDmNUBHGeCsmis2QEBwrmBAjTZAWKw4d8bbNkAFu26qSRs3QOEWn9Ty9zZAFQ5QCQRRN0C912zI7AA3QFXohaBjwTZAJZGQlkK2NkBZdoMD/jw2QECsNczkHjZA3BSuJ3htNkB5O1jEobQ2QEX88zHFsTZA9f9sfPT6NkALYQ0iYV03QB27LYFVIjdAxBiJZyvCNkAtucwcsvg2QAjHPPBNhzZAh7KLOVPJNkC3QH5KCq42QPMaXombUzdAlBbns6/DN0DceCiCIOE3QN9Oq1bA7jdAo+zwppeSN0DgLnNB9co2QH8Sz/ChuDZA1xKzTkaINkCoN+nl17k2QKxdYpGdwTZAvcqgYrObNkCd8LeZ5Xk2QAXGsY7qszZA2OhkQtKwNkCYpgbbqN42QDzsKQysFTdA8dnL+5SjNkC7Ht3166g2QMB2gYo1NDZAaXhAdilWNkB/BY/yX2s2QJPEbk53ZTZA2RFS10LUNUC7fBDMPdI1QLvFWpbZBDZAEDmdf9m6NUCVTBihkk02QCwq3wF1ZTZAn5po8j2CNkDUbdMfztg1QNd2wqNpyjVAeRO90sbiNUBjT4eauKo1QAk85AqbXTVAGY5eGHE7NUBRdtToho81QJP8yX32rDVAdqN6zBMKNUCMgvlr60M1QHsQ03SiQjVAp6MTqAleNUAXph+ttzc1QOBRrYhJVTVAa8FEUqxxNUCPOgtqOxI1QBm4YwOMDzVA/yMKG7ouNUAH4nKRqX81QFWj4J6UmTVA81WVnppINUBfZ6La6Sg1QF2PTrt8zTVAW/RSZrI+NkAZFM1+PoU2QG10upxppjZAj2m2cX/iNkDzxt5Mje42QCXMzdU0SzdA/UjT8se0NkCgkSb2umk3QCQRZdvAPjdAgIahFiCSN0CR1C3i4CA3QCcs6cQrwjZAvaf8faotN0BQgsttM9k2QDEbk+xN5jZALDreFmoxN0D49svDE3A3QPkWxMex9jdAXL4aEkRtOEAHYQw/Z7E4QE17f8mdZzhAzXc0pc+MOEC/tSpCEsY4QLn/trBsWDhAIDcLr4A7OEBkhx67+AA4QPnNjpeHFzhAUQMtpZs2OEDz3lUgkr04QLhW/YQOizhAe6c55XS0OED/rKt/C8U4QBEpr7ph1ThAkV2Hop+5OUAoOIWoMYo5QBFY6Km1ZzlAPbs9dZsNOUCMf4OunqU5QCzir6jFTDlAPPIFwOlBOUBXKnsI+GA5QIgMadIJNjlAyADDVs6FOUCkW6qyFOs5QNgWefrwoDpA+DrhI5q8OkDg6aKXu786QKTvzxvtgjpA/RHuGJC4OkA0lL2zm7g6QMPr5P0NvTpAMHd0/GKZOkDUofLW6bI6QBVkMo+BuTpA4RS5GiUvO0BtB9ZtMZ86QJR6DZ+udzpACJdbFHS6OkB18F3ZeR07QJWNZfxVszpAjeUAPHWXOkCVyj0M7586QBdFuBGr9zpANCCex+AoO0CoAdtS6aE7QHsdOUagwztAiy4pHOQuO0AoVuuuvd86QD9HFv+lBztAbS9eWcvxOkAcyJvQLf86QNOpg800XjpABazdqTUbOkBgPTd9N546QCPzmSWzwzpAcOimL53AOkAln2dR+7U6QHEgMaSmjTpAwe1wucPcOkBLrYzcQgk7QLzRk1ZOGjtA0/nWLZMxO0Ad7ZTU1gM7QFEARsWkzjpAtMUSLs/wOkAdhcK4Oik7QKRG91R34DtAt/SeC3q0O0Cx5Bvn/uA7QHEVtqavgDtAcI4J5xApO0CsmlojnU07QItve5lk3TpAX0lBrpmFOkD7NFQiJ186QBV4VRumajpA2SzxJLdSOkBVUAvNc7U6QOf/jOjnuzpA442+dsN2OkArhCaTZyA6QG2G8+NcXTpAYMuqQ6pWOkApq5uBHTo6QCAjF+n4nDlAxAFtQureOUC3ZvVNPKc5QHiSZgiPfDlAQ01UUvM/OUADMzXIAhs5QN04E2R1DzlAJIjLHEzjOEDTXpHkDp04QH+A6thKnjhA7fAlSqxNOEB8ENVFg2U4QEENBg75xDdAAGT9l3G+N0A8EnER1yo4QK0Yjza26zdAI2/uP5fQN0BvyE+SL283QAk+yTW5jzdAANBnNuXFN0BviLw4yL83QDUAsuQpmzdAGQcz5tkaOECxKrMlBFI4QGwOsDzS7jdAu30MINoOOEAEjqmsBHQ4QBkx//fgHThA1ZQQj4oIOEAP3okFCD04QEBrHYCJJThAJRRUlXQpOECovOqhmbY4QKe6QGMAezhAVABIpKhxOEDkbiD4WMI4QPE4IQfNcDhA3OURkAskOEApwxnTYTU4QH/e8uU/cDhAtc5keY5hOUBhadUgtPs4QKc/0rAa2jhA80A/9a8yOUAHlh/aoB85QJxDlOfCiTlAqV1OlKoIOkDTzHzo6wQ6QFkh6wrAbjpABSxFgaxLOkAphMrdH4I6QEm6xEdvsjpAh/wxNR+wOkBrfT2+D8g6QAhAkM/p+TpAFM5KCPv9OkDRHMNZnDw7QLdG6Pa0rztAU1Rl3qObO0AlCfwCMa47QPS6M2YWmztAfBGJ1xqKO0DNZ+sH4FM7QHkj+NoolTpAVzn/BZD4OkCb72lMdeU6QCg24s96/zpATcMUakccO0AsnG5OXUw7QOTzgH8VuTtAyYx+3XLdO0DXtONDafU7QFR7+JQlzjtA09Vp3NiXO0A/J55H0GM8QCdN5SAGQjxABzbhcgLLPECYusx5rfk8QNcXPJOu6DxAqe3W81LCPEC77KJNu2I8QPi2urqT+ztA1CWz5V8QPECbok85bkw8QBVnoylI8TtA1cTeWwvwO0C1TQYPOzo8QMsloNx+UjxAxQOC81MhPEC3Jfvoaho8QF13aXLB+DtA5O4P/rb8O0DMtwhpPq07QP2T1Uc9xDtAwWyXeyRiO0B3BUfntmk7QO0EDnvGDTtAoI3I9INxOkBwQYcYozg6QOCsYQhxhDpA5/2WtVPfOkBP7Vw+FdI6QE2kFITizDpAT0iM2TAwOkCchInLXOE5QKkwgAVQjzlAwWmyXX2oOUB0n9sq2os5QDUBsixMvzlARx7mQwnjOUCj41soP605QB0SfHahyzlA7Wlrt2dYOUApt/nYXaU4QPcde9ligThAhADfXS4dOUBPbCWCAks5QDuTPMg61zlAXEV83WwYOkAoducpvCw6QDi2LJgVLTpAGyWYPtmMOkAhOSwNjro6QAn/AyuUsjpArL35zijgOkCnw7/TRLg6QOzUiIp2zjpAEMurPlk+O0CfdQrWyPc6QAdo87C0ezpAo1O3LVhGOkA16Pli0GA6QGFDuazz1TpAG91k0QwaO0Cg37OJJLg7QAxAtm2G4ztAOBYytA++O0BEEgvHCzE7QMhyJClbvjpAKGRTlve1OkCvM6Uflgw6QA+VVtN7zzlAeROKVe/DOUAcvB37EvU5QIOuxQH5ZDpAn16onjGSOkDcOg5o3u86QM8ZgYbwcztAQbCqlHs2O0CwAO1Kaok6QCDEIZvBwDpAaCP5vOvBOkBlTZ3qmCU7QHW41yevWDpAvebTCYnIOkD/P1iFfrA6QJgXbwAJcDpA6QRw9rDgOkAr5oDSUbo6QBe3pWRfHDtA6RJQtw3tOkDx6A89Krc6QKVZ4kRU5DpA/AWGM9LIOkADTmMTQMA6QFEwhVK9BztAoA9WhoYKO0Bwlxm0TtY6QHO1qAVtWzpAM1SYNFwcOkAIJ5C9HvQ6QG/XqDaFfzpAxZzIZr5JOkCVwjnuS0E6QIAd5BsMuTpAvJbA2/6YOkCcS2s+uIM6QACFiBKr7jpAl/nCDlECO0DTJq65MBk7QOwz8h6LNztAm6SsmgZBO0DojpW8nas6QGWZZKnPCztAi0KQUR5nO0ANpax69bg7QA1bRQ18djtAeTgYp1TaO0BpjZs8EbI7QFg+aPITtDtAAw8ORYPjO0BZhJ1VFpc7QBQ4jnGynTtAe1MaKq7+O0AHtgMqFTc8QEhc1TuzDTxAhzJ/tu/qO0CJEfNUarY7QJ9Bx8vfzTtAfJrP2JCFO0AQLRCLJz87QPB7WWR80jpAfeogVL/5OkDNkI4aLCM7QKRe3PK2PTtAg9MwjY2mO0Bz0bQHiqI7QHC/5W8k5zpA+F1uxgDSOkBDqIIvu007QMte3ui1bDtAERL/F9/xO0A83qkOkhA7QIMhyTl2/DpAafmsW8r3OkBjiK5ejlQ7QNkQziAIrDtAYNSiNO1BO0AbqoQ0EN07QEC3pFv+ljtAiUrXW7CYO0D95sWBC1A7QIdTWjI+iDtADdu/wZGIO0A1gjF+wcA7QH1jcjp6lztAY9TSW1iGO0BXZflHJag7QBAK3vUtdjtAsJ8wxACCO0Cj9b17aDg7QJxsAv/b6DpAlzATDOR8O0A7yIcl5+E7QPglZ7ifyjtAKeapZfHIO0B4qb9kCM47QKvQDHyrnjxAbZ3uoCfVPEB/eUak87A8QDMfDZWePz1A4TY8XttzPUAAsddOW149QMgEumXsKT1ABSXi3DFmPUD7xo28lp89QIugVirfCz1AZRfj+06+PEAJk5RpicA8QEyI55fKgjxALFo/1kshPEDVdIQyYUY8QJz1ukOZljxAzI3cV61tPED7liwFDrs7QOBP1Q6DCDxAnETcgD4WPECMwRiWClI8QLDMygkoGTxAQaY7TkROPEBpw33XuA88QLx9GiyJJjxA90bKBUVIPEBjfL5DKYk8QAxvbs20JDxASZa76lYmPEBw62RWYC88QEUQ03IhwjtAc/3hrWfpO0DsFeFQpYA8QEkvr/nP/ztADZcOGJn3O0ClaVntI0s8QBinYRbAJTxAyyKFnLb0O0AszC1jtag7QNGRkufJ4jtAEQzu+7rEO0DIBSIkBMA7QM9/RN0DADxABGYABbHNO0AD9loyGrQ7QOXLluViyjtAjYsSSXr+O0DA7bt1mkg8QA8YXxPwdDtAhxwYv6txO0BLABVnZpo7QB93lFPKvztA53MK/dZCO0A3JG/4UtY7QLgR6r+PzjtAgDTEAnfXO0AV9rhMqZ07QFAqpSRT1TpAdbt+ocy3OkCshvEplvg6QAkb5nqTLjtAyN77mo7JOkB96Rd1qz47QDuGBsbjRTtAxLgd2cNYO0Cg4VhRQv46QCymAZiFpDpAj/HkunuGOkC8/p9qh1E6QJgvOsYkuzpAaaCQ8Jx8OkApUdr4ilY6QFP4IUAjqzpANBr5uR+zOkBc+vaCIts6QEgij2n+sDpACCgxZ8GNOkDEndKPiNo6QH871ThVmzpAvwR8YKXDOkDZuaq787s6QJFnjbjSHzpAH9Ten3pTOkBhVOQEpzM6QB/X4q/kNjpAJEFXDHbkOUBL+dfuo1E6QC0D5J6rZjpAbT/9VUiKOkB4YlDRpNk5QMHOH9sxFzpAqJdxaJprOkCrab1iYIc6QFx+dNZEVTpAn8aMqI14OkCcjQVmrJU6QFPC7Nm+rDpAjGOUTRhHO0CI2N4xn7M7QDwq8KQk9ztAbfutKOJSPECBuuLewso8QB3HKrAZeDxAlQ2X+myMPEC9chVGjnA8QJGgI9S51TxAs/nMcUJaPEDJcc98aCc9QFlQ4p+c9TxAAJaNSQQaPUDJzurZBrc9QBCXuBt9oj1ARzsmuxH3PUDHvaXOSuw+QPun+kh+Pz9Ap/E9pOOEP0D1TbCbzZQ/QL3TKEVNhT9ADco9DkLoP0B8d4eChV4/QF0dgLALVz9Ad8xUPycoP0BF/VdUdmo/QL1ynvVVrT9ALDBVvm6hP0B5HqwPZM0/QLOB+HG/uz9AEfhuk0n3P0B9+LaVwQhAQMxyke8P1D9AiFD1S7CmP0DMyDBQPtk/QERA1F9RnT9AResKdvF6P0AI06cgWMo/QMEHMEytiD9AS7ofIzK4P0BLkK5YoXI/QHmVpaL77T5AFyNQcGnWPkBxoeYjMRc/QEl9pHNQqT5A2b6Z06CCPkAR2FMV7rw+QPw6mrJjyj5AZ4OhZ3U7P0B1ZMDyHO0+QJW6ed4kgj5AHT9ouuLBPkAB+3SKJaM+QDkF3nUIID5ATG5EAc/RPkBTcYwJ0ck+QOsSOi7+FD9A1JTRWtR8P0BLzQON24k/QB8nF+Nu2T9AU0B950YCQEDdI4hzpTlAQJHeBgvW7T9AXF/qvlauP0DsVLZbycI/QPsjqsEqYD9Az4z79gfYP0CLVUCymVk/QJxiP6JdVT9AnYKXsMojP0A5+CUkdcY+QPh/LFFVqT5A3Yz3YWcaPkC3RD83dQc+QOv7URmQ7T1AGGmQewoKPkC0LtxGXfg9QJCfvaunXz5A6GPnVRIePkDY+y7dq+U9QMUkuFdH8D1Ai9fTnqLoPUDcVdZDuYY9QNQ9i+X+Nz1ANejVbiibPECBx1prFNk8QJ/+ebdC+TxAQxzTc05oPUDJY8sHuoY9QLeIYVnALT1A0A87BcryPEDAEuTg/A09QPdaa6H3ET1ASRpDgbZbPECf488xs6w8QGRyjB7T5jxAYQgr5d7SPEBQIhqOLz09QD8rl9/gWj1ACAYk1VFYPUCDeumPpdM9QNx0RvZwET5AdFKNng7rPUAB8W6VryY+QFAHDE+KRD5Ak9YVWTY/PkBgIcSFoP49QB/piJm3FD5AH4bILsm4PUD9o94gnpo9QMXp8u7csj1AkGFMoUD1PUC8q3MAFL49QIi0IL2TyD1A5bLpoEBDPUB/iCyY0QA9QJmIkc41Bz1AE3Kl3Z8KPUBfD0bW0uI8QEwya//uLz1A4dY4ocRyPUBcFbntxyI9QPAwA3LL/jxAU5J4OWmEPEBRuCgiTnw8QJASb/j4XzxAgbUfp3O4PEAsNKNdIr48QCTbsRxyXzxAqK0lXJu+PEAZ568+O8c8QK8R/p6dNDxASzRiGbBNPEAtLYeDVlU8QBiSUn37OjxAdJ4aRzFrPEAv6z6gdI88QAGXI3gmMT1Ad9sBFf4VPUAIoeSBIdg8QInuK5blHD1AVTChwtQxPUBt5jVrO089QEHl46F28jxAEA6kydYsPECv13Rx3Ic8QAijONcwqTxAaPaVChb4PEDRXoVOg/g8QBgfvP8Y6jxAmLMrUwbaPEA35rqsqkc9QP9Ufhf/tD1AIDC7uN3cPUBNqIFkspY+QF22xeWhRD5Av5DooXVjPkAsOKhzV4s+QHF+kC4F1T5AxEHon6F6PkDYL3qGKlI+QGv9xX3lZT5AC/ONt7eWPkAM5h7MZcM+QPFJhdqtOz9AP2Qi0WIIQEDrUolKCgVAQIE0Ri/fKEBAUrS2LdA8QECRS+gqsFlAQLiNynSRo0BA8vk4m16rQEBYokHh1/BAQCzKPiv2A0FAoO9UD2HvQED9VczoOtJAQDmeBpfA10BAp1W40fkCQUAtFDazPkpBQJ/ibFjFKUFA4RgFXyuPQUC8bfPt8phBQHlI1zPBsEFADQPRRkHDQUA/HmiGSW9BQCYpoxwdYkFAx8NfOJJBQUDDmnjUIe9AQN0FZJLiwkBAwzGVdkjWQEBR2ss1gCBBQEhUDu+kMUFAB67r2TgtQUAB6TxqJnBBQASr18hYfEFAbSNHvHaGQUCbCV3iZ6VBQOlXSlbEvEFA/d/ivaewQUAwAcPqvnlBQBwAmK+spUFAiljYiD2mQUAp+U69o8BBQE7UR+BmwUFADPDLUwXOQUBu8RcRSq5BQDW7lSqkw0FA0zOyaicYQkArMsWqh/ZBQEtfJOTB3EFAEe2GCGTnQUDgBML+eSRCQIGS3ZNDR0JAKrN8g6tlQkATMIx9559CQKefVe7JhkJAAcW6CcZIQkApxrXfoX9CQJRGR5/9uEJAJkq2KMvZQkAE2JshsbJCQEfm5mmXpkJADQ+wpgp/QkBuDIQH5X9CQONVMMUBREJAuTTlI51CQkAs3gKI015CQFPhlkFkWEJAG3n1/SqQQkAPQJAVi/NCQGdsK3HcRkNAenvLc10AQ0A71pqnvP1CQOcOZ/m7QENA8bth9eNVQ0BYQK9+/nBDQKMT1Dfqd0NADP9zmmmpQ0CBKmXpQINDQA98CiYQokNAWYSxwiSOQ0BBeymbPwtDQEfR7JBOEUNAzV9JIH9eQ0D4ZtEoQZNDQJCLWXA/t0NAVSpK6SV5Q0BGGZ/uGWdDQK+dnKbKVkNAqnRN5teQQ0CRWQmD6Z9DQG/u4R6cn0NAB7H2UE6SQ0Bt/okXc79DQCfPcB+560NAM7pbOhLmQ0D4ff6Do85DQFe1hCdKD0RA+68aZLpVRECjMLtrdFtEQB/xJAbGKURAF8fTpmwUREAJAnuM7b5DQB+GRjix7kNA4fi5W8bxQ0BcMBSkONZDQINug2Dbp0NAu4mBqdTeQ0Aa/1vlehtEQGHWxr/7I0RA4IY1eyERRED9uMOnLhtEQBFLwIBbBURAGhmk5G05RECsskH+BRlEQOmd6D99UERANfplRNhNREBud6qeqRJEQMOHrgpl6ENA2ftGn+vdQ0AZ+fsGugZEQM0O8E4uMURA1Wkq4OpiREDHptPyfJVEQJVGgObfckRAuWS7Hh00RECb1hVLgCdEQG3tVDjGCERA77RZgVkKREBdh6xejxdEQKjOBpbc9UNADFrX320pREBqXPttkhpEQPyiSVpcRURADTWz5PFRRECWA3Wt1kFEQJEQWQf2K0RAOCYajoowREAyKHR3RSxEQD16l5a0XERAqx2nQfUnREAn18o8lhZEQDF8wb6ecERAb89FiSJZREAxmwCJhHFEQKuaNmRiYERAEWpPtuZwREAbpdlR1lVEQNlRMMcCXERAU5lgSglwREAnM1IiSahEQOvJCEHH/ERAq10VsbjWREDesnVd8alEQAug+AILm0RAVT15OVGURED7M6Nc419EQGNRb971WURAFeeUZ7x3REAs5GC+/09EQIKpOkJ7TkRA6ajssckrREDzGcc4XudDQEd+9lsY3ENARgXMJVcHRECebq2EycZDQOlUrxcR80NAlyGwPuAfREAuVOvNyjtEQJPhPQbLOURA4R7nzNPnQ0A5UfyrYwVEQB93tuFNGERA2RnOok5PRECYnDQaCfxDQC8OkOzu0ENA0BHcB/f1Q0C9z3NbzuRDQHKKUd6240NAH5OxbQOkQ0BtUJAw4tJDQCle/IESu0NAIoVtediCQ0A6eitpQ5NDQKepPk5clUNAQJdw566sQ0D5lfdL/9tDQKep27gs5ENA9ex0KaoFREChPPu7ShpEQCv65PSoJURAyoBpkkQIREBl1nMsEBdEQEPzn4hXAURA6vkx0z37Q0DDzzisA9xDQCf8zIMK/UNADNV6S/AUREA9a5D4O/xDQD6qCbk/4ENAv7b+y+HIQ0AAWB9LIYBDQE+/ZCsHvkNAZSAX6BbUQ0DZM1H/YuZDQCfer8PNwENA6R283GzKQ0BKd6gm4oxDQDWUrb6i2UNAb5CBzbX2Q0DGQcVBqyJEQHFaZZK9Y0RAM66TYXUxREBvI5ryTRtEQE9VkQu9HkRAK8+ru64VREAdUdaCwBBEQE3vbgkC/UNAYtPUzAqSQ0BOrJwld6NDQPdAb869vENAHUpuHejJQ0DSILSwZd1DQM2b+ctnv0NA7bhsZSbJQ0AWTsJ4kPRDQJEQvvydMURAI/Rvxi4AREBWk51n6A9EQBBDt+jmC0RAsZH4+uEoREC4aH9Zv1tEQDhuFlk3VURAFSet2wQ4REAQ160Ad0VEQH8bRU3VNERA2kWJ0gkfREDN3Q6mHiJEQLGP+kYhTURA30DwdoxaREBzgWsUuEJEQEMgevo8N0RA+PnBHhoeREBBnM2ULftDQM2sAh9DR0RArab2HWZRREA3Qti95ShEQCkxqNX2/0NA+6cdVqrmQ0C3227TOMtDQN/FQ3Q03ENA2fffIqzPQ0D1eG/c8hpEQAvaKJldJ0RAvKzIY6ZVREBrzU+Wt69EQP9DSWbYy0RAUQwpl5gURUAEboJnwmdFQKS8jcVCcUVAGYz03dGARUDgxJ6nwnVFQCPkyVAotkVAlDzelgSvRUBgdU4+4KBFQFNyG1DNs0VAEUhmUPz8RUAUbZ9oED1GQEG4SYPyPkZAsVy1OokXRkAZeBDB0xVGQIOBcPnoFUZATKS3M7kLRkAAUjammTtGQIO1McIYIEZA/EYz0hHpRUCgJgMMMwVGQDwN400N10VAzS+YOlnRRUBH/O9eDaRFQD0nWfuR+kVAGNZSpWQbRkCJv7psxxJGQKA162lz2UVAg1gzgXIZRkBPPBT+cx1GQOnpVdPyJEZAsLla0J0PRkAoXnHLZxRGQC8WsMGOFUZAqGEKFR8fRkBbFP75LhpGQFxHASSzJ0ZASfdAdiT/RUClzMECdv9FQD/d1buQ5EVATNDPZhzARUAQ3c5JpEhFQLwVRzpjVkVAl29ymRx8RUD/fAA0L3hFQD37ZzSWO0VA01X6FhgyRUCvUeNlKBpFQOHjZDv20ERA69prgODjRECVVfABuspEQORQ9U3DC0VAenU7Dh0cRUCDvB11+/1EQA6FTx62w0RASzSNasHXRED2ascE8fFEQHhQb4lq2ERAuWUJNAfIREAFEwxOXblEQMNnL/6lkERAtIwEcDKXREAMYE/JVI1EQPcCmBNvg0RAb4hi4xZ8RECQk3dNsHlEQDy4U0c2mkRA27rnYDycREAsnURXTt9EQJo+8g8AwERAuwmq9tbyREA5Vf+1hw9FQDOVkOXvE0VAa5jH20TIREDAWyt+9gVFQMc60Zr/O0VASEzegWl3RUDLtGCBjWlFQIxxhKnzjEVAzJZF939sRUDTvNRb31ZFQGkZr/SMUUVA5T4gHWVTRUBkReV7hnxFQJGR/dJFvkVA7L2ePxAGRkBcHq4D1vVFQI/wbGpDPUZAnQl51y0sRkDo4rTyAihGQDEfUj6zXkZA9IXdGjGHRkBkeK1JqcxGQOW4DI7EdUZAZ479mSNpRkCk9KEpgUBGQFivFwW/U0ZAZNsbwxwtRkDluB4rf/tFQJFSjbATwkVAl64vVeb0RUD0hqGjitJFQESBNje2zkVAgUa72MnORUA/X1a3f9lFQAE1+68O/UVAnSUSYJICRkCs2iRACBlGQF3ZffpcHUZAoByQHgb0RUDBgaX5h65FQAiPRNmeyEVArKFHy2ctRkCRqjYV5xBGQJ9vnT1KAEZABC2y78vsRUDIyuwgCuRFQNHmbBJABkZAHS3sowMKRkDw0TustClGQERMc/NEIEZA1NBAcKQ2RkBvDAh5I1JGQN2ymsENbEZAe2Viv/GSRkAwfEykHJZGQHfvtNwkvEZAxAOMDOCrRkC5ij6mjOhGQNmrZwDG20ZAxafglWPqRkBcmLYRPTdHQM3XRYKxWEdAwwHaRFYMR0AETSK/ddhGQEHKtH6PqUZA0xwAzRqwRkCbZHT78tNGQDkhbrgAyEZAsOuOAVGXRkCxtfjrEIZGQJAlxCQqfkZA1O4nc7vQRkBtIaurRLZGQJ2ocQfax0ZAkCihJmDkRkCjeCSx7/xGQMHZp/1owkZAzW66kR+fRkD7ecfC7c9GQKPmF4S/yEZAO4ZsXZ33RkBxX3xSHbJGQFmqNeW/y0ZASEmqxEG8RkAT2GUtnZxGQIPYwIRuskZAO20vzsiqRkBMdB0L03hGQOwfHbO7o0ZAnyIjj3tcRkCZYyE+/C5GQEhOZA09E0ZAGESaS3H7RUAFprIqOftFQEHUrcwD3UVAvT7dGlDYRUB//Oy2XLBFQOd/1CEbm0VAHR+hB81uRUBPmke+iZ5FQH3kFzvy3EVAMbYi1gi+RUA8ZT+3Y7lFQFT7lJd61EVAuMBruJnxRUD9s4hGssBFQITmEYTR5kVAUegobA/WRUAX2fBL/B1GQIzej/ELJ0ZAXYi/30vzRUBNxzKTrhxGQMeUE4NAKUZAsa/ChqcCRkBpGPquTRdGQIU6zJHqAEZAu0QCc13ERUCn3Ju+bPZFQLzcQ7gHQkZAK7iFkeUyRkCMwrWXakBGQDtzOS6yhEZA84MQXMaPRkCL+/rts5dGQFyolw0TW0ZA2FDgIIUrRkATeiX4aBxGQBRMR+0sEUZAp1uHHGIyRkBQY2gZXgRGQJjcBpQvC0ZAg3PTV0HERUBwkdv1oNVFQC36VEqQ9UVAuLE8XNsJRkAtr+m1phNGQNz5Y24WCEZAnL2qkp67RUCpYspTZPdFQCAxOC8j9EVAYC7sqbRaRkA8515M+45GQPyJBvTew0ZAzaR/3ezMRkDvPXMda8ZGQGhibpJDXEZA2NTVAudHRkBXZPMEJkNGQGTPfsHe/0VAvYm03pecRUDR87MZ89BFQBcJHlL72kVAR46W9ofcRUClLdfk/OJFQKuEYrCp8kVAkae6htX4RUCz7zW3PLxFQL39lKivlkVAKb/KeORkRUDTk6ErmY5FQK/LEmxK70VAkD4jJQr0RUAzvEnFNSJGQOyiuvMYukVApc6XzGlORUDpxcwEZk5FQAgWNoK3PkVA6UWjG8c/RUBwTYguwDFFQH2x8yRxEEVA7nRRuwP/REDFgli5/gFFQF+SAjiLBEVAFa59x84ZRUBN+in4pCRFQAUZ7srTCEVAHhAVLIUjRUB8OmHDSwBFQOxm+sMIAEVA2p1SZYouRUDfNtMqdxJFQPZFWyR2+0RAi8TPA13kREAdL3axHOFEQEE74vVE/ERAiwkt+P7UREASkjJXcvxEQDMhN+oaSUVAPWvBwTuJRUBZmh9w5X1FQHxXLt3Wg0VA3+GFZgOGRUCnvaWwkIBFQCWEPNpdY0VADQNo+At4RUBERYbe75VFQCEfChOGSUVAnVuyfdFaRUClyH9c/1BFQJhcwnQmVEVACf1NYKRZRUBxz1HrK0hFQLPULvubZUVApiKPv/syRUDk1nE1GEJFQNIO9BosIEVA12+LWNm+RECL4dczcMlEQHOU7NwptURAb3t+rPkFRUCd17hiwxpFQAeUVMxRPUVAHMM6o0VMRUA2KH3Ht1BFQIvglkjUVkVACNcH45JjRUD/N4N8yylFQBLU42OGEkVAI4hxzZlgRUCYqjLsCRhFQMnU4JJaFEVAvV2/msXfREDnqM52avREQCMs1k41F0VA5wVGewQHRUC38qxpxvREQEpSwk80x0RA31iaCOB9REDfSfL5iYlEQJMgHTsmc0RAVax6LIx3REB7LmQP3ZpEQGU0Mhd900RARDq+DazGREB1EZWhfa1EQAFhgrTAt0RA1yql794ORUD7WuCClyRFQLB63taOg0VAwjZ4L4FJRUC1PIHYcC9FQBD7xEPZV0VAWXYniRX7REC/knOOxhlFQHMNsiit6ERAwdbIoTLoRECT19Vs8PZEQJHG0js51URASGZhzQfjREDGnWxiU9lEQElXZ+5L0kRAJUNFGKWvRECFegb+o9lEQFA3ybDlyURAL0iM5delREBDAfkdeKREQAv0FTjWeURA+DN3ULYoRED12umK1xJEQDmwNsHv50NAVwH1ryv6Q0BNj0XGZApEQHXZx2jQ+ENAvcoVaFjsQ0CPXDeNXL5DQEfSSNIQq0NAbuGsj5yjQ0BFWjlJJ65DQBurjNRVqUNALb6J18TmQ0CGvMJCIrVDQMxdJXAIk0NAk7MRokBhQ0Aqz1+oATdDQNnxEszyTENAIwshiIaOQ0DRRW1XQbdDQE0nU5dJh0NAIdFN1deQQ0CZ+q36vJhDQGGbeq8jdkNAwGLBYdRpQ0Arvm49PkpDQAkPzxt1HENAHiBDMSQVQ0DXT7r9sgxDQOKW4mN1wEJA+ovAQvXWQkDHtY5R081CQKP1pWfDz0JAo8hzYqezQkAEZoevCm9CQFc/WsKOKkJAcxh4xwN2QkDFGZPz9HNCQN9ecYjDC0JAw1cpEEQFQkAcK7IQ8wpCQAl4setR9UFACw8JQ0jfQUA/W15JfsZBQOr8Mb5Zz0FA5IbT9wXIQUAA8ZqnQABCQPuRCkia2kFAh3Nl9zrJQUD3HXqqu/BBQDcVVK8i40FAv2x4lrwcQkAxqZvG4vpBQOiFM+3YFkJA+cO05y1bQkAMUaPHNzZCQFr8N/Z4JEJAlA2rbzsXQkAbWNHex+FBQLawQ93w6kFAiShVKpzzQUArcxJSUrVBQCdfYX7dj0FAMTzEhQeOQUCxyr45Dq9BQFpmzLzsyUFAVFGrQ3HQQUAl6AVLfvhBQI6OIx7x40FAw0zTg1YiQkBlaDqEkjhCQAR3sutZgEJAIHkqEXvdQkA5u/0z5apCQCm6P9rZmkJAZKP3f7pcQkCbcfU3HXZCQK1labsaUkJAAVtYOnpUQkD8zkDO8UVCQE0REKP+PUJAgevjW9cuQkCTMyGMHGZCQAxkvfUfk0JAb39L4hefQkCFJBYV2n1CQJ711tCBgUJAGy2AW8B2QkDmwk4PF3RCQH68a3wJR0JAPuFa0AFsQkCZfDWzDaBCQHMZhLKv20JAzWFXmKYcQ0C0VvGNTp1CQDfNJxcZmkJAZ3xnwlbZQkCk/g184tNCQOgGljNQ+kJA9ehTSvsfQ0DqL3L7YuJCQHlCODY97kJAPUoiz2yXQkB9YKGUA3BCQFjHf26IW0JAGYtVMXNSQkB3HDjPhaZCQKI6Jn26mEJAY7gV8hKhQkAEaWIaMqxCQClvwxZ+rEJA6trzkCfhQkBQHMAKESVDQHdwYSR7lUNAaYv+zQKvQ0CYsPsTZ5NDQMzKqNRLmENAg0JCkJq4Q0B389ofyGJDQBMSFQRaWUNApQFd8lhVQ0Bg1J71c4NDQBosC+Rem0NAAdppuwpqQ0C3eIS0I5xDQFF5sQAsmkNAtEPPnChgQ0AxKNgm7pdDQImXdxt/jENA69srl19PQ0DNRjfmu0xDQMO4G/zvY0NA35gfQQJuQ0A/xGYSaMNDQLXHnV+EwUNAaTWP9wyhQ0C1VPVFQrJDQMvDyC2F7kNAldjRyF9IREC1u8aZQXtEQL3nskcaakRAzNVNAmJkRECmpN7wbntEQAxiLWkGhkRA2bfphxpJREDVprULry9EQDmb+1KoU0RAb00iOQxnRED9jB03gF1EQGOb3jFGdERAHLIzCQGYREA0QNfGul1EQD5UWaOlOERAyziZM9NIREDJLdmhoClEQKXneYejAERAv4k9WxfUQ0AiZl3ZsBNEQOvtP493N0RAHYUR0CkkREA/dUYZqhREQBvw3amYBERAqYCkg3r0Q0A8gk7OHNdDQArVvyHzzUNAkavR2ff7Q0D57+pooydEQF3ldQyuI0RA/U6dkjdaREAJsZNOUSZEQFDiy0U6LERAZYVL0r0NRECD0AVp9RREQJz+YSx8EkRA9UIsCCtKRED8EpBl/nREQEPGbld/i0RAs1j2vaCyREBJmdLKPc9EQF0YoFPtu0RAhJc6eWmwREAhmuMhcbxEQLbRjQDIvkRAksP6s0lsRED9pe9z1U9EQEdDpp2ATkRAgFXSmZAnREBaCg+L3UxEQNZMDu/jDERAD1CIvU9TREBJRKHWk4pEQJUjrrwsnURANRVs853IREDfricFzeBEQNG0yP0nO0VAiXfgF5f/RECTy1iwE6ZEQHnMtjiOkURAJAk8eAWzRECjGHB5ZKlEQKe10IvwiURA24U5sNyxREDc4HhG5/FEQLFtQyKl60RAxYefwOH6REArdLnRHtBEQLr4kLOwx0RA7R662IjEREDeKU6ahrdEQJCeaa9pfkRAtXnUFICMREBKI2YWQotEQLiNzCXWVkRA7RvtFqicREBDCjfWjuBEQD8kkuNF1URAIV8mBN3SRECL0GYNDJlEQLWrIDhdskRA4TCREQuNREB3YseLf4pEQNqCeF9Gx0RAfOEESZjVREDkkJu5DCJFQI5WE4ElKEVAkXbkrTVFRUBYung9n2VFQFB/H1iLnEVAqIP+I7mXRUCLA9FiRXVFQDMFEi0iDEVAZt4JyqsWRUB5XygiMmlFQLwcLERttkVAl0opYWCZRUCJgqRoLcVFQE0mD8ZBvUVAVEY54c7lRUDbB+Py4BZGQIztTzh7AEZAwFP0WvZcRkAcxOzXBghGQAWgy3ypG0ZA4OMaf3UbRkCzlCYumPZFQNsWQ3afmkVAGalDTjijRUBQVAcLp71FQEWdnp6Lk0VAZ3ptkb2IRUBjmz5DKyVFQE0tYztVZ0VAxzLgL3FGRUCiD+fLjPVEQAMeis8s0kRAZ8ml/BrZREAHluSuBbFEQNzu8briqERAbLh5/21pREAl3V9wjohEQNreggQVtkRAdETHf/+hREAPqbfmNaZEQPBPEaS5qERA+QU3ShPkREBXGgh6PQRFQJuBja+89kRAS7vJPXKtREBxfGVadI1EQIiJKwWXtkRA89r3giQERUDLwsdp2UFFQCnESncDNUVAxUTtYGZBRUCrB//xTkZFQIyal41QQkVAZ0PCH6BGRUB/JkAaYHZFQGULGi7/dkVAg/UuMuFTRUBDJvrzETNFQKJq27qvJ0VAa6e30vY9RUB1jN8MN1NFQE69WxZcQkVAN1XsJmFHRUCM8I375ndFQFB6ArFGR0VA4eUqHeahRUDQqB6UF79FQOyDv3fU7EVApFrhYu4LRkBfBO5DfS1GQORkt96WIkZAn46ZOFwfRkDAitQ2ICVGQFTVSS/QRkZAg8E4upMZRkCXISXrxwBGQJsDSbmOVEZAGClVICmHRkDEPZCnj7BGQN8JdRKe9UZA1S6P4GTeRkAzHDaCKwFHQN/5AzzDBkdAM9FWUzPkRkBoRX61tM9GQH860f/UCkdAPYzLSjLpRkBLxmK4IStHQGAqu1gWUUdAB2t43oqAR0CDqhBjWFVHQJFh/lLYTkdA42fPTYmBR0Agq92MonVHQJCafGtGv0dAxPH4GcKcR0BXmjp39DpHQJHcOCNRFUdAIzzDIVonR0DzaLdvc05HQIfwoAHIRkdAX43NDDBHR0CbcG+DyYVHQKTYq0MkakdAXF5QdnRtR0Abg5pqXntHQMUjao6P5EdAWDRIgucTSEBX0AmssTNIQNd3t7ELAkhAMYgzz0knSEDQ+SZgSWFIQFcxqLfeVkhA6zTjP6KTSED9VqqU3F5IQJUunM1rXUhAqTQ/N3pjSEBXoCqaAYpIQKjkAVAqIkhAa8jj9fLxR0DkUIijOwRIQMPjvdpX+kdAJ3iCvUkASEDEABtQQudHQJFfuIpfw0dAXfFfTCbER0CR6sTmiYJHQPfN6QUkg0dAHSCvWMqMR0CvGW/nW+hHQBRMs+pLJ0hApG4sRhVCSEDbu3VpYxxIQGQAWPdx0EdA2HTWdT3UR0Cfs0c5zRJIQJ3p540I40dAENBMELDER0CsNbZ1T7tHQFj/x8hwuUdA5T9lbsmHR0C8GO9NIopHQODP3R0mW0dAH/xSLmVqR0CRvx/1pzJHQClB3xr5SkdAx9p/ICMaR0CX77xyYhlHQF9ATCww+0ZA72JcWaPLRkDs632wISRHQK/07RVbDkdAMRP+0fcqR0BzcSxlo0tHQNO5Whc8tkdAUDyRpj31R0B4K/u+CCtIQCCUik5dOkhAlWSkcCw9SECwTshfjV5IQCioY6b+bEhAkFJON6BVSECB/fErwERIQIi5B2Sy0UdAPco09x13R0CED2yRF3ZHQKeisL/MmUdAxeqOwzl6R0BftqFwdGtHQHcsBQNmjUdAt96X6qHTR0A4SxlTb+JHQFEKPtmMnUdAG85d7mW1R0Dx6juRKp5HQMFkJ0N17EdAUFi5L3rfR0AjBF3TX+xHQFFSdU3NPUhApEDo2+gsSEAD22oKpGdIQPkH5vX3fUhAiU8V9GCRSEAQOQP6dFNIQKSy7jMEX0hAyOnDcfJOSEANxAgZFmVIQDN1eynZP0hAg5ZBf1lfSECgmjjR9H9IQFXY6F6grUhAqLDuYNbKSEAXE/CYKQNJQDEBqAOQOklAB8SnJScDSUCngQriQD1JQGjJIvseY0lA8YrWxV5WSUBN/IoIULBJQMAqnvjoj0lA7WQrVkrMSUCR63JO2QpKQKycTgGB1UlAO6z0RdbmSUDfasG5tttJQPSikHUhsklA/CjVxvd8SUClfJ9ok3FJQCndq8knOElAJyk+kY0ySUDRbvJK+QpJQKxHGG7DQ0lArB/VSh9rSUDZLpWpal1JQAwV5YUdaElAh4/MyNqQSUDxzYijNs9JQHwlphSk70lARPburUjeSUCE3E/pUapJQJUSn3nMfUlArO0WoxmoSUBbbqL9+YhJQNwyPo/LzUlAKwi/nqUkSkDAvmT2evdJQKB9kdaUtklAM/X2girNSUAIxk9gPJNJQDT3bE/4cUlA1WVport8SUAF5ogRFXdJQDcwLgaZt0lAm67csv2lSUA80P8OBYhJQB03oL9ju0lAkeGW3xPoSUD31LPRafxJQI2ynNPIGEpAjM/NHbDbSUCo6MplNflJQLAWzL6J60lA4Cuo3KEPSkCXb113hjRKQO9lcq3XHUpAcXmf+Tv7SUDj+7u4bClKQJ0cxzKT2UlAa0EXik2ySUBt6G2t5ntJQHOQajaXT0lAo9lvF9MvSUDtkLC2ShlJQOPJJN8R6UhAcTcsVVjhSEA4PWh2pahIQJgKIMC82EhAdOqTmrOwSEB/6Ny1rtxIQITwloGjBElAXQgEUYUBSUBBso+YRgxJQFHqgkApF0lA+PYUU9shSUD5YHlCvs9IQBE/ONdFjUhAbeXM74JqSEBzECtAhblIQB2dfCiax0hAbW1BeP+5SEBt/F0KRnRIQNsYy7OhZUhAWf7tFxZFSEDxb3KbjkdIQAXawbDhOEhAtCR3K6tYSEBR5KUQCGZIQNk/Llyjo0hAyUbTYpaySEBlzONYCqFIQL2oiiTva0hAz5JAT69BSEAPilZTWjdIQFfhr95PckhA+7sG2TxpSECg50zlsAZIQFzvHWV050dA+7lDr4fNR0DQc3OhGL5HQIvwCsZJxEdA8K7Gi6q8R0AQak8XhMNHQEUNJlv2sUdAXF3F4X8GSEBHbuexx9NHQJmalboQ7EdAHz7B6mgbSEAZuybPYgxIQI/ZQxwY3EdAEelfKzYWSEBkzE79m09IQAsOH0QSbEhAcVdM+wEySEB1kXz06OVHQFP4fv31SUhAUXS1RV9/SEDHH6X/xpBIQOvcdCXNYEhAI/pvvh5tSEDY5UggqyZIQME1v9WU1UdAe682dqCbR0DwHb5Iw5hHQCHskY/ZykdAtK7L/J0BSEDYxYDOEwpIQIjX/nI58EdADS8j+wTKR0ClhY+EsM9HQEDXHnSflEdA15p8ifyQR0Cl2cxzcGNHQICU7T4XRUdA3E/ZOJsjR0DRg7YPHg5HQDCuZkG/OkdAEP4ceGghR0ANlGvXWzdHQNW4zGuGCUdAHxEeiJv4RkABK5kJujVHQKgMXhWgCUdAX/pZ46TURkC/gaRKouFGQKMd/ool8EZAWKQu85IAR0DF4V3hyTtHQARmGRM9GkdAm8fgTVFcR0CTd84k3zdHQP0GEl4CXUdAK8uty21kR0C7NYooXXBHQOEghPsFOUdAv6TNLL4GR0C9+YSvOeJGQJN5Ejtdx0ZA9fHA6nfBRkDMYJAk2LxGQO+XsGIx40ZASTC/ZlPPRkD8XUhaGsVGQD8YY1Iq6UZACK2Mqd/sRkA00zjeyzNHQJ9bYlvVEUdASSsPwPjWRkCXFA0pKuNGQA1pYOXN2kZAYLjOlEasRkBPmJCwM3lGQETUoUzXnEZAZCxuOiS6RkCoGHLBwmBGQKC+H1mBXkZASDtkmDpRRkCPrsOR32ZGQFBpQPawLUZAzb4Qs2vvRUAz/k0PDydGQPOL8CmRGUZAoUEWLLgIRkA0AHLnIOZFQJvHlY5z7UVA/UcuIT0yRkCEjDheShlGQM/lqUJW6kVA7U3/Ae4oRkDgQ5V2VelFQE9f1grz90VAWcpcm7T2RUDU9oQ7/PFFQLNz2kgq8EVATHRuAH/SRUBB84opa89FQBtxcz5nvEVAT6j9PlmqRUC3H8oNSt1FQAhLahrp70VA49hOk9K/RUAUUqbg7LFFQA9K+Sl0xEVAmQtXjIe+RUDMVgFo5thFQJhVnhtn8kVARUkoOhwQRkApw4+HGrFGQNny+S86gkZAlAomQauCRkDd/tHWQZpGQAF5Na0ZUEZAZMYmfC49RkAMnBKbLiFGQK1VBAWE90VA/RXcTMc7RkCRZCbaAzlGQDQ7M/YbMkZA/6jOJ5MRRkCMmDJYLuNFQBs+w6PB5kVAibz08U0DRkDIASOwoBtGQPlaA9P9MkZAK57zXmAuRkATK12R4EZGQEB3aHqDH0ZAQwuqHSjlRUC/23nH8h1GQKC6hXX0LEZAMKxZic4VRkApoYGUxRBGQLU2oPRkLEZA+X8AkwHuRUCcpIZLz/9FQE/jkYD4+kVAaMy7lPvhRUDPtM6g+rNFQOeJbeC4q0VAjycY6eurRUCDSDrPBKFFQEVawMxI2kVAdBeQONMwRkDrLQtWyg1GQOxbzYetFEZAxSTBUGk2RkCn157vsD5GQMvfbgOTRUZAeM81k3cSRkDkha8ftCxGQEn9/kZEWUZAC91iQ9ZbRkDpzVzyCERGQMAPGbPqIEZAPEalxdcdRkBvktRKl/NFQIC7vik6xEVA0TLOrrW3RUBjSwokWYdFQEvdEyA9c0VADFaOuNA6RUAZ0ixacipFQEP8qdcrKEVAs25/5wwrRUCa0fIVgkBFQH9WcDNyBkVAKFJz4bb7REAZrr0/gv1EQDmLBr5RHkVA4I+o9ehrRUCUnBj7vJBFQFmz1AYXu0VAbO2OG7V+RUAfrhmdfJxFQNhlU8/8gEVA+zi//yFsRUDoA8+9yLJFQFkJ5Gxd00VAM6IAtN98RUB01vRK4oZFQNHmhKMjbEVAm8tgX/5aRUBl8vZpAVJFQLKiqwY2PEVA8T9kNb39RECDUE/vUUVFQJARR97vV0VAm9g/1m9GRUAQtG/eW2RFQPGBbSQuXUVAge2jfupPRUB1HL4wv61FQGWmYCVAvUVALE5ZxWh4RUAo3o65q0BFQNcYr7pgYkVA0DHkeFtqRUB9c6EjkiRFQGOsFE6nV0VAxVM4t4koRUC9My/crS5FQE3SuTlVO0VAs91Cpjw8RUAtOEckoV9FQE+7YF5xCkVAYzAdJVAWRUB3ld/vpvREQIpEnq+/EEVAp/OgWMHfRECTqj8Q/u1EQIXiKHahB0VALlYUbrAyRUAJe29PrW5FQB1/3drkK0VAPUvoc2v7REDPqY/6wyhFQEF1T84/+ERAtdjfjqciRUDlWR/SRDJFQE8iIQ48gEVA2Y4j09tdRUAkQaRfKiFFQLMs0ixn/0RA8IpnvtnwREDUDJvYxRRFQINibOLez0RAA4cpmqe3REDC2OVdROdEQE3yQr7/x0RA/XtfhCnmRECJ1J+DP/xEQCPz3sA83URAb0dfkl3HREBLGTBfr3REQKNcHYRJtkRAp2ph6oXKREDNir8M6a1EQIyEX215xkRAbnv1JP65REDhytrcgMVEQEL80MkLk0RAdVtkpHeORECBWBUNZ7lEQMGLjNpY30RAaAqYvRTdREDNTruI+flEQN0wJodL0URAGe+EDTEJRUBbgVC7cjtFQACOx8C5+URADzabj+JWRUCRy87NE1hFQFNpO5wET0VAy4uAKhBHRUC9/4NxdVdFQE1N6AyJKUVADYzKdrUlRUDvw0y+hQRFQHa8sBHeLEVAobxbXMcLRUCPHmC463dFQDXhmKqCh0VANPRCIeKIRUBlVhRUu3ZFQDhCJ4cbeUVAW4HTMSmBRUBzmq4jmWVFQDXAHn2yhUVAe0exKs+ZRUD17nPyZptFQJF1w4dy0UVACFALa83wRUBkxjAvmNdFQNPcHoeS+0VAMLVOX0wyRkD8ICtFOjpGQFFDCpGjPEZACacd3+NiRkBdJ2Yh4X9GQFzFyjnmokZA4yAJBwyXRkC34P7CtbJGQJVxuIsQ00ZAO3qrSPXXRkAQ6cDOCSVHQOX6IWGzDUdAcYp8RywsR0DAdJNU/zxHQGUGbt8Q/kZAyFYuOc4hR0C9UYAgfQxHQN20DuLE0kZAX7jQqk63RkBfZTRHD+JGQJhDwFpaq0ZA/MIb3fasRkBcdut0UdBGQL19h8LbyEZAN4gSlxW8RkAEYybkb7BGQIX3EJiVwkZAZDjvv/+xRkBb3QJP/sdGQEuYjdq280ZAtAnMBx8HR0CRV8cw8xRHQPCEWko05kZAX0LRyhkjR0Cpi2DI4TZHQBenChMqNkdAvbRJiC1MR0CcnA1lnKlHQKtCh8E0f0dAS1s7hM/AR0DjpPZQ5nhHQM8k06OBQ0dAJLQts4hXR0CEzhR5J0BHQD8eUi19FEdA8UbDGo4mR0BRikOXAXZHQIeH5vRsPUdAwzcp9PRoR0AjtGcCVh5HQNhyIuoyVUdAywnCYPZuR0AYdctjZVZHQBCmUdx8PkdAX+P4MeQvR0Cz29slhjFHQOn2geuKcEdAvHIBgTAgR0B9Y8+ede5GQOGFhsLOuUZAzUNWF5OtRkD4XC9NcYhGQJOclC68dEZARZIXK/ZLRkBsqvEG+y1GQJh2FwtDWkZAGafDG057RkC1LsqKCHdGQOkooeb4sEZAHWEhsCavRkD07zO+crJGQFTyNtysP0ZATDdoxaArRkA7Z7QxpghGQDew/F+xwUVAKVIm1C2tRUBlHX+KVbdFQETLecdF60VA41evYQzORUDVHjed/qFFQETNfg3/0kVApz055r/IRUDTAWOiDq9FQPRc3XAl3kVA1Oubb4KfRUAQSFmx1n9FQGdtqi4loUVAuIJhwWjTRUA8TqmMCMZFQFfSp4c5fUVA0+/Fx9svRUBxP/t6VzJFQELr3so4F0VAHYsvhg78REAdn9/wGgBFQO0CXDLOB0VATcJQdVLjRECpZG/wYfdEQD9Heg0lBkVAgaEi/OEQRUDpZbtlUO1EQNx7xu2c1ERAYb+Z1XjHREBxtYuVm+tEQOmiJAeX4ERAFQSaqCvHREDROcsSJ7hEQKYbrZpLnURAeKkxlPK4REBHn6uI2LJEQAaXNyD5qURA23NRqT6rREASiVNBfadEQBEtjJ2/ukRAPQYmf+CQREAchVti8o9EQAl/IXCkIkRAx5h49rcGREBAnMp0W0tEQPaZntlGe0RAJAdEhxCDREDJaI+RYHhEQKANSb0Dz0RAK7ytaPjVREAvbDdgo8lEQGOn9Zlz+URAQ7MpUX0GRUDlKoKdD+ZEQHlU7cwRuERAp1CwLqbmRECvI9GYXxpFQMnwoFVWCUVAHe/YALfQRED8tcHWkfdEQLV2StCu7URAFO2cHBrtREAslFHPD/ZEQKeHk53bGEVA2c2G6olGRUD1HjN6zldFQD3qhO4zOkVAgc1KT74hRUACiQqZCftEQKO0r+jdAkVAVPPo+/s4RUDQTv9qY3tFQJkSCy6+qkVAp0eDk2i7RUCIpYVxQdlFQBgvTH0GNkZA0LrlRGk5RkD7QBF9AWJGQDdaMgSkmkZAg8dqGylmRkB/9BjU91xGQFgljFkTaUZAjDmuDV6QRkBnarFhqMpGQKVTO2+LmEZAlJqdJANqRkAPjDR9hS5GQG0lEPozEEZABe8OCcEmRkCNluaw1khGQO3OC7BiQEZAPGhJsXUnRkAooc235f1FQC+OaO6/8kVAFCsfWGkcRkB4J0iM+iVGQDX11UvHJUZA42hxG9kYRkBvqJhFFuZFQAM9mWnuC0ZAu+DrhwQbRkDFBf3f0VdGQNRTJE/6dUZAcBEPVbooRkDko2Bapy1GQE/7Pc4kLkZADeZtctclRkDoy8XmUyNGQCmSdBD6VEZAGxrrpyOwRkDlWusUFNVGQBWA8D9gtEZA1PNiQEbmRkAbNtwft1xHQMEoVoIjCUdAjN5OqY8kR0A5ELB57UFHQJ8X6GfDMUdAOLYpFfdWR0C0SQ92Ul9HQBvlOo9ie0dANTaUtR1xR0Bz09WsAZdHQGkLHaA6qEdAmYUL4Ob9R0C0iG6a6O5HQGPcVMsC8UdA6ZqjfO3TR0A/vWyp5vpHQN8ZYUTME0hA24Hf/TLTR0Ar0FPyO9BHQFsCRZ6JpUdAc9He1viLR0ATeL6qRYFHQBhN3UG6VEdA0QtF/O5iR0C5sIl3+x5HQJzGTsYyQEdA/CcEiE7QRkCXN790vxRHQJt61ENeJUdARfrNMc77RkBJEtdmcExHQEvKrZgtqUdAmdpqaNydR0Cnxmu0AaxHQNnjYkG+r0dAnJ6mHzKRR0BkU4wiam5HQLs5ojj1iUdA/d6/gumrR0BUwPecCn5HQM311LMuekdATIJRx9ltR0AhByQyIqJHQJcXRGode0dAmXRPxT1sR0BNCwr96ZRHQNzyaIyGdkdALy1WMZaBR0AJr8fpDzdHQOFuaAwapUdABHdYiZSbR0CEOW2NHsFHQLCuKBnR6EdA+QGobz0iSEBQPG6iaBtIQCOjRc0t1UdA7P1xkqT7R0AHfBHMZ8ZHQATxxC+ExEdAE/brSU5/R0Dzr6/Ev4FHQNkUKBamc0dAiZJkcL9hR0DYBTpfICZHQNlrA+WYcUdAmbHZpsIeR0B3LXnBJBlHQHT37Z29dEdA4E/vFKWUR0AECXzxcJhHQDWtQ7YQrkdAU7IjdIi3R0DX24dQzb1HQF1jyqsf4kdAFHUnor3BR0DrBGnQHdlHQMcuAlPE6EdAjSomSk3PR0CT+BlbdA5IQEgTNq0Y/0dAqAALcG30R0A8eBghUNNHQDiZ/UsGsEdAd5mbrULRR0D/2apHI41HQNOEgruJz0dAEM0H7PbbR0DfPoOsS7xHQIOHxL6aukdAX+pdLpFzR0AncovO4mhHQN1XU877VkdAMeWM2zKPR0C0JqECfH5HQJfRgS4ySUdAOOgXHw9qR0Aw8/iycnpHQA01TWsmd0dA2Vs6EPZ7R0DZw8tJ6khHQJdm6TXcL0dAQXF35EcnR0AJD7BPiwxHQHgnogM+/0ZAq8yHe2cCR0BTQ7W9e9pGQKV386yZ6UZAjOWc/UsbR0CDnXb+//tGQNtnEiv3r0ZAK4VD91fHRkAApsp8JbtGQHMylGMqnUZAZSUFueqvRkD5ZHFkyW1GQKzAbwzyF0ZA8AZDA2BsRkCdL4LJD5JGQP92kwP+lEZAtV+kihuGRkDLbOf9kpFGQIHw2pOhwkZAeJ5Vp/7qRkAYnFE4B75GQPvElzuimUZAnHkEEb6IRkDZ3odA+J1GQPc9oz9noUZAMcLy57qqRkBPX9NovupGQEerCtzN+0ZAtM6c/EAOR0Ac7m8HKA1HQHRZVfCqAEdALHPaPdGjRkA5grjgnoZGQOCYs3ILoEZANKCZ+jL1RkAogNa/XAlHQLgQMaa4CkdAJ+aXvpH1RkBnCkB03s5GQPE6edCi6EZA1+JPt2sDR0CEZQGIPxZHQP+t/iauKEdAvGgjXYH3RkAtrvsKqRBHQG9JtQeqBkdA8Tv2PPgJR0C1ow6rUipHQNjg86mwJ0dAj0MymTz+RkC/KApZmvNGQN1Nf0sC9EZAUNHk4qi9RkBBRolH+ZVGQNBEUB22rEZA1GI6N9TDRkCBjLU0b6ZGQGApxnxK0kZALzLDXek8R0BdwhO3G0VHQOyp5zn0DUdAX961rQ/1RkC1JcV1bS9HQFvH5HUfCUdAs2xaLPnlRkD11Kx0zhFHQCkX1Xk8JEdA2GkAkediR0A/z8uVYl9HQOSv9y98lkdA/PtvMRPgR0BVxgjUtdVHQGlLQPiI4UdAvbnzmDTOR0CT/sdpo95HQMnRyXcIvUdAR0a3+uBzR0BzbaMygXRHQMUUGIWwbkdACQwIzYE/R0BxhNHP0OJGQDs56jfTa0dAiXj8pylFR0D0SDleV3NHQIdKszAxVUdAD/ASLN06R0C/ECSm7B5HQNnDBvju30ZAx5Z6a/bBRkAcWY248MJGQJl7xxFf00ZAJQCQdBDoRkBLdsy7etlGQMjXn2Io8UZAUE9GOmsYR0DpcgtPUwpHQPE1tLcpzUZARbS97yglR0AZ4NQIdRlHQICW79g0ekdA9KLuunNuR0ClQDRUL6lHQIGnwv1xvkdANU51V9fJR0B1KQOJQOhHQMgYPKUI2UdA/X17RPncR0Df3xvLPx1IQJluPoiOJ0hAm8T6V4lwSEApEm4g4HtIQFPN6vl3gkhAb/ZbgaxySEC4sdRMEWRIQMUymeOSbkhABByA6eNvSEBluoOWtrFIQO1mdsplekhABBMg1JuFSEBpM6b1S5ZIQHvpmdDxpEhAYYvaa9Z5SECVITA0wWRIQGR+Q66yF0hA+0uTIVsmSEDT3AgAKT1IQL8sThmj/0dAeI8i5lfUR0ClADLXZoJHQKjS3JRRjEdAUKpHL0CjR0CL7T6MWHRHQGcF35bLWUdAO7jv74SbR0DRsk1rbYVHQIcqd3LOikdAEWy0v6NnR0DwqZg8oi1HQP8IoJdSL0dAi/XE81QyR0AMW9BkaBRHQNT5aoLhCEdAcwCj6czbRkDQcMD7EAFHQFOVAxyrMEdARwvDDG8ER0B9TTzVYwJHQL3+lXmo7EZAU+YnMKG/RkDV9/t5Kp1GQCDfxkbub0ZApTKk101LRkChz1W41GdGQGf/fScqOEZAYXTKAZwpRkAAD6b8dylGQG0tllqOVUZAAQvCR/n6RUBp5O2k/e9FQDzZOZ+uCEZAxefiUksBRkDY1uFDd/9FQByhM6doIkZAEe3oWiHjRUAb+fXMB/BFQHvV9bvd4kVAJPgzyq3cRUDHGtICfaRFQLyGcybYsEVAVxY1bfujRUAj8sLC749FQAkxd0oEgEVAJDLRQ1SCRUBDtY2E71RFQAWpwA78L0VAz0KkgEfVREAU7AXBcJ9EQGWZbyapkERAAZnuVcigRECZ06J8gKdEQEGzyZbvzURAIqN/PJxfREDDaw6dxDREQB0GjWpbAURAn++11N7yQ0CD2jxA3+5DQAFOwUjD5kNAscOuVhauQ0AqaPy4CptDQJujDDDzukNAV6hGtVCdQ0AvXMWQ6KRDQNeewgN6m0NASOdWWueNQ0DH4B9tnY1DQKsO4nMSc0NA3YJ/vORaQ0DJNLOJIJJDQFCAU5nPwkNAu55rhhydQ0ApVbbmubtDQGODNqEN3kNAN8nXkPzXQ0AdkLhfUc5DQBtlqg3JyENAkf6PRvjqQ0CkhY75K9hDQOYzqJe3xENAv3ZnUVycQ0Dp7vuUIb9DQPAhlvRbvUNA6SS5Fo/rQ0Dv33iNkitEQCT8YlRwaURABYwnlgtWRECRD4+IfDpEQOJDYeUxLkRAz+emJa0xREBXuC984yZEQOVCL0aC3kNAroLqMAfgQ0BBl94PjbtDQMEixmJfpUNAf2L1H/dLQ0Ch+ulVX6tDQMEaluPbwUNA68OH9J19Q0BT11G1c15DQJdbTCJ4c0NAwTUIHVCLQ0AjcilDsW9DQN3RH8Otv0NAC7kuwsPXQ0D8rpQb7sBDQMjam+tGpUNAWY8Opv/iQ0BzkSQU6dxDQGx9KESA+kNAW5eoAvQERECWIcd3h/ZDQMe77+7lakRASOzGskpyRECIYeaymmZEQNHQwOy1LERA6jsxN+1EREBrAyMBQEtEQDZb9QrFUURA9274j4VZREDsVgSuYFpEQIwSjfRdoERAY17JQqSPREBXND+Q7E5EQH5euEwsUkRAlfV85WarREAq56AFw1xEQPfg1gDcYkRAd3jEsjymRECP0V12ndNEQFfADQ7+kURAuL20OXLVREDotAJMpcZEQFmZOAHP4ERAXd2lkvfYRED/5fSROttEQK52PTvdmkRAo9cEXWeYREDZgu2O16pEQNNWOULxzkRAFYLd64HRREDDT2jYYohEQDUuSnNkmkRAdaMUKcT6REBLXNHohOJEQDqSN2xYfURA04P99J04REDB48Cb+A1EQIvGwRF3L0RAgNgHbYNKRECWu7qi0j1EQKvs1OJxWkRAR+jt5scgREAl1tkYpDtEQMtN6dsV70NAzKinRijhQ0C/REi8tL5DQJHb/X1hY0NATdwRf4VqQ0AxGWCklnRDQMd8HZJVbENAYyWf9oReQ0DLPkcLS6BDQL2UGxi0kkNAww96tWmBQ0ABk3tGLz9DQBt/d2MKPkNASEU6CA4cQ0DsjCFNvR1DQKSzSJRl40JALMPfYWTHQkCzxKG+wqdCQKOf3aWJtkJAD1Z4kpejQkC2JM3u8kJCQOuATIdLD0JA1+zqpEsiQkCAzvxQhDxCQBUa9u4pWkJARZ0e+K1nQkCPPrpu/HhCQOzPffl6pkJAijx6r2C+QkBv3B2ZG4lCQLG0px7qmEJAj74LGdegQkDI3S3PtYdCQIzXLnViOUJAwKatuq9YQkAZtaa2sZpCQH1pzi9Ki0JAK+OEemCLQkCc/HwR/29CQCGoRA1Dy0JAeSNoFL7ZQkB11QOXj/hCQARQnvdK40JA+mIEo+jBQkBbO3sINOBCQAo0xW75gUJA06HPchFvQkBvaDWg2IdCQHmj5vwuYkJAIFhUC6+ZQkDqgKm8badCQH81LbvumkJARxDmz+JrQkDlGvIFotxCQHPL8h/8CUNAiyMYmj3dQkDLsdHwMbpCQOdPBIp0r0JAKVM3heO2QkCUAKf6PKpCQDvjQOQOskJAX8dNDxu9QkDJUfRARNZCQBWre9EGyEJAShu33yO7QkAl6v4WNLhCQMi/L4V9nEJASRsPWQBZQkDZQYqaqZNCQEMsgUoV0EJAvpIxnxG1QkBSoOI2NYJCQOVysBOD3EJAWdqWsKuLQkDx331VFIxCQAIwisepx0JAnl2nkFrKQkCHNweCL8FCQODvxuNd9EJAQPszVWeuQkAjk+4xHZBCQAUjtg7ddkJArQxy6NxsQkDzZiLnWlBCQB0tWb37d0JAPAsNgiR1QkBq9dqZjolCQJlW8aCyiEJAp9fipFWoQkCRkw0xqn9CQLsQK46DTUJAKwvCaiIzQkBR6sqGvUtCQIVuM3spakJABEH4x4p2QkCh2Q2Er39CQNXkzBrFmUJA84VC93joQkA9SWZHK/BCQG112tGCu0JA6ejPZuaBQkDtNdyB9YZCQEl7Uk2KR0JAYRyfGLpfQkDxn4p2+2BCQJ4W9SPWhkJA3+qoRuBSQkB0TN30BlJCQG35VbZcdkJAtx3IfRaQQkB9r5JEt3dCQE/6EvjhGUJAXqutSU73QUA7TqTQUPRBQJMe+3km8kFAdGE+2WxKQkCikZ0/9wNCQOlWLFOKq0FAwc6M2CXpQUDlcCV6MOVBQPwQP5BzwkFAg9EBT4WhQUDN9p39oGhBQCa1tFCBi0FAEizApQViQUBwFhb0+nRBQFYQIIKuSEFAR/WAi70VQUBiVcPPsMFAQCUKjdprhkBAm4bj+C5CQEAyX+WQkEtAQCX+mZLUFUBACeigSR8eQEB52caJUhxAQLgDo/wXDEBA+5TEbUxLQEADBrfYT11AQODU8UNre0BAMd6Xca2KQEDnHzcg2olAQG4X20iUZkBAVlf4mh17QEDExVs6XVpAQA8hGuL8IEBAf7DHvIENQEBDdm+3JC9AQMlHu4qpT0BA7Skapr18QEDG+5mlqIFAQA1WG+rriUBA0kcyxo5RQEC5acj/PVlAQLdndFkbT0BAQ7fIENJNQEDqkKl4BTpAQOatxWWKPUBAayCr2LEdQEDyS5/79C5AQBiiRO+3H0BAF1zoZ3YnQECrIRnnmSFAQFQ2uZWUK0BA7Fn4WypIQEA1PLG47uM/QMWvSZvsLEBAv4B/FU1JQEAMbOiGZjlAQBQ+bnz7gEBAjWXSYZ6gQECW1L37lpdAQOEYKupRykBAZXYpw/XVQEBJJpgNgd1AQEdn2/3LoEBA15lQg/paQECuAI8NdJVAQEcJvZAdLEBAnQ/xn08xQEBqr3015zZAQBU0+IL8mD9AwSkSu4V6P0DzEkcfAHc/QJh0+z830z9AoLckNfnnP0CvRDLfwpQ/QFzoYqvqnD9AFcjDrkHoPkDhD2Qhqfc+QHhI+nmzCj9A8Vh8qwJsPkDEstR42YQ+QLDdqOfdbT5AzIDahe5hPkCM2bSDU1s+QClXLmHX0j5AW9rC22YJP0DxHn0cJtM+QJsZOrWPMz5AQ0Pd1oh4PkBpWIilBkk+QE0ptzJ7rT1AHdffK+YRPUBdH1LLGi89QEyOP0NXuj1AUBolTTCPPUB8nBk4z6A9QDmksI8wWj1A2dNtpGQuPkA1A3pqLm4+QLAEA3ZdsT5ACHNDhROXPkBcbAljvp0+QCXtbSGgkj5AEToAU1N1PkC4a+xcAHU+QG2/9i4KoT5AWY7cXNbBPkAED6X/F0A/QKNhY8PQAz9AT83kMCr2PkC8CfOPdys/QHAx8KTCIj9A3co1UK+wPkAEqfZFHX8+QHx8VuUocj5AgVJJLKfGPkBzJkXplOE+QCvxnfW3sz5ANTKzaB9UPkCAa3cXcDk+QFCwhwoabj1A2/SyzNnrPECdFQlKVDI9QHu57PX04jxAXTkOE7qiPECwUevAR/88QEfGw/twSD1AF56fyq9WPUBjBhw6xFY9QC/8JFC97TxAJ6nOG1qcPUAYz7pVr589QFRq639NQD1AU6N3gLcuPUAAaInQpBA9QE2pNWLgoT1AH25GyUTCPUBbsPPNUuA9QIdvhdyXEj5AyABT0FxkPkDjl3FxsGQ+QItpjD8DKT5ADXCEvRzlPkCTj/PaYtw+QIRIuS4r2T5A526s4TWAPkCgCmgINMs+QDnD3lGCrz5AJKkqBfMKP0DYBWEIS9c+QOgdmQvoyz5AaaI/0Jn7PkAXoFqms7A+QPXkSaBOiD5AZQQALfXMPkBcUsqGu5I+QMP0fQ7Wvj5AkQ0OYU4NP0Al5amxLkY/QIztKmcCOz9A1VQ3VxQKP0DFEizLiLc+QHchHINDCz9AuQROuq30PkC/+HCd9vE+QC/r0krx9j5AEBQgkl/YPkDPLOknrC4+QDfNzMW4IT5AD/85U5XoPUA5iLcbo4A9QFOSgH1fjD1A9aK8VqsSPUBJ4SHjHfo8QG0bMgucQT1AoTQE9paLPEDZNa5SMSo8QGwp6znPOzxA4NwnsojTO0C9kVB/COs7QDmtipQqXTxAxQxzO8yBPEBjq34lDVg8QNhATl0FYzxADFy9TJFUPED4xfrExGg8QKviBUhadTxAqQ1UKsCFPEA42p9RBmE8QEM2kFjsrDxAbI06pCD7PEBMcoGxyeE8QI8Fp/8rozxAuRcQld4GPUAlXtBUldI9QEPxqUrH7D1A9DPmZMsPPkDhRfD6cno9QJwka6Msjj1A/QClWq6WPUAlIdgN7jw9QP26QTRq7zxAJUwCBtryPECltSl2l+c8QKcEU4CfAz1A57g64h9xPUDPYrYwBQM9QLPSWObL7DxAyZvaJr/pPECzw6b7Dq88QL92oFCudzxAj4S9+B50PEAFxSIp3xc9QDlSvWbNVj1AT433uEwvPUDoDnl+KjY9QLky9PUVOz1AFK/CQJSQPUAH5qMYEdY9QNOYsyX8Oz5ABdsM+vNRPkBn7nPq6y4+QKeZZxYsvj1AaFCDShVTPkC0of5p+bI9QISE/IHAoT1AVeKBomx2PUCZMPL5zfs8QM8qGS7hezxAI1I3cbZdPEA4M4Qzq8A7QER5ovoMWDtA4Vr4nLM9O0C9+J/YRF87QG9r9bQ2qDtA5/g0aqTnO0AR3jpRScA7QHMhCfbjXzxABXomGYnuPEDF1wShS6o8QKTulVVW9zxAJHG+MTBtPUC5NGYeKrA9QD3fday5Kz5ABSivNnz1PUC3Vdih3x0+QHzWYDzRrz1AaHqILyIxPUDrG0loE6U8QOc13JsMSzxAWbtUH/rpPEAZaJiXHRY9QLic/QnfdD1AYMeXwts7PUAE5wvy2zU9QPQTwObZPT1AB2XWcWxUPUA07xlv+N88QBhgP2fy2TxAj96I/4ppPUB1oO+Hebo9QNByZJqtdj5AVVJbI43CPkCDklU0R3Y+QO8BUfFLMz5AROWD1F62PUCNMCj6btA9QLRIm2q0gD1Aie2BNbPePUD0ygvcMx0+QMc6MzhHcT5AwBgJ/J1pPkBXZt/+Vw4+QEGrdjB74D1Av1L3zs/uPUCjTG0FbWI+QLOx8swtjz5AnGnBX01UPkD7UsbrraE+QM3vwUpu6j5ABySDKEvuPkDM4WtD9V4/QJywUkQlUT9AnNQHDhboP0DeHrKAOENAQKMlPPy68j9Av4vpARlEQEAWLGYj1nZAQC3H4KyqjUBAJNmrEP6KQEC4UbPvwVtAQH5mRHrqJEBACTYQhnQmQEBAIFLZKTZAQCuMezGtQUBAZ3euJ7k1QEAxSNEw/kFAQI2YwVJ2c0BA3RpbzmMsQECb4/bKzk5AQJGw7edL+D9AfNvvkh0sQEDXFKZ6QwtAQK/lLkW/ST9A8OjIvp6UP0BCDaGnSxBAQFaUhQT8FEBAbyVPaVBFP0BM8qfWOwM/QOhVtMT8Fj9AY1Tw4AT4PkCDXgleB7w+QOnEwRMaqT5AmDiK7EySPkBDUNdgB4Y+QLBVSvD0VT5AmZZkv0XtPkB95bIq6/E+QGg60hw0oj5AVxZa9LWFPkDg0KS8iDw+QGDuJYkhuT1ApH2A4XI2PkBRRTluvAE+QPxCJHiilz1A5K6Kw1tFPUAIMwFIofY8QGkX8XfABj1AZxFxDlzSPEDcHm4x0gs9QFW1i5BXpDxABINe1HR1PEA3GPT7vro8QHi8oJ5ErzxAVAdWUNrbPEDNn54FFag8QI/MCvkezDxAK1gil4CUPUCV1iP+Rl09QD3TIOKbFz1A55yFyvj7PEAwvvsZYlY9QH3ntx5xED1AaGnBVuoWPUAnhagiHTk9QCDBrVyPyDxApKboFcTMPEANuTHla8g8QECSgvNFljxAqaI8sflEPEDDgMxRjDo8QI8w7/niBjxAJWACgep+PEA4HiM0pYQ8QCjMAJ/1wDxAy79TQvHwO0Dht9cv6oo7QLUm4ic+DDtAwJxXw+jwOkDwbuUjpx87QKxXLByxoDtAWfhJosszO0AMOUc1X4s6QGOm4LbVaDpAsEBAz1ozOkC/j+0Ih7g5QPw/e6xKqDlA24cSNkFaOkALj+CmiAU7QAl9RN59CzxAqzSfsppsPEB1otGOyeo7QF0y/eRNIjxA50Jjb3b2O0BxrWlNR5Q7QB0ho8CCdTtAB0lkg/YsO0AA8nWreCU7QJMuwPoTgztATaoZM1owO0CDkt7qZjk7QI/q5i9KiDtA6b7XoTaRO0A9BD8rxzk7QMg+2vbJIDtAL9qtq8YBO0DvymKt2Vc7QP1bwlZrsztADzBJfZ/wO0CUH9CKTRo8QCx6l+SgHTxADZzfuSMCPEAkOaJguQ88QPxq8u7ANDtAj4uKqDANO0DEE4Nqymw6QKwgs/oc8TpAUKQs/thZOkBE6IO4y2w6QIXHdmZrrTpAuIon4beFOkDoa64NrvA6QLf7c2oSBTtAMDn4faBMO0BpVKidNxc7QMUsEXMUNTtAG6WaWdrwOkAFuMQ/3LU6QBg/xGIctjpAtzT/uI7IOkAbuDrjCVE7QDgjZsDiXDtAUWWeMFREO0CJ2quMq8Y7QNE2u9UdTzxATd0vvhWBPEA84M4JARE9QOgd6pkqjD1ARDRhMgvcPUC7ia8/+OQ9QEveYkaeeD1A5Qu2gexbPUDYdDrxQBI9QBAkE1q3dj1AL2AH57YaPUB5ad7DPic9QIB7CvM8aj1AfwC7wo40PUA86zPr1kc9QGCokyasWT1Aa/sSH5f1PEB9Iqa9TWk9QOXlF+DorD1AafqxKlDiPUCnunTJC0M9QDGeqajuUT1AkGh/lftePUBVgMW43/g9QAitSDYwmD1AYxrfiG/IPUDQyIqhqfs8QETBZZU/Sj1A1Pcr4uDaPEBFJcpPudY8QB+K0Oi4DD1AnP18Ci8XPUA/GUNxsmQ9QGcbXzRf6T1A2WCwf2agPUAzedoC2FY9QLBXjUucLT1AOb3Fr/CnPUBNu2pVYJc9QKBMw/i7Nz1AFxyg/mKCPUDv5QvWckQ9QJfJ7SjpBz1AxWIQfk97PUCIiITAT7A9QGvMsxoX/T1A7xLxVrhGPkDbP6CF1Z0+QGjdAlYc5j5AXc8qKGFjP0ARB0XWCIw/QEAncCuaSD9AXOxwyiN5P0DVfRmZdQVAQLvKWeORKUBA7z7/t8S8P0Aki4iGNWM/QD9y8qmPZj9AaC0RU2tqP0B/OCsG8yI/QNP0TfZKGz9AD0jOxfKeP0DTLN6js0A/QEN3PYphgD9AC7krbHtiP0AMz4qJn2U/QNHwVb3DUT9A88QYPxdJP0DTgU5pAXc/QHXrYfh16z9ARF4Sc7WiP0DoA4xOe5k/QGN9M5ozvD9AkJ5nnLycP0DU8HnChmA/QNuzoN5naD9AT4leDqUGQED1//nFbrk/QHCEMFE7WT9AObN7EOR/P0CgSK7pLJg/QFXNWPqQpj9AE22+ZKV/P0DXhHr40jc/QJepGxn0UD9AkJHk6oFrP0Dtve514A0/QPuYAvk09T5AU3t0qd4yPkBbHrBSNjA+QNHuS7gFTz5AYRuOvoBhPkAQOwX0Byk+QKPCDRJJqz1Au4X17327PUD8IjK08Bs+QNMTiZWk8T1AFDzsSl9SPkB8OS2Dros+QBPII2TfWz5AHNCAJbyhPkD3CVtYU7s+QPdRevts4T5APU0ge2PePkAXo/AQE98+QJgQDDpVmj5AODlU0ChfPkBHhN8pvA8+QEN+Fd1s1z5AvGGRn0UOP0B7bU2T45c+QCe6lWyKdj5A1Dmt3LbBPkB08oYTZsk+QPcY5/UOgj9A8/KVXPDnP0ANmkfPp+c/QDcBQL6J+z9AH901a9WaP0AQzzvU9eE/QPfn6xANEkBAW82N4kgaQEBqe4NOPyRAQOk99xtmmkBAo8fICyliQEBNE3SXrE1AQM1tNHKtLUBAiAieX51BQEAFHlvlfkhAQAvvL6hkSkBAk9vuLfleQEAZVVEHlnFAQBE8kK5BeEBA988ZwP5ZQECRhiLHp2tAQOpMIXOlTEBAtJrL1c4HQEB4mgZJ4tY/QNHmYnNgYD9AnZ0rbV1eP0Dc35+vNQY/QCkfW8Lahj5AISnK6FjmPkDZtgmj+fY+QDAxmmoekj5Al1R80bvQPkBwz+T1NtE+QIiiArRycj5AGAJ6j3wlPkDndxWUFNs9QEtgqT1p1T1A1R+hqgNcPUBAMFWAOGg9QBtQ4S7K/DxAY89BbYc8PEAn4GMWZmM8QDiOmu1mfDxAk8TrVaaSPEBtUb1849E8QIeAYQ7FYz1A62JezfxWPUBBEvdPCUc9QFUU4aFEDj5APcx9KSl3PkDAEfvGkSk/QB/zaJ6c4D5AWIs0gpDNPkAE3mgenRc/QB//WxZknz5Auf1JtznDPkAdINDjnDk/QOnA1kNFtT5ACWjIj/YmP0AsTxMVR2s/QLnrkTORQD9ApN1FlfK8P0CN3WJzFpo/QN9Qlj/WYD9AtSXum7sdP0DIlVd/74s+QEAJwD4YIj5AgQJySXCzPUBVryVKlkY9QNl2VJGE6DxA4DlW2o+xPEB1UmyIiME8QInMaXyqpDxAbPVcHN/9PEARWM4QHnw8QFABDJTFXDxAe+IT3HgFPEDrZR7KUlg8QGCpCgOocTxANWmnRAP0PEDxxZXn/0Q9QMwipdCcKz1AN7EqIQ4ZPUC7rWLe7Yo8QBOi1nYL6DxAB5luvHiBPECYkTFj5QM8QMRqP+wxyjtAu2H+QXfZO0DrogF8Rco7QIdXUOKu+ztAf6ymCAE7PEAJ9h8K0tE7QFeZ1f0y8ztANWApkCYPPEDB6wwO+sg8QL/2nT/c4zxADzK2fcLiPEBEo3ZOdLk8QHztqPuGXDxA3FwHVv6DPEAkQESeRA48QDXPlgxTLTxAs1EfvEwJPEAl3OFA1vI7QP8NSdl9OzxABbFcTyRpPED10bVNEpw8QCww3GqZMz1AmRmywY1wPEAZFl+B4ZQ8QDN/3BPTfjxA/+Tl191EPEC4zj24Yhk8QLnleSErDzxAD+6Bla5rPECcyY1AKJI8QKyZGcl6qTxAxb5QmATJPED/exkHzxs9QFsvxErVEz1AbbHwnABVPUBDgJ25tdY9QOAxaYHQ7D1AZbL3mg3NPUCtPpbvg34+QB1M7z/fED5AB7+DQHTLPkD4A8eI8ck+QAhjV8mcbD9Av7TPRpuuP0A1xGhKSj0/QM3GljVHjD9AqE9ZYaOLP0CN/ruOXQ0/QAkoq0yPaz9AgJVmrWDoP0CAxpUWh+o/QNNzVaUtD0BAfrRqZrUTQECxzMqtzTVAQAfrV4ZQJkBAC69F6pQNQECVSwmszcM/QHQHcIZY6D9A8+1Iy8f/P0Brn0gR9AxAQLYXkXUSZEBAhUhjruF/QEC2sOhN8qVAQEJLckuSpkBAOpG9UripQEBHb2U+QX1AQMRvBOdZVEBAVvTkRZ1gQEA2bGFt3XVAQGPPYKWWekBAzrPm5LmgQECDdyyzqv9AQC1jfcYkIkFA23tibTvaQEBV7KcfJrRAQBdiY6xIMkBAibKfodtSQEAJfFao9RdAQDsHVX3ZFkBA+zPsSSA4QEA8dV1qqBFAQNzAK3pP/j9AbLRtz3U/QECr8FSCkDRAQJXGBXUbNUBA4dqnyuY1QECR73ZZt1xAQI1rshMvaUBAh1uNNfh0QECO5928+clAQE7SEZLWgUBAa7xtwM4wQECTpV8nyjNAQMwNCjfGGkBAlyrRHz3lP0BZ7eFks/4/QLEdJTe+JEBAdWCmf3EDQEBnUtZom78/QATFQ31DDEBA4Wkv7WXrP0AoFrnjIuk/QPg3N8xSqD9AkLrv7Hs5QEBiK7T2/GVAQJCG0XK4YEBAw0Fgmy2NQEC/vkHsBX5AQPiUgCtYXEBAShQtfluNQEBqly69f3pAQODQr620sUBAluOKK4RkQEATxpkMhllAQMjZESpjXEBAcUgmc9t+QECtbyp+DMNAQBpmL5kIGkFAqTuLkKQcQUCfKvLGgSVBQLCF2E4ZPUFAatcX5X3AQUBvD5wKQ9tBQDe3X5W+2kFAxE50c8bWQUCF51mLU+RBQFWMn7Lcx0FAqVaWAlncQUCLablDOexBQEcbAHrQLkJAEbJGiOO9QUC5E1Jgd45BQL7kL3AYuUFAqHDKiDGnQUBlIZtjyYdBQNqflqlPr0FA3mW05NvfQUDzLr4pPSJCQIeNpWXcI0JAUBgoSg0lQkAn+F+G+UlCQJ1WEG4PTkJAjrAPUBAgQkDINeAKX/RBQEw8ApgxFkJAXToq45HvQUDzfK6SjMpBQGv3RHcAhUFAgxSyQZdhQUCx0ztjRTxBQAna/ECtakFAuBjKo2QzQUBzs+DB6hpBQFXf0onFHEFAkO53GfIsQUDybiPz+i1BQIZ7MeqEA0FAK4xXB0LkQEARUwO3schAQJtk9+gHtkBAhfTLnoaKQECfnoaIX1dAQPSZj04AZkBAvB+yB3OgQEBj7GnXN35AQHuE3kmdmEBAm6682UaMQEALZZx68FNAQIE+yAfSpEBAHw0oIi6DQEABO6o812JAQBwB9MySWUBAkVkDjwJvQEAYYI0Xm0ZAQA+CUv7EWkBAvyiLSKI7QEBr7WJGtlBAQDPZgkEua0BAno10B7M7QEDPASYBlQpAQLC515xiRUBA2QA1si8rQEBeko21cRRAQLq0xbTMDEBAqEE/goFPP0CXru6Pens/QGN8WEg1az9AgEVj7AzLP0Dfu33XKuk/QNwAutadDEBAC/FfctIbQEDVCiPn950/QExJS0BFrz9ADRlMhjJIP0CPpAGKqQk/QOfFl1VlOD9AONXOhuOPP0DwqTYefSU/QME/SPzq9T5ABFaodwUMP0BDSUIrJHc+QFDjphVgoT5AU24I6dVzPkBnVpOK0Qs+QKEOsThGfD5AuXRtleyRPkC9DlOV+2k+QJAT7btdZz5AkKZ4/rEHPkBclB6gcvs9QL+IpZrLTD1ABQRZUiQxPUAQ2bb4uII9QJnfdE2iCj1ASYwKMiT+PEBU+SsOwGM9QMRc3im9Az1AZfs29MYXPUCbWAn7mPE8QEi6dK6ADD1ArIz4VdJ9PUARSUCR4u48QEUBzUzh+zxAbAOBTjY9PUBwGuOir1Y9QJPhfbstoD1AQQy/HJthPUB3gxW7Dh09QKyMDM5fBj1Aybo0yh51PUBRiINh4qg9QKvRTW+h7D1Ap4Z9QI4GPkDjr3NpQtM+QIFdFpHjwD5An5M53ah6PkBUGvYitLw9QGGZOpGx6j1A5cq18kkpPkDnBmv53qA+QFAC4tGPaD5ARDIc4qFpPkA9yK0F9Bw+QOvRybcmkT1AwAfRAAPnPUDgjxKDmuI9QGORBiHyij1A0+S5+pvzPUAc1vD8nUY+QAXU7RXg1z1AA6UbcDDNPUCoZ5T+gic9QKmfSEEF7DxA2/fXSazCPEDokIP6Rik8QMG0mYw+PjxARWns273VO0Cv6EnwtQI8QDdUvKNefTtANC3iuAj3O0AQQErIbJw7QLvhD6AYcztAIKU/I0mAPEAboS26NV48QGc8VN+slTxAhPipD9X0PED/dIw3E3w9QJtT9BRcXj1AGMcxQzx9PUDVGfWCgjQ9QCHrur4T7DxAV7fxHpbAPECLKQtHu9Q8QFeEx+2r1jxAHCuyiyk7PUBRIj0+Ols9QDGEM8My6TxAZ+G25n/hPECp6/E6Z5w8QOHjcfvVrjxAw1YtPZAJPUCVdNx1zdo8QIHMXag6xzxAXRrRigSbPEAIiChUYrI8QMxJTKcQjDxAf8i2/GVzPEBbG1MuBYM8QFfMNodn5TxAT577xTSjPEAb/1vNdWE8QLN+mGEoNTxA5VHHTYZbPEAFH9I139A8QAesaLgPtDxA/6hi/z7CPEAjdhjsIDs8QPUqEA4rpjxA5Y8DO5GJPEDB3xHB3lQ8QDkkhih+dDxAn2y7sDhlPEALuQL1VC08QKMqQGdpYDxA1xDxp0xlPEAraJOTDG88QFvu2s0lYzxAlO43CINSPEBMwQUubrY8QLdO1ZsnTjxAG5NqamZwPEAjx6ts3m88QI/B/iqTzTxAm9cVIbCDPEBPU/KiRjU8QP8Qrk2zrDtAQQFkUZ3IO0D7R0alUjc7QKPM6HIj0TtAyOfrvzMEPEB7MJH5qbo7QPAByEAQQDtAHaHVB1nKOkDgo1gNYvs6QDNnLA+eGjtAQ8EIc0klO0Dx+26ejkU6QBiGup/KSzpAMXJL07ttOUDDKV3gFj85QNX2KqxiKDlAEfKPRdmROEB84AkB5Cs4QHyoYQ9jIjhA/8mGwltYOEAtyGuXhQ05QKMSTnZ8HzlASNSdoC87OECwuLHxipI3QMmCvPbHazdAfRf07DQTN0C1LiQWJ+83QEUUyr1/SThAsRCpMqaYOECwxUBIjj84QO0wEIhYZDhAC/EeFssbOED9lW4JCSE4QISlJm+ByThARPB0zupKOEBxmauZ1Ac4QCN+B3NkFjhAIWipdyQlOEBXz1tWdoI4QDmNwFowpzhAW0v3NY77OEDvi2MGkpA5QLEvkoTeGzpARx3ZQ4n8OUDkUE2NcOE5QCFXrujPmDlAXOri8HGPOUBTTtHVgLQ5QFOsDYMu7jlAKPGhdJQjOkCgDkI0pYY6QO1WKN28TTpAzQe78/QrO0C4k+3VEOo6QIA1wrRShztAfyNc01qyO0DUL7x2ENM7QKdeGSrzLTxABQVa0vCdPEDF3Rh4Brg8QH9ka/IbdDxAGTUzitnIPEC03jkQafo8QPXgsAS0/jxA+8JlDMLUPEDUU1RuVS89QBkcxw7NMT1AyRIk+c2QPEAwovmtpjQ8QJSoKV69YjxAPYEtP7jtO0DHp1Wf2sE7QKk9vXfWADxA4cesN5B9PEAlLL3UBbY8QGXa9p4SAT1ABEXMLM8ePUD8Lce+9PM8QMj6Mg8T2zxAD95I+K+kPUBfl+HmP2Q9QLwRfY0Iuj1Ah3ez5AytPUCYPd0y1Jw9QCSOk9JkKj5AqWk22UjCPUBZ/cFtBXE9QN0e4zdxET5A9dSg4FGVPUA53VKWpOU9QO8eox6S4j1AqyDDhibTPUBXfGdGhVA+QAm0924JqD5AAI6j3EWtPkAzp8ri/bU+QGtZYc3kTD5AzyLMg79vPkB4wRNmXcM9QPhLfSvsJz5AHxHUQX+9PUAkH8HaaXo9QN1DlWihdD1AXRzI/EiIPUD4P6DuX4A9QHOoyyuDtD1Aq1d7H43GPUDEYuV/ixU+QN14fWzhTj5ACVDB8uEDPkDMVv+6dzE+QCQ+emL0fj5ALIfYO4BCP0DsrCo4JtM+QBN2o2mN7z5Atfr6P1lOPkAPUacuwQM+QKjIeMPgsD1A9Jf83L2/PUBNwoEKmvU9QAVsIPgl6T1AZQ1zFau+PUCnkCQlUt89QLty6w+r9D1AsHGljxFzPUBD+n9TgUA9QCuqMUm0wj1AN45e9OeqPUAsbmu/rJI9QGT9ABzlfj1A43ZpgIN1PUB31J4xZdk9QIHVHhiO3j1AJN1yNhF5PUBE7kG3nbM9QI1GR5wkqT1AAc+250DNPUDNBMJBcPI9QM0401USOj5ATDejVyGEPkBoogEw0Go+QBWsBfIbkD5A9c1XEYyRPkDA7+6qILM+QBWBxheNHD5ARbCZrnwYPkAhjU8HIKg+QCxaa5TWQD5AF/46Y801PkBNPCpRCwQ+QLj0gtziPj5AoYZiOjdYPkBQBW+DNnE+QO8qCPmDzD5AOUs5paTMPkADneK7BT8/QAXKMrvWbD9AFGV/ujicP0Bc2lBNOyA/QAghvxJz8T5Aa6O+0IUQP0AgiNpt3NU/QIeA2QSbsz9Au6Ii13g8QEDapbkjuQpAQNm1dHk3PEBAFlakVdofQEBdrgVTHidAQMjKB03nCEBAJQJeXC4HQEDoodkvzfM/QJiHIioc0D9AuOw4Fh7sP0D5HER+xQtAQN6gncEIOEBAuS+3OQo/QEAK3W5IJ2RAQFeTF27taUBAfjzfr+ZhQEDj5XELPYVAQIP4Jn3tyEBAtxCeypzLQEChZNArMsRAQMqcH+LQtUBAeLwS302lQEAz5zC9O7xAQDWtteA6l0BAc5UxsiM/QEAFz0fJAB5AQItQ4MvNP0BAb9hwN/L4P0Cg3THyH9g/QLxvmJyg3T9Aa9GlwOd1P0AUOdTQ1Zw/QIQpzYJD5j9AN2KxfpMXQECoRoBM95xAQBHkOTzDlkBACZidieWOQEB85m0xw5NAQNpm75Ryr0BA/JpgNaGAQED0ULE+N5VAQDHQnOuVnEBAtP99BjOYQECCKk5gPaZAQE+tii44jkBAo199mLOkQEDndJ3Si5NAQMSa3nl2g0BA0iW25q61QEDZd/zTv59AQDf4wtItmUBAgxVxdQacQECPNW2Js7VAQMeu9TENc0BA3+DHdVqLQECHQK7KV3FAQM6cOIZ0MUBAGBIiZXszQEAXOYKGgiZAQHcLkz2wH0BAhP9eqK51QEAj6E46wm9AQPmkOpdBJUBAoljNKSs9QEBgf2s+fzxAQO9F9+DBg0BAPqQaTsM3QEDF1dBEvj9AQPHEuwhMIEBAmugvRV1CQEBR90ioV7Q/QHVVTHaH0z9As48BnBS2P0B7z6em4t4/QGERaLLfmj9A/IjnmgheP0B8Q6ufWOg/QCQWqU/miz9Ad4MZZY1RP0BwSlHLWGA/QAgarEerIj9ARXvexyJwP0C8CBQtkms/QO+iD4KcCz9A63ONgzdHP0D73Mz2SZQ+QNRw/+F4bT5AVFATiKnUPkDQldWmIyk/QHChXYGVkD9ACcAgAKcYQEAVcB0maJM/QD+aY3SRZz9Ajf8LaTU7P0BNv3B8xXE/QPX0o6caXj9A+GH9ddMTP0BEsrLLE7U+QKxIGZlVVD9AL6D2ZEsJP0CdYfkBjTc+QHtxoR0Uuz5Ak5yOKmXwPkBorLlBeOY+QNTdAotnwz5A5TbGjhXkPkCxfIPuVw4/QBjgq4NVHj9A6dHfXOBTP0Dr0Ae2+QA/QGXDT4NqMD9ACNLi1fCOPkDUc0nQWBg/QKsxFEjdIj9AtY+XHPYuP0DUHif3+Ws/QNGrXdKPzT5AixOoVQDpPkC/hEXXbh8/QAHwKAyq5j5AXagjYA2jPkDw3a2bSFI+QDclsZh/Qz5AoU5PH+LyPUCHM/MmTOM9QDNl5k9niD1AKBfOHTkTPkCQgbFgCy0+QF1M7k+E6z1AccoGa/yfPUDtySCuodI9QGWhsz/n5T1Ah0v25De6PUDkITqVI149QCi2Qpuygz1A4KIftzWmPUB5xORhkOs9QDWYVWwp9j1AudcWo2r0PUAX+w1ZakI+QEf9GSC4MT5AsSOjz8cRPkBdheaRK9U9QGuW72CFcz1AOGegCkSLPUDMStJ6TQA+QB98+tJ8AD5ATy7gqibaPkDzO6L0LYQ+QJeXKXVJhz5Ab3XGFN21PkD46QxZKr8+QF8IXXgIgj5AQDhtGl8APkAUrmJVJwo+QOCzOyJcqz1AR+sj0M0pPUCQ0/y4pQ89QPHcIfY7Vz1Ab8CFjIk3PUDlNtq76Ag+QDkrDvbBJD5AlM0YRzfMPUAE7W3WY3Y9QNPX1/ijhz1AHQ1fQHIxPUBshXGoAro8QB2Uq6mF5ztA9OJnQNsjPED1NeWUq3c7QLzIJr5OdDtAPQwgw4sZO0DAarAWyW07QIMGFTKn9TtA7x12PARlO0CMoIttPxI8QE2hzIvpijxAyQRcPDycPEBBVp7aABE9QDvidVR+njxAP6jdN3/5PEDUdG8lBq48QPTQINXgID1At5b86XZSPUAFnERAtdI9QD3oo0EXnz1AbCttjq1tPUANVkRDKKY9QDQBfX7gXj1A52eFWGHBPUAZQ67pgqk9QHuxLWIyUj1AmXHOkq5/PUDs0Q9ZFnM9QE3C9NwEwT1ACMB7Cof7PUCEaMeoN4o9QLB+u3HDcj1Ap6sb32qJPUB8cAhU93U9QCT5H+Qjvz1AGUa4NtKXPUCIvS94+689QHzlrcJJuT1AULG/zXHXPUARt0UHk/Q9QLiCgoSAgD5AnwD0TKN8PkDZ4js7tJI+QOzmds3hFj5AtKGA4bjiPUCXgJYV5oQ9QEMo+A7blT1Ab+FAQiJ1PUCAsmaQ65M9QK+3wMOYAz5AjJ+NHCFAPUDhmXER6xE9QGN5UFAYTT1A0UgVGEhbPUDASozCN989QH0DLO2XXz5A9SvHFSerPkC0ZBjzlRc/QBNqdjsdWD9ArMZg+AAgP0Bxu/jTABk/QJXPJzjXpj5Akz3Xm9+ePkB/d9s6uRY/QOAWmOAV9D5AQST0GOWQP0Cvmd9d/ig/QOC5cPtKJj9AS/7NGtJNP0C/nMIgv5w/QN8is5OckT9A132zbl7KP0D3qjYZKxY/QLmukTHiwz5Aybjx9U6BPkANWhPtvuI+QHD5xWNqDj9A282vOt57P0B0BM1SnXE/QBCNIsB8pj9Ag6t/jSx1P0AhOZ83IV4/QOnzcRx5NT9ACaCHJbGBP0CJVMCToL4/QCmhnmQDtD9Ae2G4LtlmP0Bp19rcXCM/QBVDjmqSWT9AS2Sc3dJTP0CMjQs30VY/QD96hWlfGz9A8F/Zd0BcP0AgyazHzoU/QIlCBHW8Mj9ACbkWxVdjP0BZUf69kys/QG1D8kd/GT9ArYj+OyyTPkAcQ6MzSVU+QBOHa9fuRj5Ax/UVKSHpPUDpOypkqhw+QBceZPlwhj5Ax1phf/t0PkAT1mfpgtY+QOgUpd3rlT5AlbYEzWYFPkCNK1ULnLo9QDeL0gChLz1AmBZ1j20APUA8PNOX5kU9QDS1eBlXhj1AV2JwHrmDPUBnSzTPLQ09QHnY7zdjoDxAm66SOT6UPUDJDaUmQ7Q9QF1ct1ptoD1ApNYJfUuTPUAIlCxsrqA9QIT0wRYwxT1A0JphFDOjPUD/HbjAEoI+QNT4XrE4dT5AJzyDyu+gPkB/TGycgLo+QPeh+PVWrz5ASVXZcMu3PkCxLpydbfs+QJis4pzlLT9ADC1c4EHAP0BHZDtsSXI/QO8l2bfdZT9AtSZODDKkP0DZ/nNESANAQEl1DePkBUBAi5zEUHQAQEBR3odunOs/QGmPXQEdyD9A/9HWQ20FQEArekUg5DFAQE/pQ+0IQEBAgXHfruZXQEC1fjcWEVJAQNVKDh/CC0BA4JcD7McVQECf5Xl/trU/QLFK5+VDO0BArXDFkNJAQEB49ZRxmTNAQKtuhZ8C9j9Aq+9EzR/NP0AfX7v/WwhAQOOgL58b/j9AwaczQ1MuP0AgMf1q7HY/QAP80oX9aT9Aa2wrAq5YP0C09bWCV+E+QGNqiblx8j5AmERdUGyMPkD3Eks+F48+QCO695r7NT5Aq0wn4kqNPkBP8QL2k1o+QHRBymh2Ez5AfO4LArFTPkDNUm4mPuo9QHjLbLMm8D1A2MLCIi4SPkCxpkJZIew9QEnBR+B/nT1Ay2wmHF9SPUDRMLATOK89QHf6mjS8Vz1AXXUC8XPzPUBwjeQI0kM+QEWu7iMl2z1AOD34tKujPUC4ytUUvhA+QFGibvsMHT5AiI6UQZWVPkBQ2gojvmQ+QFdEjtVQdz5AUUYiyixXPkBtlQfD/6U+QHxYaExgDT9AFG822679PkA1I+NiMkw/QKVIP7oKkj9AIP7YWU20P0Dr7WJy5Oc/QFDjD1vVWT9Ae/Paj6asP0AkdJ5C7/A/QBExb/KuL0BAxDmEUg04QEDdDHmUIClAQAlpJ1BdK0BAyxYvEi1UQEBNFImSg1RAQCngqA0L8z9A+aKVJbT1P0COVZOKfVlAQJtGsPZfg0BA9lq9lLGHQEBqToaRpndAQNpvHr+YTkBAofK3WH5HQECjaU1ioVZAQNeBe8gEKUBAc/2e8oE/QECDWXUGKGhAQNv3wIhDBUBATbPB3l/NP0ABVt6JefM/QD+oTLh6G0BARXhb/GA8QEAw6oEz8jVAQEmGGCMQYkBA1SjaM6OGQEC6VHvTTFNAQJPFtbfzQEBAdxbTTPFFQEDGGsyDiT5AQIGf3cNeDEBAiSb4K9dGQEDd0uFjwxlAQKsoQuisyz9AMGhPXG5rP0D15ZGwtUs/QJN9kVTviT9AnfxvBjRnP0BQOal7nL0/QGwewNsVJz9AzWMSWro4P0Al54pvCS0/QFRmUnfG1D5A407ELOYBP0AHURwF0Ec/QPiRtXlGjj9AUIXWS9j9P0C/rP6VigxAQNlQ26EZFkBAMGtNHCQsQEBNksLCtU5AQNIPMtNlXUBA2HdTmyZnQECrQT5oO59AQMedMdkZlUBAkQ3oBGZeQEDQYnejNmZAQK2WEuK/XEBA0y9+VOp/QED/GJtjdbFAQGdTGIn/rkBA3tH6A7myQEBJEbmh4ONAQIRy1wwO6UBAvHbxxl/qQEDpbgHeI8tAQB1s2W5vnUBAZb3B1H2wQEDNzX2af8BAQE2fwWMafUBA9HCqNZg/QEAtgh3wQdw/QDRMxzlZuz9AbapLfS5fQEDHYRoDXk1AQCcjQcLNKkBAHQsXcp8DQEAFuEs5MQpAQLhjNTc4gD9ALC0C7fRYP0DhQFEBbH4/QAjpHquKLT9ApDLjfmtGP0CVbb0Yu1k/QByBVs+3oz9A2XbtIHtdP0DlEskJx4g/QLffDG2y9j9AtfdpRDwLQEDlVTU9rbg/QBDnOWp+jT9A9VtlaIqZP0Ao7mMV6Bc/QBcMWPxtUj9AHz8Mnn8SQEB5qRMTMvY/QP+QS4LTCUBA7NULbXrZP0Bpns+r9X4/QOWwDMTLWT9AFWoioDtuP0DkQ4ZFI1o/QCwiP2ik6z9ALVbdANMsQEAgTBRihBJAQAedTsRk3j9AaJVtRUzBP0A9Iw8gBPo/QFa/Y3x/EUBAAzz0vEA8QECc3t1sAj9AQDOZW3WkRkBA/TJYlaAXQEAo6YXS/zdAQGUOxlVAikBAsOPFvwlxQEAaiV269YZAQAUCrm8CxEBAKdfdB5rgQEBlS8sff79AQAhZesjjnUBAjaRLGHLPQECBouLmngBBQGntdoVQ1EBAZ/xSoAgZQUBF/+KGmjxBQJqstIPcbUFALzatfRZ9QUDovKXBX7lBQPj+fXrS/0FAFW5yEUHUQUB3MWfNh+9BQMHz61/ro0FA2d/JE9GOQUBzOODxHMBBQBBNbw3VpkFAjQJGUcv4QUCfASZPOz9CQFnDy2FZUEJAFBff4Us3QkArlamkkXJCQHowdexWpkJAwbB1VO29QkCkftEXCa1CQL8ISaMrbUJA+ZVE0FWmQkB/Mqyx8sVCQHcxttMHwUJAkXAWphHwQkDhYtqIQIxCQI+RGKP54UJA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"POS 2\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"YERGBc7i4z/4z9d/sPvUP7nIUP3DDNQ/+V6376SVwj+X4chy1RfFPyGRPISsSba/ZXgwtBbcy7/paZOWINHbP8lMsnmm1tE//ZyfWP926D+MzHZMbLXcP30RWmUDJuc/xWmUPOdn5z95ZUdtjuHkP8qEOmKFsuQ/pUJey7Ot2j9jSsy514nzPy4FXwnU3fE/TUcv09Ko9z+V3GyOTsz1P+BIZdX3Ifc/OeIiNTm98j8lPRuZjXfuP6ECoB/xQ+w/DOABI5t/3T9Fuy5jLBnfP1CMtn8mTrM//yPu1NJw3L+iNrLcKbbhv6tqtuCmlNO/APvpyGud579V9v5xv+Okv4uIfG8kPK8/wPlvsBxvbb9zmG7ph0a3P+PsORAf/7W/DYZOM7DNxb9pM0GxdAvSv8tJFvdOHaU/IBL5fgCpiL8D4uWD9K7IP2PNzLA+UeG/5QPbOpxhuL/UJoYDCNvHP2huZswagtI/qy6cHKospT+431yeXUXLv5CphSLHCb6/VdRUCJ+iWj+NbvVcyRLIP3F4Pfd5d8E/P+pA/doj4D9FblNfdXDWP0NcNLhI3eo/bSOKWzH/+j/oiIOxPmH7P5sPp0SJe/I/DJCNplPt6z8Txi7iAJDiP2QFAmn/7eA/djpcAZO/4T+kVW2Y64zPP9DExbIFCKq/nTc0ipX6wb8tpVmrVJ/Qv/CW8Y/3gK6/26Dyaijmyj9xf13Tdru7P4B9SJFt8dq/d+K7arih8L9ZspM3zJH0v41IZcdbN++/SmU/egpf87+gHq8PegP4v8Qzx8aSmvC/yIccqY8W7r8QGVFKOVXzv2S8Z82xreK/6wVMoZFC4b+TUCBeUrjHP/36J3Vj9+E/+VESLdbl8D9nA6kGP+7tP0UTxK2o9Oc/lW53ubw3oj+Di3k4F33TP9c8fZfCVsE/9SiWCo5lub8oU/MRnKfhvxMG/wtVEMq/pRDJ+Nwf0T8lK10sqrPBP33ttUS5rOs/HwCwmzYm5D+zFu//9wTgP4Sq7V41Qec/YKTzTygxzz81YciE1vWfv0OkWKesG9m/jexurWmttr+LZxUgZyC/P/OnKnVcMuM/J4kxvGQj1D/gDd4ZIZneP6FwHSTwpd4/jLrh27DU8j/NIgIrIn7rPxArRSEu1ew/6ljsseud8z9zd2xaWBnxP6l0x6w3bfA/6GOp7TND7j/nCTbyN57xP7d8xYM/hPM/g26ld0nY9j/f+wBk0TL/P6JyLJOOGgNAM9A6Ki1/BEBgH1PBPDYIQJO/5IuPdgtAWZv8WXUVCUDkofNgT60HQLyyheN8HghAYTOdQiwODUATFl5cq9wPQJeguk4spBBAPJXd9B7gD0BXbyj+dxwSQNUZx/C3HBJA60Lpcub0EUAMdZP0JSUSQJ3ePigP6hNAg4lT19/3EkAzHkM3eAQRQOdQa/tMrwxAPS9aLO//DUBdyemw+BIQQHW/CImXYRFAgdVhXPGjE0CPallM300TQAju3Uf3uRFAs+LXpOokEUD3Jv7DUp8OQJV95xVwzw1AeeCL3ouuCEAU26Y96OcHQDnpQut4RwhAtBy0aLqDBUDQzqqs7qsFQEPz+b6ewwhASXufN6h4CUD5t1zNf+wNQAPkETAILRBALeRImy9fDUA7B9LNLjAPQG0mIWEhERFA6dyfXBfPEECVdIs5X4QPQIUVskNDDAhAC26DQz8ZCkDf6xEJzLEIQHypc2bPlAdABje02tL5BEAxUWMn3goHQKD6J5jPIAZAj9dj9etXBUC+nHtso28DQDDSggsuLgBAo3vTtp9rAUBfyHGE4VP/P8DFePVPBP8/+ftQ4XO1+T+1zHzYp+T3PzX0PMu+BPY/CJPLHiC19j8oOghLENz7P1WHRuyqJ+U/TY6inEhj4j8Q/3qteom2v5ufto+It8O/LaZ5JnYL2787k5DJwZm3P/z4FIXy28U/uP8OgN1a6T+FF5XsYZLjP8PU3oabR+w/iBI9xk5w9j/XnRqWxB38P+fcUtm4hf4/qMa1kqGs/z/8l17IpVX6Py1/GvrHU/Y/BXQOYKbC9T8NwzobMV3vP8DPCA+jGfE/xLx+c9ui8z97aBMn7J73P4Dirnay0PQ/NG4/B9E++T9NOiSDy0X1P6B0tXc5uvc/ow7bjLL49T9r9JixnD7yP4dWYjvQft8/NatsZ/f+4z8YzhDY4SbWP/PP/O9D18g/MYDaU4WU1T+HI+lGC0nhP9NN1zrBLfE/jd75PH/O6z+Dmtny4e32P2k0TEkWZPc/Led0A0cX9z9V/yATdVr9P3UWvuZVDPo/W8HVCvry9D/nbMgYWDb3P5TJgEsfwf0/VbmgHqTd+j9R4ITaOE/7P757P5xWF/Q/LrWijt6t8j87kZFDg2f7P8C8nOSgKfk/pB9ETd2I+z8vUfWoSL/zP5AasW5lZ+w/P90i6IdI6z8fzUvXgA3YPwElmdwTRNk/n3xYb+BS0j9z0K13swLdPxsNVVx8gsg/4FfSSNXL3j8gyneWHjDUP4u50bVt0OQ/gOnL1NXC7T8nQiImXjTzP00Ox6Eztfg/wea8Z9PG8T9Dce2hUgT2P/cQNIN2Fv8/9zI3Bjp//D8MX1kXpRQCQFuO6OjtPANA/fm2vcUMBUAZeJHP8mYHQFz4Jrl6+gdAbMSKGD/YBkAdmZ1302wCQNOECTT9pARAR0hsya1nBkAAeTBiAVsHQMmFdYIuiQlAd6ZO4UfbBkDDc5+J2LYKQFQdF/rqsQhA+7MIV5qRCUBFYrI1tlgDQCyVDnnsdAVArHrDMHHVBUDD29p60KkDQMuQba7HKQBACSQaiy2qA0Ba9WxWLMQAQFljMD4k1QNABxCsippTBkCAd4T9tekJQK8gTeM9Fg1A7aaIhsMhCkAxQEB6v9QHQJCTiawF7QdAPB800J6YB0BEFAm6JTcHQGlm9TKdnQhAzEeZFhXwB0A43kwYmKoHQPkIWzhdrwdAC8BGSEceCUCtTB9OCTkLQI0x6HErNAlAMSqctCrPB0CFAOqMAcAFQMiqTui3PAZAjyNo6L0SBkAkJjbCFucFQHZ1+yjQ6wNA8AbiqPG9/z8lJF+9yFb7P1fyjz0gnfo/Z6Xkpv52/z9ZkKw8BcsBQBQHCwzutQBA1+Lu6IpLA0AHLlQgnzgBQHziTbm1rwJAo5gJ4FEUA0BDl9waL6EFQDkGwxe47QVAMWB+tIuABUAwMy2XiJYHQDWRLhOsKQtAxBaHVhGiCkDrttZN5CgOQKymEUJmRxJAH31fC9FpE0BBSJxYZmEUQFsKZEVm6BBAO/JYbtvbD0DbvKCdc3UQQHHy0QZRrg9AhNpRDHfFDECohkkDxxUQQOF1GuXsfhBAEaIPJOJJDEBbGTeQ1j8RQAIidaaaHBNAY/M60fJSEkCNdmBds3MRQF3p/RoOWxBA3TIz0ga5C0BRwHr7bsIHQNMfkcL4jwZAZ7h8oEF1CEAw+4tRULQKQLfnjwxQkg1A4ZjyWBRODUD7OtN83G8OQNG8Z1deow1Atb1Yz8MMDUA9xe4F/v8KQAM+JwoRpw5AWJQNaBhgC0AX2wY2Z90JQJPSzsbzzA1AX+a5CIBKEUAAbkN8rB8RQB1+OOSgcxBAiAa3MjmtEEDEH/uaAgsNQO2dn+VgExBA11Su8GxUEUDSx9ufViQSQLIn2/FPGBNA8JKVv3CAEUCRDPZXSYQSQNk7wmN6lRFAEacQYNsyDkDIpM4wtDIPQC/xpPWi/w5AxHLLRhS1DEA9Rcc/ar0OQD/V9HTLNxNAyQhoGl6PE0CAiYaavs4TQE/OHyokPBNAhYVIyjbnE0CtrwLsmb8SQL0D79Z/rhNAf8Wo8MQ4FEBooc0kGZEVQHcjntzFchdAbcScE5zlFUADS3D1Z98VQJkV/PgE9xNA06RaQm0vE0Bxzs5ZHDUTQLM8m946PRFA2PjhL/SWEUBoxU3RkO0RQJwHFlykuRNAZm7ujhAcEkBXYG+FshERQHWYnacGmBJAXJo7WVGIE0CL4b2WTdgUQHnJl0zblxVAyN6QPTQEFkDryRmOVXoWQC8JX5FW1RZAnxhM4aTbFkB8RTelOG8VQF1FAOpXqBRA6Ypd9vXwFEB04Bt0ANoSQOs6FSLsChNApgsWIN0cEkBcR9DRWD0SQBDD8p358RNAp+qn4adEFEBrVYJ/oMgSQLU85eZ6PxRAU0uDETWwE0DKOlOBV4sSQJsz048mYw5ASQYoudwHDkBTur6c++ENQHc1SDOKzQxAMRkRIasaDUBLgqCwR64QQLYnh94HqhBAIyW+6CAtEEB7lCKUIX8PQKPX/Vq9vQtAy2/qJG5ZCkB7dTRP1xYKQD35I0R2jAxAbIwQQxISDED7ytfKCJoKQM0LRF1ijwtAv+EtBmCfCEB90RUU/uAKQDi855jqnghAqQII9tBFBUAbpyf+p50CQFG1wPuC1P8/JWZzCD/4+D80ETkA4yT6P2zOTkP1zfY/GKdzjn3r9D/BMidy68bsP2SCCObXSfM/SIaC5Yka8j/nlWkhY0v1P3Da6NhyzvU/wUN0sDaS9z9jUrmjuVj0P/e5x8kbavg/1zRftkez+D+xsfC3ABfxPww9T/8zRu8/+BrZokFp9T87LONBwnb3P7CXYdkplfQ/VGjzb+SI8T/pNAhhzVDzP92Zh6+6fPs/2OwoX7Nw9z8XKYlLKiL4PymiEziNL/E/6YlpMzzr7T84srxVGXXwP2dS8X7Toeg/o1l17GxVxD/VWh2lG+Sov+fA7L3tidK/rTFem4vj4b9Um3OvuwDmvwXzCqjQXeu/qwR7Lz4ciD80tGfuXT/rP5Rs26N4fes/I0bhYnvD7j9rvs/dlMX6P03V4NIBvvQ/ELjx5jla+T/ArtvmW9T5P0VGAj69AAFARfOTlA+pAEDEYW2GnbkAQCQT+arGZANAZyHP8dxsCEDkPJbd8NIHQIAaahZzlgZAo2VLCU2KB0A9iU5WXQwJQA0QiexwYQ1APR8fyyDPD0DXK5zjI20QQLowRFEfMhBAnQ/YMPbYEEAgXlWbhxURQBdBmCa9HxJA7ZEh9rlHE0C1AFidfZgTQBuPsLcV6xNAFoQvlIPeE0DkrgsYGlYVQCNw7uBYmRRAEb3RPBYuFkD0FTEebwMWQOSK/oOHMhZAQ2tV/is5FkBb94kQ+a0XQAtxWhvmHRlAn9d1o3NuGUCp4XdTPWMaQF9rYQDl/RlArf5QUaH1GEBPtE22nEMXQEzb0JZYFBdAPPUDJcrQFUDnT/1u+c8WQJyMzURNFRhAiHb+MLYgGEBrtla3GdgZQJk4pCs/3BhA5BTm+yDqGEBTxcHeEMEZQMVrO64a9RhAZKYOjikYF0Akm/ZsnN4VQI1MXWCfPRVAnYYbr3bxFkBZiiYKN2AVQC+AxdawBBRAFWQYRs7kFEDJzTYJ/6YUQL77mOvYThRAY/CL6lGoFUBcwG889sYVQDwscncUmBRANzILn0uKFECPfYU2cqATQBOxQGM7vhNAlQJ/RnK5EkByJTiZIK8TQGLHfYlzOxRA4g9fSR/FEkAtLKo9Uc0TQKcIAf9/chNAIY55rwYOEkAk/xQCOTgRQCKjCLxV9RNAH2y9ROC+EkD77Dtr/DYSQNBfjhyfLhRALvchtE4/FEDtn2Si0YcUQLTxi1kXLRZA/eGwzYHUFkC3l+xFvVMZQL/i3NfbMhpARw3gSRNiGUAD8E5GDtMZQIO0wkSd0RpAL1ZabelzGUBDK9endSwYQN/O0Sfy/xhACSRZxzLnGUBtYiIcirkXQPOWi2gTmBdAQxygoBRkGEDoqEnjVGwZQEwD1fjO3xpA1O/aiMWSGUCJq7IYYqIZQM1fZn9LqxhA4cUO3HRrGkA43/Pcbb0bQOS6zYbgGBpAa54wLQNkGkDJSIr0pUoaQF2jYPSbohpAe3e7ujO7HEAf6g017UQgQIzyc4g/oR9ASAWh1a5bHkCUf/2UNUkfQPgKZBrcSh5AxJ4X3G4uH0DnhU3XxO0eQKCM1Bgr5h1ARHQeqZNKHkC9P2utYoseQPPXX676Bx1AOb+sz1UJG0BvxzD8+NAZQGiXb54bSBhAuJ0SYAV6F0Co8DKTkzcYQCUIZ6ihHBpAjAuvnuu0GkBVDCrc5V0aQK3Qq8HorBlAxLQujOH4F0AlXz4VdHwYQCQ503e2FBdArPOiBQaLF0Dzk8iuLd8VQLkNqkrpGBVAWZrXKjWBFEDNLKiU89cUQDvlCrBFmRVAS8+7PuziFEBMtCpUuiQWQMSRKMQkzRZAp+B/qTkMFUCv8+4EMrsVQFPhoJUilRVAZYDtgGUmFkAXtRcN+hAVQHTP7eLQzxRACLJARX+UFkAU1N8Z4GoUQKtt0axOXxRAt+xrEZbdFUAC8t/MyogUQHsnF4ADhRVA4bn5HGsvFUCA8osj6uUUQG0866TivxNAD51MTdrnE0B1Ad7fgIsUQI36k/OFjhVA7xW5rhenE0CPYhpefK0UQAv9ATmwnhNAKZChNgvdFECUOj4sJVsVQAE5l5hxVRdAzVvwzyqKGEAI8KwmrUUXQJVs2sltIxdADNmgBon5F0AUo0/CVnYVQJ16exIXuhRAN+za294YFEBX4AKPbNATQEEKupny5xFAh3xMN1k8EkBRFK+LdjATQEBtGl4uTxRALjknnVZkEkA6YGNzLtQSQJXEX2aiyxNAP/mCitXDEkBA6AsA/F0RQJgK4v0mXBBAh4NyPKcNEEA//jQLof8RQIe0lGnQ6BJA/4trH/u0E0CADclvtGUWQPP/INBZ3RVA7Ey/w+LJFkDtye70AtgXQBBUIhmN3BVAvLw9Guc0F0DkPAb/m8sXQIhspkE2nhdAQLeu0q5MFkBkynFNek8VQEXTpNnBXRZAE8MB1h3SFECFGuzHlWgUQJQ9DfW5hRNAvf/RTJ/HE0CktNCrQkoTQE3Z/IDVGxRAe4gHcnIhFkC29DbcrEUVQJEfbiS7YhVAqM5w45fbF0BzE7X9MscXQNGN0AJw1RZAazAqjrZAFkAxxblRcV0XQOt20kUY2BhAkbON++4rG0BZRqK2YcobQBR29fv2xRlAWJA3x4nZGEBvkcdaLgIZQOVp2EZArhtADQ79gOcYHEBhYfKa05IbQIn6w0zoexxACXTBxUcvG0CUWq8U8JYbQBPio/01oxpAvK+vcFsjG0DvYi5S4aEcQFWiQTl2AxxAdHtqwO1EHkDlpLmPiUIeQGDQNTap3BxAV6QYI/hoHUAQQjwIcOccQHS+nHjMjBtA1VC8EojBGkDF7lTYhpgZQM3qFmPuNRpA2WQwQdrmGkDYzwnpHxEcQIRq4n+WyxxAqzxXNPNrHUCcq2TYntEcQLFJQltWVh1AKcAVJIPmGkAr55CxMIwbQISmQPwuUBtATKAiOj0/HEADdAt+SPQaQLAareMxpxpAQck1OaxEGUC90akR4aYXQM9Ih+ktmxpAje+jmRquGkAlx3sKnaUbQBjvIYzKRBlApTtoQpJ7GUB7MLGO6pQZQEcWTj3kLhlAtFBKTGffGUArIR+x+6AaQG95DoDyDhlAyBIKbj0cGEDpuJyQ8dkWQP9rmfskOBZAD7bYGQdiF0DgGLdwHw4XQG2Ov/+UvhdAMHftTjMmF0BIu9WoVuQXQF8A3xux+hZAS+nkN2yBF0AUOigoslkVQKTM3djN7RNAUoYuGG0vE0ClrD6Szd4UQM/+JhSCwxNASnYRwR/LEkCLHKIteNsQQBqd4K5s4hBA8x+02hl2EkDC8QqFAxgSQEuSSw7IuRNAosyoZrafE0BebQI4YtgRQH5CDAf/ChFAY+PJ458pEUBX7VoGzy4TQNIIuXf86BBArcYcFJd1D0C0lfhIB+oMQJnxzI6AIAxAl2KTTyx3C0BJtZvx4uMIQBGRl6ctVghAG8zxpiMIB0D86QAnECIHQHTknBqlRQRApRDMWbQqA0DfpoF7CbsFQAsycJ1gLwZAJ+WAPnCwBkBVfteldXIEQPzGCIXM4whAvefaZ0p/C0A4VrrOCEkMQNlzRx/T3g5AKvLTMcooEEBLHS2STpsNQNCEL1zRBhBA16tTntNMEECmTT/ks4IQQAOsvh4Z3g5A95VRG3BXEUCBsveSPj0SQDlDZWe2kBFAwNnhjMGtD0AJkVJwOG0MQCO3agCCDw1ANe/SK6JNC0C0xlZf5toGQA+KjKji8QNAOU/PH/NpBUBq8dXZxqAEQCyXvyEf9QZAkcr2W5YeBkDlGgI22doLQMfhPlnnag1AId8ueCaXDUA1noc5tD4QQMms0DzHVxBAUB/fCcljEUDkfnMrRxMSQDnfyA475RJAsQsCb5aAE0D3Ob0mXzwUQARxdF+hcxRA86V7KhjGEUBvPe1hAU0SQIGwPCXhQhFAPDruyNSREUC1vHVuIxgQQGHDxVfxhxBAgQ/aqecBEEDIMMYn1GUQQL9cFUi/Mg9AsXyqHBxkDkBlpcdrUCAQQPU7yKXOGwtAx3hIIZ4nC0CLbgIVFsQIQMh5FIHySAdAARpM1BCIBkDHzIwpMLoFQJ8YYtckJwNA1TVvQZasBEDF9ZGRCu8HQOlnygdN6QpAqJoZW0agCUC7o+O8S6AMQCydiR5nbgtAaMiqCm3ZCUABtSpzzZEIQF0b9MQzMQ5AmcOkAzFTEEA3usBzFWsPQPeVTQovOQ5AF2bhuuHJDkA7wC00aGQOQGiAf4K9hBBANV+pCzHKE0AQURQaJ/ETQFOjge8ipBNAoNjUoTtcFUDgzZDgMBoTQNzN6vRyqBNA5pcLoA+SEUAxuUXurloSQBEtLwbUoQ9A3/1Mr+/fD0DG38CETjsQQG2mDSSUvRBAh/VAJGAaEkANsIjX4zcTQFsh3SSQBBRA26lwszNZE0DXw4X6dNsUQPc9Y1qVphdAN2o/ZGDuFUAQNH30PpkVQAXLy3+1GxZAfIAGLLaJGEChhMn5+8QZQGyJDJN3cBlAgZQcDTLoF0DpVSRw/IAWQHmN76Og1BdAwKRI7nQ3GUCMeWcyuXkZQAsuhVR30xhACdeLTEjZF0BXadAUgM0YQM9OmIyd7xlAW0w7MY3hGkBfATdc294aQOWA9/d0eBlASBJbXpf1GUBpbSqML7waQJ0LixtK/BpAU1wPkLEjGUDQnsuQWTgbQFwlNqzcdR5AuXdzIrQUHECDxP8fnWEdQLCCWGarVx5AbYsjYQYxHkAQQKBHgzceQDg1T/C6OB1AHTlz1PQCH0C8C9TdRqIeQDywKKV5nB5ACY0oXTVUH0BQIIYNfmgfQB9zgnScHyBA2LWvMRMEIEBhBPc4TgMgQIDOWe8RGCBAtbp0NAnzH0C/IsTj5pofQM3ZmyKINB1AvHooKp0UH0A9gjS2SSsgQP3l1xz8jyBAzTRDsfa6IUDZXz7k0bshQM72HgQwlyJA425BLgmXIUAjB3N5d3chQDYe2UgNpCFAveEdoIqjIUA1j6k3ms4gQO/MYUbBdyBApOHT/jtwH0C8iQnbcUUeQBlKknJofh1AXAQ23GR+HUDcU4tedhAdQO1HvnBU4hxAdMHLwAFqHEDw1KH5LjkcQDsCJzgCtxpA8NhAJ4CHG0C3McJIOBwaQHsLBL/RuxlAEOu/CocvGUBxeSqjmGgZQAGJG8yEORpAPMEFDtFWGUAN6wvMF7YYQH04lU8JbRlA4EKBDCzWGUCL+0rsL+8ZQJghq11DWRhAHfW7eufGGEA0urws45gbQPfGJMhbSR5AHMmqvJLKHUARahnkjlkdQFS/G84UEhxA5KQpxotMHUD/Z0oGGDYcQFwqWpUbWhtA0B3m124gG0C0X8+TdW8cQFTpy/KLMBtAsyeXPMehGkCfg9fe0okcQAx6aebsCxxA2W2E4ofhHUCNBvmjvJgdQCU11d8uyBxA83bPLrNnHkDsvhAwXEofQPf8+yRIiR9A3wHhm1x+IECxlBlJogMgQKQhazze/h9APyvPt5kjIECpuvUGzZQgQAfMNcrcpCBAlHZVKCvUIECQItFB4k0hQJtmiAUgoCBAxS1BIggBIED7xe8SDjAgQLFXReCgSSFA7DQ+7mfZIECZX+Rwn8EgQFvJp35D1iBA9jo/BJ93IEDjJtGYiAIhQA9hN3Z4aSBAoeMCNphDHkCJEO0CaYYcQDtKVFAvtxxADZGazUtAHEBsodEcrxUdQId/fKTRgR1AtNEAKf1tHkBLwc04wAMfQHw5uDJU1x9AvztxAn+mHUBzFtC1nssfQC99YqD8PB5A1dJbflHGHEB4LU9LAHAfQMhwthNJwB9A0VEMv1kIIEAJjWFyxukgQJIaclQsuyFAciEiEmRBIkBsy5D+YCciQJDKgOasLCFAlFIcaxjrIEDP0RcA82ghQOgJtkEK3SFAH0K2zMk7IkArQky2HPMiQLlPiDs0iCJAdWpEkuUIIUDfFyK/XBshQAFWKMt5VSBA9pcprMovIUDFApjZtgYiQH3uua1yqCFAMpxFJmQaIkBlemLuDMUhQDt6iDNeMSJAq1DhCGdKIkAPMUlJ9boiQGQ8zxqRkyNAjQm/5EfHIkBnhJKbdd4hQMdzcNaUVSJASyHdQjH3IUA6fgswY2sgQIkuBGGVwiBAELwE839NIUBJKmBzeqggQHYE+J8MIiFA4h6GPpSlIECNhDmeg4IhQOe7ZbN58yBAbFxrf/6WIkC74Y3yOA4iQG/PLFSbHCJAnc1ba6RQIkADGSFkJGIiQDXfum0nlyJASOAdrvT+IkBRfXxZxsgjQBFEKKxmliNAL4GIFoO3I0CdBips5ugiQEmPotsrbCNAf66yvseaI0AP2kdyBRokQMnxBHxmPyRA/lrR3+sCJEC8bg0olzAjQBnw2wIHiSJAWGWqjJebIkAft2ud8lwjQNtofxMD4yJAlIA+53IBI0DamS2y7AEjQA6RwVrp9iJADvOqzsTrIkCT17cq7bYjQCRlscP9LCRAhVrrdSK8I0BKVxr9CAskQC+QeOzi2CRA1XgbZoNBJUBJAoPJmsolQMsaPa7kWiZAM5zIZtBtJkDby7kZAW8lQMeJrTq7ACVA+MmN39KHJUBMg6qXZ+AlQORkCjEBLiZAIKKmGamSJkB4IjPWvaMmQL91KueelSVAXMnRWFIzJUAKcrE24KokQAz+I5NoNyRA8JGg0UjLIkDVWf/2iIQjQPf1meiF6SJAeHGiRHOUIkBB2QAQr8wiQKv1SbDCCCNA4RQXRqzcIkAeaPcvSEoiQIH9Z1v6ryFAjCkangMVIkBn1Q9jm7UiQHla2x7hoCNAAplcTTcZI0Bh8zNsxekiQEpK1czvCyJApW1eKDumIUAngwId6xkiQK/fr8timSNAHeGq5b7cIkDp5AcATe0hQDspdmOo2yFACFTlx2mQI0D1mzPERn0kQGDLX6E/pyRArUbU7mwPJUBahSZjHZokQMOBqQYCRCRA9w/02jglI0DTc14GUlcjQIndo1M+cCNAl2WLSvowI0CVPUuw2F4jQKMkqMQw7iJAANkXP8yNI0DZbtfnQLsjQNtbmPve1yNAUDJ7Scj1I0C/QQbjPVElQGWoPYmBVCVAhLoKCmf+JUCl2D78Sg0mQIwD0N7SUyZAQF8ACodJJ0DoWnDue5ImQLA5NjEvXSZA1ydlIRDoJkCt7VYE7ksnQE0p9A5hGyZAyUbj2HSpJUA5kjJEe/gkQKUJ3Vg33iVAjmNC2wNAJUB3C4rcoeUlQHyXmBHrdSZAkViZcXVfJkCAJw9BpzImQAsjPlcTiiVA+Tr7iNnVJUC6iJkxViYlQCxPWQCGViVA7bPGYhTOJEA7aQMjIO8kQEfISPjvICVAwgO9dMAcJUDFVpB/xZwlQGEIOuDGOyVAUf99VkASJkB/ZFGX2XMlQGNosa9f0CRAKZ4OkryPJkClPEXnYScmQPm5k6ns4SVAWw5xT7SjJUAneVpD8T8nQFEB4X06diZAK4D6j/LgJkDom8yZLjkmQOCrhSpt6yVApJrS0X6DJUAXlXHjTi4lQEVb/wd89SRAl4r5xtpnJUBNCCV0VaklQCRyAdxX/SRA14omKoVnJEChzxr7PUojQDDP+Bz/ViNARbup3nmyI0B3wrM57V0kQDOQSfMT4iNAugvr9zX0JEB8nkgp4SslQIzDcO3i5CRAB87Psd9cI0DFWKk3wPMjQEkZgYR0RyNA4WJBAL6cIkAb2bhTLycjQEDWrtt00CJAl4LaOF/BIkBtLeh5yhsjQJod8uoLLSNARAs4UG4dI0AsM2FN7SEjQKz/MrprxCNAT6eKxI4qI0BvmdBHCpQkQKX8OJLNKiVAKe+22IWlJEBrmmm6J80kQGWqYmhbPSVAcMQS3uJ/JEBEy+C1kEklQCA1/6SMByZAOL3wvQILJkCMb88udTYmQDxtY8ywliVAiccXo7RlJUAj5wedx8gjQJjQi3eEwCNAXZzjLXE/I0AHcOu0HMUiQEigtddWySJAUQJml7BKI0CdsjONsa8jQNFfU6qt2yFA1VS0JWf8IUBFELKx3W4hQK2CZOY9cyFAgQeIMSYEIUCTivy5wh4hQN3j/zzQKSFAq8h35RJZIUA1mz742UQhQOP+F2FH+CBApx/nKc/9H0DC11rLawggQMxWK5Y3eh5AnCXnYtloHEAog/sodp4dQNtCXNQcPR5AqRg3yWryHUDAENkNp6QdQKzS1RcFFx9AZ1WmpeP9H0AlywEe50MgQG86i5uIsx1AO9KhJ04SHUDo4dzqIWofQFdetS8UwCBAVSFr1hc+IUDy+x3oPekiQPWu+bhLhyJAf4sTA9WuIUCxsRw1gmkhQDf8JJHoTSFA+Yy5UhTEIUBGwU+KKzEhQISxStDd4SBAkpdSH3lsIEDDMgERqtweQCAO7DYclB9An7z9d2kMIUCrPkNhr7gfQMciuuYNxB5AfeDGbRxNIEDlBqZifIYfQAmu+wa7hSBAAmFJyRjvIEAbxl9cS30iQFG9ljkTwiJA1LWXrKtmIkCWy9CltHEjQKTGbvyy/CJACyAYMJ/nIkDxdMecll8iQFwee9K03SJAYbmvRUFjIkA/pb5FbBEkQEGWtNhoTiRAVSTlk5sbJUA55bzWbcYkQKnaquKNoiNASHPtBNLYIkAPsIMY24kjQOPc85hRjCNAQ+PIhms6I0B/P6pn2ygjQFsfE42ZzCJAshwydamkIUA0jPidYXIhQErhOlX+pSFALJGvau4IIkC1lCQInd8iQKy6LOXZ8yFAX2Tjfc2sIkAtZ3LZveQiQJXB56qw1SJAk9VKroi5IkDF0EB0H4IiQKHw9fxMPCJARxQ9FyaBIUBIVe1+r58hQN1GzV951CBA1WNy2t6IIEAM1MqMIcsgQLtgSr2dMyBAmi/UEH0KIEBwV6/+FFEeQH1zdRtQ2h1AAaLyUvNWH0DotGSGJxIgQEBIed6i4yBABNAk3Wm7IECZNePsAuAgQNRwW5uKGyJA2BYijwd4IUCHSZD7LAUiQM5ECwSdGyJAo6oJrqITIEDxpxO9nD8gQFqix3HZYSBA5n5pPtIRIED8KrQOkHweQBD2zTsrkB1AiYo/5BV5HUDVhf6HzggeQLGN/oluixxA07oThcjTHkDZeXwQYYIgQDCeHB6WwSBAcYWGWPRhIEBV8mHPSdAgQCgc+wC5FiBA9omLCNdLIEAErRqZcuAdQGM9BV/IJR1AwFChzC3ZHEAfKxyXKAAdQNQt/E2EIh5AVSVVrywaHkCcD7LNwfccQGgC+cJGExtAh3MmiDz5G0B0qnjRLzMbQP1jad5NNB1AgPke0oCOHkDubXPMKw8gQO1fpWQQSCBA/JYPB+r1H0CznhqdqSofQOVw1B/myh9Ai5miGIjeIEANIi6WcywfQNxD9mRBeBxAnRh7LADIHUCvg/a/4Y8cQKwHMHQZ8R1AoN9QGEPBHkA4PtW55BceQNzAWVAL0h1ADwi28fjRG0DtHsHRDKAaQGMGmh4MHhtAzUnH0wSTHECnVK67QqEcQAMa5DBVKBxAj0x6GWD3GkDREwJLUuUZQOh1AoP5wxhAZeFCpIgbGUDF98/oLlYYQF1qZ3hS1RZAWErGRTecGECF8jS86GoYQKQi3eUuMRZA3eW/0rNuF0Ad0QP84nYYQGz7vECk7RVAWwgir1+jE0BftwIccCQTQKp8LLHOGRRAH6LnqwXZEUD/TBCYXXkRQGbp4eRGMhBAgMJwQrUODkAD7rNzs2UQQODir0CIIw9AEPaiUo8gEECszK2ieyALQLxhfiXeIA1ApxyBDFLLEEBxwz2gvJsTQHAQLQvZPxNAbCDvp54gEkA9LwD1ZpkUQKF69SUmBxRABkDE6aoRFEC5zViN0fERQC0jMAnfPRFAvaMLpUuoEEDMLhbO6IUQQEXpuqwsaRBAWX8QFzGbD0Aj7wX2P24QQJdZrCmMYBBAs5wh+sUMDkC9iSKHZZAQQE2OAoLBYQ1A23pyuOEhEECR4M9et84PQL22qyxMCg9AEBx6hJZIDUA5iv2+d+YLQDu54V/BkAlAKMYYkTJLB0CbmuyArl4HQAelrENAbAZASIztIyzwBkBfqk4AR0IHQIeezkVBmQhA39NTOj4eCEApgid2nu8EQOvul/SFLgNAHT/HCxkGBUCLPu4W7UMDQDmKaKqyqQRAFdhJC5VuCEA/+EA8ZvgFQOjooT1uFAVAT4+0dIzjB0BYExoFIIkIQPiHlw5mYQxAhV+4ehluDEAASqCfBYELQCXRYgeelQ1AaB4zMdYNDEDlwMZ8SaYNQLfusNftLAlAm+hL1cYzBUAdEigPqrsGQPXbIzLJRQVAVes8V2PKB0BfM3aWaAUIQA/xlPhzQw1A8Tawn6fJDUAbdOsjy2wMQPtJuCIrQQ9AOycH57l2D0A5CV8Pen8RQIFrBJUX1BBALe8W1c7yDECF8dc9dssKQGUcCWGoNQxAFFqYyHxJD0CJt7ARW+AQQMFLi3TmZg5AFH1Izw3NDUC92j7dZdUNQCx2+uJSQwlAaT+IiEnIBUDw5Ksqph//P/hiURti+vk/z0EqXY4A/D+nLEK7Xwv+P5GLHo2wAwNA8b9CiJ7iAECwwJkb2a4AQF7auLIMBgRAX17s+IAnA0C/bVU0MrcFQBOF/C8d+QhAV4H0HFxnCEDE3q0BeiUFQH6nd/kP0QNAbQnyuNcFB0CD2EYpXMgFQOwvkQ+f8gVAGMnguWJJBUBgsX212SsHQBFE6QFYRghAijt3RfQKBEDLbAIUhKoFQPl5B2lZ/QVAGTnw2YyrBECNEB38OuQDQEt6Whd/YQVAron2Uw02BEBJEFVG9YkFQJV7skbEewNAMCSBsgLQAUDDV8m/0moBQPVx/O9iQQNAiMVGXlGw+z9ovrFT2eb5PxVqUT5qZP4/GR6+7lOI/D/citVaQ3EAQFmR/yJwlfU/ES8cD1Pc6T+c4Pey1gf1Py8RPwkLT/g/Cn4LfGhNAECjUpCIaVr9P8Qq+e/O9/4/w5BKexmr+T/Q/mItkh31P0DY1h9L4vk/9N2RI7v99T/LligT0i75Pz2JV0ddFvc/bmgF4dVh9D/8jdtQqLb0PxlvPL1rEPg/PYwaG7dY8D+8sfuKLrfrP3UAoPgbv+c/Rd/Pwz9Y7D+AEJOJ+3vSP5CC1nj2RbW/haIuHpoP4b+Lj5+Vkh3rv7XkA1FpCOC/E43Rv3p0yL+AfQKKAq+Tv4ujC5s3O9q/+/mYceUs1L9A9xV8x6vlv6Cc+dK6kvO/ax74eF539L9AfD/Uk9L2v0EOrqwxd/G/gyInZZ3c3r9XCqpJsm3mv0ywgI8x8+6/FbxZHBzD879TVo/r2cH1v8ngZ4D2vfq/NSYluHq187/pi940pursv3+z3LyNhfS/eEWJpj4T57/Al9lAj6/rv/AbYxWB/eK/OcCkRrB65r9NmWQlYPvsv0V5Bl4yyfe/O+fxCP1V/b+koQe1gT4AwGe61J/HZQLAM+Q++Ss6BcDxYoMQo8kHwBBR48C7VwjA5+3/juSSB8CBrZUrPMMIwMUDH4S2eQXAJwBE0y8uAMAFq1ScM6QEwLnzTbmaQgXAHMsJBsEoA8AxIeVy5cgFwF5IjscAJwXAWOhOIKKSB8BEwfWK1PgKwLxOmDQDUwfA17rASUllC8DlUo3iXxgKwA3NjhRa5AvAWapR1ZYfDsCDtZuqKIgPwCXQcahd1Q7AcVBHwrWEDMC4JYrRk5MKwO3UHR/cSg3Auzrri+yrCcCQRK1M/VMHwF9v4i1DPwfAG/ZTd4sPB8D7ytL8lwoJwB3R97rRhgvAiEcIFmqYDMBt70dC/N8OwA9mgyF4ZxHAZz4qQMMsEMD4aIrX6yQQwDPiwAg2pxLAagLeyQdQEcDPFHKCJccQwKB7QnSzcA7Ao7fhKdVLDcC9HgZUoH0NwOlZqGVsPg/Ax3S8b8iVEcCFVE5P/vsRwDOG+B0ZbBDA8V6akNuKEMA9v/6P4wsPwN3k6LWK5w/ATuzYdUDAEMBVFf7z93ENwGbTmni+GBHA9YMG/eMiEMDr6Kw2k5cQwNPHPoD9eRLAsc7lXujVEsAB9JEn+1cTwNELxxYC1hPABAStJRAGFcBb1AKfR38VwEGixraJoRXAa9/STPrnF8AhRwHAkT0XwEmZsPTwTBjAecgz0UDuGcB0PK/Yu5oZwE0pu6p3fhzAv1CUODP9HMAPX8fUf3AbwKMf6CoVnBrAzZ4z2tVIHMCovXjJmGcdwAWb7gt62R3AfBLql+CDHMCV5e5+5fUcwO1rnKDsvx3A8RMBxYiVHsBJywd/Q2oewH0jZtX4ux7AsfES0XWeHsCkAjJCQ2cgwGVxEYsbEh/AIcYbH5upH8DZ49CKZ4UdwAl3r5HO0B3AgKE0V11AHcAMFD3vEXEcwM1nukDxAh3APR37krdxHsAQs3oHyEoewHWpeIvr6h7AwCOAzu1OIMALL+azIRUgwAvyq95FSiDA91LBF2a4H8DLUCsV8DkgwKAgeWpecB/AnRu76O8kIcBGGraS8L8hwFcNhP3mziHAChZ18pzgIMAH/LIJeD4hwAdTTcssWCHA+t9dcpjSIcChgm2Ii10hwENcosaIwSDAJ2gVbaEoIcDRAvF8eiIiwDHWqT/HOCHAD9Ft8h3bIcCxFiz1H6QhwBPKZEfm1CDAPaVVknjdIMDPot77nj4hwKlgVDS/fSHA3xhaL8p/IMBkno37QichwE33O54WCyHAvnbmeNITIcAhc6wVq3chwL9RgaXjaiDAf45FCrWuIMCBm+8EeOAhwBpiKDpL9CHArzZDJv+vIcA7QvqdKFwgwM9JnOE0iR7AuFx/b5MFH8ArCMT63EgewKRHgqQKHh3AkbMlC4b2GsCX8+HOqVMZwJhGWoQ3HBjAoVAShL8nGcAcxgzFxHEawJl/qoFR3xvAQKTcq9X1GcBtU3X6fcMXwARNsBhszRjAlCplMIQfGsDfdgFqH0QZwN2HylkdQhrAMVRugQKIGcCTDThK2TgZwPvLaFZghRrA2DhSLzYlGsDlbT2kdkAawNOW+GhVpBnAgDiA9mikGsCZwLu3CdoZwGjUcK/WbhvAcdBJFRZYGsC1ZL9HY1AbwOmYSEI+tRvAzIeQ0BmSHMCR0SS/lMcbwL2wLrY3XRvA64oEEcoYG8BJkgPe4z4bwM+b6pmSrRvAzLJrIP9rGsCxxznYamYZwEihMAWMSBjA14bU+o+FHMBr9+KL1W8fwFZo0JdkRiHAOKK6QYH+IMASZDl5LSgiwPmJIWMS5SLA78oYk+VWIsB3B2f+Tl8iwMmDy0X8lyHAfhTNhwc9IsCSsRyqLI0hwKSlaKOQHCHA9JjSWsybIcCHpAZvo10gwJD4XmicKCDAn1Aq+1I5IMCTFMH6U24gwANMZg/4QCDAOJYPoEITIcAdC5Py/yghwMY4ZFYa5iHAFibrlC9BIcCUBRsWvwMiwMNfKmyjryHAo0QLiiDjIcAb0ntGyV8iwJ8GEg5WTiHAVClXJS3dH8Dp79HMiJogwLjXwvdiqSHA45FaCBaOIcAWtKGKZk0iwMOpor6F3CPAIyIMHXVVI8CPKIlnCQ4kwNyEExpV4iPApSC6c2wxI8Dn+QdFr9EiwG3QaJzTsCLAHVcLQkcuI8CVTDfsWqsjwGFK3tsMHCPAmqnxGaPmIsApdC0vHM4iwJclleSg1yLAaAzTMOJSI8DW+Lj7GkEkwJ76eEJp8iPAfKp7H8pBI8CjHhYa4Z8iwGbQ81RQaCPA+CROjlF7I8DXWI1IvC0jwM8njpAYoyPAOyqe2txMI8BDhKy0akAiwJMC9QQ0jiLAuNe2BO+tIsBt9nvQ5SkiwFM6Cs6eeCHA/5dvDNksIMAflot96ZogwBQDFowaSSHAduISjnHAIMBbFeKr0oEgwPs2/lXf5yDAJJA64YzwIMBvvNyadi8gwPHWaYbdiR/AXM8dg4MxIMBZcbcaKyYgwM++1Kc7kCDA76GnY6YQIsCTZlRvGxgiwC/KmKEhviLAfPaUcyJ0I8DfaaCeLHciwKLRkjEuiSHAdlEyBK0FIsB1nMbdty8iwAF29ELnBCLAUew1PLRSIsAwJSgugtAhwBFhv3gwRSPAHbPBPwHFI8DKMxtgWZ4kwLsHOUUEiSXAuyijWRbKJMDxyN+fL1MkwNRkiswONiTAlMUBiqkjJMAqRsVN7xYkwMG2J8LiviTA6xWFvjUkJMDKdoQ61hIkwNHuLlgx8iPAz76hApxLJMC5mFxTIqckwEFFjy1OnyTAf4Qmy7DiJMDkU6ZqYAwkwEFy+jLuxiPAJjDpGUkcI8DwR0hNkx8jwGMu8glkoCLACqF688SgIsCHp93WnEkiwHZ9PzFWGiPAi5ZNsBloJMDOr6A9WJUkwGR06SjFgCXAiFMGU6C6JcBEJQDnWeolwAHCODtKnyXAwaL5HT3xJcA7oLRixAknwIunuj6c4SbAlw6tXszZJcCQvQU4XoEkwDk+FerxNSPAIQ95i6CaIsAxBb3HwkEjwO4PP+UY0yLA+z1xGpL4IsDO8yz1xvsiwP6XHYJT/STAtdV2aX4IJcCsGvz8VtcjwCYoWZMYECTAw48YglSXIsAtsW57K+AiwKVCV+i9JCPAQNUkwzCPI8A2tjZKXNEjwNmZIscs4SLAM08j1Le3IsBLh/84qJMhwM/nqK9mYyHAq5EprDIkIcBrQbj9Bq8hwJTyEfJesyLAZ/LFoFOfIsD1x72io/IhwI/DeZAdbCLAbT0XJo+gI8BD/ZrTuXsjwJadYxjBNiPAxVikcPhjIsC8kHb/rK0iwHs7T2eyACLAV6+WeEdvIcC3OLz2qykhwCo0O5bUqyHAdYB9v5AvIsBNxW73nokhwG8OaA4bgCHAiE7Du4JzH8D0AUdi9wkhwO1fko0OriHAxSKc8RInIcAhjHYkgFQgwPUfUo9M3h/AaI/xNwx+H8AXXzJD5ZYfwHfoJPW5qR/Ag2JX4edVIMCu1aOk61AgwJTBB0ceUCHAQbGMyN6YIcC4bFotwGgiwDF9yBN4MSLAQfqhlRR/IcDBqO8BZXYiwF7u7KokAiPA99zRdojcIsAJpaeK7ZsjwMd9cAtkuSPASTGPTnV7JMCjAdQUuqckwFNOjWufnSTAUJ0gBeu2JMBPYAknbmUkwHdC7BBPcyTAdOiczD1gJMCNRaC1FRMkwH2M4Cs2ESTATyVYrcbzI8CKjDzkW7wjwIw1ZxbAoiTAecqTL1VlJMCX1kTfX1glwNChC5dzKCbAV9KR0QQ0JsC1cbID24smwHUbBaJ3KibAC7m5jo9OJsCbw6de5KolwFBCwYyY0yTA2OglI8aIJMAdNmlanuIiwM5WfFbjgiPARX5R4NZQI8ATNAieAlwjwGTBOQ9GCiXACT5NtWfRJMCPxBcDFjklwNPhHIMG/iTAD3j87e+RJsDBDU1SVeEmwDBDuR6d2yXAyXajBO5DJsBYgGqlbZYlwAygQVM9kyXA30XzLdyEJcAgkJGmSLglwP0inhqOjybAJy5fYKWXJcCzxvzmUlElwPw464+xbSXA8QS3S1PRJcA3B3TBIB0lwDn/z3kIzSXAk6bKtoy6JcBT57TJXEElwAHGUPBFyyTAkeiE5AzRJMBQOFbRpXIkwC/dOOZWISTAjlsB+6FOJcDTUAjlDCslwO0mh/kKWSTAOdnKwd/jJMA5HH7HV64kwOSs3tYDgCTABBnpLtsgJ8C1cYd3QpgnwFVgD/WLgSjAp2048nIiKMAITdwhFTMowBczCzpxxyjADc/B0DdgKcBJITtnz4kowKG3mWDTLSjARwz55nGoJ8A94GfOLpgnwHDbHCtimCfAQRofOLjLJ8DriYByUfMnwLX/E62P5CfAS8lb1aKKKMAYGhK9SgkpwIy1JSDqGynAmTsiJPHIKcCNU9dgqO4qwDvkc7xV1yrAgSUzE/W3KsC3guK44XMqwNAbQl42ZyrAO6tddFg7KsAfgGdoXnYqwIVtJP5ItynAl1EfdocHKcBUp6ihs9MpwCdiIWuUcinAiTWi03ZNKcAfgh891lYpwCg/44tjqynArYQRvJQcK8APj+uWdskrwD+xV39ZeSvAECKYAU7wK8AI3lep5iQswDvDtT+6cyvA3der2JK+K8Ap6SMrr2ErwAQNcROD/SrAZ1GW4chDK8DUbrDwAhQrwJiW4z/htCrAGPeIIyw6KcBt+o9SXGYpwF1rW4iJfCnAqACY5CU0KsCIlcWJ088qwAWWj0FkGirAe5I3wuyKKsCg9kney9wqwM38SydG+CrAvZIFpa3RKcB4S1d2XfQpwE0nUWHJmSrAqVMnZVwIKsCTMfqzEWEqwKDqniFP6CrAcZuM2KCcKsCvkbT3Q3QqwEADbH92MCvAUOg/601gK8A7UTvdzfwswJAaY3RcUizAEdCTQ7zMLMDx8FsLsB4twNSWLD9htS3A/XPzQBgtLsCXRhV4xcstwNDXkDFsBy3AK18EM5LYLMAAyIjCz1kswHcxhA+TdizAtdHTvyySLcA0aH8SSWAuwJHyQe2abC7AM0Uyg+qcL8BdlIgfRXkvwAOlQ/3MYi/AYajfB5CtL8ANVXmn6CEvwA9jNp7OBzDA8+j1/WjCMMDCOYaujgAxwD5oA+a+HDHAMKIfd1AUMcDvyuVDT+0wwOFs0cIbKDDAxx++lw6LL8BxAp7zUA8wwBTSvQ9Txy/AQ6fu5qmWL8AnpBymi2MvwJvgIoSIBi/AfbqR2Sf/LsA1GIcGxNkuwC1HJexFZS/Az7/YMJJhL8AFrbQgi7EvwIgz2XOlRDDAJ/YiGypFMMBTK8g99zAwwEGghk+j8TDAqsCy8T75MMALuw0Y/Y4wwAwy9ornpjDA7netLabXMMA7NJSf/hUxwDFIwnYBBjHA/1vEHmoEMcCP3dFGwDMxwK5HrwSfmzHA7WJ0YG2HMcCdnLDaEYgxwP/Bjkyv8TDA+m8TXzX2MMBOb5Vr1v8wwA0KhYwfXDHABtWuwXrKMcAUQ9oKBZsxwKgk+DAxfTHAO79y6OBEMsBVqSQfIEoywOVqNQIw5jHAh0O55ImwMcAw/FYnELIxwJGXjvMDkzHAIuClD2jhMcC9OBSTfXcxwEXFWF7hHDHAeY3qcN4KMcCAGOzukngxwFOR5n/lPjHAyaYOOv/xMMB/80JZ71gxwHPD5dIIczHA5Qbdm1XvMMA7jbfKsRgxwBgvaxNHpDDAh8edMxAGMcCVZWX4EJkwwBc78KTuszDAJKwG6kjCMMBl96/eeMUwwCVpeoWuBjHAQ7uZWAxbMcDbq8STS0YxwHPIpjJFHzHAcvWLdlAJMcDpxdA9cEkxwDF/5be5XDHAhNrw4n0jMcDVCE7PLgMxwE3mgqm8dzHAlXoaCi9oMcB3ScPJMl4xwGr+asb2/zHACLIWM/6xMcDhP3xkEBgxwAWYupR1XDDA7MIGVvE7MMAPVw5H0V0wwIqi9RWI2DDAJ0tILSDhMMAs1q9q9MMwwGO6zD9/djDAu7BNhA9zMMCvWPOIA2swwOU4pehAaDDAJ3nt6A7JL8DnjXdX9kMwwLUqflxreDDABBPr8uizMMDJA9sB89EwwHOUv1iEuzDAMa96biq5MMCZ3L5K42AwwNVFs+lBYTDAHPOEOnJDMMCRN1ZsowswwOALSFuwvi/AgXlD2yctL8ADriVkCRUuwJXhQZ/NbC7AC9oN5JQaL8ARFAeE81AvwCU5ymmboi7AtSUftJPYLcCpXqsfR6YtwLxoMDdLfS7Avy4DKqQ4L8DwIdtHhXMvwHDDBcTrdi7AROGWzionLsD4W0JC/rQuwIDpLoVfUS7AXzyuTKMmLcA47Ks4CzYswLef5mTD0CvATTnlXkyFLMClt8OeOOUswAPXJzpqFy3AhPHxQF+lLcBVFeZVK5wtwF8tHXLphy3As/OvK/HNLMBd63cVoRktwHcjqaR8zy3AvQQD/eNxL8BdBaHB+TUwwEiNsKJWxC/AzTW+oGoQMMDMsRR9XYswwPdGX1ZGCDDA82bn6/9sL8CVDHwOFMQvwEU3nYt38S/ATKP25iHQL8BDt1kWo00vwORZAqEf3S7AT4Q69sI+LcAp5SF4Lx4swFmeKKPNiyvAFYFEtNiTKsDvR+hduMwpwEHjUGy1hynA6NGQZC7zKMCBjBa2mCwowHcRJTkUFynAeY3GyMrHKcCYyAKh2DYpwKjkOJ6ffynAFA3l/xzPKMDD7TfmlrspwLuNsVjmZinALElmw0BNKsCzHOeS2IoqwL0AYzqjiCnAbcL2i8w7KcCxQwDFLUUpwC/GmQD8vSnAk2eXEfrEKMAXa41jcSMpwCf/HhFyFyrAeCcyJ6u8K8AIjjOChRUrwB1y5JCPmSvAd75VR7ZXK8B4zin/x9ErwNhCTeYbwizA84QlS1MhLMBdI9Pu+KMswMfNLAGvSSzAwJXnthEcLcAIwt/jv2guwPGHDXSLji3AIMfUAXYKLsBP8P2TuMsswIc4Hs8FVizAVP+bKVHDLMDoZ9baj4AswIvDeIRkSCzArOWam1w2LMCTUQfkgg4swAgcDEgviyrAZ9rR2rodKsB8ZQGVKqYqwM2DZoOYJynALdNQINJvKcDZvmdQk80pwLd7CQWwnCrA7UgO2HuXKcALmLaQHaIpwJs3iEjVwSrAV2u5ac+TKsD/hS7UyPkqwKgKWPeLQyrAd5OiSFeWKsD0zniFvBQqwEGymtNhtinA6HFKbaJDKcA8npkOaGEpwO8fxm0tRynA/+N8+MOuKcCX9Bt08VUqwCmKAG/dlyrAvD6z+NuALMABOyqSE4UrwNRvZPtJ5CvA7AdOC+BLLMDV6MwBfGIrwHPxjlsboivAMPB6AwCdLMAzCL61q7ArwC1lHdtWHCzAhSWpVyNYK8C/cE8fb1wrwOjxAT+DXCzAMCfH8C6ELMBD6udVM0MtwJB5Mf6O0SzA9zaKvzucK8DYBsQb7L0qwMSbzqsDVyvACVg/fawHLMCB6X323psrwMB78fcYYivAHH5QqqdcK8BxeNnkAiQrwIWq35rpMCrAPQiUiqhbKcDj8ByIqUspwBUR4w9NRCjAq+vfIg4hKMBIuWs79ZUnwLmjzqqPICfA52vMiLpvKMDH6pXHf6AowOPjB5G8ZinAQU6oShPCKcCldsH4IJ0pwK/RF7BV2SnAVOC89naPKMDr4RrXk6QnwFODI0py3SbAkfJVULaGJ8C00HXofEsnwAiEEy4/YCbAWCZ9gI+gJsA9Nv7vCuIlwNtMNKxmWiXAiNv0AzHvJcB50kIfzlEmwPiy1yohlCbAIyWr6MuyJ8DPAKPt2DkpwHwj/bZBayrAB9KtqI8yKsAwYnQMVU4qwMygH2l03SrAhAsjwzKKK8CYJr+zQyYswPhGxRFvSSzAuUy6vQ2tLMBEJsdaIQ8swE25cIAiDSzA+19pBxWlK8DZ53zYfMcrwEk8SP7DYSvAFPQr/IQVK8BbLRURm58pwERDQ34WtinAtKb749CoKcAgcHea+40pwO8dd4KtxCnAs0ngrGWBKcBAA3HlrPgowPCSMs5BjSnA4SEP/bhVKcB/bgc+DMUpwCzs9OzloynAsyezvd25KcBDUS9dtqcpwHEYRkKnIyjA57lbzbbbJ8BZmtWaOaEmwIQuIztwPCfAZalwzuePJsAlnepkqfsmwIHQ8rul/ybAp6Ir9Uo6J8BU/ogjSAQmwB1out+n2ibAmRxMidw1J8CgupvbKOkmwNNp9unqyCXATzRMkiOJJcD8J/y7bF0lwHjALH9k2yXAF+g5SuN3JcD+NJUjm48kwF21YogqASTAm90NIem1I8DbTwdIbCQkwL045ox0iCPAmwYrxP6oI8ARFavfeg0kwKGyKLvtUiTA9JByihhnJMDuw8Gi/RIkwM+gD2ocYiTAE/F191IOJcAXOZ5W6e8jwEWU4tQQxyPAR6C6rJRoI8BF5ppgqesiwEaG21JeIyLAmQU/Y2tfIcBnH6XF/ZwhwHCvwaqWAyHAaLLMicx8IcBdXWhEx5khwPdfBUOP9CHAh2fdvR2sI8AdRlCwm+gjwKm/TJsezSPA47mktICiI8ASWZJ98/IjwDoadHLVnSLAJzP5QE3DIsA/EnDdA7siwOYxlDEs7yHAN7VKU1HBIsD+jcfWJtoiwJWAqRXjBCPANTp8dHUdI8BJLcn/M2cjwKEbkAvhMCTACF545uWZJMB8QAOP2C4lwO8WLwVmwCPAo6guxXHtI8DQo63uWbkjwI7bFsCHjSPAPA9QTnioIsBRyxn68ogiwO9OUzLE/yHAjEYUks4+IsDcQCkL4johwHNqNLCqEyHAEnCUv65KIMDwtXGRYUsgwL37waCqECDA1YntvfvvHcBj+N+ulJUewEjV8ZWY3xzADQj2qhRHHsDdg/LA7fwdwLCT+/xjvxzAaf3lAUlmG8AYPKDrPtIdwFTrry+vFx3AOOCoXhFAHsBAcNMiQiMdwJzknk5DRR7Aj1NQdN5wIMCj7UIr4m8gwOYNSjr9FiDAOEcEHiq8HsADNV/hwosgwDN8yVlwuSDAwUJD2uCvIMAbrrRxDK0gwD8VpfI/TiHARH4tfH1dIMDEYvNYLiUhwKdjNLed2yHA6fdA9z8+IsAb8a6rUUwiwKT2pPTlniLAL4Rk+cp2I8DGukTVLhIkwDUmh2n02STAXyLYsPekI8B3wNGy+jYkwHgU/YRyICTAYmqROgcLJMA0/9QTZ1YjwI2TLs5Z7iPAns4lMrajI8BJCdLu988iwFhV1YWoySLA+vd9ULmdI8CfIq7DCA4jwOfmztrepyLAPB8S8P0KIsCZ/Q6LnRwiwN/utxsBFiLACWNiCX9kIsD1DBIc9mMjwOpPCvfAMSPAd5KVQdEgJMBWMFSbDh8kwHFk1BJlpSTA1Wil2PhTJMDec12wOJkkwOyVt6ldESXAi/Oz0RgWJcDHAixQ1EUmwCMp23VbuSTA00oRWxR7JcBrEpK4thAmwLifTt/luSXAXYERz0AWJcAS0JsLbbEkwNQiuaA0eiTAVB6vY/exJMAgchcfyrYlwHk3yGduaybAMy0cEAFWJsD4Un3bn5glwNimDelU8STAwXZGLt07JcA4PsiYHJMmwPHhPpHiGibAoTchSJ+OJsBTKLQs0IwmwIfaC+T9XybA0zVCYlqzJcBE1pY7VjgmwJMm82SLCCbAPbBcDeweJcDXGYO+VmslwHFZ63aOmyTAeVzXeW5dJMCjiFOuHYAjwHmMI26yTiTAr/tsZ9HWI8AL2kk1GEUjwKyrLauacCPAIIe4V1RfI8AWp7aLXBsjwAV6huVkQyPAe89rau3rIsBL4SfzjTYjwJh0Hp13jSPA/b84C/4dJMC/p/JnLuIjwJUBgYK9uyPAV+5MNKC4I8DJYFF/3vAjwDhJ2ghngSPAV2a6pUtvJMBgq6cT9R0jwEEmbmw8CCPAXlkS5t4wIsBo92sM0fkgwJssVeWxeyDACK98PhCoIMBCmEBEPjAgwOrbodfvOSDAWs1VymxVIcBx9CQrJusgwMmLPTzDwyDArU5VSi+FIMAT/6EPHYkgwFYhx239ZyDA2ciuhUCbHsAD3t33fyoewPVOerLBvB/AoQsaYM2xHsBrow+MXckfwBtUx6qdQR7A55vF6G2tHsD2GXGiKZIgwGDq2sZr0CDAj24SKAKYIcBHkSHAM5YhwPJnWwQ77iHAq8LuEqstIcB6I6FerqshwElLEVOw9iDAzbSpbL6VIMC9RvQH3OkgwIvg/PMIUiDAf077XlpqIcCxuz295EQhwNSa1t4faiHAznmb4z9aIcDHFtWzNM4gwMeH9WPCjiDAS6vEy1jdH8Bp8uARCMIfwMN6mhDWkSDACvOB1/0jIMCGp8+kaFsgwBzzZuaAoh/ARr9djoLAIMABa2FiYA4hwL8zLM06fSHA7tefJK+sIcDLzsOzo1EgwOOHfM9sBiHAkXeltD1IIsCga7P5vVQiwL1MH2O0HCLAI6wnXbCrI8AHPXPZizQkwKfC+2TzHSXA+UjqIo5zJcC0ERanS+AkwHfqCyvAgCbAmI//8hbeJcCAbGu8juokwDSMF3BoqCXARWUnYmZIJcBBCE0x8MgkwAg/ciCrKiTACtU5nMHcJMDSTpTF8W0kwGGFQIKcjiPATVV9LxlzI8Dm4UmqTh8jwCp7gf/hPiPAgacRoourI8A/yXVTPiEkwAGtLRN/iCPAKroHTYl1I8DpHxtdT/IiwDwYgMN/JSPAsAOd6HegI8C1cr2s/0sjwK2DxxzeiCPAzfWuaVLYJMBQgDdJWIEjwIPsrIMOOiPAbM4HMK6RI8CFAuyy3BYjwIEjTNfMASLA98TBs4fbIcB0osHAXashwFXzh4KnOCLAjt3jPmBJIsARP/8OORUjwA2Sd8Y7aSPArDy244j9IsD6hBAI3lkjwMPdga4yeiLA5Dpy8KdqI8A3rDyuVIMjwJSknZu9RSHAhcaU8JBkIMAhNbT2SCEgwLy8StwoVSDASDNlO0OHHsDAmUY6DzcewA2XEAO3EhrA9yI5CzxUGcDPwgkL0EAbwL353mKqaxvAbZvCFduDGsCVY4tAFxkawIDFpgP0/hzAY/uishyqGsCnA6nG5B4awPu3me3VUhrALdXyEs8oGsBkdQMxUtwZwHmDYMbSRxvAcMKAQ7wBG8ClAns2sDccwCldb21hihvA1Z/3Dp7PG8DH/zds9YQbwCzre8qKtRrAf0pEgDIbGsBF/2EV9CkZwDUkphlYoxjAf7RIkLXqGcCoo3IfMJ0bwOXN7ygsAx3An2Ifrpg9G8BLGLN5t4scwJPV/mivzRzAwFyx5+2+HcAEierG7LcawFN1smr2kxrA4bWdpXYWHMCcio0BX+oZwLTHQORYphrAVKnEPnTWGsAtArWyoBYbwFRHdHcONxvAVPG/18iRHMDVrEiaMwkewKmwFBT4hh7AKbbSVZ/WHsBNtfNjP1UgwDMk72BTnSHAExpbXQONIsDCHru1KuUhwIkaA66XWiLAn1kljxJeI8AWOSadWsQiwFMHJgKbsyLA2pblJol8I8CRf8uTIEcjwMUG9Xi0fiTAB+1FIpmII8CvqNGjlksjwBl4sQgUrCLAOEm9KYnrIsD5zGZYTWQjwMdWFI18UCPAuE9FC5t7I8CFyQDnDUcjwDIzqxUB/yPATVWzKWZ6JcBSTK1DpyQlwHPzXxVkoCTAoMgximdsJcDoTrvuBVEmwLCNcgekWiXAc8KGnHs6JsB8n40LScImwBmJlFSvzSXAyyx/WuWkJsCMGrJkGUUmwKyYdLz9wCbA6QT36mQHJsCxmGA9VuMmwCO5ua+54yjAINUeWp5AKMBE9VouJHonwIuUDM21IifAtXC7VF4VKMC7b3BOU+8nwCCay2X3kSjAoF4OD9fEKMBjdF4AMb4owB3+qOR4ySjAc65jCu7eKcABG67uubcqwI/dY4ZR2SrAaGZY8AfCK8AnDclMAHwrwKTOeQcigSvAkzBXYp5TK8CIX/0bkiErwGznV8bRlyrACWKCkHOMKcCR+JwlmaYpwBBBXT6COCrAwX11z5UrKsApTfChHkgpwPhTsnk/ByrAT/CAEF9yKcDkRRao6SUowGe/DqPSwSjAAHNpRDnIKMDFDz489HYowLhypVqTtSjA6GT0nW0BKcB45IslTCwowPPTFSMNXCjA/QMU6StSKMCnFyYfjJkowDx3WyS/cynA4NPhw45bKcA3d2X2g6IpwB3lDmzpRynAnSZj2k/4KcDJbTPS4UsqwDVKsxofGSrAGemlz6iaKMBZMeeIRfQowHwoza9ZnSjA+N3An+zKKMCNi8CKDJopwJl8qXBL7CjAWQvOR7ukKMBHJDl9LGcnwMgVKw7axyfAg6yJKbPZJsAthi9adzcnwHc3L8sgbCfAxXU0WKQ1KMDsjRZCwKgmwKR8dnrCoyXAa+8pAnChJcBjJiSV6MMlwL8wexdtgCbA5UOrX8loJsDkqwioHtomwCCmaKTp/SXASdE0+wsgJcDGa9Fxp4MkwF5Sf54uwCTAR6+KCTurJMCwjUOHmqIlwBVHLYrktibAPLI75uzAJsDH4LI4wy4mwJ9bk73n9SXA+TjAFNQnJsAZ4iYlCaklwFun8AvgiyTAUypCdX5UJMCimLZTWu8jwLITs2CJJiTAxbtj14mrI8Cr2/IODz4jwDdLUVq3KyLArlYPFpS/IcBbV+ZywMQhwOMyEnL8JyLADhRBVnEkIsBJU44bBSwiwKaFaNCtcSLAlceMeroTI8CQjrzRi+YiwEgKOEodmyLASmJNutdwJMDDgl1CQE0kwNfwZB05QiTAA6DOi35GJcCp1swrjjMkwG/fleretiXA7QbdW4y5JsDXvQZYcG0kwC0he0i3NSXAmTNVpVNWJcDhXbMmJPMlwDvfLbNMuibAuEKaBcrpJsDr4wAvOoImwH12asu8tiXAlVggX03KJcDhV9fCWiQnwCXBo6RZrCfA0bjpX3tqJ8BUl8NfDe4nwN+QqTtajyfAvGBy5wmqKMCta7QE5cQowK9Z0rhaESrADChTJtNoKsBJsLGGiH8qwPd3IU2p4CrAy57pe9fpK8BrFa7O/fYrwIAqt3TrHyzA7wbFQ5kSLcA4yFOdGNYtwAsHQYWJYyzAnH3KYNAULMCVQsIpiIUrwHVDHpnILSvAtLbhr+syK8AzjCczuaorwI2DWCn/lyvAPULPnfeuK8DlpANszpcrwL380q/E/CrAqUCXmvPNKsDnEt11TU0rwEjVI0MuASvAODHYxqk/KsBHsex19GAqwH83lntBkSvAFYDdYV9uKsDv2qBu/msqwO2zLzFQyynAXHb8xqO0KsDHGcNn1CoqwBM3SRI99ijAjWi8z/8eKsBVBu7h33QpwMuufQA0rinAu6kiYGWbKcDA7qu5cOYpwDnpEOBhlinAQTN1tcQTKsAbiwB5DXAqwPD9cNJHMCvAHYy/j077KcC8Vh2B0DoqwA3/wMJKMSrA78ZYnT5iKsAtQlkywbYpwPUlVqZxDCvAkFRhbzBpK8DsukQOhLUrwPQh22oINizAKBlHDDO2LMBNKPICvgstwG+Dc77tJS7Anz2T0vUZLsCFvT04WXAtwAeHK2Wfay7A9dQbBmOELsBI3vfavNgtwHVT3xHPUS7A4Pz/BOYdLsB340bD8A0uwDDZXEUyIC3AO+GWYVFKLcDD5WHLZFQtwIwPgNTVdi3Aj0LLssp7LcDXpnhphnIswKVzjJbApSvAx6fVroFSK8AN0Irm+WwswCmqzTfCpCzAe9oOj/NaLsDTGpY3ylsuwKUuut6Wby7Aia2pYQgHL8BDWBJ0Cm4vwB8NujKylC/AR9ir6YeKLsAXMFTrccEuwMNeOOEMmS7Avafv51e3LcAjwb7uTvMtwOgfnSfYAS7AfPChDI4yLcDd8NOUZ7IrwGTHq9v0HyzAQb2BT9eTLMBxQwgeVQktwDV3uzulqi3AtTl215uELMDfUCSsfgMswMGTIkLEcyzAnHS/HqjeK8DEBcBAODEswPRrR31mkCzAtbU0+y8eLMDQpLL8F5wswBGBBaWcWyzAOA/QrrsGLcC4jvlxM18swOkPXCDrvivAES3F64VlLMB1Oyi/E7sqwHMCm+SBQyvA0WDTThNKK8ArV0jWC/AqwCizPdwpbivAkw0iXr3cK8D5C7jsdoIrwG3UOqsy3CrApfEmnnCfK8DFOdeJgHErwKGd5nzKLivAL3qgwINZKsBtKKy66N0qwAErGVfJ0SnAn6m4cXrzKcA9KW5Q7pEowKMLMVQ5tijAB2lW+4sQKMBs1jGKr/kowA3Tr58LNyjAe15BElW3KMDIXR0y5n4owPO7WYbpzSjA68iPO1rhKMARU0VMPP8owLCRcxli7SjAP1xurWnmKMB4HMZse8ApwFQrssx95CnASYRPL65jKsDxmBbOcvgrwPjiNwsgcivABMcqWGc3LMC9JFS3hzMswNVAkHRxcS3AcIlDMv1ELMC14t+4tMsrwDBWS5SwYizA5GEiK00xLcAcwus13MEtwNSCN8HXKi7AwboelhwwLcAd4WGqPQ0twCAZJU1y6SzAW1pe6VgZLsD99S/+QjEvwGxDjv0aaS/AAP0Xi9VkL8D+Ifgt1QowwNE2MXe8GS/ATQjhOE2FL8AZ842K1QgvwF/To2ZNtS7AywxJ4fcxLcCzQPZ/uwUtwNHSr4UbvSzAAF+sEGuGLcAfWXT+5hwtwNTzp2zUjy3AELzfMmNeLMCcB/G+pYwqwK/Pc9clCSvAmXIXhla4KsC1mV5DCE0rwLG6zr75jSvANT0K8cl6KsAdCQvjtiIqwCGy+oC7GSrAWFTND63NKsAlKW+oP8sqwMHdAV+QlCvA0QFZ7TkDK8APTGPKAEkqwEfK3diWKCvAVOHyrX30KsAps5IREdkqwJg3VbOkDirAHQKECe2nKcB1UAh8nVYowAf5D8a0cyjA/VH6TVvwKcDo05FuN88pwE87Y5IvVyrAs/8bX8b0KcC7MSzPpv8pwKnKrrYlCyvA+JrNDi4FK8Cve3/hB+QrwKkfHOjlGyzASRxcK9NqLMAJKuOTfVAswAP1GX989SzAycOPXlurLMC9uEHIBe0rwCk5XDepQyzAQIfvXbHvK8Cx8FJ7mA0swLQWkwB2vyzACYqi7sf0LMAlGmkrpdkswG2mWGknhyvAy8nJJPGMK8DTEOIWo6krwNv/zSSM8CrACaJ13WEXK8AFpsGqZ08rwEBlpcgcZyvA4wmTUyIxK8D1cyeirfoqwDj251cQESvAC+LFQcqGK8B92pTXfggrwMW3Nrv2hSrAII2uP0tCKsAHFRpkDXgpwONJ7ouI2yjAF45KZgxsKMAs1m51vs0owN3euA3xnCnAVDRTIzY3KcBwkdiSGRsqwGsv9b9UainA9WtiTKOIJ8AVknsQm70pwE0iKgWl/SrA6BoODucfKsCV9zATaK4pwEktlalWuSnA46YemSYUKsBH2I1PI9wpwMxAmBWfICrADZMq3tFlKsD/2oFUNWspwG8eh0UxoSjAMBrE9O/FJ8B869bYwVwowEjLQDHTnyjAI81c224lKMCRMW9gp94mwDwAhymNqibARdWDAh5AJ8CX3tFIencowA0H0W5kFSjAcMuMRIwbKMDAReRCtbAnwI+rvHx/3SfAsXHDORe+J8DUG+57K3oowCQEiXZkJyjASclVdziDJ8C4CVNs3tkmwOwVcNA1RyjA2JG58IG5KMDU5wrsznApwDtPAoYT+inAhOwEZjPJKcCnbf7TeNwpwJmPmKKf1SrAhfBU0ly/KcBLer91Et4pwHmb3Qs/yCnAn3ffp0khKcAtrJ5vr98owN+Orb+uhyjApUGbXaIoKMDBf+D51XgnwEAffn5dvyfAN1MlF1p4J8CIbNCQNqUmwHufg7YIOCfAVBIDBnvgKMCzFZXtgUEpwJ0W7sv0nSnAxHcB5OUSKcA/PP0viBopwN+VQDsTFCjAdzymdCToJ8BrtWanCsgnwESlJlNB0ijA2DCQ+nAnKsArDyl8yPIpwARTjzxHCCrAAxSEHlG2KsBIpu/X+Q4qwDNgXo852ijARY2bBXlyKcADpRJAnBkqwMQ74+yZminAxVNIOI7OKMC/udjaBaopwKBYMnI2zinAO80NQdT0KcB3K7YGquwqwHghg4THiSrAw0yrqq3RKcAvA0KaBR0qwLwLSl2bvSnAb6/JGQnfKMCn35wxh0MpwNh7AtOMrCnA3ehbbhvNKMBJiua43wQpwPVSBsy3TinAV+omzIbsKcBcIB7J7bUpwCR7QTlBEyrA/Hdnh7ttK8CTOVYRM2ErwIQa4xUdPSzAlQDnqCObLMAhKX6dDGItwH31iv3nDSzAcUD2WM3fLMCQFpMZ990swKBG9Y0OSizAsILYZ38ULMAsHiZn9fYrwNDUGYLJFSzAG8WxLs8ZLMBfi7B5O6kswNyPjoIzCCzAuP1q5WXYK8C3PWja9JUrwEEkP9G+HyvA5RWbE0rwKsBxOfoD2PIrwABm5E45Py3Aiw/CCcSGLcC0juy3kwcuwJdDsKGSDy/AzFoFhsNzL8CfxrHzS4guwERx/aH3xy7A1KV+80hMLsCItud8jd8twAQB9SEKOi/Ab+VgQ/6dLsCRV3s6QmwuwJ+7zqDJfS7AQIoNJoSyL8BXV/Hq2NUuwP2ZtWKoZi/AIUpFjAHOLsAZmVWRgcIuwMdeCYbBEi/AuyNC6msvL8CEFxiLdDEvwGO+H1+v9C3AVTpmsxvyLcBToItESrktwItD5DE/9S3AGTPEWsSBLMA4EFzrxmcrwF8yLHFDWizAWYtW8DUsLMA4GB8DUoUswCmHnfrNICzANeKvJXMpLMBVpuGxjvErwIQ3g/j4TyzAnyS0bJC3K8DYnDt0ufwqwJXrz9wwTSrAHa7epZDxKcAluNJfLhkrwHUy23OHfCrAhC8WlR2rKsA9uQl1VGIqwDWDVMxxKCrAWZgfUy/4KsCBKCbkvd4qwOnV2GdU9irAm/5KW8Z/KsDUVKe/ccopwJjQbcwcmynASMRpY+9JKcCXLyMBml4pwLyZT7bBUijA63+W5WktKMAnt9N4LDonwM9XFFoCXCfAv5x3uP97JsC9eAZ3qJ8nwDjN/ocBeyjAqW2koQouKMBAPeNiqqoowAC5ZctS6SfATeitzFKVKMCvBq2KOngowHfIAoiJKynAmyEGjaueKcAcOxbZ6LwpwLj1ArkIDCnA5bcqpsp/KcBlSTzRZ0sowM0P3J58eijABM7lXmMyKcCYkMJ6KU0owHigQVhbRijALGuOCWatKMB7Of0UL6spwGX/1/K7oCnA2YRQbThuKcB5Zwcon+wowGH9K732GSjAr6CJh7hmKMDZIkGLUq8owOmD3c/SICfABODdp1aCJ8AV2YScePUmwGvG6nO4+ybA8Hz8fQWZJcBrQoaLU38lwBv6todvJSXArdQ2FFBlJcC3G51OflUkwAfM0/O9KiTApWpVIwmhJMDpJHnrHeslwMCWZUaOWSXATLFixWwZJcBt+sD/uJslwME55+uD6iXAo4eDqq5cJcDIE56k1tYmwKVohyeA0ybAOFv95rJsJsAlv4jqC6MnwN8cOpkJiCfAgPbw7bseKMD7gJcc69cmwNlibxgatibAMyGBjHrVJsCL4s1gCSYnwEixUmCxCSbAbTklInKyJsDd+OctX7onwDd5jD3L5ybAo+fQTSfTJsCRCBDc3SgnwNci+JIeZSfAD4tAI1PpJsC0c0gq21YlwMxXI8L7sCXAFY0bv/0hJcBYSE3wF8UkwH3K2ZsGFibAhdlY3truJcB8Ikzg+Q8mwKyPdUFtyCXAWNvZTCvLJcDymuhPrD8lwDQ3aSchASXAdBt4wpxKJcCo7JWkkRslwOD5+Wx+myXABxeNe6r8JMDTnxdmyuwkwMNp4RiePCTAL8BMRH/NI8CvPxziVPQiwJer+kNsdCLAl2a71JZhIsDfJqRCygwiwFOmjqsBnyLAfHxS8wniIsCy3BQlOx8iwNnrOZQ4EyLABVE7L3P8IcCdCgb7yBMhwOtcR7m/SiHAXctvKZ06IcARwhb7BaMhwC1d+hIJbCHAd1C2h1KqIcDPUAqsqzohwD9+Wv69AiHAuS1AiPiLIcAjtjGFPBEgwGOqT2TynSDAJYyP5YN2IcD2fbwj3y4iwK0ausdbIyLAI6IE+2MSIcA91+G4je0gwMheUV5Y1SDAyg6psft/IcCNfQ3T+AohwMOriRP85iDA+UqYwR8mIcA+cVi60KchwJhHRF2QhCLAsWHPIrgEIsA5Y5XRje8hwB1vwfxk6yHACllCIDUTIsBHSjcAGfsiwH6Tq/JSJyLARf2FBuGIIcA1iFGq/gkhwPM3cGMDqiDAVwSYUYDOIMDzr92hZkQhwDFeMQJM5iDAvR+gPdCyIMA01xny7TIhwL1Cs1V6rSDAr+SfgOMHIcByDqjaon0gwCme/nTn+x7AVYIvpl2lH8CLhqOFrgkgwFi6ZD3IVR/A/Jnjlj2xHsCRs+wqH7wgwIHqv+zbyiDAcdQXSwIzIcDbbrmkYKkgwBhU7KcMryDAgL1tDOpVIMDfJTRRL1cfwJF+OC+w+R/AmwE2vsJLHsBpDqh+4wwfwAPBrBnZeR7ABIw2RXUlIMBbaypq+PgfwF4+EI9ZfSDAKYX6aiF1H8CgARewV+cdwE12+YaYJh/AHcg+hAf5HcBk4BkHX3gdwKQ/NIXYRBzAsLIb07UWHMDbs2kJo5YdwHWiJAHzdSDA40iF2xYpH8BMo3AyVv0ewL0R7V5DfiDAwkvKgV0jIcCUXRAamQkfwM/js3wmXR/AGy4ARgHVH8Dk+dBvHg0hwHM1+EFgjCDA9TQ2TM4fIMA/0V1aKUAgwLbI9mvYECDAWHyiPjX4IMCMRsmAEj8gwDT7NXzE9x/AJG7LRR9fHsDJFeuM+o4ewH9ziIT0yx7AVWDxzOBLHsBo1tIV+ZIewLUuuOYfQhrAQys/c0n9G8C1VWhka0wdwDUnOGNNjxrAS2pBZYrcG8Axwqlz0Q8ewAMOSzdWbSDAydS1U5hHIMDjO2tNJGUewDVMgUkD/B3AT6Kz/mOEHMDXVidQ0BYewLsfQZW40B3ACMgM8VKBHMARmVz5+OoZwBVua5/CphnAIAFrPp9mF8C7amvYdX0ZwFgGDMqjXxfAoOZhoGKcFsDj/ElJIsoVwHE6bSA4iBbAnU6excEIF8B7NyoVPN4UwM8Tgq87CRPA4Cd08gpyE8CTGfLDGjQPwPDe4F+h1Q7Ax8zNUwjhDcDDb3TBhdgQwE1+RVXuwQ/AiVssPFppEMDKJmQccU8RwIO138/DwBDAh2Wz6KbBEMBY9EG14xISwL0cj9YCwxHA8uMm4s1kE8BpeFTk3p8SwF7kV0jK/BLAcv9IKd/sFMCdk7NzKfYUwM6oa+gWXhTAtdSQ5/54FMBSoBUH67oUwEZm5MEWShTABavyyYT9FcCL4nTDCD0WwD0YFlxfgxXAO2eJKvWYE8ClCVbTGBQSwNQPUt+uphLAy0ynhnvZEcALE76aKdQQwDcfocW6FQ3AuUcwshf/C8B9/UZGPT0QwPHNSps4ww/ArM7JrvAvEMBrbH3jlvAQwHU+1SXblBDADanvBk9CEMD7YEomo8kQwGkqK/oDQBDA5VggIPmLDsCbD1VhExcQwFgmtpEgaQ7AICMed5uTCsCge4uhKGQIwOhp6c0SDgvAu+wTEEEeCsCVn041MbAHwFUR947uCQjA/22L58vgCMB3AumlEXYMwMdPeNwbcxDAZaTLavThD8AQORR7QvMQwCvCFqPTHRPAolvHamDXEsDB3O0ACMUTwJmut7f3PRTAAaN/c5hRE8D7lhVsbesSwOsigHU2ZhTAv3xUeKgUFcBltGTQpzQWwBPGJ61ngxbAH1o5C87lFcDo9QWml4cYwEhtNPx8VxXA6aLh8hLjF8AZymnaJl4ZwBBPd08irxnAI9NUswjTGsA/MPj0U60dwAclj7oOAR7AwBLrh3fOHsAXk3us9LEewOBbFe6iByDA+3RmYJGzH8Bxsf4yEEcewM2Mr7ES9h7AmbpIsXl2HsCMo865ZFgewB82w454Bh7A939H/K/wHcDPDT1IUpodwOk6218vpxrATxqdRzkJHMBDBOSjDAAawJOMN3P//hnAp3z5yev7GcD4IAEf6AIcwL1+GmwEeBrAr+U//5CfHMD3j66NbxAdwNWJiHEaUh3Ad9cLlbu6G8A3Dnm0bLEawMFR9wF4dhvA4BkuRmEnG8B8QO00HlEcwCNezL4TSR7AwB3jQ8zoHMBtr52w7zEdwKGBnpb86hzALcqehf3cHcCtdUlEDxUewPO0K8Q9tB3Aa1dkdnNuHsA8GvvhWlYdwJg0mG9dSB3AoUfaub7mHcDTAKC6UcUcwGGB5y15kBzAQ2n9QzmLHsBcyIcm5N0cwMh9bM4EHR7A09IcKNpyHMCrJXaviT4awFE3KOe8DxjALwyjZQiKFcCRXyF+cEMUwPa0kkFifhPAkgZPvRc3EsAkU+7cVNcQwLzAcTxITQ7AuEd+U7waDcCxdmi9tPwOwHy3G7oo9AzA/oWNZw8FEcCIucGlkjAUwLCf0Y62WRLAbQoQnwmdEcDn7ICJ3XcQwNCFkCkcQhHAUIwP057SEMBt4O8VUoATwHBThL1VVBXAzcaSP66HE8BfL1KPb9QRwBxenW/r6xHALOiuhRgpEsBrDSqaaAYRwCkSmSMJExHABYBINx/9EsAlB/3EaUESwKJwWVktHxLAc8fMsTK1EcBdeJAiw0URwKGQ14b5OgzAkcsUPzrhCsCjT2oZz2QMwCMVdRCSAAjARGlk7OXxCMBJphBcVNAIwBkJDSEb9gjAxIAuDZEDCsD0Gwtoi0UMwKlU32YRBw7AJ8HJrYFrCsABVdAvmW8IwIPEl2jGjQbAEz6YpARKBMCwiQKegWYHwMjU+rJoeAfAfBI1JK/rBsAswXpNhxkBwBKwOhFWqgLA2dwBshQKA8CfUizeD6sAwJcUfz8c9v+/URkCtppeA8Ch7J0v0ooCwLvu8QGjzwLApz8P4qRRB8Any4zO6jMGwPTW+1MEaAnAZBaqiN+6CsBEDUBM1dkKwPl0TVQQSQzAaAlyDQy3DsChghOkji0LwJBiojtXtA7AZ5qU8M5lDsBxP8QYXRMNwPPfJXZyfw/AZTsn8ZLlEMARCYchDqIQwD0awOteVxDALShlz814EcBVCx5zUPMQwFvq5AzEIhHA14bGhsziDsDh3yAHfeMMwHcgDrwwnw3AyzoFniKmDsBLgNYeFFERwMMk4mUxYxLAM8OkBMNhEcBFPVPf4voQwDH7RKxWBxDAwDdLeM+jEcBloAy/N2YRwGChKvVFXBLAAPGzCpusEcDvRi1MZAgQwBDtsvwbGQ3AOd0QODuLEMB3heAxVCIRwDID8qUzHRPA/VXB8fVkE8D/vhP/bikTwOJdyyRVnRLA9ERDU4zTEsAvrrWTm1kTwB99/sudexPAZptSwTGbE8BBels131MSwLS1oZCpDxPA75c5J8l2FMCG0CZ73t4UwAWs3CuIoBTA40/g/zrRFcBx2LKfYToUwKvfRIjRTRPAOvdWE8ZfEcDJVDll6QMRwEnwzua01w/AZEaWsid7EMCTXSEvNlgQwKfL4UtLLxDAmfABvBnKCsDEvUXHIgULwIxUQTkZvgrAdfx59gD8CcCAJQ4JSqMNwCUg2pIuwRDAzNTpGok1DsDHtS1TdaYNwLxwky6mVgzAzGjjFhhpC8AMQ94kPTgLwHz+UCOUVgrAow73mVb9DMDVPt/EXZcQwIiqppUB/hDAZxLkSCzZDcBRQqLxRMYQwB2EtipWNAzAwTgqNh5bDcDjGTluxTkQwJm1pdMXIBHA9fx3/GHHEMC7i+9znqcRwJc9iZ2W9RHAuol+dNosEsCX6vuVmLUTwDV+JUodhhPAXkB9JMveE8AIXIRd3tQTwByMK88kMxLAnP7q9C+qEcB7nJbfnkMTwATbLS9yQhPAgLBtbBBJEsDTYgm1lgMQwDeS2Etv7hDAT7ISMRh7DsAVMRmJUWgRwEhKHU4YExHApV4+9nMLEcD3h8zKrg0QwOB3urBenQ/ASNJRybCYEMBfnPf1zOYRwCXS2dnj0xLANy0cWEqsFcCxXxzpLX0XwKQNMXM83BfAL6xQZn2NGcAL7GsjZFgZwFNS3bVTLxjAyd1YJuIdGMBll1eUnCEZwEt3L8s66xnAGzlbQcGAGsDFB6//q9EZwA9li0zE0hbAJXwc95/fFcBBkANvTcETwAWTVE6ByBHAui6yaF6iEMCK/qml3aUQwHk+t+3FTw7A4dbb+vggEMDjyTN1IVESwJ7isEdK9xDAIRwsXtk5DsDhZQ2Fgv4OwHkkO1qeXA/AEZsQDr1YDsC4O2xA+W0MwBD0JoZWCArArXDZ5/KJB8Ch/lPgiBkHwBgcntw4PQTAv9ISwjt6BMDk3I9fkRECwLG8vxDsmAPAcN3cX2DT/L9FlTW967b9v7raWXvItvG/xAz0I/Wk7b+wswT97w/rv3AMpNXhau6/adgO8rC/+b8RnuMjydH5vzmaMTCSRwHAkV4UdT6VA8Ao3lLETmQGwPU74bMnjQvApQOmUD72DsCH17BJvHIQwFGQTdahOA7AqIjO5UfBEMBjuv7SvaoNwCW93i69VAvA9EnRTmWICcAEgoRb2DcOwHy9AOxqOxHAS1JnWjezEsBzTxv+DMQQwNwM8W354g/Aw65ynjpeEMCM21I+cO0OwL3tXxuzIRHAh/d2R64FEcAxIGItJtIPwCWDRmNWUxDAIYcU2FnJDsCrbXO9GQsOwNX4vhZMjgvAhEqdKSB1CMB5VAKPwUYLwJSzKpRdlwrAhLRxdy7nCsCddetYdHELwMOdM6AaYAvABuxYG6YjEMBp1HFLWAARwAsR2hsY0hHAKXXWWHNWEcBE8OZUtVQQwJS1gWMfXhHASWfRS5KLEcAWbexLVjYTwKTPKB5/thDAu8Dx77qpDsBQFf2ESL0MwODqkKvxeArAPyQZindzDMBZiuK1Ih4MwF+gkUKiPwrAgH/dqnRwC8CfVzwM36UJwDfpsFEbDAjAqOsftFy3A8ChkYk1z+wAwHcUDPTEZPy//Nw3Hnlk+785C1b/cqP2v5hmfQXbmPi/Y7MhRq8V9b8ME5odUKftv785+BZkdO2/yfdX6Gq4879dgkA8wMr5v1cB1raOW/y/T5G+p6kI978llMskMV7yv/ykYN3N8vC/Z7XUkNVI7b/A28dpYwfkv/38z+v/ruW/M//ER5ZFwb/fZVErRybev1c7XXmmyeu//AlsY9t78r/El5n73tb0v4g9RKODi/K/Edue3yMh8r9sq84BHDvwv8dI3TlGgfO/CPEsx8LD97+pNS21aWv0v1MBgFJV8fe/XykPXiQaAMCQED8xinT9v1EbGNyXkgHAF5kT2OQjB8BEyvlowKMHwOzoyUD+xgnAl2FMTBQ8CsDTTNgcXlIMwIRIOTYDCQrAqZMzhbuGC8B19mg69N4KwLkOOhGF5w/AaDFMSKdmEcBK131Q+a0QwBmWGy6D7xDAnIAui6S5EMDEKo6bsoERwDd1O5cPjBHAteVYWzFtE8DtswvvUsIVwAOsO3NjsBXAU2vQ65x8FMCSd1JM5iEUwNHxSr25wxPAmzSTbbypE8CWlkPCc/YUwNxbrEW2bRXAUwm7g8NNFcDKQlng1acUwDemAaZVexTAzdNnb87WE8CRM47/CiwSwJuiZdVfsBHAkd7W3RabEMDMXOX3/hMRwDiLOKMgERDAXQqH6BmZD8D1C+B8rbQOwIvup/RWTQ7AndbxW5nqD8CDIK5e8JAPwM/kteWV2A7Ak5AZUQ8bDsCLHjyvUL8IwGwq6PhXAg7Aybtnq/OwDsAlrNxa1N8MwGOhZcKatA7Al0aCgJlfCsDoDL48PjQKwPQFmavI+QzAn3q7dOYrEMD9gGuarmEQwAghNjgpuw7AVyp99JYJDMCT6oYedXQQwD+Aqxd1NBPAOfr7LcAWFcAQqBg+7jIWwNEhMXI37xXATGXp2CQvFsDHVdz4s6wVwEsa0Qm8PxXA3X81NYVtFcCDK58JdHkXwNw5Y7XB7BbAx868xpoIGcBsEGOxUzgZwIiyqZwCHBvARaDh60PvHMC4rDrhBEodwKQkiQ0wARzAe2qg88geHcApKDKZAYocwNsTfW7YXx3AgY9mC7UYG8Dc9u1WpBQcwMzpHwaX/RrAXF/ubgHVGMBVp/xlK/4awA3Zu+pnIxvAFCi7qeNcGcB9evy1kesZwAX0AYFhCRrAOWbsBvp/G8DXCN3r3A0dwHCfTyv5PB3AlYFlj1j6HsA49dyrLC0ewEdIgFDjdh/A3ThTew4vIMAXr5Rk9CEhwF8DMhky4yDAW/WNFFBEIMBXyumblQkiwBuDDG0QMiLAVpv5TvSqIsA5e/AGLVsiwAxPI8/b2SHAe9xhDTXZIcDF6rigm/0hwF3isuGrWyLAarkNx1IJI8DtLhux57ciwCaGhqawtSLACx6Z9/SDIsCXS06C348hwGOuwGm3TCDACYx3z23GIMCKPh8QEM4gwF0Q4DmqJiHAgO76avPCIcADpbz1aXgiwPueZAveVSHAH1k/CyjPIcDNJlBMTY0iwMVVhn+MDCLAN3gYChbZIcC8R6TghEciwCv/X+s1FyLAEcHOL3VAIsDfmQOnkX8iwNBNPPTcVSPAVM2KXpAlJMBtqhOFlJUkwLQWHypwFCTAz8gDw6q/I8Cj7GuhEe0kwHz+Z8QmtyXAkWtXUmG6JcCj+BpSwyIlwPUUZzeUeiXABYKvvbMbJMBLNPkLc+0jwCILrGmvACXAMzyhkrK8JMD8Bwb9wx4lwJffWscKDibA37XDcFAdJcAb+oPA16QkwG/3YkxEVSTAD41OpemwJMBDwvr/IAQkwCwqJB/esCPAgkCfAThDJMDfx22z/LYkwMHs9E2P0yTAN0tx0cuGJMDkiyQ4Uv4kwONFl8g9pCXAa7FosswDJ8BYvGlpwN8lwMEaXpYZRCbAy9vv3dpqJsBXwuQqEGgnwElzxMVpKyjAmFaCWC9UKcD7c8FUNokpwEff9AHR/CnAmBfc9i0/KcBb7HN2zh4pwDXFg4LoECnAmKQnCWrUJ8AcrZeBptcmwPWaIk7CIyfAJzBl0sDgJ8CMsGa2FPQowPyPgzTjOSrA3c5MVZouKsBhF+R9nQ8qwACeMjcPrinAwVAOPX8wKcAVHl/fE50pwBlJtol6ninAoUKYV4vrKcCl/sA7XckowDGbWLgMCCnADEF+kHW4KcBPmO0DxbgpwOWkFRZthinAE+S4RELAKsBJc6DyOM0qwAhxsi3a4CvAeH1tv38kK8BfFwTTtjIrwKgZ4drMrivAJLobdxm/K8DjcCKpQRUrwLFMVNRl3izAJ/nYWd1bLcB4SmGT2hIswFVsSEZbwivA1R28LsrvK8DxrfPOuC0swEeUo+Z2jCvA4DIQPybOKsBjO7EN/MEpwINMPcm8YCnAYxLDnKgOKcBjFF6866cowAdzttF3iSnACwGatBINKcBVLUCZKRkowEfAh84QryjAgGc13VJ+KMDMiTVAi0QpwOX11GBV1CjAY0W7q4+ZKMA9B0dZddMowCxAKUWClSjAwM0XqB6mJ8BdVUugFbwnwIfp+OhD0SfAa5wIg5l+J8BQcQWkxuomwP0/XtFBSSjAM3EvNxoTJ8DBYVh8EOkmwDeun2XTGCbA2LRYWRl7JcCvPBq/5gImwNVvX5J3kSbAAREoKcJPJsAvoJJlF78lwCPq67N2dCbAwesfh9igJsAUZoKJy7onwMy6KERnnCfAQx3GtGg3KMAsnVKTCe0nwOFtfxU6cCjAebtGA63HJ8CPn7dwtMUmwMSvqkI6hSbAVfQ9heGiJsDbuIiW/lEnwOFXkLIO5CfAcCjAqQOsJsDN3U/lwH0mwOfL1o80UibAGaLuMn90JsCPqECBOB4mwFmvNyz5ryXA/TcsD2b6JcC5UsbJqiElwKt77l6j7iTAGDMNhkGuJcCEIbVjfHolwOqPHB3o+iTAU79UcYSFJMAO94AghDolwCNFDNKxwSXAzIRiBam2JMCvjyrQxnskwESapsM+vSTAHRzrSn8uJcBPV9DZaOYkwHtCF9g+lSTAdPH6w2g/JMCdD0Zr8tYjwGKNkr9rmCPAV3E7Cu5lJMA4A/M5O8skwESb8LyMyiTAeUbsQx2EI8DjBOkvzfgiwC2gB8zCOiPArBYPgtdQI8BOKm0lgWciwC/Qh0Nw3iHAh26p2pFjIMD0/weNPBwhwOAhxoVvCyLAa+NFmhRTIcCZ2Bc2EsAhwMRTmyPl+iHAR/e01pV2IcAbgpdlnJYhwBwcZ+v2CSHAWUuOJ7DAIMBICqJO+FQgwP2wiHXi0iDAUQqruWnsIMAJcdt4uMUgwDf47K9VQSDANUhV5KBcIcDF/4+qV38hwL8ZfvoZ5iDAaWqV1HpBIcBSwlv1C88gwINT4482rx/AVaQR7FEmIMB7jf25UoUfwGx99b42ESHAOUs8QMf8IMC1ZVZszCYhwFALLh11SSHACLpOB7H0IcDnPHBDQtUhwIzay5bCXyLAvU+t2jN+IsAMD62Py6ciwFTySl55/CLATFJznNvxIsDkwFxT/sciwBJCrx4rcSLAmxNfqrZMIcBcmYJACFQgwBRCNiMrzSDAJWzKSIxeIMBs7VfpFfsgwLXLzEqH5SDAxAtlc700IMABeqS290YgwFQBI4xcZCDAlB2JhS2uH8DbdgRWlzwewGQBSFf5ZCDAgHvPm0K0HsD6KAROQccgwHQjAz8YuCDA/4KnWsSZIMD4GMu5RSEgwGQ3583cqB/AP/4KxwFlHsCcoNe+yPIfwKlwGEAOXx/AE3BATE8aIMD0GYiRTdggwKIYXabUEyDARbSHvI6eHsBEWiEBj7IfwA9Ypkfw6xvAqP3eTBBvG8BN8fYdim4cwPe8prCA1RrAXPWlICkjHMC54Fi8xrUdwPweYp8cqx3A4Dj9qGuyHcAb8DTgpOIcwA1yM5HRVR3Aa77wvH6SHMBpN7Pn/wUdwCTQzjvamhzAW/8zAkiDG8Al3hvw/wIdwLAyupjcqh3A5CDQG35iHMCf0ML9FNcawBB7C8swDhzA7WK36G76GcCfcROEmx4bwHGy8WAegBvAwcSnz1sSG8DBgO2/Q+4bwCw+F01vyRvAne4ffT56GsBDJVbL3jUbwOl8RTwhSR3AiGbpsGm+G8DbtsOUWQcawNRLVqn/XhnATGSqxP0GG8C0LwqiErUZwP3R/GsJKBvAY+d3AT80HcDx2QFXqZUdwKmEW+yoph7AdRGKOgofIMAjjBv8SEogwKNcoC3wKyDAo12d7LiCH8BeoEjKXxggwHdvc/9alR7AtBaPhySFHMCsu1e6/EobwDCDuGEXGxvALZ1elYoPG8DRC4O8oeYbwE/s01m3zxvALFf66dDqGsA8TIXMQ3oawN0vmSBNbR3A9UleaHWqHMAbTZXKJtYawAxVUwq8+hnAQKLGzxrvGcApy6pB0UUZwDtTHpGtFhrAgE1KjDqLGcCtX6cl/MAbwJE6EeAqFxrAl5i7Y7HiGcDF34/DIqAawEOLjDCwUBzAOfye5rWIHcAQf/+afesbwJtxT1O9mhzA616zUzH0GcA9PpobTsgZwH1Z6XnW5RrAgWqPfbilG8DLIbo2UaMcwP8mUlDeRx3Azb7r8k/AHcAjkWETnwwcwL0uAK4J9hrAAWFY0ymtGcCoGXXm5QobwLNiww4PPhvA/Nu8DsJDG8Do5hW/AKAZwJHmSlm/wxnAYyeYOK4TGcCTm8u+kj0awFfLwVti6xvAtT9snlnyG8Bo4xLDCAobwAzssAXHbBvAn7SQezR5GcDoHyp7ZvQcwDPfyrnOUx3AC6hYdbwOHMDN4GqIR9AdwMG1Rg8vxh3Au+GCH5wuHsDlpb8GuaYcwPkSoUJirxzAR6osQfgkHcBRmiKHPW4dwCiPlM4qNBzAtWAGIOIgHMATb0tWhkocwNeiGgrb5x7AQKWhO9KFHsAFOPIo3lAewE+jMlcpLCDAEw2yFGhYH8CXQFtCWSMgwDTMMVjuCSDAKVqfJRsGIMCZuOH05KsfwHUAA/frvx3A8zZoR929IMBXlSwm5PMewATqlzQWrR7AjBNNT5EwH8BCJWvDXi0gwAOcdle27B/ABKG2Y7H8HsARR0Yx7sYgwOovBItj0iDAvLbw58/fIMC6MIUPJqMgwFvUZgHXEiHA2UsFEcAcIcAhFTSGJNYgwE/C5/woJCHAUHgHHiSkIcCPaSDVcWYiwFIHpJEOeCPA2hTXlGUXI8AXUyOC77kjwGm54PN//iPAhc6Yytx7JMDvEYxntFAkwCMvMy8BqCTAYeAu79yqJMArhZ8sfNMkwCPD8QNsRiTANWmVor6VI8C5M9x89M0kwIfTF3ofMybAE5JO+pH3JsDwcOZqeoAnwEF68SCfzybAd9so/JOKJsB1NAdcrxomwE+60UmV1iXA+A6Zz/LnJcDANQ3d2oklwCm+JacfVSXAKBNlnqHUJcCNX9w16zMlwNlWC36CWCXA03JF8LAtJsD8sD1it5EmwJsYQdfBMifAAe3DYO3lJsDfljzdUrgmwJzah7O4oSXALChmPFswJcAUOJ49i+ckwNHD7KsH8iTAEIqvWmnyJMDWjiYEJ64kwNUhyIVqkiTAf5geA8yUJMA5oPEV8yEkwLUQw3Nq1yPA1uVodtkGJMDhI3/bVmwkwAVnQb5qXyPADTb1/tAnI8DDIoTLbb0iwHDXPHf2ryLA85tZYh9HIsDmORNZ0lYiwHdbjv1S2iHAkJQ8oeRdIcAlwqeKnEAhwEkpzyLCByLApWYuuj9qIsA4Ge6T96YhwOKx98lMayHADdy0CRRWIsCVfx3qgEYjwPQ01+HLUCLAw4Nl5+VVIsBrWGkoQS4iwLcgZmq92iHAW3C6VYk3I8ArMoaSSN8iwPNoispUayTAhTAc72xkJMBdpxh6FXkjwOHrKMrimSLAYjUuvu0vI8Bhf32MxcAjwLkqExgF0iLAgU3rbDCeIcA5oG14MgchwDCJ1WN8uiDAQUg6n+IRIcB/Vuw/bCchwMn26yk1ZiDAd2Zpur13IMByNuJOloUhwM1ngBtBkyDAYFd7Opf+HsDlvJtIviIgwI2EI1I8QSHAoTg/pG1pIcBVrK9F1IsewHzRADak0xzAxN8gRQRfHcB1IiT6H+AdwNzyD2fczB3Au0lq2xtYIMBWd0QqgoAgwB401jPvKCDAOUM1wkw7IcD54ipn5g8hwJulsOEVdyHA71TdmPHZIMC56ByIKzcgwFOdMsS+PyDAo5+GBvTfIcAxbRL0HxohwAMLpn3PuiDAUUmmUYIfIcAsjLH0OkoiwGROpi3qRyLAkf7eNE8dIcAke90XBZEgwOmB/lLBQCDAebJsiTHVHsBoTxundrwcwAgJlULXtx/AJyw6bKIPHcCbQSihmfkcwN3XjzEhfBzAy5mkiw4SHsBlYKpa1XkdwLT13eiH/xvARyujjOm7G8AgTyjmMlMawOQQNn5XpxvAdXuZ4L3VGsC3EvGxVlsawD+7Gttj2BnA39aeIY/1GsC79uyqBFIXwEcT+8el6hfA8wWT3MbtGcCL92wFT8YcwIt177WhyxzAWPcO5zVlHMDF7xyTqDcbwLxUm/NSuBvA+Fl4CYooGsBsy+jk40kZwINOgpEweRjATTAR+g0bGMDgvWNEsXcXwMRdARv0JhfAbBDOMu/5F8B36s17/rIXwLDAjBrz5xfAvYFgyM1rF8APZr1tFU4XwBTjUadUWRbAPLiHdCFfF8DtYv9begwXwDkiaVxsmxfApeW8P2StFsBOID7RLqYUwLwIP846uBPALcRbcr3NFMCD6kIzDuATwL26XQzeKhLAJ21KpkX5EMBTM/ljV1USwGSY5za2+hPAsLMDHwihFMDNENl2M2AVwCyWK8zCmRXAtRFcmhnDFMAV4st+vgcWwJV45fYVThXAdCLwMp66FsD1hxlEL5cXwMyDhI2rchbAE3p4jK1gGcDU5e8+8LIawPRfwdQc+RvAOTa6NYOwHcBZnhQrGCYbwKM7hKrWZBvAxxMq8CKTG8D/E7CPY40cwDmE95mM6hrAPHtj3nffG8AJy/CM2UkcwM2lBnyPvRvA2AnYYw2yHsAo/i0N3RcgwMGlB8S97x/ACFdUbYxpHsDLJ48EEEMfwHS77cUuiB/ANDWVLlMlHsCjIYnwU1YfwCjD1N0/7B/A07fsvXyYIMCMDZjQA50gwNiVKqpeOB/AtZ4DciwAIcCRmMY+gJUiwOIDEl/rYCLAA7UBLId4I8DZq0qBSIUjwPusdZPpmiPAb+txQR1UI8CfLzYgI3sjwENdkY1fgyPAof1dwRuTIsCTDdrNOUgiwPMaAjYzGiHAd7dmzSBQIcAljgstZFIhwAwj/L7bliHAI2F27+5PIMCvFj1+QV4gwJWlpt2yfR/A2V9JJ5R0IMBAlmqEPA4gwJ2hPoD7Ux3AoKbNsgmJHsDd7hDXsbUewEQi+AGfYB7AxI3kVJGYHsBTgLI3TqMdwD2LuDPpURzAaFEW5uvKHcCbV4ozzkkewBvHBiVs1R3A6+xOYGqNHsCJR6DYPoscwK2zDHR2phvAUPJiHI7cG8C5IbM0P+kcwFmFLgYtcx7Ae3Nr2P0XHsBwj7HYvm8ewIAIgMx1yh/A15nO7xeRIMBuPUVw02MhwPmWutRjISLAB+m/8tn3IsAVbfV9V2AiwB1l439HAyLAj8ERgvQgIsDUvctn/8giwE9BBiia7CLA8ctrCav1IsAvfCrhKHEjwGFkxXmUESTA1+nQXXjaI8Bqxs0+rMwjwJ39KZuVdCPAWyzA0j4OI8BCkBrzlBEjwCljtP7L7yLAKs+DTkGgIcCEf3LEA2AhwFiFtFq35SHA6sUKH5qTIcDX+ktwXkciwNIeJT1X+iLALKlT/6skIsDlvBk28hoiwE+kmlk3giHAmjYuqV1ZIsC3FaRcFAUjwBL4mZ9vuCPAG3zZNPmlIsALBPxQsYQiwDUCbd3CNSLABtMQk8B+IcCdVHeT9cUhwMnHvE4N9CHAN9+TNyhxIsC1cbF3oO0iwGEXq1sp2iPAHtE0xCcDJMBlyzdUzs4jwLK+hKlQ1CTAhVDaTMZuJMC18+Gpu4glwJDznuet8SXAnxPwvgzaJsBclvNUZBUowEkpaXgSlCfAVyTYWSz2JsCVPyDJlqUmwCAaplykBCfA5QlYcX83JsB3YmkQJGsmwGffSzn3sSbAlXet0Dx+JsCj1Qk18CElwAlmCVT7KSXANXL6e5t6JsCV1oO6rw4nwLuNdNmmNSfASIGB5Uf9J8D4bo60UmsowNAXoo7tbynAAWBZ3PYmKsCfLDoRbjoqwEG9jbPt5CjAxZ+OEFBUJ8D/YBGp84YnwF1ZAYmhgyjAG3IiXyYGKcC9lMKHDxoqwHu+an6arCnAManwQse8KcA9jH1pb1gpwHAzMGALSSjATP1w0x/PJ8D3AmM1C9IowMNGLynJGCfA09Z16kaOJsCxf4BvA5MmwOkpkODnaibAM4PcfGyLJcDfqlEFV5UlwAUMG81oXyXANO2xAxNwJcD51EAyg+QkwO9bM9jwkyTAO1USyWOhJMBDNKzLFdsjwIAhjDiJ9CPAVchHk4e1JMBTKQ82RhAlwGs5ms9YESTAvw8EGwksJMAkHbYm1e0jwNZt0X4cXyPA2y0Fm0jiIcBzXWqeH88hwO2HOML1rSHAcGFm4KPLIcAG6qyy+AwjwHb0eFwHAiPAa+Xd3m2YI8D6zlmg134jwCNhbLD9PSPAHd5Lokd9I8BWQsIAO0ckwCxJXeo3lSTACViYDWKXJcBENCzCVREmwA098zN0gibA8QugPKBWJcArpCed5aUlwCM1e0IkJybA9bIgo8XUJcCMM1sWI/wlwBdQ9Ey+uCXAQM6hLk+YJcCRoH1lKdQlwMv7gWk1XibAKZXpCfnGJsCFp58YL4UmwMEJK1hIxyXAQ3b0AhdHJcA1I4ZRLk0mwE3YXFY4GCbAlIs62HyvJcARYZgtIbUkwA8mIwMTJCTAF/a/4j/wI8BJNGLhmUAjwF8PsSjd+iPAd4xVkjIdJMDhkSmAvjMkwPeQW0en3yTAd/+LqYslJcCrN0D9oLslwHj6frA4jiXAcIucKerQJcBVsV8Bz0okwHnh6WK64CTAle/MrfiaJMCO+wP2VwckwCDCfR/FViPAedf3GyMpI8COo0vP/UMiwHhliE/6uyLAvU5DoTi0IcAAsADTFTshwCWpWYZtMCDAyzywBtWUH8CBDjnmT8IewG1K+6UeLBzAL3cEQGTGGcBHNeMkJjMYwLRwB2sbsxbAx4JptwSkFMANneqrc5gUwNGFO+BxORbA3pUEhBQLFcB3IPM4fOYVwC/tDIFchBfAXVMcvTn7GMDA32PedZoZwMVcOERRwRfAGT9v5YG/GcCQACj3QV4awM3iUafSAxvAVAwW99IqGsDIBmtHKxYawHBtezoSfBrAr5amnaU0G8AfYsXUvSEawJSr4sFpZhnAnYkF6WlEGsBNML7u4tUawDNZEw9P2hnATPPeM3HfGMB5+q8le6gXwBef5x1ReBrArTqIuqibGMDHETYdvX4awA/uf7DwSRjA7EfIMYc6GMDtNVrLEtcXwETI6KwhbhbAJWgvOF49FsDUMjbILfwXwGX2ojemFBnAJ/UAzz93GMCpulK1DsgXwG1dSnQ2SxjA5FTt7wvDGMDITt2+nAQZwLgrMkBUJBrAhZt60yquGMDVZnTehdsXwKW9rE/K+hbAR25yTTWMFcBYKOPYJoQSwPlP9OsUQRHAkS53A0WREMBhnzMNWKwOwNhICNWkyQjAA5TLX/0iC8D/PVlrY2ELwMUabIpb4grAs+hKQVZ9BsDAE7/Q/aEKwByvCl/P4wrAa7pz5bjbCcB9Uapp47wFwHyZUg4gAAnA8A5VAW6cBsCMlFBXQZwIwMgWx03Lkw3AMyNLzHOmDMBnhgX82EEOwF0mxq+Ypw/A/bzHsRjNDMDhu8RopQMQwE4vX7AczBHAFbYCSyk6EsBnlNEVM9sQwNHoV1RzbxHAJ7P0YaOIEcAMKyxAJ+cQwCh4YiAyPRLAI91cqwGhE8AzVWGpwTUTwGug3z13+RHAX6niHZcPEMCtrUUJfPUNwNRA29Nh8wnAqSeefuNsB8CAqOBEQJ4FwN6yP4DrGgTAxcOMdu2MBsA8pQHuNsgKwPy+ZR6CXArAJ5QmKNJKDsAkkGfcjcYMwEDnAAF8bg/AjKkFgJLZDsBc9MriFWYPwDUcON+zVw/AHzF38BUtEMBgko7QcoQOwG027yJW5Q/A/UrFWBDOD8DqqDVM3CARwLwZX1Jlqw/Ar/buzDVtDsB3BhsFemMQwKdOPucwjAzA+QMb0MEMCcCHj3xNvLYKwOhCXELyGATAYUkZeroFBMCVJU7qLxcLwOv4yAZuLArANZYvHYTaB8AfgpTpZUIFwNvOcfzc8QPAARVU/eMKBcAy9YXFjm4EwFgQ2Y4nZATAUDYEAVhjAcDLCOwfmoQDwCDyMDqkzPi/40xxGg5r+r942qP/yPj5v+DU++m4tfm/O5XmDkN79b8QfwR37nb/v+Gk7fgg0wDAbAxGUmT0+L/TzG4OdLb9v2yhFnwpuvu/FixamC7HAMDunv3IzUgEwMRUufnjlQXAy+ynGJjXB8C8oddojP8GwL3kTN3WogbAUwpozHe9BMD6kSlrpIUEwOI0XZfgJQPAPRL85Hny/r+76PFL4Pn9v11whYWnWv2/bXeLWu0W9L+MeOatkUoBwCgjZYdOcP6/FZe6Fl/X/r/Ce825FeUEwDVYsQpIewfAV6D9vr4sC8DbxL2adsQNwGXAoy/Xag7A6S/2k+e/C8CI6zkAoE8KwN+IbDYo0QnA237ZdLwODcAv30Mq56sQwJlaxFt+3gvAZ234+Uv0CsA8MV2DE/INwD1YtxIoMxDAi/1+bnrLEMBz150DYlYSwLlMu8xenBLAkkc3J1QGE8B9mMkdfJkQwGzgDxGwyhHArXykzG3CEsChajwRCaURwEH+FQDkCxHA08+3R4MwEsDbvGu2GFUTwFkvdNXkYxTANGlZpm/uEcBP/4x/yjIQwECnSudbVg/ACfMsXDtvC8B7Ks1/YHQMwGFFtFk4QgjAfTrxPe09B8BgFnyi5acHwMCi0bD+9AXAaGtCSZwcCcBNjrVzzGUIwI0p9dMwaAbAKXrNQmdqDMBLhW4Ex/sKwDvceYPDbw3AvfiWHNdADcCV5tynIPYLwJuSLjpHqxHA0XytAKgwD8BHoL4ntasPwL+/W3iCrAzA95fzZJN1D8BWjRy6YqIQwOm1cbXnyxLAFW34zE7DFMDZvkTWihQWwM/SXc4utBbA6+IhKZhWFsAZyYPcPEgYwA+g9JeX0BfAocNhUQSGF8DNEzwZWiAXwE84yxFLYRbAlUdj8mQRFcAYgmUw/QsWwPCeIg+1iBXAjEa8tui/GMCR7ep4M1AawPnyNMtVPBnA5DXKbz6EGcAV93K/ZSUYwGzfekFlCxfAeGzpGhhzFsApy0DUYmAWwOSW7JAo0xfAg6oFpdn0GcD07JSAP+IYwM2ZTW3YWxnA//YEqnMXGsBMxgUWOjUZwPFmDgfOhhnAcKcnbaJ7GcCJWNWNeUYZwLVLfdFovRbA2oz9LJsTFcClXZD2t6EUwHglKYHoBRXAvGleE3GiFcCty2aOqKQUwNsBtTwv8RPAdyd+OFjYFMAHT2faOFYWwI2VkMWK2hPAIaEIcWpWEsCNg27SdPURwBuxz4zAcA3A6HAwbzDsD8Av03oiFkEOwMsrtyTITQzAS7MS/gZtDcBikOKl9FUQwB42OmriMxDAI5Vo10xeEMAbDwsHGT8PwJl4OBJCKA/A3xavae38EcCBpFVL3noRwNBemzCqZRHA+HXFqHQ8EMDMZgq1afMSwNWzlbzUbBPA1Esz0HdwE8BlMW+FHLASwDPg+pJvyxLA07buUkUnE8B/EKPDRZ4QwNeUcGlzMg/AiXFcVlO1EMDdlyepbkIRwP/6LlbUEhHAEVZg0v5MEMDdclWhrNcMwCt91Bd1oQrAR/XU2KIdDMB/ccBQoFkNwLVbV8SUQQ/A4zE86825DMBQaKwYj4oJwMBv13ddMA3ASCpQKUbsEcBHt1VFepgRwOor6o8mqxHAnoEuZ3ezE8CgbSz0eAcWwHPUrPYI2BfAH9HllAU4F8A114JtONsVwIdE3YjGIhfAsBpc7tJbFcClEqTc2K8TwP0OuRgOZhPAiasiEl0FFcDnjw/vB68UwJFM7W8HqhTAJ1w0RBizE8A14T7QtlQUwPgUq0MQ5RTABN3rkCFbFcBMitHqbT8VwIcCDmli7BPAYaRcfr1TE8C1sVNcCbMUwClI7t2hVhXAyVBKnTXPFsAAe3vj0jcWwLnYyCdhERfAK0R4zKj9FcAk6ckSDLwWwEkALdVtdhTAjqKxf4TbE8CALUVqWjMUwKAOq/+41BLAEeMbt4t9EMBoq1ME/LsMwBci0d20dQzATZI+YzWCDMAF+T9AIYEJwJ29NYx8RwvAm9/WB39AC8Chcx/gq0wOwAj6CD9zQA7AbHL2M0x3D8CHUWVeclUOwOsBML7w3RDAJQgZ61oaE8A/fdHWTd0RwK0GisK/PRLAhewtdCsmEsA5fE9cb7URwPUpg6Y06hLAn7UmJu67FMC9OpN8JqIXwAFZMREa/hbA6vVoqXTzFMBDlc6W/ykVwIKC7uANqhPA3qjijyomFcBDG0jB7fAUwP8IjYnc8BPAEBYXR9brFcCvvSN8A4UVwM+E813QMBXAW31zX72pE8CMOLBeLrQTwG9OMCpJaxTAy4IVHupNFcDVeZzOsd0UwOcy3q85lBHA/EC8K1GhEcDHagSHx4oRwOgO0oZCshDAK/22/ivREcDzPY8J4AQRwBm/lhFz2w7Ak5iAVJp7DsBkprWbBCcKwKVJHfs6bwfA4IAw8jGCCsA1k28Nm0IIwAyb1SgMLwvAAFMnYnGsDMD7Q8wb1scPwBm+YKm4sxDA+dMSxEZ0EcDbKWMA3BsQwA0KXYWGLRDACqSCwPQJEsDz+nMLrPMSwM+LEfrgjRHA2f5ZWMAlEsAaYored8oTwPmN97m/6hPAOjeKmq4kFMD3zDswm5kTwCfr32oblRPA5O0U4h49FMAH2ZJkopQXwBE7aXzp0hnAlajDn7MuG8BPgGInbhgawA2Ym9Fr2BzA7dqJP+T4G8D8YC4mXqkYwEwmlH+RsBnAjECBH2H6GMAPPDkjgLcYwE1O5P50phnA9Fo9gJIUGsAA7QXJuu8ZwKSfx+JrLxrAe38frdMpHMC00YtagRYdwHmyWcGAMhzAYRocbM1XHcCTp8TjKAgcwCi7KBmy8xvAoVMitCu1G8AXOG9CUxkcwGMz/as/LBvAewRUI1SdGcAPqCPJQCMZwECQl4GbCxvAuAQXT+x9G8CMIIoexh0dwK0tLrquLB3Ax5h/Kl2eHcD7gYTpXLUgwIfHRJqalyHAb/acoW2dIsAtAmJiTzwiwDLwqmWItCHAr6joldLnIcDLEmMf3/0iwJOphks6gyLAF/5GX7qYIsBijc8hUzsiwK0roREgRyPASlWHxmMIJMCGiNlhSB0jwPdkpjOlVSPAQbmIFkGdI8AcdETix5YkwJKcd7n6ciPAbaj1Ww1KIsAQd31W9gEjwMPIvUMAPiLACF1zhhb3IsBZxMu/ZBEjwOHQadg7nSPA2K/BC61bI8CHxf4YnG4jwJYUl9z2+yPAO+qwKrGCJMAdhmU/8iQjwFtH44wHJCPACdkWH/OkI8AaAm3oJpAjwF4OQ+StwCTAFG1KkLTPJcAhCyPvQKslwMfcclj0TybAE+Io0ow8JcAHblf8c+gkwO8+ft7ihCXA6mgCayUyJcBL+FYWKfAlwDVqwO9kPibAfyV0xrwuJsAz77B4GvEkwESqjUuVnyXANgbzYq7DJMAFqAV9GRMlwFyabVEAViXAK3vRuKkQJcAYdIz/33YkwGX3wAvD4STAuVBjd1fHJMAXQXm8myokwPl80LLREyXAiEoxeUgoJsCZoXzCcy4mwJWcVJw49CbANFdYmrqnJ8CrgYUS1nsnwNc3si8Z4CbAAzdjiue2JsCx5mOKW7InwCUVLyn82yfAsfKnCfOjJ8ADC60lQrcmwADYQ9KL/ibAh5zh5pBlJsBlnlG9bwwnwByCGvg7gybAADNd8c/7JsBwVqLuqF0owNln5DofeCjAKSBkdBuEKMBU3dS2I6IowFeWhDsxLyrAMYj0hAKFKsBnHpf9OY0qwHsYwy4MaCrAIOmtPvT+KsBVHZBLmd4qwMeb3IKdISvA6T8aaxajK8A40Ep1sVQswIxRRwaRZyzAua3Eu8dlLcAvB8UuZB0twGVjPP0g2ivAgZHRi0QJK8CVaAcBOh8rwEuRZzugnSvAgOXc/hzzK8Bdo05dpaIrwGeXXKa2WivAZHE3C81xK8ADHPSnu70rwMl9C7D6RSvAW34Fi2YaKsAMOpgO9g4swHOFLYyaGS3AY6F1uNGFLcCTz1q51UMtwDvkw1z1iy3AmeQy8/94LcCNg9sWMYktwMnUET8OTy/AcxiFYJzDLsDDKmDVO7YuwMS0RnZw/y7ABTJFpuVzLsARb6U6APwuwHhe+GwTGy/AVdj1DQQTLsDdoKsBbXMuwHsasNTB2y3AUHMiFXlmLcADy+Clg8oswFXXBCF6MC3AZWXo81z2LcDJ5MJgUOEuwPtZPnVNlC/A5jqLeuyVMMDHRHeSP+IwwCLDe8LuRDHAdKskNP1RMcBVgQeq8soxwHUwCnwpxzHAP3AI2Wl9McAdhRIYX2YxwHP8equgvTHAiUeZ5wDcMcBanI1zrjEywIxAhSLSNTLAEORMOAEsMsBVi1AQlkIywGkFO0bb7DHAkF7zSWZkMcBZSjcWBlkxwNUsILKaTTHA2xi44fYZMcB1JY3RbIQxwONqpmcEnTHAQZSUP+hkMcBVWFCnSWsxwBEI7REgiDHA970EXakAMcDJq6rpN2oxwCHS9zCJwzHAvbzAcGTBMcApcUPY4esxwPNjBHwIwjHA1V9/rLAgMsD5+qz+WIcywL2FmZhGQzLA+78hl89+McDx8Te07ywxwNAy06zQKjHAFXTaC9QRMcBn1FNFf20wwObu6AcnMTDAvBC1eqf0L8CJXlT9HIgvwLBqpN0XTC/AlXqIfzSgLsDV/sdMTZ8uwOvS27IWkC/A3TG5RnYgMMAi3WQHXUYwwLBa7RP+IjDAb5jdnn/TL8BBKtTUPY4vwE+UaC5mBi/ANRvqPyCsL8AU8+DApf4vwHp7KogPBDDAJvocHdhAMMDmVXpIsqowwMuiDIoLXjDAHuyDgGRQMMCtnp0B0XgwwC/nziimPTDAuX27UxlEMMB6mbxYaX4wwH1WX6ySLTDAJGimjdREMMDKihclOdgwwIr9dy0Q3jDA6oNydSMyMcDaysq+yRExwJ8xaXxwUTHAv1RQL+BPMcDkBckcS6kwwAJj2jdZwDDAnqNmVLqRMMCnYBoG63YwwBVz2l4uJzDAiPG/XjSKL8BDEm5lEBkwwL0V0pjBSDDA48hAM4c1MMBFm2EHkVgwwLBBaC+EljDAoL2mt5iqMMD2i0cfBeUwwJ9LZ0GWPDHAWTJfkzd3McCfDuDh/TQxwL/1+fnCmTHAdZJSOMziMcALZRpDRP4xwC+++lHPTTLA3Zv4iN1JM8Biyf8cKCMzwEv18JvL5DPAwC05vRo8M8CRc5CF0j4zwIue5aT+ETPAJKtDMXfqMsBFRSh4ePUywKoy0ejYSTPAGO5W7ffYMsCu73B5K+YywCxp/xybKDPADY21yCm/MsCJZ1d9YgEzwGXst+yIdTPAS07cl7mQM8CftsucZLMzwD3POEKu2jPAQ1kCU+AdNMAJg4pDOTs0wB3hRxYwczTApx+sRnweNMDbSkGeCBw0wHTOdobEDDTAbE8z3bdyM8C5y1s6XzwzwE0EDQjdtDLAfQih10sqM8CFTIcFqcQzwKkRgzv2mzPAVYRV4KbDM8CqhyJ4DIEzwMxvIUEYyTPA6R5t94BiNMAZV/4wuFk0wGiQhziWdzTAZ2rgg9Y6NMDX1Ahflc0zwHma3S68szPA3RjfoqqNM8DPA15FiRU0wEdfo+qeSTTA26VoUXJuNMCJmLTSMCk0wFcsX80W7DPAkBSrbJqPNMBRpvl/qtg0wE9sn+Bt3zTAxRIdHpreNMCNW9rrd/g0wKChMYD2xTTA1SWAZaNTNcAx5ARcJkM1wP1rC7Ws9jXA4UkqOIW/NcDxCghiWVM2wF2XUX6CezbAQPYtLW1RNsBsNjzuq6o2wLAp1EEuADfAt+hHSoGSNsDBD1aBPeo2wHXWDV/0ZjfAWMJpdQYHN8B3IylJyFk3wBsS8/3gzTbAjRHlXGPZNsDPV5xL+iY3wMkDeO6XAzfAeKAuNJ24NsAR9janI3k2wBBQPAWMNTbAYaEr5alNNsAskM/DR6Q2wPcBiIjG2zbA/G68YOewNsAL4WoLhxo3wKCP7gC1PjfApM7mZx/ONsA/jTKNk4M2wFF4gsn4mDbAiJLmhPTXNsCwNtjFa8A2wNQABw5dvjbAIXU6WjQQN8C5XqIIlNw2wPkXOLxPWTfASQvnM26CN8Bl3FIYoSQ3wDcLS48AHzfALYrcLlOSN8CUgMrXdmQ3wPxlJHIzajfAOAILEUtTN8DLHS7Q8ZU3wLs8qt+1bjfAbeiuRH8TN8Cjl1YM92s3wPUyJORYRjfAnC9vFYl3N8D3amkPqnI3wNSM4Q/ceDfANZcc31krN8CA2qE8fbQ2wGvOQRTCaDbA9AX5a81bNsBrOoekT6M2wOBDcltYmjbA2N9NUiLpNsAMYzk7dYw2wL3n1w6kvzbAG0Gi9h/ANsAhI54Vl8c2wI/s2I0GsTbALx7yOcvPNsCINlCN+GM3wJdSlExvADfAA8Lsp5yxNsBN208Tcu02wEUTw4WZgzbAnD0RgEbENsAdDRfzguo2wMnRJrB2ODfAlMDngNavN8DARGtb9/Y3wPzbfzcJiDjAtd/0jm7rN8BrNorBLHU3wBun6GutODfAbMGwNDwLN8CnVF2Cpnw2wIOCED9kAjbAE5mcMhoQNsBjn1hI0z42wEUMxmVTSTbAGYz0+s2xNsAkhxP+u5U2wPQ0cVw6hDbAHDfoPg6PNsClnQFIPMc2wPUuvY0L2DbAx2PEvRu+NsDgM7g1Uqs2wDMRQzQcljbA3bXGsYXcNsBv9HRwg9k2wNfZK6OiNTfAF9PAFe/RN8AobDYlaHU3wK0D4YWmkjfAoOKzRGAXN8Azg+D13d02wGuPKvjVrzbAuP80FsitNsDT2jnSsng2wOj+9Y1slDbAzycJwLqnNsBBjo9q0MI2wBSLAjcLWTbAnSyrEk5lNsDkMg7TPLw2wND4jFDimDbASbej2kzpNsCPHphF3fk2wAQmn2IJmjbAdL6QBQuLNsCE34YHAnU2wGFDnpYelDbAkZgsseZWNsD415fzOjo2wNu5vFKwPzbAOU+BgsglNsDT/C7UQNE1wKHSChy38DTAZYLVOVTsNMABHpyqMrQ0wJ1fY1e2BDXAr8Qtzyh6NcCiu1foXfQ0wCUZwDhqjjTAACk5TE2TNMBwhk62Sqo0wI01FkStoDTAlMwY7FrnNMD3VcYDKwI1wNMohE6AizXAk5NYRIXiNcB7j3zG8Ug2wBPl2Qu9KzbAc42Wdb4PNsDj9uLxzrs1wKSooOrNlTXAcDZJUpOYNcAU8O0K6701wOydRfU1bTXAmjh8wZcmNcAnBfIy6wc1wOdCu5LS6zTAA09/drQ7NcAR5LhdMXc0wHfPrJW9ETTAH+L0WfIINMAwsgKovi00wG3JCnpVhDTAa4a75MBhNMCb7BcEN4o0wPcwEzKG7jTAPDpf8nRKNcCQH0C7SD41wO2YIc2upjTA6xq7aEQ4NMAhkbmPvgc0wMFaLf7vGTTAMJym6tSJM8BW8QbzMNQywN5FSctIFDPANJccBRwAM8BYH8GJdeEywHiwzradAjPA00W7SXESM8CoCbdFT9UywBjLpOAOBjPA8kFJS9DwMsAXOfqxKOAywOpI2Lm8gzLATiHuYcExMsAEgZopStAxwHEZkqH8uDHA8hFGZglVMsC/es9sGr8ywOsf+ov0yjLAYg2F1+fmMsC124eCe3YywCQ6P5VS6zLADZT1lsh5M8C5a++ubiYzwEf3ozy/1DLAVd/J28W7MsCEwu84VoYywDJPTJGQtzLATZA6p2ctMsCbG1n2yFUywCkK4bOPYDLArnD9LgcKM8D9UB/CthQzwJPfXTqKrzLAVQjEP80fMsDBsixERYAxwPJprO8CBTHACDxSqsnsMMDH+Gc29AsxwI2DFTmWGzHA/ekWAwjRMMDxSPMQUqgwwEno1BH5sS/ASGT0ZMe2L8BdDpO+ASUwwG8TKCi0gjDAsVjzvnCzMMAxnr9XI4cwwM/ENB9sdzDAhBxAPOG/L8DNBQ0nOCAwwCfnlZGZ5C/AF3X07PrdL8CLItcBnzAwwLbCy93OczDAwVaDQN0jMMBhlPBTMEovwC1XPxDSOC/APwvVmYqhLsAHoPvMG8YuwDC/AEynIi3AcSKD20nALcBxEDElJksuwPyK0Ku7Si/AATOUeIxeL8BjaLOwnQwwwLhSJyobKy/ADfbX3fKVLsAcmwAb9HAuwFVkXHEYmi3A1c52kYv6LMDr+aYcFlYuwF0urWXt3S7AkU9dOqwFL8DBfVvV/8EuwIQEozbKWy/A65cAkbdqL8BPBB1Th5kvwFjKFuSc1C/Aa6s0Tx8nL8AxBHq1OmsuwLXh78qwbS3ALPL3CyqMLsBM91uoihMuwDAeIVxeCS3A8F9R45WALcA1abpg8xIuwFkRY1k2Ty/AMWJMfBrCL8AlDX+5UlMwwJwrhL8YWjDAcSNeBxpcMMAN8tSFZZIwwA3dmClGzDDAT8jtS/J+MMDMM54Dmv4vwJknyC35ozDAASP4CxreMMAQQTzpfdkwwAmEQuUc3jDAdyM1I4avMMCUiqT7K88wwGK10xUxPDHAvzPRPg9EMcD27/s+PKcxwISEpb87oDLA9eOxyUqlMsDm49sTKNUywFjIF4rkdDLAJZGqHi97MsClWa43+XEywENdG6txETPApPl1oWqnM8CFnk9Doa8zwJtzhntOzzPAMQWjVUQANMC97rqjkx40wCTgKb8SIzTAps6KIhz+M8DHzpq8x/YzwMgIQ5CZizPAIMCjFWh+M8ANNmKykGozwC8sv0VhYjPAq1JfRLFFM8AR105gXEEzwIfDozYPRjPAq+Dy5qlfM8AFdM9frwAzwJIEEkntXzLAYruaDLNdMsA/3G6sOZEywEXGK4inTjLAu59mmO5PMsC9mSFsjSMywDRf8+B5yDLAYPwT+KzCMsAtInufwbQywAIIqjAx3TLAQUKBpV5DM8CJqVqgoHYywBkOct4ZpjLAM+x+cFN4MsADz4ui4gEzwONbgbWKDzPALv2k50MTM8AZWesc3JkywDmbEDtjZzLABjoTFb2zMcDB7/U8x+kxwGzBwLcmVTHAR/5kOD5kMcAHBOL1vQgxwF2bdk6bUzHAyrpfoIvRMcBBK1WmgjwywPh9PvEbqjLAldJoDZk2MsD3YR4AQzIywCCIQZRQQTLAW2/r1aCBMsBtvrQfxiIywGJG+N3MnTLA20GIopLuMcCVwuIoWpYxwDB/tAL9QTHATXqMWetOMcCNpalLwZ4xwMpg3nYDzjHA2RcDx3OIMcAJbKJi9XoxwLOzD4iQpzHAnkNarmhOMcAmuGLExEkxwAFC+Qb6hTHAo5ZSUyKgMMC5nkMUh1UwwK/gK/tHLDDAU//ovCxoL8BHapWw30MwwNt/UlxWOjDA7y1FFJrDMMBsOsa6gZgwwBEi2TXXcDHAsFlwA+S/McDwP7lOYXoxwAznJnnR8THARfmCwPdjMcB1t/pMrnUxwF/ArlqSgDHAuE3XwTX/McAbuEhEJpoxwDpSc50mcTHA9dyqwQG5McCuPIuc4isxwDVzjEoc7DDAlx6zV1jLMMCr599feKkwwMb2vBBZAzHAyrWe+faPMMDhLpyYpDQwwCX6EuW3czDACim25J2RMMCfzFScHuYwwBYs3//ygjDAU0AJcHwdMcBp/CMbpxoxwNsoolIPLDHAHJu/Sn0SMcDp8mswP/4wwPByCJBkqTDAB/I3nJFfMMBOsNGQZ2cwwHdLc09knS7ABOr2Bp9rL8DMmKsxMp4uwPzyhG3IES7ANDS2m8JGLcDFVd8qD/crwFnN40NUlizAaxQniaErLMDPs1bsvaEswLGMH8brvyvAP4hHGDn8K8CLHLc6LqkswPj7uRjydCzAIcX3LUQxLMDsnHkBmlwswIz2ghaP+SrAoxMmEDGwK8DLeGwv8EsswGDn8uHWIizAPXmL25cIK8AM32gerTErwCjgCf5QnyvAL5I9vOjPLMDNrhJqJhoswCClkdgKpizAT2nFKs/MK8Dl6rnI7JwrwJPcUkpC+CvAOBaZjrO3LMDlemt+GeorwLMi1KdQAyzAjTj/2VcnK8Ab5+nOxwIrwEdtIutOsyvADHRZRPPFK8BZiEgb7MAswGUWJnBmRS3AT3jDSjnnLMDIfX6hxAAtwCTFCSwxxi3AGRl+iMlJLcD9IxlUDS4twONbqUDSNSzAJNBGwXb7K8AzNO9TtFUrwNtWvUWn/CrAkx8f8Rf4K8A/QNyBxJQqwOS8qNkgqyrARW7+GyfyKcAYvtxWPK8pwGl+VhGXJirAaesCYgf0KcChXqQE4xAqwCRJpaMhlCrANSeKi4xbKsB5juN8vNAqwFezPtDJtSvA4O5cyj4OK8C0fj8XsawrwAt8UV88oCvAB6q+dleTK8DRBvk2B2QswA0wXD/2sizAgHP0t9FaLMD8G01X3qUswPFkjj/X3yzA8YsHxtl5K8AvT8Yp9P4pwO+D4RCFfCrAGQVdeFVuKcAYd6tYQeopwKCJv9uozCrAh1zlxi89K8CIJepE928qwOGkoCOs1CrANX5ioRahKsCVCuLpW2YpwAODiF9j5CjA4NZILa/9J8BJ7E73qnEnwERePtQZWSfAFR2fFkYCJ8BfDU+g/18mwDVNgF5hbybA3YJ8Ogq+JcAOTHq208MkwIjmurz22CPA9+sKUfWnJMCI3bkmPh0mwGleGtMUASbAackNh7QlJsD9KzB2YOsmwDviYXV1hCfAx5oT8XfTJsChZ3CTiaYmwIdQiIhnVibAaD2cQllfJsBjncbrbq4mwKGtkLL8hiXA7JlF2N53JcDT8zxH6YYkwINPNQvKziPAYLTMHUXpIsAFdscjQuUiwNk0qT0OpSPArf0RWKWEI8Apz42USQ4jwJGK8+Aj+SLAAYfdG2FGIsAt6NCyu2AhwHsFC2KZjiHA9POBkxBSIsA0xqaJENEiwNEBFdbAZCPAsWfOb/fqI8C74h+em8okwBPXvA1PriTABxkCS2yGJMDKn2yip0AlwLPCpG5s2iXAAuoH1BcyJcAr7TIH4lIlwKAhEiABvSXAKYuxuz25JMClIpCRhpMkwCej7+1KoCTAVLL2/dIFJsCZxWI+828lwPnSwIaOZSXAwfGimrbkJsBwN2QdHd8mwE1GnRzkdybAy9QPncqEJcCEpwb+FAElwMxF+s6JbSTACy4Ad20SJMC1oSqiCS8kwObep3hR5CTAtMLuKmbQJMAXCD26xeUjwGwS27uJYiXAJ3laranpJcDPykcobdIkwAUxOiG6YSTAxdRrJNJyJMCzx1ynkFokwKShj/VJICbAfZ1qDxStJsA0Bj5+9CgowBHAtEZxMSjAq+SD4QbOJ8BEeWs/+rYowL+xKlC/jyjA/Dxa0PJ1J8Dw8Gusm/AmwDeHZ85oIyfAA1pCZtYUKMCDeiuU45cnwEMbh2cvTynAJYaz+EuTKMCsZ3o0T9kpwKDB4NkEMSrAX8aElog8KsA4t/6cMJwrwOd3debWnivAbRp+cxEfLMCL8WZ2fMwrwF/oOKv/ICvAVzcdi3IXK8BDZ3+A0cwrwL++T66HQCvAeRkDeOrBKsCNgXAQ978qwIM1c6f7rSrAVQNJMaWnKcCA+Aj9N0wqwD3foYCegyrA7D1Ac8x8KsBPy5W9kjwrwEMndMUqMSzAuQcxC4irK8A/9zH/iZ8qwCNx/L/F7inAryH3L/5oKcBg79VOv1cpwFmyLc++NSrAiOpjBiP/KcBo1xtpCQcqwDuXOZsDQyrAgKfa09RSKsAfUGBv+wQqwO0G8z3SqCnAm8zhfknhKcDdtWbjccEqwHNBgGNZkCvAbfnPrIl5K8DBeFjKy24rwJelOTPxVCvAWCud5lVpKsCsolAueSYqwByuCXRc3ynAQ/bY1LjTKcBo/9reVq0pwMfruYJ5tyjAcOGa0RI/KcAjVTJb0VUpwIShqGL7XynAfNWe+BLeJ8BXqyMaf5QowA2sfzE4vifAWdI5XIcDJ8BNg1j/DoknwMlT2DKsfyjAaYiVWde9J8BbXyUzCUgowOS1ci7vNSnAqCO6M6G4KcDZ3lA8YA0qwKUzH97H6yjAPGl2JRJqKcAdrgKDVJ8owKPxzeQ/pSjA8UCfVf7XKMA4UKqWycYowLjrSIfsvyjAdwcuqAtwKMAfPJpC/pQowLO4AQOnFSnA2xqmFGweKMDNh8VbD2EnwH/UfPPYDifAwHFzYrvkJsDbE3LniUgmwNMNbxTz7CXAlZkOhXNAJsB95qgT0uIlwMv/HVx3+CTAOaXMtH49JMBO7nwB+FgkwJVVmoytJSLAwyvU5Bo9IcC89LgnxBwhwIzAtVgSIyDAr7VSUfnpH8DYa8FhmvYhwA94+EDvoCHAgcy4FsU+IcA9BPkWwvkgwHBMekIj2yDAEFBdviMvIcA9W3+1PTwiwK7PW7H4siHAEvY6dbxdIsB9L/5ixA0iwAjuWeB8LCTA45LLGK42I8DVywaojUQkwIM6LrN3uCPA3QvJysBfIcDm0e7HqTIgwPNDzvSWnx7Aeu2bjd4JIMB04MyakTUfwKX88pkdKB/AurWRnc4eIMA05yGn88sfwDgXNIjQNx/AbYP/D4WkH8DruVSpkMIewLNZ1A/dLx7AWQrVJaoAIMCzqDIhsvogwAP6f4BVLCDATL1r7DpZIMCARQfPrvEdwCAvDUmWgB3APwzgaug6HsA1aIcaMiYewG+VZUU3cR7AHV9rLCsaIMBq8JP58BEgwGHRqnEiMR7A24YCZ2JoHcDdQB4kDQsfwOBq/hLLlh7AvBroHLfzHMAs4yTXKYEdwAVjjZ5VfR/AJFgNVz8YH8CiGiytWIEgwCM424bA7x/ArJxZTZUaH8BQCCJOXK8dwNAUgcv4XxzA9+fanCjLGsC7njL0KQsZwCnWRDZ31xnAzQad38j/F8CwKKhv9qkYwEupFbH35xjAgBjlYXRqG8CXLZJtMHMbwPV9GbLLBRzAV8foHzVjHcAXbr9CrQwewERODkZSgB3A/QxuIjwmH8DYPRUV230fwMGfwp1HyR/A3dBKZGq8H8Bl45yy/EAdwEvyXmtqQh3ALQJ4AMT9HsCxWBN0GCwgwJ9lKicTZR/A7yzpeVaFH8DlQajhj1IdwNitJ+1unR3A79uaMMr5HMAxz2cqxWUfwGi58ADF5B/A8DfvtjphH8B5IedZCsMfwBzhxLWp7B3A4J5rVmfwHMBLxbGysYsdwDELzAfNlRzA7Fb1lxD5HMAtR+LStsUdwOwQdlzOphvAeDrPKna4G8BLAtC3x78bwJVxOW0HJB3ARrMcQpqEIMBvi3YH4eYgwMPD57D2TSDA0eHLwvXnHcD/iOe9PNccwMVfoMuxEx7A1DVH4iYgHMDHuh7HnzwbwDRstNXmyxzAneLjNlluGsAkFznz0RkZwJ/CoryXZRnAPRN2JE6jF8DYaJ/B9LIVwJkkRlRnQRTAZRfdiaNEFMBjgtYfCqwUwESqH+UKfxTA0cr4ErPDFMAFrMjC4UMUwLRuXJjsjBTALZSa6j0nFcCvdsypnq8TwEvwAMUC8RPA//MVx1ZuF8CB40lFjZsWwHXDTTO8dhbA7+aGj/EcFcA3TfsbAp8XwPGFckUVehbAkeVE/J9+FsC0o9aioq0VwEN3biHyMBfAIT0rFQpwF8BUmciv4NUYwEE/Ce3W9BrAYELUIEMqG8DETsSS7EoZwMR5wAgjYBfAR9F+PCHcFcAESjOAZB0WwGyuOxFpjBPAsicIJjtEE8DDuHp9SHASwImg3Cf+ORTAvG2zD7ZtFcCdV/aCqNQTwEBykwtz9hPANUYtCo4JFMB1YkcFM3AUwODXtHEgXBTARlESDXW0FMDrW/S5BO8SwDDEpq8fRhHAM4T/gU4oEMClu+5BBToOwEHSH6LCoAjASOD+ESc1CcCV0/uV9VQEwHU5Vo2vlwDAcdlcliC+AMAuFJXQg8YCwKarWnC8kgLACuhRviE4AsA/rO+M5WUBwGN1hOwKzgPAk2maFLlSA8Dd3hRW7Rb/v/mLRBe8oAPABM8hXy1Y/b+hfxpqhf/9v6DTTwXc5+S/o9NqDesi8b+9Ds3hGjjyv2yeT63aKPK/wcQ5QukQ67+T2JkL1LTqv0Mz0Hc/fsu/D5NUDVmO47+ZpFfDsxXev7NvXgfhNe6/XQVrFlhJ87/qVtTjyjz1v8HCftiBvvq/AJbWKwur+7/whmDcjN/2v0WJ9COVHuu/ggB+8MoR4r9VWZsZwqaxv3W6kotz66g/WtGcjaEywj8PNBnn9S3TP7mwKkEeBME/VIzVqiQ81T8NHQ3W287Lv0up1aB7g96/tev+HWu33b/8TjQymNnPv1C2SfUomd2/4XuAnwzh0b+VH0ZfvDmCPxfKkIoloK+/VcMqMOuXcr+XviHjCRXgvyT/IHnebNq/QxBUKkMN479w9kdHqgm+v+952Et/BMQ/J2VyDKi6yz9z28NY68TZP0xJuNjfIco/XagW+FKBzz+L8zOp8NLWPzDd1zkz76s/HxTOTqFV0z/5oOHnnMHHv3IkQxzIk9E/gQrI/oHY4z9V2xRCULPaP/MbYxcJz+s/a7tTOL5m2j+AS73pz6Cfv/iM5xQeUb4/1VOIdZ2y4z8AH477RG2tP6PWkg2XcMk/TXjoIeyv1T+9MtjAoCCxP4uesrSgMpS/JZcy1C5e0b84vkNutFvmv6N96Ow/SfW/Y/bfk6915b8XWEH8TcXjv/t3Hh0ESsC/1RGcqFCv5b9A8XRsTmXovzXGcrIu9ei/ABg7C+zXUj9xqYLuBNDlP0CYHgPS+Oc/lJwx4Fft8z+bkABAXTr2P+dBCgWvIfg/bXiiH45VAUBNkAxrBRcDQAsylpG8RP0/EDWsUWyPAUB7Ud4YwJ/7PyTOaQK1Z/o/JccfnWZ4AUB4qOIgQnr/PzlHoCfXvP0/eHjv2KKt9D/lLjgzkBntP5Q7S2bb4PU/q/T+XjaG8z9/dw83cy/zP630AqVNEOk/2/+dhQUU+T+U6xSaAMr3P9gJjzC7d/k/bYLuF2Z2+j/YhayG9NjyP/m0fwOgtfE/k6YFueY17T/NPVEfSFviP2WdTtokL+s/NZYJRbHH4z9EsR9dcsPqPwBMgBqVvnE/m5EHe3275L+xWrcUGNzWv63x+KMTZci/lWojlCA5079rOxIL3bqav+iqIYhWMOi/IWmvbNeO6L+rl4Ifn27yv56/Jg8bXvK/ubSO/X4I4b/WZ916pifivwssIw39lda/BxPXOeuM6b8iDcgLL93hv3BHUquElLw/+Zk56FpK5T9Uq4O+bl/oP6gSoeA34eQ/c8/R1Bgo3j+Zj8/NKKLSPw0kEpTuGN0/XS84S0Obxb/7lDFfcYS1vwRETXsDWrE/PRxT2jAZ0r9sEfgY0zTjvx1MVSORZOq/TCed0bHH8b8qdIlTKbbzv1nhIjtvDPO/1JEZJ2z48L9zfVVhNt7tvze2/RQJvPG/Q4DG1+d57L9goQmebBrxv9fH3ZXhn/G/eJWw5RKk5b8BcOf21Xzhv2OhnduJtOi/1eVtxvlp5r+dygWT6Nrxv8kLFY5u0v+/nJFUW68KA8DZOtwf9br8v4C/HfnZrPu/IzNAzXUY879Qe+BM5fj1v0yEnYuS5/u/iNjHqvw3/r+FluC7bFX5vwCTg1d5T/W/xTNuGoVF+L9Ud96Fvln0v0u7TSfdyPS/2QJdwMx29L+vXjCa+uT6vxsHpiZBAf6/z/i8ZLU0AcAwP/FUIln/vzOIBg2qfQDApeiQEuJ3A8DDn85Hwp8DwLXgkmNMHwTAKWMfZi94B8BYGXCZmoMEwOe+ih2ouALAZxJnGseT/79YSrgo4xf5v+nUBjSOLPK/bVOQ+fvK97+JP5vV/g/+vyrdY5gUwwHA6tKSrN0gAcAtxHcm9ZMFwHP1o/GgrwfAkEZ97XIKAsB8e0L5gnADwOkOp/45nAPA7BvcoCXcB8BAUrM0UhsNwFRs0R+MRAzA42nQNRGpDsBM9C4gJD4NwFmk2Uh8QRHAgPZO92KkEcAtQq5cGpgSwLiJZFp/wRHAnBm1mknaEcBFplaM7mQRwHZmK/LumhDAe52HYNcoE8Cpn+6i6scRwDv3imWMaBDAVfeepBhtD8BrfysmUgMQwB3xYzKB6hHAfdM9kMgaEsCyhFYRFvITwNVhp6YPKhLAHPxaoELbEcBJFPICHC0SwOWyfO9DUBPAnSTYY8WvEMDnfuPDwOgQwLEOTL2ERRPAY9MKpha2FcDNIVMM5FUWwMAnuuuoPxjAjRaDvK9LGcDz8pv8DfQXwGXy8Qz2ehbARC5DF0nrFMCExnLHxrkUwLiUPl8nvBTAV3/NXK+oFsCICmdw9Q8WwDs0HRFtZBbAT0TMYpVDGMDMkKPWMMAYwIDDeq7jZxjAVzEwBIZbFsD1DJLCtRMWwOWQo+RZQxfAiTxnqmZoGMBgIabf9IoZwO/j9LK9+BjA3bL1MtZvF8AK+wGkEvIUwHZw01wysxTA1JvrN+l6FcD1YfGcpZgWwG8kHnXh0RbA+2m7sf1oGMA4/dqUbxoZwABusIfAJBrAeNG4HFSgHcCdGogZYr0bwOTBIsf7fR3AmQMRq3JoHsDsHbpptjQewFiJg+Da/x3ATdUp5CHAHsAZkNKmtkwgwCNnZO7ukB/AHKJiV/+wHsA/fsJJERAfwBesYjuPtBzAfVplJeNoG8AMFf49ZcAawLmJTgR29RjAh7/aGXg7GMAY+7PLNt0ZwIeZ86/6VRjAlY668zAvGMBsIbNLgY0XwHfhZjlfpxfAzNn+VdUGF8BDaMLL5asVwOEtkOkxTRXAYaLKA2mNFsBJ2jEQtnEYwAjXGWOvhhjATWDWOEBDF8A/dR9ocuwXwFBt67VWoxfAYwXEH8ScGcBnJ9y8FF4bwL16o4G4IRvALWk2phYzGcChRojWi04bwDXD4k05Ox3AbVcywZaoHcCxPMPGLH4awKwvvAb9/BnAM+f7FkbZGsCYb7/5RNgYwHnoW/rD+BfAPbYogTAfGMCBl+ICoyEZwNkBz/e5kRrA5/GGOMFoGsDxFxwPeckZwDhGgY9bhRnAo345xdIZGsDjo3Gr+i8XwFtAzVBHLhrAueYYaX1bGsAPsT2HD/sZwH/EjGPsyxfAhUkZQl1uGMCl9KY9+G0XwE3P9vPSyRjAhOtRV4R6GMCf1jfmcbwVwJULchftjxTAiShSE7sDGMDgZjYISncawPFc39Hy5RrAvKfP/3EtGsBjiDQjzlQawJkSvYqCERvAq/Qb0RmtG8D0hw89vWYcwAQC3FW6IRvAjBX6OgMNHMD7UBTE1FQdwO2gEzt9AyDAPBfagccAIMBy/y010AAgwH8+XTQyMSDALUbYJ+JLH8D1aW+gyU8fwOfkmKua0h7ApGS1i7mUHcAwzVRTaiEdwFghZl8wXx3A/6779oNZHsAuZvYnUjYgwKTqbO41pCDAnaOaS4FgIcDpJ4MAIRIhwM/sX3YE5iDAysKZ7rAQIMBxw1xiIK4gwFG7a8mSLiHAvOrNqQAJIcCVMjGtK5AgwBWbpvFNKiDAgya9VQGRIMCl8YNuJrMgwC7w0X/AryDAHR82mSRZIMAnLrGwqzogwNlgZALL9SDA4FgT1gEoIMB+n7o8Di8gwG95ZxeulB/AJxHyr//zHsC9n0W7biEfwNcG8Z8dFB/AY33V2uL2IMCQSnRvtyAgwCjyO+gwQB7A6FX0piAsHcCRlTfAiDEdwM8ApVTfMx7AKUpE4H3YHMDU0GZX7rkbwF31WYcfDR3Au4zRbPpOHcDAGL687WMbwGAXLW7q4RvAANZoH9CAHMBXnJDbvIEcwOjrIdD0qxzA/DvXNe6ZGsDDDFj4sXMawG/2T1NpYRnAkd6jV2JqG8AEP6B5q0wbwE9+CJzMdB3AVM3S/2cEHMC0qO9LcFgbwAhTvXkt6hrA0G/K2YUwGsCgY3tLpsIawER9+P9VJxvA2ajkt1V9GsAIf+PF208awIs9jt/PKRnAmNGWHfrDG8CZXaPKhPUawDhwf4bMGxrAkX23m9iEGcAl6kT845MYwOlshniQMhrA0V0eKbObGcCl/2obAncZwFx60C+ICxrAR0rXdbo+GcD37WKpdhUYwJX1b0iAWhnAo9FdJhi9GcAjqENoNQkYwFBNVNaiIBfASU3K9OahGcA/4BoUaIkZwKRP0XVIqhnAMILmnGVdGMBgEdIf+boYwBnQnhaXzhjAmLKWT/tJGsB9u+maJ+YXwL23CDvxFhrANRll87kDGcB1Ebjlmr8bwIlRtCQYGhvAR4yH3Iz7GsAs/rU8Ny0cwICk9By5xxzAfeo/p92FH8ANDVSUwL4fwDmVPtN+ASDAWWyvwlMfIsAVqVEKTuwiwDN+2KFAMSPAaVYFAL6+JMAr7XBDz5cjwHSaL4wezSPAd8OIgLX+IsBmBxIu0jMiwPM/+XDcJSLAMsuHc6dsIcBB2hwLro8hwCFyVtyMdyHAh5AbnzKRIcCRoOSM5rohwBe99AQ+ICLAsuIDif35IcBHjYWLX3giwPehbZmV+SHAbaiBC9+ZIsBWGOR4vTIjwP+N3BuS3CLAX9YkzwFdIsAZJpGrGQAiwOeTKMVX8iHA0YVMlPGPIcDRs7eJI5whwEwhOdmo5SDA2UWvDoesIcDjCoc7ZAgiwHMbGe0SIyHA2+xiPwHSIsCdFigmfXgiwHq+c4Qw+SHA7PcSKRYAIcDl8QZYdzoiwGlDM3LXsiHAvdL7Tq0xIsB6VGvANR8hwMvpXIAwHSHAXV8rdd1cIMArCUZVdQogwKcFcJK4LB/ATFNPRtpxHsA3DfTkeU4dwCSW3lONSR/AG+7+iJr+HsBuTCrqSMQgwMe6CaLEgB7AlN0xaHVRHcBTNOFssAAdwGnLqBHFiBvAHy1iw1zRGsAEdhoPKT4bwGsJ6XfBPRzAzIIuASBLHMDo1QYSYKkcwDOn5Zl5NB3A3BMQ1dvOG8BwL6+pMyMcwDz1QRI65BzAtZzM6g80HMDXqytChQwbwP+bsqCjjR3AH8pCxd6AHcB4ZBpCrb4dwP8QlikXGB3AkzZtnIwPHsDEa8W33vMewIUkEGLdQRzACYsSqvv6GsDUxbJm6GMawBgZqmrI0BnAIf73NfYAGcDQPyh4hpgYwOBrFy/mfBbA45xKIF3EFcCNLn3CbN0UwJsOT9KkTxbA8bfhpt+YFMCfnOyySPQSwBXqqmBj9BLAKPH8w4jYEsBpcVyBxNYSwGRA6Na8axXABdNocL0RFsAMZcsFMkIVwLo2oJW5BBTAan0i6sIsFMBnk/iun0oTwOFhVwhhbBTA21nhlGTGEcDpxV3ERsoSwFQFGzVsdhDAuPMqr5QGD8CYsQvUjmAOwC2S58hlUgzAvEvWJgrMDMCU8DeH/QoLwHmKf9/WhgzAK3RiwRaxC8BnGxqwj5EGwP7uadCqMQTAMYLLOcmrBsBgs6xfn90MwKOykJpPLAvATaYxOppfBsDuje17IvoEwIAH/hgNpAXA75QbAsqOBcAwAPEu5hYEwL2JjrqlHgLAO56DPVg7BsCp/UioWwQFwInGnGdxowLAtvgUvk9iAMBl1lpa4zb5v+MrcJQhJvW/6QWzBYal9L8u20Et5fzzv48xLfAsePa/iO1WOR5K97/MdSjpnLj5v1/eabwd8fW/YFIqyeqy9r+G3S+OK6rxvzArYdpVhP+/oX2Fi2v1AMBtPmEf8A78vxgMgVwglfy/GOJFpiIe/78dlE0Slzr2v/nPeskxOPy/XxuzlrGb+r+luZpQokb5v1UOVFuCvwDAjFAn+/WKAMB0GDGaxJAFwA2GY/E9bgDAOZ/qJ4xs/L+3ZLuKut/6v+NOH7tVDfq/FE90ayvx978JbSCWosD+v/lfycFwugHASsTdipQYBMAv1yL0JoAJwFCLoNno1gnAKTazT7TTBcBlLo+c3/QFwBgfVPon1QHA78PRUry0B8CHv6g6YL8IwGkU4TUaiwnA6DwXY2L2BMBYZNW+TGEBwAy/UqlObADAC1Ph8rCz+L/FlsBd2YgAwHClXYmIhve/URyOl2yj9r95A8lMkS7xv7GkuvRl7vG/yKJZYDoa8b/y5QdLf0Twv2WfQKU/Wey/3eiilkIO8b9dM0jOvonvv/8IKE0wTvG/Da/bbRQR9L/saij8XrT6v2MiUtKG8PW/SXD3SZ5T8b/tigPlUIjpv0BDimGnQO+/nILoK4jg/r9QI/u1lXv7v+UuwPElrvi/Uwn+NG2k57/jf7YvvlPhv3vRdWxsTcC/kdJ9h1/FvL/le1bR1iC+v7EsVFxtTeO//fLjIJkJ8L8pa7RH4D7tvyAlkpRfFO2/pYMD52OP5L+cnjM7epjVvzHFpKG1dc6/uQy13kgpxr/16X+GuymsvxzuhIaOJ8G/13H4pWetur8L3vpUzJqXvzgN/yaENci/wD++ShOPzD/r3gqAISfYP7viMMuis84/Gct33cqI0L9BOobLLSfUv5vFZIk3ksu/jznjm7tFy79jUP8BBqbQP2XjZ+sXMuI/fP9JbRP87j8zbDnQjqTjP3Sl3e9ATfA/ZRBTEe1/+z/B1xZhNiEEQDgpUvMZTPw/rFuTMQ4w/D/f3tlHcbf7Pz2H09MM7/4/+yIDCnZc/D/8js8jDI/7P3xwB0lI+/8/T2L0sVWEAUAD4lY7rED+P2zAZneZ2/c/H8wGDPlx8T9TDXw+W1vzP8sDJI9knwBAQG+umg/B/j9xmLTLBND+PxG/ZW1Wgfo/jKaEDJ7S+z9xsJNW57D5P2ORWbe0Af4/m40uIv8X/j8h7ChAHk4CQMfSIGHuzwZAlySijZ53BUDKWpcd+QsEQDK/D48gogNAiLQngciLA0DyaLwDN10DQGwzvPUNlAVAp0qOpgvmAkD05lKGKGD9P+T9tnLttvs/iYrCiXuHAkDcBArn3Lr8P19+2TyEbfs/61BsLDAd/D9J5TiJySH1PwhsKsKJJe8/xOha/N1L+T/X/oyrzon3P426YZNayP4/kVn6D1ENAUAP0dVZqgEAQHAjCDXftvw/fASLy2iwA0DN4feLrAIIQDJagGrtVwRAMzcVDmEUAUCdHobjHlH/P3t8DHbblgBAA4onO9YBBECB6JxF02sFQB2O2P19QQRAoXtVG//RA0BOX7VJXbECQLVcyn8l4gFAO+0fJix4/j9JrUeTMFD1P0nw8LZxyfU/2/25V1TF8T/h818uQIPyP6WZqvzTtvI/G8iam2Ky7z+nI0bs+YzuP200mogX1/A/zDsmHnkz6j/tRhWjC5vnP/Ax+RmX69E/kdQpoipd2j9VA9DbGdiZPxVfK19kvso/w+UHBvawur875T5kdpjLv70piz0gDt8/LdSZTrlG5D8AkatmvNOFP8IG3s8ch9M/W9pLQMw82D8gBDbCFMPDP92cw1f28ME/UB1/7Cczmj9jMQ+iEivPP8hknFUQfMa/1fSQvNSS1j8VXwEs4ivMv5/rHefE4/G/dtW/bSE+8r8wW/uC1Xrov73Rp0ZbovW/m4WCUzfw8b/4P9jaLgj0v1Wa2s9Li/C/kagNXaT38L9xQl57m2fzv3UbZKusmfK/USmKZB3t9b87FxXpkw70v3kotd8Lf/q/38sBc84P+r+QAd2aMgD7v3uJ7Gah0QDAkf8ZHbI6BsBLB+9uIIsFwF/t6k+L3wLAKhkDMW3bA8CRA9dgB24FwFXdhxQDJAfAQ63ZgBCRBMDgo6fUtkIDwNERUyviZALA/mExloulBMALoYT1Cg0EwHs5IiJibAXA5OTYINilA8CdkpwWimYAwEE7dd5wIAPAHaS79oPOBMARy1ZMQYwFwFXbdBG+5ALAHVgBh3AXBMD5GmTKExEGwOM4AFhavQXAddKirnjUBMBAXzwL3e0KwGepZKZ6kgjANPcr2M4aBsB69rG8UFwAwIyjC4SRUQLA3RkFX0SEAcDYMLKh5soCwPTQlmn5UwPA37G0JXclAsBLYPHP0OoFwITxs8MTtwXA/+obLNGRB8AgWUq7aNMGwKgvAR9wRgXAC3sJuI9IBsDdtmxwKckKwPz9rDb1Fg3AHGlzFg2lD8BsTLlaiNgRwCkq7OEL3hLAjcQWV/L7FMA9wp8+QwkUwADuERerGhPAa4IColSvEcBjCf2jtmcSwCrUK+kR5xHA3VolzfUKFMDH6O/3GpYWwN+yP5ffoRXAsgPsqowLFcC/FoiZ9kIUwGjwpBXZzxLABfl5Q2RVE8A7Wm6g5voRwHa1oIc45xDAqGopYHsWD8AvNeBqsScQwN0wE+k1uBHArwdEEcfZEsC/TQV6j2sTwK2CaC15bxLAg/XteyhDEMB9x6GOhXoQwNWHoM935Q/A7OpoXMSODsBLl2u8TbENwF3ZCNJhiA/AV8mIFK6EEcC7Xi5ErhcRwOfyIrrmnRHApyhfevxZEsAXMr5X3AgRwAV9POLT+RDACZ8hSW7qEMBPzfH5wIoQwAzBsawXWxDAd1rJxbH6EcD5NruVk80RwEDORm2PcxPAI1LpdXCjE8DHBNxuKrUTwPTqK7GSZxPAhY5jn1Z9EcBD5zUUyOsQwAdQkjUKKhDAVgm41nxJEMB941Mp+xASwCISXZo9chHA4zuaD4U1EcAnJ15Nr38SwNobMUlrNRXAly4i/PftEcCqfFISXiUSwBC6um8q5xPArEwYRHodFcDf28aKyg8UwFTs+jywRxXAS2hKVZxEFsCj+BSRwBsVwDnY9JRndBPAPKNQPT7KFcC3IIXThPEYwOkahxLUsRnAaQ8OUd/WF8DP/vO4Q/oWwBxc4qRpsBXAAI34yMT6FMAa2aIWlxwVwKgN8HFnxhXAjdLygk3vGcCPVj1KenEawBjE4wlGLxjAz0oYRmbGGMAZduJsKF0awBtQp58SXh3AZyE0DJB7H8CyLGnuFmogwGfWulvV1CHAnaBVkc24IsBJOzXn7qojwP8uGkXM/SPAf/40jN2dJMAuKwcm3HEkwLOQoOHPaCXAuyrsn21oJcDax7npLO4kwLbD2mOqmCTAYYBgenDvJMAkPJy0w14lwANptR8gJibAqDzq/24oJsC7RR5i+osmwLkULiXmtCXAL6ePpPT3JcAzpVUQ+nAlwAmoDGYuDSbAN1Q4KS39JcBAJb2Sg5UmwEmv0foD/CXAX1fBkrqJJcAnqquLKLYlwHxuHkAHmCXAD7BqNWOlJcDWpZ80i9wkwOknE3EYkSXA0YvjS6UhJsAPB809mQomwHdaFEq3gCbADzTFsH4BJsCJeTK9VXMmwPHsOLYvcCfAcdx0Ww83J8AQCKG6PPkmwP/DLvlnVyfAMxoaeDIYJsAATiuL+RMmwMhFZ0vcsyXADEGodvf+JcB76SLlKNgkwKc00FkrSiTA0SHS3HBfJMDiQJFegickwGibJv+TfSPAlZZn/iL8I8BcvxD8TCQkwIggpOgBGiTAk8PXS3K+I8AyfIMBn24jwKE606/65yPAGSL8sIm1JMBulhqPQSMkwNtZDAsbCCTA8ZUcceUfJMBOnHP3Mv8iwDUuuySKCyTAyetUAEOHJcAsHarm4tskwDpMhnGSiiTAr43wclevJcBn80UXNW4kwB2mhRea5CTA/MaMnohlJsD/fGWO4NwmwOWYaQ3ldCfA7JcPI6cUJ8CrfNLxLi0owGhqyH4HayjAX3WgcH0QKMDvRWUvLY0nwAOyKzdw0CbA43iWNn/VJsDNjTT+PtAmwKvgY19IKSjA35kzmJQkKMAHAycNmXInwKvgP3m4XCfAdeY7J0L9JsA9LRNJojQnwPcZ4X1KlCfA5FhFieltKMD1aDsA3RkowOGbgHXV5CfA0/OE5ecrKMDgnlz0xSIowCsm64arGyjAUN62zD8+KMAEaCsP+3knwLzehVW+hifAoDIgY9fpJsDp+AUQbEwmwHg/g2LI6CXA43dItI1gJcDxybhkT+YlwKABT2eRXyXAFa+Y/5SMJcBsicficgAmwIEKePok5iXAI+8F4I4IJcCpu87l64UlwG0n5V69ayXAL2geQF3LJcDJ0IbcDT4mwN09N3I+FSbAoRMdkQivJsAA8ChFd3AnwHWmae5/2SbAfzovFw82KMAsWAqia3gnwMOd+dcZoCfAeM7YM3QlJ8AzuT98T5YmwKyewuJfCybAZMeH0xH1JcCNGaF4+ygmwLEOiBisQiXAB62uSO2OJcBtS+raiGUlwKG+D6BRXCTA5OUb0uB+JMAXWkfZXXYkwFH7GmpxTSXAcAzUWoRXJcAMkTp2DUQmwJRnd6t6iSbAqwGK/NCZJ8AIeNgbu/wmwF3k4u82OibAZAzfzZxAJ8Bz/eBVUIsnwACfMunSkSbAu2KWmIN5JsDVSF3nK+gnwBGlsIGewSfA+SJ19fy0J8CZsrgAxXknwBnQvfzj0yfAhfYo20C4J8ADodb1x+QnwPzMj/316SfAdfdpb+E4J8CRjL6em+QmwPhLDfTsrybAVw0GSbTXJsB9xh8OmvwlwLeHWq0CCibArc4QaRG1JMB0dTLQv4wkwNN8EloN+CTAZN5B3k26JMD+fF9GxS4kwCXapJ4CVCTA9WLtjRi6IsAjr/4OVbQhwGcQg0IB7SDAa5SciFNzIMBQpQz74KkgwFNGqnXNTCDAi4YH8AdeIMA40aEU9HcfwPdFVbkjkh7AS/eXlrCGHcD5cJoBtyUewCEXe1ZzYh3A2RYCI/c2HcCVjaLsmmgcwK2RVINYAx7AR8Y21lnkHcAgH+mTgu0dwKeqLn5Vbx3A+b8y1ZEjHsDbhJrl5AQfwCswUHUcYx/AtJZBEdw9H8CtdkKVcikgwCN+hkkI8R7AYAMbB5fZIMBkH8VYaJ0gwEga3yMZwiDART2eCjB3IMAwtnUJAbogwMSfvwc/hiHAz6Jq85eVIMCx0C6KLdAgwN3q5ZJGAyHAoaUJPQPXIMC31n7i9O8hwFipA/Se+yHAU60GxSBTIsDxF7UtCUsiwFVtZrFHcCLAaClN87+2IcBJxm9ydpQhwD3eQK5LNiHA7Zi+vVqDIcD+cDtGD6chwEmPfGba5SDAzRq3PqMGIsBX5uujnB8iwN28l5/NsyLA+t1AMe7pIsBq8NtEFlkjwH2t304R0iLAL/AVWHJiJMDxZei1fDElwFfdYgmh2CTAEcoL/os1JMDo/CyGycgjwOz5F9jaaiTA0VzSjmUiJMBBqPVDLqgjwNtUum3jZiPAv20MBgYfI8BM0e4CI3siwL0l5Efl6SHA/2LV4s5lIcB9K1kWllYhwPy9B2DyQyLA44F1YoY+I8CPQKzEorYiwPNXrlYyfiPA8bXhm+s+JMBrds8SuVUjwM9WqPtjbyPAa1+1YNGuI8AgpGQg8vIiwCMkd+nAtyLAZENkC1w7IsBheMNHx5wiwKuf4/rTYCLA+a6l0b7HIcCH+mxpyiAhwNGPRZIFWiHAgZhY+o2OIcA1RmsD41EhwFmuYWtnlSDA8GedW2i6IMBT0QVwbEQgwNQGJ2fQoCHA8yMVXq5pIcCkOmYQUBkhwKDaQQFH8x/AoFRwDNhcH8BnkL/ldakgwOsIVJyNtSHAFGb6NAAbIsAlqRrUn0whwJxsldBm1SDAKd5G9i4wIcA/T582IbkhwKIWAw942CHAc++1s/9lI8CgptOF4W8kwEtMaxvI0SPAcYKg6sKyJMBYco9r/4olwFFE2thCXyTA79c8piHuI8DP1GQvtJwkwGQ3f/z1NSTAajVsC8JKJMBfz5cXjEEkwI/ACPyHDiXA6+ZQ+zAfJcDx4E6wD1AkwCGHB/k/tyTA+aieJ9ikJMCKVeBcgiklwPBuHLfAByXAwSFvxO9OJcDuEUk4VcokwFRQeZFcdCPAnziKjqOtI8A2RjWJdmAjwDWGxKhfpiPAQpNaBkAPJMB7UdBGQfwjwGDljfTj2SPAAdnDKa0PJMDnNxiU7l8kwClOZCZtoCPAFXGB8WtBI8D/jO6TDPohwLZ+xXfmwCDADYvhk8y9IcBkTwARSSYhwIkvrrylJyHA6OgCvZHiIcD71+8J408iwLVL5Or3YyLA1aFdrUHfIsCrP3XN74oiwBEsZA+Q2CLAlV5EjfKjIsBtZOWCCcYiwNHclUCjAyPAL/DBlELLIsB8T6AuuhEjwK7mH7CdUSPAoJcgOS6IIsDMuc6erNkhwDV/4ehb8SHAOlYt2aEGIsD5XGdmsrEhwEB++XjTXiHAk3HcbXYmIcArcAp+6vogwDtyNPqtLSHAoSMzww1KIcBVQEb5x3MhwO9qK6NiaiHAccUgAk3DIMBq9S6D2lwiwJJnQEZrRyLA9zaZEr7cIsDpBwmkDHYjwP2cuEhkxCPAPRiZ1SG3JMCtojlq32kkwOyeo2+DayXA/apkxzbXJcA/9GlTxeQlwPV7rNDMGSbAgH+EY4G9J8BPiXMl85UowLwrxzz9UCjAdftnWKyAKMDNmXeTukIowFkfswZz1SfAx9+BjgzAKMAwjl7QznsowPkLoqOJ+SbA3LKQlc5CJsCt4Ye0pEgmwCSoP+1rXybAo5X8BuL4JsB7sGrIEBUowHlLMZNZCijA8RkIAebuKMCNjsSiSJsowLO5aCMA2ynAXK0gR1Q0KcBzJpmKmasnwANBAE3SqCfAQKfRCOveJ8BlHiHHCKInwHUfbB/4EyfADWda3foaKMDzdk2SCloowHAV8C++WCjAHZ7dE/mUJ8CsZfw+NuQmwPiB/jdjFSfAC99Nr3LsJsBpD3yQj9MmwPAY4phNECbAn4YwbFykJsAbl2gmpo8mwP3G+4X+2ibAA9885It7J8DjA5MV+VEnwFvWwbvzJCfA0QvJsuBfJsCYKGOtI34nwL9LlAAxnyfA3bZHES+PJ8Bks0C814InwJgrsuSDLCjAD/ivuMWDJ8At8pluR6omwDT/TTbWdybArzXcm9lTJsAxXxchjZomwM00Cr7XtifA195byfysJ8Dzf/B7CpkmwFf5dfcOtSbAqLXpViaHJsB7SX22z4gmwOBzpnFIeSjAZHonkTaZKMDXtdaqANsnwEF8LKZn6SjA9JN322ANKcBnmxiMNiEpwBxj8WaIQirAXw7uXhZWK8Cr3H7I2YMrwDsqHOU0ECzA81j6Z3aJLMD8bjruvggtwNURRHlE9i3A3e1C6jLELsBRqUOQGVQvwGesSucbfS/Ay6iTPr3JLsD1L9ynaw8uwHEyG9ubgi3AveB30KTMK8Co5ngnAagswIGPDdBGWyzAa4ILTXh6LMAfuMIWWeIqwF9sg8IQlirAJGczgP2NKsD5sjsHma0qwHVSTxFJ2CrA+JM5p8DNK8DjF+0Ree0swKtponYBVi3A1N5nGj7fLcBX9p9aiiEuwP0HsexPIi7AUShVCRYyL8BNIuHScgQwwH0WU1BSHjDAGBdI9blrL8Cn3O3zeOAtwEh/HVUK0y3AcEniQ5bILcDLuir/y0ktwGG4PTv1lizAn+93+Yn2LMDjMJ3Jw8YswB37BmgnryzAM3854JBNLMAAN6d8K3YswLfF3cYfMizAeBcA/kD+K8DlZNQ3LgwtwLzhTP6QDSzAxyfyvq4GLcB38sFaydMswPvwQ84NySvAnWMLuKdyLMCL8zTcUhEswCeHINC6GS3An9MtWweOLcDc+CN025suwASe0fghyi3AQ7BQp4IAL8CWxNthiREwwP9c2KZD+y/A/XQS974JL8AYkGJhIbMuwAX4rBLd/y3AlM7AxkSiLcDdQxzmaZItwE8QTt8QVi3AazlJs4kpLcDvM/fSu0gswAQyTANyiivAwMPkpSb+KsC9dxJkHeErwK9h2hQ3DSzAe3sU02YtK8B0Dhy0x7oqwISpgcUClCrAsH6Nlwf5KsA8VYdR82MqwOAY0Pet8SnAp5ZUDxNcKsCJyjYKJnQswE/+NJ2Shy3A7TyGDgyfLcA13mdD6U8uwHs62QX4mS7A299FTREWLsDsxS/79+otwMvYaNGlFy7AEQAv8FMGL8CLmsS3jDQvwB2mddb7By/AhychPgsRL8AxOWwbgpMuwLQWFgdJeC7AaSQnnzd6LcAkpeIqPQguwA8zmYmGri3AyF+k1eRqLsBpUKzF63YuwJcFjK8uli7AhSRdpjeiLsALs9YhZpcvwC2/RjsVZC/AMXuGAsYSL8B5aVCAiCIuwASvU0RBLS7A7CnHLxXBLsAVS9LZTXMuwHQFoBf1GS3AKCtEZSKULcAbiV+IpDMtwAGiTVGPti3AAPbgnMwNLsBkfBwkyq8twAiBxbntXy3ANRys2UcMLcAA7K1sIfoswBfKgiTFtizAiXV5/eX2LMA/TAA/DKwrwOOCts9aMSzAAzrYwBE3LcD9+ocn/oMswAG/QWfwfSvA+U44LOA6K8Av5BLjAlkqwDXssnHgeCnA8Ib7qx9wKcC8bTPrqGMpwPngXBezmynAXWxdb5KdKcBYbP1OpbopwHyFF+NiLSnA3N5xrrCOKcDE5F86FkYpwETXpYhNoSjAc3Faf8ObKcCoIKE0EBwqwAiydUpIuCnAiG+m3ziNKsBcXCtgv6wqwPxVFR4XzyrAQSPeqKJUKcBj1Z0PBkApwMRRmTLF5SnApcN7Lf5kKcDMwQj11qApwBBfsbHzHSnA09xseZWnJ8Dlh8OXKdEowNEjP4/hZinAmKnZy11lJ8B7zrkNDN4mwHcFWHGP2iXAH1kgNDGyJcAZhCFAALElwOHowlXsEiXAlwLgUkqzI8CJzxR+si4kwGNabfAwziPAw12vtmIyI8CZNghjbS8kwKzkf8wGqiXAFOfOS0u2JMBn0C1pPKAkwHIZRfhpqyPAck6PTClpJMBjZS50nmcjwEJtet0fWyPAREuqogCRI8DrR5BskkgjwKhEixKXvCPARGEhxPOOJcAnLEmVjNglwI8OPCCrzyXA35HHdRGOJcAQb6+wzVEmwPAaUTw+yCbA4YUj5NRYJsArLGZCfswmwFsEIYPQOSjAbQBqa8FMKMAhp9OfVowowBlLysUFFSjAbbn8ae5BJ8BNqb8+RqIowAiAOYNYTinAP/6JWAUpKcB8x1qR6dkpwKeTRiSCnCnAbUP7eWR/KcDI47Zn/AkqwCgn5KdEbinAbJhdk77OKcD9heS0iPopwBmvBZ+L8SjAQGep1SEBKcBVLredx1gowEzH0m0y4CjAnahSz1EgKMAv8XAUDbApwEEBizQJZSrAp+LyhAebKsBHnj1gpe0pwDVM2EDyTSnAdapolRjEKcB1RDFvLZUpwOu4ctqhqirA6fYRT8EILMBZ8TsFygIrwCgbU9121SrALdPTnCWXKsAUrkUakg8rwLXu+iuD2irAjAiCu9+MKsB3romDBJQqwCU8E6obHCvAWwk5SUc8K8DtBiT9qcMqwGk2uVOJbCrAmZwjrq/EKsA9Aa8iuDErwHNG+Y4A3SvA11Z7G9b6LMCzXXFtYfYswANwTO13HSzAiZnvP3i5K8CQ2oYPrnUrwCcs4QEBpSvAWY41bKAVK8Cr53YZmu8qwJVuD/zxaCvAY65VDN0PK8B5wDZ/NGoqwL1ikgRztSnAYRrWWIGLKcAtt8BTJ2kqwKyO+yUASyrA9H2EPQzuKcAoDaCS6vcowDxjmgbHSCjAOOIeoHSeKMAMEOKAVGQowD049tzUfyjAj+cpfioyKMAbQ0P9eRcnwFNFD23qZCXAnEdbTkzAJcAbRy2Nm+AlwHwTALJYmyXAgJeJWQaAJcC1dW3zmaslwBOj7xdk6CbAIK8KnQktJ8DFJEIW6vAnwNUAi8GpJijA+OsWJUibKMA1cMQvtasowIVwD5WlJSnALc5V9Q81KcAnZsDhXlwpwP+A8jIXwSjAizvTLYqTKcBDQPAMdqsqwPEhzv4P5ivALS8LbzE4KsCztxb4J7QpwP98xjiPRCnARPexXXvbKMDtFeswQBAowFsM932DtijAbHJ47dmtKMBs3P07dI4owEw/CNQnUyjAO0ol4xS6J8CpeCPZ5QEnwI+Aui+SzSbAeFgnkdPeJsC8n+T+QAwmwCNX/s1tDibAld9IxILnJcDRsHnw01gnwDDYS8qy0CfAaHKdSglaJ8AA+dNa81gnwBVzy0oJeyjAL68WjFA/KcBr3OInGxgpwKcXcORVmCnA2xaDm1vdKcC/MtxlETMpwIwvbma5MSrAvRcJofSjKsBQXqn4tAEqwAc1f+1RjSnA47TgZLdeKcCFtiIZpQIpwIXHFur7sinAPW12mFpeKcA3gVEASxkqwLXkubruLCrAv1k5HxbmKsBDyCtF3IIrwLGMprLlrivAK6ULpc3sKsBR5LxtX0sswOSXvE+hpCzAWxR4W1+ZLMDsvVPkkIAuwKVBs/HPwi7ASQV/IJuaLsCZQbDF+ucvwJHMWdGSUzDAV4e/atNgMMAWnAoBhwUwwB1yDm2XyjDAd3LzjpupMMD3LyMHsY4wwO7+RF02pzDAL9OcCUYtMMDhCKdO9dUwwM7jlZrQkDDAWSwKP0d7MMAV9gAfofAwwKNc1lULPjHAP56ibifsMcDNHNVOWesxwJI/2O7OVDLAT5mqmucQMsCdflK/bVcywB/q3AbeWzLAjdVpaGtsMsBTMbyUZ2kywL1YB+y/EDLAb8HGjxo9MsAZilKxrNsywJ/gs1X9rDLAeb8j7+98MsDpa9kILpQywGuxR6e6XTPAcS9k6dkSM8Cj3ujx0+8ywFeh8caPcTLAiMssHWlGMsB0L7Ae+VoywDmJJVPywzHA9R7b//hTMcAdvZ+vX3YxwCVu1BkP2THA6q3oPUmRMcAnmQQidFsxwBDugxuSazHAeKo8pP2lMcBbW7nyC4wxwCFp+EPjxzDAIVk9swL/MMC83wY/VEMxwEEwX2WxFDLAxVZUaBzpMcBrNof4ltQxwBwW6W+B2THAtklUWfgjMsCDaQmRu28ywOAR9Jn4XzLAji9XrWWtMsDe2D9mCmsywA+G2KYUejLAZYpj/SA5MsAnge9d2h8ywCuao2oJFzLAH31kGvC8McBhc8sa/ocxwGjMu7thaDHAOwh/2bZ4McD99dnrk24xwKgs/9hkITHAIejRJqpjMcChY46l4S4ywPJrG/BcVTLANujtVD02MsAnz4JQR88xwPOwAZSSzDHASWaOrBeuMcB3EHjwsd4xwBLtPG7CHzLAYiwggr5eMcBGZLMVn14xwOYxaVSJNzHAhfvUpafFMMDTJtv2/KgwwCK+BDpmATDA78QU45+0L8CQx7/AD2IvwJy+DujaYC7A2ysZTjjGLcDsr5txkrYtwG831rDkSC3AcLiNeWyTLcDJZn49qlcuwFFQyRL1AC7AtFoNheUKLcAhEq/WxK4rwLe9pnfKACvAjyQifT0gK8DgQe/RnqkqwOVHZxRNwinAZzoSBf4zKcClRXoGbhgpwLGHgdHCgynAxerv+wIYKsC0KT3NO8UpwGnys/7oUinALQXvTQmNKcCPpZUT9dEpwNNGh4svwSrAvV2Of662KsBHM7uW550qwG101Wm8KyrAb7WvSagGKsD4ac6YQUspwNl/DhTfuSjA/dHZbKEqKMDnDGHuax4pwNmBXZFdeijATTnfUcBfKcB8sfVUeX0owHeHUtnznifAs0p5MBVZJ8BDIFjS4eUmwNCPiZo19ybAJRWfMnHZJsCEQp2XiUYnwPTyJ1UmsCbAN70uUWuZJ8DsoPfPksYnwBuX4PmpoybAHdgfXRtcJsCnfDX2WHEmwNk1PL2geyfAWwwpGkV/J8CEkCfdY8onwImuGFNi4yfALFFMWxJPKMCrOC9oJ3QowLd9hr3A0ynALACjziGWKcDIWee7z/ApwGyKB0obJCrAHZ1h0PT6KcBkE19mSkkqwGdBw5OeSyvACOSElv01K8APwslMy80rwNNsM6N31SvAjLcfTXYyLcAUpH6AHh4twK2SjIa32C3ANFNpe3MzLcDtVx8c9FwswN8whffZQyzAZFIQW1xuLMB5yvNqbIktwHs7BJB+mC3ABzETKn8JLcDlr6B2SFkswP1zitbFVCzA8w/Qp/IxLMBQUXqkYcQrwHPkWwbz5SzAeL3oVSXQLcDnyzXnFfktwEREbPRoyC3AaYT/loEiMMCEpwQPSGUwwA0rLGyOsDDAz6xBaoYcMMARzNReqXkwwAofRJbtLzHA/zAr6AOyMcBctwZtStcxwEbYrzOaNTHAU9JusqQDMcAg5Rh31kMxwBUNP7MROjHAgVcW4JmfMMBPqp2JOIAwwPPSO3D/HzDAwEtyZzvAL8BhhOXCdLIvwP8ZRy8eaC/AkR7dzSr+L8ClMAE/7c0wwLf2HXr0hjDApUGJ9Fg5MMD9IouoF3owwEjciDQjpTDAezQckJGkMMAXtjotUO8wwGASyK6tvjDA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p12513\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p12514\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12509\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 0\"},\"line_color\":\"#1f77b4\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12510\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 0\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12511\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 0\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p12531\",\"attributes\":{\"name\":\"EEG 1\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p12520\",\"attributes\":{\"x_source\":{\"id\":\"p12472\"},\"y_source\":{\"id\":\"p2767\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12523\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12524\"},\"x_target\":{\"id\":\"p12472\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p12519\",\"attributes\":{\"start\":1,\"end\":2}}}},\"data_source\":{\"id\":\"p12497\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p12532\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p12533\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12528\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 1\"},\"line_color\":\"#ff7f0e\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12529\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 1\"},\"line_color\":\"#ff7f0e\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12530\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 1\"},\"line_color\":\"#ff7f0e\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p12546\",\"attributes\":{\"name\":\"EEG 2\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p12535\",\"attributes\":{\"x_source\":{\"id\":\"p12472\"},\"y_source\":{\"id\":\"p2767\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12538\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12539\"},\"x_target\":{\"id\":\"p12472\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p12534\",\"attributes\":{\"start\":2,\"end\":3}}}},\"data_source\":{\"id\":\"p12497\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p12547\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p12548\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12543\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 2\"},\"line_color\":\"#2ca02c\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12544\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 2\"},\"line_color\":\"#2ca02c\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12545\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 2\"},\"line_color\":\"#2ca02c\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p12561\",\"attributes\":{\"name\":\"EEG 3\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p12550\",\"attributes\":{\"x_source\":{\"id\":\"p12472\"},\"y_source\":{\"id\":\"p2767\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12553\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12554\"},\"x_target\":{\"id\":\"p12472\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p12549\",\"attributes\":{\"start\":3,\"end\":4}}}},\"data_source\":{\"id\":\"p12497\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p12562\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p12563\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12558\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 3\"},\"line_color\":\"#d62728\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12559\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 3\"},\"line_color\":\"#d62728\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12560\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 3\"},\"line_color\":\"#d62728\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p12576\",\"attributes\":{\"name\":\"EEG 4\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p12565\",\"attributes\":{\"x_source\":{\"id\":\"p12472\"},\"y_source\":{\"id\":\"p2767\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12568\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12569\"},\"x_target\":{\"id\":\"p12472\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p12564\",\"attributes\":{\"start\":4,\"end\":5}}}},\"data_source\":{\"id\":\"p12497\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p12577\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p12578\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12573\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 4\"},\"line_color\":\"#9467bd\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12574\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 4\"},\"line_color\":\"#9467bd\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12575\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 4\"},\"line_color\":\"#9467bd\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p12591\",\"attributes\":{\"name\":\"EEG 5\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p12580\",\"attributes\":{\"x_source\":{\"id\":\"p12472\"},\"y_source\":{\"id\":\"p2767\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12583\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12584\"},\"x_target\":{\"id\":\"p12472\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p12579\",\"attributes\":{\"start\":5,\"end\":6}}}},\"data_source\":{\"id\":\"p12497\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p12592\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p12593\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12588\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 5\"},\"line_color\":\"#8c564b\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12589\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 5\"},\"line_color\":\"#8c564b\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12590\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 5\"},\"line_color\":\"#8c564b\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p12606\",\"attributes\":{\"name\":\"EEG 6\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p12595\",\"attributes\":{\"x_source\":{\"id\":\"p12472\"},\"y_source\":{\"id\":\"p2767\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12598\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12599\"},\"x_target\":{\"id\":\"p12472\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p12594\",\"attributes\":{\"start\":6,\"end\":7}}}},\"data_source\":{\"id\":\"p12497\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p12607\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p12608\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12603\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 6\"},\"line_color\":\"#e377c2\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12604\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 6\"},\"line_color\":\"#e377c2\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12605\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 6\"},\"line_color\":\"#e377c2\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p12621\",\"attributes\":{\"name\":\"POS 0\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p12610\",\"attributes\":{\"x_source\":{\"id\":\"p12472\"},\"y_source\":{\"id\":\"p2767\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12613\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12614\"},\"x_target\":{\"id\":\"p12472\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p12609\",\"attributes\":{\"start\":7,\"end\":8}}}},\"data_source\":{\"id\":\"p12497\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p12622\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p12623\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12618\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"POS 0\"},\"line_color\":\"#7f7f7f\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12619\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"POS 0\"},\"line_color\":\"#7f7f7f\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12620\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"POS 0\"},\"line_color\":\"#7f7f7f\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p12636\",\"attributes\":{\"name\":\"POS 1\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p12625\",\"attributes\":{\"x_source\":{\"id\":\"p12472\"},\"y_source\":{\"id\":\"p2767\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12628\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12629\"},\"x_target\":{\"id\":\"p12472\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p12624\",\"attributes\":{\"start\":8,\"end\":9}}}},\"data_source\":{\"id\":\"p12497\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p12637\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p12638\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12633\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"POS 1\"},\"line_color\":\"#bcbd22\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12634\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"POS 1\"},\"line_color\":\"#bcbd22\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12635\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"POS 1\"},\"line_color\":\"#bcbd22\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p12651\",\"attributes\":{\"name\":\"POS 2\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p12640\",\"attributes\":{\"x_source\":{\"id\":\"p12472\"},\"y_source\":{\"id\":\"p2767\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12643\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p12644\"},\"x_target\":{\"id\":\"p12472\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p12639\",\"attributes\":{\"start\":9,\"end\":10}}}},\"data_source\":{\"id\":\"p12497\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p12652\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p12653\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12648\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"POS 2\"},\"line_color\":\"#17becf\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12649\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"POS 2\"},\"line_color\":\"#17becf\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p12650\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"POS 2\"},\"line_color\":\"#17becf\",\"line_alpha\":0.2}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p12482\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"HoverTool\",\"id\":\"p12471\",\"attributes\":{\"renderers\":\"auto\",\"tooltips\":[[\"Channel\",\"$name\"],[\"Time\",\"$x s\"],[\"Amplitude\",\"$y\"]]}},{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p12495\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p12496\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p12658\",\"attributes\":{\"dimensions\":\"height\",\"renderers\":[{\"id\":\"p12512\"},{\"id\":\"p12531\"},{\"id\":\"p12546\"},{\"id\":\"p12561\"},{\"id\":\"p12576\"},{\"id\":\"p12591\"},{\"id\":\"p12606\"},{\"id\":\"p12621\"},{\"id\":\"p12636\"},{\"id\":\"p12651\"}],\"level\":1}}],\"active_scroll\":{\"id\":\"p12658\"}}},\"left\":[{\"type\":\"object\",\"name\":\"CategoricalAxis\",\"id\":\"p12490\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"CategoricalTicker\",\"id\":\"p12491\"},\"formatter\":{\"type\":\"object\",\"name\":\"CategoricalTickFormatter\",\"id\":\"p12492\"},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p12493\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p12485\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p12486\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p12487\"},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p12488\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p12489\",\"attributes\":{\"axis\":{\"id\":\"p12485\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p12494\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p12490\"}}},{\"type\":\"object\",\"name\":\"ScaleBar\",\"id\":\"p12516\",\"attributes\":{\"range\":{\"id\":\"p12473\"},\"unit\":\"\\u00b5V\",\"dimensional\":{\"type\":\"object\",\"name\":\"Metric\",\"id\":\"p12515\",\"attributes\":{\"include\":null,\"base_unit\":\"V\"}},\"orientation\":\"vertical\",\"location\":\"bottom_left\",\"length_sizing\":\"exact\",\"bar_length\":0.07,\"margin\":0,\"label_text_font_size\":\"10px\",\"label_location\":\"right\",\"ticker\":{\"type\":\"object\",\"name\":\"FixedTicker\",\"id\":\"p12518\",\"attributes\":{\"ticks\":[],\"minor_ticks\":[]}},\"border_line_color\":null,\"background_fill_color\":null}},{\"type\":\"object\",\"name\":\"ScaleBar\",\"id\":\"p12655\",\"attributes\":{\"range\":{\"id\":\"p12473\"},\"unit\":\"cm\",\"dimensional\":{\"type\":\"object\",\"name\":\"Metric\",\"id\":\"p12654\",\"attributes\":{\"include\":null,\"base_unit\":\"m\"}},\"orientation\":\"vertical\",\"location\":\"top_left\",\"length_sizing\":\"exact\",\"bar_length\":0.07,\"margin\":0,\"label_text_font_size\":\"10px\",\"label_location\":\"right\",\"ticker\":{\"type\":\"object\",\"name\":\"FixedTicker\",\"id\":\"p12657\",\"attributes\":{\"ticks\":[],\"minor_ticks\":[]}},\"border_line_color\":null,\"background_fill_color\":null}}],\"lod_threshold\":null}}]}}]}};\n", + " const render_items = [{\"docid\":\"4b2bdc0a-ebdb-4f8c-b21a-91c76ea39b38\",\"roots\":{\"p12659\":\"f9706670-c18e-4f5b-bf25-5a4105ffc1d7\"},\"root_ids\":[\"p12659\"]}];\n", + " void root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", + " }\n", + " if (root.Bokeh !== undefined) {\n", + " embed_document(root);\n", + " } else {\n", + " let attempts = 0;\n", + " const timer = setInterval(function(root) {\n", + " if (root.Bokeh !== undefined) {\n", + " clearInterval(timer);\n", + " embed_document(root);\n", + " } else {\n", + " attempts++;\n", + " if (attempts > 100) {\n", + " clearInterval(timer);\n", + " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", + " }\n", + " }\n", + " }, 10, root)\n", + " }\n", + "})(window);" + ], + "application/vnd.bokehjs_exec.v0+json": "" + }, + "metadata": { + "application/vnd.bokehjs_exec.v0+json": { + "id": "p12659" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "from bokeh.core.properties import field\n", + "from bokeh.io import show\n", + "from bokeh.layouts import column\n", + "from bokeh.models import (ColumnDataSource, HoverTool, Range1d, ScaleBar, FactorRange, Metric)\n", + "from bokeh.palettes import Category10\n", + "from bokeh.plotting import figure\n", + "\n", + "n_eeg_channels = 7\n", + "n_pos_channels = 3\n", + "n_channels = n_eeg_channels + n_pos_channels\n", + "n_seconds = 15\n", + "total_samples = 512 * n_seconds\n", + "time = np.linspace(0, n_seconds, total_samples)\n", + "data = np.random.randn(n_channels, total_samples).cumsum(axis=1) / 3\n", + "channels = [f\"EEG {i}\" for i in range(n_eeg_channels)] + [f\"POS {i}\" for i in range(n_pos_channels)]\n", + "\n", + "hover = HoverTool(tooltips=[\n", + " (\"Channel\", \"$name\"),\n", + " (\"Time\", \"$x s\"),\n", + " (\"Amplitude\", \"$y\"),\n", + "])\n", + "\n", + "x_range = Range1d(start=time.min(), end=time.max())\n", + "y_range = FactorRange(factors=channels)\n", + "\n", + "p = figure(x_range=x_range, y_range=y_range, lod_threshold=None, tools=[\"pan\",\"reset\",hover])\n", + "\n", + "source = ColumnDataSource(data=dict(time=time))\n", + "\n", + "added_EEG_scalebar = False\n", + "\n", + "renderers = []\n", + "for i, channel in enumerate(channels):\n", + " subp = p.subplot(\n", + " x_source=p.x_range,\n", + " y_source=y_target_range,\n", + " x_target=p.x_range,\n", + " y_target=Range1d(start=i, end=i + 1),\n", + " )\n", + " \n", + " source.data[channel] = data[i]\n", + " line = subp.line(field(\"time\"), field(channel), color=Category10[10][i], source=source, name=channel)\n", + " renderers.append(line)\n", + " \n", + " # Add a ScaleBar to the first EEG subplot\n", + " if not added_EEG_scalebar:\n", + " added_EEG_scalebar = True\n", + " scale_bar = ScaleBar(\n", + " range= p.y_range, # Requesting to use subp.coordinates instead to limit to subplot\n", + " unit=\"µV\",\n", + " dimensional=Metric(base_unit=\"V\"),\n", + " orientation=\"vertical\",\n", + " location=\"bottom_left\",\n", + " label_location=\"right\",\n", + " background_fill_color=None,\n", + " border_line_color=None,\n", + " bar_length=.07,\n", + " length_sizing=\"exact\",\n", + " label_text_font_size = '10px',\n", + " margin=0,\n", + " padding=10\n", + " )\n", + " p.add_layout(scale_bar)\n", + " \n", + " # Add a ScaleBar to the last POS subplot\n", + " if i == n_channels - 1:\n", + " scale_bar = ScaleBar(\n", + " range= p.y_range, # Requesting to use subp.coordinates instead to limit to subplot\n", + " unit=\"cm\",\n", + " dimensional=Metric(base_unit=\"m\"),\n", + " orientation=\"vertical\",\n", + " location=\"top_left\",\n", + " label_location=\"right\",\n", + " background_fill_color=None,\n", + " border_line_color=None,\n", + " label_text_font_size = '10px',\n", + " bar_length=.07,\n", + " length_sizing=\"exact\",\n", + " margin=0,\n", + " padding=10\n", + " )\n", + " p.add_layout(scale_bar)\n", + "\n", + "ywheel_zoom = WheelZoomTool(renderers=renderers, level=1, dimensions=\"height\")\n", + "p.add_tools(ywheel_zoom)\n", + "p.toolbar.active_scroll = ywheel_zoom\n", + "\n", + "# Show plot\n", + "show(column(p))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "8d1213cd-3315-40cc-ae08-a62282c9799c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
CoordinateMapping(
id = 'p8050', …)
js_event_callbacks = {},
js_property_callbacks = {},
name = None,
subscribed_events = PropertyValueSet(),
syncable = True,
tags = [],
x_scale = LinearScale(id='p8053', ...),
x_source = Range1d(id='p7878', ...),
x_target = Range1d(id='p7878', ...),
y_scale = LinearScale(id='p8054', ...),
y_source = Range1d(id='p2767', ...),
y_target = Range1d(id='p8049', ...))
\n", + "\n" + ], + "text/plain": [ + "CoordinateMapping(id='p8050', ...)" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "line.coordinates" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ca7fa74a-23c5-4a93-8e21-7762f2e8f5e7", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/workflows/multi_channel_timeseries/dev/bokeh_zoom_subcoords_example.ipynb b/workflows/multi_channel_timeseries/dev/bokeh_zoom_subcoords_example.ipynb index 1d3d51e..f933757 100644 --- a/workflows/multi_channel_timeseries/dev/bokeh_zoom_subcoords_example.ipynb +++ b/workflows/multi_channel_timeseries/dev/bokeh_zoom_subcoords_example.ipynb @@ -2,833 +2,12 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "f581c710-1f2c-4492-a5b0-02058502dce7", "metadata": { "tags": [] }, - "outputs": [ - { - "data": { - "application/javascript": [ - "(function(root) {\n", - " function now() {\n", - " return new Date();\n", - " }\n", - "\n", - " var force = true;\n", - " var py_version = '3.3.4'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", - " var reloading = false;\n", - " var Bokeh = root.Bokeh;\n", - "\n", - " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", - " root._bokeh_timeout = Date.now() + 5000;\n", - " root._bokeh_failed_load = false;\n", - " }\n", - "\n", - " function run_callbacks() {\n", - " try {\n", - " root._bokeh_onload_callbacks.forEach(function(callback) {\n", - " if (callback != null)\n", - " callback();\n", - " });\n", - " } finally {\n", - " delete root._bokeh_onload_callbacks;\n", - " }\n", - " console.debug(\"Bokeh: all callbacks have finished\");\n", - " }\n", - "\n", - " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", - " if (css_urls == null) css_urls = [];\n", - " if (js_urls == null) js_urls = [];\n", - " if (js_modules == null) js_modules = [];\n", - " if (js_exports == null) js_exports = {};\n", - "\n", - " root._bokeh_onload_callbacks.push(callback);\n", - "\n", - " if (root._bokeh_is_loading > 0) {\n", - " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", - " return null;\n", - " }\n", - " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", - " run_callbacks();\n", - " return null;\n", - " }\n", - " if (!reloading) {\n", - " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", - " }\n", - "\n", - " function on_load() {\n", - " root._bokeh_is_loading--;\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", - " run_callbacks()\n", - " }\n", - " }\n", - " window._bokeh_on_load = on_load\n", - "\n", - " function on_error() {\n", - " console.error(\"failed to load \" + url);\n", - " }\n", - "\n", - " var skip = [];\n", - " if (window.requirejs) {\n", - " window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n", - " require([\"jspanel\"], function(jsPanel) {\n", - "\twindow.jsPanel = jsPanel\n", - "\ton_load()\n", - " })\n", - " require([\"jspanel-modal\"], function() {\n", - "\ton_load()\n", - " })\n", - " require([\"jspanel-tooltip\"], function() {\n", - "\ton_load()\n", - " })\n", - " require([\"jspanel-hint\"], function() {\n", - "\ton_load()\n", - " })\n", - " require([\"jspanel-layout\"], function() {\n", - "\ton_load()\n", - " })\n", - " require([\"jspanel-contextmenu\"], function() {\n", - "\ton_load()\n", - " })\n", - " require([\"jspanel-dock\"], function() {\n", - "\ton_load()\n", - " })\n", - " require([\"gridstack\"], function(GridStack) {\n", - "\twindow.GridStack = GridStack\n", - "\ton_load()\n", - " })\n", - " require([\"notyf\"], function() {\n", - "\ton_load()\n", - " })\n", - " root._bokeh_is_loading = css_urls.length + 9;\n", - " } else {\n", - " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", - " }\n", - "\n", - " var existing_stylesheets = []\n", - " var links = document.getElementsByTagName('link')\n", - " for (var i = 0; i < links.length; i++) {\n", - " var link = links[i]\n", - " if (link.href != null) {\n", - "\texisting_stylesheets.push(link.href)\n", - " }\n", - " }\n", - " for (var i = 0; i < css_urls.length; i++) {\n", - " var url = css_urls[i];\n", - " if (existing_stylesheets.indexOf(url) !== -1) {\n", - "\ton_load()\n", - "\tcontinue;\n", - " }\n", - " const element = document.createElement(\"link\");\n", - " element.onload = on_load;\n", - " element.onerror = on_error;\n", - " element.rel = \"stylesheet\";\n", - " element.type = \"text/css\";\n", - " element.href = url;\n", - " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", - " document.body.appendChild(element);\n", - " } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n", - " var urls = ['https://cdn.holoviz.org/panel/1.3.8/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.3.8/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.3.8/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.3.8/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.3.8/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.3.8/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.3.8/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n", - " for (var i = 0; i < urls.length; i++) {\n", - " skip.push(urls[i])\n", - " }\n", - " } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n", - " var urls = ['https://cdn.holoviz.org/panel/1.3.8/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n", - " for (var i = 0; i < urls.length; i++) {\n", - " skip.push(urls[i])\n", - " }\n", - " } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n", - " var urls = ['https://cdn.holoviz.org/panel/1.3.8/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n", - " for (var i = 0; i < urls.length; i++) {\n", - " skip.push(urls[i])\n", - " }\n", - " } var existing_scripts = []\n", - " var scripts = document.getElementsByTagName('script')\n", - " for (var i = 0; i < scripts.length; i++) {\n", - " var script = scripts[i]\n", - " if (script.src != null) {\n", - "\texisting_scripts.push(script.src)\n", - " }\n", - " }\n", - " for (var i = 0; i < js_urls.length; i++) {\n", - " var url = js_urls[i];\n", - " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", - "\tif (!window.requirejs) {\n", - "\t on_load();\n", - "\t}\n", - "\tcontinue;\n", - " }\n", - " var element = document.createElement('script');\n", - " element.onload = on_load;\n", - " element.onerror = on_error;\n", - " element.async = false;\n", - " element.src = url;\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " document.head.appendChild(element);\n", - " }\n", - " for (var i = 0; i < js_modules.length; i++) {\n", - " var url = js_modules[i];\n", - " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", - "\tif (!window.requirejs) {\n", - "\t on_load();\n", - "\t}\n", - "\tcontinue;\n", - " }\n", - " var element = document.createElement('script');\n", - " element.onload = on_load;\n", - " element.onerror = on_error;\n", - " element.async = false;\n", - " element.src = url;\n", - " element.type = \"module\";\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " document.head.appendChild(element);\n", - " }\n", - " for (const name in js_exports) {\n", - " var url = js_exports[name];\n", - " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", - "\tif (!window.requirejs) {\n", - "\t on_load();\n", - "\t}\n", - "\tcontinue;\n", - " }\n", - " var element = document.createElement('script');\n", - " element.onerror = on_error;\n", - " element.async = false;\n", - " element.type = \"module\";\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " element.textContent = `\n", - " import ${name} from \"${url}\"\n", - " window.${name} = ${name}\n", - " window._bokeh_on_load()\n", - " `\n", - " document.head.appendChild(element);\n", - " }\n", - " if (!js_urls.length && !js_modules.length) {\n", - " on_load()\n", - " }\n", - " };\n", - "\n", - " function inject_raw_css(css) {\n", - " const element = document.createElement(\"style\");\n", - " element.appendChild(document.createTextNode(css));\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.holoviz.org/panel/1.3.8/dist/panel.min.js\"];\n", - " var js_modules = [];\n", - " var js_exports = {};\n", - " var css_urls = [];\n", - " var inline_js = [ function(Bokeh) {\n", - " Bokeh.set_log_level(\"info\");\n", - " },\n", - "function(Bokeh) {} // ensure no trailing comma for IE\n", - " ];\n", - "\n", - " function run_inline_js() {\n", - " if ((root.Bokeh !== undefined) || (force === true)) {\n", - " for (var i = 0; i < inline_js.length; i++) {\n", - "\ttry {\n", - " inline_js[i].call(root, root.Bokeh);\n", - "\t} catch(e) {\n", - "\t if (!reloading) {\n", - "\t throw e;\n", - "\t }\n", - "\t}\n", - " }\n", - " // Cache old bokeh versions\n", - " if (Bokeh != undefined && !reloading) {\n", - "\tvar NewBokeh = root.Bokeh;\n", - "\tif (Bokeh.versions === undefined) {\n", - "\t Bokeh.versions = new Map();\n", - "\t}\n", - "\tif (NewBokeh.version !== Bokeh.version) {\n", - "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", - "\t}\n", - "\troot.Bokeh = Bokeh;\n", - " }} else if (Date.now() < root._bokeh_timeout) {\n", - " setTimeout(run_inline_js, 100);\n", - " } else if (!root._bokeh_failed_load) {\n", - " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", - " root._bokeh_failed_load = true;\n", - " }\n", - " root._bokeh_is_initializing = false\n", - " }\n", - "\n", - " function load_or_wait() {\n", - " // Implement a backoff loop that tries to ensure we do not load multiple\n", - " // versions of Bokeh and its dependencies at the same time.\n", - " // In recent versions we use the root._bokeh_is_initializing flag\n", - " // to determine whether there is an ongoing attempt to initialize\n", - " // bokeh, however for backward compatibility we also try to ensure\n", - " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", - " // before older versions are fully initialized.\n", - " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", - " root._bokeh_is_initializing = false;\n", - " root._bokeh_onload_callbacks = undefined;\n", - " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", - " load_or_wait();\n", - " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", - " setTimeout(load_or_wait, 100);\n", - " } else {\n", - " root._bokeh_is_initializing = true\n", - " root._bokeh_onload_callbacks = []\n", - " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", - " if (!reloading && !bokeh_loaded) {\n", - "\troot.Bokeh = undefined;\n", - " }\n", - " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", - "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", - "\trun_inline_js();\n", - " });\n", - " }\n", - " }\n", - " // Give older versions of the autoload script a head-start to ensure\n", - " // they initialize before we start loading newer version.\n", - " setTimeout(load_or_wait, 100)\n", - "}(window));" - ], - "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.3.4'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n require([\"jspanel\"], function(jsPanel) {\n\twindow.jsPanel = jsPanel\n\ton_load()\n })\n require([\"jspanel-modal\"], function() {\n\ton_load()\n })\n require([\"jspanel-tooltip\"], function() {\n\ton_load()\n })\n require([\"jspanel-hint\"], function() {\n\ton_load()\n })\n require([\"jspanel-layout\"], function() {\n\ton_load()\n })\n require([\"jspanel-contextmenu\"], function() {\n\ton_load()\n })\n require([\"jspanel-dock\"], function() {\n\ton_load()\n })\n require([\"gridstack\"], function(GridStack) {\n\twindow.GridStack = GridStack\n\ton_load()\n })\n require([\"notyf\"], function() {\n\ton_load()\n })\n root._bokeh_is_loading = css_urls.length + 9;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.3.8/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.3.8/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.3.8/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.3.8/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.3.8/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.3.8/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.3.8/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.3.8/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.3.8/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.holoviz.org/panel/1.3.8/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/javascript": [ - "\n", - "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", - " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", - "}\n", - "\n", - "\n", - " function JupyterCommManager() {\n", - " }\n", - "\n", - " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", - " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", - " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", - " comm_manager.register_target(comm_id, function(comm) {\n", - " comm.on_msg(msg_handler);\n", - " });\n", - " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", - " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", - " comm.onMsg = msg_handler;\n", - " });\n", - " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", - " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", - " var messages = comm.messages[Symbol.asyncIterator]();\n", - " function processIteratorResult(result) {\n", - " var message = result.value;\n", - " console.log(message)\n", - " var content = {data: message.data, comm_id};\n", - " var buffers = []\n", - " for (var buffer of message.buffers || []) {\n", - " buffers.push(new DataView(buffer))\n", - " }\n", - " var metadata = message.metadata || {};\n", - " var msg = {content, buffers, metadata}\n", - " msg_handler(msg);\n", - " return messages.next().then(processIteratorResult);\n", - " }\n", - " return messages.next().then(processIteratorResult);\n", - " })\n", - " }\n", - " }\n", - "\n", - " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", - " if (comm_id in window.PyViz.comms) {\n", - " return window.PyViz.comms[comm_id];\n", - " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", - " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", - " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", - " if (msg_handler) {\n", - " comm.on_msg(msg_handler);\n", - " }\n", - " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", - " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", - " comm.open();\n", - " if (msg_handler) {\n", - " comm.onMsg = msg_handler;\n", - " }\n", - " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", - " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", - " comm_promise.then((comm) => {\n", - " window.PyViz.comms[comm_id] = comm;\n", - " if (msg_handler) {\n", - " var messages = comm.messages[Symbol.asyncIterator]();\n", - " function processIteratorResult(result) {\n", - " var message = result.value;\n", - " var content = {data: message.data};\n", - " var metadata = message.metadata || {comm_id};\n", - " var msg = {content, metadata}\n", - " msg_handler(msg);\n", - " return messages.next().then(processIteratorResult);\n", - " }\n", - " return messages.next().then(processIteratorResult);\n", - " }\n", - " }) \n", - " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", - " return comm_promise.then((comm) => {\n", - " comm.send(data, metadata, buffers, disposeOnDone);\n", - " });\n", - " };\n", - " var comm = {\n", - " send: sendClosure\n", - " };\n", - " }\n", - " window.PyViz.comms[comm_id] = comm;\n", - " return comm;\n", - " }\n", - " window.PyViz.comm_manager = new JupyterCommManager();\n", - " \n", - "\n", - "\n", - "var JS_MIME_TYPE = 'application/javascript';\n", - "var HTML_MIME_TYPE = 'text/html';\n", - "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", - "var CLASS_NAME = 'output';\n", - "\n", - "/**\n", - " * Render data to the DOM node\n", - " */\n", - "function render(props, node) {\n", - " var div = document.createElement(\"div\");\n", - " var script = document.createElement(\"script\");\n", - " node.appendChild(div);\n", - " node.appendChild(script);\n", - "}\n", - "\n", - "/**\n", - " * Handle when a new output is added\n", - " */\n", - "function handle_add_output(event, handle) {\n", - " var output_area = handle.output_area;\n", - " var output = handle.output;\n", - " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", - " return\n", - " }\n", - " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", - " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", - " if (id !== undefined) {\n", - " var nchildren = toinsert.length;\n", - " var html_node = toinsert[nchildren-1].children[0];\n", - " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", - " var scripts = [];\n", - " var nodelist = html_node.querySelectorAll(\"script\");\n", - " for (var i in nodelist) {\n", - " if (nodelist.hasOwnProperty(i)) {\n", - " scripts.push(nodelist[i])\n", - " }\n", - " }\n", - "\n", - " scripts.forEach( function (oldScript) {\n", - " var newScript = document.createElement(\"script\");\n", - " var attrs = [];\n", - " var nodemap = oldScript.attributes;\n", - " for (var j in nodemap) {\n", - " if (nodemap.hasOwnProperty(j)) {\n", - " attrs.push(nodemap[j])\n", - " }\n", - " }\n", - " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", - " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", - " oldScript.parentNode.replaceChild(newScript, oldScript);\n", - " });\n", - " if (JS_MIME_TYPE in output.data) {\n", - " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", - " }\n", - " output_area._hv_plot_id = id;\n", - " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", - " window.PyViz.plot_index[id] = Bokeh.index[id];\n", - " } else {\n", - " window.PyViz.plot_index[id] = null;\n", - " }\n", - " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", - " var bk_div = document.createElement(\"div\");\n", - " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", - " var script_attrs = bk_div.children[0].attributes;\n", - " for (var i = 0; i < script_attrs.length; i++) {\n", - " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", - " }\n", - " // store reference to server id on output_area\n", - " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", - " }\n", - "}\n", - "\n", - "/**\n", - " * Handle when an output is cleared or removed\n", - " */\n", - "function handle_clear_output(event, handle) {\n", - " var id = handle.cell.output_area._hv_plot_id;\n", - " var server_id = handle.cell.output_area._bokeh_server_id;\n", - " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", - " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", - " if (server_id !== null) {\n", - " comm.send({event_type: 'server_delete', 'id': server_id});\n", - " return;\n", - " } else if (comm !== null) {\n", - " comm.send({event_type: 'delete', 'id': id});\n", - " }\n", - " delete PyViz.plot_index[id];\n", - " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", - " var doc = window.Bokeh.index[id].model.document\n", - " doc.clear();\n", - " const i = window.Bokeh.documents.indexOf(doc);\n", - " if (i > -1) {\n", - " window.Bokeh.documents.splice(i, 1);\n", - " }\n", - " }\n", - "}\n", - "\n", - "/**\n", - " * Handle kernel restart event\n", - " */\n", - "function handle_kernel_cleanup(event, handle) {\n", - " delete PyViz.comms[\"hv-extension-comm\"];\n", - " window.PyViz.plot_index = {}\n", - "}\n", - "\n", - "/**\n", - " * Handle update_display_data messages\n", - " */\n", - "function handle_update_output(event, handle) {\n", - " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", - " handle_add_output(event, handle)\n", - "}\n", - "\n", - "function register_renderer(events, OutputArea) {\n", - " function append_mime(data, metadata, element) {\n", - " // create a DOM node to render to\n", - " var toinsert = this.create_output_subarea(\n", - " metadata,\n", - " CLASS_NAME,\n", - " EXEC_MIME_TYPE\n", - " );\n", - " this.keyboard_manager.register_events(toinsert);\n", - " // Render to node\n", - " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", - " render(props, toinsert[0]);\n", - " element.append(toinsert);\n", - " return toinsert\n", - " }\n", - "\n", - " events.on('output_added.OutputArea', handle_add_output);\n", - " events.on('output_updated.OutputArea', handle_update_output);\n", - " events.on('clear_output.CodeCell', handle_clear_output);\n", - " events.on('delete.Cell', handle_clear_output);\n", - " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", - "\n", - " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", - " safe: true,\n", - " index: 0\n", - " });\n", - "}\n", - "\n", - "if (window.Jupyter !== undefined) {\n", - " try {\n", - " var events = require('base/js/events');\n", - " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", - " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", - " register_renderer(events, OutputArea);\n", - " }\n", - " } catch(err) {\n", - " }\n", - "}\n" - ], - "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.holoviews_exec.v0+json": "", - "text/html": [ - "
\n", - "
\n", - "
\n", - "" - ] - }, - "metadata": { - "application/vnd.holoviews_exec.v0+json": { - "id": "p1002" - } - }, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - "\n", - "\n", - "\n", - " \n", - " \n", - "\n", - "\n", - "\n", - "\n", - "
\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": {}, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.holoviews_exec.v0+json": "", - "text/html": [ - "
\n", - "
\n", - "
\n", - "" - ], - "text/plain": [ - ":Overlay\n", - " .A.A0 :Curve [x] (y)\n", - " .A.A1 :Curve [x] (y)\n", - " .B.B0 :Curve [x] (y)\n", - " .B.B1 :Curve [x] (y)\n", - " .C.C0 :Curve [x] (y)\n", - " .C.C1 :Curve [x] (y)" - ] - }, - "execution_count": 1, - "metadata": { - "application/vnd.holoviews_exec.v0+json": { - "id": "p1004" - } - }, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "import numpy as np\n", "import panel as pn\n", @@ -852,60 +31,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "44ad2ab2-f252-44a7-956f-5f8734d54ab2", "metadata": { "tags": [] }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/javascript": [ - "(function(root) {\n", - " function embed_document(root) {\n", - " const docs_json = {\"0f9ec4bc-5e4e-4bca-82d0-73eac796ddba\":{\"version\":\"3.3.4\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1151\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1152\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1153\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1161\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1162\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1154\",\"attributes\":{\"text\":\"Simple line example\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1190\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1184\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1185\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1186\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",[1,2,3,4,5]],[\"y\",[6,7,2,4,5]]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1191\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1192\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1187\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1188\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1189\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.2,\"line_width\":2}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1160\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1173\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1174\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1175\",\"attributes\":{\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1176\",\"attributes\":{\"syncable\":false,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1181\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1182\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1183\"}]}},\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1168\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1169\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1170\"},\"axis_label\":\"y\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1171\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1163\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1164\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1165\"},\"axis_label\":\"x\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1166\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1167\",\"attributes\":{\"axis\":{\"id\":\"p1163\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1172\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1168\"}}},{\"type\":\"object\",\"name\":\"Legend\",\"id\":\"p1193\",\"attributes\":{\"items\":[{\"type\":\"object\",\"name\":\"LegendItem\",\"id\":\"p1194\",\"attributes\":{\"label\":{\"type\":\"value\",\"value\":\"Temp.\"},\"renderers\":[{\"id\":\"p1190\"}]}}]}}]}}]}};\n", - " const render_items = [{\"docid\":\"0f9ec4bc-5e4e-4bca-82d0-73eac796ddba\",\"roots\":{\"p1151\":\"bac59872-22f5-4041-838d-4b93323c6ff9\"},\"root_ids\":[\"p1151\"]}];\n", - " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", - " }\n", - " if (root.Bokeh !== undefined) {\n", - " embed_document(root);\n", - " } else {\n", - " let attempts = 0;\n", - " const timer = setInterval(function(root) {\n", - " if (root.Bokeh !== undefined) {\n", - " clearInterval(timer);\n", - " embed_document(root);\n", - " } else {\n", - " attempts++;\n", - " if (attempts > 100) {\n", - " clearInterval(timer);\n", - " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", - " }\n", - " }\n", - " }, 10, root)\n", - " }\n", - "})(window);" - ], - "application/vnd.bokehjs_exec.v0+json": "" - }, - "metadata": { - "application/vnd.bokehjs_exec.v0+json": { - "id": "p1151" - } - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from bokeh.plotting import figure, show\n", "\n", @@ -925,60 +56,12 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "13a09dc3-7d3c-47b1-b37e-3f93e4c890f0", "metadata": { "tags": [] }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/javascript": [ - "(function(root) {\n", - " function embed_document(root) {\n", - " const docs_json = {\"55f59422-a805-4115-af97-a6bf29972d7a\":{\"version\":\"3.3.4\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Column\",\"id\":\"p1392\",\"attributes\":{\"children\":[{\"type\":\"object\",\"name\":\"Row\",\"id\":\"p1391\",\"attributes\":{\"children\":[{\"type\":\"object\",\"name\":\"Div\",\"id\":\"p1389\",\"attributes\":{\"text\":\"Zoom sub-coordinates:\"}},{\"type\":\"object\",\"name\":\"Switch\",\"id\":\"p1390\",\"attributes\":{\"js_property_callbacks\":{\"type\":\"map\",\"entries\":[[\"change:active\",[{\"type\":\"object\",\"name\":\"CustomJS\",\"id\":\"p1388\",\"attributes\":{\"args\":{\"type\":\"map\",\"entries\":[[\"tools\",[{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1384\",\"attributes\":{\"dimensions\":\"height\",\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1237\",\"attributes\":{\"name\":\"EEG 0\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p1226\",\"attributes\":{\"x_source\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1196\",\"attributes\":{\"end\":15.0}},\"y_source\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1224\",\"attributes\":{\"start\":-1.7013293260916014,\"end\":163.9564355859953}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1229\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1230\"},\"x_target\":{\"id\":\"p1196\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1225\"}}},\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1221\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1222\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1223\"},\"data\":{\"type\":\"map\",\"entries\":[[\"time\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAAD+xBWNiABgP/7EFY2IAHA/faeg08wAeD/+xBWNiACAPz42W7CqAIQ/faeg08wAiD+8GOb27gCMP/7EFY2IAJA/nn24npkAkj8+NluwqgCUP93u/cG7AJY/faeg08wAmD8dYEPl3QCaP7wY5vbuAJw/XNGICAABnj/+xBWNiACgP04h5xWRAKE/nn24npkAoj/u2YknogCjPz42W7CqAKQ/jZIsObMApT/d7v3BuwCmPy1Lz0rEAKc/faeg08wAqD/NA3Jc1QCpPx1gQ+XdAKo/bbwUbuYAqz+8GOb27gCsPwx1t3/3AK0/XNGICAABrj+sLVqRCAGvP/7EFY2IALA/JnN+0YyAsD9OIecVkQCxP3bPT1qVgLE/nn24npkAsj/GKyHjnYCyP+7ZiSeiALM/Fojya6aAsz8+NluwqgC0P2Xkw/SugLQ/jZIsObMAtT+1QJV9t4C1P93u/cG7ALY/BZ1mBsCAtj8tS89KxAC3P1X5N4/IgLc/faeg08wAuD+lVQkY0YC4P80DclzVALk/9bHaoNmAuT8dYEPl3QC6P0UOrCnigLo/bbwUbuYAuz+Van2y6oC7P7wY5vbuALw/5MZOO/OAvD8Mdbd/9wC9PzQjIMT7gL0/XNGICAABvj+Ef/FMBIG+P6wtWpEIAb8/1NvC1QyBvz/+xBWNiADAPxIcSq+KQMA/JnN+0YyAwD86yrLzjsDAP04h5xWRAME/YngbOJNAwT92z09alYDBP4omhHyXwME/nn24npkAwj+y1OzAm0DCP8YrIeOdgMI/2oJVBaDAwj/u2YknogDDPwIxvkmkQMM/Fojya6aAwz8q3yaOqMDDPz42W7CqAMQ/UY2P0qxAxD9l5MP0roDEP3k7+BaxwMQ/jZIsObMAxT+h6WBbtUDFP7VAlX23gMU/yZfJn7nAxT/d7v3BuwDGP/FFMuS9QMY/BZ1mBsCAxj8Z9JoowsDGPy1Lz0rEAMc/QaIDbcZAxz9V+TePyIDHP2lQbLHKwMc/faeg08wAyD+R/tT1zkDIP6VVCRjRgMg/uaw9OtPAyD/NA3Jc1QDJP+Fapn7XQMk/9bHaoNmAyT8JCQ/D28DJPx1gQ+XdAMo/Mbd3B+BAyj9FDqwp4oDKP1ll4EvkwMo/bbwUbuYAyz+BE0mQ6EDLP5VqfbLqgMs/qcGx1OzAyz+8GOb27gDMP9BvGhnxQMw/5MZOO/OAzD/4HYNd9cDMPwx1t3/3AM0/IMzroflAzT80IyDE+4DNP0h6VOb9wM0/XNGICAABzj9wKL0qAkHOP4R/8UwEgc4/mNYlbwbBzj+sLVqRCAHPP8CEjrMKQc8/1NvC1QyBzz/oMvf3DsHPP/7EFY2IANA/iPAvnokg0D8SHEqvikDQP5xHZMCLYNA/JnN+0YyA0D+wnpjijaDQPzrKsvOOwNA/xPXMBJDg0D9OIecVkQDRP9hMASeSINE/YngbOJNA0T/sozVJlGDRP3bPT1qVgNE/APtpa5ag0T+KJoR8l8DRPxRSno2Y4NE/nn24npkA0j8oqdKvmiDSP7LU7MCbQNI/PAAH0pxg0j/GKyHjnYDSP1BXO/SeoNI/2oJVBaDA0j9krm8WoeDSP+7ZiSeiANM/eAWkOKMg0z8CMb5JpEDTP4xc2FqlYNM/Fojya6aA0z+gswx9p6DTPyrfJo6owNM/tApBn6ng0z8+NluwqgDUP8dhdcGrINQ/UY2P0qxA1D/buKnjrWDUP2Xkw/SugNQ/7w/eBbCg1D95O/gWscDUPwNnEiiy4NQ/jZIsObMA1T8XvkZKtCDVP6HpYFu1QNU/KxV7bLZg1T+1QJV9t4DVPz9sr464oNU/yZfJn7nA1T9Tw+OwuuDVP93u/cG7ANY/ZxoY07wg1j/xRTLkvUDWP3txTPW+YNY/BZ1mBsCA1j+PyIAXwaDWPxn0mijCwNY/ox+1OcPg1j8tS89KxADXP7d26VvFINc/QaIDbcZA1z/LzR1+x2DXP1X5N4/IgNc/3yRSoMmg1z9pUGyxysDXP/N7hsLL4Nc/faeg08wA2D8H07rkzSDYP5H+1PXOQNg/GyrvBtBg2D+lVQkY0YDYPy+BIynSoNg/uaw9OtPA2D9D2FdL1ODYP80DclzVANk/Vy+MbdYg2T/hWqZ+10DZP2uGwI/YYNk/9bHaoNmA2T9/3fSx2qDZPwkJD8PbwNk/kzQp1Nzg2T8dYEPl3QDaP6eLXfbeINo/Mbd3B+BA2j+74pEY4WDaP0UOrCnigNo/zznGOuOg2j9ZZeBL5MDaP+OQ+lzl4No/bbwUbuYA2z/35y5/5yDbP4ETSZDoQNs/Cz9joelg2z+Van2y6oDbPx+Wl8ProNs/qcGx1OzA2z8z7cvl7eDbP7wY5vbuANw/RkQACPAg3D/QbxoZ8UDcP1qbNCryYNw/5MZOO/OA3D9u8mhM9KDcP/gdg131wNw/gkmdbvbg3D8Mdbd/9wDdP5ag0ZD4IN0/IMzroflA3T+q9wWz+mDdPzQjIMT7gN0/vk461fyg3T9IelTm/cDdP9Klbvf+4N0/XNGICAAB3j/m/KIZASHeP3AovSoCQd4/+lPXOwNh3j+Ef/FMBIHePw6rC14Fod4/mNYlbwbB3j8iAkCAB+HeP6wtWpEIAd8/Nll0ogkh3z/AhI6zCkHfP0qwqMQLYd8/1NvC1QyB3z9eB93mDaHfP+gy9/cOwd8/cl4RCRDh3z/+xBWNiADgP8PaohWJEOA/iPAvnokg4D9NBr0mijDgPxIcSq+KQOA/1zHXN4tQ4D+cR2TAi2DgP2Fd8UiMcOA/JnN+0YyA4D/riAtajZDgP7CemOKNoOA/dbQla46w4D86yrLzjsDgP//fP3yP0OA/xPXMBJDg4D+JC1qNkPDgP04h5xWRAOE/Ezd0npEQ4T/YTAEnkiDhP51ijq+SMOE/YngbOJNA4T8njqjAk1DhP+yjNUmUYOE/sbnC0ZRw4T92z09alYDhPzvl3OKVkOE/APtpa5ag4T/FEPfzlrDhP4omhHyXwOE/TzwRBZjQ4T8UUp6NmODhP9lnKxaZ8OE/nn24npkA4j9jk0UnmhDiPyip0q+aIOI/7b5fOJsw4j+y1OzAm0DiP3fqeUmcUOI/PAAH0pxg4j8BFpRanXDiP8YrIeOdgOI/i0Gua56Q4j9QVzv0nqDiPxVtyHyfsOI/2oJVBaDA4j+fmOKNoNDiP2Subxah4OI/KcT8nqHw4j/u2YknogDjP7PvFrCiEOM/eAWkOKMg4z89GzHBozDjPwIxvkmkQOM/x0ZL0qRQ4z+MXNhapWDjP1FyZeOlcOM/Fojya6aA4z/bnX/0ppDjP6CzDH2noOM/ZcmZBaiw4z8q3yaOqMDjP+/0sxap0OM/tApBn6ng4z95IM4nqvDjPz42W7CqAOQ/AkzoOKsQ5D/HYXXBqyDkP4x3AkqsMOQ/UY2P0qxA5D8WoxxbrVDkP9u4qeOtYOQ/oM42bK5w5D9l5MP0roDkPyr6UH2vkOQ/7w/eBbCg5D+0JWuOsLDkP3k7+BaxwOQ/PlGFn7HQ5D8DZxIosuDkP8h8n7Cy8OQ/jZIsObMA5T9SqLnBsxDlPxe+Rkq0IOU/3NPT0rQw5T+h6WBbtUDlP2b/7eO1UOU/KxV7bLZg5T/wKgj1tnDlP7VAlX23gOU/elYiBriQ5T8/bK+OuKDlPwSCPBe5sOU/yZfJn7nA5T+OrVYoutDlP1PD47C64OU/GNlwObvw5T/d7v3BuwDmP6IEi0q8EOY/ZxoY07wg5j8sMKVbvTDmP/FFMuS9QOY/tlu/bL5Q5j97cUz1vmDmP0CH2X2/cOY/BZ1mBsCA5j/KsvOOwJDmP4/IgBfBoOY/VN4NoMGw5j8Z9JoowsDmP94JKLHC0OY/ox+1OcPg5j9oNULCw/DmPy1Lz0rEAOc/8mBc08QQ5z+3dulbxSDnP3yMduTFMOc/QaIDbcZA5z8GuJD1xlDnP8vNHX7HYOc/kOOqBshw5z9V+TePyIDnPxoPxRfJkOc/3yRSoMmg5z+kOt8oyrDnP2lQbLHKwOc/Lmb5OcvQ5z/ze4bCy+DnP7iRE0vM8Oc/faeg08wA6D9CvS1czRDoPwfTuuTNIOg/zOhHbc4w6D+R/tT1zkDoP1YUYn7PUOg/GyrvBtBg6D/gP3yP0HDoP6VVCRjRgOg/amuWoNGQ6D8vgSMp0qDoP/SWsLHSsOg/uaw9OtPA6D9+wsrC09DoP0PYV0vU4Og/CO7k09Tw6D/NA3Jc1QDpP5IZ/+TVEOk/Vy+MbdYg6T8cRRn21jDpP+Fapn7XQOk/pnAzB9hQ6T9rhsCP2GDpPzCcTRjZcOk/9bHaoNmA6T+6x2cp2pDpP3/d9LHaoOk/RPOBOtuw6T8JCQ/D28DpP84enEvc0Ok/kzQp1Nzg6T9YSrZc3fDpPx1gQ+XdAOo/4nXQbd4Q6j+ni1323iDqP2yh6n7fMOo/Mbd3B+BA6j/2zASQ4FDqP7vikRjhYOo/gPgeoeFw6j9FDqwp4oDqPwokObLikOo/zznGOuOg6j+UT1PD47DqP1ll4EvkwOo/Hntt1OTQ6j/jkPpc5eDqP6imh+Xl8Oo/bbwUbuYA6z8y0qH25hDrP/fnLn/nIOs/vP27B+gw6z+BE0mQ6EDrP0Yp1hjpUOs/Cz9joelg6z/QVPAp6nDrP5VqfbLqgOs/WoAKO+uQ6z8flpfD66DrP+SrJEzssOs/qcGx1OzA6z9u1z5d7dDrPzPty+Xt4Os/+AJZbu7w6z+8GOb27gDsP4Euc3/vEOw/RkQACPAg7D8LWo2Q8DDsP9BvGhnxQOw/lYWnofFQ7D9amzQq8mDsPx+xwbLycOw/5MZOO/OA7D+p3NvD85DsP27yaEz0oOw/Mwj21PSw7D/4HYNd9cDsP70zEOb10Ow/gkmdbvbg7D9HXyr39vDsPwx1t3/3AO0/0YpECPgQ7T+WoNGQ+CDtP1u2Xhn5MO0/IMzroflA7T/l4Xgq+lDtP6r3BbP6YO0/bw2TO/tw7T80IyDE+4DtP/k4rUz8kO0/vk461fyg7T+DZMdd/bDtP0h6VOb9wO0/DZDhbv7Q7T/SpW73/uDtP5e7+3//8O0/XNGICAAB7j8h5xWRABHuP+b8ohkBIe4/qxIwogEx7j9wKL0qAkHuPzU+SrMCUe4/+lPXOwNh7j+/aWTEA3HuP4R/8UwEge4/SZV+1QSR7j8OqwteBaHuP9PAmOYFse4/mNYlbwbB7j9d7LL3BtHuPyICQIAH4e4/5xfNCAjx7j+sLVqRCAHvP3FD5xkJEe8/Nll0ogkh7z/7bgErCjHvP8CEjrMKQe8/hZobPAtR7z9KsKjEC2HvPw/GNU0Mce8/1NvC1QyB7z+Z8U9eDZHvP14H3eYNoe8/Ix1qbw6x7z/oMvf3DsHvP61IhIAP0e8/cl4RCRDh7z83dJ6REPHvP/7EFY2IAPA/4E9c0YgI8D/D2qIViRDwP6Vl6VmJGPA/iPAvnokg8D9qe3biiSjwP00GvSaKMPA/L5EDa4o48D8SHEqvikDwP/SmkPOKSPA/1zHXN4tQ8D+5vB18i1jwP5xHZMCLYPA/ftKqBIxo8D9hXfFIjHDwP0PoN42MePA/JnN+0YyA8D8I/sQVjYjwP+uIC1qNkPA/zRNSno2Y8D+wnpjijaDwP5Ip3yaOqPA/dbQla46w8D9XP2yvjrjwPzrKsvOOwPA/HFX5N4/I8D//3z98j9DwP+FqhsCP2PA/xPXMBJDg8D+mgBNJkOjwP4kLWo2Q8PA/a5ag0ZD48D9OIecVkQDxPzCsLVqRCPE/Ezd0npEQ8T/1wbrikRjxP9hMASeSIPE/utdHa5Io8T+dYo6vkjDxP3/t1POSOPE/YngbOJNA8T9EA2J8k0jxPyeOqMCTUPE/CRnvBJRY8T/sozVJlGDxP84ufI2UaPE/sbnC0ZRw8T+TRAkWlXjxP3bPT1qVgPE/WFqWnpWI8T875dzilZDxPx1wIyeWmPE/APtpa5ag8T/ihbCvlqjxP8UQ9/OWsPE/p5s9OJe48T+KJoR8l8DxP2yxysCXyPE/TzwRBZjQ8T8xx1dJmNjxPxRSno2Y4PE/9tzk0Zjo8T/ZZysWmfDxP7vycVqZ+PE/nn24npkA8j+ACP/imQjyP2OTRSeaEPI/RR6Ma5oY8j8oqdKvmiDyPwo0GfSaKPI/7b5fOJsw8j/PSaZ8mzjyP7LU7MCbQPI/lF8zBZxI8j936nlJnFDyP1l1wI2cWPI/PAAH0pxg8j8ei00WnWjyPwEWlFqdcPI/46Danp148j/GKyHjnYDyP6i2ZyeeiPI/i0Gua56Q8j9tzPSvnpjyP1BXO/SeoPI/MuKBOJ+o8j8Vbch8n7DyP/f3DsGfuPI/2oJVBaDA8j+8DZxJoMjyP5+Y4o2g0PI/gSMp0qDY8j9krm8WoeDyP0Y5tlqh6PI/KcT8nqHw8j8LT0PjofjyP+7ZiSeiAPM/0GTQa6II8z+z7xawohDzP5V6XfSiGPM/eAWkOKMg8z9akOp8oyjzPz0bMcGjMPM/H6Z3BaQ48z8CMb5JpEDzP+S7BI6kSPM/x0ZL0qRQ8z+p0ZEWpVjzP4xc2FqlYPM/bucen6Vo8z9RcmXjpXDzPzP9qyemePM/Fojya6aA8z/4EjmwpojzP9udf/SmkPM/vSjGOKeY8z+gswx9p6DzP4I+U8GnqPM/ZcmZBaiw8z9HVOBJqLjzPyrfJo6owPM/DGpt0qjI8z/v9LMWqdDzP9F/+lqp2PM/tApBn6ng8z+WlYfjqejzP3kgzieq8PM/W6sUbKr48z8+NluwqgD0PyDBofSqCPQ/AkzoOKsQ9D/l1i59qxj0P8dhdcGrIPQ/quy7Bawo9D+MdwJKrDD0P28CSY6sOPQ/UY2P0qxA9D80GNYWrUj0PxajHFutUPQ/+S1jn61Y9D/buKnjrWD0P75D8CeuaPQ/oM42bK5w9D+DWX2wrnj0P2Xkw/SugPQ/SG8KOa+I9D8q+lB9r5D0Pw2Fl8GvmPQ/7w/eBbCg9D/SmiRKsKj0P7Qla46wsPQ/l7Cx0rC49D95O/gWscD0P1zGPluxyPQ/PlGFn7HQ9D8h3Mvjsdj0PwNnEiiy4PQ/5vFYbLLo9D/IfJ+wsvD0P6sH5vSy+PQ/jZIsObMA9T9wHXN9swj1P1KoucGzEPU/NTMABrQY9T8XvkZKtCD1P/pIjY60KPU/3NPT0rQw9T+/XhoXtTj1P6HpYFu1QPU/hHSnn7VI9T9m/+3jtVD1P0mKNCi2WPU/KxV7bLZg9T8OoMGwtmj1P/AqCPW2cPU/07VOObd49T+1QJV9t4D1P5jL28G3iPU/elYiBriQ9T9d4WhKuJj1Pz9sr464oPU/Ivf10rio9T8EgjwXubD1P+cMg1u5uPU/yZfJn7nA9T+sIhDkucj1P46tVii60PU/cTidbLrY9T9Tw+OwuuD1PzZOKvW66PU/GNlwObvw9T/7Y7d9u/j1P93u/cG7APY/wHlEBrwI9j+iBItKvBD2P4WP0Y68GPY/ZxoY07wg9j9KpV4XvSj2PywwpVu9MPY/D7vrn7049j/xRTLkvUD2P9TQeCi+SPY/tlu/bL5Q9j+Z5gWxvlj2P3txTPW+YPY/XvySOb9o9j9Ah9l9v3D2PyMSIMK/ePY/BZ1mBsCA9j/oJ61KwIj2P8qy847AkPY/rT0608CY9j+PyIAXwaD2P3JTx1vBqPY/VN4NoMGw9j83aVTkwbj2Pxn0mijCwPY//H7hbMLI9j/eCSixwtD2P8GUbvXC2PY/ox+1OcPg9j+Gqvt9w+j2P2g1QsLD8PY/S8CIBsT49j8tS89KxAD3PxDWFY/ECPc/8mBc08QQ9z/V66IXxRj3P7d26VvFIPc/mgEwoMUo9z98jHbkxTD3P18XvSjGOPc/QaIDbcZA9z8kLUqxxkj3Pwa4kPXGUPc/6ULXOcdY9z/LzR1+x2D3P65YZMLHaPc/kOOqBshw9z9zbvFKyHj3P1X5N4/IgPc/OIR+08iI9z8aD8UXyZD3P/2ZC1zJmPc/3yRSoMmg9z/Cr5jkyaj3P6Q63yjKsPc/h8Ulbcq49z9pUGyxysD3P0zbsvXKyPc/Lmb5OcvQ9z8R8T9+y9j3P/N7hsLL4Pc/1gbNBszo9z+4kRNLzPD3P5scWo/M+Pc/faeg08wA+D9fMucXzQj4P0K9LVzNEPg/JEh0oM0Y+D8H07rkzSD4P+ldASnOKPg/zOhHbc4w+D+uc46xzjj4P5H+1PXOQPg/c4kbOs9I+D9WFGJ+z1D4PzifqMLPWPg/GyrvBtBg+D/9tDVL0Gj4P+A/fI/QcPg/wsrC09B4+D+lVQkY0YD4P4fgT1zRiPg/amuWoNGQ+D9M9tzk0Zj4Py+BIynSoPg/EQxqbdKo+D/0lrCx0rD4P9Yh9/XSuPg/uaw9OtPA+D+bN4R+08j4P37CysLT0Pg/YE0RB9TY+D9D2FdL1OD4PyVjno/U6Pg/CO7k09Tw+D/qeCsY1fj4P80DclzVAPk/r464oNUI+T+SGf/k1RD5P3SkRSnWGPk/Vy+MbdYg+T85utKx1ij5PxxFGfbWMPk//s9fOtc4+T/hWqZ+10D5P8Pl7MLXSPk/pnAzB9hQ+T+I+3lL2Fj5P2uGwI/YYPk/TREH1Nho+T8wnE0Y2XD5PxInlFzZePk/9bHaoNmA+T/XPCHl2Yj5P7rHZynakPk/nFKubdqY+T9/3fSx2qD5P2FoO/baqPk/RPOBOtuw+T8mfsh+27j5PwkJD8PbwPk/65NVB9zI+T/OHpxL3ND5P7Cp4o/c2Pk/kzQp1Nzg+T91v28Y3ej5P1hKtlzd8Pk/OtX8oN34+T8dYEPl3QD6P//qiSneCPo/4nXQbd4Q+j/EABey3hj6P6eLXfbeIPo/iRakOt8o+j9soep+3zD6P04sMcPfOPo/Mbd3B+BA+j8TQr5L4Ej6P/bMBJDgUPo/2FdL1OBY+j+74pEY4WD6P51t2FzhaPo/gPgeoeFw+j9ig2Xl4Xj6P0UOrCnigPo/J5nybeKI+j8KJDmy4pD6P+yuf/bimPo/zznGOuOg+j+xxAx/46j6P5RPU8PjsPo/dtqZB+S4+j9ZZeBL5MD6PzvwJpDkyPo/Hntt1OTQ+j8ABrQY5dj6P+OQ+lzl4Po/xRtBoeXo+j+opofl5fD6P4oxzinm+Po/bbwUbuYA+z9PR1uy5gj7PzLSofbmEPs/FF3oOucY+z/35y5/5yD7P9lydcPnKPs/vP27B+gw+z+eiAJM6Dj7P4ETSZDoQPs/Y56P1OhI+z9GKdYY6VD7Pyi0HF3pWPs/Cz9joelg+z/tyanl6Wj7P9BU8CnqcPs/st82bup4+z+Van2y6oD7P3f1w/bqiPs/WoAKO+uQ+z88C1F/65j7Px+Wl8ProPs/ASHeB+yo+z/kqyRM7LD7P8Y2a5DsuPs/qcGx1OzA+z+LTPgY7cj7P27XPl3t0Ps/UGKFoe3Y+z8z7cvl7eD7PxV4Eiru6Ps/+AJZbu7w+z/ajZ+y7vj7P7wY5vbuAPw/n6MsO+8I/D+BLnN/7xD8P2S5ucPvGPw/RkQACPAg/D8pz0ZM8Cj8PwtajZDwMPw/7uTT1PA4/D/QbxoZ8UD8P7P6YF3xSPw/lYWnofFQ/D94EO7l8Vj8P1qbNCryYPw/PSZ7bvJo/D8fscGy8nD8PwI8CPfyePw/5MZOO/OA/D/HUZV/84j8P6nc28PzkPw/jGciCPSY/D9u8mhM9KD8P1F9r5D0qPw/Mwj21PSw/D8WkzwZ9bj8P/gdg131wPw/26jJofXI/D+9MxDm9dD8P6C+Vir22Pw/gkmdbvbg/D9l1OOy9uj8P0dfKvf28Pw/KupwO/f4/D8Mdbd/9wD9P+///cP3CP0/0YpECPgQ/T+0FYtM+Bj9P5ag0ZD4IP0/eSsY1fgo/T9btl4Z+TD9Pz5BpV35OP0/IMzroflA/T8DVzLm+Uj9P+XheCr6UP0/yGy/bvpY/T+q9wWz+mD9P42CTPf6aP0/bw2TO/tw/T9SmNl/+3j9PzQjIMT7gP0/F65mCPyI/T/5OK1M/JD9P9zD85D8mP0/vk461fyg/T+h2YAZ/aj9P4Nkx139sP0/Zu8Nov24/T9IelTm/cD9PysFmyr+yP0/DZDhbv7Q/T/wGiiz/tj9P9Klbvf+4P0/tTC1O//o/T+Xu/t///D9P3pGQsT/+P0/XNGICAAB/j8/XM9MAAn+PyHnFZEAEf4/BHJc1QAZ/j/m/KIZASH+P8mH6V0BKf4/qxIwogEx/j+OnXbmATn+P3AovSoCQf4/U7MDbwJJ/j81PkqzAlH+PxjJkPcCWf4/+lPXOwNh/j/d3h2AA2n+P79pZMQDcf4/ovSqCAR5/j+Ef/FMBIH+P2cKOJEEif4/SZV+1QSR/j8sIMUZBZn+Pw6rC14Fof4/8TVSogWp/j/TwJjmBbH+P7ZL3yoGuf4/mNYlbwbB/j97YWyzBsn+P13ssvcG0f4/QHf5OwfZ/j8iAkCAB+H+PwWNhsQH6f4/5xfNCAjx/j/KohNNCPn+P6wtWpEIAf8/j7ig1QgJ/z9xQ+cZCRH/P1TOLV4JGf8/Nll0ogkh/z8Z5LrmCSn/P/tuASsKMf8/3vlHbwo5/z/AhI6zCkH/P6MP1fcKSf8/hZobPAtR/z9oJWKAC1n/P0qwqMQLYf8/LTvvCAxp/z8PxjVNDHH/P/JQfJEMef8/1NvC1QyB/z+3ZgkaDYn/P5nxT14Nkf8/fHyWog2Z/z9eB93mDaH/P0GSIysOqf8/Ix1qbw6x/z8GqLCzDrn/P+gy9/cOwf8/y709PA/J/z+tSISAD9H/P5DTysQP2f8/cl4RCRDh/z9V6VdNEOn/Pzd0npEQ8f8/Gv/k1RD5/z/+xBWNiAAAQG8KOa+IBABA4E9c0YgIAEBSlX/ziAwAQMPaohWJEABANCDGN4kUAEClZelZiRgAQBerDHyJHABAiPAvnokgAED5NVPAiSQAQGp7duKJKABA3MCZBIosAEBNBr0mijAAQL5L4EiKNABAL5EDa4o4AECh1iaNijwAQBIcSq+KQABAg2Ft0YpEAED0ppDzikgAQGbssxWLTABA1zHXN4tQAEBId/pZi1QAQLm8HXyLWABAKwJBnotcAECcR2TAi2AAQA2Nh+KLZABAftKqBIxoAEDwF84mjGwAQGFd8UiMcABA0qIUa4x0AEBD6DeNjHgAQLUtW6+MfABAJnN+0YyAAECXuKHzjIQAQAj+xBWNiABAekPoN42MAEDriAtajZAAQFzOLnyNlABAzRNSno2YAEA/WXXAjZwAQLCemOKNoABAIeS7BI6kAECSKd8mjqgAQARvAkmOrABAdbQla46wAEDm+UiNjrQAQFc/bK+OuABAyYSP0Y68AEA6yrLzjsAAQKsP1hWPxABAHFX5N4/IAECOmhxaj8wAQP/fP3yP0ABAcCVjno/UAEDhaobAj9gAQFOwqeKP3ABAxPXMBJDgAEA1O/AmkOQAQKaAE0mQ6ABAGMY2a5DsAECJC1qNkPAAQPpQfa+Q9ABAa5ag0ZD4AEDd28PzkPwAQE4h5xWRAAFAv2YKOJEEAUAwrC1akQgBQKLxUHyRDAFAEzd0npEQAUCEfJfAkRQBQPXBuuKRGAFAZwfeBJIcAUDYTAEnkiABQEmSJEmSJAFAutdHa5IoAUAsHWuNkiwBQJ1ijq+SMAFADqix0ZI0AUB/7dTzkjgBQPEy+BWTPAFAYngbOJNAAUDTvT5ak0QBQEQDYnyTSAFAtkiFnpNMAUAnjqjAk1ABQJjTy+KTVAFACRnvBJRYAUB7XhInlFwBQOyjNUmUYAFAXelYa5RkAUDOLnyNlGgBQEB0n6+UbAFAsbnC0ZRwAUAi/+XzlHQBQJNECRaVeAFABYosOJV8AUB2z09alYABQOcUc3yVhAFAWFqWnpWIAUDKn7nAlYwBQDvl3OKVkAFArCoABZaUAUAdcCMnlpgBQI+1RkmWnAFAAPtpa5agAUBxQI2NlqQBQOKFsK+WqAFAVMvT0ZasAUDFEPfzlrABQDZWGhaXtAFAp5s9OJe4AUAZ4WBal7wBQIomhHyXwAFA+2unnpfEAUBsscrAl8gBQN727eKXzAFATzwRBZjQAUDAgTQnmNQBQDHHV0mY2AFAowx7a5jcAUAUUp6NmOABQIWXwa+Y5AFA9tzk0ZjoAUBoIgj0mOwBQNlnKxaZ8AFASq1OOJn0AUC78nFamfgBQC04lXyZ/AFAnn24npkAAkAPw9vAmQQCQIAI/+KZCAJA8U0iBZoMAkBjk0UnmhACQNTYaEmaFAJARR6Ma5oYAkC2Y6+NmhwCQCip0q+aIAJAme710ZokAkAKNBn0migCQHt5PBabLAJA7b5fOJswAkBeBINamzQCQM9JpnybOAJAQI/Jnps8AkCy1OzAm0ACQCMaEOObRAJAlF8zBZxIAkAFpVYnnEwCQHfqeUmcUAJA6C+da5xUAkBZdcCNnFgCQMq646+cXAJAPAAH0pxgAkCtRSr0nGQCQB6LTRadaAJAj9BwOJ1sAkABFpRanXACQHJbt3yddAJA46Danp14AkBU5v3AnXwCQMYrIeOdgAJAN3FEBZ6EAkCotmcnnogCQBn8ikmejAJAi0Gua56QAkD8htGNnpQCQG3M9K+emAJA3hEY0p6cAkBQVzv0nqACQMGcXhafpAJAMuKBOJ+oAkCjJ6Van6wCQBVtyHyfsAJAhrLrnp+0AkD39w7Bn7gCQGg9MuOfvAJA2oJVBaDAAkBLyHgnoMQCQLwNnEmgyAJALVO/a6DMAkCfmOKNoNACQBDeBbCg1AJAgSMp0qDYAkDyaEz0oNwCQGSubxah4AJA1fOSOKHkAkBGObZaoegCQLd+2Xyh7AJAKcT8nqHwAkCaCSDBofQCQAtPQ+Oh+AJAfJRmBaL8AkDu2YknogADQF8frUmiBANA0GTQa6IIA0BBqvONogwDQLPvFrCiEANAJDU60qIUA0CVel30ohgDQAbAgBajHANAeAWkOKMgA0DpSsdaoyQDQFqQ6nyjKANAy9UNn6MsA0A9GzHBozADQK5gVOOjNANAH6Z3BaQ4A0CQ65onpDwDQAIxvkmkQANAc3bha6REA0DkuwSOpEgDQFUBKLCkTANAx0ZL0qRQA0A4jG70pFQDQKnRkRalWANAGhe1OKVcA0CMXNhapWADQP2h+3ylZANAbucen6VoA0DfLELBpWwDQFFyZeOlcANAwreIBaZ0A0Az/asnpngDQKRCz0mmfANAFojya6aAA0CHzRWOpoQDQPgSObCmiANAaVhc0qaMA0DbnX/0ppADQEzjohanlANAvSjGOKeYA0Aubulap5wDQKCzDH2noANAEfkvn6ekA0CCPlPBp6gDQPODduOnrANAZcmZBaiwA0DWDr0nqLQDQEdU4EmouANAuJkDbKi8A0Aq3yaOqMADQJskSrCoxANADGpt0qjIA0B9r5D0qMwDQO/0sxap0ANAYDrXOKnUA0DRf/paqdgDQELFHX2p3ANAtApBn6ngA0AlUGTBqeQDQJaVh+Op6ANAB9uqBarsA0B5IM4nqvADQOpl8Umq9ANAW6sUbKr4A0DM8DeOqvwDQD42W7CqAARAr3t+0qoEBEAgwaH0qggEQJEGxRarDARAAkzoOKsQBEB0kQtbqxQEQOXWLn2rGARAVhxSn6scBEDHYXXBqyAEQDmnmOOrJARAquy7BawoBEAbMt8nrCwEQIx3AkqsMARA/rwlbKw0BEBvAkmOrDgEQOBHbLCsPARAUY2P0qxABEDD0rL0rEQEQDQY1hatSARApV35OK1MBEAWoxxbrVAEQIjoP32tVARA+S1jn61YBEBqc4bBrVwEQNu4qeOtYARATf7MBa5kBEC+Q/AnrmgEQC+JE0qubARAoM42bK5wBEASFFqOrnQEQINZfbCueARA9J6g0q58BEBl5MP0roAEQNcp5xavhARASG8KOa+IBEC5tC1br4wEQCr6UH2vkARAnD90n6+UBEANhZfBr5gEQH7KuuOvnARA7w/eBbCgBEBhVQEosKQEQNKaJEqwqARAQ+BHbLCsBEC0JWuOsLAEQCZrjrCwtARAl7Cx0rC4BEAI9tT0sLwEQHk7+BaxwARA64AbObHEBEBcxj5bscgEQM0LYn2xzARAPlGFn7HQBECwlqjBsdQEQCHcy+Ox2ARAkiHvBbLcBEADZxIosuAEQHWsNUqy5ARA5vFYbLLoBEBXN3yOsuwEQMh8n7Cy8ARAOsLC0rL0BECrB+b0svgEQBxNCRez/ARAjZIsObMABUD/109bswQFQHAdc32zCAVA4WKWn7MMBUBSqLnBsxAFQMTt3OOzFAVANTMABrQYBUCmeCMotBwFQBe+Rkq0IAVAiQNqbLQkBUD6SI2OtCgFQGuOsLC0LAVA3NPT0rQwBUBOGff0tDQFQL9eGhe1OAVAMKQ9ObU8BUCh6WBbtUAFQBMvhH21RAVAhHSnn7VIBUD1ucrBtUwFQGb/7eO1UAVA2EQRBrZUBUBJijQotlgFQLrPV0q2XAVAKxV7bLZgBUCdWp6OtmQFQA6gwbC2aAVAf+Xk0rZsBUDwKgj1tnAFQGJwKxe3dAVA07VOObd4BUBE+3Fbt3wFQLVAlX23gAVAJ4a4n7eEBUCYy9vBt4gFQAkR/+O3jAVAelYiBriQBUDsm0UouJQFQF3haEq4mAVAziaMbLicBUA/bK+OuKAFQLGx0rC4pAVAIvf10rioBUCTPBn1uKwFQASCPBe5sAVAdsdfObm0BUDnDINbubgFQFhSpn25vAVAyZfJn7nABUA73ezBucQFQKwiEOS5yAVAHWgzBrrMBUCOrVYoutAFQADzeUq61AVAcTidbLrYBUDifcCOutwFQFPD47C64AVAxQgH07rkBUA2Tir1uugFQKeTTRe77AVAGNlwObvwBUCKHpRbu/QFQPtjt327+AVAbKnan7v8BUDd7v3BuwAGQE40IeS7BAZAwHlEBrwIBkAxv2covAwGQKIEi0q8EAZAE0qubLwUBkCFj9GOvBgGQPbU9LC8HAZAZxoY07wgBkDYXzv1vCQGQEqlXhe9KAZAu+qBOb0sBkAsMKVbvTAGQJ11yH29NAZAD7vrn704BkCAAA/CvTwGQPFFMuS9QAZAYotVBr5EBkDU0HgovkgGQEUWnEq+TAZAtlu/bL5QBkAnoeKOvlQGQJnmBbG+WAZACiwp075cBkB7cUz1vmAGQOy2bxe/ZAZAXvySOb9oBkDPQbZbv2wGQECH2X2/cAZAscz8n790BkAjEiDCv3gGQJRXQ+S/fAZABZ1mBsCABkB24okowIQGQOgnrUrAiAZAWW3QbMCMBkDKsvOOwJAGQDv4FrHAlAZArT0608CYBkAeg131wJwGQI/IgBfBoAZAAA6kOcGkBkByU8dbwagGQOOY6n3BrAZAVN4NoMGwBkDFIzHCwbQGQDdpVOTBuAZAqK53BsK8BkAZ9JoowsAGQIo5vkrCxAZA/H7hbMLIBkBtxASPwswGQN4JKLHC0AZAT09L08LUBkDBlG71wtgGQDLakRfD3AZAox+1OcPgBkAUZdhbw+QGQIaq+33D6AZA9+8eoMPsBkBoNULCw/AGQNl6ZeTD9AZAS8CIBsT4BkC8BawoxPwGQC1Lz0rEAAdAnpDybMQEB0AQ1hWPxAgHQIEbObHEDAdA8mBc08QQB0Bjpn/1xBQHQNXrohfFGAdARjHGOcUcB0C3dulbxSAHQCi8DH7FJAdAmgEwoMUoB0ALR1PCxSwHQHyMduTFMAdA7dGZBsY0B0BfF70oxjgHQNBc4ErGPAdAQaIDbcZAB0Cy5yaPxkQHQCQtSrHGSAdAlXJt08ZMB0AGuJD1xlAHQHf9sxfHVAdA6ULXOcdYB0BaiPpbx1wHQMvNHX7HYAdAPBNBoMdkB0CuWGTCx2gHQB+eh+THbAdAkOOqBshwB0ABKc4oyHQHQHNu8UrIeAdA5LMUbch8B0BV+TePyIAHQMY+W7HIhAdAOIR+08iIB0CpyaH1yIwHQBoPxRfJkAdAi1ToOcmUB0D9mQtcyZgHQG7fLn7JnAdA3yRSoMmgB0BQanXCyaQHQMKvmOTJqAdAM/W7BsqsB0CkOt8oyrAHQBWAAkvKtAdAh8Ulbcq4B0D4CkmPyrwHQGlQbLHKwAdA2pWP08rEB0BM27L1ysgHQL0g1hfLzAdALmb5OcvQB0Cfqxxcy9QHQBHxP37L2AdAgjZjoMvcB0Dze4bCy+AHQGTBqeTL5AdA1gbNBszoB0BHTPAozOwHQLiRE0vM8AdAKdc2bcz0B0CbHFqPzPgHQAxifbHM/AdAfaeg08wACEDu7MP1zAQIQF8y5xfNCAhA0XcKOs0MCEBCvS1czRAIQLMCUX7NFAhAJEh0oM0YCECWjZfCzRwIQAfTuuTNIAhAeBjeBs4kCEDpXQEpzigIQFujJEvOLAhAzOhHbc4wCEA9LmuPzjQIQK5zjrHOOAhAILmx0848CECR/tT1zkAIQAJE+BfPRAhAc4kbOs9ICEDlzj5cz0wIQFYUYn7PUAhAx1mFoM9UCEA4n6jCz1gIQKrky+TPXAhAGyrvBtBgCECMbxIp0GQIQP20NUvQaAhAb/pYbdBsCEDgP3yP0HAIQFGFn7HQdAhAwsrC09B4CEA0EOb10HwIQKVVCRjRgAhAFpssOtGECECH4E9c0YgIQPklc37RjAhAamuWoNGQCEDbsLnC0ZQIQEz23OTRmAhAvjsAB9KcCEAvgSMp0qAIQKDGRkvSpAhAEQxqbdKoCECDUY2P0qwIQPSWsLHSsAhAZdzT09K0CEDWIff10rgIQEhnGhjTvAhAuaw9OtPACEAq8mBc08QIQJs3hH7TyAhADX2noNPMCEB+wsrC09AIQO8H7uTT1AhAYE0RB9TYCEDSkjQp1NwIQEPYV0vU4AhAtB17bdTkCEAlY56P1OgIQJeowbHU7AhACO7k09TwCEB5Mwj21PQIQOp4KxjV+AhAXL5OOtX8CEDNA3Jc1QAJQD5JlX7VBAlAr464oNUICUAh1NvC1QwJQJIZ/+TVEAlAA18iB9YUCUB0pEUp1hgJQObpaEvWHAlAVy+MbdYgCUDIdK+P1iQJQDm60rHWKAlAq//109YsCUAcRRn21jAJQI2KPBjXNAlA/s9fOtc4CUBwFYNc1zwJQOFapn7XQAlAUqDJoNdECUDD5ezC10gJQDUrEOXXTAlApnAzB9hQCUAXtlYp2FQJQIj7eUvYWAlA+kCdbdhcCUBrhsCP2GAJQNzL47HYZAlATREH1NhoCUC/Vir22GwJQDCcTRjZcAlAoeFwOtl0CUASJ5Rc2XgJQIRst37ZfAlA9bHaoNmACUBm9/3C2YQJQNc8IeXZiAlASYJEB9qMCUC6x2cp2pAJQCsNi0valAlAnFKubdqYCUAOmNGP2pwJQH/d9LHaoAlA8CIY1NqkCUBhaDv22qgJQNOtXhjbrAlARPOBOtuwCUC1OKVc27QJQCZ+yH7buAlAmMProNu8CUAJCQ/D28AJQHpOMuXbxAlA65NVB9zICUBd2Xgp3MwJQM4enEvc0AlAP2S/bdzUCUCwqeKP3NgJQCLvBbLc3AlAkzQp1NzgCUAEekz23OQJQHW/bxjd6AlA5wSTOt3sCUBYSrZc3fAJQMmP2X7d9AlAOtX8oN34CUCsGiDD3fwJQB1gQ+XdAApAjqVmB94ECkD/6okp3ggKQHAwrUveDApA4nXQbd4QCkBTu/OP3hQKQMQAF7LeGApANUY61N4cCkCni1323iAKQBjRgBjfJApAiRakOt8oCkD6W8dc3ywKQGyh6n7fMApA3eYNod80CkBOLDHD3zgKQL9xVOXfPApAMbd3B+BACkCi/Jop4EQKQBNCvkvgSApAhIfhbeBMCkD2zASQ4FAKQGcSKLLgVApA2FdL1OBYCkBJnW724FwKQLvikRjhYApALCi1OuFkCkCdbdhc4WgKQA6z+37hbApAgPgeoeFwCkDxPULD4XQKQGKDZeXheApA08iIB+J8CkBFDqwp4oAKQLZTz0vihApAJ5nybeKICkCY3hWQ4owKQAokObLikApAe2lc1OKUCkDsrn/24pgKQF30ohjjnApAzznGOuOgCkBAf+lc46QKQLHEDH/jqApAIgowoeOsCkCUT1PD47AKQAWVduXjtApAdtqZB+S4CkDnH70p5LwKQFll4EvkwApAyqoDbuTECkA78CaQ5MgKQKw1SrLkzApAHntt1OTQCkCPwJD25NQKQAAGtBjl2ApAcUvXOuXcCkDjkPpc5eAKQFTWHX/l5ApAxRtBoeXoCkA2YWTD5ewKQKimh+Xl8ApAGeyqB+b0CkCKMc4p5vgKQPt28Uvm/ApAbbwUbuYAC0DeATiQ5gQLQE9HW7LmCAtAwIx+1OYMC0Ay0qH25hALQKMXxRjnFAtAFF3oOucYC0CFogtd5xwLQPfnLn/nIAtAaC1SoeckC0DZcnXD5ygLQEq4mOXnLAtAvP27B+gwC0AtQ98p6DQLQJ6IAkzoOAtAD84lbug8C0CBE0mQ6EALQPJYbLLoRAtAY56P1OhIC0DU47L26EwLQEYp1hjpUAtAt275OulUC0AotBxd6VgLQJn5P3/pXAtACz9joelgC0B8hIbD6WQLQO3JqeXpaAtAXg/NB+psC0DQVPAp6nALQEGaE0zqdAtAst82bup4C0AjJVqQ6nwLQJVqfbLqgAtABrCg1OqEC0B39cP26ogLQOg65xjrjAtAWoAKO+uQC0DLxS1d65QLQDwLUX/rmAtArVB0oeucC0AflpfD66ALQJDbuuXrpAtAASHeB+yoC0ByZgEq7KwLQOSrJEzssAtAVfFHbuy0C0DGNmuQ7LgLQDd8jrLsvAtAqcGx1OzAC0AaB9X27MQLQItM+BjtyAtA/JEbO+3MC0Bu1z5d7dALQN8cYn/t1AtAUGKFoe3YC0DBp6jD7dwLQDPty+Xt4AtApDLvB+7kC0AVeBIq7ugLQIa9NUzu7AtA+AJZbu7wC0BpSHyQ7vQLQNqNn7Lu+AtAS9PC1O78C0C8GOb27gAMQC5eCRnvBAxAn6MsO+8IDEAQ6U9d7wwMQIEuc3/vEAxA83OWoe8UDEBkubnD7xgMQNX+3OXvHAxARkQACPAgDEC4iSMq8CQMQCnPRkzwKAxAmhRqbvAsDEALWo2Q8DAMQH2fsLLwNAxA7uTT1PA4DEBfKvf28DwMQNBvGhnxQAxAQrU9O/FEDECz+mBd8UgMQCRAhH/xTAxAlYWnofFQDEAHy8rD8VQMQHgQ7uXxWAxA6VURCPJcDEBamzQq8mAMQMzgV0zyZAxAPSZ7bvJoDECua56Q8mwMQB+xwbLycAxAkfbk1PJ0DEACPAj38ngMQHOBKxnzfAxA5MZOO/OADEBWDHJd84QMQMdRlX/ziAxAOJe4ofOMDECp3NvD85AMQBsi/+XzlAxAjGciCPSYDED9rEUq9JwMQG7yaEz0oAxA4DeMbvSkDEBRfa+Q9KgMQMLC0rL0rAxAMwj21PSwDEClTRn39LQMQBaTPBn1uAxAh9hfO/W8DED4HYNd9cAMQGpjpn/1xAxA26jJofXIDEBM7uzD9cwMQL0zEOb10AxAL3kzCPbUDECgvlYq9tgMQBEEekz23AxAgkmdbvbgDED0jsCQ9uQMQGXU47L26AxA1hkH1fbsDEBHXyr39vAMQLmkTRn39AxAKupwO/f4DECbL5Rd9/wMQAx1t3/3AA1AfrraofcEDUDv//3D9wgNQGBFIeb3DA1A0YpECPgQDUBD0Gcq+BQNQLQVi0z4GA1AJVuubvgcDUCWoNGQ+CANQAjm9LL4JA1AeSsY1fgoDUDqcDv3+CwNQFu2Xhn5MA1AzfuBO/k0DUA+QaVd+TgNQK+GyH/5PA1AIMzroflADUCSEQ/E+UQNQANXMub5SA1AdJxVCPpMDUDl4Xgq+lANQFcnnEz6VA1AyGy/bvpYDUA5suKQ+lwNQKr3BbP6YA1AHD0p1fpkDUCNgkz3+mgNQP7Hbxn7bA1Abw2TO/twDUDhUrZd+3QNQFKY2X/7eA1Aw938oft8DUA0IyDE+4ANQKZoQ+b7hA1AF65mCPyIDUCI84kq/IwNQPk4rUz8kA1Aa37QbvyUDUDcw/OQ/JgNQE0JF7P8nA1Avk461fygDUAwlF33/KQNQKHZgBn9qA1AEh+kO/2sDUCDZMdd/bANQPWp6n/9tA1AZu8Nov24DUDXNDHE/bwNQEh6VOb9wA1Aur93CP7EDUArBZsq/sgNQJxKvkz+zA1ADZDhbv7QDUB/1QSR/tQNQPAaKLP+2A1AYWBL1f7cDUDSpW73/uANQETrkRn/5A1AtTC1O//oDUAmdthd/+wNQJe7+3//8A1ACQEfov/0DUB6RkLE//gNQOuLZeb//A1AXNGICAABDkDNFqwqAAUOQD9cz0wACQ5AsKHybgANDkAh5xWRABEOQJIsObMAFQ5ABHJc1QAZDkB1t3/3AB0OQOb8ohkBIQ5AV0LGOwElDkDJh+ldASkOQDrNDIABLQ5AqxIwogExDkAcWFPEATUOQI6dduYBOQ5A/+KZCAI9DkBwKL0qAkEOQOFt4EwCRQ5AU7MDbwJJDkDE+CaRAk0OQDU+SrMCUQ5ApoNt1QJVDkAYyZD3AlkOQIkOtBkDXQ5A+lPXOwNhDkBrmfpdA2UOQN3eHYADaQ5ATiRBogNtDkC/aWTEA3EOQDCvh+YDdQ5AovSqCAR5DkATOs4qBH0OQIR/8UwEgQ5A9cQUbwSFDkBnCjiRBIkOQNhPW7MEjQ5ASZV+1QSRDkC62qH3BJUOQCwgxRkFmQ5AnWXoOwWdDkAOqwteBaEOQH/wLoAFpQ5A8TVSogWpDkBie3XEBa0OQNPAmOYFsQ5ARAa8CAa1DkC2S98qBrkOQCeRAk0GvQ5AmNYlbwbBDkAJHEmRBsUOQHthbLMGyQ5A7KaP1QbNDkBd7LL3BtEOQM4x1hkH1Q5AQHf5OwfZDkCxvBxeB90OQCICQIAH4Q5Ak0djogflDkAFjYbEB+kOQHbSqeYH7Q5A5xfNCAjxDkBYXfAqCPUOQMqiE00I+Q5AO+g2bwj9DkCsLVqRCAEPQB1zfbMIBQ9Aj7ig1QgJD0AA/sP3CA0PQHFD5xkJEQ9A4ogKPAkVD0BUzi1eCRkPQMUTUYAJHQ9ANll0ogkhD0CnnpfECSUPQBnkuuYJKQ9AiineCAotD0D7bgErCjEPQGy0JE0KNQ9A3vlHbwo5D0BPP2uRCj0PQMCEjrMKQQ9AMcqx1QpFD0CjD9X3CkkPQBRV+BkLTQ9AhZobPAtRD0D23z5eC1UPQGglYoALWQ9A2WqFogtdD0BKsKjEC2EPQLv1y+YLZQ9ALTvvCAxpD0CegBIrDG0PQA/GNU0McQ9AgAtZbwx1D0DyUHyRDHkPQGOWn7MMfQ9A1NvC1QyBD0BFIeb3DIUPQLdmCRoNiQ9AKKwsPA2ND0CZ8U9eDZEPQAo3c4ANlQ9AfHyWog2ZD0DtwbnEDZ0PQF4H3eYNoQ9Az0wACQ6lD0BBkiMrDqkPQLLXRk0OrQ9AIx1qbw6xD0CUYo2RDrUPQAaosLMOuQ9Ad+3T1Q69D0DoMvf3DsEPQFl4GhoPxQ9Ay709PA/JD0A8A2FeD80PQK1IhIAP0Q9AHo6nog/VD0CQ08rED9kPQAEZ7uYP3Q9Acl4RCRDhD0DjozQrEOUPQFXpV00Q6Q9Axi57bxDtD0A3dJ6REPEPQKi5wbMQ9Q9AGv/k1RD5D0CLRAj4EP0PQP7EFY2IABBAt2cnnogCEEBvCjmviAQQQCitSsCIBhBA4E9c0YgIEECZ8m3iiAoQQFKVf/OIDBBACjiRBIkOEEDD2qIViRAQQHx9tCaJEhBANCDGN4kUEEDtwtdIiRYQQKVl6VmJGBBAXgj7aokaEEAXqwx8iRwQQM9NHo2JHhBAiPAvnokgEEBBk0GviSIQQPk1U8CJJBBAsthk0YkmEEBqe3biiSgQQCMeiPOJKhBA3MCZBIosEECUY6sVii4QQE0GvSaKMBBABqnON4oyEEC+S+BIijQQQHfu8VmKNhBAL5EDa4o4EEDoMxV8ijoQQKHWJo2KPBBAWXk4noo+EEASHEqvikAQQMu+W8CKQhBAg2Ft0YpEEEA8BH/iikYQQPSmkPOKSBBArUmiBItKEEBm7LMVi0wQQB6PxSaLThBA1zHXN4tQEECQ1OhIi1IQQEh3+lmLVBBAARoMa4tWEEC5vB18i1gQQHJfL42LWhBAKwJBnotcEEDjpFKvi14QQJxHZMCLYBBAVep10YtiEEANjYfii2QQQMYvmfOLZhBAftKqBIxoEEA3dbwVjGoQQPAXziaMbBBAqLrfN4xuEEBhXfFIjHAQQBoAA1qMchBA0qIUa4x0EECLRSZ8jHYQQEPoN42MeBBA/IpJnox6EEC1LVuvjHwQQG3QbMCMfhBAJnN+0YyAEEDfFZDijIIQQJe4ofOMhBBAUFuzBI2GEEAI/sQVjYgQQMGg1iaNihBAekPoN42MEEAy5vlIjY4QQOuIC1qNkBBApCsda42SEEBczi58jZQQQBVxQI2NlhBAzRNSno2YEECGtmOvjZoQQD9ZdcCNnBBA9/uG0Y2eEECwnpjijaAQQGlBqvONohBAIeS7BI6kEEDahs0VjqYQQJIp3yaOqBBAS8zwN46qEEAEbwJJjqwQQLwRFFqOrhBAdbQla46wEEAuVzd8jrIQQOb5SI2OtBBAn5xano62EEBXP2yvjrgQQBDifcCOuhBAyYSP0Y68EECBJ6Hijr4QQDrKsvOOwBBA82zEBI/CEECrD9YVj8QQQGSy5yaPxhBAHFX5N4/IEEDV9wpJj8oQQI6aHFqPzBBARj0ua4/OEED/3z98j9AQQLiCUY2P0hBAcCVjno/UEEApyHSvj9YQQOFqhsCP2BBAmg2Y0Y/aEEBTsKnij9wQQAtTu/OP3hBAxPXMBJDgEEB9mN4VkOIQQDU78CaQ5BBA7t0BOJDmEECmgBNJkOgQQF8jJVqQ6hBAGMY2a5DsEEDQaEh8kO4QQIkLWo2Q8BBAQq5rnpDyEED6UH2vkPQQQLPzjsCQ9hBAa5ag0ZD4EEAkObLikPoQQN3bw/OQ/BBAlX7VBJH+EEBOIecVkQARQAbE+CaRAhFAv2YKOJEEEUB4CRxJkQYRQDCsLVqRCBFA6U4/a5EKEUCi8VB8kQwRQFqUYo2RDhFAEzd0npEQEUDL2YWvkRIRQIR8l8CRFBFAPR+p0ZEWEUD1wbrikRgRQK5kzPORGhFAZwfeBJIcEUAfqu8Vkh4RQNhMASeSIBFAkO8SOJIiEUBJkiRJkiQRQAI1NlqSJhFAutdHa5IoEUBzell8kioRQCwda42SLBFA5L98npIuEUCdYo6vkjARQFUFoMCSMhFADqix0ZI0EUDHSsPikjYRQH/t1POSOBFAOJDmBJM6EUDxMvgVkzwRQKnVCSeTPhFAYngbOJNAEUAaGy1Jk0IRQNO9PlqTRBFAjGBQa5NGEUBEA2J8k0gRQP2lc42TShFAtkiFnpNMEUBu65avk04RQCeOqMCTUBFA3zC60ZNSEUCY08vik1QRQFF23fOTVhFACRnvBJRYEUDCuwAWlFoRQHteEieUXBFAMwEkOJReEUDsozVJlGARQKRGR1qUYhFAXelYa5RkEUAWjGp8lGYRQM4ufI2UaBFAh9GNnpRqEUBAdJ+vlGwRQPgWscCUbhFAsbnC0ZRwEUBpXNTilHIRQCL/5fOUdBFA26H3BJV2EUCTRAkWlXgRQEznGieVehFABYosOJV8EUC9LD5JlX4RQHbPT1qVgBFALnJha5WCEUDnFHN8lYQRQKC3hI2VhhFAWFqWnpWIEUAR/aevlYoRQMqfucCVjBFAgkLL0ZWOEUA75dzilZARQPOH7vOVkhFArCoABZaUEUBlzREWlpYRQB1wIyeWmBFA1hI1OJaaEUCPtUZJlpwRQEdYWFqWnhFAAPtpa5agEUC4nXt8lqIRQHFAjY2WpBFAKuOenpamEUDihbCvlqgRQJsowsCWqhFAVMvT0ZasEUAMbuXilq4RQMUQ9/OWsBFAfbMIBZeyEUA2VhoWl7QRQO/4KyeXthFAp5s9OJe4EUBgPk9Jl7oRQBnhYFqXvBFA0YNya5e+EUCKJoR8l8ARQELJlY2XwhFA+2unnpfEEUC0Drmvl8YRQGyxysCXyBFAJVTc0ZfKEUDe9u3il8wRQJaZ//OXzhFATzwRBZjQEUAH3yIWmNIRQMCBNCeY1BFAeSRGOJjWEUAxx1dJmNgRQOppaVqY2hFAowx7a5jcEUBbr4x8mN4RQBRSno2Y4BFAzPSvnpjiEUCFl8GvmOQRQD4608CY5hFA9tzk0ZjoEUCvf/bimOoRQGgiCPSY7BFAIMUZBZnuEUDZZysWmfARQJEKPSeZ8hFASq1OOJn0EUADUGBJmfYRQLvycVqZ+BFAdJWDa5n6EUAtOJV8mfwRQOXapo2Z/hFAnn24npkAEkBWIMqvmQISQA/D28CZBBJAyGXt0ZkGEkCACP/imQgSQDmrEPSZChJA8U0iBZoMEkCq8DMWmg4SQGOTRSeaEBJAGzZXOJoSEkDU2GhJmhQSQI17elqaFhJARR6Ma5oYEkD+wJ18mhoSQLZjr42aHBJAbwbBnpoeEkAoqdKvmiASQOBL5MCaIhJAme710ZokEkBSkQfjmiYSQAo0GfSaKBJAw9YqBZsqEkB7eTwWmywSQDQcTiebLhJA7b5fOJswEkClYXFJmzISQF4Eg1qbNBJAF6eUa5s2EkDPSaZ8mzgSQIjst42bOhJAQI/Jnps8EkD5Mduvmz4SQLLU7MCbQBJAanf+0ZtCEkAjGhDjm0QSQNy8IfSbRhJAlF8zBZxIEkBNAkUWnEoSQAWlViecTBJAvkdoOJxOEkB36nlJnFASQC+Ni1qcUhJA6C+da5xUEkCh0q58nFYSQFl1wI2cWBJAEhjSnpxaEkDKuuOvnFwSQINd9cCcXhJAPAAH0pxgEkD0ohjjnGISQK1FKvScZBJAZug7BZ1mEkAei00WnWgSQNctXyedahJAj9BwOJ1sEkBIc4JJnW4SQAEWlFqdcBJAubila51yEkByW7d8nXQSQCv+yI2ddhJA46Danp14EkCcQ+yvnXoSQFTm/cCdfBJADYkP0p1+EkDGKyHjnYASQH7OMvSdghJAN3FEBZ6EEkDwE1YWnoYSQKi2ZyeeiBJAYVl5OJ6KEkAZ/IpJnowSQNKenFqejhJAi0Gua56QEkBD5L98npISQPyG0Y2elBJAtSnjnp6WEkBtzPSvnpgSQCZvBsGemhJA3hEY0p6cEkCXtCnjnp4SQFBXO/SeoBJACPpMBZ+iEkDBnF4Wn6QSQHo/cCefphJAMuKBOJ+oEkDrhJNJn6oSQKMnpVqfrBJAXMq2a5+uEkAVbch8n7ASQM0P2o2fshJAhrLrnp+0EkA/Vf2vn7YSQPf3DsGfuBJAsJog0p+6EkBoPTLjn7wSQCHgQ/SfvhJA2oJVBaDAEkCSJWcWoMISQEvIeCegxBJABGuKOKDGEkC8DZxJoMgSQHWwrVqgyhJALVO/a6DMEkDm9dB8oM4SQJ+Y4o2g0BJAVzv0nqDSEkAQ3gWwoNQSQMmAF8Gg1hJAgSMp0qDYEkA6xjrjoNoSQPJoTPSg3BJAqwteBaHeEkBkrm8WoeASQBxRgSeh4hJA1fOSOKHkEkCOlqRJoeYSQEY5tlqh6BJA/9vHa6HqEkC3ftl8oewSQHAh642h7hJAKcT8nqHwEkDhZg6wofISQJoJIMGh9BJAU6wx0qH2EkALT0PjofgSQMTxVPSh+hJAfJRmBaL8EkA1N3gWov4SQO7ZiSeiABNApnybOKICE0BfH61JogQTQBfCvlqiBhNA0GTQa6IIE0CJB+J8ogoTQEGq842iDBNA+kwFn6IOE0Cz7xawohATQGuSKMGiEhNAJDU60qIUE0Dc10vjohYTQJV6XfSiGBNATh1vBaMaE0AGwIAWoxwTQL9ikiejHhNAeAWkOKMgE0AwqLVJoyITQOlKx1qjJBNAoe3Ya6MmE0BakOp8oygTQBMz/I2jKhNAy9UNn6MsE0CEeB+woy4TQD0bMcGjMBNA9b1C0qMyE0CuYFTjozQTQGYDZvSjNhNAH6Z3BaQ4E0DYSIkWpDoTQJDrmiekPBNASY6sOKQ+E0ACMb5JpEATQLrTz1qkQhNAc3bha6REE0ArGfN8pEYTQOS7BI6kSBNAnV4Wn6RKE0BVASiwpEwTQA6kOcGkThNAx0ZL0qRQE0B/6VzjpFITQDiMbvSkVBNA8C6ABaVWE0Cp0ZEWpVgTQGJ0oyelWhNAGhe1OKVcE0DTucZJpV4TQIxc2FqlYBNARP/pa6ViE0D9oft8pWQTQLVEDY6lZhNAbucen6VoE0AnijCwpWoTQN8sQsGlbBNAmM9T0qVuE0BRcmXjpXATQAkVd/SlchNAwreIBaZ0E0B6WpoWpnYTQDP9qyemeBNA7J+9OKZ6E0CkQs9JpnwTQF3l4FqmfhNAFojya6aAE0DOKgR9poITQIfNFY6mhBNAP3Ann6aGE0D4EjmwpogTQLG1SsGmihNAaVhc0qaME0Ai+23jpo4TQNudf/SmkBNAk0CRBaeSE0BM46IWp5QTQASGtCenlhNAvSjGOKeYE0B2y9dJp5oTQC5u6VqnnBNA5xD7a6eeE0Cgswx9p6ATQFhWHo6nohNAEfkvn6ekE0DJm0Gwp6YTQII+U8GnqBNAO+Fk0qeqE0Dzg3bjp6wTQKwmiPSnrhNAZcmZBaiwE0AdbKsWqLITQNYOvSeotBNAjrHOOKi2E0BHVOBJqLgTQAD38VqouhNAuJkDbKi8E0BxPBV9qL4TQCrfJo6owBNA4oE4n6jCE0CbJEqwqMQTQFPHW8GoxhNADGpt0qjIE0DFDH/jqMoTQH2vkPSozBNANlKiBanOE0Dv9LMWqdATQKeXxSep0hNAYDrXOKnUE0AY3ehJqdYTQNF/+lqp2BNAiiIMbKnaE0BCxR19qdwTQPtnL46p3hNAtApBn6ngE0BsrVKwqeITQCVQZMGp5BNA3fJ10qnmE0CWlYfjqegTQE84mfSp6hNAB9uqBarsE0DAfbwWqu4TQHkgzieq8BNAMcPfOKryE0DqZfFJqvQTQKIIA1uq9hNAW6sUbKr4E0AUTiZ9qvoTQMzwN46q/BNAhZNJn6r+E0A+NluwqgAUQPbYbMGqAhRAr3t+0qoEFEBnHpDjqgYUQCDBofSqCBRA2WOzBasKFECRBsUWqwwUQEqp1ierDhRAAkzoOKsQFEC77vlJqxIUQHSRC1urFBRALDQdbKsWFEDl1i59qxgUQJ55QI6rGhRAVhxSn6scFEAPv2Owqx4UQMdhdcGrIBRAgASH0qsiFEA5p5jjqyQUQPFJqvSrJhRAquy7BawoFEBjj80WrCoUQBsy3yesLBRA1NTwOKwuFECMdwJKrDAUQEUaFFusMhRA/rwlbKw0FEC2Xzd9rDYUQG8CSY6sOBRAKKVan6w6FEDgR2ywrDwUQJnqfcGsPhRAUY2P0qxAFEAKMKHjrEIUQMPSsvSsRBRAe3XEBa1GFEA0GNYWrUgUQO265yetShRApV35OK1MFEBeAAtKrU4UQBajHFutUBRAz0UubK1SFECI6D99rVQUQECLUY6tVhRA+S1jn61YFECy0HSwrVoUQGpzhsGtXBRAIxaY0q1eFEDbuKnjrWAUQJRbu/StYhRATf7MBa5kFEAFod4WrmYUQL5D8CeuaBRAd+YBOa5qFEAviRNKrmwUQOgrJVuubhRAoM42bK5wFEBZcUh9rnIUQBIUWo6udBRAyrZrn652FECDWX2wrngUQDz8jsGuehRA9J6g0q58FECtQbLjrn4UQGXkw/SugBRAHofVBa+CFEDXKecWr4QUQI/M+CevhhRASG8KOa+IFEABEhxKr4oUQLm0LVuvjBRAclc/bK+OFEAq+lB9r5AUQOOcYo6vkhRAnD90n6+UFEBU4oWwr5YUQA2Fl8GvmBRAxiep0q+aFEB+yrrjr5wUQDdtzPSvnhRA7w/eBbCgFECosu8WsKIUQGFVASiwpBRAGfgSObCmFEDSmiRKsKgUQIs9NluwqhRAQ+BHbLCsFED8gll9sK4UQLQla46wsBRAbch8n7CyFEAma46wsLQUQN4NoMGwthRAl7Cx0rC4FEBQU8PjsLoUQAj21PSwvBRAwZjmBbG+FEB5O/gWscAUQDLeCSixwhRA64AbObHEFECjIy1KscYUQFzGPluxyBRAFWlQbLHKFEDNC2J9scwUQIauc46xzhRAPlGFn7HQFED385awsdIUQLCWqMGx1BRAaDm60rHWFEAh3MvjsdgUQNp+3fSx2hRAkiHvBbLcFEBLxAAXst4UQANnEiiy4BRAvAkkObLiFEB1rDVKsuQUQC1PR1uy5hRA5vFYbLLoFECflGp9suoUQFc3fI6y7BRAENqNn7LuFEDIfJ+wsvAUQIEfscGy8hRAOsLC0rL0FEDyZNTjsvYUQKsH5vSy+BRAZKr3BbP6FEAcTQkXs/wUQNXvGiiz/hRAjZIsObMAFUBGNT5KswIVQP/XT1uzBBVAt3phbLMGFUBwHXN9swgVQCjAhI6zChVA4WKWn7MMFUCaBaiwsw4VQFKoucGzEBVAC0vL0rMSFUDE7dzjsxQVQHyQ7vSzFhVANTMABrQYFUDt1REXtBoVQKZ4Iyi0HBVAXxs1ObQeFUAXvkZKtCAVQNBgWFu0IhVAiQNqbLQkFUBBpnt9tCYVQPpIjY60KBVAsuuen7QqFUBrjrCwtCwVQCQxwsG0LhVA3NPT0rQwFUCVduXjtDIVQE4Z9/S0NBVABrwIBrU2FUC/XhoXtTgVQHcBLCi1OhVAMKQ9ObU8FUDpRk9KtT4VQKHpYFu1QBVAWoxybLVCFUATL4R9tUQVQMvRlY61RhVAhHSnn7VIFUA8F7mwtUoVQPW5ysG1TBVArlzc0rVOFUBm/+3jtVAVQB+i//S1UhVA2EQRBrZUFUCQ5yIXtlYVQEmKNCi2WBVAAS1GObZaFUC6z1dKtlwVQHNyaVu2XhVAKxV7bLZgFUDkt4x9tmIVQJ1ano62ZBVAVf2vn7ZmFUAOoMGwtmgVQMZC08G2ahVAf+Xk0rZsFUA4iPbjtm4VQPAqCPW2cBVAqc0ZBrdyFUBicCsXt3QVQBoTPSi3dhVA07VOObd4FUCLWGBKt3oVQET7cVu3fBVA/Z2DbLd+FUC1QJV9t4AVQG7jpo63ghVAJ4a4n7eEFUDfKMqwt4YVQJjL28G3iBVAUG7t0reKFUAJEf/jt4wVQMKzEPW3jhVAelYiBriQFUAz+TMXuJIVQOybRSi4lBVApD5XObiWFUBd4WhKuJgVQBWEelu4mhVAziaMbLicFUCHyZ19uJ4VQD9sr464oBVA+A7Bn7iiFUCxsdKwuKQVQGlU5MG4phVAIvf10rioFUDamQfkuKoVQJM8GfW4rBVATN8qBrmuFUAEgjwXubAVQL0kTii5shVAdsdfObm0FUAuanFKubYVQOcMg1u5uBVAn6+UbLm6FUBYUqZ9ubwVQBH1t465vhVAyZfJn7nAFUCCOtuwucIVQDvd7MG5xBVA83/+0rnGFUCsIhDkucgVQGTFIfW5yhVAHWgzBrrMFUDWCkUXus4VQI6tVii60BVAR1BoObrSFUAA83lKutQVQLiVi1u61hVAcTidbLrYFUAp2659utoVQOJ9wI663BVAmyDSn7reFUBTw+OwuuAVQAxm9cG64hVAxQgH07rkFUB9qxjkuuYVQDZOKvW66BVA7vA7BrvqFUCnk00Xu+wVQGA2Xyi77hVAGNlwObvwFUDRe4JKu/IVQIoelFu79BVAQsGlbLv2FUD7Y7d9u/gVQLMGyY67+hVAbKnan7v8FUAlTOywu/4VQN3u/cG7ABZAlpEP07sCFkBONCHkuwQWQAfXMvW7BhZAwHlEBrwIFkB4HFYXvAoWQDG/Zyi8DBZA6mF5ObwOFkCiBItKvBAWQFunnFu8EhZAE0qubLwUFkDM7L99vBYWQIWP0Y68GBZAPTLjn7waFkD21PSwvBwWQK93BsK8HhZAZxoY07wgFkAgvSnkvCIWQNhfO/W8JBZAkQJNBr0mFkBKpV4XvSgWQAJIcCi9KhZAu+qBOb0sFkB0jZNKvS4WQCwwpVu9MBZA5dK2bL0yFkCddch9vTQWQFYY2o69NhZAD7vrn704FkDHXf2wvToWQIAAD8K9PBZAOaMg070+FkDxRTLkvUAWQKroQ/W9QhZAYotVBr5EFkAbLmcXvkYWQNTQeCi+SBZAjHOKOb5KFkBFFpxKvkwWQP64rVu+ThZAtlu/bL5QFkBv/tB9vlIWQCeh4o6+VBZA4EP0n75WFkCZ5gWxvlgWQFGJF8K+WhZACiwp075cFkDDzjrkvl4WQHtxTPW+YBZANBReBr9iFkDstm8Xv2QWQKVZgSi/ZhZAXvySOb9oFkAWn6RKv2oWQM9Btlu/bBZAiOTHbL9uFkBAh9l9v3AWQPkp646/chZAscz8n790FkBqbw6xv3YWQCMSIMK/eBZA27Qx0796FkCUV0Pkv3wWQE36VPW/fhZABZ1mBsCAFkC+P3gXwIIWQHbiiSjAhBZAL4WbOcCGFkDoJ61KwIgWQKDKvlvAihZAWW3QbMCMFkASEOJ9wI4WQMqy847AkBZAg1UFoMCSFkA7+BaxwJQWQPSaKMLAlhZArT0608CYFkBl4EvkwJoWQB6DXfXAnBZA1yVvBsGeFkCPyIAXwaAWQEhrkijBohZAAA6kOcGkFkC5sLVKwaYWQHJTx1vBqBZAKvbYbMGqFkDjmOp9wawWQJw7/I7BrhZAVN4NoMGwFkANgR+xwbIWQMUjMcLBtBZAfsZC08G2FkA3aVTkwbgWQO8LZvXBuhZAqK53BsK8FkBhUYkXwr4WQBn0mijCwBZA0pasOcLCFkCKOb5KwsQWQEPcz1vCxhZA/H7hbMLIFkC0IfN9wsoWQG3EBI/CzBZAJmcWoMLOFkDeCSixwtAWQJesOcLC0hZAT09L08LUFkAI8lzkwtYWQMGUbvXC2BZAeTeABsPaFkAy2pEXw9wWQOt8oyjD3hZAox+1OcPgFkBcwsZKw+IWQBRl2FvD5BZAzQfqbMPmFkCGqvt9w+gWQD5NDY/D6hZA9+8eoMPsFkCwkjCxw+4WQGg1QsLD8BZAIdhT08PyFkDZemXkw/QWQJIdd/XD9hZAS8CIBsT4FkADY5oXxPoWQLwFrCjE/BZAdai9OcT+FkAtS89KxAAXQObt4FvEAhdAnpDybMQEF0BXMwR+xAYXQBDWFY/ECBdAyHgnoMQKF0CBGzmxxAwXQDm+SsLEDhdA8mBc08QQF0CrA27kxBIXQGOmf/XEFBdAHEmRBsUWF0DV66IXxRgXQI2OtCjFGhdARjHGOcUcF0D+09dKxR4XQLd26VvFIBdAcBn7bMUiF0AovAx+xSQXQOFeHo/FJhdAmgEwoMUoF0BSpEGxxSoXQAtHU8LFLBdAw+lk08UuF0B8jHbkxTAXQDUviPXFMhdA7dGZBsY0F0CmdKsXxjYXQF8XvSjGOBdAF7rOOcY6F0DQXOBKxjwXQIj/8VvGPhdAQaIDbcZAF0D6RBV+xkIXQLLnJo/GRBdAa4o4oMZGF0AkLUqxxkgXQNzPW8LGShdAlXJt08ZMF0BNFX/kxk4XQAa4kPXGUBdAv1qiBsdSF0B3/bMXx1QXQDCgxSjHVhdA6ULXOcdYF0Ch5ehKx1oXQFqI+lvHXBdAEisMbcdeF0DLzR1+x2AXQIRwL4/HYhdAPBNBoMdkF0D1tVKxx2YXQK5YZMLHaBdAZvt108dqF0Afnofkx2wXQNdAmfXHbhdAkOOqBshwF0BJhrwXyHIXQAEpzijIdBdAusvfOch2F0BzbvFKyHgXQCsRA1zIehdA5LMUbch8F0CcViZ+yH4XQFX5N4/IgBdADpxJoMiCF0DGPluxyIQXQH/hbMLIhhdAOIR+08iIF0DwJpDkyIoXQKnJofXIjBdAYWyzBsmOF0AaD8UXyZAXQNOx1ijJkhdAi1ToOcmUF0BE9/lKyZYXQP2ZC1zJmBdAtTwdbcmaF0Bu3y5+yZwXQCaCQI/JnhdA3yRSoMmgF0CYx2OxyaIXQFBqdcLJpBdACQ2H08mmF0DCr5jkyagXQHpSqvXJqhdAM/W7BsqsF0Drl80Xyq4XQKQ63yjKsBdAXd3wOcqyF0AVgAJLyrQXQM4iFFzKthdAh8Ulbcq4F0A/aDd+yroXQPgKSY/KvBdAsK1aoMq+F0BpUGyxysAXQCLzfcLKwhdA2pWP08rEF0CTOKHkysYXQEzbsvXKyBdABH7EBsvKF0C9INYXy8wXQHXD5yjLzhdALmb5OcvQF0DnCAtLy9IXQJ+rHFzL1BdAWE4ubcvWF0AR8T9+y9gXQMmTUY/L2hdAgjZjoMvcF0A62XSxy94XQPN7hsLL4BdArB6Y08viF0Bkwanky+QXQB1ku/XL5hdA1gbNBszoF0COqd4XzOoXQEdM8CjM7BdA/+4BOszuF0C4kRNLzPAXQHE0JVzM8hdAKdc2bcz0F0DieUh+zPYXQJscWo/M+BdAU79roMz6F0AMYn2xzPwXQMQEj8LM/hdAfaeg08wAGEA2SrLkzAIYQO7sw/XMBBhAp4/VBs0GGEBfMucXzQgYQBjV+CjNChhA0XcKOs0MGECJGhxLzQ4YQEK9LVzNEBhA+18/bc0SGECzAlF+zRQYQGylYo/NFhhAJEh0oM0YGEDd6oWxzRoYQJaNl8LNHBhATjCp080eGEAH07rkzSAYQMB1zPXNIhhAeBjeBs4kGEAxu+8XziYYQOldASnOKBhAogATOs4qGEBboyRLziwYQBNGNlzOLhhAzOhHbc4wGECFi1l+zjIYQD0ua4/ONBhA9tB8oM42GECuc46xzjgYQGcWoMLOOhhAILmx0848GEDYW8Pkzj4YQJH+1PXOQBhASqHmBs9CGEACRPgXz0QYQLvmCSnPRhhAc4kbOs9IGEAsLC1Lz0oYQOXOPlzPTBhAnXFQbc9OGEBWFGJ+z1AYQA+3c4/PUhhAx1mFoM9UGECA/Jaxz1YYQDifqMLPWBhA8UG6089aGECq5Mvkz1wYQGKH3fXPXhhAGyrvBtBgGEDUzAAY0GIYQIxvEinQZBhARRIkOtBmGED9tDVL0GgYQLZXR1zQahhAb/pYbdBsGEAnnWp+0G4YQOA/fI/QcBhAmeKNoNByGEBRhZ+x0HQYQAooscLQdhhAwsrC09B4GEB7bdTk0HoYQDQQ5vXQfBhA7LL3BtF+GEClVQkY0YAYQF74GinRghhAFpssOtGEGEDPPT5L0YYYQIfgT1zRiBhAQINhbdGKGED5JXN+0YwYQLHIhI/RjhhAamuWoNGQGEAjDqix0ZIYQNuwucLRlBhAlFPL09GWGEBM9tzk0ZgYQAWZ7vXRmhhAvjsAB9KcGEB23hEY0p4YQC+BIynSoBhA6CM1OtKiGECgxkZL0qQYQFlpWFzSphhAEQxqbdKoGEDKrnt+0qoYQINRjY/SrBhAO/SeoNKuGED0lrCx0rAYQK05wsLSshhAZdzT09K0GEAef+Xk0rYYQNYh9/XSuBhAj8QIB9O6GEBIZxoY07wYQAAKLCnTvhhAuaw9OtPAGEByT09L08IYQCryYFzTxBhA45RybdPGGECbN4R+08gYQFTalY/TyhhADX2noNPMGEDFH7mx084YQH7CysLT0BhAN2Xc09PSGEDvB+7k09QYQKiq//XT1hhAYE0RB9TYGEAZ8CIY1NoYQNKSNCnU3BhAijVGOtTeGEBD2FdL1OAYQPx6aVzU4hhAtB17bdTkGEBtwIx+1OYYQCVjno/U6BhA3gWwoNTqGECXqMGx1OwYQE9L08LU7hhACO7k09TwGEDBkPbk1PIYQHkzCPbU9BhAMtYZB9X2GEDqeCsY1fgYQKMbPSnV+hhAXL5OOtX8GEAUYWBL1f4YQM0DclzVABlAhaaDbdUCGUA+SZV+1QQZQPfrpo/VBhlAr464oNUIGUBoMcqx1QoZQCHU28LVDBlA2Xbt09UOGUCSGf/k1RAZQEq8EPbVEhlAA18iB9YUGUC8ATQY1hYZQHSkRSnWGBlALUdXOtYaGUDm6WhL1hwZQJ6MelzWHhlAVy+MbdYgGUAP0p1+1iIZQMh0r4/WJBlAgRfBoNYmGUA5utKx1igZQPJc5MLWKhlAq//109YsGUBjogfl1i4ZQBxFGfbWMBlA1OcqB9cyGUCNijwY1zQZQEYtTinXNhlA/s9fOtc4GUC3cnFL1zoZQHAVg1zXPBlAKLiUbdc+GUDhWqZ+10AZQJn9t4/XQhlAUqDJoNdEGUALQ9ux10YZQMPl7MLXSBlAfIj+09dKGUA1KxDl10wZQO3NIfbXThlApnAzB9hQGUBeE0UY2FIZQBe2VinYVBlA0FhoOthWGUCI+3lL2FgZQEGei1zYWhlA+kCdbdhcGUCy465+2F4ZQGuGwI/YYBlAIynSoNhiGUDcy+Ox2GQZQJVu9cLYZhlATREH1NhoGUAGtBjl2GoZQL9WKvbYbBlAd/k7B9luGUAwnE0Y2XAZQOg+XynZchlAoeFwOtl0GUBahIJL2XYZQBInlFzZeBlAy8mlbdl6GUCEbLd+2XwZQDwPyY/ZfhlA9bHaoNmAGUCtVOyx2YIZQGb3/cLZhBlAH5oP1NmGGUDXPCHl2YgZQJDfMvbZihlASYJEB9qMGUABJVYY2o4ZQLrHZynakBlAcmp5OtqSGUArDYtL2pQZQOSvnFzalhlAnFKubdqYGUBV9b9+2poZQA6Y0Y/anBlAxjrjoNqeGUB/3fSx2qAZQDeABsPaohlA8CIY1NqkGUCpxSnl2qYZQGFoO/baqBlAGgtNB9uqGUDTrV4Y26wZQItQcCnbrhlARPOBOtuwGUD8lZNL27IZQLU4pVzbtBlAbtu2bdu2GUAmfsh+27gZQN8g2o/buhlAmMProNu8GUBQZv2x274ZQAkJD8PbwBlAwasg1NvCGUB6TjLl28QZQDPxQ/bbxhlA65NVB9zIGUCkNmcY3MoZQF3ZeCnczBlAFXyKOtzOGUDOHpxL3NAZQIbBrVzc0hlAP2S/bdzUGUD4BtF+3NYZQLCp4o/c2BlAaUz0oNzaGUAi7wWy3NwZQNqRF8Pc3hlAkzQp1NzgGUBL1zrl3OIZQAR6TPbc5BlAvRxeB93mGUB1v28Y3egZQC5igSnd6hlA5wSTOt3sGUCfp6RL3e4ZQFhKtlzd8BlAEO3Hbd3yGUDJj9l+3fQZQIIy64/d9hlAOtX8oN34GUDzdw6y3foZQKwaIMPd/BlAZL0x1N3+GUAdYEPl3QAaQNUCVfbdAhpAjqVmB94EGkBHSHgY3gYaQP/qiSneCBpAuI2bOt4KGkBwMK1L3gwaQCnTvlzeDhpA4nXQbd4QGkCaGOJ+3hIaQFO784/eFBpADF4Fod4WGkDEABey3hgaQH2jKMPeGhpANUY61N4cGkDu6Evl3h4aQKeLXfbeIBpAXy5vB98iGkAY0YAY3yQaQNFzkinfJhpAiRakOt8oGkBCubVL3yoaQPpbx1zfLBpAs/7Ybd8uGkBsoep+3zAaQCRE/I/fMhpA3eYNod80GkCWiR+y3zYaQE4sMcPfOBpAB89C1N86GkC/cVTl3zwaQHgUZvbfPhpAMbd3B+BAGkDpWYkY4EIaQKL8mingRBpAW5+sOuBGGkATQr5L4EgaQMzkz1zgShpAhIfhbeBMGkA9KvN+4E4aQPbMBJDgUBpArm8WoeBSGkBnEiiy4FQaQCC1OcPgVhpA2FdL1OBYGkCR+lzl4FoaQEmdbvbgXBpAAkCAB+FeGkC74pEY4WAaQHOFoynhYhpALCi1OuFkGkDlysZL4WYaQJ1t2FzhaBpAVhDqbeFqGkAOs/t+4WwaQMdVDZDhbhpAgPgeoeFwGkA4mzCy4XIaQPE9QsPhdBpAquBT1OF2GkBig2Xl4XgaQBsmd/bhehpA08iIB+J8GkCMa5oY4n4aQEUOrCnigBpA/bC9OuKCGkC2U89L4oQaQG/24FzihhpAJ5nybeKIGkDgOwR/4ooaQJjeFZDijBpAUYEnoeKOGkAKJDmy4pAaQMLGSsPikhpAe2lc1OKUGkA0DG7l4pYaQOyuf/bimBpApVGRB+OaGkBd9KIY45waQBaXtCnjnhpAzznGOuOgGkCH3NdL46IaQEB/6VzjpBpA+SH7beOmGkCxxAx/46gaQGpnHpDjqhpAIgowoeOsGkDbrEGy464aQJRPU8PjsBpATPJk1OOyGkAFlXbl47QaQL43iPbjthpAdtqZB+S4GkAvfasY5LoaQOcfvSnkvBpAoMLOOuS+GkBZZeBL5MAaQBEI8lzkwhpAyqoDbuTEGkCDTRV/5MYaQDvwJpDkyBpA9JI4oeTKGkCsNUqy5MwaQGXYW8PkzhpAHntt1OTQGkDWHX/l5NIaQI/AkPbk1BpASGOiB+XWGkAABrQY5dgaQLmoxSnl2hpAcUvXOuXcGkAq7uhL5d4aQOOQ+lzl4BpAmzMMbuXiGkBU1h1/5eQaQA15L5Dl5hpAxRtBoeXoGkB+vlKy5eoaQDZhZMPl7BpA7wN21OXuGkCopofl5fAaQGBJmfbl8hpAGeyqB+b0GkDSjrwY5vYaQIoxzinm+BpAQ9TfOub6GkD7dvFL5vwaQLQZA13m/hpAbbwUbuYAG0AlXyZ/5gIbQN4BOJDmBBtAlqRJoeYGG0BPR1uy5ggbQAjqbMPmChtAwIx+1OYMG0B5L5Dl5g4bQDLSofbmEBtA6nSzB+cSG0CjF8UY5xQbQFu61innFhtAFF3oOucYG0DN//lL5xobQIWiC13nHBtAPkUdbuceG0D35y5/5yAbQK+KQJDnIhtAaC1SoeckG0Ag0GOy5yYbQNlydcPnKBtAkhWH1OcqG0BKuJjl5ywbQANbqvbnLhtAvP27B+gwG0B0oM0Y6DIbQC1D3ynoNBtA5eXwOug2G0CeiAJM6DgbQFcrFF3oOhtAD84lbug8G0DIcDd/6D4bQIETSZDoQBtAObZaoehCG0DyWGyy6EQbQKr7fcPoRhtAY56P1OhIG0AcQaHl6EobQNTjsvboTBtAjYbEB+lOG0BGKdYY6VAbQP7L5ynpUhtAt275OulUG0BvEQtM6VYbQCi0HF3pWBtA4VYubulaG0CZ+T9/6VwbQFKcUZDpXhtACz9joelgG0DD4XSy6WIbQHyEhsPpZBtANCeY1OlmG0Dtyanl6WgbQKZsu/bpahtAXg/NB+psG0AXst4Y6m4bQNBU8CnqcBtAiPcBO+pyG0BBmhNM6nQbQPk8JV3qdhtAst82bup4G0Brgkh/6nobQCMlWpDqfBtA3Mdroep+G0CVan2y6oAbQE0Nj8PqghtABrCg1OqEG0C+UrLl6oYbQHf1w/bqiBtAMJjVB+uKG0DoOucY64wbQKHd+CnrjhtAWoAKO+uQG0ASIxxM65IbQMvFLV3rlBtAg2g/buuWG0A8C1F/65gbQPWtYpDrmhtArVB0oeucG0Bm84Wy654bQB+Wl8ProBtA1zip1OuiG0CQ27rl66QbQEh+zPbrphtAASHeB+yoG0C6w+8Y7KobQHJmASrsrBtAKwkTO+yuG0DkqyRM7LAbQJxONl3sshtAVfFHbuy0G0ANlFl/7LYbQMY2a5DsuBtAf9l8oey6G0A3fI6y7LwbQPAeoMPsvhtAqcGx1OzAG0BhZMPl7MIbQBoH1fbsxBtA0qnmB+3GG0CLTPgY7cgbQETvCSrtyhtA/JEbO+3MG0C1NC1M7c4bQG7XPl3t0BtAJnpQbu3SG0DfHGJ/7dQbQJe/c5Dt1htAUGKFoe3YG0AJBZey7dobQMGnqMPt3BtAekq61O3eG0Az7cvl7eAbQOuP3fbt4htApDLvB+7kG0Bc1QAZ7uYbQBV4Eiru6BtAzhokO+7qG0CGvTVM7uwbQD9gR13u7htA+AJZbu7wG0CwpWp/7vIbQGlIfJDu9BtAIeuNoe72G0DajZ+y7vgbQJMwscPu+htAS9PC1O78G0AEdtTl7v4bQLwY5vbuABxAdbv3B+8CHEAuXgkZ7wQcQOYAGyrvBhxAn6MsO+8IHEBYRj5M7wocQBDpT13vDBxAyYthbu8OHECBLnN/7xAcQDrRhJDvEhxA83OWoe8UHECrFqiy7xYcQGS5ucPvGBxAHVzL1O8aHEDV/tzl7xwcQI6h7vbvHhxARkQACPAgHED/5hEZ8CIcQLiJIyrwJBxAcCw1O/AmHEApz0ZM8CgcQOJxWF3wKhxAmhRqbvAsHEBTt3t/8C4cQAtajZDwMBxAxPyeofAyHEB9n7Cy8DQcQDVCwsPwNhxA7uTT1PA4HECnh+Xl8DocQF8q9/bwPBxAGM0ICPE+HEDQbxoZ8UAcQIkSLCrxQhxAQrU9O/FEHED6V09M8UYcQLP6YF3xSBxAbJ1ybvFKHEAkQIR/8UwcQN3ilZDxThxAlYWnofFQHEBOKLmy8VIcQAfLysPxVBxAv23c1PFWHEB4EO7l8VgcQDGz//bxWhxA6VURCPJcHECi+CIZ8l4cQFqbNCryYBxAEz5GO/JiHEDM4FdM8mQcQISDaV3yZhxAPSZ7bvJoHED2yIx/8mocQK5rnpDybBxAZw6wofJuHEAfscGy8nAcQNhT08PychxAkfbk1PJ0HEBJmfbl8nYcQAI8CPfyeBxAu94ZCPN6HEBzgSsZ83wcQCwkPSrzfhxA5MZOO/OAHECdaWBM84IcQFYMcl3zhBxADq+DbvOGHEDHUZV/84gcQID0ppDzihxAOJe4ofOMHEDxOcqy844cQKnc28PzkBxAYn/t1POSHEAbIv/l85QcQNPEEPfzlhxAjGciCPSYHEBFCjQZ9JocQP2sRSr0nBxAtk9XO/SeHEBu8mhM9KAcQCeVel30ohxA4DeMbvSkHECY2p1/9KYcQFF9r5D0qBxACiDBofSqHEDCwtKy9KwcQHtl5MP0rhxAMwj21PSwHEDsqgfm9LIcQKVNGff0tBxAXfAqCPW2HEAWkzwZ9bgcQM81Tir1uhxAh9hfO/W8HEBAe3FM9b4cQPgdg131wBxAscCUbvXCHEBqY6Z/9cQcQCIGuJD1xhxA26jJofXIHECUS9uy9cocQEzu7MP1zBxABZH+1PXOHEC9MxDm9dAcQHbWIff10hxAL3kzCPbUHEDnG0UZ9tYcQKC+Vir22BxAWWFoO/baHEARBHpM9twcQMqmi1323hxAgkmdbvbgHEA77K5/9uIcQPSOwJD25BxArDHSofbmHEBl1OOy9ugcQB539cP26hxA1hkH1fbsHECPvBjm9u4cQEdfKvf28BxAAAI8CPfyHEC5pE0Z9/QcQHFHXyr39hxAKupwO/f4HEDjjIJM9/ocQJsvlF33/BxAVNKlbvf+HEAMdbd/9wAdQMUXyZD3Ah1AfrraofcEHUA2Xeyy9wYdQO///cP3CB1Ap6IP1fcKHUBgRSHm9wwdQBnoMvf3Dh1A0YpECPgQHUCKLVYZ+BIdQEPQZyr4FB1A+3J5O/gWHUC0FYtM+BgdQGy4nF34Gh1AJVuubvgcHUDe/b9/+B4dQJag0ZD4IB1AT0PjofgiHUAI5vSy+CQdQMCIBsT4Jh1AeSsY1fgoHUAxzinm+CodQOpwO/f4LB1AoxNNCPkuHUBbtl4Z+TAdQBRZcCr5Mh1AzfuBO/k0HUCFnpNM+TYdQD5BpV35OB1A9uO2bvk6HUCvhsh/+TwdQGgp2pD5Ph1AIMzroflAHUDZbv2y+UIdQJIRD8T5RB1ASrQg1flGHUADVzLm+UgdQLv5Q/f5Sh1AdJxVCPpMHUAtP2cZ+k4dQOXheCr6UB1AnoSKO/pSHUBXJ5xM+lQdQA/KrV36Vh1AyGy/bvpYHUCAD9F/+lodQDmy4pD6XB1A8lT0ofpeHUCq9wWz+mAdQGOaF8T6Yh1AHD0p1fpkHUDU3zrm+mYdQI2CTPf6aB1ARSVeCPtqHUD+x28Z+2wdQLdqgSr7bh1Abw2TO/twHUAosKRM+3IdQOFStl37dB1AmfXHbvt2HUBSmNl/+3gdQAo765D7eh1Aw938oft8HUB8gA6z+34dQDQjIMT7gB1A7cUx1fuCHUCmaEPm+4QdQF4LVff7hh1AF65mCPyIHUDPUHgZ/IodQIjziSr8jB1AQZabO/yOHUD5OK1M/JAdQLLbvl38kh1Aa37QbvyUHUAjIeJ//JYdQNzD85D8mB1AlGYFovyaHUBNCRez/JwdQAasKMT8nh1Avk461fygHUB38Uvm/KIdQDCUXff8pB1A6DZvCP2mHUCh2YAZ/agdQFl8kir9qh1AEh+kO/2sHUDLwbVM/a4dQINkx139sB1APAfZbv2yHUD1qep//bQdQK1M/JD9th1AZu8Nov24HUAekh+z/bodQNc0McT9vB1AkNdC1f2+HUBIelTm/cAdQAEdZvf9wh1Aur93CP7EHUByYokZ/sYdQCsFmyr+yB1A46esO/7KHUCcSr5M/swdQFXtz13+zh1ADZDhbv7QHUDGMvN//tIdQH/VBJH+1B1AN3gWov7WHUDwGiiz/tgdQKi9OcT+2h1AYWBL1f7cHUAaA13m/t4dQNKlbvf+4B1Ai0iACP/iHUBE65EZ/+QdQPyNoyr/5h1AtTC1O//oHUBt08ZM/+odQCZ22F3/7B1A3xjqbv/uHUCXu/t///AdQFBeDZH/8h1ACQEfov/0HUDBozCz//YdQHpGQsT/+B1AMulT1f/6HUDri2Xm//wdQKQud/f//h1AXNGICAABHkAVdJoZAAMeQM0WrCoABR5Ahrm9OwAHHkA/XM9MAAkeQPf+4F0ACx5AsKHybgANHkBpRASAAA8eQCHnFZEAER5A2oknogATHkCSLDmzABUeQEvPSsQAFx5ABHJc1QAZHkC8FG7mABseQHW3f/cAHR5ALlqRCAEfHkDm/KIZASEeQJ+ftCoBIx5AV0LGOwElHkAQ5ddMASceQMmH6V0BKR5AgSr7bgErHkA6zQyAAS0eQPNvHpEBLx5AqxIwogExHkBktUGzATMeQBxYU8QBNR5A1fpk1QE3HkCOnXbmATkeQEZAiPcBOx5A/+KZCAI9HkC4hasZAj8eQHAovSoCQR5AKcvOOwJDHkDhbeBMAkUeQJoQ8l0CRx5AU7MDbwJJHkALVhWAAkseQMT4JpECTR5AfZs4ogJPHkA1PkqzAlEeQO7gW8QCUx5ApoNt1QJVHkBfJn/mAlceQBjJkPcCWR5A0GuiCANbHkCJDrQZA10eQEKxxSoDXx5A+lPXOwNhHkCz9uhMA2MeQGuZ+l0DZR5AJDwMbwNnHkDd3h2AA2keQJWBL5EDax5ATiRBogNtHkAHx1KzA28eQL9pZMQDcR5AeAx21QNzHkAwr4fmA3UeQOlRmfcDdx5AovSqCAR5HkBal7wZBHseQBM6zioEfR5AzNzfOwR/HkCEf/FMBIEeQD0iA14Egx5A9cQUbwSFHkCuZyaABIceQGcKOJEEiR5AH61JogSLHkDYT1uzBI0eQJHybMQEjx5ASZV+1QSRHkACOJDmBJMeQLraofcElR5Ac32zCAWXHkAsIMUZBZkeQOTC1ioFmx5AnWXoOwWdHkBWCPpMBZ8eQA6rC14FoR5Ax00dbwWjHkB/8C6ABaUeQDiTQJEFpx5A8TVSogWpHkCp2GOzBaseQGJ7dcQFrR5AGx6H1QWvHkDTwJjmBbEeQIxjqvcFsx5ARAa8CAa1HkD9qM0ZBrceQLZL3yoGuR5Abu7wOwa7HkAnkQJNBr0eQOAzFF4Gvx5AmNYlbwbBHkBReTeABsMeQAkcSZEGxR5Awr5aogbHHkB7YWyzBskeQDMEfsQGyx5A7KaP1QbNHkClSaHmBs8eQF3ssvcG0R5AFo/ECAfTHkDOMdYZB9UeQIfU5yoH1x5AQHf5OwfZHkD4GQtNB9seQLG8HF4H3R5Aal8ubwffHkAiAkCAB+EeQNukUZEH4x5Ak0djogflHkBM6nSzB+ceQAWNhsQH6R5AvS+Y1QfrHkB20qnmB+0eQC91u/cH7x5A5xfNCAjxHkCgut4ZCPMeQFhd8CoI9R5AEQACPAj3HkDKohNNCPkeQIJFJV4I+x5AO+g2bwj9HkD0ikiACP8eQKwtWpEIAR9AZdBroggDH0Adc32zCAUfQNYVj8QIBx9Aj7ig1QgJH0BHW7LmCAsfQAD+w/cIDR9AuKDVCAkPH0BxQ+cZCREfQCrm+CoJEx9A4ogKPAkVH0CbKxxNCRcfQFTOLV4JGR9ADHE/bwkbH0DFE1GACR0fQH22YpEJHx9ANll0ogkhH0Dv+4WzCSMfQKeel8QJJR9AYEGp1QknH0AZ5LrmCSkfQNGGzPcJKx9AiineCAotH0BCzO8ZCi8fQPtuASsKMR9AtBETPAozH0BstCRNCjUfQCVXNl4KNx9A3vlHbwo5H0CWnFmACjsfQE8/a5EKPR9AB+J8ogo/H0DAhI6zCkEfQHknoMQKQx9AMcqx1QpFH0DqbMPmCkcfQKMP1fcKSR9AW7LmCAtLH0AUVfgZC00fQMz3CSsLTx9AhZobPAtRH0A+PS1NC1MfQPbfPl4LVR9Ar4JQbwtXH0BoJWKAC1kfQCDIc5ELWx9A2WqFogtdH0CRDZezC18fQEqwqMQLYR9AA1O61QtjH0C79cvmC2UfQHSY3fcLZx9ALTvvCAxpH0Dl3QAaDGsfQJ6AEisMbR9AViMkPAxvH0APxjVNDHEfQMhoR14Mcx9AgAtZbwx1H0A5rmqADHcfQPJQfJEMeR9AqvONogx7H0Bjlp+zDH0fQBs5scQMfx9A1NvC1QyBH0CNftTmDIMfQEUh5vcMhR9A/sP3CA2HH0C3ZgkaDYkfQG8JGysNix9AKKwsPA2NH0DgTj5NDY8fQJnxT14NkR9AUpRhbw2TH0AKN3OADZUfQMPZhJENlx9AfHyWog2ZH0A0H6izDZsfQO3BucQNnR9ApWTL1Q2fH0BeB93mDaEfQBeq7vcNox9Az0wACQ6lH0CI7xEaDqcfQEGSIysOqR9A+TQ1PA6rH0Cy10ZNDq0fQGp6WF4Orx9AIx1qbw6xH0Dcv3uADrMfQJRijZEOtR9ATQWfog63H0AGqLCzDrkfQL5KwsQOux9Ad+3T1Q69H0AvkOXmDr8fQOgy9/cOwR9AodUICQ/DH0BZeBoaD8UfQBIbLCsPxx9Ay709PA/JH0CDYE9ND8sfQDwDYV4PzR9A9KVybw/PH0CtSISAD9EfQGbrlZEP0x9AHo6nog/VH0DXMLmzD9cfQJDTysQP2R9ASHbc1Q/bH0ABGe7mD90fQLm7//cP3x9Acl4RCRDhH0ArASMaEOMfQOOjNCsQ5R9AnEZGPBDnH0BV6VdNEOkfQA2MaV4Q6x9Axi57bxDtH0B+0YyAEO8fQDd0npEQ8R9A8BawohDzH0CoucGzEPUfQGFc08QQ9x9AGv/k1RD5H0DSofbmEPsfQItECPgQ/R9AQ+cZCRH/H0D+xBWNiAAgQFqWnpWIASBAt2cnnogCIEATObCmiAMgQG8KOa+IBCBAzNvBt4gFIEAorUrAiAYgQIR+08iIByBA4E9c0YgIIEA9IeXZiAkgQJnybeKICiBA9cP26ogLIEBSlX/ziAwgQK5mCPyIDSBACjiRBIkOIEBnCRoNiQ8gQMPaohWJECBAH6wrHokRIEB8fbQmiRIgQNhOPS+JEyBANCDGN4kUIECR8U5AiRUgQO3C10iJFiBASZRgUYkXIEClZelZiRggQAI3cmKJGSBAXgj7aokaIEC62YNziRsgQBerDHyJHCBAc3yVhIkdIEDPTR6NiR4gQCwfp5WJHyBAiPAvnokgIEDkwbimiSEgQEGTQa+JIiBAnWTKt4kjIED5NVPAiSQgQFYH3MiJJSBAsthk0YkmIEAOqu3ZiScgQGp7duKJKCBAx0z/6okpIEAjHojziSogQH/vEPyJKyBA3MCZBIosIEA4kiINii0gQJRjqxWKLiBA8TQ0HoovIEBNBr0mijAgQKnXRS+KMSBABqnON4oyIEBieldAijMgQL5L4EiKNCBAGx1pUYo1IEB37vFZijYgQNO/emKKNyBAL5EDa4o4IECMYoxzijkgQOgzFXyKOiBARAWehIo7IECh1iaNijwgQP2nr5WKPSBAWXk4noo+IEC2SsGmij8gQBIcSq+KQCBAbu3St4pBIEDLvlvAikIgQCeQ5MiKQyBAg2Ft0YpEIEDgMvbZikUgQDwEf+KKRiBAmNUH64pHIED0ppDzikggQFF4GfyKSSBArUmiBItKIEAJGysNi0sgQGbssxWLTCBAwr08HotNIEAej8Umi04gQHtgTi+LTyBA1zHXN4tQIEAzA2BAi1EgQJDU6EiLUiBA7KVxUYtTIEBId/pZi1QgQKVIg2KLVSBAARoMa4tWIEBd65Rzi1cgQLm8HXyLWCBAFo6mhItZIEByXy+Ni1ogQM4wuJWLWyBAKwJBnotcIECH08mmi10gQOOkUq+LXiBAQHbbt4tfIECcR2TAi2AgQPgY7ciLYSBAVep10YtiIECxu/7Zi2MgQA2Nh+KLZCBAal4Q64tlIEDGL5nzi2YgQCIBIvyLZyBAftKqBIxoIEDbozMNjGkgQDd1vBWMaiBAk0ZFHoxrIEDwF84mjGwgQEzpVi+MbSBAqLrfN4xuIEAFjGhAjG8gQGFd8UiMcCBAvS56UYxxIEAaAANajHIgQHbRi2KMcyBA0qIUa4x0IEAvdJ1zjHUgQItFJnyMdiBA5xavhIx3IEBD6DeNjHggQKC5wJWMeSBA/IpJnox6IEBYXNKmjHsgQLUtW6+MfCBAEf/jt4x9IEBt0GzAjH4gQMqh9ciMfyBAJnN+0YyAIECCRAfajIEgQN8VkOKMgiBAO+cY64yDIECXuKHzjIQgQPOJKvyMhSBAUFuzBI2GIECsLDwNjYcgQAj+xBWNiCBAZc9NHo2JIEDBoNYmjYogQB1yXy+NiyBAekPoN42MIEDWFHFAjY0gQDLm+UiNjiBAj7eCUY2PIEDriAtajZAgQEdalGKNkSBApCsda42SIEAA/aVzjZMgQFzOLnyNlCBAuJ+3hI2VIEAVcUCNjZYgQHFCyZWNlyBAzRNSno2YIEAq5dqmjZkgQIa2Y6+NmiBA4ofst42bIEA/WXXAjZwgQJsq/siNnSBA9/uG0Y2eIEBUzQ/ajZ8gQLCemOKNoCBADHAh642hIEBpQarzjaIgQMUSM/yNoyBAIeS7BI6kIEB9tUQNjqUgQNqGzRWOpiBANlhWHo6nIECSKd8mjqggQO/6Zy+OqSBAS8zwN46qIECnnXlAjqsgQARvAkmOrCBAYECLUY6tIEC8ERRajq4gQBnjnGKOryBAdbQla46wIEDRha5zjrEgQC5XN3yOsiBAiijAhI6zIEDm+UiNjrQgQELL0ZWOtSBAn5xano62IED7beOmjrcgQFc/bK+OuCBAtBD1t465IEAQ4n3AjrogQGyzBsmOuyBAyYSP0Y68IEAlVhjajr0gQIEnoeKOviBA3vgp646/IEA6yrLzjsAgQJabO/yOwSBA82zEBI/CIEBPPk0Nj8MgQKsP1hWPxCBAB+FeHo/FIEBksucmj8YgQMCDcC+PxyBAHFX5N4/IIEB5JoJAj8kgQNX3CkmPyiBAMcmTUY/LIECOmhxaj8wgQOprpWKPzSBARj0ua4/OIECjDrdzj88gQP/fP3yP0CBAW7HIhI/RIEC4glGNj9IgQBRU2pWP0yBAcCVjno/UIEDM9uumj9UgQCnIdK+P1iBAhZn9t4/XIEDhaobAj9ggQD48D8mP2SBAmg2Y0Y/aIED23iDaj9sgQFOwqeKP3CBAr4Ey64/dIEALU7vzj94gQGgkRPyP3yBAxPXMBJDgIEAgx1UNkOEgQH2Y3hWQ4iBA2WlnHpDjIEA1O/AmkOQgQJEMeS+Q5SBA7t0BOJDmIEBKr4pAkOcgQKaAE0mQ6CBAA1KcUZDpIEBfIyVakOogQLv0rWKQ6yBAGMY2a5DsIEB0l79zkO0gQNBoSHyQ7iBALTrRhJDvIECJC1qNkPAgQOXc4pWQ8SBAQq5rnpDyIECef/SmkPMgQPpQfa+Q9CBAViIGuJD1IECz847AkPYgQA/FF8mQ9yBAa5ag0ZD4IEDIZynakPkgQCQ5suKQ+iBAgAo765D7IEDd28PzkPwgQDmtTPyQ/SBAlX7VBJH+IEDyT14Nkf8gQE4h5xWRACFAqvJvHpEBIUAGxPgmkQIhQGOVgS+RAyFAv2YKOJEEIUAbOJNAkQUhQHgJHEmRBiFA1NqkUZEHIUAwrC1akQghQI19tmKRCSFA6U4/a5EKIUBFIMhzkQshQKLxUHyRDCFA/sLZhJENIUBalGKNkQ4hQLdl65WRDyFAEzd0npEQIUBvCP2mkREhQMvZha+REiFAKKsOuJETIUCEfJfAkRQhQOBNIMmRFSFAPR+p0ZEWIUCZ8DHakRchQPXBuuKRGCFAUpND65EZIUCuZMzzkRohQAo2VfyRGyFAZwfeBJIcIUDD2GYNkh0hQB+q7xWSHiFAfHt4HpIfIUDYTAEnkiAhQDQeii+SISFAkO8SOJIiIUDtwJtAkiMhQEmSJEmSJCFApWOtUZIlIUACNTZakiYhQF4Gv2KSJyFAutdHa5IoIUAXqdBzkikhQHN6WXySKiFAz0vihJIrIUAsHWuNkiwhQIju85WSLSFA5L98npIuIUBBkQWnki8hQJ1ijq+SMCFA+TMXuJIxIUBVBaDAkjIhQLLWKMmSMyFADqix0ZI0IUBqeTrakjUhQMdKw+KSNiFAIxxM65I3IUB/7dTzkjghQNy+XfySOSFAOJDmBJM6IUCUYW8NkzshQPEy+BWTPCFATQSBHpM9IUCp1Qknkz4hQAanki+TPyFAYngbOJNAIUC+SaRAk0EhQBobLUmTQiFAd+y1UZNDIUDTvT5ak0QhQC+Px2KTRSFAjGBQa5NGIUDoMdlzk0chQEQDYnyTSCFAodTqhJNJIUD9pXONk0ohQFl3/JWTSyFAtkiFnpNMIUASGg6nk00hQG7rlq+TTiFAy7wfuJNPIUAnjqjAk1AhQINfMcmTUSFA3zC60ZNSIUA8AkPak1MhQJjTy+KTVCFA9KRU65NVIUBRdt3zk1YhQK1HZvyTVyFACRnvBJRYIUBm6ncNlFkhQMK7ABaUWiFAHo2JHpRbIUB7XhInlFwhQNcvmy+UXSFAMwEkOJReIUCQ0qxAlF8hQOyjNUmUYCFASHW+UZRhIUCkRkdalGIhQAEY0GKUYyFAXelYa5RkIUC5uuFzlGUhQBaManyUZiFAcl3zhJRnIUDOLnyNlGghQCsABZaUaSFAh9GNnpRqIUDjohanlGshQEB0n6+UbCFAnEUouJRtIUD4FrHAlG4hQFXoOcmUbyFAsbnC0ZRwIUANi0valHEhQGlc1OKUciFAxi1d65RzIUAi/+XzlHQhQH7QbvyUdSFA26H3BJV2IUA3c4ANlXchQJNECRaVeCFA8BWSHpV5IUBM5xonlXohQKi4oy+VeyFABYosOJV8IUBhW7VAlX0hQL0sPkmVfiFAGv7GUZV/IUB2z09alYAhQNKg2GKVgSFALnJha5WCIUCLQ+pzlYMhQOcUc3yVhCFAQ+b7hJWFIUCgt4SNlYYhQPyIDZaVhyFAWFqWnpWIIUC1Kx+nlYkhQBH9p6+ViiFAbc4wuJWLIUDKn7nAlYwhQCZxQsmVjSFAgkLL0ZWOIUDeE1TalY8hQDvl3OKVkCFAl7Zl65WRIUDzh+7zlZIhQFBZd/yVkyFArCoABZaUIUAI/IgNlpUhQGXNERaWliFAwZ6aHpaXIUAdcCMnlpghQHpBrC+WmSFA1hI1OJaaIUAy5L1AlpshQI+1RkmWnCFA64bPUZadIUBHWFhalp4hQKMp4WKWnyFAAPtpa5agIUBczPJzlqEhQLide3yWoiFAFW8EhZajIUBxQI2NlqQhQM0RFpaWpSFAKuOenpamIUCGtCenlqchQOKFsK+WqCFAP1c5uJapIUCbKMLAlqohQPf5SsmWqyFAVMvT0ZasIUCwnFzalq0hQAxu5eKWriFAaD9u65avIUDFEPfzlrAhQCHif/yWsSFAfbMIBZeyIUDahJENl7MhQDZWGhaXtCFAkiejHpe1IUDv+Csnl7YhQEvKtC+XtyFAp5s9OJe4IUAEbcZAl7khQGA+T0mXuiFAvA/YUZe7IUAZ4WBal7whQHWy6WKXvSFA0YNya5e+IUAtVftzl78hQIomhHyXwCFA5vcMhZfBIUBCyZWNl8IhQJ+aHpaXwyFA+2unnpfEIUBXPTCnl8UhQLQOua+XxiFAEOBBuJfHIUBsscrAl8ghQMmCU8mXySFAJVTc0ZfKIUCBJWXal8shQN727eKXzCFAOsh265fNIUCWmf/zl84hQPJqiPyXzyFATzwRBZjQIUCrDZoNmNEhQAffIhaY0iFAZLCrHpjTIUDAgTQnmNQhQBxTvS+Y1SFAeSRGOJjWIUDV9c5AmNchQDHHV0mY2CFAjpjgUZjZIUDqaWlamNohQEY78mKY2yFAowx7a5jcIUD/3QN0mN0hQFuvjHyY3iFAt4AVhZjfIUAUUp6NmOAhQHAjJ5aY4SFAzPSvnpjiIUApxjinmOMhQIWXwa+Y5CFA4WhKuJjlIUA+OtPAmOYhQJoLXMmY5yFA9tzk0ZjoIUBTrm3amOkhQK9/9uKY6iFAC1F/65jrIUBoIgj0mOwhQMTzkPyY7SFAIMUZBZnuIUB8lqINme8hQNlnKxaZ8CFANTm0HpnxIUCRCj0nmfIhQO7bxS+Z8yFASq1OOJn0IUCmftdAmfUhQANQYEmZ9iFAXyHpUZn3IUC78nFamfghQBjE+mKZ+SFAdJWDa5n6IUDQZgx0mfshQC04lXyZ/CFAiQkehZn9IUDl2qaNmf4hQEGsL5aZ/yFAnn24npkAIkD6TkGnmQEiQFYgyq+ZAiJAs/FSuJkDIkAPw9vAmQQiQGuUZMmZBSJAyGXt0ZkGIkAkN3bamQciQIAI/+KZCCJA3dmH65kJIkA5qxD0mQoiQJV8mfyZCyJA8U0iBZoMIkBOH6sNmg0iQKrwMxaaDiJABsK8HpoPIkBjk0UnmhAiQL9kzi+aESJAGzZXOJoSIkB4B+BAmhMiQNTYaEmaFCJAMKrxUZoVIkCNe3pamhYiQOlMA2OaFyJARR6Ma5oYIkCi7xR0mhkiQP7AnXyaGiJAWpImhZobIkC2Y6+NmhwiQBM1OJaaHSJAbwbBnpoeIkDL10mnmh8iQCip0q+aICJAhHpbuJohIkDgS+TAmiIiQD0dbcmaIyJAme710ZokIkD1v37amiUiQFKRB+OaJiJArmKQ65onIkAKNBn0migiQGcFovyaKSJAw9YqBZsqIkAfqLMNmysiQHt5PBabLCJA2ErFHpstIkA0HE4nmy4iQJDt1i+bLyJA7b5fOJswIkBJkOhAmzEiQKVhcUmbMiJAAjP6UZszIkBeBINamzQiQLrVC2ObNSJAF6eUa5s2IkBzeB10mzciQM9JpnybOCJALBsvhZs5IkCI7LeNmzoiQOS9QJabOyJAQI/Jnps8IkCdYFKnmz0iQPkx26+bPiJAVQNkuJs/IkCy1OzAm0AiQA6mdcmbQSJAanf+0ZtCIkDHSIfam0MiQCMaEOObRCJAf+uY65tFIkDcvCH0m0YiQDiOqvybRyJAlF8zBZxIIkDxMLwNnEkiQE0CRRacSiJAqdPNHpxLIkAFpVYnnEwiQGJ23y+cTSJAvkdoOJxOIkAaGfFAnE8iQHfqeUmcUCJA07sCUpxRIkAvjYtanFIiQIxeFGOcUyJA6C+da5xUIkBEASZ0nFUiQKHSrnycViJA/aM3hZxXIkBZdcCNnFgiQLZGSZacWSJAEhjSnpxaIkBu6VqnnFsiQMq646+cXCJAJ4xsuJxdIkCDXfXAnF4iQN8ufsmcXyJAPAAH0pxgIkCY0Y/anGEiQPSiGOOcYiJAUXSh65xjIkCtRSr0nGQiQAkXs/ycZSJAZug7BZ1mIkDCucQNnWciQB6LTRadaCJAe1zWHp1pIkDXLV8nnWoiQDP/5y+dayJAj9BwOJ1sIkDsoflAnW0iQEhzgkmdbiJApEQLUp1vIkABFpRanXAiQF3nHGOdcSJAubila51yIkAWii50nXMiQHJbt3yddCJAzixAhZ11IkAr/siNnXYiQIfPUZaddyJA46Danp14IkBAcmOnnXkiQJxD7K+deiJA+BR1uJ17IkBU5v3AnXwiQLG3hsmdfSJADYkP0p1+IkBpWpjanX8iQMYrIeOdgCJAIv2p652BIkB+zjL0nYIiQNufu/ydgyJAN3FEBZ6EIkCTQs0NnoUiQPATVhaehiJATOXeHp6HIkCotmcnnogiQASI8C+eiSJAYVl5OJ6KIkC9KgJBnosiQBn8ikmejCJAds0TUp6NIkDSnpxano4iQC5wJWOejyJAi0Gua56QIkDnEjd0npEiQEPkv3yekiJAoLVIhZ6TIkD8htGNnpQiQFhYWpaelSJAtSnjnp6WIkAR+2unnpciQG3M9K+emCJAyZ19uJ6ZIkAmbwbBnpoiQIJAj8memyJA3hEY0p6cIkA746Danp0iQJe0KeOeniJA84Wy656fIkBQVzv0nqAiQKwoxPyeoSJACPpMBZ+iIkBly9UNn6MiQMGcXhafpCJAHW7nHp+lIkB6P3Ann6YiQNYQ+S+fpyJAMuKBOJ+oIkCOswpBn6kiQOuEk0mfqiJAR1YcUp+rIkCjJ6Van6wiQAD5LWOfrSJAXMq2a5+uIkC4mz90n68iQBVtyHyfsCJAcT5RhZ+xIkDND9qNn7IiQCrhYpafsyJAhrLrnp+0IkDig3Snn7UiQD9V/a+ftiJAmyaGuJ+3IkD39w7Bn7giQFPJl8mfuSJAsJog0p+6IkAMbKnan7siQGg9MuOfvCJAxQ6765+9IkAh4EP0n74iQH2xzPyfvyJA2oJVBaDAIkA2VN4NoMEiQJIlZxagwiJA7/bvHqDDIkBLyHgnoMQiQKeZATCgxSJABGuKOKDGIkBgPBNBoMciQLwNnEmgyCJAGN8kUqDJIkB1sK1aoMoiQNGBNmOgyyJALVO/a6DMIkCKJEh0oM0iQOb10HygziJAQsdZhaDPIkCfmOKNoNAiQPtpa5ag0SJAVzv0nqDSIkC0DH2noNMiQBDeBbCg1CJAbK+OuKDVIkDJgBfBoNYiQCVSoMmg1yJAgSMp0qDYIkDd9LHaoNkiQDrGOuOg2iJAlpfD66DbIkDyaEz0oNwiQE861fyg3SJAqwteBaHeIkAH3eYNod8iQGSubxah4CJAwH/4HqHhIkAcUYEnoeIiQHkiCjCh4yJA1fOSOKHkIkAxxRtBoeUiQI6WpEmh5iJA6mctUqHnIkBGObZaoegiQKIKP2Oh6SJA/9vHa6HqIkBbrVB0oesiQLd+2Xyh7CJAFFBihaHtIkBwIeuNoe4iQMzyc5ah7yJAKcT8nqHwIkCFlYWnofEiQOFmDrCh8iJAPjiXuKHzIkCaCSDBofQiQPbaqMmh9SJAU6wx0qH2IkCvfbraofciQAtPQ+Oh+CJAZyDM66H5IkDE8VT0ofoiQCDD3fyh+yJAfJRmBaL8IkDZZe8Nov0iQDU3eBai/iJAkQgBH6L/IkDu2YknogAjQEqrEjCiASNApnybOKICI0ADTiRBogMjQF8frUmiBCNAu/A1UqIFI0AXwr5aogYjQHSTR2OiByNA0GTQa6III0AsNll0ogkjQIkH4nyiCiNA5dhqhaILI0BBqvONogwjQJ57fJaiDSNA+kwFn6IOI0BWHo6nog8jQLPvFrCiECNAD8GfuKIRI0BrkijBohIjQMhjscmiEyNAJDU60qIUI0CABsPaohUjQNzXS+OiFiNAOanU66IXI0CVel30ohgjQPFL5vyiGSNATh1vBaMaI0Cq7vcNoxsjQAbAgBajHCNAY5EJH6MdI0C/YpInox4jQBs0GzCjHyNAeAWkOKMgI0DU1ixBoyEjQDCotUmjIiNAjXk+UqMjI0DpSsdaoyQjQEUcUGOjJSNAoe3Ya6MmI0D+vmF0oycjQFqQ6nyjKCNAtmFzhaMpI0ATM/yNoyojQG8EhZajKyNAy9UNn6MsI0Aop5anoy0jQIR4H7CjLiNA4EmouKMvI0A9GzHBozAjQJnsucmjMSNA9b1C0qMyI0BSj8vaozMjQK5gVOOjNCNACjLd66M1I0BmA2b0ozYjQMPU7vyjNyNAH6Z3BaQ4I0B7dwAOpDkjQNhIiRakOiNANBoSH6Q7I0CQ65onpDwjQO28IzCkPSNASY6sOKQ+I0ClXzVBpD8jQAIxvkmkQCNAXgJHUqRBI0C6089apEIjQBelWGOkQyNAc3bha6REI0DPR2p0pEUjQCsZ83ykRiNAiOp7haRHI0DkuwSOpEgjQECNjZakSSNAnV4Wn6RKI0D5L5+npEsjQFUBKLCkTCNAstKwuKRNI0AOpDnBpE4jQGp1wsmkTyNAx0ZL0qRQI0AjGNTapFEjQH/pXOOkUiNA3Lrl66RTI0A4jG70pFQjQJRd9/ykVSNA8C6ABaVWI0BNAAkOpVcjQKnRkRalWCNABaMaH6VZI0BidKMnpVojQL5FLDClWyNAGhe1OKVcI0B36D1BpV0jQNO5xkmlXiNAL4tPUqVfI0CMXNhapWAjQOgtYWOlYSNARP/pa6ViI0Ch0HJ0pWMjQP2h+3ylZCNAWXOEhaVlI0C1RA2OpWYjQBIWlpalZyNAbucen6VoI0DKuKenpWkjQCeKMLClaiNAg1u5uKVrI0DfLELBpWwjQDz+ysmlbSNAmM9T0qVuI0D0oNzapW8jQFFyZeOlcCNArUPu66VxI0AJFXf0pXIjQGbm//ylcyNAwreIBaZ0I0AeiREOpnUjQHpamhamdiNA1ysjH6Z3I0Az/asnpngjQI/ONDCmeSNA7J+9OKZ6I0BIcUZBpnsjQKRCz0mmfCNAARRYUqZ9I0Bd5eBapn4jQLm2aWOmfyNAFojya6aAI0ByWXt0poEjQM4qBH2mgiNAKvyMhaaDI0CHzRWOpoQjQOOenpamhSNAP3Ann6aGI0CcQbCnpocjQPgSObCmiCNAVOTBuKaJI0CxtUrBpoojQA2H08mmiyNAaVhc0qaMI0DGKeXapo0jQCL7beOmjiNAfsz266aPI0DbnX/0ppAjQDdvCP2mkSNAk0CRBaeSI0DvERoOp5MjQEzjohanlCNAqLQrH6eVI0AEhrQnp5YjQGFXPTCnlyNAvSjGOKeYI0AZ+k5Bp5kjQHbL10mnmiNA0pxgUqebI0Aubulap5wjQIs/cmOnnSNA5xD7a6eeI0BD4oN0p58jQKCzDH2noCNA/ISVhaehI0BYVh6Op6IjQLQnp5anoyNAEfkvn6ekI0Btyrinp6UjQMmbQbCnpiNAJm3KuKenI0CCPlPBp6gjQN4P3MmnqSNAO+Fk0qeqI0CXsu3ap6sjQPODduOnrCNAUFX/66etI0CsJoj0p64jQAj4EP2nryNAZcmZBaiwI0DBmiIOqLEjQB1sqxaosiNAeT00H6izI0DWDr0nqLQjQDLgRTCotSNAjrHOOKi2I0DrgldBqLcjQEdU4EmouCNAoyVpUqi5I0AA9/FaqLojQFzIemOouyNAuJkDbKi8I0AVa4x0qL0jQHE8FX2oviNAzQ2ehai/I0Aq3yaOqMAjQIawr5aowSNA4oE4n6jCI0A+U8GnqMMjQJskSrCoxCNA9/XSuKjFI0BTx1vBqMYjQLCY5MmoxyNADGpt0qjII0BoO/baqMkjQMUMf+OoyiNAId4H7KjLI0B9r5D0qMwjQNqAGf2ozSNANlKiBanOI0CSIysOqc8jQO/0sxap0CNAS8Y8H6nRI0Cnl8UnqdIjQANpTjCp0yNAYDrXOKnUI0C8C2BBqdUjQBjd6Emp1iNAda5xUqnXI0DRf/paqdgjQC1Rg2Op2SNAiiIMbKnaI0Dm85R0qdsjQELFHX2p3CNAn5amhandI0D7Zy+Oqd4jQFc5uJap3yNAtApBn6ngI0AQ3MmnqeEjQGytUrCp4iNAyH7buKnjI0AlUGTBqeQjQIEh7cmp5SNA3fJ10qnmI0A6xP7aqecjQJaVh+Op6CNA8mYQ7KnpI0BPOJn0qeojQKsJIv2p6yNAB9uqBarsI0BkrDMOqu0jQMB9vBaq7iNAHE9FH6rvI0B5IM4nqvAjQNXxVjCq8SNAMcPfOKryI0CNlGhBqvMjQOpl8Umq9CNARjd6Uqr1I0CiCANbqvYjQP/Zi2Oq9yNAW6sUbKr4I0C3fJ10qvkjQBROJn2q+iNAcB+vhar7I0DM8DeOqvwjQCnCwJaq/SNAhZNJn6r+I0DhZNKnqv8jQD42W7CqACRAmgfkuKoBJED22GzBqgIkQFKq9cmqAyRAr3t+0qoEJEALTQfbqgUkQGcekOOqBiRAxO8Y7KoHJEAgwaH0qggkQHySKv2qCSRA2WOzBasKJEA1NTwOqwskQJEGxRarDCRA7tdNH6sNJEBKqdYnqw4kQKZ6XzCrDyRAAkzoOKsQJEBfHXFBqxEkQLvu+UmrEiRAF8CCUqsTJEB0kQtbqxQkQNBilGOrFSRALDQdbKsWJECJBaZ0qxckQOXWLn2rGCRAQai3hasZJECeeUCOqxokQPpKyZarGyRAVhxSn6scJECz7dqnqx0kQA+/Y7CrHiRAa5DsuKsfJEDHYXXBqyAkQCQz/smrISRAgASH0qsiJEDc1Q/bqyMkQDmnmOOrJCRAlXgh7KslJEDxSar0qyYkQE4bM/2rJyRAquy7BawoJEAGvkQOrCkkQGOPzRasKiRAv2BWH6wrJEAbMt8nrCwkQHgDaDCsLSRA1NTwOKwuJEAwpnlBrC8kQIx3AkqsMCRA6UiLUqwxJEBFGhRbrDIkQKHrnGOsMyRA/rwlbKw0JEBajq50rDUkQLZfN32sNiRAEzHAhaw3JEBvAkmOrDgkQMvT0ZasOSRAKKVan6w6JECEduOnrDskQOBHbLCsPCRAPRn1uKw9JECZ6n3BrD4kQPW7BsqsPyRAUY2P0qxAJECuXhjbrEEkQAowoeOsQiRAZgEq7KxDJEDD0rL0rEQkQB+kO/2sRSRAe3XEBa1GJEDYRk0OrUckQDQY1hatSCRAkOleH61JJEDtuucnrUokQEmMcDCtSyRApV35OK1MJEACL4JBrU0kQF4AC0qtTiRAutGTUq1PJEAWoxxbrVAkQHN0pWOtUSRAz0UubK1SJEArF7d0rVMkQIjoP32tVCRA5LnIha1VJEBAi1GOrVYkQJ1c2patVyRA+S1jn61YJEBV/+unrVkkQLLQdLCtWiRADqL9uK1bJEBqc4bBrVwkQMdED8qtXSRAIxaY0q1eJEB/5yDbrV8kQNu4qeOtYCRAOIoy7K1hJECUW7v0rWIkQPAsRP2tYyRATf7MBa5kJECpz1UOrmUkQAWh3hauZiRAYnJnH65nJEC+Q/AnrmgkQBoVeTCuaSRAd+YBOa5qJEDTt4pBrmskQC+JE0qubCRAjFqcUq5tJEDoKyVbrm4kQET9rWOubyRAoM42bK5wJED9n790rnEkQFlxSH2uciRAtULRha5zJEASFFqOrnQkQG7l4paudSRAyrZrn652JEAniPSnrnckQINZfbCueCRA3yoGua55JEA8/I7BrnokQJjNF8queyRA9J6g0q58JEBRcCnbrn0kQK1BsuOufiRACRM77K5/JEBl5MP0roAkQMK1TP2ugSRAHofVBa+CJEB6WF4Or4MkQNcp5xavhCRAM/tvH6+FJECPzPgnr4YkQOydgTCvhyRASG8KOa+IJECkQJNBr4kkQAESHEqviiRAXeOkUq+LJEC5tC1br4wkQBWGtmOvjSRAclc/bK+OJEDOKMh0r48kQCr6UH2vkCRAh8vZha+RJEDjnGKOr5IkQD9u65avkyRAnD90n6+UJED4EP2nr5UkQFTihbCvliRAsbMOua+XJEANhZfBr5gkQGlWIMqvmSRAxiep0q+aJEAi+THbr5skQH7KuuOvnCRA2ptD7K+dJEA3bcz0r54kQJM+Vf2vnyRA7w/eBbCgJEBM4WYOsKEkQKiy7xawoiRABIR4H7CjJEBhVQEosKQkQL0mijCwpSRAGfgSObCmJEB2yZtBsKckQNKaJEqwqCRALmytUrCpJECLPTZbsKokQOcOv2OwqyRAQ+BHbLCsJECfsdB0sK0kQPyCWX2wriRAWFTihbCvJEC0JWuOsLAkQBH385awsSRAbch8n7CyJEDJmQWosLMkQCZrjrCwtCRAgjwXubC1JEDeDaDBsLYkQDvfKMqwtyRAl7Cx0rC4JEDzgTrbsLkkQFBTw+OwuiRArCRM7LC7JEAI9tT0sLwkQGTHXf2wvSRAwZjmBbG+JEAdam8Osb8kQHk7+BaxwCRA1gyBH7HBJEAy3gkoscIkQI6vkjCxwyRA64AbObHEJEBHUqRBscUkQKMjLUqxxiRAAPW1UrHHJEBcxj5bscgkQLiXx2OxySRAFWlQbLHKJEBxOtl0scskQM0LYn2xzCRAKd3qhbHNJECGrnOOsc4kQOJ//JaxzyRAPlGFn7HQJECbIg6osdEkQPfzlrCx0iRAU8UfubHTJECwlqjBsdQkQAxoMcqx1SRAaDm60rHWJEDFCkPbsdckQCHcy+Ox2CRAfa1U7LHZJEDaft30sdokQDZQZv2x2yRAkiHvBbLcJEDu8ncOst0kQEvEABey3iRAp5WJH7LfJEADZxIosuAkQGA4mzCy4SRAvAkkObLiJEAY26xBsuMkQHWsNUqy5CRA0X2+UrLlJEAtT0dbsuYkQIog0GOy5yRA5vFYbLLoJEBCw+F0sukkQJ+Uan2y6iRA+2XzhbLrJEBXN3yOsuwkQLMIBZey7SRAENqNn7LuJEBsqxaosu8kQMh8n7Cy8CRAJU4oubLxJECBH7HBsvIkQN3wOcqy8yRAOsLC0rL0JECWk0vbsvUkQPJk1OOy9iRATzZd7LL3JECrB+b0svgkQAfZbv2y+SRAZKr3BbP6JEDAe4AOs/skQBxNCRez/CRAeB6SH7P9JEDV7xoos/4kQDHBozCz/yRAjZIsObMAJUDqY7VBswElQEY1PkqzAiVAogbHUrMDJUD/109bswQlQFup2GOzBSVAt3phbLMGJUAUTOp0swclQHAdc32zCCVAzO77hbMJJUAowISOswolQIWRDZezCyVA4WKWn7MMJUA9NB+osw0lQJoFqLCzDiVA9tYwubMPJUBSqLnBsxAlQK95QsqzESVAC0vL0rMSJUBnHFTbsxMlQMTt3OOzFCVAIL9l7LMVJUB8kO70sxYlQNlhd/2zFyVANTMABrQYJUCRBIkOtBklQO3VERe0GiVASqeaH7QbJUCmeCMotBwlQAJKrDC0HSVAXxs1ObQeJUC77L1BtB8lQBe+Rkq0ICVAdI/PUrQhJUDQYFhbtCIlQCwy4WO0IyVAiQNqbLQkJUDl1PJ0tCUlQEGme320JiVAnncEhrQnJUD6SI2OtCglQFYaFpe0KSVAsuuen7QqJUAPvSeotCslQGuOsLC0LCVAx185ubQtJUAkMcLBtC4lQIACS8q0LyVA3NPT0rQwJUA5pVzbtDElQJV25eO0MiVA8Udu7LQzJUBOGff0tDQlQKrqf/20NSVABrwIBrU2JUBjjZEOtTclQL9eGhe1OCVAGzCjH7U5JUB3ASwotTolQNTStDC1OyVAMKQ9ObU8JUCMdcZBtT0lQOlGT0q1PiVARRjYUrU/JUCh6WBbtUAlQP666WO1QSVAWoxybLVCJUC2Xft0tUMlQBMvhH21RCVAbwANhrVFJUDL0ZWOtUYlQCijHpe1RyVAhHSnn7VIJUDgRTCotUklQDwXubC1SiVAmehBubVLJUD1ucrBtUwlQFGLU8q1TSVArlzc0rVOJUAKLmXbtU8lQGb/7eO1UCVAw9B27LVRJUAfov/0tVIlQHtziP21UyVA2EQRBrZUJUA0FpoOtlUlQJDnIhe2ViVA7birH7ZXJUBJijQotlglQKVbvTC2WSVAAS1GObZaJUBe/s5BtlslQLrPV0q2XCVAFqHgUrZdJUBzcmlbtl4lQM9D8mO2XyVAKxV7bLZgJUCI5gN1tmElQOS3jH22YiVAQIkVhrZjJUCdWp6OtmQlQPkrJ5e2ZSVAVf2vn7ZmJUCyzjiotmclQA6gwbC2aCVAanFKubZpJUDGQtPBtmolQCMUXMq2ayVAf+Xk0rZsJUDbtm3btm0lQDiI9uO2biVAlFl/7LZvJUDwKgj1tnAlQE38kP22cSVAqc0ZBrdyJUAFn6IOt3MlQGJwKxe3dCVAvkG0H7d1JUAaEz0ot3YlQHfkxTC3dyVA07VOObd4JUAvh9dBt3klQItYYEq3eiVA6CnpUrd7JUBE+3Fbt3wlQKDM+mO3fSVA/Z2DbLd+JUBZbwx1t38lQLVAlX23gCVAEhIehreBJUBu46aOt4IlQMq0L5e3gyVAJ4a4n7eEJUCDV0Got4UlQN8oyrC3hiVAO/pSubeHJUCYy9vBt4glQPScZMq3iSVAUG7t0reKJUCtP3bbt4slQAkR/+O3jCVAZeKH7LeNJUDCsxD1t44lQB6Fmf23jyVAelYiBriQJUDXJ6sOuJElQDP5Mxe4kiVAj8q8H7iTJUDsm0UouJQlQEhtzjC4lSVApD5XObiWJUAAEOBBuJclQF3haEq4mCVAubLxUriZJUAVhHpbuJolQHJVA2S4myVAziaMbLicJUAq+BR1uJ0lQIfJnX24niVA45omhrifJUA/bK+OuKAlQJw9OJe4oSVA+A7Bn7iiJUBU4EmouKMlQLGx0rC4pCVADYNbubilJUBpVOTBuKYlQMUlbcq4pyVAIvf10rioJUB+yH7buKklQNqZB+S4qiVAN2uQ7LirJUCTPBn1uKwlQO8Nov24rSVATN8qBrmuJUCosLMOua8lQASCPBe5sCVAYVPFH7mxJUC9JE4oubIlQBn21jC5syVAdsdfObm0JUDSmOhBubUlQC5qcUq5tiVAijv6Urm3JUDnDINbubglQEPeC2S5uSVAn6+UbLm6JUD8gB11ubslQFhSpn25vCVAtCMvhrm9JUAR9beOub4lQG3GQJe5vyVAyZfJn7nAJUAmaVKoucElQII627C5wiVA3gtkubnDJUA73ezBucQlQJeudcq5xSVA83/+0rnGJUBPUYfbucclQKwiEOS5yCVACPSY7LnJJUBkxSH1ucolQMGWqv25yyVAHWgzBrrMJUB5ObwOus0lQNYKRRe6ziVAMtzNH7rPJUCOrVYoutAlQOt+3zC60SVAR1BoObrSJUCjIfFButMlQADzeUq61CVAXMQCU7rVJUC4lYtbutYlQBRnFGS61yVAcTidbLrYJUDNCSZ1utklQCnbrn262iVAhqw3hrrbJUDifcCOutwlQD5PSZe63SVAmyDSn7reJUD38Vqout8lQFPD47C64CVAsJRsubrhJUAMZvXBuuIlQGg3fsq64yVAxQgH07rkJUAh2o/buuUlQH2rGOS65iVA2Xyh7LrnJUA2Tir1uuglQJIfs/266SVA7vA7BrvqJUBLwsQOu+slQKeTTRe77CVAA2XWH7vtJUBgNl8ou+4lQLwH6DC77yVAGNlwObvwJUB1qvlBu/ElQNF7gkq78iVALU0LU7vzJUCKHpRbu/QlQObvHGS79SVAQsGlbLv2JUCeki51u/clQPtjt327+CVAVzVAhrv5JUCzBsmOu/olQBDYUZe7+yVAbKnan7v8JUDIemOou/0lQCVM7LC7/iVAgR11ubv/JUDd7v3BuwAmQDrAhsq7ASZAlpEP07sCJkDyYpjbuwMmQE40IeS7BCZAqwWq7LsFJkAH1zL1uwYmQGOou/27ByZAwHlEBrwIJkAcS80OvAkmQHgcVhe8CiZA1e3eH7wLJkAxv2covAwmQI2Q8DC8DSZA6mF5ObwOJkBGMwJCvA8mQKIEi0q8ECZA/9UTU7wRJkBbp5xbvBImQLd4JWS8EyZAE0qubLwUJkBwGzd1vBUmQMzsv328FiZAKL5IhrwXJkCFj9GOvBgmQOFgWpe8GSZAPTLjn7waJkCaA2yovBsmQPbU9LC8HCZAUqZ9ubwdJkCvdwbCvB4mQAtJj8q8HyZAZxoY07wgJkDE66DbvCEmQCC9KeS8IiZAfI6y7LwjJkDYXzv1vCQmQDUxxP28JSZAkQJNBr0mJkDt09UOvScmQEqlXhe9KCZApnbnH70pJkACSHAovSomQF8Z+TC9KyZAu+qBOb0sJkAXvApCvS0mQHSNk0q9LiZA0F4cU70vJkAsMKVbvTAmQIkBLmS9MSZA5dK2bL0yJkBBpD91vTMmQJ11yH29NCZA+kZRhr01JkBWGNqOvTYmQLLpYpe9NyZAD7vrn704JkBrjHSovTkmQMdd/bC9OiZAJC+Gub07JkCAAA/CvTwmQNzRl8q9PSZAOaMg070+JkCVdKnbvT8mQPFFMuS9QCZAThe77L1BJkCq6EP1vUImQAa6zP29QyZAYotVBr5EJkC/XN4OvkUmQBsuZxe+RiZAd//vH75HJkDU0HgovkgmQDCiATG+SSZAjHOKOb5KJkDpRBNCvksmQEUWnEq+TCZAoeckU75NJkD+uK1bvk4mQFqKNmS+TyZAtlu/bL5QJkATLUh1vlEmQG/+0H2+UiZAy89Zhr5TJkAnoeKOvlQmQIRya5e+VSZA4EP0n75WJkA8FX2ovlcmQJnmBbG+WCZA9beOub5ZJkBRiRfCvlomQK5aoMq+WyZACiwp075cJkBm/bHbvl0mQMPOOuS+XiZAH6DD7L5fJkB7cUz1vmAmQNhC1f2+YSZANBReBr9iJkCQ5eYOv2MmQOy2bxe/ZCZASYj4H79lJkClWYEov2YmQAErCjG/ZyZAXvySOb9oJkC6zRtCv2kmQBafpEq/aiZAc3AtU79rJkDPQbZbv2wmQCsTP2S/bSZAiOTHbL9uJkDktVB1v28mQECH2X2/cCZAnVhihr9xJkD5KeuOv3ImQFX7c5e/cyZAscz8n790JkAOnoWov3UmQGpvDrG/diZAxkCXub93JkAjEiDCv3gmQH/jqMq/eSZA27Qx0796JkA4hrrbv3smQJRXQ+S/fCZA8CjM7L99JkBN+lT1v34mQKnL3f2/fyZABZ1mBsCAJkBhbu8OwIEmQL4/eBfAgiZAGhEBIMCDJkB24okowIQmQNOzEjHAhSZAL4WbOcCGJkCLViRCwIcmQOgnrUrAiCZARPk1U8CJJkCgyr5bwIomQP2bR2TAiyZAWW3QbMCMJkC1Pll1wI0mQBIQ4n3AjiZAbuFqhsCPJkDKsvOOwJAmQCaEfJfAkSZAg1UFoMCSJkDfJo6owJMmQDv4FrHAlCZAmMmfucCVJkD0mijCwJYmQFBsscrAlyZArT0608CYJkAJD8PbwJkmQGXgS+TAmiZAwrHU7MCbJkAeg131wJwmQHpU5v3AnSZA1yVvBsGeJkAz9/cOwZ8mQI/IgBfBoCZA65kJIMGhJkBIa5IowaImQKQ8GzHBoyZAAA6kOcGkJkBd3yxCwaUmQLmwtUrBpiZAFYI+U8GnJkByU8dbwagmQM4kUGTBqSZAKvbYbMGqJkCHx2F1wasmQOOY6n3BrCZAP2pzhsGtJkCcO/yOwa4mQPgMhZfBryZAVN4NoMGwJkCwr5aowbEmQA2BH7HBsiZAaVKoucGzJkDFIzHCwbQmQCL1ucrBtSZAfsZC08G2JkDal8vbwbcmQDdpVOTBuCZAkzrd7MG5JkDvC2b1wbomQEzd7v3BuyZAqK53BsK8JkAEgAAPwr0mQGFRiRfCviZAvSISIMK/JkAZ9JoowsAmQHXFIzHCwSZA0pasOcLCJkAuaDVCwsMmQIo5vkrCxCZA5wpHU8LFJkBD3M9bwsYmQJ+tWGTCxyZA/H7hbMLIJkBYUGp1wskmQLQh833CyiZAEfN7hsLLJkBtxASPwswmQMmVjZfCzSZAJmcWoMLOJkCCOJ+ows8mQN4JKLHC0CZAOtuwucLRJkCXrDnCwtImQPN9wsrC0yZAT09L08LUJkCsINTbwtUmQAjyXOTC1iZAZMPl7MLXJkDBlG71wtgmQB1m9/3C2SZAeTeABsPaJkDWCAkPw9smQDLakRfD3CZAjqsaIMPdJkDrfKMow94mQEdOLDHD3yZAox+1OcPgJkD/8D1Cw+EmQFzCxkrD4iZAuJNPU8PjJkAUZdhbw+QmQHE2YWTD5SZAzQfqbMPmJkAp2XJ1w+cmQIaq+33D6CZA4nuEhsPpJkA+TQ2Pw+omQJselpfD6yZA9+8eoMPsJkBTwaeow+0mQLCSMLHD7iZADGS5ucPvJkBoNULCw/AmQMQGy8rD8SZAIdhT08PyJkB9qdzbw/MmQNl6ZeTD9CZANkzu7MP1JkCSHXf1w/YmQO7u//3D9yZAS8CIBsT4JkCnkREPxPkmQANjmhfE+iZAYDQjIMT7JkC8BawoxPwmQBjXNDHE/SZAdai9OcT+JkDReUZCxP8mQC1Lz0rEACdAiRxYU8QBJ0Dm7eBbxAInQEK/aWTEAydAnpDybMQEJ0D7YXt1xAUnQFczBH7EBidAswSNhsQHJ0AQ1hWPxAgnQGynnpfECSdAyHgnoMQKJ0AlSrCoxAsnQIEbObHEDCdA3ezBucQNJ0A5vkrCxA4nQJaP08rEDydA8mBc08QQJ0BOMuXbxBEnQKsDbuTEEidAB9X27MQTJ0Bjpn/1xBQnQMB3CP7EFSdAHEmRBsUWJ0B4GhoPxRcnQNXrohfFGCdAMb0rIMUZJ0CNjrQoxRonQOpfPTHFGydARjHGOcUcJ0CiAk9CxR0nQP7T10rFHidAW6VgU8UfJ0C3dulbxSAnQBNIcmTFISdAcBn7bMUiJ0DM6oN1xSMnQCi8DH7FJCdAhY2VhsUlJ0DhXh6PxSYnQD0wp5fFJydAmgEwoMUoJ0D20rioxSknQFKkQbHFKidAr3XKucUrJ0ALR1PCxSwnQGcY3MrFLSdAw+lk08UuJ0Agu+3bxS8nQHyMduTFMCdA2F3/7MUxJ0A1L4j1xTInQJEAEf7FMydA7dGZBsY0J0BKoyIPxjUnQKZ0qxfGNidAAkY0IMY3J0BfF70oxjgnQLvoRTHGOSdAF7rOOcY6J0B0i1dCxjsnQNBc4ErGPCdALC5pU8Y9J0CI//Fbxj4nQOXQemTGPydAQaIDbcZAJ0Cdc4x1xkEnQPpEFX7GQidAVhaehsZDJ0Cy5yaPxkQnQA+5r5fGRSdAa4o4oMZGJ0DHW8GoxkcnQCQtSrHGSCdAgP7SucZJJ0Dcz1vCxkonQDmh5MrGSydAlXJt08ZMJ0DxQ/bbxk0nQE0Vf+TGTidAquYH7cZPJ0AGuJD1xlAnQGKJGf7GUSdAv1qiBsdSJ0AbLCsPx1MnQHf9sxfHVCdA1M48IMdVJ0AwoMUox1YnQIxxTjHHVydA6ULXOcdYJ0BFFGBCx1knQKHl6ErHWidA/rZxU8dbJ0BaiPpbx1wnQLZZg2THXSdAEisMbcdeJ0Bv/JR1x18nQMvNHX7HYCdAJ5+mhsdhJ0CEcC+Px2InQOBBuJfHYydAPBNBoMdkJ0CZ5Mmox2UnQPW1UrHHZidAUYfbucdnJ0CuWGTCx2gnQAoq7crHaSdAZvt108dqJ0DDzP7bx2snQB+eh+THbCdAe28Q7cdtJ0DXQJn1x24nQDQSIv7HbydAkOOqBshwJ0DstDMPyHEnQEmGvBfIcidApVdFIMhzJ0ABKc4oyHQnQF76VjHIdSdAusvfOch2J0AWnWhCyHcnQHNu8UrIeCdAzz96U8h5J0ArEQNcyHonQIjii2TIeydA5LMUbch8J0BAhZ11yH0nQJxWJn7IfidA+Sevhsh/J0BV+TePyIAnQLHKwJfIgSdADpxJoMiCJ0BqbdKoyIMnQMY+W7HIhCdAIxDkuciFJ0B/4WzCyIYnQNuy9crIhydAOIR+08iIJ0CUVQfcyIknQPAmkOTIiidATPgY7ciLJ0CpyaH1yIwnQAWbKv7IjSdAYWyzBsmOJ0C+PTwPyY8nQBoPxRfJkCdAduBNIMmRJ0DTsdYoyZInQC+DXzHJkydAi1ToOcmUJ0DoJXFCyZUnQET3+UrJlidAoMiCU8mXJ0D9mQtcyZgnQFlrlGTJmSdAtTwdbcmaJ0ARDqZ1yZsnQG7fLn7JnCdAyrC3hsmdJ0AmgkCPyZ4nQINTyZfJnydA3yRSoMmgJ0A79tqoyaEnQJjHY7HJoidA9JjsucmjJ0BQanXCyaQnQK07/srJpSdACQ2H08mmJ0Bl3g/cyacnQMKvmOTJqCdAHoEh7cmpJ0B6Uqr1yaonQNYjM/7JqydAM/W7BsqsJ0CPxkQPyq0nQOuXzRfKridASGlWIMqvJ0CkOt8oyrAnQAAMaDHKsSdAXd3wOcqyJ0C5rnlCyrMnQBWAAkvKtCdAclGLU8q1J0DOIhRcyrYnQCr0nGTKtydAh8Ulbcq4J0Djlq51yrknQD9oN37KuidAmznAhsq7J0D4CkmPyrwnQFTc0ZfKvSdAsK1aoMq+J0ANf+Ooyr8nQGlQbLHKwCdAxSH1ucrBJ0Ai833CysInQH7EBsvKwydA2pWP08rEJ0A3ZxjcysUnQJM4oeTKxidA7wkq7crHJ0BM27L1ysgnQKisO/7KySdABH7EBsvKJ0BgT00Py8snQL0g1hfLzCdAGfJeIMvNJ0B1w+coy84nQNKUcDHLzydALmb5OcvQJ0CKN4JCy9EnQOcIC0vL0idAQ9qTU8vTJ0Cfqxxcy9QnQPx8pWTL1SdAWE4ubcvWJ0C0H7d1y9cnQBHxP37L2CdAbcLIhsvZJ0DJk1GPy9onQCVl2pfL2ydAgjZjoMvcJ0DeB+yoy90nQDrZdLHL3idAl6r9ucvfJ0Dze4bCy+AnQE9ND8vL4SdArB6Y08viJ0AI8CDcy+MnQGTBqeTL5CdAwZIy7cvlJ0AdZLv1y+YnQHk1RP7L5ydA1gbNBszoJ0Ay2FUPzOknQI6p3hfM6idA6npnIMzrJ0BHTPAozOwnQKMdeTHM7SdA/+4BOszuJ0BcwIpCzO8nQLiRE0vM8CdAFGOcU8zxJ0BxNCVczPInQM0FrmTM8ydAKdc2bcz0J0CGqL91zPUnQOJ5SH7M9idAPkvRhsz3J0CbHFqPzPgnQPft4pfM+SdAU79roMz6J0CvkPSozPsnQAxifbHM/CdAaDMGusz9J0DEBI/CzP4nQCHWF8vM/ydAfaeg08wAKEDZeCnczAEoQDZKsuTMAihAkhs77cwDKEDu7MP1zAQoQEu+TP7MBShAp4/VBs0GKEADYV4PzQcoQF8y5xfNCChAvANwIM0JKEAY1fgozQooQHSmgTHNCyhA0XcKOs0MKEAtSZNCzQ0oQIkaHEvNDihA5uukU80PKEBCvS1czRAoQJ6OtmTNEShA+18/bc0SKEBXMch1zRMoQLMCUX7NFChAENTZhs0VKEBspWKPzRYoQMh265fNFyhAJEh0oM0YKECBGf2ozRkoQN3qhbHNGihAObwOus0bKECWjZfCzRwoQPJeIMvNHShATjCp080eKECrATLczR8oQAfTuuTNIChAY6RD7c0hKEDAdcz1zSIoQBxHVf7NIyhAeBjeBs4kKEDV6WYPziUoQDG77xfOJihAjYx4IM4nKEDpXQEpzigoQEYvijHOKShAogATOs4qKED+0ZtCzisoQFujJEvOLChAt3StU84tKEATRjZczi4oQHAXv2TOLyhAzOhHbc4wKEAoutB1zjEoQIWLWX7OMihA4Vzihs4zKEA9LmuPzjQoQJr/85fONShA9tB8oM42KEBSogWpzjcoQK5zjrHOOChAC0UXus45KEBnFqDCzjooQMPnKMvOOyhAILmx0848KEB8ijrczj0oQNhbw+TOPihANS1M7c4/KECR/tT1zkAoQO3PXf7OQShASqHmBs9CKECmcm8Pz0MoQAJE+BfPRChAXxWBIM9FKEC75gkpz0YoQBe4kjHPRyhAc4kbOs9IKEDQWqRCz0koQCwsLUvPSihAiP21U89LKEDlzj5cz0woQEGgx2TPTShAnXFQbc9OKED6Qtl1z08oQFYUYn7PUChAsuXqhs9RKEAPt3OPz1IoQGuI/JfPUyhAx1mFoM9UKEAkKw6pz1UoQID8lrHPVihA3M0fus9XKEA4n6jCz1goQJVwMcvPWShA8UG6089aKEBNE0Pcz1soQKrky+TPXChABrZU7c9dKEBih931z14oQL9YZv7PXyhAGyrvBtBgKEB3+3cP0GEoQNTMABjQYihAMJ6JINBjKECMbxIp0GQoQOlAmzHQZShARRIkOtBmKECh46xC0GcoQP20NUvQaChAWoa+U9BpKEC2V0dc0GooQBIp0GTQayhAb/pYbdBsKEDLy+F10G0oQCedan7QbihAhG7zhtBvKEDgP3yP0HAoQDwRBZjQcShAmeKNoNByKED1sxap0HMoQFGFn7HQdChArlYoutB1KEAKKLHC0HYoQGb5OcvQdyhAwsrC09B4KEAfnEvc0HkoQHtt1OTQeihA1z5d7dB7KEA0EOb10HwoQJDhbv7QfShA7LL3BtF+KEBJhIAP0X8oQKVVCRjRgChAASeSINGBKEBe+Bop0YIoQLrJozHRgyhAFpssOtGEKEBybLVC0YUoQM89PkvRhihAKw/HU9GHKECH4E9c0YgoQOSx2GTRiShAQINhbdGKKECcVOp10YsoQPklc37RjChAVff7htGNKECxyISP0Y4oQA6aDZjRjyhAamuWoNGQKEDGPB+p0ZEoQCMOqLHRkihAf98wutGTKEDbsLnC0ZQoQDeCQsvRlShAlFPL09GWKEDwJFTc0ZcoQEz23OTRmChAqcdl7dGZKEAFme710ZooQGFqd/7RmyhAvjsAB9KcKEAaDYkP0p0oQHbeERjSnihA06+aINKfKEAvgSMp0qAoQItSrDHSoShA6CM1OtKiKEBE9b1C0qMoQKDGRkvSpChA/JfPU9KlKEBZaVhc0qYoQLU64WTSpyhAEQxqbdKoKEBu3fJ10qkoQMque37SqihAJoAEh9KrKECDUY2P0qwoQN8iFpjSrShAO/SeoNKuKECYxSep0q8oQPSWsLHSsChAUGg5utKxKECtOcLC0rIoQAkLS8vSsyhAZdzT09K0KEDBrVzc0rUoQB5/5eTStihAelBu7dK3KEDWIff10rgoQDPzf/7SuShAj8QIB9O6KEDrlZEP07soQEhnGhjTvChApDijINO9KEAACiwp074oQF3btDHTvyhAuaw9OtPAKEAVfsZC08EoQHJPT0vTwihAziDYU9PDKEAq8mBc08QoQIbD6WTTxShA45RybdPGKEA/Zvt108coQJs3hH7TyChA+AgNh9PJKEBU2pWP08ooQLCrHpjTyyhADX2noNPMKEBpTjCp080oQMUfubHTzihAIvFButPPKEB+wsrC09AoQNqTU8vT0ShAN2Xc09PSKECTNmXc09MoQO8H7uTT1ChAS9l27dPVKECoqv/109YoQAR8iP7T1yhAYE0RB9TYKEC9HpoP1NkoQBnwIhjU2ihAdcGrINTbKEDSkjQp1NwoQC5kvTHU3ShAijVGOtTeKEDnBs9C1N8oQEPYV0vU4ChAn6ngU9ThKED8emlc1OIoQFhM8mTU4yhAtB17bdTkKEAQ7wN21OUoQG3AjH7U5ihAyZEVh9TnKEAlY56P1OgoQII0J5jU6ShA3gWwoNTqKEA61zip1OsoQJeowbHU7ChA83lKutTtKEBPS9PC1O4oQKwcXMvU7yhACO7k09TwKEBkv23c1PEoQMGQ9uTU8ihAHWJ/7dTzKEB5Mwj21PQoQNUEkf7U9ShAMtYZB9X2KECOp6IP1fcoQOp4KxjV+ChAR0q0INX5KECjGz0p1fooQP/sxTHV+yhAXL5OOtX8KEC4j9dC1f0oQBRhYEvV/ihAcTLpU9X/KEDNA3Jc1QApQCnV+mTVASlAhaaDbdUCKUDidwx21QMpQD5JlX7VBClAmhoeh9UFKUD366aP1QYpQFO9L5jVBylAr464oNUIKUAMYEGp1QkpQGgxyrHVCilAxAJTutULKUAh1NvC1QwpQH2lZMvVDSlA2Xbt09UOKUA2SHbc1Q8pQJIZ/+TVEClA7uqH7dURKUBKvBD21RIpQKeNmf7VEylAA18iB9YUKUBfMKsP1hUpQLwBNBjWFilAGNO8INYXKUB0pEUp1hgpQNF1zjHWGSlALUdXOtYaKUCJGOBC1hspQObpaEvWHClAQrvxU9YdKUCejHpc1h4pQPtdA2XWHylAVy+MbdYgKUCzABV21iEpQA/SnX7WIilAbKMmh9YjKUDIdK+P1iQpQCRGOJjWJSlAgRfBoNYmKUDd6Emp1icpQDm60rHWKClAlotbutYpKUDyXOTC1iopQE4ubcvWKylAq//109YsKUAH0X7c1i0pQGOiB+XWLilAwHOQ7dYvKUAcRRn21jApQHgWov7WMSlA1OcqB9cyKUAxubMP1zMpQI2KPBjXNClA6VvFINc1KUBGLU4p1zYpQKL+1jHXNylA/s9fOtc4KUBboehC1zkpQLdycUvXOilAE0T6U9c7KUBwFYNc1zwpQMzmC2XXPSlAKLiUbdc+KUCFiR121z8pQOFapn7XQClAPSwvh9dBKUCZ/beP10IpQPbOQJjXQylAUqDJoNdEKUCucVKp10UpQAtD27HXRilAZxRkutdHKUDD5ezC10gpQCC3dcvXSSlAfIj+09dKKUDYWYfc10spQDUrEOXXTClAkfyY7ddNKUDtzSH2104pQEqfqv7XTylApnAzB9hQKUACQrwP2FEpQF4TRRjYUilAu+TNINhTKUAXtlYp2FQpQHOH3zHYVSlA0FhoOthWKUAsKvFC2FcpQIj7eUvYWClA5cwCVNhZKUBBnotc2FopQJ1vFGXYWylA+kCdbdhcKUBWEiZ22F0pQLLjrn7YXilAD7U3h9hfKUBrhsCP2GApQMdXSZjYYSlAIynSoNhiKUCA+lqp2GMpQNzL47HYZClAOJ1suthlKUCVbvXC2GYpQPE/fsvYZylATREH1NhoKUCq4o/c2GkpQAa0GOXYailAYoWh7dhrKUC/Vir22GwpQBsos/7YbSlAd/k7B9luKUDUysQP2W8pQDCcTRjZcClAjG3WINlxKUDoPl8p2XIpQEUQ6DHZcylAoeFwOtl0KUD9svlC2XUpQFqEgkvZdilAtlULVNl3KUASJ5Rc2XgpQG/4HGXZeSlAy8mlbdl6KUAnmy522XspQIRst37ZfClA4D1Ah9l9KUA8D8mP2X4pQJngUZjZfylA9bHaoNmAKUBRg2Op2YEpQK1U7LHZgilACiZ1utmDKUBm9/3C2YQpQMLIhsvZhSlAH5oP1NmGKUB7a5jc2YcpQNc8IeXZiClANA6q7dmJKUCQ3zL22YopQOywu/7ZiylASYJEB9qMKUClU80P2o0pQAElVhjajilAXfbeINqPKUC6x2cp2pApQBaZ8DHakSlAcmp5OtqSKUDPOwJD2pMpQCsNi0valClAh94TVNqVKUDkr5xc2pYpQECBJWXalylAnFKubdqYKUD5Izd22pkpQFX1v37amilAscZIh9qbKUAOmNGP2pwpQGppWpjanSlAxjrjoNqeKUAiDGyp2p8pQH/d9LHaoClA2659utqhKUA3gAbD2qIpQJRRj8vaoylA8CIY1NqkKUBM9KDc2qUpQKnFKeXapilABZey7dqnKUBhaDv22qgpQL45xP7aqSlAGgtNB9uqKUB23NUP26spQNOtXhjbrClAL3/nINutKUCLUHAp264pQOch+THbrylARPOBOtuwKUCgxApD27EpQPyVk0vbsilAWWccVNuzKUC1OKVc27QpQBEKLmXbtSlAbtu2bdu2KUDKrD9227cpQCZ+yH7buClAg09Rh9u5KUDfINqP27opQDvyYpjbuylAmMProNu8KUD0lHSp270pQFBm/bHbvilArDeGutu/KUAJCQ/D28ApQGXal8vbwSlAwasg1NvCKUAefanc28MpQHpOMuXbxClA1h+77dvFKUAz8UP228YpQI/CzP7bxylA65NVB9zIKUBIZd4P3MkpQKQ2ZxjcyilAAAjwINzLKUBd2Xgp3MwpQLmqATLczSlAFXyKOtzOKUBxTRND3M8pQM4enEvc0ClAKvAkVNzRKUCGwa1c3NIpQOOSNmXc0ylAP2S/bdzUKUCbNUh23NUpQPgG0X7c1ilAVNhZh9zXKUCwqeKP3NgpQA17a5jc2SlAaUz0oNzaKUDFHX2p3NspQCLvBbLc3ClAfsCOutzdKUDakRfD3N4pQDZjoMvc3ylAkzQp1NzgKUDvBbLc3OEpQEvXOuXc4ilAqKjD7dzjKUAEekz23OQpQGBL1f7c5SlAvRxeB93mKUAZ7uYP3ecpQHW/bxjd6ClA0pD4IN3pKUAuYoEp3eopQIozCjLd6ylA5wSTOt3sKUBD1htD3e0pQJ+npEvd7ilA+3gtVN3vKUBYSrZc3fApQLQbP2Xd8SlAEO3Hbd3yKUBtvlB23fMpQMmP2X7d9ClAJWFih931KUCCMuuP3fYpQN4DdJjd9ylAOtX8oN34KUCXpoWp3fkpQPN3DrLd+ilAT0mXut37KUCsGiDD3fwpQAjsqMvd/SlAZL0x1N3+KUDAjrrc3f8pQB1gQ+XdACpAeTHM7d0BKkDVAlX23QIqQDLU3f7dAypAjqVmB94EKkDqdu8P3gUqQEdIeBjeBipAoxkBId4HKkD/6okp3ggqQFy8EjLeCSpAuI2bOt4KKkAUXyRD3gsqQHAwrUveDCpAzQE2VN4NKkAp075c3g4qQIWkR2XeDypA4nXQbd4QKkA+R1l23hEqQJoY4n7eEipA9+lqh94TKkBTu/OP3hQqQK+MfJjeFSpADF4Fod4WKkBoL46p3hcqQMQAF7LeGCpAIdKfut4ZKkB9oyjD3hoqQNl0scveGypANUY61N4cKkCSF8Pc3h0qQO7oS+XeHipASrrU7d4fKkCni1323iAqQANd5v7eISpAXy5vB98iKkC8//cP3yMqQBjRgBjfJCpAdKIJId8lKkDRc5Ip3yYqQC1FGzLfJypAiRakOt8oKkDm5yxD3ykqQEK5tUvfKipAnoo+VN8rKkD6W8dc3ywqQFctUGXfLSpAs/7Ybd8uKkAP0GF23y8qQGyh6n7fMCpAyHJzh98xKkAkRPyP3zIqQIEVhZjfMypA3eYNod80KkA5uJap3zUqQJaJH7LfNipA8lqout83KkBOLDHD3zgqQKv9ucvfOSpAB89C1N86KkBjoMvc3zsqQL9xVOXfPCpAHEPd7d89KkB4FGb23z4qQNTl7v7fPypAMbd3B+BAKkCNiAAQ4EEqQOlZiRjgQipARisSIeBDKkCi/Jop4EQqQP7NIzLgRSpAW5+sOuBGKkC3cDVD4EcqQBNCvkvgSCpAcBNHVOBJKkDM5M9c4EoqQCi2WGXgSypAhIfhbeBMKkDhWGp24E0qQD0q837gTipAmft7h+BPKkD2zASQ4FAqQFKejZjgUSpArm8WoeBSKkALQZ+p4FMqQGcSKLLgVCpAw+OwuuBVKkAgtTnD4FYqQHyGwsvgVypA2FdL1OBYKkA1KdTc4FkqQJH6XOXgWipA7cvl7eBbKkBJnW724FwqQKZu9/7gXSpAAkCAB+FeKkBeEQkQ4V8qQLvikRjhYCpAF7QaIeFhKkBzhaMp4WIqQNBWLDLhYypALCi1OuFkKkCI+T1D4WUqQOXKxkvhZipAQZxPVOFnKkCdbdhc4WgqQPo+YWXhaSpAVhDqbeFqKkCy4XJ24WsqQA6z+37hbCpAa4SEh+FtKkDHVQ2Q4W4qQCMnlpjhbypAgPgeoeFwKkDcyaep4XEqQDibMLLhcipAlWy5uuFzKkDxPULD4XQqQE0Py8vhdSpAquBT1OF2KkAGstzc4XcqQGKDZeXheCpAv1Tu7eF5KkAbJnf24XoqQHf3//7heypA08iIB+J8KkAwmhEQ4n0qQIxrmhjifipA6DwjIeJ/KkBFDqwp4oAqQKHfNDLigSpA/bC9OuKCKkBagkZD4oMqQLZTz0vihCpAEiVYVOKFKkBv9uBc4oYqQMvHaWXihypAJ5nybeKIKkCDant24okqQOA7BH/iiipAPA2Nh+KLKkCY3hWQ4owqQPWvnpjijSpAUYEnoeKOKkCtUrCp4o8qQAokObLikCpAZvXBuuKRKkDCxkrD4pIqQB+Y08vikypAe2lc1OKUKkDXOuXc4pUqQDQMbuXilipAkN327eKXKkDsrn/24pgqQEiACP/imSpApVGRB+OaKkABIxoQ45sqQF30ohjjnCpAusUrIeOdKkAWl7Qp454qQHJoPTLjnypAzznGOuOgKkArC09D46EqQIfc10vjoipA5K1gVOOjKkBAf+lc46QqQJxQcmXjpSpA+SH7beOmKkBV84N246cqQLHEDH/jqCpADZaVh+OpKkBqZx6Q46oqQMY4p5jjqypAIgowoeOsKkB/27ip460qQNusQbLjripAN37KuuOvKkCUT1PD47AqQPAg3MvjsSpATPJk1OOyKkCpw+3c47MqQAWVduXjtCpAYWb/7eO1KkC+N4j247YqQBoJEf/jtypAdtqZB+S4KkDSqyIQ5LkqQC99qxjkuipAi040IeS7KkDnH70p5LwqQETxRTLkvSpAoMLOOuS+KkD8k1dD5L8qQFll4EvkwCpAtTZpVOTBKkARCPJc5MIqQG7ZemXkwypAyqoDbuTEKkAmfIx25MUqQINNFX/kxipA3x6eh+THKkA78CaQ5MgqQJfBr5jkySpA9JI4oeTKKkBQZMGp5MsqQKw1SrLkzCpACQfTuuTNKkBl2FvD5M4qQMGp5MvkzypAHntt1OTQKkB6TPbc5NEqQNYdf+Xk0ipAM+8H7uTTKkCPwJD25NQqQOuRGf/k1SpASGOiB+XWKkCkNCsQ5dcqQAAGtBjl2CpAXNc8IeXZKkC5qMUp5doqQBV6TjLl2ypAcUvXOuXcKkDOHGBD5d0qQCru6Evl3ipAhr9xVOXfKkDjkPpc5eAqQD9ig2Xl4SpAmzMMbuXiKkD4BJV25eMqQFTWHX/l5CpAsKemh+XlKkANeS+Q5eYqQGlKuJjl5ypAxRtBoeXoKkAh7cmp5ekqQH6+UrLl6ipA2o/buuXrKkA2YWTD5ewqQJMy7cvl7SpA7wN21OXuKkBL1f7c5e8qQKimh+Xl8CpABHgQ7uXxKkBgSZn25fIqQL0aIv/l8ypAGeyqB+b0KkB1vTMQ5vUqQNKOvBjm9ipALmBFIeb3KkCKMc4p5vgqQOYCVzLm+SpAQ9TfOub6KkCfpWhD5vsqQPt28Uvm/CpAWEh6VOb9KkC0GQNd5v4qQBDri2Xm/ypAbbwUbuYAK0DJjZ125gErQCVfJn/mAitAgjCvh+YDK0DeATiQ5gQrQDrTwJjmBStAlqRJoeYGK0DzddKp5gcrQE9HW7LmCCtAqxjkuuYJK0AI6mzD5gorQGS79cvmCytAwIx+1OYMK0AdXgfd5g0rQHkvkOXmDitA1QAZ7uYPK0Ay0qH25hArQI6jKv/mEStA6nSzB+cSK0BHRjwQ5xMrQKMXxRjnFCtA/+hNIecVK0BbutYp5xYrQLiLXzLnFytAFF3oOucYK0BwLnFD5xkrQM3/+UvnGitAKdGCVOcbK0CFogtd5xwrQOJzlGXnHStAPkUdbuceK0CaFqZ25x8rQPfnLn/nICtAU7m3h+chK0CvikCQ5yIrQAxcyZjnIytAaC1SoeckK0DE/tqp5yUrQCDQY7LnJitAfaHsuucnK0DZcnXD5ygrQDVE/svnKStAkhWH1OcqK0Du5g/d5ysrQEq4mOXnLCtAp4kh7uctK0ADW6r25y4rQF8sM//nLytAvP27B+gwK0AYz0QQ6DErQHSgzRjoMitA0XFWIegzK0AtQ98p6DQrQIkUaDLoNStA5eXwOug2K0BCt3lD6DcrQJ6IAkzoOCtA+lmLVOg5K0BXKxRd6DorQLP8nGXoOytAD84lbug8K0Bsn6526D0rQMhwN3/oPitAJELAh+g/K0CBE0mQ6EArQN3k0ZjoQStAObZaoehCK0CWh+Op6EMrQPJYbLLoRCtATir1uuhFK0Cq+33D6EYrQAfNBszoRytAY56P1OhIK0C/bxjd6EkrQBxBoeXoSitAeBIq7uhLK0DU47L26EwrQDG1O//oTStAjYbEB+lOK0DpV00Q6U8rQEYp1hjpUCtAovpeIelRK0D+y+cp6VIrQFudcDLpUytAt275OulUK0ATQIJD6VUrQG8RC0zpVitAzOKTVOlXK0AotBxd6VgrQISFpWXpWStA4VYubulaK0A9KLd26VsrQJn5P3/pXCtA9srIh+ldK0BSnFGQ6V4rQK5t2pjpXytACz9joelgK0BnEOyp6WErQMPhdLLpYitAILP9uuljK0B8hIbD6WQrQNhVD8zpZStANCeY1OlmK0CR+CDd6WcrQO3JqeXpaCtASZsy7ulpK0CmbLv26WorQAI+RP/paytAXg/NB+psK0C74FUQ6m0rQBey3hjqbitAc4NnIepvK0DQVPAp6nArQCwmeTLqcStAiPcBO+pyK0DlyIpD6nMrQEGaE0zqdCtAnWucVOp1K0D5PCVd6nYrQFYOrmXqdytAst82bup4K0AOsb926nkrQGuCSH/qeitAx1PRh+p7K0AjJVqQ6nwrQID24pjqfStA3Mdroep+K0A4mfSp6n8rQJVqfbLqgCtA8TsGu+qBK0BNDY/D6oIrQKneF8zqgytABrCg1OqEK0BigSnd6oUrQL5SsuXqhitAGyQ77uqHK0B39cP26ogrQNPGTP/qiStAMJjVB+uKK0CMaV4Q64srQOg65xjrjCtARQxwIeuNK0Ch3fgp644rQP2ugTLrjytAWoAKO+uQK0C2UZND65ErQBIjHEzrkitAbvSkVOuTK0DLxS1d65QrQCeXtmXrlStAg2g/buuWK0DgOch265crQDwLUX/rmCtAmNzZh+uZK0D1rWKQ65orQFF/65jrmytArVB0oeucK0AKIv2p650rQGbzhbLrnitAwsQOu+ufK0AflpfD66ArQHtnIMzroStA1zip1OuiK0AzCjLd66MrQJDbuuXrpCtA7KxD7uulK0BIfsz266YrQKVPVf/rpytAASHeB+yoK0Bd8mYQ7KkrQLrD7xjsqitAFpV4IeyrK0ByZgEq7KwrQM83ijLsrStAKwkTO+yuK0CH2ptD7K8rQOSrJEzssCtAQH2tVOyxK0CcTjZd7LIrQPgfv2XssytAVfFHbuy0K0CxwtB27LUrQA2UWX/stitAamXih+y3K0DGNmuQ7LgrQCII9JjsuStAf9l8oey6K0DbqgWq7LsrQDd8jrLsvCtAlE0Xu+y9K0DwHqDD7L4rQEzwKMzsvytAqcGx1OzAK0AFkzrd7MErQGFkw+XswitAvTVM7uzDK0AaB9X27MQrQHbYXf/sxStA0qnmB+3GK0Ave28Q7ccrQItM+BjtyCtA5x2BIe3JK0BE7wkq7corQKDAkjLtyytA/JEbO+3MK0BZY6RD7c0rQLU0LUztzitAEQa2VO3PK0Bu1z5d7dArQMqox2Xt0StAJnpQbu3SK0CCS9l27dMrQN8cYn/t1CtAO+7qh+3VK0CXv3OQ7dYrQPSQ/Jjt1ytAUGKFoe3YK0CsMw6q7dkrQAkFl7Lt2itAZdYfu+3bK0DBp6jD7dwrQB55Mczt3StAekq61O3eK0DWG0Pd7d8rQDPty+Xt4CtAj75U7u3hK0Drj9327eIrQEdhZv/t4ytApDLvB+7kK0AABHgQ7uUrQFzVABnu5itAuaaJIe7nK0AVeBIq7ugrQHFJmzLu6StAzhokO+7qK0Aq7KxD7usrQIa9NUzu7CtA446+VO7tK0A/YEdd7u4rQJsx0GXu7ytA+AJZbu7wK0BU1OF27vErQLClan/u8itADHfzh+7zK0BpSHyQ7vQrQMUZBZnu9StAIeuNoe72K0B+vBaq7vcrQNqNn7Lu+CtANl8ou+75K0CTMLHD7vorQO8BOszu+ytAS9PC1O78K0CopEvd7v0rQAR21OXu/itAYEdd7u7/K0C8GOb27gAsQBnqbv/uASxAdbv3B+8CLEDRjIAQ7wMsQC5eCRnvBCxAii+SIe8FLEDmABsq7wYsQEPSozLvByxAn6MsO+8ILED7dLVD7wksQFhGPkzvCixAtBfHVO8LLEAQ6U9d7wwsQG262GXvDSxAyYthbu8OLEAlXep27w8sQIEuc3/vECxA3v/7h+8RLEA60YSQ7xIsQJaiDZnvEyxA83OWoe8ULEBPRR+q7xUsQKsWqLLvFixACOgwu+8XLEBkubnD7xgsQMCKQszvGSxAHVzL1O8aLEB5LVTd7xssQNX+3OXvHCxAMtBl7u8dLECOoe727x4sQOpyd//vHyxARkQACPAgLECjFYkQ8CEsQP/mERnwIixAW7iaIfAjLEC4iSMq8CQsQBRbrDLwJSxAcCw1O/AmLEDN/b1D8CcsQCnPRkzwKCxAhaDPVPApLEDicVhd8CosQD5D4WXwKyxAmhRqbvAsLED35fJ28C0sQFO3e3/wLixAr4gEiPAvLEALWo2Q8DAsQGgrFpnwMSxAxPyeofAyLEAgzieq8DMsQH2fsLLwNCxA2XA5u/A1LEA1QsLD8DYsQJITS8zwNyxA7uTT1PA4LEBKtlzd8DksQKeH5eXwOixAA1lu7vA7LEBfKvf28DwsQLz7f//wPSxAGM0ICPE+LEB0npEQ8T8sQNBvGhnxQCxALUGjIfFBLECJEiwq8UIsQOXjtDLxQyxAQrU9O/FELECehsZD8UUsQPpXT0zxRixAVynYVPFHLECz+mBd8UgsQA/M6WXxSSxAbJ1ybvFKLEDIbvt28UssQCRAhH/xTCxAgRENiPFNLEDd4pWQ8U4sQDm0HpnxTyxAlYWnofFQLEDyVjCq8VEsQE4oubLxUixAqvlBu/FTLEAHy8rD8VQsQGOcU8zxVSxAv23c1PFWLEAcP2Xd8VcsQHgQ7uXxWCxA1OF27vFZLEAxs//28VosQI2EiP/xWyxA6VURCPJcLEBGJ5oQ8l0sQKL4IhnyXixA/smrIfJfLEBamzQq8mAsQLdsvTLyYSxAEz5GO/JiLEBvD89D8mMsQMzgV0zyZCxAKLLgVPJlLECEg2ld8mYsQOFU8mXyZyxAPSZ7bvJoLECZ9wN38mksQPbIjH/yaixAUpoViPJrLECua56Q8mwsQAs9J5nybSxAZw6wofJuLEDD3ziq8m8sQB+xwbLycCxAfIJKu/JxLEDYU9PD8nIsQDQlXMzycyxAkfbk1PJ0LEDtx23d8nUsQEmZ9uXydixApmp/7vJ3LEACPAj38ngsQF4Nkf/yeSxAu94ZCPN6LEAXsKIQ83ssQHOBKxnzfCxA0FK0IfN9LEAsJD0q834sQIj1xTLzfyxA5MZOO/OALEBBmNdD84EsQJ1pYEzzgixA+TrpVPODLEBWDHJd84QsQLLd+mXzhSxADq+DbvOGLEBrgAx384csQMdRlX/ziCxAIyMeiPOJLECA9KaQ84osQNzFL5nziyxAOJe4ofOMLECUaEGq840sQPE5yrLzjixATQtTu/OPLECp3NvD85AsQAauZMzzkSxAYn/t1POSLEC+UHbd85MsQBsi/+XzlCxAd/OH7vOVLEDTxBD385YsQDCWmf/zlyxAjGciCPSYLEDoOKsQ9JksQEUKNBn0mixAodu8IfSbLED9rEUq9JwsQFl+zjL0nSxAtk9XO/SeLEASIeBD9J8sQG7yaEz0oCxAy8PxVPShLEAnlXpd9KIsQINmA2b0oyxA4DeMbvSkLEA8CRV39KUsQJjanX/0pixA9asmiPSnLEBRfa+Q9KgsQK1OOJn0qSxACiDBofSqLEBm8Umq9KssQMLC0rL0rCxAHpRbu/StLEB7ZeTD9K4sQNc2bcz0ryxAMwj21PSwLECQ2X7d9LEsQOyqB+b0sixASHyQ7vSzLEClTRn39LQsQAEfov/0tSxAXfAqCPW2LEC6wbMQ9bcsQBaTPBn1uCxAcmTFIfW5LEDPNU4q9bosQCsH1zL1uyxAh9hfO/W8LEDjqehD9b0sQEB7cUz1vixAnEz6VPW/LED4HYNd9cAsQFXvC2b1wSxAscCUbvXCLEANkh139cMsQGpjpn/1xCxAxjQviPXFLEAiBriQ9cYsQH/XQJn1xyxA26jJofXILEA3elKq9cksQJRL27L1yixA8Bxku/XLLEBM7uzD9cwsQKi/dcz1zSxABZH+1PXOLEBhYofd9c8sQL0zEOb10CxAGgWZ7vXRLEB21iH39dIsQNKnqv/10yxAL3kzCPbULECLSrwQ9tUsQOcbRRn21ixARO3NIfbXLECgvlYq9tgsQPyP3zL22SxAWWFoO/baLEC1MvFD9tssQBEEekz23CxAbdUCVfbdLEDKpotd9t4sQCZ4FGb23yxAgkmdbvbgLEDfGiZ39uEsQDvsrn/24ixAl703iPbjLED0jsCQ9uQsQFBgSZn25SxArDHSofbmLEAJA1uq9ucsQGXU47L26CxAwaVsu/bpLEAed/XD9uosQHpIfsz26yxA1hkH1fbsLEAy64/d9u0sQI+8GOb27ixA642h7vbvLEBHXyr39vAsQKQws//28SxAAAI8CPfyLEBc08QQ9/MsQLmkTRn39CxAFXbWIff1LEBxR18q9/YsQM4Y6DL39yxAKupwO/f4LECGu/lD9/ksQOOMgkz3+ixAP14LVff7LECbL5Rd9/wsQPcAHWb3/SxAVNKlbvf+LECwoy539/8sQAx1t3/3AC1AaUZAiPcBLUDFF8mQ9wItQCHpUZn3Ay1AfrraofcELUDai2Oq9wUtQDZd7LL3Bi1Aky51u/cHLUDv//3D9wgtQEvRhsz3CS1Ap6IP1fcKLUAEdJjd9wstQGBFIeb3DC1AvBaq7vcNLUAZ6DL39w4tQHW5u//3Dy1A0YpECPgQLUAuXM0Q+BEtQIotVhn4Ei1A5v7eIfgTLUBD0Gcq+BQtQJ+h8DL4FS1A+3J5O/gWLUBYRAJE+BctQLQVi0z4GC1AEOcTVfgZLUBsuJxd+BotQMmJJWb4Gy1AJVuubvgcLUCBLDd3+B0tQN79v3/4Hi1AOs9IiPgfLUCWoNGQ+CAtQPNxWpn4IS1AT0PjofgiLUCrFGyq+CMtQAjm9LL4JC1AZLd9u/glLUDAiAbE+CYtQB1aj8z4Jy1AeSsY1fgoLUDV/KDd+CktQDHOKeb4Ki1Ajp+y7vgrLUDqcDv3+CwtQEZCxP/4LS1AoxNNCPkuLUD/5NUQ+S8tQFu2Xhn5MC1AuIfnIfkxLUAUWXAq+TItQHAq+TL5My1AzfuBO/k0LUApzQpE+TUtQIWek0z5Ni1A4m8cVfk3LUA+QaVd+TgtQJoSLmb5OS1A9uO2bvk6LUBTtT93+TstQK+GyH/5PC1AC1hRiPk9LUBoKdqQ+T4tQMT6Ypn5Py1AIMzroflALUB9nXSq+UEtQNlu/bL5Qi1ANUCGu/lDLUCSEQ/E+UQtQO7il8z5RS1ASrQg1flGLUCnhand+UctQANXMub5SC1AXyi77vlJLUC7+UP3+UotQBjLzP/5Sy1AdJxVCPpMLUDQbd4Q+k0tQC0/Zxn6Ti1AiRDwIfpPLUDl4Xgq+lAtQEKzATP6US1AnoSKO/pSLUD6VRNE+lMtQFcnnEz6VC1As/gkVfpVLUAPyq1d+lYtQGybNmb6Vy1AyGy/bvpYLUAkPkh3+lktQIAP0X/6Wi1A3eBZiPpbLUA5suKQ+lwtQJWDa5n6XS1A8lT0ofpeLUBOJn2q+l8tQKr3BbP6YC1AB8mOu/phLUBjmhfE+mItQL9roMz6Yy1AHD0p1fpkLUB4DrLd+mUtQNTfOub6Zi1AMbHD7vpnLUCNgkz3+mgtQOlT1f/6aS1ARSVeCPtqLUCi9uYQ+2stQP7Hbxn7bC1AWpn4IfttLUC3aoEq+24tQBM8CjP7by1Abw2TO/twLUDM3htE+3EtQCiwpEz7ci1AhIEtVftzLUDhUrZd+3QtQD0kP2b7dS1AmfXHbvt2LUD2xlB3+3ctQFKY2X/7eC1ArmliiPt5LUAKO+uQ+3otQGcMdJn7ey1Aw938oft8LUAfr4Wq+30tQHyADrP7fi1A2FGXu/t/LUA0IyDE+4AtQJH0qMz7gS1A7cUx1fuCLUBJl7rd+4MtQKZoQ+b7hC1AAjrM7vuFLUBeC1X3+4YtQLrc3f/7hy1AF65mCPyILUBzf+8Q/IktQM9QeBn8ii1ALCIBIvyLLUCI84kq/IwtQOTEEjP8jS1AQZabO/yOLUCdZyRE/I8tQPk4rUz8kC1AVgo2VfyRLUCy275d/JItQA6tR2b8ky1Aa37QbvyULUDHT1l3/JUtQCMh4n/8li1Af/JqiPyXLUDcw/OQ/JgtQDiVfJn8mS1AlGYFovyaLUDxN46q/JstQE0JF7P8nC1Aqdqfu/ydLUAGrCjE/J4tQGJ9scz8ny1Avk461fygLUAbIMPd/KEtQHfxS+b8oi1A08LU7vyjLUAwlF33/KQtQIxl5v/8pS1A6DZvCP2mLUBECPgQ/actQKHZgBn9qC1A/aoJIv2pLUBZfJIq/aotQLZNGzP9qy1AEh+kO/2sLUBu8CxE/a0tQMvBtUz9ri1AJ5M+Vf2vLUCDZMdd/bAtQOA1UGb9sS1APAfZbv2yLUCY2GF3/bMtQPWp6n/9tC1AUXtziP21LUCtTPyQ/bYtQAkehZn9ty1AZu8Nov24LUDCwJaq/bktQB6SH7P9ui1Ae2Oou/27LUDXNDHE/bwtQDMGusz9vS1AkNdC1f2+LUDsqMvd/b8tQEh6VOb9wC1ApUvd7v3BLUABHWb3/cItQF3u7v/9wy1Aur93CP7ELUAWkQAR/sUtQHJiiRn+xi1AzjMSIv7HLUArBZsq/sgtQIfWIzP+yS1A46esO/7KLUBAeTVE/sstQJxKvkz+zC1A+BtHVf7NLUBV7c9d/s4tQLG+WGb+zy1ADZDhbv7QLUBqYWp3/tEtQMYy83/+0i1AIgR8iP7TLUB/1QSR/tQtQNumjZn+1S1AN3gWov7WLUCTSZ+q/tctQPAaKLP+2C1ATOywu/7ZLUCovTnE/totQAWPwsz+2y1AYWBL1f7cLUC9MdTd/t0tQBoDXeb+3i1AdtTl7v7fLUDSpW73/uAtQC939//+4S1Ai0iACP/iLUDnGQkR/+MtQETrkRn/5C1AoLwaIv/lLUD8jaMq/+YtQFhfLDP/5y1AtTC1O//oLUARAj5E/+ktQG3Txkz/6i1AyqRPVf/rLUAmdthd/+wtQIJHYWb/7S1A3xjqbv/uLUA76nJ3/+8tQJe7+3//8C1A9IyEiP/xLUBQXg2R//ItQKwvlpn/8y1ACQEfov/0LUBl0qeq//UtQMGjMLP/9i1AHXW5u//3LUB6RkLE//gtQNYXy8z/+S1AMulT1f/6LUCPutzd//stQOuLZeb//C1AR13u7v/9LUCkLnf3//4tQAAAAAAAAC5A\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 0\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"lTgRm5Gp9L9klc+HFBvXv1zen+k0PMI/Gb6XnOp+47833WWigWLhv46993easdm/vEpo7Ntwtr/3ZWxTlMfQP1eFOHI7bNi/7+n/n0/i8j8kEKj2VhrzPzimyV7pQMs/oHTuKXDS6r9+/OgDJ4Hsv9/2ASvRMPq/WaB0GaU4+7/AKvPa04TGP6dvZqRJwMg/6iGWh5rQ9z+ALxkDdu7JP0/eDUDMa8M/eYU8BiWH+T/eSURMgR8FQFZS7IFSBQtAyK7jI8Y/DEApFW+DYv0TQDriSogtShdAzGxVuWcNFUBAFvYutSsYQBTLAlNY7htAnFAbfDKLGkB8YfdDkioZQNcS4FwzgRlAK1xrmnTMFECQulPbQgUWQIoVE2sTIhFA4lNZiAlnD0Ai59HDyQEJQAyYIoXVARBAQYUtmQbRD0Cuj8wzjRURQDxzvavzkhhAlO9uOU/0EkCmuxgNxuQUQNsZQvaKthRAn0gPDAGwFUBFS24Hx4gbQPT5vvaB5hVAl7tXB+cOEkCg0jMJE60cQK1JOEe4Px5At0B+XhY0HED8jYpWhVggQJx8x08ZaCNAFj20Tg0eIkCxtbzVvDclQD2WzffcxiNAaiyjdmrPIUAJRj39+McgQLZCH5SbNiFA+v3yb+s4IUDnmicEMtkeQDNxb2GgrhhAqjSYu4o+HkD062jeweAgQLscJwKt0CBA5JW4xppuHUAnAjPpIiQdQGkZYcz6Jx5Amz7Ig6uUG0CIXIwSjBYfQJKsLvLl8RtAANWfyQg7EkCEGezyE5MWQIXy83xRHxdAX+dZFelSFUD2OFj2PzkZQLrcdCBkLRVA4Aka/aewC0Bbt2RELWEOQPtjrai+iQ9Aa/fd4kMTF0CpS5k/SYYdQF7qcvYy6R5A9twxUqr7H0C2HOIHS3oiQMw8iAZjiCRAZ/tL2cu/JED2DoJKAiknQOhK2sONCihAqPCHvFKgJ0C7LEAmgxInQA5duBKbtSdARHwIHqtcKEAf2AC87TcoQL46oXAaYytAl1xXl0gIK0CG3ughmgMuQEAKrKT5UC5Acqh6Hn0PL0AWfnCdEtMuQMs88y2RfTBAeZU5a5OCMECmVxlYH0wxQEZPDclggTBA1I3l0++fMEBGbfF5QAYxQE9M6KFNjTFA4qMXgT3SMUB1OT0O4/QwQPGReBXkFjJAInq2eNElM0DNno+wxAoxQNg7iqxkzzFAzI7zoYvzMUCJgtmgeaoxQIR6twHYtzJAYZf9YaqHMUDeMiBlcUMyQDEW2EubLzNAk4tDhJu4MUBdm6EfYZ8yQGjStSJS/zFARPeJXOyjMUBGG2avaSUxQCh7L+LSnDFAkRBQkTOKMUCrO4Et81QwQIoHbsqaqDJAraWu/GFtMUBwf+xX7I0yQJLQUv2g1zJAC7jLaGONNEDms0yDTcg0QHwd8OwpmzRAKjGqXo8cNUC+8uYg/Tc0QHVCD6oMOzNAEnMd5BUPMkB0qSLJMNgyQKi3yFTqvzJAL5vI825oM0BfVenWblMzQKzd6ggSxzJAQMe6f8UZMkD2Cga0vT0yQKSunwwkCjNAG9uGYvK6M0B+WvdRpQs0QFNhM8oFpjNAvBwz0wvrNUDbP7M2KkY2QPt2GoiFojdADorEdvQ2OECZRkIucRw4QHMpw1ZOqzhA3Usz2q9tOUDSVGQXlTQ4QL8dCKqOXThAvu33EGhbOEDfwNIfIk44QHLIq8mcaDhAuNji0KzcOEC6yCkTsCk4QKmDuWoVVjdAZ76VBbJEN0DqbNKG81Q3QEvf1XPwUThATzJgzvldOED/bdexuYM4QIWaP5fFljhActMSJXEIOUCvEnMibx45QNeWtrrMJjhAJ1i5EIyQN0Bs4tutYh82QM0uFFpmhjNAhLMcLxV8NEA9zlfl55w0QHDquqfV3zVAr2XA3nrENUDSoONq3RI3QMH0qxzQPjhAByveFYElN0Dfxq1nPHM3QDphVeMZEzhA55uY9WvTN0BpwvfKJPI4QFPvK3TvejhA+8P0xKbqOECbOoUdyZY4QGR2bRsLpzhALvzKSEKIOECbFSEvQm44QNLbBPh0PzpAXxrbZwE7OkALnx1m6qw7QBsFncyoJjxAFi9wxtgnPECfg51CtJQ8QCrSAL7fZD1AffuPmXQjPkAtqiWo42RAQLqNlo3sREBAZ3SwCp97QEAE6Jekc5JAQJDq4Qe6w0BAn99HXu2aQUBhcPsobWtBQB/I7+Hq50FArzwS3G9oQUBPqL1zW7pAQFCOVRhhwkBAd2XerWY8QUC4sGnT4OBBQIt8T23/okFAMzSAq9EcQkBTTmsikvxBQOvTJLGYu0FAFaGDX4n2QUAxEGLc0OZBQNDXHW+HlEFAK12fEhLgQUC1Aj4sZbVBQK4UDb0ffEFAaGGR9WhqQUAyQ3ad2SJCQAoQ1vH45kFAUPvnVcFSQkDobKES5I9CQC/dSql4SkJA0SxQyGFRQkDo+0veQuVBQOykylacdEFA8tHfdMaHQUBQPWQ+sMVBQL1hf3O8mEFAuN4c0QEUQUALfCAZaF9AQOh1Kk/iHkBAMq97tRMrQEDpZE6e0/A/QFmckIL48j9AylQD4BgEQEAoYUrEMxNAQA6jXmrUWkBAY/q/1lM3QUBtL4l0u95AQAJ2pL8k60BA5s3/aqoNQUB5lDRcouhAQAWQcN6qcEBAR3jpTln0P0BqwZf/ugVBQJWU6Navk0FAVyG875sUQUAZ5boUtypBQBPaMGSRVkFA8grU9ChYQUDHKfHsk/Y/QBuIjsH/0D5ATIBzRAPSPkAdvB0boq89QAatLoQhTD1AO7XPYvYVPUCQj2OOt2M8QCPPbB76Sj5AHxhQqrN9PkD0XGq20yw/QHU9BeMDRkBAuVCDNQjsP0AAWSQw2T9AQJz75brooz9AkoNwt9+RP0AjUvwQXsw/QGyNWEI6OkBAv+PAY3lpQEDQeLg9pk9AQG1WrY6QgkBAy2Yfg6/mQEA6stiDtkhAQP8WOnPZw0BAHbBmHIngQEDG0fDKDBlAQI3BVy/uAkBAd6NAlN7NP0AMz259g4I+QNRWQJ2ioz1AzPf0iXOmPUAvxB2WHfY+QMD4onG8V0BA1OCmEbX4P0CBpjGTMZdAQAEajncsiEBAqQCfjhV/QEDSRRZjojZAQBlCp3Qlez5AUErPJp7TPUB0dmDaquk/QKdvOQVEJ0BAt3BtXsN7QEBnUEnD96I/QFn3Xn67yz5A03dqf6BGPkCeMzP8eeU9QJGgU+1fkT1AZwmZ71/UPEDVU8tRr8U9QIa2yuUBQz9AFbWmGzWwPkAKjA2V6C0/QC89Zpztaj9AklhT1XXUPUAFJiDE8sE8QLc93Ir9TTxAP+wSJ2A3O0CfBAkw++g6QGbZNgj46DlAC2c4ATw/OUCcj7u/5xo5QPiCNFqAzjhA05pC3DksOUDtWIFcxrg5QB5+fq9mTTpA4VsKeJMLO0CIk77vioQ7QMgnPKSMNTtAidlYc77iOkCGtT7hv807QGm8mAl+Jz1AKo6sZR1GPUDbor33dYI+QOqNmCl7UjxAZoJKgSpuO0BSke7VA+g6QHxqU9e+1zpAhqn2SMJ+O0CAAYD7Ibs7QL43CoG9fz1A3OeFZ7L/PUCGgX6086c/QBAonyE30kBAPZt6vxXoP0DoA7hpjR9AQMY4Sx/xbz5A1hflL5OEPkCVPwGEk6w+QBcqBRToqj5ASisPYSVAP0BsJBR4L5s9QLinGyg2uDxAzn2QL/g3PUCTtT3JcDc9QP0TeRJ4AD5AnNY16l1tPkB9WNfXFW8+QFF6E2/j5j1AQYO4A3VoPkCfe0uWrAU+QFwzLS0iXj1AOPp4qkV2PUCZg//3yWE+QP/E93MS4D5APtrjLOYeP0AI3AR9sxdAQEzo+mBFV0BAuaa+042LP0Dx5dj8diw/QMnzngzofT5AyB2dkHZBPkAVsYq5dk8/QNfqy1KeZj5AfLTtx29OPkCX2wPt37U9QAXouu4o3j5APyyFbnHKPEDc3NmOUEY7QH9QvvL5/jpAzN/rl4zwO0DX1d2ON9M7QDqE/5UgPzxAp1VLpIGiPEBegWwQh486QO3Q2C5SrjpAw2x1SwRFOkBr5xcyq4M4QMiA+/csMThAbz4HMolAN0DXf9f+iKQ3QLIcgGI/7jdAel9V2VKlN0A/LTWjE4U3QNId/0fB0TdAQ/mB2kT+N0CJvQvV4eQ3QOxT82Z6AzdAYIRO7i4bN0CDkr3B9iM3QEHelVXIEDZAZhj8yzexNkDzqT44WVc3QCTE7whUxjdAGDjbWBfhNkDnwBSd5fA2QJS2kJu1EDZACQYJY/eENkBFKEM/VEs4QDSzvkN1pThAzOLmQTg0OEAUwkySIZk4QDV9goO2yDpAPwxl+XeUOUD5ObKaz4o6QAbDa9dX0jpAhi/bx6MVOkD7RIsSvQ46QATSBm/LPDlAeaqm/lfuOkAxIv5dLKw6QFHJ3S7o4jlAmw0XVYgcOkAqvO+usA46QN22rldRVDpATx26o7r2OUCwVssMKjU6QBFncJjXGTlAaLkLneTyNkCVSUwE4YM5QHlESSb1njlAk1LTSxC1OEDwHGv7wyQ4QMhvebQL7TdAEqybJGEiOEC0PA278xM4QIRAbw5rzTdALVwt9rK1N0CGeUk+bVU3QAe9p9UfRTdAJzpOi3nfNUCi7IBmTUo3QGhs0FjM9DRAAEXCN54sM0C6EaJ6MsoxQCv1POGilTBAjjw/MvRtMECfeAuCEG8wQOfJWZJMljFA46rlAfl3MUDTWw6db2AyQDko1KA3oTJAnVfvbvYOMUDyWa4S8QkwQEwLKEPUjC1AuLAxUJApMECZFFCfCwcxQB8ihEQHNDJAfOo7HfIvMkCQ13Fn8p4zQFJ2q6XuvTNAPrQ74iBBM0DObk0TBj01QPzfn4j8iDVAEhAli3CqNUAeNKb7AiA1QDBjXuuSQTRA67sZ0/wONUCNKSqlEjU1QH8rAnoZDzVAMAGknrD4NECuZjopqu00QB53GDfMhzRAAvtsGALIM0DXDnCN6lg0QAyAJ4VL8zNA6vpHbl9SM0B1VjTJ8OQzQKxbixl5KDJAGUasQsm1MUCip9oZJfgwQAaHcZcF+y1Ahy1We8RWLkBW+/VSyNEwQBD9Eiw3ai9AO3HbaSMvMEA8J8zxw9QuQJcIUTUxSTBAvU/3BnNtMED8t+RZ1gkwQFa+evUpjS9AUEfBnObEL0CaWFVqYDYxQPF4kuCDyDBAS1Wk5763MUBZ0sM5yCgwQHRgA9hBDDFAoAO1MT/nL0D+DfgB0jowQAt36d+GnTBAn3/Ze8dmMUCCSzZTJPsyQGmm0S+AWjRA7F2oaQTwNEAmTCu0IBY0QMxr9mzzUjRA1vnEnwpkNEA8w39N0iU0QPUVzX1ukjNAzzcYeTHNM0AL1kezecozQOe9lsiu3TNAU+oD8AEMM0AyfCueqjE1QO6vImIwdTVAk1pNz39zNUB3YxxiAkU2QFp3pfEXMjdASYDDYzvnNkDLvcYoRhA4QDE+QFfEETlA0+pRgrlROED1mdKvWf84QJBhbe1D2TlAFLrQLefSOkAlbQ3IS/44QN+myY/wMzhAuYOvs7AlOUCOCGRn1OQ6QAX7zSUmDTxAfQztykZ5PEDmfKiPgXs+QN1erVjo5D9AJuPbiGhjP0BlSnz1os4/QHouRH4IIkBAcEGk4n7/P0DyVxcm5Y1AQMveTilidkBAxHHBW1CkQEDK+J+aL4hBQK4eSiPfpUFACT694TXuQUAwi4Qz/GtBQGHOb6bz2kFAFyxpGCrVQUBmf+7/+XFBQLd+DtbXnUFAFR7v+T3YQUB2ZAftFclBQGJOIjWeR0JA9J5R81efQUC+i/sfRTRBQLaSf1LVs0FAhQ8pCLstQUAm7ER6SfpBQGc3qTbA4UFAZTvi2xq9QkA1rE+FawFDQB8bV6x7WENAxkCJFsLjQ0BdfaLnjg9DQJCa+ofWb0NAsvCV/B1tQ0AZyq8vKL9CQFDjQfjexEJAhdaUmHLQQkAB9PUfm4BCQI5bEfPvl0FAB9lO4UuyQUBZg+Q9YrZAQHCNMbRI4kBAAqFqY2fgQEBtULXP5ldBQCDWxwrLyUBAdDAzUKJ/QED/S8EkJfJAQI413HFKNkBAyiboBIykQECpaY9MMFVBQDHN8arACEFASTHWA5R7QkCTeEh9Y6xCQC8ZrGuGt0JAtxrIl6ZsQ0Ab8qXST4FDQErxZAlztUJAApifVL2IQUB5uAEbW3xBQNN98l9ZukFAvR64G9fgQkCbfLStAYdCQPKu80L1Z0JAcF/rGjQKQ0BSW2zdavtDQKjXk52ymkNAgZ6c8EF0REAP1PwMKn5EQNu7RiezNERAYKelR4q7Q0BJYVTD361DQLWVAiRksUNA40OQDNi9Q0C5d3tbA75DQCNLg2GQ8EJAK+/MH/mXQ0DxRsDwumtDQD8F3CtnMUNAON4fOnCSQ0DdIRA1b1NDQL65nIPk0kNAIbc6MCfTREAZ2EDkQH5EQAFL4fsrakRARBcJ0rwIRUDI2pSorXhFQNn8XZqmJUVAxLIEf6OhRUAHV/4sLppEQARe08JwHkVArm3tEBkeRUArfHGc44REQB2UojrEO0RAQPDrlarWREDQPi923XFFQGXvA+PgwkVA5KkId8QpRUCYylfB4w5GQHKGOHeoEUdA9/K+pf2fRkDtj1SOCRBHQO66EeD5QkdAnyoDrc+qR0BNe9xYTg9IQHSsaPgB/0dAh/SsEEL0SEDvXCNRQo1JQCnWiREdOklA8ByAg6vhSEAZ/VODgnRJQOKts0cyiElA/B9Oj2amSUB3JdIASN9JQLYXBknZxElAK2t7z/pvSkD9NB/fRP5JQIvzYM89oEpAal6yan3CSkCk96IeLWJLQHL2Yk6py0pAG7LHSr7KSkCkAFkI3YdKQHATXfPiWUpAwKqLnvr+SUCPjT9nfHtJQIdaqofqb0pAlGfatdQKS0Aq2MBwZQtLQO8ZDskYi0tAyvrCqHipS0D3462oS1lMQKp7Nys0BU1AV96C/ZKGTEC/aS824t5LQC+4eWfi4EtAcb6iDHVuS0Cc76IBYc1LQE2lM01iU0tARcanRiITS0Aj/xfOEmFLQHwY17o5pEtA7CIPZuBQSkDTxwnU5MpKQNhOEmoJcUpANKxVKv1dSkA0Gb95aZ1KQO810YVfs0pAU7k1MF0tS0AoVHvsAktLQL4waip86ktA+innPBMGTEAj+NOMNvRLQJaDi5LBOkxA4rEfWqcnTUAglHzggJdNQKaGSr5ZWE1AbM/W7waQTUDVdz+JinxNQIdWclX0nU1A4M+lvwNcTUBH4SFWFdZMQOtwaoLNPkxAczmELkEHTECHsQgXyHpMQODdWdMnSkxAKWuvT4S+TECYJB34t7dMQM3Ne2AmQE1A6zY74XIJTkCMGcgziCpOQIJ3vTX41E1AYDIh8vXpTUCUDEJ0mOlOQDsW32LXZk5AIElku9mPTUAHyao4I3tNQNlvXpcUNE5AiV645b7bTUBgtoqn/XVOQPOCVlUUTk1A8Rt67hA5TUAsUkHPWqlNQJPuS6RG+U1AeG/nz0ARTkCjU599nzBOQPKSYG+Q8U1AYdLKEAlaTkDBSnZjHZxOQCM+Enbg3U5A9mfxXv8QT0BHrUYD1l9PQM/XAGxyvU5AExDF4AF9TkCyNlmjOu1OQMjgcQz5705AUOhesYWlTkDjpBNZPgdPQFDiK468DlBAv5PsiuYVUEDw/GxU5mNQQPqaWu1sjFBAEhRER0bsUEA7DAZZtQxRQMCJVvhCRVFADCFmU7T0UEB5EREa7OhQQCyWUtqe5VBA0MIgN7vQUECiH2EiAN9QQFpZkj3rIVFALy4yM2+QUUAdLqqdTktSQL+hCNyKPVJAqyne6ZQkUkDeBK4tdgtSQLMAxjm50VFAY7DV/At0UkDQzZ/Fa49SQCa0LYIBblJAgZhO72OoUkAlATvtAa1SQCCFZ/nnuVJA4adGJcrSUkDFB/hTcZhSQOizFkcEDlNAZf92fAMoU0Ao1ivGITBTQFGu7dDOJFNATpn2tkKWU0Bl5ozr3PJSQNfQZ2i71VJAoK2LNsDPUkCdGnkOQrZSQO+klBufyFJARaXJadE5U0AIsT7a2jRTQOqTEGiB91JAwF8ZiC99UkAkXcZsg7pSQFTy8ENRL1JAFc2t0LbLUUDv4n+O1HxRQGrEG4+oYlFAdWzWEIGbUUCEBVv+9JpRQGYBL8BdglFAltiPJ9RpUUBJIdm+HSpRQL1opZ32IVFAthXfV4NpUUBJapVTA4BRQDaoImuJT1FARY23ybk7UUD9VZbVtG5RQKlgHcBETVFAjFk5Qn0uUUAN/xUTJ2VRQKBgCh33jlFAjaEJnxW8UUBrQ78a6NtRQBSu30/uS1JAqqOtl3KbUkB34k/YhKBSQPrP3/M3zVJAAkWygP/PUkBKlzPc6aZSQHR43/Ado1JALJSmuHNlUkCi0CTFrfRRQEqgoj+4xVFA2FKGYG/2UUCM6ZfMvYJSQKZbpu93aFJAZ3NVs0YIU0C/QdGQ7gZTQMbi1WbR1lJApXW2iUuTUkB08uJR5bVSQHJtJS64Z1JAszI/vqSSUkDjBzJWuJFSQAbVu52mdVJAu/ysWCilUkBUVfI2HphSQBrzEVDD8VFALtjwKzBXUkA+u/OPa0lSQMIjPLYNjFJADnsRkZXVUkB4FHy1121SQF67CTa7MFJAa9Yf/SZKUkCHdL5lCixSQJwSlYVjPFJAQVvEZfhXUkDwwo868GFSQC8HqDVUbFJALrL9NSlxUkBWK/A76qZSQDRyBo/HlVJAM3Ykk8tbUkD5KsnoSZFSQPt94+M5EVJAUDA/LjWYUUDXzqBiQd9RQDdY/NzlulFAFF+CINneUUB0a+oGRKhRQBsWrEQ1QFJAuifX6kFGUkAPCMh6sVFSQB8mY14sfVJA5sGw0h1DUkB2vpJeo6lSQBBE4uhFhVJArUB8vDGUUkAMuJWutmBSQGSqeU9gAVJAQZSNh8fMUUDSH5aHSCZSQCD2qOwuX1JAS90GCA4fUkB77nMmUCZSQKpWQShgL1JA/tL5LWBBUkBCRhf17nhSQPkZyGGQFlJAtB5PDoAVUkDBHMZICWJRQKrEI7H3JlFA4kNufUwQUUBCf6fwDxNRQMwi7PdJ/lBAJ7elUHIhUUA7MtFH3QJRQBFiS5M0hlBAPU7zZBIMUEAaT374Ob5PQA6Y9B9mmU9Aw2XO9ogZUEBpwIvQH05QQHQlBuhDA1BAWVvN+x0OUECHnI5IezRQQFBZxueu8k9AjmJh6mcKUECMCmf2cJZPQAhYHqc5uE9AfFouk9xpT0A9GMcU4CtPQCx/TvhI0E5AXU22P6g/T0CScO2UfXVPQPvOwokbF09AEhst1nTvTkDo4qb9JR1PQEnyouTsg09AcfYf756PT0BB6ZkgmwRQQBIRSoq1UlBAChLmD3jsT0C0mE3Mw6xQQBtUHuFltlBAL3V9vEKOUECsQNRcfupQQGauv9ppLVFAKVGKqxNPUUCojhA8gFdRQFQVUuXMz1FAzblVBuCZUUCNDuhnFmtRQPqeObZteVFAyCd+D0zhUUCyu5lwtfFRQFqTJuVS1FFAnpFMB8CrUUDV8D/S0vdRQH/C9bfkslFAYO1GcsjOUUA9GNpkPE5RQDVFMhhITFFAud7R62LjUEC/TSbyguJQQOQgOepFgFBAW00HgJuCUEBJxBHcq3tQQI6sADH4j1BAFcqzBbHcUECPyzyRdt9QQGgbuwodBlFAkwzy1yT/UEBqpLDS+WVRQNtx1GXHRVFAQE6iD/1QUUCuXWr+EwVRQNKJ2CgS71BAeEQNS977UEBnqf2P3/dQQDpbMYUQ5lBANVATE5zzUEBfXwmjwhBRQMIBz0JUPVFAbcf/vwM1UUD+5WsZvGRRQBIvYZoiqVFAe7SWxh3MUUCpzZJtH0pSQHADcxuZA1JAsELlqmfxUUA4hWlGosdRQCmS6pRZu1FA4v0ZUMSWUUCkLWKi4mVRQF3YJePynlFAW4dknnfoUUDQ+oXqfd1RQCXnZ9QZ4VFAF0AOEkERUkCCaO2QqPtRQLwP53BvJlJAd7OTggD0UUCNi5q1cwFSQMQeBT+gLlJA9aW+YJ3UUUCMHXIKAPVRQA6LRAt8wFFA3uvI6J6AUUAPFYNwuSRSQMNNq6Zl8FFAAb6kfQEAUkDlYxxVtrZRQOxJLqD9MVFANs5JtfNjUUAIliwDn5RRQBf6PQCJsFFAA7bTd9CAUUDpi5ClYVxRQPYqZMJ+uFFAPDVXpKq4UUAHLP2n/JBRQLzQXYEqnFFAVjJodysyUUC5vUqwmGJRQNmy/AgOo1FAYsuDtX2KUUChZY8wOrZRQAHsKin3xFFAhXZ6S9XbUUBTxyNEYudRQFpQR6we7VFA4NI09Dc1UkBfxVcsBFRSQPOB2pKJH1JAoRZcegYzUkC6ky11qABSQLMB25699lFAG3iT6coEUkATzLE1leJRQMpiDnCMwlFA/2YkB/coUkBSDCWMAwBSQMBUtDiMVlJAxdbLIQ4HUkCv3jyBcARSQPRbtzvC8FFA8Fde723bUUDIpkENpNRRQD6QWHeUu1FA2kLXo89lUUBJ+ZEc8dlRQOO1SCI7oVFAaw6kPj+wUUBwGzc5Ds1RQPNF3TnCYVFA70tXHog/UUBW8Yb5HTlRQEHXxPedP1FAevYz6aFQUUDKaF8SfFNRQJT05prSzFFAwhUi9r6IUUD6eOsWKX5RQIw4o4rZiVFAhbWpee7FUUDqy5G81KBRQH65KE25BlJAmHwqW9+AUkCCkUukUUJSQOo7ppWVP1JAXiYNGqH/UUCivfCEBxpSQKWCLaqWzVFATGxP21b9UUBaeZinI0tRQJexYNc1VFFAenASbGlFUUAGNdxIHH1RQDkGZaJ1hVFARJw81nlkUUAYpdCpTl1RQBcEjZxsf1FAWbaW9xqPUUBZjc2EywdRQPDOCakB+1BA35uPJbHTUEDZt3IofPhQQGpyRA98mFBAuvrvWQF/UED1+bqKFZxQQO7vsF80PVBAYOOmc2Y6UECfXZ1HtCZQQE/ad8gAAVBAmh04fUIsUEAegAaQV7BPQClBuUtqBlBABt4BPYjVT0BrhcZZfOJOQE7S7WPFrE5AEIkJ+Uf2TkAfpOHbpvFOQA2MtzxU6U5Awxcxd9KoTkCc6IWAlGpOQCjvhpOgME5AL4cwWGdrT0B6b95zIARQQFNtUGhr209AEhBEFH9UUEB0XybGTIJQQLXz4N4i1VBAN/bMa/7kUECtrSLasHZQQLB3ZFvs1lBAzEB6oMykUEC6daWGA2ZQQCkOVrd9Z1BAGHxtpJ0eUUDXD32UnGlRQIW9ukg4r1FAUcygRJiDUUAM6LHgFAhRQAnYS0ulAVFARKiocf0ZUUAt8457/sZQQJnr51C2TVFAWBVs81QgUUCU+s63LhtRQG8LumInElFAxSw3D6AFUUAV30i8IDVRQGJJn+pc1lBAwhia++j4UEDjuIR10apQQJfIBoBXuVBALnt8qwrrUED6OZViizVRQJUDfZgSOlFAjgA1KJxIUUCN3ZTg2vNQQNFuQ19L9lBAv0kPaXjJUEC0eelk5bBQQFQXJuuL4lBA2TpBFZ43UUBkvKH5Qj1RQLGz0dvfAVFA79s56LEhUUCf1oXWAA1RQPidW+5U1VBAWMJ82XfTUECzjpouUcRQQGuSqRsxslBATvsXhytrUED9vF0ctkVQQJnujzPNt1BAE7ErolxeUECkF+25AZ9PQCXemb7OgU9A3u3g6d5zT0A6hVX1pRJPQENFxLWajk5AiEWKI+HKTkDD5OQVrLJNQDkZOJ6X+01AJ+ziPCbpTUBvVhFBNN5NQKRjMKHPz01Ac7ZMguIiTkBNg+noadxNQH0OpUWfpk1Aq8NPMuTSTEDVb1Z7HNVMQKr2QyZ38ExAhQct6ANgTUAY8g8ZS/VMQNauOGHe1k1A8/3VwKKXTUBWi6H51StNQECVGvUXGE5AQApn0xaDTkC8+m5YR1ROQMKlARHr5E1A+TJeotMwTkA8VLMU/OtNQEoIZktt0k1AgPCSqEPYTkB8FQyqo1lOQHdCMEDbbU5AFX/va/iMTUBnXWJuQv5NQNAayChPgU1Ax9eMNeAfTkDhauw+KFpOQIhLoedGnk1AB8LGDWSzTUAT98nm+epNQDoroBwL2U1A119TxmoPTUCeIeqhgStNQEExh4NqyUxAIYxiXEgvTUCoBOoeUWlNQL1WT1nkrkxAetxsUmeCTUDAlc0k1jBNQJkLQmqb6ExA8r3yO2bITEB5BcfLhclMQHB/6ixGT0xA3G5GXBhjTUDLhPAgyl9NQF/JZ12JvU1AOWMinN+tTUBhNGr2YsZNQGGnhW8MTk5AUxcBSwP6TUCzgGcBKkpOQK6xs60KEE9A9c4JLZ/8TkDR+K79hD9OQFQ7WScy1kxAlV+NuJgcTUA6q0jgM5tMQNB0KNvopUxA3T2Kf4t0TEBKGG6k9HJMQF3d52iAs0xASiqjFjxfTED+0t3ZSS9NQAV1tlWK8UxAq5r5RpkGTUAAKlq5AmpMQOP46RiGlkxAKku+k2dxTEDBTxP+o1FMQC9/0ndW2ExAMmDkdfc4TUCiPh2n8qJMQF/13y75kUxAHHyJJsKqTUAXtbHzTy1NQJ2nqaPMK01A510QbTZrTUBFrba9EGRNQMPenBelE05ABx4hqdxATUAwJzzN3hhOQBZaoouM301A0v+ng4q5TkC9dfLiIxdOQG/WpkjIlE5AZiFpe66iTkAAldOmg85NQBs96BYxSU1A9vAzTaeQTECvYcVnI9hMQG9s3yWQnU1AyHERoUrtTEBjyjff9gdNQAhankSkn0xAaDwAgs6fTEAJlb8EnqVNQPxSuNT95ExAhIMdCvmzTEAddIGORg9NQJLCrExWBUxApt/EOKxKTEAVOuqSPoxNQEYU7uZdXk1AhVKGmDnwTEBCohR3HmVNQDO1ULxaKE5AvHQ9lB2RTUBXDY/0buZNQJ65/j2+k01AM6PsV1LeTUBZHanYbZpNQAn0GHnW4E1A2ya3m6AUTUB0dG2dMiJNQJfl9AHY6U1AOImnI8AWTkBBaeAnncBOQGm/xxoJIE9AlFmWEm1yT0DBiSO2CD5PQMKyFULFaE9ASzJyp9uDT0AnFUWd9wdPQM/H2mf2EU9AOlTamtEAT0CgW2W/jZFOQMXykfrNNE9A60YOQ9FJTkAMOOJHzehNQNiZNjmtlU5AdXIIISNqTkBO98fRW+xNQIak0Sbo4k1ANOtcDV1qTUA/yF3L8nBNQHhGbvHeT05Adpbl78RQTkCfUMQucWtPQMhXLAsBOVBAgF98HwlSUEBAuLdQhaJQQKIPPz2ot1BAbWFRMZqAUEAaUw4vp4pQQIWFsLMDvVBAi/ddLhNGUUDX0En71GxRQNU+xQrOPFFA2+jSWMxhUUCNjm8dGztRQIEXH+D9/FBAKVMJvWroUEAtpiOvSLlQQFglcTdGHFFATbHyE4JkUUCSShvQZJ5RQNhFC4Oi01FAb7Va5sE+UkAt2BJ+YU9SQPuGugGs/VFAz+SJHQEvUkBRWkVmFdRRQDY3SbW7e1FAUIbrQXN8UUCzTDMyEwRRQHv+yz2+XVFAdd1P0dVEUUDs1E+sO/5QQFQMXX0NDFFA7ySsXwuhUUAbS7tlV31RQEJimw36LFFAHmQu/BJgUUBRagifm2FRQH9kyx7El1FAwZ4KVgUqUUCBXOa+70tRQA81akIXrVFAnU8iT7YNUkBhSwMqigFSQApTXNXn9lFA4U/Bc6bqUUBtv31LbdpRQHmvcDGQCFJAL5AwX5HvUUBJhB72h/FRQBwx9RqYfFFA67wbVdu7UUDPaUV0cARSQDSmcZEH7FFAgnMCyRinUUD7+2x1j8NRQCR+olKty1FAUIz0y+i2UUDsDOJSmJRRQIc8kEPtiVFAKic8YezNUUDGWxuOYf9RQK/qwwCUNlJARjmdFiwGUkB79pzfTflRQNlAzvWt+VFA0qVDn7LsUUB3MakM1OVRQIg9E4q041FAyhcOrQcIUkDCLnAYgDBSQITorTkcy1FA0G7CCgYdUkAorCFefstSQJG98kcZe1JA4F9pOQJLUkBPw+e9CRRSQAu6vsnQ+VFAJCWnL81iUUARFhABDbxRQMgLHN4jqFFA783o57leUUB/6nrm2g9RQI4/az8xSlFAgzrfL1UmUUCws3UT7gJRQAACbS3B4VBAzlOymGfVUEAC0kBPi/dQQJb6DjVFOFFAsrXmuGZGUUDxFmAcIttQQIDEjn3Q/FBAD8QKy7lFUUDcjWeTswxRQP0lxWqEmlBA/B4fWi7FUEBop+mz56hQQAmi+dNf6lBA82lHp6aNUEBXqb5YsWBQQGUsmDA3jFBAO3qj5L2NUEC295KtIGNQQIE2eSC/nVBA0bKAHx/1UEBZZIjdhNFQQB0x+LQ4UlBAwcz7E9TSUEBGj0TeG8BQQBetwkL4rVBAxMqFWPbhT0AVlcfysjtPQNnJQPnY+U5ABvCE/cGGT0DTCIOp2qVPQIRjalATYE9ApHBZskzqTkAcIihlhlxPQBcsfBAjC09AA3w9GLdWTkAfWvmaqKBNQJ65uPZHyk1ATf3ZWLwxTkCtNEBlcj9OQOX1FVss901Air5q0VfkTUC3YDQ2jyxNQL5CRk7moE1AQuyHjfV8TEB2AC5CCxtMQIKFEOeO/0tAwMXxAtW7S0ApjzyBtoFMQFvg6mMcoUxAPlZYFtkKTEC21uf+B61LQHHXVulYVEtA2VE3rWerSkCqmZ1X5wBLQFJogcMztUpAbqoHOpelSkAY0taRPkNLQKC6ZBT0KEtAlqqxZzCqS0BgrtbksIFLQHa02CVKsktAk2mramp/S0BcC5H5lkxLQHtjif+SGUtAuVC5QqP5SkCs5I3KwhNLQOfy8141/EpAJ4J/80ebSkC/tyCwYaZKQK0iPoTN5UpAKEtOglaZS0BlgScugslLQPJvjXhibUtA3AERT56CSkD9qNwrXlNKQA168DUPyEpA9bDMzIEyS0CPwwFjdR5LQACNiNTMOUtAa+o0TeuFS0B8KpMCrwtMQGY69j4vJ0xARbmt8DwHTEBhboQ5uyBMQBUXrXn6R0tAwAGlUzU7S0AzK7AeuJZKQIHBSN0Lm0pAEs7yQFOjSkB4cJC7+IpKQLlxcsvkOEtASRDI2kW1SkBcv9nMl7BKQOLkPlLg60pAWexKo8toS0CjuQjWtYFLQP33cCjiFktA9u1Ao8S2SkB2JpTQbqFKQFowNxhq/kpAsAIWyF2MSkBAlxCCFo1KQNfVKw/cD0pAaHbvDQJvSUA6JdP8RgpKQOAUK2OIUUpAzwWqFEUDSkBlXkVue9BJQFrfsQ6KHkpAhvrEoBvjSkBAfpOkPPJKQNRf9ZSemEpA4R2GnFZiSkBE5jwUBcpKQLK9DHzSnEpAQ7sDkSWVSkC8iX1WHPNKQL70WHuDTEtAg0CfPjUIS0D7R/KnOTVKQLvuNH8WFkpAdcdKp97CSUDeSdB5hrdJQEuCqmAnrUlAey21xRWhSUBMGYUFnR1JQIW+uaV8IUlAF0yHJSCsSEB/q4thRUBJQJRkmzJLiklAEJthhV0VSUA0hiI6rXlJQCZo7PTkzklA6n9kS5IqSkC232c5zE9KQMCenbN550lASp+5IuqQSUAiQf5+NoZJQDsKxGX6fEpAO6P1fgeNSkAYO0SD69xKQEyeKe+xBktAROLJBNpeS0BBIGzWitdLQBUw+bTYJUxAa2fH18wvTEBvkwdIcP1LQItFUevOM0xArNeXlPCoS0AKGWKH0QlLQNWC/lQfEktA4XiEi6FAS0DRlJ/EYwxKQK7e10JjYEpAm4D9D2tbSkCg7wXwTUlJQDZ08tH3iEpAnF7sQx7JSEACXf5AQq9IQGbNVnWYGUlAX6MyZj0wSUAtkbdt2ZpJQBdTHmeApUhAA1YyJVoSSUBR9htuco9JQMZ843/1kklACN6ridO3SUB1xByvuldKQMbeoebhDktAF2n3vg4eSkAak9G/JVpKQGgWdAPppkpAT/GEJwerSkBfhISrr3RLQCJrWczwF0tAhQ0ss5JxS0Bi0nFw9uVKQOsJuItb5EpAn2ib9VJjS0D/NzHs/qBLQJg5L4+X5UtAfDbchdVtS0BBYfw3u+9KQFXN6RTy6UpAyeGvBEisSkB1j80OqGRKQE2Y5wEC0UlAfih0E3zbSUAy8awBmFVKQGHonwkyqUpAv+hIVYsgS0Akp0Bo4V1LQHftkq6yJUxAt2fjcmV/S0CF+gKyp/lKQFchxJ1OykpAez5KRz95SkAtchDD6SdKQJdDW50sNUpAaOXr6TgNSkCo8TZRhMFKQOreezHLTktAxtwXYayTS0BdTQaiIN9MQLM3+w0N7ExAms16N5TaTEADasJ7gHZNQJeO6nlWDU5ADMfxkwDiTEAThIAVXbBMQDpfDhzTH0xAaZdYlBjrS0A15BY6NL9LQOBaz6ORb0xAErjrWijBTEBo8Hi3n7RMQJcfuzoIdUxA3qhbfEFPTEDiof+IO7lMQDecQt5Y5kxAWvL89rF2TEAoWaW50pRNQBwDAl+yoU1ABpEt49G3TEA7Nb3qSZJMQBuIxqzZnExArQw6L0mZTUBF1IP3gU1NQCpxvBvp/ExA8x9NrLxNTECCRjkZUexMQA4m469n4kxAGtu84U3qTEC8Mh+F+udMQNEzZx0Z/0xA05JjsQ1ITUBRnkFTprBNQBrIkt+JR01Aevp20zEeTUDY37S8K2tNQBIgqiZbOk1AnffGuBCxTEDUVTcV+8pMQO9YNWWmWkxA03/om72rS0AI7AUXy/VLQG+vNm9duEtAVImElMDmS0DikJHDgZpLQCHW0hEI3EpAs6HDw2w8SkDHwZpa/nZKQIQDh5afCEtAerW2tzF/SkBz3AnvM05KQFHVNH8d7ElACEdgS/VzSUCloi/fVphJQNV79cPFvklAGy+IVELjSkDjViqOPHdKQBGoux01G0pAxtszWvaiSUAZv/aerb5IQHQs+aWmnEhANFoSULPFSEDaWTa4OY1JQKo2fxgjGklAnLUHsaDPSUDeEK7gb0RJQGMaIxo/vElAu1lolVYlSUD/8cFln85IQILWclOunElAiy3AY4mgSUDfcuQA98dJQO039h96CUpAopKAqz5dSUAlOfGClLBJQAZ17/8q/0lAaazej3plSkAoWCd30/VKQG+x3Kmm3EpAuQyQIcFjS0BlE21Vpe5KQE6IBUVtMEpAhllJobqwSkAfxFRT3ONKQGZd5YnxGktAzKd8BtNkSkB10htxsHRKQB1cCGUSHEpAGr+fLSu3SkAbg5BAB8JKQFP+pOkIzUpAveBLEFqjS0DE7ZdkH25LQLemYk919EpAKkxVsWYjS0DSuybt8f1KQLUmsy01RkpAmfL2pd5ISkB6OcKlSKhKQCGZ3isJxkpAl6XOnXReS0BTQD2tlXRLQJfCwvrkE0xADtXUHanmS0C97gtrfuZLQDIcTTV6M0xAyyISenUkTECVoUxk4vRLQNqF3aMZiktAVRR5pdG/S0CriP4UCaJLQHSsxs1fLktAANixRz9dS0CVXNvdfihLQO+uuJRJEUtA3WB7mL+cS0AyL9JXMFJMQPNxsnAuJUxA9KupQ7BbTUApCz5Hzc5NQDF/necavU1AAXTaQy9/TUBcg3kvE39NQKQio/4Hm01AjrjF03tjTUDmJ0qiCDhNQAfs5gPNUE1AgTAcgzNrTEC/ejtXflBMQMqO8l66mUxAEE+4hrlvTEDTa9Mi/ItLQOQa4jZlJktAimAtTBtHS0DzU4YBH0FLQOv1nBukT0tAul7lTlszS0C8NDzTyZlKQGgzWg0EB0tAf9vGejxcS0AOfsA4XfNLQHIeANkyaExAuJsN96N3TEClh91hXpVMQC0CSX6YwExAfsD2nrakTEC2ryREIchMQKm2TIVTVE1APMsClKY+TUBNEuju8ClNQHplQfrwg0xAebVx1PpoTEDQma4WuDBMQDlI2l/6EkxA5JDIYiX2S0AvYoyffl1MQGKf8OA50UtAcvR0ydmbS0Doub1Y+ktLQLeV1jc4+kpAxmk4ipJrS0Br7tDfrWxMQNssWu2PBE1AA+o8mrvdTEDKEQ2AeAJNQIIw8TPqQ01ADKceMcOVTUDk2cQu33pNQJbO15Xzkk1ADdFfA1NUTUBVqIdWOn9NQI+oc3cf701AwnhvUoiSTkDS7t8iyDtOQMHYBH7hbU1Ah6mZ4LHoTEApDL9ckmZOQCvyFaBtgE5A6ChfcOgXTkDXOWOWtQpOQFEjvN5Hs01Ar6kbPwsfTUB8FoYBHMlMQJ3v2Qxt4UxA1VSVIemvTUAqwso8ysxNQMH1tld/HE1A57if5PFKTEDCfc9Ii1dMQOZOfFnCAExACD7iQVasS0AJdn57n+FKQJVjG+n6gUtAZ6B4s7d4S0AuZMkMRIRLQMtHELxLxktAQwc8jVrqS0C5nmaYPRFLQPfzdq+qnEtAe/tpzFGnS0D9RyJtIHdLQHkhuwFAfUtAGqEs5YeFS0BLx7eJKYJLQF2XZoJHUEtAEM+9GnO8S0AEDxAn7AhLQKyaGmcM2kpAyy8GJFdzSkAhUnOL/rVKQClRUb3owEpAFN/3itfwSkDXNeHhBadKQNwMwUH+pElAr4IIxPX9SEAPIJ62Dd5IQF0exPXGSUlAXN0Yg4giSkBzZ6Wwvi5KQIOZqbgiz0pAx7B4rP+ISkB86kPsKlZKQDpBSlyekEpA+0FbbMLRSkADpNAVHPZKQE558mrJZUpAXNJbvxGkSkBxr4+PIuRKQI+6nN0X/UpAhYjEILTKSkB8Tj9J3aNLQEgCiT0RIUxAetFyAuwVTUBwOnwaEoNNQLKZ6aG7Nk1ARyz6sTD9TEAIKxwhexhMQF1vfl63D0xAVm3qoL+cS0BtazZ+hzNLQJyN4Y7yQUtA0ByXbFYyTEBfIxWroNhLQCRzsVp/TkxAMryV/3MoTEBNUTmq9pZMQFpepAPv6kxAIqqU+Ts9TEC6knOKNUtMQBJAYhnF8kxASps6r4d1TEDvoq01AE1MQMEPVfzrDUxATZn4nqT/TECm5WdHzKdMQAwmIpLUzUxAhHKUH0R+TEDByb4vRuZMQLCP0SFirk1Ab7bfWHg7TUD8vSzMlytNQJ5/TqrxVExAvjH54mn1S0B0ZF0mmNZLQLdiv0b5AUxAMzlxMt24TEDA9grFmcZMQAAEFInca0xAbPHHITWJTECnqo33JbhMQNCYGY5rzkxAfz7SG56UTEAtCVS5wPZLQNky/OkRrEtAVEyhkP1wS0APCxrYdXtLQKPmlKw0kExAm1AIfN7+TEBvX9t2ZGtNQNUi7AspyUxA6KAC8AzbTEBequWaksNMQLyB821rT01A8ht5p3k0TUBMG80QS+FNQLpeK1e9Dk5ASzc93jFrTUCR1VsmH6xNQIvi1zk9i01ASocnBsBtTUCXopGAqEhNQH7fme978E1AuH26JJuHTUBVKpV4RANOQF53UCxSTE1Au7BeoF9zTUBGlbA7P85NQOyjY1rSY05A8hn9OZ/2TUCa8nqLmHRNQDJ2WSOO+01Au1ZrUZetTUCbvfnfecRNQCe3cGcdxE1AHsWGSwyuTUBUqKPKwEpNQCWE9AwkZ01AnQz0r9WuTECiwD6fJ4lNQEKmv2bOJE1AdORnRyPHTUBcwxPXJ/NMQJ01GWqALU1AGhHaKy0XTUCwphzUVL5MQF8YTRNHIkxAo5EROeG7S0Dwgj6UxSZMQNxwP3vnkUxAgAgc/gfJTEC2k1uyhSxOQCOP6eM37U5ANu8dl153T0B42g+ckbtPQAPzybHt409AJCtEdjtIUEAYfybuNBVQQESSwR9wAlBA0MYfvdvUT0DA8rcgT9NPQOduhTafFFBAFufA7iEQUEABrGDbux9QQEx2nL8MalBAm6RgSwHbUECfuTp4kn9QQLvSCyhublBAP2VvVWZVUEDsGeVUPGhQQDzfOYWcbFBA/y7dXeFdUEDZh5n0TFdQQCSb5drUflBA10aP5vNOUEC0kzmt2CxQQHV3KAUAx1BAbYMW9ARsUUAULGB+mTVRQPpLnIsOfVFAjP3o/ixlUUAKMD3Xeh5RQEvSfTRJq1FAyvLJ/BqoUUD9D+qC615RQNZ07Y8rjlFAihLtuBWEUUBnOhXtgo5RQM1AmDCbQlFAocuwN0RPUUCjKC5e9h9RQFBezekLElFAnW/yk8x8UUAHA5TqkcxRQGNc2GD6L1JAA4R/l176UUAYDuSY+dBRQB7jQrzeIFJAbt1JWjz7UUAatXkWgkBSQP81hJHXIVJAfQWPco1pUkD8MFn58l5SQBZLvYNTOlJAHOHIJxWqUUC0KewJQVxSQGdgUWLJdFJAO6hb1ApvUkCDq1GHkRNSQB8689lgnVFAId8CKO/FUUBaXpFgKcFRQKRZD9tn21FAIK3cUoEVUkDgFDDcchlSQI/TfPyE4lFA0NgvgYwpUkDTIifmiXVSQIsq3/c0SlJA+s4xkyIwUkAdtwBNY4lSQF1ktJcWRVJAFDm0xGqMUkDYZtAOp8tSQIiPKX7hxVJArbm+ScPlUkA3Juue0zJTQHIIVdjDbVNA5R1R+fZ0U0DMx359F7RSQIeQvG1gpVJA0Gcs1HyOUkAUQN6JShJTQNj/pS0KfFNAax6mMY56U0CE6FIXQ61TQP++AsQwd1NAUanp7X7DU0CzILNEF9VTQIN8BIabMVNAk1xznSsWU0CtEQQLlFtTQOJo2duBDVNAOn+yYbk3U0D3iPib7OFSQK57Toqm81JAAtbXmPMcU0BvwLqoM/VSQAqoGPed6VJAn6SdkPTbUkCipu2XqBRTQJlSL8WLFlNAoK7cnjYRU0Bnn4QOdQNTQMHLy4RQA1NA3jZCJ2cMU0ACdNGIzgJTQCEs1FvWy1JAamhQQkDtUkBtzC6OXOZSQDAFYacksVJAm3nxcwnKUkBhvm9xINNSQH7bSAj4wVJAbKL5Bi6XUkAB5MbO6mpSQNtBS8ZJR1JAu0FV7nIoUkBfbeSUj1JSQGSQaBGkH1JAh8hkM9blUUDXFD+My59RQHblhq2OoVFAxIRZcm0/UUDLhL9RO0tRQM0mxlKTLFFAUDa7+59zUUANMGfXyJtRQN7KkBh641FAhSakoQUnUkDQcLk+wjpSQLC51hVD9lFAoss64gnKUUAW+d/WKaZRQM52XX3Y6lFA0CzOOzspUkAWURcLfnhSQA/jtErMhVJA3/G+qlhLUkCKRrTEXwRSQJk2ubXOFFJAlezpmtXmUUDjqomi2qxRQAnkkjjfU1FABEvYdaU8UUBaM+K3mWtRQFi5uT0YdVFAx3JK2bttUUDHmtzP9J1RQE++jscKW1FA3iFgXA6nUUDsquWjVZFRQKNQgXNKNFJAtWLojhUxUkApGmQihR5SQMZzqJyCUlJAriAUIOdPUkCHLHBDp/tRQALFSxkeI1JAIARDhQ0nUkDnTWAdky1SQB/HiEmtv1FA8FzndC/LUUDG5/Xma61RQHdko88OmVFAqWqSFj2PUUDb9C54dWNRQAAy9+sk5VFAP4oYle/5UUANu6YWLYhRQNUMLz9ks1FAxz73nnd3UUBPcfjDmlZRQOrPky/2PlFAEawwJcIgUUAx0TkNvElRQE+viJWZ8lBAg6hIxa4EUUCI6DdL1/BQQHYcdkFHwVBAtnreGL8kUUAHrwu1dndRQEGCAdPlo1FAFTWYm3yXUUAwJmowy4pRQBlXIQO98FFAiYZndQD9UUBUgamK6BFSQHVwUYMJgVFAmdXdy8WsUUCT0YNCbcBRQBdLwZtec1FAKEcPU4J7UUAKdNp+0DlRQHtDRKJCEVFATslZolcuUUANNSu/3RlRQBpvFxFI+lBAg/IrgQnpUEAKggPDm9NQQATi+0W72VBAFaiAamqoUECwA8aUHplQQAjILksaZFBATcVqpUpTUEANPZ5rLHFQQMg3KTbzQVBAxs+MG7t2UEA0gMCAwXdQQBHP0ClpX1BAWfHTpjhNUECuLFYMyVhQQNam0yhyQFBAVBDQSg5rUED9JxucYmBQQKK/1alSOVBAHFd44UJ6UEAveLFfjGBQQJxL8upTiFBARUXnD50cUUAtKAqbOCtRQAFBOZ9YKFFAP10K7QpdUUBLDLpn7WhRQMOK3AsVMVFA1OJMJjYPUUB7Z7W69PVQQFBPJ2rvGVFAxYBVwz9VUUAGXqYKXV9RQLfXzqKFLFFAgLHD5pxaUUB0klfc9t9RQF7hnNtU+FFA3iwBrobVUUAgrosQ5udRQBcvkKsD8VFAGNQ84Q3SUUA3cXMnW+pRQFsG0OsDMlJAJ8K7F2nfUUBv/+lHwylSQJ98OEN/dFJAx4rKggnWUUCBYAcjK5lRQChuN/uZ1lFAlX7o3HCDUUCWEDIkos1RQD3dc5SiyFFA/msqGtDLUUCtlaUGRx1SQAnMKb1UBFJASbYKc5otUkDufveRxPtRQBryayIS+VFApImtpx0CUkB80Z+4/lBSQCmMNDriE1JAUnO4Dpp/UUA/cd4YuoBRQDbnIIxAm1FA+YcwM0G9UUBb+YEZIf5RQKQh+NTOJ1JAA7/uDJsNUkC7DcVMhpNSQOS1gtNbb1JAFPvl9sR7UkB+IXbTXXZSQMwdCpuLulJAk2J9il2rUkCXxYSyUnhSQCRJQX8+b1JAMNbNFCo8UkCZVZOW/75SQLe33ZGbcFJAf/KcQeBJUkAUlfyMjhRSQGBsDYUMC1JAg2TERDJLUkCpO/V/jR1SQBUP8N3+IFJApa2BQ6pMUkDkfkOYpXNSQLlhFmKwXFJACIvqIYV2UkCoPykp5H1SQN4V3CnDQlJAu5biK72TUkAYcbZZWNVSQHmBL88F+lJA41hvoebsUkBjlkOTWg5TQAsEISom7FJAZ5HXDB63UkAXk6UursxSQLAeCWcxwlJAiM4yQvzCUkDGbTDqPYdSQLy1x9aQWlJA4vZ6WZ08UkACPpgRz0ZSQHep3t66eFJAPtwV7B0CU0CaJC0r+35SQDki9TgXZ1JAmjE59smgUkA63IJbs/5SQIYIm80xm1NA4FEnbxeeU0BiboVPA9dTQIkGECZ8ylNAumZxKa+cU0ASXOsnUKpTQJDDAH10uFNAdMPl00TcU0CJVIbQoSdUQJG3ZGGlP1RABrQO7VCbVEDYhKK4nH1UQONUJ232WlRAd27+U0btU0D+ThzUqBRUQA3fh9247VNAiGRi3uuRU0DbfwEjs+dTQLkXeQM5lVNA1hyC50i+U0Bu1JRvF8BTQDZqCrgiNVNAOrY+pzMTU0AHqIb/SbxSQJPMaJoD1VJAqAy0oSbTUkDX3o2nMyRTQJMIeMeSAFNA1Ommx5UVU0D6BV0E8nRTQOGlJkY6GFNALHhzRkYpU0CwyFZEWYFTQB6nPtdcgVNA549Piat9U0A+OnpV1tJTQJv7ktv01lNApbIyBItnU0CHYPHlZopTQPIzM8iWJVNAAk/LMYctU0C+LCuUjAJTQD2V7j2KDFNAhb89ZOz2UkA+yAg0jlZTQJf5vQlyRlNApTsMcp1qU0BFrQse9oxTQKCC1N6odFNA0/0urGtbU0CXy85Q3mhTQBhTTopaiVNAuVm18JljU0DC7arks9tTQEUrHYMnwVNAWNO3syAbVEBZkpuRQ+ZTQF1oKAH2plNAQBe8DpuGU0CG6JVwRAhTQPOWkfanFlNADfR77JsdU0CsDUovu91SQPVpxGY1JVNASnBdiGQDU0DK97qVDOlSQISYYfzl21JAlYfXrpzoUkDVG29l/vtSQPtjW2o8CVNACi4UQMHcUkCfKneY7dpSQGi6x3OaElNAAb7NEpTuUkBDUoHKObNSQMLwMd4X9FJAajTc+fwBU0DMY/4UoMBSQEWQWwrg1lJAMElk8DUgU0CxF7D2UEJTQGjp4ao9QVNAcZ8evI2GU0AKcx/IA2NTQPSXyq7jN1NAXxk1Cv/jUkD8FRc4SuhSQM7eHsF71lJA8R0rhLAEU0DL8j45JHdTQDU4JTLtR1NA+f0v+sIgU0C94GCexHlTQOcO+/l6fVNAPoNbWkmsU0CdN1parTdUQNTTng8YH1RAR2EChF9NVEAmYcZRk0FUQMUE31lZKlRA+jiiORdhVEDXnslkRCtUQIzqqS2361NAhwOuMuoGVEDkaDPXS1lUQLsuU6+uXlRAD40+6Zx+VEBcLZ4E9JZUQA5EZjSnWlRAlSDjNtE6VEDsh0rCV2FUQNFOcKvBhVRA6HcfAghOVEAReZOgIPRTQMS0dJoPJVRAP/GTncXqU0ASFxB2Ef9TQPfq9+VC8VNAkBV8AMm7U0CRW6k0x4VTQImKxGTAjlNAFJMusdRfU0Ao9Rh7wgpTQLgKaxBF2FJAXg/shm5nU0C/wPei8txTQOKuh9yeLVRAX2+cLyyOVECFl9Cefn9UQItbI9BfiVRA/szvqjfWVEBbsOnu/p1UQP0wXL5Gh1RA/wdjfUm9VEDnFpJtHApVQMrBMVIpC1VAEMIOhojmVEDqEFDWjOZUQGvsTGkLFFVAPj9D+WEuVUCGgX1Q9qVUQO5ckVtpwVRAWzshe+q7VEBH01u1etBUQOEQiJsC4lRAgIVhQ+5tVEAog8Wkij5UQD5PIxW8ilRADSD4lNN6VEAam7CMLQNUQGhbWwQ79VNAJ498eczLU0DD+a/fGOJTQH9ESHre+FNAVEkorSMSVEA30pFXrTdUQLTtSkea11NABKmljlqvU0CkmpQmjaJTQF8UfdJv8VNAaaRb9+DgU0C9YQ3LrypUQEdDQKt+PFRAOJhWLCmPVEA1PSGBjXVUQJcPSb1uUVRAkoz59p0LVEBEL6ans89TQDGsrxf6MlRALSVhufkeVEAi4DBe2FBUQJS4FSbLX1RALwYDBNzJVEDxKG1oHPtUQO6GbKuCvlRAU90qfLu3VEB5o+0pAPdUQPS3umxpFlVAaAkNgb04VUDz3e4WCKhUQA/id/VpxFRAq/2rSjn5VEDyW4cquJ1UQO4SXuHR11RAfJsvcD7vVECakeeK4P5UQB2J9sk95FRAfcPDKEW/VED3NsAh0LhUQLucrBIzZlRAoMCSjmvvU0BV0PyD1dpTQCJ61Ft/RlRAZvngSrDKVEDHBg1s6ZVUQE1JwDZAC1VA68qJhAn9VEBD6VIUOLtUQOsoIi3q/lNAl7xqRiQFVEBBCzE5KIRUQPo8dtCh1lRA7dOuhzUVVUDO91UJaf5UQO2amzEENFVAucKb7I87VUCBRjxRpg5VQDwynWxNs1RA+djR5pqzVEDMo71g3aJUQI9tUic8wlRABh1rv9r+VEBreZgas1BVQM57j8nM+lRACRlS5nrjVEAwGdOJ+TdVQO6twCqe+1RAXh+AyEH7VEBuGZnR/bpUQKNOebvgB1VAhWnOoqD7VEALlCoz17VUQJs3VHvq6lRAs5CnyfXqVEB2e3iGCrxUQN0OaKjo4FRAjvantd5VVEBhDpny00ZUQP2AXob+f1RAuYzarat0VECF+ZFrWGNUQKne6AHOn1RAsw3nYiHRVEBoOiBGvOlUQKX6FgDU61RABZs7cJbhVEDbkTADVMNUQOvvmqoM/FRAlz7CB6QdVUD18iJdNbdUQKg8BjM9rVRAWOhXaZD7VEAVSidNWYFUQGPujY0cPlRAr8VRe8gyVEC39PQt1ZRUQDQDfhaR2lRAe3K9LvLuVECqwa73/tdUQDsq2VE1dlRAVWb7VbCiVEDKN2c/j5RUQGmuV/Zg2FRAaPzYmrbjVEDeboGG4UVVQBtJu2u9tVVA8mNZVf7VVUBKkkToCslVQOW/ryEcCVZAjcEQroaBVUD5Q7SmrXlVQHnmor/hh1VAUebUD5N8VUDfJumeREJVQN9Fs3hnGVVATc90VSLLVUAy0P5+frBVQFzrEdtIoFVAl5fywo57VUDDRn15GLRVQMakkHq651VAFiW/CbeiVUD/Q+MQGCdVQIP8lN58blVANnm3wYGLVUCiSPwqErJVQPjIZywA5VVAeNzCWuLOVUADJKQwHqRVQGHGzSbB7VRA5ZhVhujFVEAD0N1Cv5RUQKHqU7io51RARVDxYwIzVEBShvC6kZZUQK3crLRBWFRAtVUBZrk4VEC0tx8Q3BlUQP7X+HIvQ1RApVc4p0rsU0AY/pjF78NTQLmkeZaf8lNAlRgDr/VEVEDZdZe/nRlUQG89WRTJElRAhMnWtC3LU0CF09rUtbBTQFHi4uUpk1NAKAquH5l+U0BODBG1591TQBwkTsHVuVNAMRctJ2UDVED3+oU3zNFTQCGdkUbbmVNA0SdSeJxiU0ABMfQuOvdTQI5yExuZ1VNA8IrGwIb0U0C3/2B7IRNUQNgc0tpeBFRAJ3Kb0UdAVECPtiyH+6JUQHW0XESxe1RA37jOIByxVEAvwhca4NVUQIFidSwnBFVAml9dU/QyVUDQInssUvJUQI5E2yEw0FRACLMODcjBVED2j+JOceJUQMztPxGw21RAEVv3BATIVEBTf8EdxsRUQGBw+kVv41RAv809TQ7xVEDnicTSfC5VQOSq3jlPo1RAOoRdKLPhVED2NbrSGdBUQD08h2yH01RAsqB37BKmVUC7xADg+OtVQFL5BRLrJlZA/ep60MPXVUB3KKJu5tBVQK+QO/WQllVAqgnXL4xXVUCghoMpaoRVQEbcgfa3j1VATDNblCEPVkDIraHKbSBWQGWrj+tmMlZA3VBhsYI3VkCsVBMom4JWQPGE1oPok1ZAZIBDdT6ZVkBnFEFetqFWQLFvFIzw81ZA0FloaKygVkDZ0OiVQWBWQOZwKHNGUlZA6jZIBpWeVkB1HxPQ9yRXQIVP9d1rDldAn24TNvLRVkBEYs5KH+ZWQMewBIxf/VZAMpmGmrE1V0B/JDxCc8JWQFJs/ysLAVdAogQn/OsAV0D2pQnz9aVWQN5Z5RN0QVZAYbD9ebzyVUDnoKIztpZWQEutHUvHhlZAXLsxK4dfVkADESUG8VlWQEYI0XFK4VZAKQQcwhKtVkBZeJgNdG1WQBUBQEtCoVZAut5TdrOZVkBfvv8gP7RWQMe6yC0MBldArzh1P7ZsV0BS09XZrTZXQKksO+IIVVdAZucSN1zbV0Av/mQgIClYQKg5Fb5sO1hA0gheTGoVWEBhr+7MBopYQBfDlqQW6VhABFhVU7PYWEBP7zQcsFVYQIGVdDb3UFhAhAaOft4lWEAjILTbZaJYQI8gTlNgkFhAAX0Owt59WECU+A3ceJFYQK9eLs4D/FhAyrrS/pbmWEC+wselHdpYQLMea+5v+VhAoL4kzFUXWUB41cgllS5ZQDS8Ixa0yVhA6JfuY2pRWECPBqM1NodYQAp1VtrtJlhAqK7Ov38jWECiC5+mRUJYQJ95iFfGfFhA6F6uMzIOWUAR7fZKk+xYQNSNjPapMVlADxFSugZqWUCw/f/4RExZQNBSbzHwmllAZon9r6JuWUCh5M+5NHlZQO8pZIX5pFlAqH9kriDDWUBrJqV2Ao9ZQO/vk7wu7llA55/XX8oqWkDujmGdpp1ZQIXfI4xunllAzyp/zNFdWUACcT4Y7uVYQPN0Cubj/VhAr9ibhV96WEBHp9B7cYZYQEq5aI1/TlhA/4oCFGFjWEDlKE8vgANYQNvgNc7PI1hAsSBIzVroV0Bwc5cychlYQHNFMsNNNlhABgK/wppxWEANRgQD0SJYQB54a8tXsVhAg7ATCbTPWECZDCdHNkVZQBrhjAeTR1lAUP+CTz5dWUDM7o3wFP9YQJIfFMs+l1hA1kIF/2SXWEDFlyW8qy5YQBaGlfvmh1hA59BWjZgEWUDUruXK7jpZQKZuOGaAKllAxnjbm+QMWUBze9nGavZYQKtXy3pJHVlApqF7k9AyWUBB3dSgF55YQJAh3NM0bFhAIFke/EHJWEConZqMz8JYQMbiG4ARvFhAeNBCmPx3WEA29qsz2zlYQAppJGG40ldALUZrCi+/V0DqW+P/ou1XQPFjQkfWlVdALWrjuvlTV0Bt1Xjkdo9XQJ6Q8t1daldA4FdQAn1cV0Bb2jy2hmNXQKyVl0NYbFdAwyYuq54NV0DTDIrUmU9XQPVKfGTMqVdA5q1Iy+zdV0Ag//U2TENYQLQmDy+nSlhAYu5zSsZcWECVG6UlQK1YQPxmn7TRqFhAeLeH3NuVWEA+v/tHMzlYQIvT6DZMGlhA09Vovi9eWECNl3RnVh5YQL7i9V7FAVhA88UG5oB7WEC6Mo9uz+1YQMESCmyydVhAgdi3visQWEBGAb6tfVBYQJkcm4MBaFhAQqTmCXNzWEC9nROi43xYQBC9tpCgWVhAGzFplpFVWEBMkMO3iNNYQINVJ+pg+FhA1yiOfmD4WED7tgT4tDtZQPyXxmJNL1lA8zPyexINWUDpzQpbnPZYQBkUQvSszlhANVtHmJK6WEC/OfI8XtVYQJCGwhZ7y1hABbq9kZ4UWUDIQqdfGxZZQM73Fi+eDllAj0r3nfofWUDwqE2/bx9ZQBkJ4Rfu+lhAG7wQAR/lWEB/8rHWbqtYQDRsTMh7blhANRRCOcueWEA2COOJo4lYQKDA+zQralhACGbTyiPRWEDlyOO3GYNYQA7HZez4qFhAuURxngR4WECXGMLcFFdYQHJlLLm2QVhAUN8UnGCLWEA6AxHT5INYQAbbf8vl61hAzFrW+rheWUDN9W7DhC9ZQLtKqs5YJFlAEdV42hZBWUDBS12RiEJZQAiFx7StwlhAvWLQrNMEWUATKNCJ6gRZQJna6Yn61lhAvPAGdo8UWUBm1duMUzxZQHz7MgkZwVhAixQP9j7EWEBzleb6IAdZQNm18c8wD1lAAFEJgHs3WUCbpnVMN0ZZQPAuPQetlVlACIAArLSHWUDBMUCt1LxZQJyTxHC141lAMw2JKVM3WkBTtiHLLvJZQC3VdEpUaFpApcMNb3XmWkDAykilgxNbQKcaC94xK1tAvrdoH9RfW0C95KR5vyNbQNsw3mNEZFtAWs0l4h1vW0BK99kp1N5aQGOwuS/XpVpAwrgiuPBtWkCDLoqDCWNaQEVjl7SFLlpALYLK7IltWkBmpNNDZ25aQBTCXonfSVpAYbO4lPyDWkAlU61et0BaQEZ+XvRvGVpAY0hsDb8MWkCgVgHY3ypaQGobUVnuC1pALL5oumhMWkDXJx/uqBhaQMRlhRO141pAl7CNAObmWkBz4T8CgOZaQMvV9hhFoVpAKmGyfoByWkDtQxBRD/ZZQHnRF2cqwFlAn4xMhV7NWUDe6edBzOxZQGDF4agUtllACyOyER61WUB5+nKVpLtZQGcZuy6vyVlA5f+XH1XvWUAtpDJPPc9ZQGz1Bmy4rllA5O7UDUBdWUAWI2CiDyVZQB62+/9Fr1hAF1jLnn/RWEDO4CMgwLJYQCyTqIXdOFhAZ5dZMptlWEAa0166DIFYQIfYruy5UVhA4ZJRBrKqWEBo/Hcyii5ZQNeMdonDT1lALjfvjIPvWECV8p7weUFZQKclq3AiFFlA1e5TbwFWWUAxShKugHNZQHeuAVxSallA64K2a7oQWUBCbaI1jcxYQGsMSYv+uVhAkr4PTh/+WEBmLXLx95dYQKdHgYmJI1hAUAjjTor4V0C/30zmE8dXQBqLPtv3nFdAtPxoUJjiV0DU3roSn1lYQPQ7qk4e9VdAlyyvarBsWEA+PkT4QoVYQFQJ1N4Ln1hAeJnvfa+AWEBbqqhO68hYQPGojEVJsVhAQ3W2oq+MWED9tZq0qFNYQH72nsHWjFhAKugoKO9NWEA52xlYDmhYQJAmJBLsWlhA3ES/+xUxWEDvUGfDAlJYQMBB88EqP1hA3e4oX2yTWECKePnMxRBYQOPddrRWM1hA1YoTDwTmV0BAGHiNV8dXQKRIl0afrldApOLaf/WWV0CiKDp+abNXQLZTDn3a61dAaaJLf2KeV0C7V8MbI5hXQMqigm0C6FdA1On/BPIRWEDPxzIdMGVXQIkdQ4yFNVdAJBLqQlCIV0CEt52wSh5XQF2TluTGIldAy/azAslJV0AYqIbpf2VXQDt+pO9epFdAjX/SZ5N1V0BI9KdZtp5XQJtBsk2kMVhAzy2hQjCmWECSTfBlS8lYQCFNG+6bmVhAyksAT7C0WEDrrSMXzKxYQELb8gPJ61hAFDiOFHY9WUDfODvipp5ZQNMm6Z307llAWs3B8BPdWUBarPaS7A1aQOCnbLYUGFpAucfky55VWkDU+j1afiNaQFVLtbkbP1pA55Z92jCAWkDcyMoQIo5aQEgzcNLEBFtAvWsmiTYoW0Bv774d2TtbQLDMaJKk2lpAWvQnks7oWkBQysvkifRaQJbPWvWAj1tAy9d+oHhDW0DuGwvoBJFbQPeDZQJ0u1tAxYytAZMqXEA34WXkaitcQCF567ov8FtAByoViOtKXEBg3A1X2SNcQHsqHbeP6VtAvoPpyr3LW0Bb0v6leqhbQBusEV15sltAR/PidmZyW0CcV9UKw05bQJL8QipdDFtAImGdSYeQWkCZ8LOWufxZQGqHsPC8nlpAmazPt9roWkAykK8Ue7JaQGuWKKpeWlpAqt9EDqokWkCJRVRhsnBaQM+aeRuMcVpAjlixOvxlWkC6c3TEzoRaQOUhleqnb1pAelr+Nz5/WkAvbbd2lgtbQP9zL47nGVtAAaDBt/jcWkAXhRX0SkpbQDh0uOwD8VpAm187hzzhWkAbEChZYQFbQHobUFWcSltAhqb8H6J0W0ASoQPZlzhbQDXM52muHltA7HTZcIvlWkCumhlFCBhbQGZNtKcD/VpA7djjsBheWkBzFQ5I7staQEnTMqL8vVpAS2upsNDOWkCSHGtOasxaQHb5CWN13lpAn1cPhKO+WkC6vGSYnoFaQOgW5PN9ilpAKN8uJQndWkBgQz7kAtdaQEQwc3Ek9VpAwgJZLPszW0A/dDWPnmdbQId00BEI0VtAQzt2LQ5hW0DYRqm1EVBbQHyGAieoIltAzW93PItdW0AeiaA560xbQBpDiLpiV1tAhLDT7uFJW0CC+483KrFbQFRSWFVTz1tAzBBamkFbW0Bf0kB/RGhbQKcCsZTEmVtA8Fl2gu6QW0Cfo6IKGbFbQDDDli+jeVtAM09N20d3W0BKHIp0NmVbQK/YOsKv8lpAWcKL+xnIWkB9oXcIYmRaQFjCAt4aBVpAJvXpbZ2cWUAvavaqq4tZQEw9VW9YvVlA8O86C0mxWUDawTUyxaRZQEe/UzuOlVlAEYXPYA+TWUAvsvC38yRZQIXkUw9EcFlAdauCQGhkWUD40mcdiOlZQPPtbhIQ81lASMVAw2ylWUD55qkgc1dZQAo323I4VllAgaN0ZjczWUByJvQd5vZYQIrczrdP1FhAQ4ADdayqWEAQciyKo91YQC6gGVHd/lhAbRy0S53+WECIvHWAAu1YQL7vP5V60lhAhGj0mstgWEC4/fB17UVYQIjclb30jlhABiPWWLPFWEBm5+j3P9lYQMoBbZtM81hA2CGHiZHrWEBwbmhh8upYQJ/0psXZ2FhAGlRJipJWWUD48BACI4ZZQDfPS5khUllA1SqVldFrWUBreXCOKzNZQHxL3oyud1lA1ShvI+pLWUAQP235ZZRZQNgpUUrcKllA2sYE33FFWUBdAZ4C+k1ZQLYwGwVXYVlA/wO347RcWUCHGZWuWpFZQJ2hyC92jFlAYqC/kdEiWUDdqRsk4ThZQIAMqI9UjVlAHXOaIWFOWUB9C6/80DpZQE71wXlKFVlAW0AopjSNWUD6+BeGjJlZQDZnKMQbUVlAZY9XJq2QWUBQUIE+ErZZQLU2HLN0cVlAaEglddR9WUAb4znaZXBZQGSKz5nli1lAJTU2U9NxWUCFIENDnYxZQJwigMdnNFlAB424qbkYWUBuPqYJHu1YQFeO6dLG71hAgABwTAXIWEDKvgg/oRRZQA2TvMCHulhA09biR1p2WEB3ESKaCV1YQDRUjXMlVFhA7nvFrVj5V0B4pQJ/JStYQGP7BFd6GVhAOvUamcJCWEAzWm8a3ERYQNUPbjnLhVhAMRBdq0+5WECguyj/JSxYQHdxGcZh51dA3hCCMfrzV0AUAoaBiwRYQNjAvMMh3VdACw0vA+TBV0Au+EfXUplXQOb+Et/zRldAM4jkFvJ6V0AfSdsEE05XQFzY9eLvYldAXwrmXl1iV0BV3kIOfXlXQD6Ryn7RPldAPGj5SAVRV0DMkj+po2hXQABa7GZfx1dAmcnK9CirV0DPNODvqptXQJH+yYRWkVdAafCQwPBNV0BNvE+hWzBXQOiwdKMhZldAqvh/yeK4V0AfxOC9vpZXQGrkXlkIn1dA59CDcGr2V0Bk5Yv4pjxYQIfdTd+WTVhAGu/aDfVNWEDliHEUZApYQPXOro3obVhAve1p0xEWWECyuy4WHepXQPH9EvpB71dAv5Fjh6UjWEAi6V6NUkJYQGmR1jmpUFhAP2xmZOyPWEC9/X9MJ/VXQAryrL3ROVhA1PKPX7ToV0Bc34DLs7tXQOHwCgjDlVdA447Xh318V0C3Y1eAmNBXQJSKofw9W1dAiWvwrwJyV0AvVAldWetXQGiVSArd+VdAkFDy8sXoV0AtIWg+0B1YQPdW5tbpAVhA4s1Xk2s/WEA4sojfFZxYQIytHWEaa1hANCbByIzhV0BORQ5MFBtYQKKDJ5bm41dAh0dxD5YCWEAIT0wzphRYQAEJ6mpJNVhAr9n7iDBdWEAOApu/+RRYQIlKk57XKFhAVaOubVtsWECzQ3vTiGZYQPPymqWvt1hAhcLnnFziWEC6LNOYOaBYQCeF3MTNVFhAc7MsrG4bWED/eWpBYXRYQPL6X/BCoVhAAAYliN6rWEC5EoJsillYQCjlGvSolVhAy0xyH+aDWEC+VE7zeKxYQNYWVLbzx1hAbK1GtMmnWEDGQzt9QqpYQC2N/cX3q1hAvTDGRX94WEBmMDJCJ8FYQEiG6hP0qlhAtYKi/ux6WEAerc1SLHlYQKcckPOyzlhAaZTG/cLAWECkUaboiDFZQF9cn9JgqllA6YvN9OsZWkAtEvl9i+VZQAn8NYCwOFpAWadgFO0JWkDW+OIxyptaQAni9H7JZlpAfd12Vfl+WkDP/oVX739aQIF9D1Jyh1pA2q8Zh4nEWkBQzzzgEl9aQF4Zu3jBdlpAL0oUNGYLWkAHR7rUhfZZQP3gMjTpqllASadyByTHWUAp2ZZFxDtaQLOy2arp9VlAxtUEnEGiWUClTv/4o7tZQF1ZIuBXu1lAZk8biCX+WUB6ufPwIeZZQAiEZ3dJ8FlAaUDg7pIsWkAR6sHRRP9ZQJKPXr4TRVpA4YxJjbBQWkD9HLkY52daQCqnWRS1DltAL8mVvej+WkAk97w5uWNbQFYIDWD4gFtAK7AdjyW7W0D8x+jTBZ5bQFhBmn0McVtAb3h1uOeFW0DbOAywhp5bQB4tpr8rpltACcnAVIHhW0Cqv/2cD6lbQKSZXW1phVtAMmRAdkgAXECz/IiY//xbQJWWaF/NwFtAdpmvXmOWW0Bnls/cBV1bQLJEDJ35sltANY8TT5+cW0DKifFND3lbQIzqiW3YMVtAe2hWMYR8W0BZ63b3G55bQDTLFFmajltACItuNF+OW0DbufgkS4NbQE8Wk/TtRltAz4T29nRSW0B+b+Mb0j9bQAwSMr7R/FpAnr74w4jcWkCh06EpgZpaQNgKAMpIq1pARn3vQauvWkDGzCk2a6NaQMjiJymNslpAi+eIHxWSWkAaMyOa9s1aQOdNKWn5dFpAKbtpV8NnWkCS2+faL0VaQM4+qZiSNFpAG0NA4xMeWkDe1s1A18BZQHgDbPG+Q1lAsDI2qF37WECz+AU5kdBYQIvgIdMYy1hACBHqqYMfWUCJCYhByBRZQF3qlNmRYFlAkb2hJMXnWUAl6fr3d1lZQBpyig4CallAljdEma+AWUCzfpdoCS9ZQPJRFKUFPFlAFYlpcBY/WUCHKHKUnyFZQK3S155wNllAWEBwS0BWWUBKTEN9WY1ZQOHdNWxhVFlAmw0j3xl4WUBjQCOk4x9ZQLrUYOxW3lhAjvE7xzxFWUA3lL0FpQlZQJQj8YRzj1hAkmHa9kKBWEAzhIJDVX1YQLmV00tsXFhAxlH5JUxZWED20NQl1PJYQJPzSWh49FhADEgbAUjZWEAWYvJUa+hYQCmChwPtzlhAJgXjoo7DWECjhqEGjt1YQDgiLaV7l1hAm88rpofnWECY6xz6jv1YQDOw9omD1VhAHks/vkYAWUC5x6LyuAJZQPsXkvctZFlAU7nAGW6qWUCbIp3AG7NZQCANKGQz21lAE0czrpWiWUA/ehpM+YRZQLumzcYuD1lAVuGZlY3jWEASmMyT0B1ZQO5/QME+B1lAhKH7yAkKWUBHixvZ4MtYQDGrXqmJLllADMa1BuvsWECatIHpn8VYQM1QvURJblhAew6ctS9qWEDRDMzNymhYQD/E/E0f41hAI3MS4ujOWECf8XT440NZQBfJL5h8cVlAWO4qGFNRWUD2zCWk9WtZQOZO/FRi3VhAlvETNcuxWECYTILCiTdYQGNsjrfvUFhAr5V2NEw1WEDXTdzcDBdYQM7WA7bKBVhAC6KdAqgFWEB+e30Rkg1YQKh6OjboTFhAtbsW0MZPWEAQ+PQcuEpYQDP5nlu5wVhAJI7Bkt4aWUCKXn7VXcxYQGCESZ9h4VhA0VO98qsNWUCMoW7RPQ9ZQH7XGNTDL1lAbeesgsPZWED/4rFsGq9YQK8m4z3k7lhAxPATJw2uWEAGEvrK45hYQKWtm0PXs1hAup0a01DGWEC+yZe4vjhZQJZGG1vsR1lAP4acQ806WUAkkVt0nE9ZQBoLYGcaOllACRMtCxELWUAbpJ0SajdZQMsztMu1TllAdKsVXZUgWUDFtNmWajdZQDuy9wXFEFlAvpEyv2pgWUDlYqmsUgFZQKcQZyfhwlhAQzsDHSIHWUA7F4BtSjVZQLyp7Q1n7lhAn4RxImPbWEBJ43KbgOlYQJlutQUnglhABzmqDyaRWECd4KJ8r89YQC5dO8aRkVhAH1pvPP2jWEABcmIDwtBYQMakVFvLf1hA/Gsqef5fWEAD0RWTvG1YQJezTAZzwFhAhT8Gi2p+WECdewUGVFJYQLTzilxTklhAWIkSIFMxWEAkGR5WDl1YQIpxlUD3MlhAdSbdYBt1WEC/uq+TWcdYQOQMZhVAW1lAZjOW/uY+WUCcZciNymxZQGwIhzqQYFlA3jyudrpaWUCx7jqgYR9ZQJBSSPFjS1lA5YBK+F1BWUB0w6ZA4oBZQCnAdHSF6FlAjyveGtQhWkBoiQvp8fFZQEOOA8WBUFpAnEBPVL2XWkCzLYuocNlaQFCGt1BG+1pAQH+SBlkLW0DR00S/yOJaQEG/y23Nl1pAx15lNke7WkA5s4kzFwZbQHXu5wpyGVtAIxr0K88vW0DbxkzeKLlaQIpXuBozpFpAclFIjRqkWkDAEuofgYVaQD3LLogfj1pAgluJQ9OFWkCgn73/rUVaQOOMhd2dHlpAVscCuF/sWUCp1erS/QJaQBRwmsB371lATzXza8n7WUBOvwzJYOpZQLLLcqeuClpAi8AL4rZzWkDpPWaUUGFaQAO6w8x0x1pAIAfhFZ1RWkDX2c/N64daQBXTTQZTXlpAyglElsdtWkDLiRmp+6FaQAw1ibu3qFpAI6grzvV+WkDGvRT8mN9aQOG1xqVl0FpACXmsW4MgW0DwWtL9oDtbQFEy15fST1tACt0qrYUsW0DKadqvNjBbQI8qDQHnn1tA0wDGpPOqW0D75L6yG7xbQJ+UeiDF5ltANYTsVIetW0AdE5RTPf9bQFP8QOoq8ltAgVen240FXEDQMXTx/kBcQJIRD+wmaFxAIfNMb+RzXED2iMR2QXNcQKoCXdBriFxAl9RBYxNoXECaZNYxMVVcQG70UQFbhVxA5ygVvk2FXED3tg9tWW5cQDSNugfYz1xAuT/7bG7ZXECgdiJFxVxdQGW7LhNpSF1AopPajmIMXUBW9pmJ9ORcQKveQoKGGF1ALy99o/YqXUA4OAKKcxJdQDsSOHWV4F1AM3HOCmupXUD2436JTFxeQOOgY40YRl5AltqpLoKMXkCNY0T4upNeQEFcbJgZml5AcV07FNcJX0C8WtlwKOteQPDCp2Uo9F5Ay5N1D779XkBU0vTSqxdfQJG62gVL9F5AxFxpscrSXkC+YL7I5qVeQJhVIgvXq15AvL7/CAkLX0DrAxYnH5FeQBdIG0zdmF5ABmHJj8hXXkBVnStsS0xeQBtjLYrNX15AZX0M9OsTXkASCIPDB/RdQH1pE4zSn11ARJKKBpYpXkDTf1KqFkteQHECQXwIdl5AeyDmrg0/XkA2sFyO+GteQB18r1IGTl5ARfDSAN97XkBfzVGaQfxdQG1Ql+LNGl5AI4vZdtTjXUAkJbNNLQZeQLCwPPwgO15AjzZH5HUxXkDDwLRjkLFeQIpevQifnF5A0CYUzXNqXkDyClkG+pZeQO6NGA0Ol15AiLUFJNiRXkCGUotCcbFeQLLTMDE6YF5AfQ3K+D+dXkCVw0jTA99eQJn9tugOpV5ANYLMTe9CXkD5r4XxqRteQCLWwr7ldl5AeEh2ueXfXkCR5Xy8ySBfQKTOiGlesV9AYOBiIyWPX0C4d+MKL2ZfQNQHU1/3CV9AH9j1txRXX0DLIw8GdRZfQM+3qypY0F5Ask6jionpXkBpuviGVPZeQCxIDJgwVV9A7JbxVG6eX0CuD0Di5mZfQFMKJksMI19AY42Td1wsX0DJFn0PaCtfQKJtUt+qz15AZhUzJ0ghX0Ac7gtl9uFeQETI9sPHL19AvJR0llfxXkCXQ24FXhJfQK1RN5p3CF9AIuuUg8DYXkApQiR8LwlfQOigIjMxr15A9kJrgNS+XkBoZz3uWuReQFC0LRJvrl5A0G2Cc7bpXkCsWAlleeReQIlPMjH2Al9AgeQQIYVXX0CCAODwpj5fQKJ33q16PV9AY2Ytw5X+XkDCJ5w6VT5fQPjy4jKOGF9AhatDGLfbXkAbZ/Sn21xfQNus+YazB19AejZQrosBX0B2reRDiV5fQP6ewuoLfl9A6UuOcUnMX0DSqp1zNbFfQIDjK4q5gV9Ae4dwXOM6X0AG9GNaruxeQPjlDZqXHl9AWX/2RMxHX0CPh97RBHVfQKUsST6NfV9ABcp9YoXfX0AWBcKf5AZgQCDpgbzD9F9ALmtW+HgHYEDciR7+0RhgQDaZqG3b0F9Aqwuj80alX0AJn36d5AJgQDJnyWx4AGBAwG3nMFPaX0C+GQEluulfQMaSZ0/MCmBA5unSpB0EYEBJHk93ewRgQHOBPya2819AICy/rfPfX0CtfHt0tf5fQNdqHb3oGGBAkA1YE3cqYED7Z4E5ZD1gQFvPxYuyTmBAqXXpru5VYEAKLkzLnjtgQG6JLxT3HmBAcISQJUgZYECJTf3+pQpgQMnR7ftn9l9A0EwXXQ4wYEA6WFg2LTxgQP2fGkOGTWBA2RNnC3t5YEB5RRLbL2ZgQLhnBdOlUGBAeTA6HJ9KYEBEv1OhekNgQJoVJrWtbmBAWvq5SjtSYED7j+TBnFlgQKh8IOQEWGBAym6BABxMYEDtO2zGmGNgQM+0025XRGBA+rXpKO5bYEAsH0BNU3lgQHAb2sZqe2BAYGMbdXOVYEBtHnFlG41gQF248bP1gWBA78r2ISCBYEDcuv5c5U9gQM6V76/OdWBACHwZtINyYECcWWPzA4xgQIYcqpw9P2BADZ/JC0YmYED066MBPLRfQI6cfmOC819AyuUGjcKuX0ArQitmbGJfQBLDtrQlX19A/F5ubsnoXkB3BKWA61hfQAk5Obz1S19AjqTTbuKZX0D3VQxQerlfQIUc8KYroF9AU8O8qvxDX0AnuEqKDiZfQHSp1Zo0xF5ACGor6e6IXkAJ8lLkiyFeQIDNsJiBF15AZvnZcuryXUCMss0zKHBeQO+751euc15AItnctYkyXkCX1yvoRmteQO05e/IGcl5AvuiA7mihXkCHMEBsWKZeQMA/sRa+jF5AAF1NgSqLXkCTT/Zu24leQIvHG/5oCV5AARbpoxE+XkBqONS2EL5dQOVb3jDJ9F1AdwSQpNMtXkCDc/mBvnNeQKFX7cZrsV5Ap+9IgefuXkAm1PALx/VeQOgXCVzkKV9Aixo+a4oHX0BfLwMbZRNfQFQfnFpaE19A4rStgu2GX0BY28OU/W9fQOYIRtbgG19A/AVwF0XwXkAI+dWlXrReQLmorfAdpV5AgZUQINbMXkAhzbgz2Q1fQPTXs0VyYF5AeKtzyBw9XkBrcBTRe3deQMV5dDsaXV5AC4meXNYXXkBR9kRRPTReQN+HFnFTQV5AN566Hfm8XUCR08DTn/ddQG+Ng3Pm2l1AWp4B6qOCXUDz72NcBmddQI4CI3gvoF1AJpk+BxXXXEC7dzGVddFcQIInVHD6O11Asuxke3fgXEBdtTXpfQNdQIDDpdXnTF1ApLmGyxsqXUDPYxGkU/NcQP/+xkomCl1AMOuSq0oTXUCTDGpsgAddQI1WsGUfWl1AgXjSDSF9XUBfuTOHF6hdQPvZ6jPGzF1AbwgpdurnXUB+BBB0bgZeQJC3KQ6FyV1AYcAwu45PXkCVLkBPmpleQDS+TOdtyF5AsPSXxorZXkAdCzqH8rheQGmWcZ1z1V5A8nw8yBknX0CbfISRYR9fQDKe5t/cW19AvjgB9Pf+XkAPFbo8SOdeQOAdNwcWD19AUENlwzoSX0DD1cO2WFFfQI3BYso2dV9Aek861ATTX0BMhXksQeRfQJig4kKfvV9Aw3BYub7bX0CpyNKYbNtfQHZYJ3QHBWBAx+RYT68cYEDLWd8nDUlgQGvN+3qkF2BANjRWXqLeX0BvunHSF3ZfQAtvIhe9gV9AcbwawPUNX0AFsbfDAupeQN5MFE6x+l5AJoCrckjbXkBFbnmk5/ReQMkRvuO7q15AgwIx3Cr8XkDzkwFWSdpeQAC47asE6V5ApRgxrOL+XkAR9XZultxeQGZ6B8VwlF5AuOBxfjHEXkDXG+cr7OJeQIm//lz+/F5A30oZL8T0XkBwrMi1owhfQO2wGjAr7F5AH3ljmuD4XkAA8C01ndFeQIn1DDSIy15AyPrCvzf8XkBsWi/0+f9eQOfLjzZwE19AzvAKcvA+X0CXnJ4TgQFfQOGORmu2715A1AsCU3kKX0BnxAcIdhdfQOSVkHVqCF9A7YIcVbQVX0DuCozxnY9fQAth3eHGy19AhElItoDOX0AeXR83v6JfQMj5oaqZuV9Aj0/TDmjFX0CFgyNVIFZfQOgkMe2aUl9A9gq2w/0XX0BxCt7LvBhfQPdDADGRol5AlzUS1Y7iXkCilyiuuOReQAku2wivo15AiapRtVU2X0CHnnIdNxRfQKIgYfS2Ml9ASMhroUtdX0ApvZaaZWxfQCScFNwgR19ACwssuOdOX0DKCiWaHtxfQDn818rgJGBA7Z3h1JMXYEC+qrnvAhFgQGxCk5II4F9A0HNuNSp6X0By7Mu1NpRfQASmIdM7/F9AWRUVii3BX0BepGxdXOBfQNxTcq2+0l9A4hWmI12lX0CrezGQMgJgQJTjrAMwJGBAA43vQXo3YECpf20Qe0ZgQPrB02uaZGBALyHJxNd2YECVv47FEnpgQJ1wDi/EWWBAYEQ1Jr4bYEAzCjVLVFtfQKJCIJr6XF9AYfnwJRsCX0CYgnrvetBeQLnibIvW415AZc+6wE3MXkCW6RPZAp1eQLrx0GRQwl5A4fwoVR4EX0DlIlT/M+xeQNAxowJKuF5AJ9nx3cH/XkD+Y+jA4odeQFqL0k76015ADs2jdA3WXkALe90qEa5eQDG7E7dHyl5AdwRZNwLpXkB5/p3rqiZfQPKsXrZCUV9A1dYYs1pNX0B5PlW8wiZfQBwEjeT4AF9AMLzJbeZMX0BKRZ4yPx9fQErawB6l7V5AV54pjMblXkCd3Lic5k9eQA/J6ofHPV5AiWlZvzoZXkBN+S6zg/ldQFRL4zHpJF5An9pY6nDiXUDviNKM1mhdQEy+CujIuV1AR4KAhDm+XUDHPTfKn75dQPplhQ+enF1ATWW7vN/eXUAoTZHXZEpeQFyMGpTPj15Ao9JHYzRZXkDn+wxf9IheQOgJCwixxl5AOTNK9VQVX0BwhHU7dlZfQFpSC3QjbF9AreZOjUyxX0DPIqRvvttfQJNMk1P+C2BAV2gdAscGYEA7ylAdUfFfQA3iJ82eZF9A2Q7/tLWDX0CCQ2oeYCNfQN+8Yr2zVF9AgBKRP7UkX0BL9xd3YOReQNQFGXMr115AIchh29LAXkCTMVyKaWReQFYRvF1QWl5A6OUohWLNXkByG3Tokb9eQPnfSaJjIl5AvGumhMB3XkCc9RwPVDJeQJ0dPQrSd15Aw2puoAJ2XkDEA7I+6ydeQK9SzQsoLF5ALt4Zwo/vXUAm57tJCDReQDylpBWt3l1AP4BAgscLXkDTHuBIpgleQBAxB91OwF1ASCqFslqnXUD5DWgVmqldQCaxWzdR0l1ANNrgrX3oXUDd/Quosg1eQLbMgqRH211ADbHnZtndXUDnXFc/qRleQMc5497LEV5APVbqYDfWXUDlKdWCz7NdQI0I7lvm6F1A+RPiUWEOXkAk8xjVYGteQJGs6POZF15AvzbWLthPXkAUIFs2+wpeQOOfr7Iw0F1A95MiB0DBXUChSOEtd+NdQGnVlrf7Fl5AO1T7K2slXkDFFRZe/etdQGwnvBPqQF5A27fK0lELXkBNLJlo7qBdQMVPSBPo+F1AoBZSvBwKXkAcbu8yETteQGiuzfAFh15AhGXxVUGPXkC7xLK85qJeQKRyRkyvoV5AjI/wLMuFXkDU1LtFhZBeQCoAUCryS15AHC1zRZc2XkDSgLr6yQVeQBiduSzqM15A9KdkiU1YXkCY6HBKd7FeQFQQqVdcfF5A8aEVNP/NXkDPw/Ml+JNeQHVI33pM0l5AZ7cb8uR0X0CLnM18Jl5fQJZVpqrWiF9AyjrBIQZjX0As9OKUajtfQAW+y46UYV9AV4ydVSwVX0CH8eRxHlVfQFy9UI4eY19ACWJNyQM1X0DTWzuNpPBeQJpxpbB3vF5AXVn5sEzyXkD+QtV4rqpeQEPP1bJ8jV5AHRd0ESgdXkBcf+Kc2XleQC8rOUO8cF5Ahr5ZHbGUXkB6RAuIInVeQG0XM6qfR15AxH0iyt+iXkDMycHsiT9eQN6oc/YIM15AoZCYL5pfXkD6mz8pKC1eQIXc2ps0VV5Amj4x4iw1XkBgxrA3ewpeQA1DlY39l11ADHQR0VdJXUD/sjLBw9FdQPNZnh+E8V1AC8cJHq3bXUAkZ6D4AIhdQFdZLrojwl1ApMONIeGIXUBa3WJIo7tdQLJXWAGaxF1AukY9olqLXUB5VUDcmcZdQAeEhCb+t11Ad/wxNkNXXUBFHGG7IxxdQLsRN+rW7lxAK4OH4Ai0XEBUw20X0P1cQJyN6Y1uz1xAI4pVUEsDXUDk/iga+VRdQEuRKpvyAV1AoerGc2BDXUBsF3v4yYFdQMLSsaItuV1AXXIzpzj6XUBVC80taBheQFF2uLTqVV5AU8GZDJNVXkABzvzOFmVeQAtJU6uGMV5Ah1lBh9xCXkDX5Vj1q1ZeQKOEnFUwq15AniqRd67uXkC8Y+2S6cZeQJ4n6AM80F5ArWmhvpkHX0BIZkSv4TJfQKJxrl4br15AG9LWrczQXkC0kiWu3jlfQDza3lOF3F5AUrjWipQ2X0DWTkUxAKdfQI0g+wMm3F9A8K6wsUfWX0DjZy3NdShgQANTNFGGKmBA1Zi3XO4mYEBDTOOPyVlgQP6NmlcMSWBAozItawM8YEDOY0ENgw9gQLRNixFwCmBADjfyaHovYECOTFIdBR5gQPTuobv4KGBAKkTWuDAwYECFTxLB4CdgQCKESLcjX2BA1lY3TISGYEC55GtUSHFgQOTztnqZqmBAh4WTzkqAYED2AaQFz2xgQCh27PI8eWBAiALJXjOIYEADIn+YHc9gQBSWkHuCzWBAh/VH7wGYYEDBazd1WZ1gQCF6FdqwhmBASx+1IeCNYEAFYsMhv4JgQPhlP+bbgGBAYR2cUzCWYEC0yc27+59gQHShAITbuWBAgoSEY8vXYEBZhdiw0d1gQAxlgIhH6mBALsNGThbaYED4vAtwT/lgQFlsZ9uTM2FAAPMpsgkwYUBs1zXnSExhQBoLKWvcGWFAB0Ks8t80YUD6+9rvA05hQPH2I96rX2FAqpAkYBY9YUCO5obqKj5hQJLuRQyiVGFAhL8NLIlFYUADeTR2cithQMzuCca4JWFATIuZM3g6YUBCwxwf1AlhQJFmUQW+LmFAvmS6HDFTYUDcGkxuimphQGR+1oQzemFAxWjCTNxFYUDMPEpe/G5hQLjzEcbuoWFADsm1AkriYUAjAOBRm+hhQPBpXYql5GFAhkhCU/HIYUDIzEQoeOdhQPmiOIqmDGJAjSXKhyjnYUA+zdrhgO5hQE3pzKHc+WFAgWJrRAnqYUAKqh0B0+1hQNo7793h32FAQJU9fOfZYUD0mFBr17ZhQADq+pey22FA//VR7aHfYUDPWKzZgsFhQGcg2CiI22FA52l8r3r7YUBggoIK0OZhQM4P+9+s32FAHDv17l/YYUDqCxp8awliQAxVmnLUBGJAJkpYgxdKYkBn6CsvtEFiQCj1HuBbPGJAA5/OUOs2YkDy032mFTdiQCvODtCU7WFAvFlBgjQJYkA/IwN5mBJiQMYq+HOdGWJAbzsuxJgRYkAmBPSnsB1iQEP4ORjtZ2JAZkKolc5OYkAFKFvxsEFiQKRtHKDIRGJACGalAIgeYkA72IkYMQViQNFoOf6hLmJAH+LHFbWCYkBj8PPSQJtiQLZl6895fGJAHEL3SLpsYkC6YlAWUaBiQOM+Ht1ns2JAHgZEN5KKYkABXeUtcZBiQMdTr7QNjmJAz5qVk8GZYkBiSQVx2M1iQKWejldIDGNAj65P3Fo3Y0A3emLz5mJjQKPYwG3efmNAQK9UbHl0Y0B/7FiZ1EdjQNZ3L3rkZWNA6En1/Q1qY0A/Ue+f101jQOmFBpJqXGNAzPBlkFlKY0AxkFCXmytjQPj4Y4/b+GJA54r6Pe0WY0DBdeR0YxtjQK0vYjFPX2NA3am0wRihY0BgEFH0Q6pjQFlUZtmg1mNAQ1vYItbIY0B1EeW3A9tjQDY+ewcl5GNA8eHooy/gY0DzGGNKp6RjQAVsbWPysWNAzX95feGSY0BVBWv1X5hjQGrCTEaOhmNAkB6lG0eVY0DB5p9gXXpjQBS9dyPgbWNApXkuW/1qY0AO5Xjry2FjQJCtIzQDbWNAgFjHWMRxY0BPLVUxmFJjQIxGW19sQ2NArrL1c+9tY0DelmRvuIVjQNZHv+3hnGNAkmeEY2m9Y0DgY931n+tjQFqGIsUw7mNAmq8jMvq2Y0Bo9uhl7ABkQLomzF6c8GNA9KVj46zWY0Cjkp06NdpjQAVqOebY7GNAXlltWajeY0AE1RGIt6djQMy5LBT4p2NAefueVnGJY0COzoWn5IBjQEjaACTppGNAYdP4uzK2Y0DjtWUWxtRjQKPvIRK632NAmMbif/HSY0ALvrOUr9RjQG+Tj7PGyGNAztGzxumVY0CYYeOOo6ljQAvf0c6joGNAlVC76YhjY0CvyrPlGSdjQB7qq97QXWNA1Fit8kp1Y0CoIoo5LnNjQCYFXTNodGNAuHvyTBVoY0CDHaLlIntjQODsgNlWg2NAaaYfg5ZgY0B0kAnNAF5jQEfrhaMkkGNAKrS7EMCAY0DeeqO6sX1jQJ/mAAc/T2NAXtoBFUh4Y0ADObSO0ERjQA7Y5rAmk2NAsa3ENn2QY0BtyUrrGqpjQP33jHJazmNAfAiIrlfbY0B1guDxLrJjQLUx9yxezmNAxd7l8D/sY0CALsGU4d1jQLbyoeCU92NALvMeduQxZECbn6nHck9kQEePV9r/SWRArdTWwdksZECPMWxqUEBkQOUQTc0mTGRAiN/aotVHZEBAGTCaQzxkQDi+jrkcC2RAKnC7nwkBZEDhQiHR+MNjQFDQ6Pd42GNAR+onnPOUY0CCmyd6qXdjQHP6gvpwimNAZga1SWSZY0CoUrGtOppjQOpc6j+dgWNAoX1l8OiNY0ByrTLEmWhjQPFP8DSkaGNA07O9DttnY0Dd6TkNWYNjQGNDwJkcimNAwbJ2oj+CY0Dhfd35d6ljQOeScM4+x2NA51K5cr+PY0C1aGQ5DJ1jQOZm396DlGNAChYDJN19Y0C0FnOE1D9jQCzgFAxHZWNAp0UbHmSKY0BN8UBiRWFjQFsnlmKQX2NAgGOJjXNfY0BiFCV/8y1jQBonJkoaYWNAvHrkB0RTY0AfX/uX2FNjQLPl1UuBXGNAbqy9tERMY0A+X5+r3DtjQMRYiAORUWNA3qrBIJJOY0DXRAIAPkVjQL246+8fXGNALnKsartnY0CJjZWp+XJjQNLOIHu0gGNAkX6WgFSZY0Byt5BHcWxjQKE0EL/acGNAPiCrCVyAY0A77Q8SqWdjQHfyPhbLL2NAOZdMEIYcY0DAdASsL0JjQJHgUzCgQ2NAvx0Z+KNhY0CX1fvyWVZjQJVOB6IkJ2NAT+fi0TUJY0DBIGbBPhdjQHCI1SAGTGNAUuOv/CEhY0BqFDe9IhRjQDIsGTgxJ2NAVTB6KyJZY0CoN7n/u3tjQOqx/Dc8l2NAPdFjZc+xY0B97Hm7ErVjQNFAPzUD1GNAphQmwy7SY0CAdYmxCe1jQGrfvbuT9WNAdu6QvIzOY0BCUwcsxsdjQI4U75zt2WNAekpQ0OXQY0Ak3KH6zg1kQIL8rWfQ82NA96sZ/9zsY0CZC6DV4NFjQMMdkX4i8mNAD6dsO5vnY0D6L94PgQtkQEYyo4s/BGRA43uE2msGZEAIduCmSPZjQAIur2wc72NAS+Yfnq00ZEA9eDW2Km1kQMjLq3waY2RAk1LNHpt+ZEDpCPLaVEtkQKcp3JxKSmRAO/qvqF8oZEAs5DGBbCxkQA1zH3rc7GNACuX2qR0xZEAPsoyKOR5kQKODzQUrJGRAi/kA3VcKZED+DZzjDghkQKUFULI6vGNAahAGBnyrY0DRo59u75djQPx4oTqcTGNAZXgwq0dVY0DZzbYhXWljQI/7rQYdgWNAOp+3Kz+SY0BWc0R6XaFjQI1Yq4F8dGNA4tX9wY5zY0DqKb8ZXm9jQB2DP5TtgWNAFoD4WzNcY0BZMsbdr1djQK68rKYBMGNAXg1W/dBbY0CmeDyYLqxjQEQd69ujrGNAo6XrsheYY0CYKNubVo1jQEwO0koNeGNAHWIo54KKY0Dt6xnnv5tjQJhioAyPxWNAC0kuhtjUY0B4Q5E8CwlkQMkpemcBLGRAtukbxzsFZEDDHQX3dyNkQNLcg6ViFGRAAcPgMW4dZEAfYWuY5ghkQBh0g4N8/mNAAWtttxsBZED7b0KUKilkQDv6GOnzQWRAiWLe5es8ZEA48DJLHTlkQKUkBn8oOGRA9wJZsUweZECm5BIcmCBkQLA1yKhcXWRAb8y6AkpVZECv+h02AE9kQFtM6P4SYWRAb8Q8gbkaZEAKdh5KoDxkQOerYe1LOGRA3FPY++EzZEDEQeXGRDdkQE5BiTwfJGRALTWzBuM+ZEBIbD/c70pkQLN3xHSIX2RAMwQFEC5hZEBIMnXPQUpkQFv+5vpLFmRAZTCnb2oJZECTA4vRjRlkQC/A4PHs/WNALszXs8HqY0A9VOAgbPRjQJlUQsik0WNACr7UFM+4Y0CbEnex96xjQBe6uQ3z4mNAzKJLLrK6Y0BhxH4Cae1jQKkuAT7CwWNAWRaFTRTmY0Cj6T2JPsZjQC6E4kRCzGNAQq9YmLK9Y0D0Ji/lodBjQMlWyT3ExWNALiX9sbreY0CcFNYZsLBjQCcVURA51GNA2iP2DVDRY0C9qWCU1LZjQLoYJNmau2NARR9QC7PgY0Ch1jjRUNtjQKl0XhqP1WNA04GncxvGY0AIDljCv9VjQAsUIfQ74WNAM0kddC8LZEDZFNZAZj9kQHrvm41BUWRAgCd7uPBjZEC6is4urnBkQExlVha/cmRA4Tw7nRRpZED9KEgduEJkQPTN1NGwTmRAsYaOoigkZEAlySY3lSxkQBE1IS6HT2RAnzQ7o9NBZEBwTLpVYQtkQI1R5dG2G2RAirpoE+gXZECAeSuihjlkQOw0VCqQIWRAckxdMBMNZED15OXPm0BkQFRUMyBJTGRACrCLl0leZECvgx0+T3hkQPfraducZWRAOpAC//dPZEAQ6RbBzy5kQM4naz4RNGRA7u6aRaE+ZEBIgD1jFkdkQGKjmtfbPmRAumFZU/UXZECsQwC6bv1jQH5I+Uy04GNAe4OBe3bbY0Alqn9rjuBjQFsgV9cXs2NAHDpAYgjKY0CNt1LBoqNjQMMFeMozg2NAKEjm4pOyY0C2g4bL7axjQMxdHtmXuWNA2Eca7hrWY0CqQcu4d81jQNzsPdkRFGRAjYEsW4AHZEChmetQcfljQK0E1Ln91GNAoiT7V5CkY0BYr82xfH5jQG+HSEfjqGNA1wufsVG2Y0A3FinDarxjQKiCB/kQuGNAkAWIazmtY0AmKe0UcoJjQLIOZdEwhWNAv5QKm55aY0BcZ+v5g4BjQDaBXEkUmWNADDjhgNmAY0DgF4Mqrn9jQLmX5wuQqmNA/UxtSeufY0CjzBqUbbRjQHGHVgOTqmNALHOI8HGZY0BOW4oTj7ljQLlwW013jmNABbT6OTKRY0COYCuSkrtjQAcNd2CvqGNA543aGv7KY0AAaYhBpqljQHqE/3+mlWNAOE1y/x5ZY0BxWOjcXWpjQEERenEtemNA8Cq17/g2Y0BvYQPBekljQM5LNBtTSmNAwWjIdeWAY0DPKORRo4djQA6vGAPEVmNAvavwqtBoY0B+RSWGiGpjQKJmJXy2bmNAxf7tNEp3Y0CltBMSQTxjQAbHsGpCMmNADYw9uFM3Y0AAIMW38UNjQGIg3UirXmNAJLCjy/pAY0D2akNuE+tiQEQWvGdIuWJAV7GfNTR+YkBUEpj+mbliQLuDWcTGxWJAYP9o2iLhYkDkQ6hFKtNiQL84WlrGvGJAz5PoClzYYkD2sAFfS8xiQHwM3e/X7GJAycutw8gGY0CEDT5vat1iQBQo7ma0w2JAyK3ZfEnBYkBMERgQBqtiQFcjMbhqtmJAaLT2hQ2eYkAWa2MC4HxiQLS/KxE1pGJAicu3r5HPYkD8pA2AQd1iQIod0MTd52JAZv4MWCTJYkDFjExccIliQN4Pq903u2JA06CK8U/TYkAE7GytEKBiQJ5RMRkfrWJACCHYQMjcYkBJcblOxvBiQMixPv/TAmNAZDYSNE89Y0Ar6LmODRpjQP1g/dyAWWNAG1XCNtAlY0Bzwy0UVzxjQPQAb6hzF2NAekA1cG/TYkCtX1XDgpBiQAxa4gMnimJAJ0Gx/aLAYkD1jUscXKliQCs3aaeUnWJAApr3Ny24YkBgd7L+EMFiQLcAI+fQ62JAn2PBprkqY0BmW5fIAW9jQDMFh+InfmNAiq1zlHmXY0CsUSc7j4ZjQDXjpbS2YWNAuJtw+UN4Y0CD9SR9941jQDH4gn3SZmNA7EWauxNzY0CfGRF/iaVjQLkzELUMmGNAy8Nzl7xtY0CbCvyBxn5jQFcJ2rkwbWNAnzNPtIOrY0CJWmxdiLhjQANhr5M0nWNA9zT0kIh2Y0A6sh3ty7tjQChrYRMC6mNAmb+kFXS9Y0DXrYNIEsRjQLy2rxmVlmNAFkJUk7XAY0BTHIFbKZZjQEYow0aA1mNAr1S9U8/UY0CT7DBvcPxjQPFvvZhn6WNA8ErvU1rfY0BVszeAdwhkQK+5Fyfl3WNAj5GRkumrY0CLL1OpU39jQEnfXFpQZmNAoEEA1YQ6Y0Aoho0NR0VjQNzMtb8VPGNANLXKkTQrY0DN/G/eGEdjQAADwyl8UmNApPAsPxA8Y0BLmOoqNDZjQNvMua9TGWNAcLHoQYf7YkBBWEiLB+RiQIsFIrB+8mJALMA+KkzhYkAYkSQW9O9iQJ6lxU3RCmNA0fOA0vTdYkA9J1M36cdiQDchkT8v2GJABp46iKGlYkCh2Am5O2diQHIAYiu6kWJAdOJIKOCRYkAE4VwnZppiQEOmpvkSi2JAZ92584KRYkDrl1iYMJ9iQLgkkIrooGJAFkW0pcZ5YkDOrXX8Jr9iQHbxf4KJ2mJAvS1/K6b7YkBpSC05gN1iQAlsXoCS22JAztrw9QHkYkAzGxMZaPhiQLC9Otl6KWNAAff/50Q9Y0B4pS09B0RjQHNOgdzBN2NAid+U0jALY0BaCn+rm/tiQCDIhDZrGmNAdwDcFDzrYkDbAvf9/O1iQAKyLl6j6mJA+uXdXW77YkC2pHpib8ViQHRjdJBpj2JA9Uzlk0B1YkDzw8ETwJdiQIuY5pTcjGJAJ5UlAe+yYkCJ5mMe8LliQJzJL/bkoGJAZid/DbW1YkAAw+OAquRiQI8fmLElwWJAi8A8hn7+YkDbymz7wNliQIymrjHkwmJAdUr4R/qiYkDoB5KVr5tiQBwzUkxMkGJACYpfqzaSYkBaNQh9s5tiQB5Uk7cnkWJAtMr7TSVxYkBfuYLu80piQNSO7fXtS2JAAzqV3MJAYkBiHK1eER5iQFyLpJtWMGJAihWDr34+YkCXpwwSEFFiQF7vkeZ3bGJAyZY7ZOp3YkAeStUxP0diQGg+ZYV5EWJA//AvZY48YkCpZ9MNoCZiQMJ+HAKRRGJAZxF5IXohYkBmiwQkEAFiQL9ifSslpWFAkGey7JWrYUDZ1CPX8KFhQEc2/8EMtmFA2z+0rxrVYUAU23D3sdZhQPMfOOGg02FAXwzlOca5YUDXamp0w5VhQKU/YivTYWFAIKC/dLUSYUD77523R/FgQGoj6scS0GBAjUePjJe0YEAnY98jF7dgQAKQaS88zWBABGOW1j/vYEBYI7VUj6lgQD+8fs5hj2BAsMQ1fIaxYEB9n4+kdqNgQDLj0xMWoGBAJdP5XVOsYEBi45afKcBgQH1/OrNuzWBA2cQ8E3L7YEByg4xKggthQGCfDggy/WBAsmzZ4Ez/YED8VwHGXgdhQMAxHzgZAGFAAgNXm4//YECUPeF/2whhQLuk7kDOI2FA7ejn4wgAYUBTPxLTBAhhQLFMhLM+/WBASuOb7lINYUD1Se3A/DVhQJMlVm8GHmFAWwrcoRnzYEAEtcBqhstgQE3WltNFrGBAtGGEP6GGYEDQsh8wxKxgQL9GBKwFimBAMs/k6aN+YEAFdlh71GpgQMOYKhKSgmBAK6QzIpOiYEDTNXRAMbJgQJgsgNCDpWBAS/RLMnxuYEA8GtR5XFNgQPWNKootUWBAN8AFZzxHYECSDIsBDXxgQEGCgJvMgmBA1xfhYeCCYEAEq3FtRYhgQAsNXZ2XlmBAKV19DPPEYEDosTQPCKhgQGJz3UDgn2BAWdDp4e6LYEBK/feq451gQKauOj+hn2BAlkLsntOnYEAYuY3NUrFgQDCeuV0EpmBAA7FVh121YEDLyOhozG9gQL0zH5ZEhmBAZ0WtfmO9YEC4Yk42YrFgQFr9S3ErpGBAKGsIRq7nYEB6n8l6EvdgQKPtyIgIAmFAW6INSicAYUCbpFO+kxVhQINwU5oPRmFAv3KiuXo9YUBlTnFbejthQGGlNWn2MWFAMp+hlSUZYUBWgHhtWfZgQEXkVrjt+mBAu1JaBEYIYUCw8o3iPQNhQMOfHQWn1WBAkRLXfHeVYEAg7tjAvYZgQBusEXOkgmBAPAAmcIhqYEAR/5dFQVJgQNYrcY8fS2BACWFRJiY4YEBmij0Y/iBgQM3a9hGVImBACkTGUvcYYEBHpgJYqDFgQLSXPK/JFmBAiFvzOeYiYEDc6Oj4+wFgQDdjICPvwF9AvVCWJvMLYEAuLoblT89fQOOk5S9VgV9AQ/oaPTp1X0CAxa4YiDtfQLHASEDzeV9AGYYfH6JsX0AAMKBDXm9fQOz3N4ENSV9AzmjKYBD2XkAtE/elToNeQO8XOt7kdV5AGLATMFJTXkBbcXyiAWxeQGsJ1jThdF5AneSHG0BIXkBBmIrmpBheQKFo7Ek3SF5AX/DIDtJNXkAtc+O8ZjxeQFhFwg+tDl5Aiz7vS9sYXkAceq8aNBFeQI91oZe58F1AfCvolQn0XUA7yVIYIxJeQAjpC6IlpF1ANVohR0u+XUAMjAkR8JRdQIx7cKSiYV1AyP9ero3AXUB25Dq7q5FdQH7q05SSml1AcRxivreJXUA/lNtNK7ldQDc2do2qrV1AEZF3dfI6XkAxWXS6DapdQDQ0u3UkrF1AXhVJ0/U5XkCZ4hILhxheQHhjiCmZtF1A5xLF4Kw0XUAmWkkjZPFcQCLjEG/syVxA7WTGDX7DXECPJwctEJdcQKNwl2WrG1xAcb/5uTn8XEA6QyeBmfFcQObGOT/Z+1xA+Ve3EoW0XECw5K1Z0WBcQG0/YFD9z1xA005v6M6cXEBDQw0ixgBdQLXq4hd96VxAmhqbPAeIXEBypTHuWp5cQBt8+mcnTF1AlxV1WEo1XUCU0+TG+UddQIYYitulCl1AGHliDScsXUA2uAwDXuJcQIT2IKCEQFxAXc/pVy+DXEDyCg+XrdZcQHfKlrC5zFxA7L40c78IXUC37lJKMV9dQJ6bnFKqa11AmG7RC6YXXUBU/p88zDddQLK4mn0Jol1Ai6E0Q2WUXUCQOEqzydldQEQ8XgFznV1AB5hDSeXtXUC5CMO+4LRdQJuXKgS1gF1AH8HdmbuzXUB6SZ74SuRdQILBhMSMPl5A0cBHOTFXXkC04bFA6s9eQEkmLlcX+V5A0m5ZUKuqXkBcNIXo+UleQHCWmCe8ZF5A5/UdmCkIXkA/gtw/jM9dQFve6YiG911AyHQOt+DgXUDmq+NyJp1dQIBg6c/kel1A5xld9FZ7XUBZmaf9naFdQPv4iw9AsV1A5qQoZGhfXUBDTBLO+4xdQO01oYP+al1Ah2txHMllXUDOhnIkPpldQOHrq4VB1V1Ao/5dMR2hXUAwIQTwosJdQEGnpTKu+F1A/tIJZtDNXUA7aOzAnuBdQLP3YdVpjl1AAzWVAEx1XUADe5T/qZddQPLXfjbopV1AgvdvKnyoXUDdAL0wI5ddQNRyrYDLcF1AS4eL6rG0XUDgHV6XJCFdQCg1j0/kYF1ANVCLXmMDXUCqX1myliVdQGMfPzaJi11ANorCJobEXUCRR8enrcVdQKAPbeusEl5AfVeVQvlQXkBf8q5g0wpeQNbyQJhyH15A0ufwF6siXkAO9v7YlmdeQC2joCq6cV5Aeo9IqoxfXkBH8aBG9o9eQAYfZEVhd15AIw+WVY2kXkB4+FEBgKNeQDj/CJhqnl5AA8yep1WHXkBWY6h09E1eQKz2PUt2Rl5A5ODV/GEZXkBDVAKljMxdQC4DuIDaJF5APGXJAXsGXkD5D0cJAtBdQNeD4wGt9F1AhT2utpEVXkBnD+YlSmZeQKLF7Qm5h15A5NOXugyJXkB/M+omAbteQEXqTFhxaV5AuKHmiyxiXkC243XfKlJeQImcgteqn15AT+GcIuhUXkAyP0kEl4leQKfNsrnu7l5AqJCP3QCGXkBzSfTucqBeQCVqhOOtwF5AmL7Q3zuaXkBgQaIaGIteQEtpUlVfrF5A4SMKEAStXkA5aJgUaNteQDJ0aYgEz15AOLpEhLgOX0DSsYGUaz5fQNYrqsqUcV9A4OND2/7WXkDPgFf4/ZdeQOjRRGs0qV5AO6i+k733XkA5U1FJMfpeQHJg60+N2V5Ad7bENbDCXkC6/LxCVMFeQA9ZCv3koF5ArM1EKR2aXkAcuxt8dqReQADGnC6fx15Alnse2DeuXkD6UvstAdVeQDaVPYTmqV5AoS/DPM7KXkDna9FNRPBeQFOw6TPLH19AXpstmXxnX0D6fxnAd9VfQBQxmML8FWBAZbpCuAouYEB8metW3B5gQCI/wMFFe2BAnMm6V4eDYEBc2Ip+uFxgQG4PQN36cWBAYtcYTAeaYEAsIs7aIpdgQC3G7x7ciGBAsGrCawCoYEAlb4+a/I1gQL09geQCnWBAupzGE0mLYECNk/3UFsFgQHMxT2wbl2BAS0+DTVm/YEDyPcCfK6RgQGyjpDVhwGBAk7NOthP/YECrerdLtRNhQGU+CRpWQWFANE0GHQpbYUD3o3scS0hhQFBO1osRXGFAMzPlgOd3YUDGdh6hcophQBx4BZmVZmFAJ2XiZNlfYUBHMtXTr0JhQOLfck/SGWFAr2LNaUE1YUCZicppESVhQCNxGNDTIGFAuIeHqdFoYUB09ek5no9hQD8skNMqlGFAFtkPiwOKYUDugDCnVbhhQP+NdtNovWFAGzi6lsO5YUBRXHXf/sBhQIKlVtQn22FAVN3+P53bYUATjX08nsphQF2ir+RyxmFAox8wlrjHYUBKAFYcQKVhQBVD9vAFq2FAh8/bjQOlYUC6H2aUR7hhQFJs+2hooGFAa/Zr6QWFYUDHGaZR+ZRhQJvoCXCVe2FAO9j4kf9uYUDfqQa+VmphQFtXVv4qY2FAQx7R9sdtYUC9ZJrJVmVhQAD/ILlzlWFAodWBLyB6YUD/v8q+c3ZhQFQha5Bpg2FA6V9b+X3DYUBYuHUFKNBhQKC0EvfSr2FACGo2bu9sYUCPpqvA9X5hQJdGBxkejWFAaGFsJQmXYUBWirF3AJJhQATpJ0p5fGFAYMnftBhEYUCyq8zu+QphQD6bN2njLWFA/jy9ZBo0YUBdNGB6kC9hQC9pKi/sIGFAQhdkWxE7YUDtMlRI2P9gQN2eeC2jDmFA9jdg0wM0YUALpcN9kTZhQBt/L52+NmFA1e3c781FYUD0pwMxGfRgQBXJBF9f/WBAi3gv0fgvYUBBag70FCdhQLRrZWBfF2FAzBRpcPf9YEBXBWfxLOBgQOWH4nQs6GBAtJXk/kPuYEAfk1E4l/5gQE6M6SRZ4WBAn0LtnpacYEDYjaFM5J1gQIi7UOH/j2BARfQyjHGnYEBXlXc4crJgQMmkHfuyxWBAjSDEmyOsYEBoegR6Z6RgQHjLbrmKtGBAUvxfT4uqYEAWORJT3qBgQE6FfhAOnmBAjC8Pu2XBYEDEL9o0INZgQF+bu0K30mBAPtDPNJb9YEBt3qa25PhgQPAGiLf1/mBAnKNwRmwFYUA/s493UDlhQEcVVCLFFGFAoGHdVZvgYEAAk8t5wwlhQOtsXlJb+GBAs4L2Hq34YEDL2rCfrQFhQEDeN9nTD2FAUHd+UqEVYUC+qgHJyjlhQBqB9z+jPmFAClu6Trw9YUC9q1MkBgVhQBZ1DcE/IGFAshBQ1MNVYUBZNdo/6lthQCKM5IiWOmFATjpUbptRYUB/Ues5zFBhQP1lStdFPmFAkMTAeOpEYUARAPiZvDphQGJHnSPOgmFAcGgkn1i/YUBQbBlI2ApiQA0kLcC78GFA/Fw7sZHUYUCszYE7NONhQIRUs9OY+WFAHa+WKVYKYkDZZ0Fd1+VhQOyzchXxBGJARGeu4mcxYkBlkOVpkw1iQLHviRvsNWJA5UZNiYtCYkB6niajXlViQAwmZBbUQGJAxLt1LBthYkDfZ0p1CIxiQJzNkkCxfWJAwB3fTSOUYkAIW5KruLdiQA9q92H2t2JAJzn9WRaYYkAcujPDZ5liQK31KyEhx2JAYROp8dLUYkAxYXKxBtBiQIGPYKco/GJAG8Q07J0yY0A08QnYBvliQPHNmnBV4mJANJKJ45MGY0AOI4ojvORiQHzlKY5X8WJAmLf6syYAY0CZuL3sC+xiQPSHWXlK42JAN0EerInFYkAnCS9ETPNiQLo/tYtG6WJAYSeXmufFYkBxWRtkTtJiQAUH9lYetWJAnhS3sR6FYkCGU1H+vmZiQBq87A2hVWJApEQZVxx2YkDYL5RFsX9iQPHjf+s8imJAXMzjDBW3YkCbau66WcdiQF2w2r9JsWJAd8mpeQ2zYkBVUThXfsViQFctEa189WJAYl6vfrH+YkCvkVfl5u5iQP0jENb2y2JAWkOJlZ+1YkChHg2H9ZtiQCrti4xZk2JA6YF3HF6qYkBLifCV5dxiQHTjfh85umJAm0c3PZevYkBU1dVjrKliQCOJIhfiz2JAFIMX9zL0YkDkskqTX+FiQL0SffsD7mJAvBq/0OrPYkAQw/EIorxiQEPpyheWrGJApveN5h+UYkDPU5Ut8mViQNCUHcKOnWJAvoQ8YiCMYkDErA9gh25iQMIkHxKJSmJAJaBx12h8YkBFPwDHjLJiQC/uuBbgf2JAmIjJi1VVYkD9FQiG+YtiQN4OufR7omJA8gM4TZScYkAtIxyzd9NiQOon8RJmzGJAv5OzZoueYkCwK+ZB6btiQBf3zVbszWJAhT/e2tneYkAd37JyV/JiQGNSha/WCWNAKKQU+zYDY0A14Jb4VQ5jQFBrfCtALWNAmSasVpQxY0BwzQYTNkFjQJO20ZlPZGNAQakHRgU0Y0CJn3rBhURjQDC9lqpmKmNApvsdWHgnY0AFcKzp1zxjQPLo4QvYLGNAy4KDgHb8YkDIlSRsou5iQIaNcmXyz2JA2nyqRhzKYkDvEZEPDMRiQDm7NJ7T+mJAgOrGLeDKYkB5JTB1F75iQMEzgk5YymJA0UaJmSu3YkDqv0qUhZJiQMgVgjz6n2JAXHux+US5YkCOH3W0wdhiQNpwZ02Xy2JAcgSUeMfoYkA3J9A8FNRiQCghbdr1wWJAw7X4AZjkYkB0hPbOc/hiQIyo8hDt72JAdIiOEF7yYkCSuwsEx/BiQCnjKB4j/mJAvi46YaLpYkD5p3thA+5iQPaMsFV8BWNAM+ksNiweY0Ad7eRcxSZjQMTEM9lE+2JAzkb3YJftYkBazE+SrgZjQHr6dBmOE2NA2/3uUMPdYkAUX5JZJ6hiQBAdQ773f2JA15kC3ViaYkBIvOq4vVhiQPvhfCK1VmJAKqIdQd4RYkCzPZK0hvdhQIdcLZB88GFALJHYYBjfYUABUma7iuphQIFq/D0G9WFAFdgkg9MQYkDnO+1igRNiQIW5VOCRK2JADA05m2g4YkCPdP+RR0diQOeMrTSoNGJAo8bFCDtGYkBFtNjDNnViQHdDpgDnmmJAIbDnRX1/YkBvScQbxJxiQH8GDznTt2JAuleo8UMEY0BuQxcRqBhjQBy1r2sq9GJAk+gKooI1Y0Dq5KL+NkBjQNpTQSsHWWNAYj2vhgw6Y0A6oMIq8B5jQEQjbaxQFWNAIXF86PYjY0DRc0xlZR1jQBVH1Xj8CmNA12KlbP4ZY0Dxs6ntAvRiQGVUCgQA7GJAPqRN2RPrYkBRqSoK5+ViQJdlaYH5tGJAw18qIWu2YkDkgHzIftZiQPOzP7qdyWJAN3gHCDnaYkBL6b59gd5iQLpmwO8ZymJAId/NQbe4YkAzypfrneRiQJaNU2/o2GJABCzuVDO5YkCoEa7XZ3BiQLd1E9cXFGJAREtE/cwUYkAM6FOZiPlhQBrKgfO56mFAAVwXi/fkYUBciND7Ko9hQLCpWHw6UWFAn3t00YVNYUAR+jhWuFZhQP3qfgUzU2FAnph/BKNUYUC/KatQJk9hQP8bEQ75UmFA5tO5rNlDYUAuwHVrQQZhQKu9EJU76GBA0RUWJJ4fYUDxcq+dYyNhQP+vOh7EDGFAXs7KmU0pYUCpoqZjMyVhQBN3dPTmP2FAXOn5w1hjYUC1nr0aEGxhQCY4BuWvQWFAzze3QmAZYUBCfGX4mhFhQERvmYPEIWFATp2yoTQAYUA1+vnHCPdgQKdlTnigF2FAwByDAjTzYEAeQqVjtwVhQOHBj6cV3mBA9HoEqM7PYEAhcSpMpP9gQNVjS54U6GBAe6YEFUvIYEANFTHM/qxgQBHn3jSyz2BAw8gRK0EGYUCOwNvXI7tgQBb+wtx/vmBAWnHQx3K8YEDVblosz4xgQEVdrqNBvGBAYX+v/bKkYEBPgHPGHHxgQIOuyqtphGBAvT+GRiV+YEC5V+FnFWdgQCA9lpHHMWBAGdRSdosWYEBLHFrT4N1fQBBDOQeZoF9A6mBEAMXFX0D0BBATjrtfQPorjRu7aF9AMz3bb0jjXkBcIYUJYrheQN3hpyu2sl5AOtLm8B/IXkCxwCrJoPxeQBGc1rcu2F5AtkBz+ggFX0Bsl5sCIcZeQI+MwiUKvF5A6Bl8CMbuXkDO3GLTJkBfQAWCUGS1i19ANjyT/7mpX0CLGirE+sJfQCbPJxqwgF9Ac6sQQH4tX0Ac67nO+xdfQMlesp8wA19AUAMbubQ3X0BT6oujTmZfQJNDC6ZjEV9ASviHS+pNX0AmcGNi5mlfQFdNmLeFWV9AMg17FW3LX0B5b8wq6vdfQMfFvpfEEmBAM6spJxP/X0C+fVf8R01gQOyIP6aKMWBAtaChw65jYECzLqOkH3VgQBaM/iSmbWBAujz36HRXYEDQe9N4WDtgQKdnPH5fE2BAu228KXYKYEC2Ml2T0hRgQMKHr6hNAWBAT+nenP0BYED6ANNtre5fQIrFNGxFAGBAKEYVQ86oX0Bg20L4zmBfQIEAZKLPTF9A3Ufx/mNFX0D0Ii/FUjJfQJ44UZzMhV9ALvhCtHoGYEA6vDkyBwVgQI0uHGuN/l9AZN5lkpn3X0AlvYYZTchfQMI/QI3htV9ACmrTxjnNX0DGKrqE4cNfQKjDRgSWrl9AxccLC4KbX0CtmegoSaVfQOgeyrQSj19A2+VrcTifX0A2CHfEot9fQOfOT6bpFGBA/WrlxHUUYECYCr6C/CxgQKLQ0toeyV9A9FWmhc9XX0D8F/skfV1fQOT8NgluvV9A8xvndhj5X0BItkDWYNlfQP05+jQ30l9AJXNBK5aXX0Ahbpx9M01fQLhd/H18/l5A2neGAo0lX0DYeirZr2tfQDmhpPC7sl9AGariOXrjX0DEkYopnxxgQMkYDuOsQGBAvP3WQZ4uYEC/zoyH5EFgQOxtEdTrUmBABNh3tzFYYEDm1oQxc0dgQHnojT8PQmBAFZU2lT09YEDafamXpypgQDncEzVK7l9ATwnBIPojYEAQwjTdLiVgQKfZ48qXOGBAD0WH/Vk2YEDd64nUPCdgQFIgmqae7F9AEFzOrVYSYEC7MFNVn8tfQHSWCY50DmBAVO5nOHkMYEDsuaj/8ztgQCZ34zznsl9AQCrX3otsX0Dy9jylFZpfQNQS8lrv1F9AF3q/fIe3X0DUrPJnw4lfQEdf25UEjl9AZll2MJxkX0BhiQIne2NfQAdcu9hSwF5ADhcPc4PsXkC1+MCBc8deQNwXFaMgE19AEVPwtpcDX0Cb4dnp1ZheQNYCI1avR15A4zd8qGyRXkB4gm6iGJteQGJtaKpOt15AqlIsnCJ8XkA8dEoqPX1eQOq5UQm6pF5AKsJz86GDXkBrMJ8fcLpeQDX3ovQru15AMyrCskqoXkBokv7X7pteQA528rV1oV5AHYtDlEnDXkAmJ93X/zpfQMqBYi4QHV9APqm48QbYXkBE07v6s5JeQJRH/a8/XV5AA4ZPz0MtXkBQy5Y26rZdQDE1yK/Awl1Ax1Aqp4IOXkBj00aoqBNeQEuVhgFGG15AfBK83qbvXUDgNS5Xl/ZdQHHrvYjfFF5AtzkXO5L5XUD4eLTpAyteQIwtgk/CO15A9C1ztKcSXkCMRvNihy1eQHqUNVHvC15AtmIvJyIaXkDZ2CP58v9dQNplct7en11Ac+HYA9juXUDZRuZsx0JeQAiS5tXfx15ACp1jMllEXkC+2AOBQj5eQEfWYBwpI15Af2DJ7f1JXkAFsUylAuldQBTwewSQAV5Ag1W5JUBxXkCZlPryoSVeQMS2bmIm511A52WUH3+4XUCXIiaZpr1dQBX2GbJW0l1ATDA4f1pOXkB99AMMNX9eQE0PO4EGml5A4wtynv8FX0DT8zKX3cxeQM5GC70khl5AgdIXGIbUXkBhF/a2RuFeQF3O2XxwzV5AQ1lmr8HSXkBNCbhqXKZeQDy/J8P1kF5AkJ7BzYdtXkDolpWgizJeQKoHsrsxC15AQiOQ1zhNXkDjoz5LLy9eQPksZSC0V15ANY4deOFXXkA5AcG/wTpeQAqcSzO/Pl5AESs+uWh7XkCaxh954nNeQF4glauNn15AlndQvIxiXkDAUbBiPlteQIL0J7xUsF5AE8NUxmeFXkAJHtDiCsBeQFllmK7U1l5AsGUMUeQjX0Dcmntmc0RfQNRmw5hFcl9A6/ZX+mv7XkCeLY12EtxeQGlnuuFX0F5Ahi2jv7QTX0DWcB+x+yxfQOIqK0m/0l5A0MDVD0z9XkCkWGZF5ZleQENw6rJxql5AaXjgoYTRXkBnHkgYhOVeQPsl7r2BEF9AuKrWR1hVXkD5cjMrs2JeQPLDHWz2dl5AKfRUBRyMXkAtM8UsEAReQLv4Ph1nBV5AVLIX+rQFXkB0GeQr++VdQOTnCV3xI15AzwYpa/0JXkARmwQ7r8tdQP3pCtTni11AF+UlUi/HXUBgoa/yYrpdQMK9HB1lV11AdpHgyhl6XUC6PGbEm6hdQDq+i9nyk11AGKvfUxC/XUBGNQ0zYfVdQHNOHeBNKV5ASSLQNkAdXkAaJjsxuxFeQIQKdNZE3l1AuG6JWJfFXUC4V1DY1NZdQCIpwY/I8V1AQeMEXG8PXkCGfY0aMtRdQMZH2KgWe11A48jQ2Pt5XUBDoJgT3ZddQFJiHRpr3l1AG+g7PhPpXUBzFilIV/FdQMpjJw3F9V1ARh8TufzeXUD84g5vz91dQDEqmVgYFF5AGpd9Epx6XkCiVMA7xjheQLKczx5x7l1AYWlxgIkNXkBxODrinPxdQJMQpKg2q11AmGpIhvPFXUD8a21+Z9BdQM/UaOyyfV1Aie5dA0aCXUD5Z61dv4xdQEwHAfVsS11AmNnpNnPEXUDhSJSMdhteQC+WWwtJeV5ANXU9idykXkAxARTJ6j9eQJ0q6J7ROF5A23pE7PRvXkCRk6M8CyBeQEhJ0j7yFl5AVots4o8ZXkB2sA4u5D1eQB9TFQRfPl5Ar9kogCk5XkBlGgOrqTNeQI1Mx5gyXV5AUBeCykGIXkBELIKbj5ZeQL+yi8qfqF5A2GcwPzZ4XkCn7+LBnE1eQBg0G0HuBF5A1nRWhMESXkC1zvflSOddQDeVNyeCtV1A0p8qurOjXUClEs8DcUpdQJAsyVOMU11Aa2FuMwgLXUCRnM4+sNlcQMAc22XV+1xA2bvAvBDmXEBokObYZeNcQEoVObuEnFxA29O4KfmOXEAapQldkGRdQDReBfSgZl1A/KHHbEOEXUDTnKpCIKZdQBEtPPeNo11AMiD3WGKBXUAmb7i6TIBdQLfPhAzMaF1A305f8g+WXUABOF8FneZdQK80FY4txV1ARLrSWAm6XUC06NGi7XRdQK5HO5cOvV1AlhBi7cVwXUCvbGIHw2BdQCwBNz6CO11AOBGidpGCXUBMAhyaFK1dQP1gKyVisV1AIKnZRsmyXUDp6gTUlH5dQDDE0THEhF1AJX6Nshc2XUBaa1Wm1DhdQKMXCw0tpF1Adt4qv9gpXUAzcWYjKzldQPUyI6zLHF1Ac9zLsRoaXUAZQ8+VseNcQHtG5pbF4lxATnRcGu3PXEAP+oPTOuNcQDPZWnddwFxA1b0BmoGkXEAQPGnL9tRcQHuQZxfIoFxAuHgp9O2xXEAmRI44gPhcQDR1cgdw3FxAaUZpAQngXEBstay/usRcQFBT/o74nFxAmFIWQHYxXUCtgHUM0/JcQHccvmQTYF1ADhcjj1NTXUCr7znZcX5dQE5PmiYmu11AOBcGiWyHXUDg4nXnYthdQImkPRto7V1ABbJhn7hIXkAsvIXgM8ReQJpFUzDeuV5A/syk1rC7XkAbYexuaqxeQNjOXhp7r15Aq+gv0jGVXkAAEmQTuKxeQLWiUlTnIV9A4gF6roJ2X0AlWgsbsB5fQL9jL2dsI19Anx70dY0kX0A8aXrlvk9fQI7qAz/BbF9AylQQXJ7tX0DwPyK5I+RfQOQgT9fivV9ARwrgxFDLX0BnGAWQyiNgQCh2UoVKNWBA5e724eZRYEB+602XA05gQGHN/pGTGGBAZyJ6rKPeX0Abl5IQSblfQFYcQZCZGWBALxphmARIYEAKycy2g2ZgQAg5HILAdGBAlJb9RGFzYEDG2ruS5mBgQB7yWcBVWWBA0ChC+bVpYEDwzD8WdFpgQPo2W3UyamBAW9pve2piYEDIsvo6t0VgQHjzMQm7QWBArj5Mbj9EYEBN07M67fFfQHnhsMaIyV9Ac37y7xiOX0CGPXMpeUtfQKu0nUaveF9AUl6l6GjKX0C79z+19qxfQEBwAo1/sF9ADlyc1BBdX0BJTqP55HxfQLuThMDYvV9AS0v5/VYFYEBpUz+/LApgQBZyH/oXC2BAww6ndSHzX0Cf2mzQDBpgQB7JrBGP+F9AwDVJLZ+XX0ASVuHb5ARgQGmN4JptIGBAY/mATZ5DYECnekjk6jlgQPxODEnxPWBAly0mckgWYEAjg0ZlBnhfQONbohuUsV9AO94JiWGbX0AbqOuskW5fQHM0/qnEHF9AnJ6ZtGW2XkBe43hiLp1eQC4P8DignF5AEaox9S/7XkAkSYtwtStfQO67Je8WHF9Ah6fD6hCrXkAC0Wq12GxeQDxLfwaho15AzvGkiRPLXkDg/a6aWrJeQDX50LeChl5AxoZImGRNXkDGhUwdcGdeQGugJ8dcOl5AXGsicPhCXkDxP+pL9IZeQK2+4k/gnV5ADtMb7fNvXkBuWBBzq5FeQHCotVQqHl5AekCLb+qaXUDeFgGcYZldQLI/murpb11AilVr9bc1XUBxpUzSdt9cQDMpOFGuw1xAMtau4MVzXEAi88+0IRxcQIrG7G3EOFxAnLmkCO9SXECSaNdvvGxcQLZUkdv8JFxAT8YvmQTyW0BewhEf7jBcQBjNYmb/B1xAZbEdMlH2W0CDVqCYkAJcQBf2rVo47ltAf2WG9nv+W0Ati4y3QeJbQHp1/CuLM1xAmkBZJwrmW0DSOTgLW8lbQJjdNfTOR1xAtFLyGpDLW0BFnjqol9lbQFYjg32doltA/gNtMmyCW0DFa9G/OHdbQIHTMIoF8VtAqyYBQKKpW0Aii6QRBsdbQPu2H8QZH1xAhr8KtAEfXECezANIhhJcQJuTznzDplxAoHLqBMfvXEDLri2OrQ5dQMBfyEHq6FxAmN/uZUQEXUAPA3L+fDhdQORh3ixMal1ALCIPTqyfXUAXfhi+YvVdQKe/45BuRV5A76+zPgcdXkCqaqp31CxeQHqdXBNRWF5AhLqGJIdHXkDhDyxNFOVdQDaCcG8a+V1AVIUM8YMMXkDmkXxVeMZdQCmMpoJZq11AWek6W+eoXUA0iieUy59dQMqarzp0nF1Ac9M64bfEXUAu4KoVruFdQOyefuIVJ15AQCcZ6G2HXkBsASxr2DFeQFr0o6t/kF5AP4J4uoysXkD4NQbdAsFeQNpfu5Mezl5Abf/Hll/fXkDos4T0R71eQGMGfOGlhV5AxqO1jfPxXkAinhxhGYheQNh67fioa15AqcOF2yjlXUCDeunY6NBdQBprAeZGyl1AtEQfcBzeXUAylxiMxyReQFu2Cfnm3V1Ag7mDx7zFXUDMmxBVWtpdQDYQV3HGfl5A6UeBwqeqXkClOy3k3VVeQDGUG3ofIF5A79kNQqYnXkBptpA8xcFdQCrk3dhk4V1AmFRmq975XUBWFjLxTsNdQDvl6uFBpl1AbOaPVi6vXUCDewwjydFdQHhbPBp/lF1A8MJyanOUXUDwFnZHF0tdQBJZwG9vKF1APVtl0lpSXUDVqsV1/nZdQOltLXs52l1AHSrYaAW7XUDQsu1qfM9dQEtPI1zGeV1AY9xZ4p1ZXUAiznrqZ2FdQEa8XXZtbV1AJ/rVLVGkXUDexAjrV0hdQPxUiZ/qhl1AWzedGz+PXUBlWVDlOoxdQC7E5aEwDF5AXbx9qNJcXkCWYbNDYUdeQP0sndYEa15AK8pZGnDoXUBQzKJlpxNeQMMv2aCXDF5ApZQhvHqwXUD/M8ck1IxdQJK9fXBbVV1ASf8CRjb0XEBY0GL8JvxcQJbOju2HfF1Af4LMDbJXXUDxPRoyHEJdQLqQFAFFGl1AuVnJfZRRXUCoq+PUMDhdQPaq1YN+WV1AK+qRlfbDXUCgaBkJTuddQKiPbnbw311AgavGc8saXkB5HzOsAWhdQC4JzKzYjV1A7WOizoDCXUBapP0wne1dQE5wVyZi411AZZTC9zyaXUDujuUlAjZdQDsHjXtEiF1AxZR2xAOTXUBkeP8XoBxdQBTF9/n0xVxA+/HNYXH/XEBk2tcwvE9dQM5T2ekjGl1AQifdiGvWXED05+45nehcQG2xW/zY8VxAidLhO5R3XEB7ARM+ij1cQCjkUKZYVVxAWatlTSg6XECkZsRj2kNcQOIgzI4SClxAvxJ/wa0OXEDHbqjLmjNcQHlHJiy+ZFxACuI/F75WXEAQE7vE7G9cQK2qy13xw1xAK/9rOeChXECLQNwcFV9cQDTLBGyMk1xAfijTXZntXEDGlJOM2jldQO/XsmzWMl1ASGcsnIcJXUBvGhpMneJcQOr6kVQbpFxAVfnknSGpXECspP56rO5cQHFjc9nm8VxA39xl9lfTXEDme/sTk8JcQEf7YTMu+1xA6UTWslmVXECWQWlBWLxcQDU1m+USNF1ApBnjZIxBXUD5mbYXHTxdQOLWZQxDJ11AmCE0GvadXEDXzbOopbhcQMscPaCLZlxADgjEe5rFXEAkCv7saXBcQNl9ImlwNFxAk0oc41YDXECgXqdw699bQPktDg/FgVtAi5x9gIxgW0D+zt0XfldbQH3JZcywMVtAMvUPU2prW0ASOu7S221bQKKHJRo0J1tAGObC3mP+WkAnzpJ/RR9bQO3byk4WMltAYYGY3UQbW0CFzgMO10VbQIFDxzOTN1tA4+UQpTY8W0AGwpEP94NbQOqlGWgrtltANNvaf6Y9W0DQsb1Ljv5aQBTxUWU6slpAKKPIUw6SWkB+AMS8VcZaQKDRqWACmVpAIp6QyB4JWkAX8NgcUNJZQDqSmzM/wFlAK9NN2rFFWkCPDz7de15aQNH6P5wAAVpAPDCPXsNJWkB92F4cgYFaQIo6CB7JgFpAVUMzCD41WkACca/W/RpaQK7svsozCVpAN1K2IeAYWkB2NVXQ4bNZQGX+b5h0YFlAEtrBaeZoWUAduFxYVYpZQNODh/9fEFlAFKMefkI1WUCe7cbBkcBYQN8v9abm11hAsvhm9pfJWEDGGLmzH2NYQN0IQU58Y1hAf+52IBKDWECwLY5Eg7ZYQPGOJLsMiFhARQmjGMHYWEDnhVwUzj1ZQKnwai3aVFlA1PX0AetdWUDHA8A921RZQDmvJaD2cllAfR5TF2/GWUB5WNtKmoBZQGgOEMnzV1lAnrdTo8E3WUB3WOPZ31JZQA+t6ORK+1hAwE27dH8EWUDXDtIzGidZQGE7AECoGVlA3Ez+Hto0WUAYoOrIm/lYQAgoeI1nF1lAbQsRcYWIWEAUF5XfLmRYQPS4ykKBf1hAECkmT75DWEDRVb2ImUBYQKO/dMLlklhAZwUX5d2wWEB4FaTzR/JYQJM8O+8681hAYCkYy1K6WEDyN+rN7xBZQK2WhSi4KFlAtZpMIt9LWUAqUI3ujURZQEkJQXUPZVlAkRaJiT8rWUBskC+auBNZQKJgSme5N1lAHyZAA3lHWUCxP2fbFx9ZQGj1hkg92FhAXsklO1knWUCSLSlp3XJZQL16i7wtY1lAh85SAM4hWUDkH/dXgTdZQKgZH1dkqFlAKeK5Cep7WUAg0gzrpvtZQDXJw3H1gFlAy7cclqfvWUBTuXno9lNaQOX+1IfX8VlAhebdItXtWUBOEaf7B/FZQPH3bwlI1llAqAmbmuKSWUDteVqkgopZQLyc6epHyVlA/Bs5aucsWkBGuWTQ6FBaQH5bOA86y1lABIKdaW7+WUA0cZeZAl5aQOW8jIpJDVpA/OFafbYqWkC/4zDrbNVZQH1NTDEwzFlAW69STks8WUCo8yh4bSBZQG9VKy2L2lhA1DMAKXNtWEAHa0mlha5YQNQcht75wFhAb8INdhjqWEBGqpJKCZ5YQJYgJpV/ulhAJp8Qx9a7WECcJgm81PlYQBpf1JY72VhAQUJ21AT/WEApTZq+aKdYQPrt8yxYgFhAbCDDQOSqWEBbquabB3ZYQN78jdyjLVhAZX3J5uBMWEAli+2DKmhYQE7DDJ/ZTlhAtFePsLk/WEALaSLvzyhYQDzjhFHGH1hA04xjHYlYWECrvUrgfoNYQA+UMqbcfFhAAkstTx+lWEB1cnaeuHFYQK5jLy5xFFhAyMzq6E4EWECxXnBC1h9YQH0I0KNN21dAbPe/EOfYV0CP3xVBTPJXQKhhMhEO4ldA5Hv7532OV0AaEfjwkfRXQKgGeAkF8ldAw1aXBfQYWEBgrsLU/AFYQBP24pmBJ1hAwwisuAEYWEAC09Y55h5YQMIJUv3Aa1hAhIT4KG2HWEAbY5tL19hYQBwcgfIl3lhAQRGxJBQLWUBZmieykNJYQLbe+uxHyFhAOyCaJvPKWEAInniTF79YQDEfeT7BclhAyfrSTUBMWEBHYUi5sJJYQPI57FnD0lhAE4Xym5gbWUBVz5nN1ENZQDHrMHi2Z1lAK3FtHzxLWUB/IQE13W5ZQLeykFGUsFlANQieNg5KWkBO+aNANvVZQN4auzWIzVlAR78F/eMDWkDyEmL+z/ZZQFvPSQmPDVpAoa2HuBMLWkCaRXtNgPNZQAcCUX6n+FlAOrrTwmYiWkDXGWW/+PtZQO8d4vNe6FlA4kwBqzrmWUChBMrEwr5ZQHwGNFsD11lAa4i1sxEDWkBSeJ4AUeVZQDOg1yXkrFlAHYlFxGM8WkDs3gIWjBFaQBdHEnzfCVpALUF6yC0+WkA19LK3k3RaQHpl42kNuVpAFv2MIdEFW0BA1ySQbSRbQH/7AOXPU1tA0fyvIdtPW0DtxYHtaxpbQDQKEMIoAFtADOobTKIYW0AmsKYij0RbQLgnEp9gIltARoDB8/RWW0AEI/QqaWxbQH0pocVDeFtA4FPuN4uSW0C4c/NSnoNbQO+lD6dFHltAhTzXzPAiW0AQ8H4/lv5aQOxYpVYBWFtAzED7/5faWkA868Ml39VaQD6/IHApDVtARpHCtmqXWkC1iyolMmRaQJs1fLF521pAPid6MHsHW0AsA8jozIlbQLNUWwjdOFtAwKoFUZNPW0DY6mwUD1hbQLtYRY0nTVtAtNJ2eHUrW0DZji070+RaQDv57DfzJltAtQBWHkI+W0Dxkp9MWzpbQH6qDop4S1tASYJ+BwhNW0AjF0bwwQZbQFPb1VQo2VpApJpIvl04W0CfAK+lSaBbQNswZwlQwltAtw/A4+DOW0CJ1emdiiNcQJieBUh7NlxAQDJY3glMXEDo4eEhaM1cQGe+4BnVCV1AQXRTXqk9XUDegr1GqB9dQLNmwZHXOF1ABCwJOVlZXUDS+uXb+FNdQFZusijk/lxA8kc5KCMJXUCGuLuFRmNdQPDMPl4Da11A8gvafAOvXUDepLk9lPZdQBHQwD10+l1AtMh31YEhXkCbDCKjQyZeQMGGtoOQ8l1AqI4mcn3KXUCwW8ym+hVeQFc7XVdSK15AHh+WySMsXkBXBvcSzV9dQPN0gZR4Vl1AcKUifzlzXUClihFXvtNdQNM5ail5iF5AfWwZsChMXkCqYiZ56GReQBdXDURpPF5A9q4hfZ6MXkBLy35usaheQFmURBZYN15APQa0koE/XkABAXrjZyBeQDWtvnaDbF5AMHIaS1L3XUApKKNWxxReQIeYBOW0Sl5A+yqib5VGXkDgwerzsPtdQKskp2lQil5ANAxn9GgCXkCurEhQButdQNYBEGY2GV5Ajd9VU3k8XkCd6LvQ3yxeQDX7ktQDzF1AjW3NJYzeXUDb1i0a+21dQCKiL4kPFl1A+AZ9jo3HXEA6xsEjsKdcQHmNwIhg+FxAw7M+DvRpXUC3w3IOEfZcQGC5NbXgQF1AJ2GJu//9XED4Q0zqwv1cQAf/vnOM8lxAteBquwzZXEAZBIUZy3pcQM5M2nJ8kFxAakYKsmotXECgtxnDd0pcQBApkiSBWVxA7DD93WtYXECpTWZr1n5cQAuMqRtBeFxAHhjIfghLXEB9xnjdISNcQCgCggOR3VtA5mCzJv2wW0C3X5ty+s5bQMyFfSlXsltAO7Yyf/F5W0ClaR5WduhbQH9+kVYJwVtA+pzKvM2EW0D3EL5JgG9bQJ6QXOHwmVtAT2ro0vBXW0AufLiPGT1bQPIBVJI4iltA1VWqhtcVW0CAq7HtMltbQOYBjXI+GltASeLXEt9xW0DpN2QJ151bQNDhtwi0WFtA22JMnxevW0A0mEmkq4tbQEsr7vpTlVtA+8JguWhSW0B30dPRYDVbQFdlWSpD9VpAwZLZAsmTW0Dq57BJkJFbQPpBlFTB8ltAo9UdasY+XEAUGNN8STVcQPQ117+BIVxAxoAhOq20W0B9kwhK7fVbQAnX81i5JlxAkDCD89koXEAvt+ygrnNcQMRG6PtiS1xAZRWgL9ApXEBQVuujG2hcQNNwHNPBcVxAjCZWzZ5oXEDx14yCU4BcQER8vZiNrVxAsc8IgQqpXEAv63n/gARdQCln7oS0CF1AsaMN+AonXUCs1lpd89pcQHuTV0tgy1xAM7ZkZ+zLXEDAJcm9Q+JcQMcTFfOgolxA1lBHlFG0XECB5LTauqFcQOHyfrUHjlxAfVnbzJQ3XEADZs/HHA9cQOeqWea1GFxA1GHErhAWXEBV9674NBRcQNIZpjjoEVxADHB/ud8FXEDids5KvM1bQAGvf2BRp1tAlx2SltS6W0AakSc5z8hbQFuCKdsiFFxALi6xpwegW0BmB4dGVXRbQNqJXZQnQ1tAB2r2Y2gxW0CZP3qqW0hbQMQV+0mtPVtAGQICmi/OWkD1i0VcoChaQJv2IDRsfVpAWQBREl/1WUAKvM/XyktaQLSgGZhOOFpA8lPmMDF6WkDo+lwjS2haQLYXUP/JDFpAM/nnKYjKWUBljanNM/BZQHwBOYNlHVpA38UBM4ocWkAN+L031h5aQLBZh23kxllAfIXl0A3xWUBG4++vSspZQDx8R2LQlFlADykYSo7VWUAq2XCwuxRaQMJ+RMUI6VlADvB40UQkWkCbV/OPrz1aQMr3Ic+AeFpAsHbLRxolWkDlKA7GHStaQPBiS+tyD1pA/W1Dr3TnWUB6lqHaHZpZQICJDhUvUFlAKXRtrtVfWUA1D6YeBWBZQJxr7olUZFlA9ACA3yIDWUCoQxt79OdYQPkGzPjfCFlA9WTWXfYfWUBHMlv7LYxZQCd5xpwM21lA7AZ/VRi0WUBvg75bnBRaQLUhJtydd1pAVY+V0yUdWkCNGqvl5RhaQPNsHrPWLlpAWBwT3oBAWkCwky235cJaQNedi66arFpAvHhEA49YWkBx2mmS/VxaQBGvW5TiiFpAW3adxcN1WkB2Z1u2Mj5aQK5842ocwFlAwEu5ZHYDWkDOciMHvgBaQDOI/QkRJ1pANO12SmwbWkCEAesI/8xZQLdI0AIyVllAjCbEA0Y3WUDHouCmGCBZQEJgGeskHVlAR5+w7ZlwWUBS2FiTxMRZQH4u2c72x1lAbHNqUdAEWkBVs8VqdOhZQKirY4K3FFpAAbPzyqwyWkDrJU8r2epZQBhZwdCux1lAfLVa2OnBWUAJCf4sKLVZQLO9+/Ss11lAXrOIdHjLWUCQPmHOGEJaQPAsh4BIH1pA/x/7+Uv5WUAXmExSaYlaQK43/caaUFpAMbymRlxwWkDPU4RAJGhaQCWG/+zv+FlAcccwnQ6vWUAll/fuNHdZQGLMJU8qrllA6yNFQP2BWUA/FCddF3FZQOZPour9BlpACIld2+1aWkBQqFWgDGVaQHdP6ULCf1pA3PjmEkr0WkBQECwOrdBaQOJPjycf4FpAINxveF/gWkDldl3/4oFaQO04kq+NllpAwti6yuW5WkC3/521uK5aQDqM/udmyVpAUsyGFqSuWkArqGseaWJaQIbgwfLeSVpA1kPEqwRuWkCYQ+xD3ehaQCkeLwFmulpAin/Gu4o4W0CabhMh9vpaQP2PzauM81pAFu/XsFfSWkA2iPGsqqhaQA8aUEIcCFpA3gSVAhTVWUD0+VgTU21ZQGaD06JQi1lAOSV+Bb3PWUAwA0Ue/8hZQL21lRTmBlpAzZCt9F3DWUBuR6eAMvpZQBt08jUq6llA5bZ/pCgfWkCgXZ8mjyxaQJBFtsACrFlAUrSIN1YsWUDhJwWblOJZQEyIb6iZwllAtLhFCzRHWkDtNSgWQgBaQBIb7aPGsFlAgdqmgCHJWUAoWZySLlhZQLAOWMDizVhAeHiaXjjlWEDO+vX79JhYQDyepga3slhA7wGtJEndWECZ3K4ezNdYQP+oTKdxqFhAxut/AyfrWEAOe4VL0F1YQNEczcz+PVhAR4W1aq5KWEDqHTdH3CRYQJCKbR6R4FdAPY4p5d/gV0BWz/R3ldlXQFzE4SbjyFdAfWZp/BStV0DHbg7RCaZXQHMDXisYUldAkcOztWm5V0BPUGwxAYpXQNUpbq2MbFdAJMSjTO0kV0DULsyiD8JWQD2UPuLDxFZAXFbZUCTEVkC86/qCn95WQCyH4i6yxFZACPITxGx1VkAbKHGDrqRWQLw+/Ia4nVZADQOA6aGhVkBhbOeQsvBWQO4fqEQvtlZA9rxIPSGMVkBCrPCO9eNWQA3IYjtwaFdApr/DfiYJV0C4alVqGcRWQLpvxnSp9lZALCJdE3nVVkBqqNI5o/JWQLrvkpNtEVdAJx4b2pcdV0A63p/bdY9XQNC/cksIbldATidpTHdrV0CtRc9Le0NXQGNrgEI9LVdAeJb3MrMJV0Dt75yXpMRWQESenz9vzFZAKuYvrTS7VkAQo1CoYmVWQKXn5tdtXFZATG4Aki1fVkAt4orDT0VWQDi0SogcZVZAztA2aepKVkBV5ofyVZBWQPn4jFL1NlZAq24jFUQgVkCZR1tP7/BVQHJ5bhEX9FVA8komXd+GVUAB1f3wA+xVQHZmzeHjM1ZA3rq2A3n9VUCTiw2b1c1VQHWoK35Mj1VAz8riffmgVUDSEhDd0LlVQLcxQgt201VADrUSZOQVVkBJcf6EqERWQHibgiBuVVZAyxA3j1ROVkAW42VdW0hWQEam6CFzd1ZAKLzzXq5OVkBqcGBwlHtWQGsRrnReo1ZAY7qJkYrSVkCyHy8VHAdXQIxx4x7wPldAylBgAo/vVkAHVxNkbOdWQKp+woFc8VZAYCSmbLRkV0BRJEuzYFFXQLHqv4ArmldASp8k4n/iV0AR1QICfeZXQIZnTZ0bGFhAQzHr6EagV0AOFMKpljdXQAERz/mwT1dAaILSX2IxV0AVf3JSNlVXQMdsnXM1JVdAwjXX1P0pV0DJlwgcRddWQPflrLZhCFdA/iLbZ3slV0A1dtVXhx1XQJsdgEGq5lZAb46T9PYyV0DOaTSEAVhXQKse89RMSFdAqkN3sAQrV0AUQ7F5RvlWQBy7IXOBO1dAjCjex8t1V0AY3vRr/0VXQEiEvHcgDVdAlQnyK2wvV0DHRsr42WJXQFJDGLrBP1dAT4XduZIBV0BordPFFfVWQKGVPFr6R1dAWpYmtTRqV0BRDPauJkFXQGqj6971O1dAyBS6rLYnV0C84IVXprpWQO8b3l112VZAJopiYRm+VkDCMyfQt6xWQAhfx3WtjVZAzLJaDNKvVkBr2KiJRA5WQIASeOT3/lVAOM2OvBDMVUBnK/1cd8lVQKHTmlXD3lVAV5cNr9MkVkA7TolpsipWQMTECtjNRVZA3YnXKS+EVkAjw5btwWtWQHE/SCvvglZAsO1j3xhnVkALvt5MUnpWQMunSPOZYVZA1weBwoMXVkADvop318tVQOYsKHDg81VAE59ka9MPVkBpzDoOuhhWQEaiWQwOL1ZAS1Kpr30jVkDqDwxIOf5VQBc9U7KXI1ZAnRPfKc87VkCMhg6zId1VQObTCFlpx1VAzJnBWuYoVUAGUYN2ATNVQL1t8sZiYVVA4lKPwqB3VUDEN/+zxL5VQBYLquTpmlVAyEDvlqrnVUDYW7FbsNtVQE3OWsnML1ZAazIyZgSFVkD9joXEdrJWQJtw38veMlZARR5vpO5gVkB+j9rK5P1VQAUzkSU76VVAadD1dBmmVUBRxqx9hndWQNR4t6qmsVZAmBm5GkfCVkANnXXOO0JXQMhouCdXUFdA7c9gdNUiV0BINDHY6SpXQBqBoLDqkldA88SO2lCiV0CFbp2HbpNXQF51LUQlaldAb78COOiPV0Dr4zuKmGpXQJu0VfqOOVdAG2Bm9c+AV0ACSxoUjmxXQAywUD0f0FdAUcpdO17yV0DNk34QDZ1XQCHF3NYICVhAh+ve8jeqV0BPHvT8pBRYQIjE5pK1G1hAB1q0j4QOWED38pRTfvxXQBd4mtzfC1hACop+IF2LWED3vYqezi9YQBbjrDIHO1hAVMwGmJdjWEAz1pSuUNFYQMZbWxQHp1hA9j/nW6j0WECXb9il5Q1ZQB1uDbv04VhAoBzYTHG5WEAMZcCJv9VYQMbez5SeLVlAgjGI8yd8WUDc4c6G7JhZQHcBxaodU1lAq5zMCgk8WUDgCqPvsNZZQHJNNbNTOFpAmL/VXP8oWkCbmv4fahpaQFDoTDNkEFpAr4t319gcWkA7X0LDJSdaQCFBfPVQSFpAu9XUw1eUWkA3tOxBJmVaQMKtqkQ9r1pAiVW9A2wSW0AmddDizDhbQGKu5Fv2AFtAi/JbHYTkWkCLSr6xTfZaQO4awuPn4lpA2Fbkw4xjW0Cz5PrDTkBbQAnYI6qxrFtA2Hj5tttyW0Dwvd8wzcdbQMd+OLyWLVxASH8gK0dRXECIjfCw1ulbQEvd//+EFlxAtcVf8NYNXECz7QzoVd1bQMxQyMxGZ1tAkwdi3PGiW0A03EQyD4ZbQK8rJmK7c1tAO7V6hjdyW0AflMopq2tbQKwXr0UakVtAIJBOS9K0W0Bkrp0YHGZbQArat3LChltAxP/lajKJW0DgwC6167xbQAfIG1kDsltAbiZ3AxO9W0BNunHcqwpbQI9K9ybLQ1tAZ5qGEovoWkAsyc/p0p5aQMv9Y6C7ulpAQzpIwWTwWkDHguGctCxbQF2wuZW8GVtA2tIIprk2W0B9Yzh5T+haQNsqKmERv1pAljwwy4moWkDZaTmQXrxaQAZxPqH/P1pAyS94azVbWkBP0NsYGA1aQJF6tt10EVpAAZNH8bKLWkCPMU1XzFFaQNlSn2euDVpABf2BRr07WkC+bnDqhulZQGUoDfyvElpA8PmcxT/0WUBQf7I7gPtZQNm/vT4gsllAN5bJTHY8WUBcnFm3Z/ZYQHU9WVl/EVlAlpXEFv8RWUCDKbU43GJZQA0j7U0bx1lAWaGS7ljZWUBZLrnsxQlaQFQMlA1DD1pAyfFdblbjWUANdJps/KtZQLAKSNRvhFlAfMQK9vmyWUCdYwE/KRJaQD3y8yZtEVpAePYBt6DpWUBBRc8HwmZZQBLR3zOKFFlAfYMzyL5OWUCGwLUfL1JZQBmVlVXLV1lAjFtmb2gdWUBclfZ809VYQJ3uNEgn3VhA1S6qwZf4WEBaCCJeyUdZQLjzW4aHyllAvPL9daG9WUB9wsYUx79ZQKvWjjrIB1pApi1rNqf6WUBEt5nHJsNZQJWorXIaOllA9DsYgEdbWUCowRkYsRNZQHus3ZldMllAD1kyn28YWUD90fCHStdYQK+SN0MjtlhAUflq4SjVWEALqduiyuFYQMGKIRDmQ1lAOtQeo6skWUDIhsdNBi5ZQPEtFh0nMllATtpd+Qy7WUCOeKOL/qNZQMADy5ah11lA/jobSdq1WUCtfbS2SvtZQOEZDpjmKVpABIc5zRX4WUAnDZVHqNZZQBt2N0YhDVpA89xhUrRLWkCGv00QJtVZQMy+tFrZ1llARgh1GbrMWUAa/DdMPN1ZQNKIF339AFpAgLxPdrZ1WUDDJqATS7tZQAi1iJjnkVlAEpNZXq7LWUBB/GNXBOVZQCXzcfUWNlpA3wUYY2tBWkD4BxnlL4JaQChgMInPH1pAMJuQGQSMWkC8jMlEUiNaQLdNxIgG01lAkXcZo3WfWUA/ffFyKtxZQHA1A4/Md1lAMlgcCQwRWUDBZkSJ1T9ZQEEid7r2PFlAJbvG6+4/WUDygdepLSBZQKa2VrzBVFlACde+8goUWUAqn0WBwWRZQGDo8miL5FhA12L/Sw77WEBnHh9JkeNYQG7q2KgE7FhALVZPo5tdWUDOtndraLpZQO66vDrSl1lAc2bQQWiUWUDqJI6RatJZQC95AJsEYllA8CECpH2AWUB+E0pbhitZQDHBef4JfFlAHe9l26BEWUD4VW/aWYlZQEvrBvkcj1lANOXObAupWUAk/Yl2H81ZQIU90L6t8FlALG+ZsXgZWkCZMkLthQJaQMtGkxgbLlpAxJJOuOKOWkBxMBXGB2paQN6UhIcArFpAhtXmvm+LWkCDD78ddy5aQMZcOzFzPFpANMOcJT7TWkDOOm3PhbNaQGgNTktx/FpAXkGopQ8jW0A4of08xvVaQK7JepiI7VpABR8T9qDKWkDRK6t8jLhaQLAEIoeAslpAiIberT69WkBcv5UVVIBaQJBkR7HpZlpA75TMpwoZWkD9r2LDvTJaQBqBw9x49VlAjL8o1GjLWUCjWGm8quhZQE3Ve1h7IFpAa3t6eEH8WUDqgVU1RPZZQHNciFkhJlpALAprPPZWWkC1la7H1HNaQH1hDcG4FVpAS6kPJNLiWUDFwYRJHcdZQPUZ7zWHgVlAER3E2xhvWUBLTOA2bV9ZQAX1bPdysllACtQE6cOaWUAKdezin7JZQOMr/bnQi1lALkIO7WSyWUCRtjp6hINZQJgR/BIOgVlAdNW+3qlbWUAKLnOpl0RZQPyt5GNlTllA/pydLF+wWUCCRn/WZohZQDZNYCXFXllAqmwPviQDWUAE59zULb1YQJP+hIGDN1lAZHjpryArWUBbxqFLhWBZQCYc/s2xbllA1ufNb4dFWUA7fD+Gh2ZZQEPc/uvIHFpAjL0G7A1jWkBE8hU32cRaQGNQauaGflpAfVrZpBe8WkBKhzSrrxZbQM4qgQZVP1tAnTPhYuFDW0AAzBSMcoxbQGkOAh0AQFtA9vcw45roWkDSWpHkktlaQP9odwot9FpAv2kLPVylWkAqJtEhH7FaQBsTLuCUxFpAmWzaXFuSWkAJ+DDxNKpaQBVw3DFQ/FpAbBRfNrd5W0BcGSaQnSpbQDqSEsl4+VpA7QD8LTLQWkD4dWdiX91aQKW5E9qgV1pAyfKrqCxOWkADisBmL9FaQCjf5ROj9FpApM/Hb0bFWkBvmF1ETHBaQLYH2x4sSFpAZXDPsWNLWkB48QigNuxaQALjFjdCCVtAtNzAk3TGWkCfWmM6YAlbQCTsY0lWIltAeYKR9G0aW0DhsOIPizZbQCu5C33QVFtAcRju4F4xW0C3G+B0ywtbQHqOhTLiH1tAua7ZkgXqWkB6qxDpg6FaQI1s7Is2YlpAUMs63gcgWkCuGwIxx3xaQNr9QPwVnVpAsaoIi2WfWkCiiI4FSHBaQKduPMB2XFpAIUUjfpqnWkBIzuRt+9NaQLIIn7WkcFpA+MC84qtkWkDUWV4+y3ZaQAzN2uQrbVpAqjYynMCPWkDPRJKmY8taQMIWpjiugVpAcwgGg/9YWkCl0UZmLilaQO3ESty+8VlAMyS7mVDxWUAnICyVPfpZQEQo9ca8RVpAzRr0ZStbWkCgFtK9jlhaQBzCUn2fZFpAM2jBDCCOWkC9TP88ViBaQHkQU9JtKVpAU+8z0bn/WUCV5TrHsb9ZQCGhnRnB5VlAekRIkQDIWUBjaGH0uA5aQKawnxqwVlpASxsOiMO5WkDEQVGhZdlaQA94CWbQM1tAMgjDblUkW0D8e83vxTZbQEQGl/npRVtAxVEXs+LHWkDK2GdK9dFaQDMrRmachlpAlbtqRIOwWkCWwAQzhwhbQI62oFzOrlpAaeIfDwyKWkBIktCVZ4NaQIFD2I9Pi1pAv7xp73WpWkBp7Yh2F/FaQHb77nMsH1tAC+p+24M6W0Dl8v9jmGxbQDOFYrPuMFtAdjdExkrpWkBqbI82JMtaQHKHZ5bO31pAUxwVm1EKW0DdEs5JofNaQFxFGMCqyVpALokxdhkDW0BeulSFJ3hbQNedaaMRcFtA/JjqPGuuW0AazBhHzr5bQAJ9TKUj01tAH8laUSCaW0A7YO6BrStbQJ/WqyKbVVtAFK0mXlCEW0Cg7aRaKhFbQNpRK4h/NVtAELwcZP8uW0AmtjPnCwZbQDvG8Oy6GFtA0N5z1G0BW0DfWkXDiJRaQNcIV5Gwi1pAJ0Vhu6mHWkDlUDn832BaQPseSamHu1pAbLoRE2eVWkA20m0yNX9aQB9wktVoBltAoce8OUw+W0CDLZMayN9aQDtsdIFwPltADgAkk05HW0C6bwktWS9bQFMuiWF+F1tA0ZyOSJJzW0Ax2RzP/XVbQBKGc/z5UltAkex4Q+0MW0C6CZQfjV5bQGWQa5fQJltAQqS0ce0dW0AUTCnC2CtbQJIofc7b9FpANbeJ4wEtW0CJ50VT1AZbQCiGqzRQ71pAQi3q6Zn+WkApAOhTUE1bQMGPZIpACVtAJeWT0NBPW0BbxfCTpTFbQEj+cqm3kVtAkpjUq5nsW0BawIlUsmxbQDcGuM8nGFtANCwPimVCW0APozHWIxBbQN3Pi6W3QFtAiWNIyaPzWkBQoe62gxxbQKuYqi+Vo1tAdEMo8a6RW0AOKMutinZbQJJ3GgKEd1tAkoBjhESfW0BTMryu+7JbQC0SHKP93ltA1V2vvlbmW0Aki+kb5AFcQM2g1ywlpVtAlTYzw+88XEBlOPIIzPtbQMuv1nE2sltAuXt9ur7RW0CtoVLeFdFbQLZvt1NmtVtA8jo83ObFW0DFPeLaQcNbQLB86g4+81tAocSOhlkFXECP4PQvLfpbQOvmE4my5FtAH2QoBx29W0B6ap3pbKBbQFg4QgMNiVtAMfHtJU+AW0CpEbJcHKdbQAQKmdckElxAyaVayF0hXEArPhNk+WtcQOnxTs+ERFxAAfy44XybXED7tGqnCJhcQNV0jqAYb1xAQHdgWL06XEAUbogFMAdcQHU0dTqrB1xACiiSyTLQW0DQpQ44VV1cQGBqWNszxVxAybdoZWl4XEBhZ5NOVa5cQPaC+l7wplxAi33iaObBXEAEfwCYIWxcQBWKH5aVTlxA+Ue8L3NGXEAMMeh6SltcQPwuw5e9NlxAuzASkoNqXED9nqsZbGtcQIJ1UznC+FtAYcxhtgrFW0BwxnaNSiFcQPUPMjaV/ltAyyLJ6LB4XEC49oasSZ9cQMn+7rrU71xAIAOaQLY0XUCrLSlPmvBcQCrukYFWDV1A73ec9ZnNXECh+VHhSq9cQNomYJhamVxAJgsuY2HpXEB5VhQq5sFcQEs6XtM+8FxABk3w2iciXUAXTmXO76FdQBE/8f2zvV1AopPkwesiXUDD+QcXVvxcQPIW/xlrTl1A4X9GcykPXUAsAjnpWwVdQCHN3s98Wl1AeJi2OQtqXUCbFJesAkFdQNsnaOIYeF1AwCemMkKoXUCUadrz2WZdQF8sBkeaQ11ArvtXbP17XUDtCw7zxhZeQE8LAu2zI15AWLSUTShIXkDCaUK34W9eQMqgRUTtB15AdjvMiJemXkCn6TVo4YZeQIUCF8N9l15AaJtnoeOuXkBle11h5cxeQBStOme/xV5A2LiY5a1GXkA85Aq8ZTheQC1yW9JVBl5AT5C2DdzsXUBa8R2wFsBdQK1IHJviM15A7p7Vt3/JXUCFw9vI1ndeQBIs7PndS15A2DsL6nhEXkC0L2hmKlleQPXntc7ICF5Aj1p4M9/lXUB/3uZIaD1eQFFfVVFoT15AnxrOEDV0XkBr/57GEPNeQLghk/Q2415A8bz0sEhCX0C22hsxSxFfQJe/Xs4KK19AaxWBKUIxX0APxDsp5AlfQCIQdxXtEF9AZEB5htSbX0DprLrVkfxfQL6ICmsixl9Aqu/hwLKcX0BpaCXN56NfQLZ745BJ5F9AJiR+uwrxX0B0x13brh5gQAmXQ7ev5F9ALJQ/aEn3X0AvwcLlIBhgQCMWN1LQHmBAiE4nZ7SkX0CERADP6xtgQGW/RW0QImBAxjjX/K/lX0Cc/UsBcQNgQG1/QlpaNmBA/PsRw5zrX0CT/8SO5yJgQF+nN5EkGGBAwz5icxrfX0AGPtutRv1fQORjQXCBLWBA950eu0VDYEC2Ia94WUpgQBS6mC3NbWBA//CODdF4YEAb1EIuD5VgQPZ2b6Uck2BAEZVdX0eXYECvBbU1pn1gQNjTS4utbmBAfzdqvPpVYED7TKxrcG5gQB3Y7sHgNGBAKnIYMIg+YED17hruUh5gQOStI6dNO2BAKLuIdL0uYECVyzuVrTJgQA20mc/cPGBA3KGj/ZI5YECWG5v9Vz1gQMapEtPnQ2BA1onWxCEzYECIvxphOg5gQLQXQ+ty0l9Ay1YPuQjjX0DtnYjRHQdgQDY39B3xE2BAMGJtGCMiYEDFljSeRzlgQKUbCxdMRmBA9/s4ojleYEDOKcvARDBgQBlSmuPjNWBAIJqHCYYiYED5E+eOBytgQLtM4b9waGBAIjiSV2FtYECxk2UZzKJgQOMVd1DckmBA/9PdHMy7YECmT+jlTLNgQOyqB86ukWBAN8ysHFPGYEDajmwEOL5gQLLVKrispWBAbPMzde3IYEDTDiiDM7VgQH+CBR00umBA1N1Yh06qYEDtYOb3xbVgQE9rumzI5GBAZXrs8Wj8YEC81z0k0+9gQFE2GAN7CmFArsEueDn0YEC6ywwyDilhQO2t3Sgn6GBA4Y3k/C7XYEBmn4q/nd9gQPndItCo1mBAbo2XfRP7YEAf7LTE2e9gQFsqY4GS2mBAIOvFH5zUYEAlZDr7uehgQKL8CbP2tGBAOMZ771avYEAllm11E2RgQESQIIaFZmBAawYnkChcYEBuHtbggW1gQKToDmvRTWBAnggFkz2NYEBPni6dg4BgQJEVeRKnZWBABaSo7w4xYEDqt6ZaX1BgQOcFnnQWa2BATjSfMHtlYED7edXe/JFgQOH7cQMFdmBAs4auIBB1YEDEw59AYXxgQPOko79IjmBAkrC7a/y3YEDh8oTIiqJgQKz+2UmNgWBAi2d9YbJ7YEB44rsBzYBgQELU4T4yiWBAZjeSarGFYEBeLdae96ZgQCxysmIj7GBAovMhiD3CYEDY6w9F9bRgQCVvB6eCsGBATv/2QVKIYEBHq3aHKahgQGn37N9aymBATPfYSMbsYEDS8zmruxBhQHhFEwgU4WBAvl6hern6YEAIG9dUqAVhQLg+2q5FBWFAm24ypggCYUA262/QhwVhQMQD0As2/GBAs/gshZXNYEDdDG+04qZgQFcqC5yXxmBAwRVLTKn1YEAXGe+6aBNhQGR4Hgeo22BAeh9MCo4SYUCL7zZYgwJhQF7BuLFjM2FACEvw5h9nYUBSNpfyo5phQMDQjfAVkmFAQToYV6Z0YUACiydO0HFhQFmhzgZqa2FAVgHW3lenYUBbi+8mjYJhQP2Sm73VX2FA4JxV5RaaYUDuWYTdsHhhQLKoFtBFoGFAUvgnmGaVYUBvYugZsb9hQPS0LCz2wWFAfKPGmHe8YUD149Iy6+JhQPvNa6qPEmJApdUh9+sgYkAHxWkFPAViQI9knlskDWJAx68k5x8cYkBLhuecMyxiQCep4ooy92FAD8jyjjEPYkCRmIVa3FFiQFfDqERYNmJAdPztGSEzYkDOy2ceqjNiQBYnwCgtJGJAye6+ncgRYkCJWHU+Pf5hQExRTQelI2JAM3+qBCsPYkA864hwB/xhQFl8F60Z+GFASMFGp27yYUB6y9lVYB5iQNwB87EDFWJALnoWj28SYkBTofYBqSFiQFnEmpygIWJAlo3dNc36YUAle5gz2BNiQP4syhE5E2JAN0av++AhYkAFMlm1PEliQASks7s9RmJAb8ebzM0jYkBs6tuKDhpiQCBNBkDML2JANroFL08rYkCnqO0YPxFiQNTnoHYYGGJA1QgqCVzyYUA4CqkVw9NhQBNNv/cAyGFAc7FEVOyxYUBk1oCpGb1hQGZ8cBE+8WFAy2w954qlYUCqb+Y3hbVhQNxpnuSa2WFALhp1t4DRYUCAicr9ygJiQNU5rxaKHGJAROYMLuc2YkDi3if0NHJiQNuP8cmRfGJAAw8tFV6jYkAhmI+vS8FiQOR7Qf2ivWJAUb8toRTvYkDSXJ0Lr+tiQOuVJ29V9GJANT1UTfbVYkDY9NPiLdBiQBd42dTzq2JA36GTTvefYkAmapina6RiQJG5g9QKVmJApIltSb17YkBXbwcr0GtiQO5y+mDpcGJAnb8Ms1qGYkAZUpALv5liQOJnObk+dmJANrsv/WBRYkDBgSKOKzhiQJ792KVQNGJAOQKjlqEyYkAlsdTepzRiQJhN+EvY2GFA23BkUhLjYUAMI4zEUfFhQG2Jy5FeymFA2S0TEJrdYUAJYeFE5w9iQB0KAkA7M2JAK6RELfj3YUDh5BYmNuphQLBwNQoH1WFAv5CSNBDNYUDRwviH//ZhQOewagPz7WFACYg0iVTJYUCUWJ47ENJhQGGYqakb7GFAiwulBWT2YUD4me0SSRRiQF/upxiyFmJAYZB3QSYAYkB85NleJcFhQBEREQbT0WFAAfLvO4PvYUAE7Az7U9FhQCvUHrowumFA64a3BmapYUC4BePPhN9hQBLvXN1D02FAmMbI1BbcYUCtKD96o9xhQHyll/Io5mFA8wOzidbvYUBhmkLvg9xhQPJAp9W90WFAFPLBVie7YUC6SJB8NGNhQI1QT77LZ2FAx/S2bLV1YUD9fbmrpm1hQCdeCpQpeWFAGxloYVilYUADCrIIaZ5hQDtQOOVCt2FA7LKSSKScYUBp0Jw7J4JhQIvasZN5kmFAXqKjkCTAYUBRyUIhcwliQEdjg5xv7mFAh40Wt4rwYUA/H9xQHC5iQDkYKB2rFmJAu8cepRwAYkC4zaiGJRBiQMq39VGnS2JAhZ4GPWKCYkCwWfRBozRiQHggrKIxQ2JAR6U7/D0pYkBfqbHv3jhiQPpFi16XIWJAGAg+OaciYkCH5L5M1TxiQOI+Dka3NmJAPx9qFk0eYkBKZHXyxiViQCXhRoK8GGJA7lVZrpgqYkBUtL+6cCtiQIt09XyRQmJAXnrsmT8vYkACsT3IciViQNiClZoLP2JA999rekgGYkDSktD9bA9iQEUxNIJyNmJAEpWAcbgvYkAQl/kGGzxiQM+GX0V652FAf46AqSrRYUDH+NyGmvphQNkxZu2bIGJAcZkaJf4uYkAlyOy0dCNiQCK6zVqcVWJAcR47m0BoYkDRkDe/6ypiQKjIqeZ3RGJAz8BDXSgoYkDZ7exhQHJiQH03wwTpaWJA0DKx9qNuYkAHpDkl9IFiQEN6RxGrgGJAZNBLz8uSYkClxehl68JiQNfYfomYv2JABOgUmtqzYkDtpkfNu7NiQKhaWqJTpmJACDr8MYOKYkA/bqkAUKFiQKOgp+ejo2JAwcD5ExP2YkDSE0ct2LBiQBem5TBqemJAtLzIMw+rYkAvWNDBw51iQLUT3vDI22JASqV9LY3yYkDD6rW6F/xiQK4IayNhAWNAhKmoQg//YkDkfK2MA8JiQP1ArxPdu2JAnt9SFwH/YkCJZQgvydxiQPHOsaoT2GJASQSa2UwAY0D31SQFW/JiQCfqVqIDBmNA4BsxhL34YkAx6iKXn9xiQDew0+32u2JAsxM6SxuaYkCbydB3ts5iQLYZTIHZD2NAGOabgdnrYkA5ijEoT+FiQGkwQam14mJAZrJf44fcYkCpkB6mo9tiQLbGrx3B9GJA2ihcBRfvYkCSh8bUyvZiQEB0WR1a0GJAh74vdxv1YkApm4nSkw1jQPQIQHcED2NA1N7YNKoZY0CNU67CYU5jQAgyLUjrSmNATI3F5HBSY0BT+Cv4Fk9jQFYeWWTSSmNAm/CXaKtqY0C9QpqvLHVjQKbt2ipVZGNAj/8pK/taY0AAUL55BpdjQBy9C/EMjGNAvOBHGuugY0Bs51k6ipVjQLfrFmo/oWNAAuDgZkl8Y0ChqQkCTFZjQMoI4w1iUGNArzHCB+cfY0BnYnJMAfViQC0aPkpbx2JAjFh6hCmlYkC6IIrs9IhiQNgYsRashmJA4ouluIN7YkC0iVRwgIdiQJacpMiUcWJAGJeG7YllYkBYKj0uDXliQAr/CzfUa2JAufo/WpdYYkBK7E69n1hiQPHk+T77g2JAZSxiOQBkYkAxxaqGOYtiQJ57oyYbr2JALVtGkwmmYkBqWdABer5iQKqSvlIS6GJAVsDAv7kDY0AUgKSj/eRiQBwF0ubhs2JAKikN8N2QYkCz2rUB+MhiQFn7xALcnGJA86SNhLWCYkBH+sCpWnpiQCaVaAzYhGJALVKclkdpYkBV5aVgTm5iQPzJov6ib2JAeXHJE3JpYkD02pVr35BiQG357HmA6GJAFiuQXInZYkCg89VI2NdiQDs3/e6LymJAl/guRvWOYkA27W/u0GZiQHfLw2uvW2JAqd7rXzBhYkDlqi0SRl1iQNYwT5inU2JA8yOROHRbYkDoXdC/0pZiQNHUUdT2Z2JAfOi9Dp+IYkDUzzqAbn9iQCGyLo3thmJA3KNIz4KIYkCINfv4NzViQIAmrHsHNGJAWB8KuY02YkBGgmTe90BiQMjGPR8fdmJAC2EF/LVaYkAgYo6x5nRiQAHuFLu3e2JAAD2dq4x7YkB8IuWF3ahiQIQ4IJuJxmJAx0FRh3bAYkBYTOgQVbJiQPnwaE8cpWJArbx/8YneYkBM5yxMN9FiQIhtTrW4t2JAf+mKOqiIYkDqzx7K7sZiQCQOQXd412JATYNy5EEGY0Dnn638y/NiQKoiVH/qHmNAiwoRHVULY0AJFbqAEiBjQBVj7hVfHmNAwR7cLl1OY0CTokuYwl9jQAP6uwUeTGNARAS1TUhDY0AOLceSYEtjQE8e1/CWKmNAGpbQ2BcJY0Dx300Q8i5jQEcWEpnsCmNAp0jD88gKY0Bf/NHmqAhjQHN2Xk6rEGNAmxjENoAfY0Dfmyur+y9jQP/FeJdpNWNAv2D8SGIoY0Bx3QZmnAVjQAfp22ueImNAmQm5YJY7Y0DA4Gu4IyFjQAu2dXnrGWNAATtyxSMCY0Bm97n0BwFjQKb40OIyyWJA3Vy4Xx6DYkAPfMPyyHtiQIqV214ai2JA0xZw3EdvYkDtoPPixmFiQIbfJTLAdWJA4y4JDOyPYkChvYbOhHliQL2oYEBPY2JAcqShL1dBYkA6vKchN11iQFod2/huEmJAJb7FzIQAYkC6J22iQ9JhQCouEy6iAGJAXa/hsQUTYkCSr8vIoBpiQO+O+hOvB2JA2y9Caus1YkAGuiH7GRdiQHtC0d63CGJAf7C0GVr3YUC0czC1T/9hQLB5KRoOEGJAeRP3sUEEYkBqkdrUsu1hQLfGjUjC+mFA13CRjFwzYkC3DTAygztiQPE8bAtiRGJABrTbiVJaYkB+t4RHe31iQDUoNtcGQmJA8Jys15oiYkBuC8QdyXdiQKD/KkK6ZGJAY7YypHx5YkBrACAqRoxiQB6w7pKmc2JA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 1\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"LwSAVR9HBUCJhaHLizcKQJzJr/S0CQFAQjl6owhH+j8xOb4ANhECQBb6jBwBTPM/wFGa5ELwrr+mXRmfIhLzP6Kwm4k2y+c/8kXwB39+4D/A2s5GwOnsP9DeisQnwti/bEEGCNxM97+Xa4s1M84BwKJxP7s++wHAWJ2u6Nfd3b9p8Pr10c3xPw4UXSG8wgJAQBA61SHt9T8ygaN5QQsDQMwVm0V4T/I/IdrG9k3S9T/bt7+tJZjtP50nwTP4/Oq/rv1RIpIXAMAKuP4GXs0CwHoqFGdbtvW/BIwyeS1M6b+WSLBoflXavxj7SxlX7LI/fvjz0iHM5b+MFE2zgKDpv3rDYgMKv+e/z2DXqCuy5b+K3NS0wjzlv0tsW9lEePu/wAiEHw+h57+23cbGe9/5vx2bec8c8uW/+A/zsGpEyT/4Rx8GEAPzP4yj5msBGPo//40yxIjA9j82bgBCWgf4PwzgcIAUxvM/XfxbmRGK+D/rWbyBuKEHQF2jzZDmrQJA4PmPxDA2DkBQLtsNcS4HQBIxr77eg/0/tJnWqs93EUDcUVOKrmMUQH1DFK14RA1ACh4ol4bbBkCygKS9RFgLQGE2m+W9sQtANdXS/qfo9z9vkbF1Prj7P9BErYx/FN0/a7HwWW+V4j+aTPSTa4vuP9y88RNXEf0/TFBWRjCcB0C+DaKi4if/PxTvvJXQPQBAhUzXPoCw9T/QyQ5XOuvwP0GIoITZL+o/TV8UW8Oj4T8Ert5itRTDP9bYRnz3ZtQ/a+gGAcBezz9/mwDQTjrtPyFARFtp+QFAhA6PhnYU5z9KTbtURdjtv8zX/slI0/y/H5tlWqv+/7+JMVyIfjbwv3nZXa40qvi/MF5JzUAH9L/ZFS8zFBgBwPZKrzsczwLAxohCYTnPEcDLWWzEqjEVwEi3ixe7GxTAyF7y8/sOD8D13dgG5RANwAvFiOQI7AnAGgS8P9LsA8Dnqxna1LcCwNBw/ljjDQvAo+VvA7EhC8CXsZjsPMsHwEwlAMJKBQLA/oEO0b8YA8BzY8087eEKwHav0juixRPAeFRY76gjG8BhDt+0TkAcwLer9eMi0RrA5MFHYyrAG8AAXxPNEj8cwPbkICwI/hjAeouRQq3YFcBvvKSOvJIUwM2f9haphxTA07RiHlDDGMByIv+BZQsdwHdA6bOmtiDAsAfjWUNPIsAV0QVNYD0gwBqykoOyexzAl10ta6EcGcBvoDf2UZkYwCQPf2BfUxTAsJpnsMHXFcArBXFfCpwSwKAhyEo/HxHALJRVMs3YEcC1TuvGU5oQwKruOtaxoxTAIF6+/SHQEcB5eOAAu8oQwNxqRHZvCRXAZ3pjflbSEcCInfENg68OwDgS4mh9RxDAcPQLCnwlEsAgHMDfqs4SwAxX10QMxw/Andy63QJiEcAlO9AQduoOwLsYiGbvHf+/ILvo5WM+pD9qTJuQpUvxP7p2gX2bTABA+A0p0N13xj/zYIarGJDmvzISRLMoudc/3eG1mpak4b+inG+Kk3P4v2AhE5hC2gLApnVjEXEqCMCEdua0kwcOwL4T9oZ5ywHAIRMWIs6JAcBQpxu/39P1v0q0G4YRs/u/N21rv9RXBMAilmdyYvsSwJ4fEsHlPBLAHJp2B5PrD8C2pFFz7cwQwH9zC7IOqBHAkRG4rjSgEsA6bPvuAWcOwKQXU2nPUQrAnaxa3m2EDsBoQom6nzkQwPAomwjB/ADAbqKl5gDeAsDCWlNSP+D6v/9S6VwUKAPAR4NgfuuQBsAojpK3k0kBwPw3BzlQ7wXAxwVjohE9BsB8XFr6TvQLwKj0fW73bgLABNxDz1qWBMBg1Gc0BMi0vziBR/iRLK8/QhR5NV5u7D9DCuDpE4LyP2IDZNLbmP4/mS71GfSwBkDtk9kD0nEGQEiAiQT0rQJAKzpZgeY+E0DmkN75ReUXQDST7dXDURVA19hF7WLdFUAd5gJds4QVQDyTUHT1ZRZAIalCXKzLFkA7zpeHTMIQQOP6knsJEghAfouQDJM7BECi4lFXuAnyP8zGv/BSjcQ/HIYfG6s1/T+wo8bBmaAIQDxQu6RC5w1AarrnZ5v+EkDiyv+hxX8UQJKTAvySFRJAnPtaNLeIEUAqMS0ctkEUQHQufHkoixdA66ruWrBXGUBFx9evCJQZQMxNru/jMxBAWKVUbvZfEkCyNgFp+YIUQOucmgnHjBJAubYuVCQ0EUDSzBR45K8RQJaa1ctcvhRAGF04SDv+GUBW8CBiS+EbQP33Il60AhpAUUbaeZ6CFkBVz899PXgXQMpj0POKRBxACImwd3WDHUC0pkHVUnsgQH76KKudBhpADyXsi8XQH0A/AEQSTzogQAP16iqSxh9ARscaWeIZIEC1nQPMoUoXQEojcD87jhZAOauTcIK6GEAjyZYfCNsKQFBLkdu2Ag5AIiu0W/CTDEB7xgHhrQcKQB6s1QRl0xBA7hNNIjYzEEBmSoIpRX0PQNRr3SbkMAxAFGajOjsAB0BIppvUOxwJQE7F+9AJsw5AxG0GhXigB0CqQEH3FmkEQJY4D/TujPo/qvHXPVpL/z+OMQAPSXYCQH4RF58i+QZArqxFDLWKD0BMMyu/kDACQJe234hONPE/fhhgTcEv0j8a0zQZoX3bv5wRPACHwcs/WHFL+BF1uT/FO2xeNbfiP01RXMf3/eU/8ABXuAfsxD9CmdQFtzzpP4B4q4/1D42/zMjw/zpZwz/01HkNYRTGP+UKCc/xJOw/9bE5Vhcc9D8n7Dk+yQLrP04HXvabO/w/uk0g9Wi+AkDRcctIyjUFQHaxFVw2rANAvNQEI3q8+T9XOoG1RT7+P1K53S7hbvI/xXaeWzBsAkBc18RTV4rtP+YdoG768+c/OFSMyYUQ8D8GqtSizdvcPy7deKuD9/U/LG4ywRNA0j8gBh5zW1PjP0Gi4llwBto/Apxil/61zb/5WBGyVtjQvxUfWZkFBvm/BE53te69E8DzEIwspbsYwAa3BxatIiDAaf67mu+4IMDEyrn/+nElwLMaa85FmSTAyLfZpyLXIsCAg9qK3wEkwGC+mA3RPiTAacRHiHEFJcCx/qjiWKIlwBFPf3sobyXAIN9YL78RJcAhubwYhZwlwCxXXQmdXCXA0+jqQDqtI8BiiAurCeMowPR3evwhYSXAq0Hd+3IvJsAUTEkdLxgkwI7/WcBIySXAZm0zxk4MK8CLyILcIxMowHVpwoqduivAzqOHB3xxK8AIbp5ePjouwPmSffm4cC7AKLZsiN5oLsDphoha7rEtwHcgo3Q1gzDAl+CmgXdRL8BXDQCRbK0xwEsmHx+rkTPAyeqwKVGeNMBi+3qo1xQ1wCwStqoj2DXAQq0VRc32NcABo+Uxcyk0wDlwCcRDQDXACNqJeahgNMDvfdhLBuE0wFjAhIRIITTAFz1CPx+NNMDz08SbDVU0wNfpKVJmzjXAObshHUKMNcA4kMXoAmI1wIw0FLmnPDXAnwYsfgXnMsCCJTd0o5sywC4Mds8DUDLAMv5Kz85gMsCQ7Xoggk8xwBYUXLXSwDHA7zsWSzO/McBvf8KO8kUxwIhO0GglzDDAWazxg2Y+MMCxJCOnYfctwF9xabcNsi7Ammv5RJXPMMC8vBTOqXoxwPh11plJcDDAl43i/B0SMMAjrg6C5w0wwJwHWqYyIzLAMkU7td7WMcAVbRySEkEywELVxL01AzLAbGCWrkzwMsDBSf1e2NkxwPZ0HoHyNjTAzPvcLfm7M8AbWOrVC9AzwL/v7rICvzHA1RY3qPllMsBrptGy9PkywNv1aB3FnjPAFi6JFfywMsCQH8Q6U8wxwFT9AmgVTDLAnDI/XaGsMsBwqL43T1EywLX/Z+l19jDAp2qVK3qKMcD5nclJDtExwM3YJcC9OzHAYMgA7GhnMsD1Hz27DnIxwEmxOUACxDHAtQ//f5hCMcCN2Ct8OUMwwO5DvohGFS7Aeh0703avK8CUJIuem0QnwAEqiK04cCjADENPxO50KMC8T8uPjQspwAXCNDzHvinAU+KEQFV3KsBALj+l8/UpwKQI/+gc2ynAgqFkLiDuKcBcpvA05v4pwCWi09nf0ivAovVf+gPTKsAr72KucCYnwIafxAb/ZyjA5EwU6V+YKMBw/92dZgcswEp3PX6F0SvAosXysfAeK8C4dEPnugQrwFrV1tzenSnAjttohx9uJ8CsVQuFj/YjwD5qB3a/yiPALpQvtAciHcAsutWLY3gXwEBnU/FUVxzAHYqW4/HCIMBAi6U5kQMfwDvrCGRqOSLASVZfJNeBJcC+e41NP8AjwA616Op8ziLA9EVFI4T0I8BnWmfyth8jwHYzkJSnMyLAndWQGk7SI8DlTvJpQ4UjwCdBBsntLyTATjO4XC0KJsC9U2LfTHEmwOb5MIopWybAlfsiQTszJcCZ5ODisjYmwD0vYGCNwCnAnJFXJGXvJ8D+xDzcLLwmwNXOL+KbHCbAmA+7ZtXZKcC8cq8bifwowJ7Fa/Op8CLAcacMc3XuJcCmI99iUMomwF422ojMnyTArCDJCah1IMDs4JVvseogwOFGEkaj5B/AmVXuqPrCHsAuPhEg4S4fwHi0c9qb4SDAm0AiT4lKIMAZk3t66BggwHs997bTIh/AeGE+kiyLIMAI6kXFxooiwFmSFMEB+B3AAbfdxi0lHcBXCvUEB6AewH89wtrg/iDAhv/41XEYIcAC/UxEBYcewMRI79HqxxvARxEOBUZPGMDJhAdOcgYTwHq4kgOufBfAffURLBoSE8AaE48q0TsUwKK8sE4VkwvAzPKp46sxDsAKykV8p0ISwDcqnc4z2hLA91gfNMFcEcBu2SySpJUWwHqrWjIsTBbAjPiVw7WBFMCCmIcI/UQLwJUUOOYadxDAXzFa/eElFMA8elRWEDYVwLCYeB8uQBbAW9RhqDtYIMBIrrXPAREfwF3HpAXd7CDAMNfxWCLbIcBcBMnv8YQhwBgUpLVJVyHA8Jzwg+RmI8DgIfpAn3UlwDxsTNvShiXAyLiRlSZ7JsD3rOlxLf4owFCmLzr/BizAZoAM4pGTLcCfqmd1UaAvwICUo+4zIzHA21r+3wy6MsAChGt6bcc0wFDMmmhqiDPAxjt1e2w4MsB6RMsY0d0ywKQgs6ko5THAy4ecQ1pdMMDV4fy2tEcwwCY1TsfMAy7AtM/48wCGMMCnuqL3iVsuwMHrA5lOSy3AqtGIp8oWK8DDZmZK2pEswD4uOGT5TivAjankkLZ3KcAAmRtHmMAtwGXQkKWHgSzAeB22nN53L8D3DhWnM+ktwOP+ZFqwySvAWlAkmke+K8BsIkY3wP0owMA0UgCN7ynA5Ziyf6X3LMAycDfyA/QrwBLvbqyFeC7AuoYyx0XsLsAPtz0wSGIswNCcObPPDSzAL/v1nHANLcB1Kg4EjyUwwGFqLKwavDHAdmzBu+slMcC1UyDLekQywMztmJ5kkDPABR9rNFRBMsB2vnQppJcwwPEL2ZSGajLA9MUqJ8L7MsC5ltO0rZYywKFhHOjfjzPAfFFmdg4/M8C+bHgE1I8ywDSdi0WGgzHAkWLJK/1iMMAF94uAyKUwwBTcSsxqoTDAQpkxNlAjL8DWNuRock4vwLrMJRRkPS7AwIQlRb1ALsDvnDCk+1wvwOv77eteJTDASJWPCk2jLsD/Os6AgiwvwNXppWPqMjDAi/rJ7USuL8CHez9ASLMwwOfiHNjTjzHAo3fAkdn+MsA4uZxgk2cywMZtArc5ljPAIfKXtUscNcAcg/Cg9NE1wB+WlLR3zDTAk5EE5QflM8Cgfo5x4SA0wKqtM5h3gDTA5C9TNVtDNcDO/qFdrAM1wC3j+iHCgjbAkktAkfAYNMCtWJ3jtxw1wINMZr5bZTbAI8jPnJChNMCHCGazey01wK3soD7R2jXADYo5RfUHN8Bw7LXazOo1wLgmjFbB6TXAHeObBvm3NcBeDyX5kG81wAtuylbTIDXAeEjFOZOENcAcrVz3jOE1wBTa2uK6mDbAMKRxSWUQOMD3l/lbZCc4wIeTTcYKfjnA/JKmis+kOsAN2PCAyGA9wI3RI2j/CTzAHjjMErcjPMBm7iNDNqI8wLc4M2WLVzzAi6lolinKO8Ci4qrwsJc6wA71Js404jvAPV4nsCCAPcDVPlAEl+g9wL7UzHd1BD7AVYNwxGcvP8AekBXm7+0+wBhxjKXnujzAoGS82ws/O8BiDvuqP0g7wKoLB0+Wbz3A0et2OBRCO8AbJRk+DRY7wAnkMaZf6jnAwdCgackfOcCNngUfMuk4wPZYc/pnMznA+VTcARf0OcC7IZPb0Z85wA5KTw3b3zfA1krqgC3ON8DrbpsDWJU2wME0T9p56TfAPQLhkr/LOMBYl/Kp/Ds6wM2+yggi5jvAAajQlTg7O8DrWkbrPNk6wJ/WWV5xgzvAXtlHPDtcPcBdVvpRnzs9wNn/BJPpTjzA2hc9RmWTO8A2+TxqcKw7wEAf21JvYzzAOn5TTaqsO8DxVmti9e87wKzrwDO2fjjADxh8tUIEOcA9feji3jc4wILcIAd3yTjAUdVJcXB7OMD9oeuzqNc5wMuJZPTzdTrA7TsRnKvbOsD0Mw25yuk6wOJgeE8fVzrAYnEIBcWuOsDLIX4EYHs7wBRXld0fKTvAoqkrz/H4PMB4+7VQCL89wJoj0uJdWD3Ad6ClyjhlPMBTY24Fcrk9wFJjZVmdxzzAyiFA5HDBPcDhKzYTjVE+wGGL6ZCPQD7ADBctEB+4PcDPwpo3SfE9wDpUdPw9jj3An7Isqu3NPMCFVjvlpsc7wDmc8K7YITzACWGvwcacPMA4/0/D+Jo8wLic3gjUsjzAGUbgg1FaPcBX4vFLI788wBHiKOGa9TzAGIGQEfTCPMBnRQZoszw8wAhDAlNmZD/A6f+ZrtQWP8BoCWgkRA8+wGJNPQ2NMT/AmX7a3d0PP8BV6P9prlU+wEsn6mNiUz3ATrKeFAAwPsBCHUzWKFQ/wPTCeveejj/AR4E4YBksP8Bm5tfAOhw/wNUAd8dFez/AUhwm9Tn4PsCG+2WfRt0+wA3ddJqqvD/A2GEt4E9eP8A+43S0b2s+wP3g6ivy7D3AIHeZWywjPsBP+kS1jEM9wCX2XIMmQz3Amhz1bME3PMBAtH45vzc8wL/x4ZiITzzAdJw9tWaSPcAGSBbyzCo+wPoQNkcoVzzAK52rM+sHPMAW8euqsG47wAmOMHObiDvAw0rx9x9aO8BybS6BiIs8wGt2e+jhhjzAHQg4IuTrPMDrgZIxFhg8wBc3SazOjzrA+1sU1RZGO8A1runzg486wKnW2hwRdzrAPZ4E9Os8O8BuJkL5LeQ6wAIx1XzPbDzAUAJbE+PLO8BfWNI5lvU8wLYHrgpQ0jvAXD4qKTQCO8CXqw5Z3PQ7wBxFGZ0DZzzAzfIXe4QGPcACKIGP4Y07wKC9HuNirTvAJ2fF+BX1O8D4YBf2CXc6wJFdISKoiDnAfqzPd/kjOcDg93IFHTA5wLErnWPq9zjAv69TqOY5OcBWfEZE5x44wA6g2PAKczfAmnveYmRVOMC1h7PVcHo4wGQp6Xh7hzjAawkWHtrjN8AED2MmBgE5wLp/bWOAZzjAiYJQWAuaN8ARhYFET/U3wFWSDUXIjzfAIbJNJO3xN8DDn+B4QFw4wAiyRhoI+zfA37iteZ3+NsAtUED5XlQ3wDE9ygU7jTbAtjXBc72MNcD9QVXLSeU0wAPJxEO71DXAsQhjFFpxNcANb6YVvqk1wMPnP2PKcDbA8acdC+Z3NsA6IYNYxYg2wF303WAEAzfAY4dUKfzxNsBcxSEfHqo2wFbxYw3zfDbARSDlMWS0NsBsUriU6xQ3wP8/EcfT4jfA3HEpNOkUOMClC5J4kUw4wPF342ZyyjfAVxeatI+DOMCYbUJ0RTk4wHrTP48EgzfASX6IbVgLOMDDqn+V8v04wIRnJj3LGjjA0tTAQBNKOsAzKItZQ445wOp2lILeOTrAWlnWU4+fOsBQTp67Tr45wEAdxd4kzjjADWTHH+m1OcDj0gUzssk4wKmPKMzUVznAgR4SKwa4OcB2nhXMqrk5wNdgH9AhoznAh9avpXPnO8D5P72RUcY6wNPaCEzFIzrAUMjbJ6vwOcDXPnXxuow5wDNtdrt/ZTbAmcZzhC+0N8CTHoO8E783wNdAzvKpRDfAHTAMJEhWOMAtUN7AE9I4wGpSuQKFZjjAW80qWZU7OcAezyAOpHU3wHjWiR0cETjAjKQFcLPrN8BnLbNxtiE4wDe93G/UczbA04ZQTq7WNcBM86iXk4E2wD49pkEfszbAIGCIz6r+NMCTOGat1MQzwLP7oP3xDjPAWtFK4itSNMCM41TAXO40wK7N9gWkPzXA1UIzvEXCN8Bo0px+5Y06wAhZ2+obdTjAUt1SD0tFOMAQPavnSoA4wAPVCujN5DfAYKUW2zCmN8AqBwlMWzA4wHFvyX+uCjjAWgPaugn9OMAzKl2+VWo4wEV0Vlx1YjjATA7PuMCKN8CKgYSlNss5wOCkciK+QzjAAuJxGtRnOcCaQYlk/nE4wCxxFbILATjAWpffPTHdNsCuOn6qimc2wDspszIq4jTAVOkDck3aNMCbr2rw+AQ0wBShaixWbjPAifYMOt7uMsDcyq1O1r8zwGmwxLpR0TPAdfIaARUHM8CXQcxVqFkzwCLEwYtNDTTAOXJMJfkkNcC36hwNM5Q1wNQM++kjpTbA/MweUKh2NsAd58rNzdA2wEiafqzIljfAlEdCEh4eN8CXpYU0aCo3wMQsAG6Y2DbAdWwtvSpONsAt/5ExLMo1wOWfUqq1WzbA7x/cf7Y2NsDvR3IJ+lk3wF+Ay4PY/zfAByV+X0/yNsCgdJvvFpw2wCMmrHXQezfAvKmWhVkgOMAmZhDoJr83wLDthv+QujfAuZ8rGvknOcCxRC1KMFk6wAijp/EEkznAM2xZT+1+OcCdMvMEVPw5wADAuDsTNzrACNNzpfb4OsAa5hTyw846wJoam/NEjTrAdwgYFRdgOsBu68KbWko5wMgmke5ZAznA7h1+qm4yOcCiFotCXEA6wAQK9Po4STrAzsIoo0AbOsCvGymCwRM5wCqjlOrPhjnAfmSrRoxIOcApX5/rbwo5wNDKyL4BTjfAmDeqOPPXNsAaUMGjRiA3wPr6laB/qzXAum5gzTWjNsBTOENxCO00wE5m9kbEkDTAJSDjOhSoM8A7E7SaZo4zwL4xfGgw8THAIvgIpMpYM8AAc9TTpXgzwPxxKfdvNzHAf8OGBp8TMcAljO+dUGoxwJToS67yFDLAoHaHCf9PM8C7MJkGAFY0wNgh6KCYTDbAaNPkpQ2cNsAIf5Q/59g2wFcA0dDvdzjAb9JtbNYMNsDr+rEAxSk1wAM0puV00zXAXzoUkKwHNsDDp4PInbI1wF4rX22UAznAl31L5caqOcCAMuWeio45wLrTWrrlRjnAmOwmrCGEOsBtB9cvf5U5wJ2fdogfpznAH/rACrxpOsCvWVVlkaI6wAHSzvZ6kDvAf5Zx4AIlO8DcGrr24E07wO8FluKPDTrAnICcw7UAOsAiiTy4w7U5wAsRwn0ZUjrAh0VfaKLrN8AW+ptDJDI5wKSmO6Z1JznA24IYj2SROMBBwoXTmPY5wI70jRm0UznA5A5A/0a1OsB5ijkG1Zk8wG+wOP/tizzAgDH5EkNZPsD+ovPTALA+wN/Jo5vvDj7ArAQ5vQVMQMBmK08bct0/wBnPegXrUkDAG+VaQ0lhQMBIP+T4E/Q/wKhotqzgD0HArRERUAgGQMDrNCj+vVw/wBr2RubHAUDAniXOafheP8BqKR8oMMQ+wK78mbGRqD7Akwk9+8d5PsA+Oz0XvZs+wMY32P5WkT7ANDqNb7V4P8BGg3RrYbk/wGQzHtJymT/AaK6XH5tLP8ADqGKst0U/wEmbz2j+sj7AzbvK2yVGPsAFlmwCeqQ/wN1lxYoESD/AHza7gSQpP8D0S4INuUs/wP7h1M8HPD/A1o6C05kcP8Dgeqc2jqU9wBlCjzcekT3AJz9PfEMyPsAD01+/3VY9wBEPPMAW6D3AIAqTLnJiPsC3kfR7VeM+wHPWDFn0Nj/AyXceU/KNPsD0Mikrm2w/wEmJHM4CED/ArNFLhu/9PsBAoJRDzUg/wLE/4MPe0j/AYj6xzAXuP8CDUBHK12NAwIKw3Gt1XUDAAzHbqb8yQMBzolukB35AwPkZzmn1qEDABfTA7q5ZQMCY6rKtt9A/wJAboL+nAEDA3FJZFvicP8DxN5Au/pFAwArxRf9RgEDAw3kgMNGfQMCcMoF0ag9BwPvnxiT4A0HABemYjHUiQcDdr/9lIz9BwGBmiisBVEDA7MW74oouP8Afqx9bUrs/wCLyaI7IPz/ACdqe62stP8DaUn8mbqk+wGGhRmcJgT7AEURuXXfNPsD400w4/cM+wI1BHmZbdjzAdCy/DbHRO8AMxXEjCVE+wFnMY6y/rD3AARkBRWcxPcA80PRFrb08wPeJisY+iTvAkc2u712iOcDGdpGMjmM5wH+1gGQ/9jnA8eq5yDhjOMARsZkkJM83wNcKvSCY5TnAmDw653b3N8B08YNEABA4wMm+qBYFMjjA3k1i4/p+OcCSg4ASTpA6wLRcqtuYhTvAn1vf7jIjPsCI7Xu+WsA+wGGcapWa8T3AKtqDJzzGO8CFKIi8rmM8wPMj4mFrKDzAThUDTnz0O8CHutbV2S89wE2sZiYOkj/AlwA2C+/2PsCGkvHdrFw/wNDvnrGOQUDA0BbeK8F2P8AUV81fSCZAwCps7WZcUUDAXPOTCr21QMAnSzosy5xAwJYVbrgKz0DA0ZD/Vp+HQMDADsR1hBFAwMdR2hmEU0DAi1LfEl9zQMBFpwXAHtJAwF9z1/PXKkLAIp9YCIEWQsDDaQIVSt9BwCt4fUdtLULAAEn//jd6QsA9ZKASMIhCwLQ7YWQ4cEPAXgoTpU/gQsAm1CLxaRlDwM4TUtJNlULAjtXtDvpuQsAiwLyVWhlDwEOEeM0W5EPAn4YZMBaHQ8CYlGKy1HdDwJU6o4NTmkPAr5GuvQRCRMAJ4Ilt37dDwAoT9vBuLUPAUsApN91YQ8B7AmU1t+lDwFVtm1iFL0TA0aONDgQNRMArG/N5VfVCwOImkvb7SEPAYgZQDvbJQsA+dIqt7mRCwPyt9lik9EHA0tsBt1k1Q8AFCpAfjG9CwNNkTEi15kHAm0zCEGnIQcA8xMe7mFtCwJu1B7gEsELAWqh5OyqZQsDQnpZpEf1CwGBTfIjU+kLAXrLAawKyQ8Br7o3G+QFEwLqP2NQp80PAu07hGLMrRMAWSuAKY5BEwM4rqqXRDUXAv0/0FbabRcDyTKj7UF5GwAaq+WRL60XAbD1tNgFaRsBxzOtxJjBGwJnF73dsG0bABK/kC5ueRsDCMkkgWFdGwLhQFe0r7kXAqJajCBK2RcCK3Ikk8XxGwLbQMtXhV0bAnVGoU9sMRsBj9jwyEqhGwOEPUgwGwEfAAsuYZqArSMA/brRCElxIwJAo+DddoEjAqaVQmnevSMAcdOHVRKBIwAYPreO/L0nAuIuB6I4FSsAezMthJrVKwHhYfrilwkrAWPeEoBdfSsDr+P7+ydZJwI0OgE6HzEjAvh47v6h2SMAidRrbjt5IwNrAdiv/iUjAtT/UQZXXSMAkwP5QFoBJwKejKYXXf0rAR8X5NN7/ScCM9qsyuIBJwGnduzmE00nAg/oGNXVVScC1b6BzykVJwDp5yiQhHknA3D55zy1kScCqIOACei9JwP/6P1Uk2UjA20DpWIm3SMANuQXkFbhIwOcrcZocpEjAcsUEI7CaScBeMoQ8XwFJwAfEiWjrSknAVAvuEQI/ScA1d8sp2k1JwNSkJ25zQEnAI7VK54gdScBaoNDp87JJwM5/az2sBErA03KIQdvhSMDQltZxHwdJwH0jWrUI5kjAhPUwtAMrScBzBM5Bv+FJwAAymyaAlEnA6NR2/Qt4ScB+XfYtZhhJwNrRyTpflkjAnr69c8n4SMAjcn34NdlIwEEYlvIv9EjAcLOybJYxSMCqdun34VRHwDp+CC6hOkjAnHGZfJH5R8BuBNPs7xBIwNsZpzpPYkfAPJ1sx/XCRsBatFE+QLBGwFzkqLA2BkfArF64SbUTR8AELbaJvDNHwEGZFHpwSEfAKWy5Qd4ASMCv+N2cjg5IwChVZPEhm0fA5JgEbFJXSMBAtY/wp9pHwCRcxQFgqUfApmRiIkZeSMB1j0QfkHBIwHq+Iykuc0jA5xSZpyTcR8A7HQdFMmtGwM3G+d/OKEfAzqKOf+uHRsBb6uv0m21GwKybmguxg0bA/BRtLECYRsCrFwZ9SCZGwKuliHLm9EXAx15we7FGRsC1lt/XygtHwKHuwn4ztkbAJFYJcAyiRsCJwKmpd3RGwGKKdvVlq0XAZhke+pmQRcCXw3rRp0lFwLwK2O66D0XAmV7xKw9zRcD0U9BxMu1EwLswFXjdV0TAFojO3NqEQ8DoO19OmY1DwPSTVZDsTUTA+asjje9NRMAJqHxjTAZEwJoDTLoIP0TAOS8sHa2+Q8DAxcBNocNDwI/PJ5G/XkTAVD672+seRMBEKwcj7VpEwJiKWMnkA0TADVEpO1HaRMCk/m2T2p9EwHprkTrGQkTA2a1It5z/Q8Aytq2wZxlFwHy8beGWzUTAO6zO+w7dRMDTXVjuGEpFwPhSBYVbdEXA5URYUqC2RcBeGBuB5HVFwLYvdO63hEXAV0sdctBrRcCkbL7zRdhFwAdKYjAiUkXAXvV2AKkfRcA4c05NLuFFwDtj4+ZmIUbA3iG3N7stRsBESRAmct9GwNuEL2oGoUbAlUegjvOyRcAILi9sdJNFwNK+eI3CU0XAi2BQnIk2RsANK+rtuiZGwBTdsvpMA0XAXwYtYU/XRMCLXs/7AJZEwJXpQy3CH0XAetfgrucdRcAz4dKsUN9DwNXgo6u6p0TAwuC4foxpRMD2Rt1vRCdEwKPH9uIc/0PArT7RMxKOQ8DOZ1T5PyFDwB44cHjrDkPA3bbj+WOkQ8AFmyvn9ItDwNfGHNrb40PAnBo7LLwbRMDvTbHKkt5DwIwRj8AgqEPAAtlyY0pPRMAz16NB9dhEwGsORQvl8UTAOZ1a/FBXRcCk/mpZ8ZVFwANnudJR70TAPXO/bvOgRMAq66WSB2NEwDOS7boCCkTA5Qj9+aCfRMDwkWwXoelEwLE1r9+O40TAC7Ki9mhERcBPBS2GgY5FwGfzYGItR0XA8fNwfrAiRcAQ9ZFmmTFFwEk+nUjFpkXAxokvOEeXRcBmh4QVANREwCraZxQ1pkXAWv7zu7qqRcAPAMeibtdFwPoTuAPBDEbAQL1SRiGKRsD4NxiL/M1GwNqTHovk8kbAmA//MG2HR8BcjhGvpHBGwIC50Ggc10XA2eYNw9icRcAgNNmHw7dEwMX7Gsy37kTAsqbTFwtURcCieVRJPMtFwOxNfH/PtkXAaYyy/qimRcDUpdOTzqRFwEb4c96cckXAqdn2qdaIRcBauWOBaC1FwEaMfgD0XEXAdxWIZGuSRcAZKy7K2HVFwMouNz+ARUXAbEVFRz+VRcDusOe9fBtFwHmA0DYZG0XAv8ewGnY6RcCTfiBJc/NEwDkpgsBWIkbATDxCKvpFRsBgAgD0OeRGwMdPxtSlo0bAt88Al08XRsBaC1XMh/xFwFohCxuFD0bAVzDrqWNvR8BrwVyym5ZGwN26mMiL+kXAP4lDa7A3RsD+EEa+ubBGwN8vo9fjf0fAy9/zv3qbR8DyY3Rt52tIwNLC6MyAZkjAdRapiOsZSMD861M+PRdIwOg0bUp6DEjAGNL2SBzQSMC632GxBexHwAopdM20hkbAxXGS17neRcAhmUI0MTFFwL41A1B1V0XAk6OVUBIDRcBWvTcBFLNFwJdC50vJCEbA8CbIsAcaRsCQvy/kQXZGwFmA6EkGFkbAyhkF0+njRsCpY+sGJOtGwCTLJABypkbAzhsuXnOIRcB3JGQorxtFwDKnw05TCEbAccS+nY2gRsAAU31up4JGwEE6aBEPZkbAQ1hchzjYRsACf4IT1xJIwEhFYkHue0jACAtssJKbSMCmGxrGIghIwG/cHXjonUfAl+kM6N5HR8B3FLe8Kb9GwBGm4k9Mi0fAdOoMp0WiR8Ag0YToZgNIwIUJX5FqhEjAyoKA7QynR8D3+D4E1SNHwBcKHrrw0UbAE1CX38CaRsAKDYDuf5lGwKkVELcelkbAuB7gWhPrRsDD/fv5wMVFwEwoJuRowkXASubKdjX6RsB+PXKyOgxHwFI7mrUCnUfAYzAnfh2tR8BbSTOLv65HwOvs6/BCzUjAXrr7pVugSMAmUgCTrzhIwKsgxxsfjkjA00qFWKaCSMAH+ev3QqRJwEMQknI2nUjARBPYdfNbScCPhTKEoKhIwLUCVgjZuEjAQcWOB3z3SMBj772VEjtIwCjPgJw5xUjAZ6NK+30BScDClkCL6b1JwOxjh0MawUnAjoycizj5ScCvgS98gapJwGUvjmqdrknAbJHQXyuXScCG5M2wy89JwHu8KyQ/f0nAeCg0RSgBSsDs4o/DyQ5KwIaaP/54a0rA7y75XLTUScCIkx1I8aBJwJGI/n5bj0nAbiI3X5pCScAVEoXF60lJwA1NVwBZs0jAHmJM+3JYScC3w6u/UtZIwAa1SH/3f0nAwOJiCCuDScAH4B3iM/tJwFc2VIgq7UnA3p0c9nl5SsBZJ8KL1alJwHX1ovxPBkrAZp7JDs3aScAyVn8b2n5KwIHOjytxYUvAGczdkRNHS8DwT/RqBf9LwM1KTYcqUkvAju8prLc8S8Cw3/tlJhRKwOslvshOskrAQ6XcVVaqSsD35nYduFRKwIjLcYOl/0rARhbgVlzVS8DZD5U35X1LwH1Xf9rVyEvA+MvFJ37oS8A/qsJcjtlMwBVOTqtsLk3A6IGQzcO5TMBVRR8WAUdMwANJ/U+nSEzAqKwTJyIgTcDp/gKy405NwN+xfpJhN03ALWE9OulJTMAP9gFNvqBMwEyAkl2Y4UzAP6WXOD3VS8DWr32WQ1ZLwFksvasSmkvAsv+oiodsS8C3gk0rKcVLwFqamddJfkvAZPFCyZMgS8BQw9AUhqpLwKFwKt8eAU3A46UyGnNPTcAS01mKfz5NwIT7RR03/UzA8zLcE5qnTMCA/zPB9ddMwMFQF8yUz0zApBxQ3VpUTcCmyyfYOJZNwBxmsPlbrU3AAD1lv2VwTcAMEP+vmelNwMsf+66Sak7AlTbzcbA3TsD8UzcuqZdOwNPHBtOALE7Am4VGXUviTcANpLGXov1NwCNY4/za6U3A1kZavRkjTsARcxDz7wJOwD9EIjuG103AIy7nDcIkTsBJOu+uMqRNwOa31wkFok3AnPZxCQUNTcBoH9NS0jBNwHzIXbnfME3ARltrlrV7TcDQGIQPzM9NwBofcgie0k3AgBSaQXvhTcBsfx0o9A9OwMxhpvuhXU7AMFGq5eGxTsB5+CXvrnZPwGpJNPabrU/AbJU8vjQuT8DZpKGrgshOwBJO4B/TnE7AMOZ+oKN8TsC3iyFscthNwDua9u+UKE3A9L9ZkmEOTcBxlFes3m5NwBUqY5tOa03AoI/lF4oITcC+VqJXZcRMwPgPQ2J8v0vAdfprf1AqS8AfLuG4Cy1MwFCuLuEjPkzAdXhjk5cPTMBLvBwEpBBMwPhiTJ0IeEzAmB9rfi/3S8BVK1BQlOhLwOA7V9a8L0zAZr0CxH/3S8BTs8NnXFtMwH496tG+UU3AEqk2XTShTMAnXNgQ+dNMwMqDxqLS/UzACQuPmgutTMBV94yTcNZMwGQseQnYB03AyO8vENzsTMB32umxpaNMwKihp97bEU3AHfLFj6pvTcBiSq8eYaBNwIhpDjXn503AEvLxBowfTcDxKNNugBNNwDIC68NrBEzAzuFTu7p1SsB06Z+5knVKwCn9EVEIx0nAXyo/2YlQSsC2nb7nYBFLwLY0E/RVckrAxpCU6gKYScBbvhYEjytJwP/CdlxOmknA3PDcZe5kSMDtht9mcxpJwE4+cD+Ts0nANGM8KOlKScDX4FlK4EZJwNTxMOYZkUjADwP/EKjuR8AApOlhV15IwCfFcrsF8EjAptI1KRGtScA1rT1WdCBKwKnb5ncZQ0rAdp1d2nqeScDHtTMYDzJKwCxlH3hkFUrAnCADPUGHSsDUl7XSnktKwGxWAflslUrAQGGRLsBpSsAeNPEKAj9KwHieDJnqHkrAKxJbXzvwScAjrunHtIFJwBtWbRb9CEnAQtC8jqMZScCooJaAuPRJwFBFdyGtlEnAzl/ssM5NScA1b9pVm/1IwPMDVYTYyEnAMVNcsEDjSMDl8FG1QpFIwOyfn9e6RkjAQcLiH2MZSMDYZslevahJwL72EnlrEUrANVxLt5R1SsB0ZQD1MiRLwN1aQKYOpEvAT5xpf8+lS8AUYIllKgdMwIX5Z3HzkEvAJVdQjlc+TMA6vOW9p2NMwD/XrWDETUzAzbdDDFN6TcD3daWaHm1NwIn+Rg/Qlk3A0gjKIoYsTcDzGCPY7tdNwPJN54+KHE3AFhAjR++9TMA71LsJxTJNwAITqczQTU3Ayczzu0ZzTcAw8Ggwr1lNwIeNSXHPKU3AgnkSEUqVTcDjqsKlatVNwFY63N0IOE3AV8H7EJZXTcCjxEIOmrlNwGsaXBEYBE3AK48+W8RzTcAC6K8nBetNwNp9o9iEnk3AMfBXmkppTcDyZQJRc+JNwD4qD2conk7A26s1fekSTcBGFjGWcKpMwLqZkG0gaUzAvLlzbUofTMC50zdtqGdMwAtunCc1EEzAbJDHweFhS8BM7fDBtQFLwEMyhbrloErAFerGAnLHSsB6vKhtYD1LwDuL1U/nM0vA7ScouoUoS8C4F3G/CeZKwKGrkF8SJEzAQpBmY5lOTMAB+iIQUEtNwNHC6fm/M03Ay+Y2Psh6TcDbW9Ahpu9MwOfey1KPL03ACX/tVBGZTMAugaP32IhMwI4VzzYjY0zACkkRQaE6TMCmKw1rZElMwJGTQT3U6UvAVcCHPpUFTMCeb53QijxMwJSbr5PL+kvAOvOixDQFTMDKk8O1CIZLwCGCyZiajEzAN/YmG1meTMBhiB1EvNdMwK3QsaHHDEzAVn03lsLnS8Bnuot1HP1LwNIlKvG5CkvA9WS5CoI4S8CjRdk5hKxKwMLohrcYckrAlCyY/2m7SsBq+SpP1EBLwF5uzpfh30vAZEiQZVUKTMD0T7Qz6BNLwNzwjWZp0krANT9M37m9S8DwRNb7BfNLwK6TCxhPZEzA+kmTxQdITMB20o+nmLlLwFKL7TYGIkzAstm7Jg1lTMC8aN7PAFZMwCgRuwaQ20zAYFCpl6oMTsACCEs8X6dNwEB9bv8z9E3A6BrUfkU3TsAMypUA+SpOwN0jtk+WZ07A9YK2yhwkT8D3NdKCQ/dOwAXwPbrM1U7AcYjivbV3TsDSNDBXOTlOwKj15wL12E3A5Ea8MBsYTsDn0o0rBdFNwJvVdToG7EzAsBFYypVXTcD/TFWqwmVNwHRe7uS/nk3AvnjtrJWvTMASFrpi4SZNwBNojpxRLU3AWhwESP+pTcDp0YQSexFOwHLjH+ccyU3AiEt2uzN5TcC5sX3GY29NwIb1bIG4Ak3AXx6f7wcRTcC/4PB7+ABNwLqzSvY8ekzAh0NdmYi5S8Aq+wp8agNLwCKa+C2q30rAynmuADOPSsD0YiA7dmNKwEUBh4azZUrAy1B5zFRVScA6ly/LA6FIwECjJdwI7UjA2sWbSKyjSMAqKg4eo59IwDdR6R+gU0jAyEr+tR1sSMDb4E1wLAdIwDGiSzDonUfAkOZHYpqQR8Cy5IZ8OA9HwIb0PnneVUfAS7GK0ovcRsBAHl9HsqlGwAAY8m80xUbAMvgBoLQkR8Bf/HPLGJNGwMwMYPcCz0bAQsvQ/H9HR8BBQ8BHgzVHwCRmqGyDy0bAxX7uy2QxRsDxOKkcdH5GwDBKPNqs4EbAQjMrvdLnRcDI7xZy9K1GwI6RRWo/10bA4ayeYduwR8BiMuVy4idHwHcYx7V1EkfA3wpe/H/MR8D1lrhLr3RHwKfcFmp0WUfAIlSaR8LWR8AlgEyu/39IwORXla2/ZEjA5Ix/ToBTSMAYQNhctRdIwGNSWmkCaEjAHHBwbaAxSMAtcqBGlmBIwJ9gOoPVOkfAt4VANwvKR8C7KDOvTMZHwPI+EwCVXkfAHDKRz4SVR8AyrjeRdVlHwA9xbMXcSEfALI3E5rk2R8AMu6Yg7F1HwDK/+3PKSEfABiGa5jhYR8DY1FJGqodHwFo+GNK9U0fAUyIDSYaKR8C2mufOj4hHwGjZ19DQ5kfA3lnn8q2USMDMAz6CB2tIwAmI0HTo8EfA/sLUJcJlR8DV9vAAKZtHwFoYtjlp6EbA2Xj0eTt+RsCwwQaqjhVGwM6Alhu8+kXA345lwhrGRsAGutInEZFGwJq+E8O+kEbA1cnMZ6H+RsBcYr6STtRHwFvw3H+vF0fAyeHzefzPRsB3fpZDiWBGwFg9yUwkL0bAZg+VT8IwRsAXNDZ4fklFwBmqOWTMrEXAyzjC4thaRcCWOjVqJOpFwBj8L6MQj0XAvUOLGQzuRMASMM21Y9ZEwDt1oMxbpETA71miq1IgRcA8207iNZVEwKG5OXxnN0TA+FDF50B1RMCDCldprQFEwLdtTRnGEETAe1zK3YIZRcANyQqnaEtFwO9gEQWtiUXAfAucHMyqRcB0mgheuV5FwNfwn7lxM0XABXCq3YpdRcCN5EBSje5FwN3mufi+iEXAgLuay07URMDXaOlRz19EwKlQG2au/kPAgIbAh0sDRcDJ82iffPJFwIalsOG++0XA3WNpqZkuRsDY6UPqSM1FwFLCoA8G4EXAiAkGVGy8RcB5ZCZrvk1FwHmcRNDrfkXANtLRL/m5RcD6A+OvWStFwAx2YdrtA0XAjHtl3etdQ8DB4lx/+wNEwNuQzYaxXkTA4DY35XVLRMC94ehhq4tDwHhsy2zNg0PABEq4K/u+Q8Cm0PL5ym9DwPEf7RBJokPA5BWXBTlvQ8AHoWi6VFNDwCq4lb2gWEPAVjo5oiFlQ8CEOg9J1+ZCwHone8VS0UPAoTsqfWB5Q8B7AWlHnx9EwEQaGXOje0TAnnAgdG4eRMB1aqf/fphEwKB6IJRcLETA5H7otqqXQ8AwxCukO4tDwJ6ccZz6UUPAFCHe41/0QcDIaAfn9lZCwI5s3Du67kHAP5SjhrCLQcBDF+5IN7RBwJB84YHxfEDAFHd+VCaOQMAxM/xEG3pBwPBPLTrpnUHAYkzjaIeMQcCOl1ixM2xCwKwmtjXZ+EHAyhvZOJk/QcDntILVZJJBwE5tVrYgfELASh2nKr9GQ8BozNWiH3NCwJnlPrA+P0LAVZDQFjLRQsDqD5uNMZ5CwJQFaGcvZELArXqVb4NNQsAvY5gQsIdBwGHRd+/ssUDAaTKlSv1XQcBjfD5uM3JBwO6ybJrfoEHAWUdwobWMQcB6swN1211BwJaYjd0fMkLASmWGdM+kQsAKWEBeLO5CwAGAYQotCETAiaJwOLH/Q8DJmmanWw5DwAi/qsKHYUPA1MeGY2xQQ8BY28LqAv9DwIJ0Rb6K9UPAt8mazYBORcBtXjLN8UZGwGFMI+EBzkbAi/BQNlMqR8CpUBBzIq5HwChhpMdrJUjA81+b2bwnSMCI8XF8HYlHwKSCmSHUMkjAXQXqmL1LSMD/wo7OKuJIwJXq52vsbUnAnmtjYxoYScCwSTyJh99JwAsE1bZleknAXXj3gdiCScBO/oDe/Q9KwPQ6jCPKoEnAlY4edJr0SMC4MFVdgR9JwDPSaNzQ3EnA5XZoh9fIScAQJ5lbLlJJwDQjdSxJiknAlpW0gY1aScCMRFmk35lIwC720lu6H0jA0D5Ve7HoSMCSBkGsjH1IwGvPvN/9REjAXx89z9JgSMCQUlmk4sFHwDubnv376EfANbIPiLhYSMDcQUr4bddIwFdjmA9diknAhH5bktgbScDiLEU+SklJwHkjQ69ugknArfhwzijPScCb98TXPf1JwAlqd3Cr5UnApTXU1TTIScBxZ/to7+1JwAldMseUSUrAi3dsRFpqS8BkOaSYsEtLwFwawg/6zkvAcwqMAmJcTMBuJQW7CntMwLgnNqvi0EzAKsREkt8sTcAD2iNyo/xMwHo8FjxYf0zAyaQJX6rPS8DPDCsw6PZLwH4DN5jH5kvARpOTv6MxTMBwsk5gI1tMwPALqKWlJU3AUrXYXGmmTcBUBc/J7nZNwPIuQ8Ng20zAFgcsfLDbS8DdzhVKrmlLwCuQaUmlU0vAhTlRo76rSsBeFFSCs95KwHObJjcELUvAqHHl0c2/S8Awx97gYuRLwMUS0hFpMUvAWKW70+HpSsDp5NK6/UVLwCXydPOPOkvAsIRgYEFsS8BZTnKTZMlKwKPO8lwApEnApB7odwHJScCDseTqm2tKwI0kiHSCeErAmnO0NTpFSsBMHZrjFgdKwAAYfhq6sUrATpi5dOtbS8AMc0ai+/lLwLXQ6yDefkzAC51rE7BoTMB+N/GjJBlMwBGaSIg7H0zA4iTZs5LLS8ApSKDEsQhMwL/TD1tFE0zABJPOSciPS8AcLsyDKQFLwN7Cr16To0rAAUMc1anySsBrO9ImHodKwHdP0W5tnkrAdRno4Ml8SsCzjjG4djRLwEq06CWe1UrAyQfTaXPDSsCVcvcCIHBKwOF1Oe+Hy0rAik88cC9GS8Dj1rX4VCRLwIYD7+D+vErAOOfoQX7pSsDPBEiybXRLwHJAKyIV50vAAEBBzDOLS8ADOy4Ue+9LwPKDfhWxyEzAaTQGObgbTcAHsJ0HR5NMwAwY1FZoiUzAz2T7Sa/6TMAKGyG2XxVNwH2dc7l09kzAcXkm6A48TcCk2eGGyfpMwK/kbxmByEzAIGBY4rYRTcAjGc1UiW5NwCDVfIey00zAd0UW2BnZTMA2XCh+urxMwI35jb6LNUzA8mPK2uirTMAmgbLdN1xMwIDbmtH3U0zACx8C3kplTMDh6XslUxtMwCoR7fxvGkzAhMhBBOzoS8CNhVqAzX5LwAjW/vG7vUrAapMqBGDjScBGikNQr+ZJwMOhxiKdkEnAK/cJYem+ScBVA9+DRANJwEKbM0AR8UnAR3ndrsQoSsCuYs/AaZdKwKcxSanEhUvAbm1JHk/WSsCcQkqGjONJwNmiFD8GEkrAS2snB1VLSsCbNEO0bGNKwFXgY6Ane0vAxZ+Q1Ph+S8CRV4UEq8VLwA6GBsoZCEzA0WoNSJ1qTMAOA10mjD5MwNv+Hpnwd0vAalcNrz0bTMBBclNDm15MwGjlP2GQz0zARnJY7HSuTcCSdOTd0FFNwGtXnwTzkE7AGGVq+R/wTcDV27FkcVBNwIyM6G0XZ03AvVmPBEc/TcDS9MTuM3tNwEA7m/cmZU3AYA/33wYPTcDYbi1pMF9NwNBGHvcmTE3AewjerLYLTcBVjBipt2pMwL+9tGZwlkvAzyNsyhQvTMCyfA6G6OdLwEjsN27DvEvArPJl2W15TMAY0fR2/R5MwC+mf5xvokvASwvgdczdS8Bll2y1H9RLwOnglC3mmkzAnsGkzA/PS8C1WfjnwPNLwF++EhF9dEzAQtRp/n4eTcChk8cia/dMwCkUJUtFQU3A12oCzgizTMBZ25GQhK1MwIUwvJcPjkzAzci5ref6TMChR9fVp2BMwKToemd46UzAb9CWRbxdTMBAa9Nq0lxMwP/uZmuehEzARyUCcF/nTMDcYy9SyNFNwJEQJdMqQk7Ag8criq2KTsDlat82sNZNwAdApuFNfkzAZnvCW+W2TMBku3tYQ29LwHDIPrmsgEvAAyrtqZRZS8DsCPvyouBLwOqCCbF3tEvAsiQ/NxJbS8C5OOS9VQRLwOmd2O9T1UrARWZBmVhdSsA6DfvEZdZJwAEGZewT1knA8Jg3rwOzSsB8gu1CQ6VKwPOdmWbgpkrA4aaL19UbSsBvjzwRM2RKwB2zALwofkrAtOKicIHtSsBbHcZ3sftKwGMCOQXYbEvASnLfHgQrS8B8LvYfBHBMwKCgBj+wA0zACd3nJlhjTMD2e/vga/tMwDQFff2x30zAgUDEcgEsTcAKmnk2AI5MwElxofBokEzArJJbrrZsTMBs2b7ten5MwBjPrKskCU3AKsDRGM0STcAjIFP7Ok1NwKDb8hJH40zArU1m4UHpTMDagorfoslMwKJFn9Kb70zA9lskD3neTMD/Swyr2ZdNwIfT8xP4JE3Au0qY9fc8TcDGFzIN7NBNwFv1wCvQLU3AnsqIKQPBTMBjOYVSsDpMwBUpH9+UpkzAWegrJ6ZwTMD+z5Bi4TVNwKeWdymQLk7AAkYWNSUaT8BxdFzLym9OwIpyiXt4GE7AHJleCRD1TcCbh9tJAxBPwAjS39cpdE/AfHg1U0jPT8DMPIImlRtQwKe/b13nkU/Aepwal163T8D/uiIKwA5QwEri8oDbkk7AVXL8Hqs1T8B4VY5on+pPwH+2CwKYb0/AemDnYWD2T8CniB86HjhQwBQbMpuUH1DAnGmfTLgeUMBgTjQJLMVQwDYOYkU2x1DAnWmy0pAtUMCnoUllilZQwGre/yZKRFDAUxrZSZweUMBmvjl2hhhQwBM2yJ9PfU/AnzVcDFf4T8B+iq3FDK5PwKlRAV2Xtk/AUhrKef3yT8BvfgkgAPFPwBNlYMuqUVDAN9kbFlZNUMDhulsXitNPwFTh9C5WPU/Aq6wDO6icT8CbvHOBvuBOwC18FibudE7AXbMAZlQCTsCSCaw+txJNwCrxfcnt0kzA28Zb9eNGTMDy0yRyC1VMwAzrGCYcjUzA5gw0rCaTTMBYxGSF01FMwLUaeTL470vACH0smh1wTMBl49S+EZhLwO9Squ+x7ErADw5QCk1hSsCvZuSGW/tJwGZ8ZNmlBErAHtvuWJ3dScBi9S+QFThKwBpbstYJFkrAzzlpZ/aCScBVfHwkDAtJwEA7c9V6kkjAWellrCLGRsA1QKbVcBBGwBVe8ovYTUbANA1GaGORRsAiaVRt37xGwN6kX0Mt+UXAiWJPnk/dRcBC0p4/aQtGwEelEqU+qUbArha5IK6tRsBJtvXsxJdGwDcPScNb7UXAnVkdv+3pRcAEwxhusOBFwOt/Ap7WQ0XAhK2bK5rSRcBj2/3knvFFwMxigyagPUbAP4902g/wRsDBQKmPzvhGwL2EY9qVGEbAQoRO1xr0RsCukLoUOYVHwCf6E6Bl4UjAjuflWMYKScC4AwhW0YlIwNeemupsv0fA4fIqMRM3SMA+LZEF2zxIwOB6URl7XEjAcSaFSbgkScBIiABZIO5IwFTDKDo+8UjAa1gdk/NOSMAyVHlGsyVJwMF8DAJjhknAwM+jVC+iScA54U/AcoNJwB3s5SpIqUjAljYQpTV3SMCtoDlmIGJIwP4KwoVRmEfAHVDOy6jaR8Df6ED+LNBHwKzyOBJmHUfAgTCxyIdoR8Bt5T57QsRHwLbHj+bbu0fAMDl/Zh6dR8BH0UpmpYZHwMIZhDxU+EfA0kP62nIxScAfXKBmx6hJwFA6XMwXGEnAl7c59AwOSsDd/M/VXxNKwO6uIA2VqUrAlxiY6296SsA44yehq4RKwGpgXNSiS0rAzqkfJ+lpSsAezmPutydKwHVLGf2ee0rAyV9iggHsScCve9sl25BJwN+64IyI0UjAbuAZUdE4ScD4jvXYOwBJwABF3+XbMknAA2hCBP5qScDVwN9M305JwLYrJWbj5UnA4zfzoscCScApkIHYrwJJwKyzNf+nVEnA1rU5WzIwScBNAxzbx21JwNzlKcd5+0jAK07ZzCVWScADzL/40hdJwKPmYtSlYkrAaEarfKxpScB/oSBw5ZRJwCIhUdRirUnAQx59/ftkScDfmoA60z9KwECmvWGU10nAphCFUJULSsAxEQvI+FxKwCgjagS90ErAemLcZ5c1S8Dt6fJ4ebZLwFblaNvA8kvAx7nLkzMoTMDy6N+bTGNMwNL6Hz+j9UzAIlxYaRCyS8C8zmWfu+dKwAFdAHVVmUrAfW7L8+Z1SsAiJBUk7adKwH+wrrNEu0rAL3YPJ8DfSsBldxMMZEpLwEzaScjUbErAu5UwK2bDScDsL8VQbU9JwHQwtwglRUnArNXiSiJ7ScD0lqsBoopJwAYVmlZE9EnA7VnsFpzCSsDFvNATw9VKwFIVx1258krAaFjOgoOiS8B5PUuu+U9MwCvazB/Cz0vA7ELOjhhXS8ADpALLxuxKwD4ShpW97ErA9rn9kuuESsDIqRgInw1KwBxS3ce3y0nACxQ5YVpzScAYEsSiKBJJwJ6evGg1oEnA9gxmqI+RScB4lNW/pX5JwEvEgpPY1EnAUxW7TuAESsAUOduEQuRJwIr1oWCzikrAmmJayxmMSsAzXwDUT0RKwPw/ArOydUvAnOv6qaFnS8B+9al9IfNLwL3RY1/cC0zA3RPhsK3FS8BcMp8rSARLwCJrcXQ/QUvAowNVUzyZSsAQ27o0lsdKwBPs8FfYsErAJ+PkFqFbSsDUZVnu0ehJwDWafskv40jAth5GFif/SMD5mPQiKMpIwIlaO8zz20jA1qlj0LcxScCFmzstiFBJwM/GVUF0P0rAs3OFwq2xScBOziBgoflJwNhAoDQQG0nA2ioetCHASMBshbFlnGRIwL+QJag0NUnAzkiU6ifPScCk7WhkcbJJwC9+g2cRMUnArqJMp6h1ScCLW/G6kc9JwO5nt7h+zErAXZSIu+/sScAJlkmah4FKwMaQz2s8ckrAnYJDbwqgScDXeCNxVIpJwAMK9XVrnknAXbmfLd58ScAuetsZcF9JwLdaGrO0hUjAchYQIDy3R8BYaurY401GwNXYfMBvQEbAij+25I50RcDf4HlmBIxFwJjzkPBNK0XAmMd2CG7ARcDXq1lWvSNGwETMYVFgCEbAmyk6fdAERsCQg6Zfn9FFwBthKNrUYEbA2ScFrNlPRsA50D3wEUBGwCfnrWWh6UbAEUYn6LKwRcDLPkaOXkpFwOKegTCdmUXAJHez0+04RsBo4CzmuNlFwClG87tv6UXA5sfYvcWuRcDzpp551i1GwAUikuWhlUbAOxvcatEURsAjDPhW+LRFwPBhoimbOkbAa3Cm/CclRsCeE44sMhlHwNe2uam66EbAbozLW/XBRsAoZahfnOdGwMwcRH35bEfAth4hBGeDR8BnYCDYozJHwDRPBI2FGkfA0vUYh63ZRsCUx+wQTgVGwHe/TYSmekbAW4YsG1YbRsA8WHDhLbdGwNM/6cPaWUbATrC80EKBRsDy8jy9tC5GwNG5cuOEMkXA3POgL6tQRMAClwjDbrlEwCxXJ3BY/ETAby4ygwvyRMDeMDDMqcVEwKqfLmAXJUTAKzNUNblDQ8BdM3wQDL1CwCeQ6q/RvkLA+qe2yQi3Q8BcsJaT2EZDwKz3pvXQXEPA1L5UqipwQ8Bs0lTOYRdDwPiTtetN/ELAMGtxImRbQsCdKkNnDe5BwPIPucKE6kHAYvHdaXJ5QsCl2RpILOpBwNg6uANIkUHAdu2WPye1QcBACfDoR4FCwFDIUq7aj0LAtnPbUoSzQsBweo5J6mpCwLl0PrqQsUHAGnQSzElKQcCZ0HQIJl5BwEnum32Yh0HAjnqVkWkLQsCDQtHNqqpCwM47rMMUbULAkH3B+VR8QsD/5wJ3gu5CwDQrE1xdW0PAjsktaiZmQ8BACc5KP1tDwB3RuwPMkELA5BrGlIGJQcAKsi40P/NBwEohfGcTykHA2z7IHnhpQcCsvUOdV1RBwFsx9l4HnEHAllAou2WDQcCPupdyjr9AwCg5VDX2CEHAcNFSAqQDQcCBeglZs91AwD4DgYa9rUDA3xmIxgLTP8BL7P0WdMk+wHAdAO8edD/AIGSsk3oCPsBhCftsYFg+wCJqCwiEwj3AY80lYkh7PcD1y4GbDX49wDsQHWN+YzzAK0xe+hv2O8ACdrCzs387wI30ncofKTrA2zEwJLXBOcDbJ5j04eM6wHIXz8YbmTzAE7DpgPnwPMDZRGWICgs9wLXW66FifTzAT2gpiHIwPcAdsd1rfzE9wCqnzEotmz3AioTtPU/xPsDoJx6BBNQ8wHJuDlUS7z7AmiMfkbwcQMD/dGZNVYo/wLUVf3gWjz/Amc9XEtPjPsABFvfJbPw9wAjiXzyy5z7A3vZapSJoP8Cs42ix3yo9wH9joawFlj3AHDr42NnqPcA/+v3ONQQ9wCVPZ+QAgDzAQrCvVjrtOsBFxhrrnTY8wH2kTW006DrAM+BrekDEOsC2B+mE/388wFJQfjic+DrAhD7Zeac/O8Da/hs0wRg8wBwAvo3tsDvAGjJYDFpsO8D07B21BVk7wMdFFW8ogzrA5/gctqcpOsBDY49F2vg4wP1RYtE+7jfAE4+kRoVaN8CNnBOQyRY2wJ/7r+pBYjXAfPjd/gyjM8Cqcp60e1MzwPhkooDLCzPAudTuIp0RM8CFZw2qvnQywNp+/O10XjHANmiR0QnlMsDIMfd5YZszwPmhLpRB6DPA5YOsBzWvM8Dz6KYVwN4xwLk0//M3JTLAtAkwZKAUMsDZzU11neIxwMi3wHVuyC/AGTisONASMcBKpF9+a9sxwGtwOwUp5THAkB55nJ5XM8Bs0tzhhvszwL7z8krRszPAYRm+STaNM8DGxRbCe0czwKSf+HtsyjTAURypzzVSNcDlfYoVQZA1wHdNKlm64DbA6O7JPOW3NsBKRzgzfnk4wPoMuS5VOznAAnM5BeFIOsACtMymsPc4wN5oXKqzHTjAGhrkoKNlN8DMJt4PDl81wIhPiP1IcDXApG2wIkn8NcBIIg8X2ls3wPl2ZvkgFTfAFc3NsoMFN8BSaJN2Lig2wKO+A/4dJDfACF6tQXFdNsDu3555kMk3wIqhKIqe4zfAir+zUZyiOMDYOnk0IE05wCywm2zD6TjAH7J6R9XHOMCQg/nCK1g3wDQ0jMze7DXAbdHUYro2NsD9B4cJEx42wPx5mWTuADbApPOMtA1vNsAhLA0QC9w2wOvBXmn7NzrAPMPtHYxCOcDGgN+aaCE5wPuyHY3OfzrAIzxlYqdOOsBgDBfr6QE8wA1Kv2NhYTzAgXFB51E8PMBA6Pznz0Q7wDwzQ+ywMTzA+GlniauXPcBweGCqkZ49wDmo48JJwTzArOlQnT8/O8AA6dfx6S08wJdjzrB9+zvAfTEn47G/O8DSuKj3uvI7wGvrEmR6uzvAJzCrKBoHPMDCLyCcE4Y+wC1wGoMIWD3A3t1QRBjrPcBkFypWVrA+wEmiP+h5kj/AgTzU6f00PsDi/64IlGM9wKlBXU52KT7A90SKJVCRPcCNO68Sd3E+wF8pW9FbXD3AUAy4rifXPMBQtTXr7dg7wOtK60dWUzvAsOu04xUNPcANbOoJqOc6wFh2LQKcqTvA1Ky5KyHOO8AJ1E4oKo08wIoZ12d3UT3AyjpAoFG9PMCxB7quUlY7wNdagG6BATrAigEd/IrGOsAd5yv4PWQ6wEyltfwD4jrAlowWGETDOsDvNWBGqWY8wL4hp9z6Wj3A/iIIkIhkPcCzLlZ8n6U9wCtPTFRLED/AbHODWJJvP8DdsyJVh9s+wPQ976E7oz/AOrN6vdPDP8BWc4AdNTY/wN5+cm1EhT7AdZOAHDoYP8C1xjCl6l9AwHwWppcMKEHAoWWFVxJbQcAe8mSSSxRCwESBoGm+I0HA2fR4XBkVQcApa1jGExdCwEHevXzxnkLAfv2QoD37QsCSokLuehJDwHGQV8hqjEPAx8VMzl7wQ8BMU7zJwPBFwLK9T6bb/EXAeWGEn8rPRsAKKK5fuTdHwP8U41ZvikbA+8gzfplJSMB9sxIyUU5IwL44UtPxvUfABjxtcSGNR8BS/Ka3HflGwEkewpKq9UbAJMD3C+m2RsAbYnR1dsVGwM1E+YkLikbAIUpAMS9pRsDAOuJ+5KFFwJCBAVg7KkXAITkrDwFeRsCdqZAgd6pGwJD2Ev2fT0XA7mM3xC2CRMAIWqmzQfxEwB0iarr5EkTANkAd58XNQ8C7sKL5Sw5EwPja5YBqB0TAO56fFBJmRMDvQqe4PVREwEi8szop9EPAjSfZ/lnbQ8BzpJWJnrJDwIewR6MvcEPASel9YIr1Q8CFmfwi5jdDwGjJrt5p+EPAPHlN+evERMCOvY8QjeFDwG7JRNfyxkPAG3bL0VVyRMDvuM765/BDwJQhdAuxeUTAdcxAKINlRMCg9kaMmPtDwFNYDdUhHUTA1YScdAdjQ8Cxti2YgKRDwJFyba6ntEPA0vYHuwltRMBVDjOiw11EwLbwpO7AgUPAME+tufdlQ8DnbtoTgKpCwJ7lrtp4w0HAZTo5oNd+QcCDl4HprK1BwBTfhxbPuELArgeUL/zvQcDsodcKU2NCwBJkWdCBNULAmHONaRbRQcDijWYSoCVCwEq14hEX7kHA3KAh6c8EQsBBLzSQ/qVCwKNq50KKnkPAJ4A23NCBQ8AwygRdmK9DwM5oj8XLEEXA8nuP7/RBRcC+8jV74lFFwInh85YHOUXA9CBx9L57RMAW6eo+FZdEwCcJwYLU3ETApkkR14OjRMDwNFLewyREwGEtIRwgb0PAhT9Z9zB/Q8C/VMY6JLJDwOAV8An6/0PAnYGHVmGrQ8DT6K+yAjdDwLyf0k0wG0LAXKzQNA/DQsCkU90GkwlDwGyGvl/+VELAjjI/rugIQsDnUzF9hnRBwJPwzaJ9gkHAUbUYgJBxQcC/uJSRscFAwKJ9V4y4y0DAqe/Gbn0QQcB8FrgQQjxAwGhAWFvQxz/Aa+gr2x3tP8Dch2eD3klAwFQBCDgVXEDAcQq6i5aKQMBujH7+CnA/wLiHuv6DtD/A3DqbVzNgP8B7yS0dxrA/wAvEfBYA/z7AvdzT976gPsADpQDRN5Y+wC562q/FaD7Aa68AgeQPQMCnjrkpw0tAwAW7Gvk3CUDAd+QxMQ1EQMB0aBrqqapAwI063ArNrkDAX6JdNHW0QMDBzP23adNAwLc7kHJAA0HAchU89RV5QMCiHKnRB8NAwAK12ZPJbEHAj+s40TcgQcBUqpzgVIRAwNroCfkZUkDAPb51Sob5P8CdXw8ACsM/wIZPpvwy+T/AftWg0iWSP8C6SCSg5qdAwMt1LF4jA0LAUNilIoBKQsCckvPI59BCwJZ7HUhaTUPA6p7TL9YZQ8CU6HXerZxCwEbydAevvkLAp9MLu0j5QcBtFYDiAvFAwMY9ALriPkDA130fp7MYQcD3XUhSQDlBwCS8I4KTMkDAD2YPX2BRQMBxx5XuUb5AwJ8iyiuGqUDATcUnbi6AQcAgkdPmFw1BwKyc5UfX8UDA8G+IbBbEQMD5LL3NxnZBwInCv8oSAEHA6j/Id2UaQsBOCcQmg7NCwCJZl8rGP0PAoafLri2UQsDNI0iExbdCwECGUp9hGUPA9vZ0pnZJQsCzC1f7MW5CwOGosG97wELAB1L04cl6QsBh5YN3xlxCwFDn9+o7UELAnZvy4zP9QcCYq7xoa5VCwHDOHxx/5kLAGCXUMA7YQsBT67GsTzJDwLPwrg/toELAKFWpm0a7QsCBHw7DmOJCwGRsBNq8ukLArj0nwkxUQ8DgmhMHvl9DwLi+REiVMkPA4mgisCrKQsAmwknAfMRCwNLaBExgeELAeVqTeVWqQsCByRAXFLVCwLagB2BWIULAZC5dwTcHQsBBQzyq1fJBwCugT+btOEHATJK1kXS8QMBoqZgwDhVBwLG51BPntUDAyGQBXE5KQcDZooyoq9RBwJ8zGBDTGELAgj2ds4Y6QcBBPaFEwktBwNyzY5Ypo0HAMmVgMQARQcDutj4ibUVBwE3Xs/iJJkHA0nSFO6TmQMD5LCrnh6RBwLX3S5pqPUHAHWCHpklFQcCE5R6FLe1AwGD8hwPYeEDAbUNJ+DxnPcBEWkcbW+w7wGleEhrlnDvAGgvgcVAhPMC/kKv+8Y08wCyx7xJJeD3A2WLp3E1oPcD6891sWjs+wLYEmDm7/T7Ao58RNJZCPsA5XTjgwtk8wOeodyEDxz3AqqPNgVOaO8BbRBLrVso5wGV06NznTjnAi76xJcikOMC9GMZIyns7wI/RPyTo8DnAV0IjnIPjOcAUFUBhVT05wJQwoELzrTnAKcZ4BOHDOcAE4kQM7tk6wIJMjtobEjzAxJ2FtJfaO8AD+AVJwtY7wIY7VscsIDzAe27m0rh0OsBRFo0cfBI5wCZgiSSz7DnAVLT/RMMEOcDPBSOslr83wO0MV9zl1jnAjdvskSVsO8DAEjl0dRM8wNi/ZqalqzvAjmu0QpwQPMDlbkizL648wNCtYM+OfzrAbhVxAPGyOsAOAyK2Y7g5wD888ltTDjrAHMzxu32HOcDd9iDnr3c5wDcjI60QojjAPGTxDF63OcCXx98smGY7wI5BPhUb3jzAQ0ZPnEZWPcDKkLJVTKw8wIK+oCvvsTvA9XXKLDlWPMCWcNr6lYE8wItUF6FPADzAz+H080KHPMDB2JkwrEw8wMBOA+KSFTzApESUufiQO8AAxpvVtKk6wMy3fS2SIjnAD7ky+Jz7OcAzwfAMTzw6wB2QipE+LDrA3dikgSxRPMB0X7BiR089wI9TTiG1gz3AAhEeety1PcB73mGh9I89wLwPD885GD7ArMPd4H8cP8CkNiK2AY0+wKl07nK7Nj7AFo0D8+u2PcAU59Prqe48wFn7uMWq7DzAbd2JZyfyO8Bu3zzhHm47wFKsr8kkpTzASRnLo6PyO8CMT4bTfF49wMG+exJERjzAsC3QIfN4O8DtYj077ck5wLDlEQvO3jrAbrr0tVOfOsBkDSWBIJo6wM05EHxj4DnANtQWaetiOMCT4LVyXVo4wMmGQzV+mTfAVQgV+MLfN8DZWHoOT+42wJZ9ox2qhzbAiQRLmriXNsArQmrfdyc3wLB0OfXjtjfAGo+osiXDN8CvnHTYrjw3wEoFKtzgiDjAMSvZhySoOcC++EZjVA85wFa/qUW/ITnABgM9K5fZOcDbSo3wHzo4wKQDChjp+jjAam+MITZHOMBN1mhuzNw4wDEU/QzN/zbA8fUgS3ZsNsBDxUtz8X42wKq2YhdHbDjAW5vogKfvN8BGNQWEIFs5wANoSX86BDrApSOJH3GTOMDAy1Z1MtA2wLAsc7Ik+DfAinQ0RDheOMAvgaB5p1g5wOPftK+mxDnAe102rk01OsBJl44owNc5wI5u/LSsojzARniJhhpcPcAmzz6451s9wLHt6f6kAj3ApyoXWsr1PsBYO+SjcSg9wGhnnsy7+jzAp6tRQbHTPMAnAffLn+A7wGayxQ8ZtDnAzuQTW4D8N8B4yWfDW3Y3wCZkS++seTfAWJED4Oi9OMAu8+Vc+w05wOyl5MDhCjjANEqJ2du8NsA31nH+WEk1wLrfzjKLrjTAhHbX5gNfNMAy8SklQ4QzwJ4+tdd2qTPAPEicVtESNcCef7i/4AEzwLZ0vniwBDLAdFR2jZlQMcAEzqUoutkwwHrefrMCQjLAMFAQm6K1MsBS3r8oE40ywKz/qRoUyDLA388i/hCKMsC8KNL2U/8zwB5GBw/C2zPAaoTWV2j7NMBuWaDKTx42wIiohz/F0TXAeuuolEkBNsAKOqqMnX02wM6gP4JX8DPARRZQ75VFM8C389q3koczwDKc1hTFfjTA57ooSKp0NsDZAS3cw6o2wCRHt2n0jjfA3KpwQTqINsBnr0yeT9Y1wNJhb4xUezTAZHZAkqHEMsAAYBAuDi0xwCZ15AUjWjHAwdJTc0vsMMAGZ3J+TFkvwEVxlk5bjC3AwwZjajaTLMDpUd2zIusvwAfVWo3KVDDAx+ofSs0yMcAo6WMBQiAxwJ83tBeHRDLAbua8kvffMsAZ8rsfw6cxwOyUIlEl0jHA7v0suKTDMcAKSzu7OtAxwNR9GQD43jHAxiFGMJD/McApO6/1Qx8zwGjZB+iuyjLA0opv/gxkM8DLp2m4O1UzwNz/NIbDHjPALzL2JEerM8BRg3jBckUzwOovTo0UijLATG4a+Wk9MMDUDHv/Zc0twPGIlln1fy7AmSG04ZnFLsALbT7HItUswLgfCZMITzDA+v0p+FfrMMCGYalaUC8ywN+mWRs//DDAXk48xpmgLsCOS1V9JEYswFz2tetDXCzA7PolqD1bLcCcIgjna0YtwGgFL22IUCrA79H4LvnHKMCdNvOzQEEpwFVYbqsHSCnADJKLRbANKMB5qi6T2FQmwGrwQoTb7CjA876aKjRJKMDBjslh/zspwMRX24kNdCnA5KzYeEoqJ8BYwI8J1RcmwD9VrUVehSbAqsHBtuTiJMCwhhqo+tMewAr5ldBCER/A8EgYQDxmIMC+XV2TNYkfwPTKacaq3RvA3KT0/TL6HsCFIFBi46kgwDBqy4kYfh3AIxaXJUHuHsCG4CUcyRcawH52Vto8TxrAyaAtjMVWFcAtzrmvKnsTwMPtGh6xeRXAM5SCzQ+bE8DsSlACgVoWwPQWThEoaxXAUAgRAUNjF8CIg4HkfZgXwHW3MXDPFBnAmCKZ9i49FcCBQUPcwqYVwL2XzhKwRxXApgFbsiqODcDdxJYViGkEwN7KdkZrZgHAXTKZGX3eCsCnPHkHUuISwK2WtfYV0wzAkOzgeisDFsB4nrUu9EQXwLaFTdlQjBbA3mAmeWc1HcBrfO5Ue68dwNtS7hquGhrALGedLyAxGMCu2uWEur4UwN8Vg0Xi+RfARvg8WHTdE8CBYL7CO+wTwP2fM4aUIhnAFBy2uTDYF8BpzF/BOWQawLCM/gvcGxXA6Sx/Dd9pFsB2oVeheJYVwMtMh1KNARPAb1DGUmb+DcBBOCpKyuMTwHGR0lmEDRHAUw7F1kb6EcAYJxbScVsRwFCmnb6+zxPA+9LK1QkvFcD2b/6TKo8VwLfKVmHNoQ7AeqD1Y2hW/7+mqiLzeCcHwIz5a6ePOxHAixVocwtWFcByIkgCPLoYwG4mMTSN9BbAEc29xDcjFsDbQr37CZERwNrBZwcHERbA2nMWuO2jG8AmbMCBoNkUwCAdz89hdQvAnphpQhYoEcDfPBhX96kLwKjXbxbVXwTA/Haaapw1/r+noZC38TH5v1QTV2Lg5/S/FvpPh/iq7b9ee6+mLAzxvyrIIClYY/6/0PCco32m7L8cPhNLwy75v37XF9vrJgTArq5nsbGhC8DaYFZCwuIDwBw3l8wglv6/tQjycqRg/r+F/ASvnfL7v3HMko+IQ/K/kF8OjE8CBMCUW+e+BCIWwC97JhN/fB3APhYwFDmJHsDRBbXWXiIfwOU+pkzcIx3AIt926ExVFsCM03USUX8OwFZeWsT/YAbAABnoF2rP/r8M7PraXdH6v1SATrHurN+/xgKg77cl5j+sq0pACjIDQM0YjSEp/g9ADPMh5/zyEUAggSFBLwQOQMHQZvcH5xFAD7d4dBeKD0AgYideWmcFQAIFAOK67/8/5rPpjBotA0DhwHB0V80IQPBhXmnjzwBAWBUXXF5w/z8olVjUPXvTv4i6v8yPndg/PCo0EXCTuz9aYn2m8kHkv+w5dOuJ48i/pEp9kzlOvz9Y3yHvTJDtP2SkC8KQctW/pOZtZ1X46b9MAHqYhh3pv6AZmCBNOcq/V6jx52Z0xL+IYK2WxfncP+dkyd8VHPG/PHj/IcIg8b9eDLIQ8ALev2SCN/SFd/Y/cGLxLEE6zz/WOn2K/p3nP0auS7P2j+U/uk7qxGPHBUBYPZAJ3WrxP8wRXoUODwBAoJk7XSR2rz8p3XTAFLLWPyDE9+YQy+A/MoOhpWIH9D8AhMonlXv7P8D/HgLG1sE/oEx+Ezu/9T+M+FzcjcH1P4b1hZOVHQJAWmm0ACp9BkBT1JHQiw8HQESvQm49xA1AhUdrt5P0DUCEGhXWptATQO4ckJoXgg9AGySBH8YAE0B7KmSXLxYMQGrw9fxr7wBA/816FyHwA0DajDSTz20TQFZ5b+MOKg9A1Kg70ALuEUDGPBUL7xEHQFMG7xZaJg5AwLOiFYoNCECVrpgUQ5YTQNePTXz2zRVAOD6yUXmoC0BINDhS1DwRQCBn1XTtBA5AxGcHPA2DDkAt2Syuhl8OQDLYbgSC1xJAk9vnWeNwDkBhUJsJT6sLQJ1qz2auzQ1ALGQb4SMOCkA8pOWl3kgQQCbogcFfCQ9ASXWL5JRqCUB9MxSMQg4TQBn+dp7E9QdAZ6a2JekXCEDfRof1kA4XQPFJoetJFRRAkz4AlTFCEUDMF/6umNkHQNAw4m0hxwpAKirr5BzNE0DAG+XQFZETQPdoHTZgGRNAwmJvfnk3D0ADdSYvWysKQJTqNOoipgZAbO4vdDAg5j+Y5KZDyhjzP8AzcZ1Oxf4/5/SgV8Zr+D8afGMqRMsAQNacC62B0AVA5F7fGm66EECfRjoOYuURQHy9UkPqrRRA9AwVv39JF0CioQJSziYWQLs2R7jhbxVAIreJEppaF0DTlfDRJzIaQGU31vLzNhxAVjaOg3J0H0BCk7ZFECsjQMCuo0f9ESBACls21IGDIUAaQxYGA3UiQLzlY9Rj1yJAUtjb80oZI0D1XgNMYqskQIiI0qeUjCZA18xgvGb5J0C0Ks6NuUknQLEssL3BtydAmUmsVnLUJkCnyKcviXUlQAo03Hbh+iNAAiRL/dG7JECEhgOv6QYiQJ8MtEiyvSBAQ6eudMvzJUDJbIPL5XMlQOs9tsY+ZidA6MVsimHpKEDBx0mBosAoQJsg8KqmGyxAqQywCrhILEC+9vhfy1csQP0jUkU+NytAZ9KxbiLNK0Dy35Rr4y4tQFmZbX8EkytAy6p8SwsEKUCZrSLMXFMlQBNRq06g8CZAPZ40vSYcJkDZfFy3JismQIJzzd9j9yVAqy61+WIIJ0BQJxxizSomQHFY0uibhChApomL0NUFKkC08zs5CJAsQCw/BXgIkS5AChmmimyEK0A7vAC9bg8qQKGh56p7jytAvLxZ1HxLLkCNOjZhzwEvQLAlwokgqzBAD2GrQJBpMUCVQ/A9NMQvQJt7GGBFmC9AuUwonw2LLkB+QzpxPTAwQCnnWLdvkS5AqRTS3JcdMEBedlUOJEUvQLVCKSsFITFArccwCItJMkANt/LRqboyQGKHHmJwzzRAmulZ7zqYNUDOpq4Rqro1QAndHGogOzZAf1nmj8dfNkA7SaeL02w4QHTlePwACzhAvhXQmPsdN0AZ11g6k005QGVXv10ODDpANM/5t3UeOkA6L9mBuYs6QOrOAhxkHTxAUGGGZvsHPEBc+uDi81k6QOuz8CfzSDtA3RHBjIysO0DuhF/KL0o7QCBxX7L4eztAzDrfdNukOkBUhpy3dXE7QAZhqG8YGTpAPeuGfmClOEDiO1IFE6E5QJt3rTYbZThA0tWqCQFAOkDtppeZ33Y7QJoziGoiHztAS0F34fylOUCBFghsySQ6QDHrJXW0XTlAyFyqHS+eOUCJohjbiP86QDj4zMsvLzpApBBeeZ9uOkAyRsDllyc6QAJjQvgVHTlAPsFoP2YiOEBYFKm88384QJzdKCTclTdA18aVsaB8OEBO84MYNP04QFjYW4tVnTlA2ps5XybUO0CeYyhw9KE7QK4mbQJ41ztAlesWiAdTO0DfwBoqSfU6QHR/M2zV5TxA9xY+8bYDPUDZlBwzTY89QOHTBOe2KT1AcmKbmYkzPUDr+Sg3P84+QKkalKeqLT5AXI/5qONmPUCNxIYQ0RU8QFF9jHy5pDxAlznXoxwUPECm1shxRB08QPlUjoHXNztADZS0URdbO0AM7bEYVPo6QMLVtWTvvzpA1byDCuknO0DaeJcfTyI7QA6x+5cUdjtA34vPutKQOUDN4DCk2kk3QHrD3HD+SDdA6G+i6o2gOEA01s4IiFk6QP9NZhEgTjlAn/jcMh/7OUCUSahJ0mY5QKZ2E+C11DpAHZNMIFaiO0CORtC983g7QN4a5Wc9BjpAoFWs9EUHOkDaRof15jQ6QD9LMdz+zzpA3l0bxwVmO0B6QtqaG6o7QLPTqtFSsztAfPnSUd8PPEAj9XMApQQ8QODeLMi4KTxAOZEs686DOkD79VZqnUQ6QLG8xRKWkDpA2/YjYkCkOkDZFqE7RKk7QM6j0yenIj1AeE9Kx2PuPEBm+u0GEgE9QHgHE2DbEjxAiAWxP+CoPEBakUwe2/o9QLMw9EImJT1ASHit32nkPkAFmTvSBsE9QJxnFjeoOD9AiB5oUCCYPUAYAhYPHSE+QDYuftKKLD9AYz6pQdmCQEAIDtY44Mo/QHMQ64/GXj9A+iyoD8LaPkBwF5SvZ4g+QFqnqRBtfT1AkARfFWo3PkAEGXvrkGk9QJvd+fNVbT9AhVBYbsVnP0CESRJOZShAQIUhpPPwdkBAwc87knu4QEBU7EMBtQ9BQDaexsugUUFA/VpPCBQKQUAyiHdPAo1BQDAvVehGdkFAaZNTFg3vQEDXLaZtCzRCQNPVYx91wUJA1gP2hxjcQ0B14w40qX1DQJsE8NnluUNAfUSTU3isQ0BvWyUM06tDQINgB+Z7PUNAcfrJa22fQ0CUJTMj27ZDQPxyCmaoAkRAAZfCIgqKQ0AF5ttBuPZDQM1mEWxirERAusv2CJYPRUD0pmhyCc5EQIfq7mWAkUVA00P/HjwYRUBPPatbA+5EQPnt4AEzOkVAUe6Du4skRUCn+9WNuc1EQAqn+hnlbERATUxkpzZCRUA3aXjEihJGQCf9C3NMm0VA/ATEqBgtRkCQdn2GxkdFQIiPyp2ShEVArAAU8doXRkA4hD+yWPBGQGlW1r9/ikZA32de79dAR0AB5Sqi1YhHQL38GlERlUdAPxM2kU5+R0A3z7SRok5IQNoLsjvtR0hAgiNboq8sSEAF02mj21ZGQOMdANdSlkZAQX3lMS9cRkCrpBpIziVGQDPxZrCw3kZA/nCh9Or6R0DKRhxYNPtHQLybMZqxzUdACPVmvcgkSEChWS0eQTZHQOrVP85I1kZAHzyB+8O9R0Bx4WVUylhIQAEY3HLNYkhAM4wwk2AISEB4pkhSNbFHQHjayFOFGUhAd2KXJkaaR0AS0lcJfc9HQEuVUb4W30dA/a3OAA1cSEAK0LG7aWpIQP0Dk5KIkEhA4zD1PrISSEAVuo97XQpIQAUzza6oZkdA8Iiu8QG/RkBh5o7hDXJGQN6AAjM1WkZAgRpIL0/jRUAwX4X2mr9FQDMu+upYfERA+VTfQC+ZREBF1YF8CK1EQBdm8HCr60VAaxMV5Q1zRUBBtermlFhFQFZWohWhgkVAxR3YdDYoRkBB+H0D9ZpGQBcPps409kZA/qPplNGzRkA0I10kfc5GQKwYJ6P1N0dA8B/vVTvERkCf1B113qlFQBSZQqnsKUZA5uJ9/kEpRkDAopENu6xGQP0LP7gn00ZAAgGNqjEbRkCtGzDnNdlGQN+IvYjZfUZA+yt+8XCsRkCGBuUp7uxFQE5j5By820VAyTzIj8tlRUAoePkCqMlFQCbUMdDHCEZAVBPB4IQ5RUBquZiluPBFQBInS+2tAEdAaM3JU9njRkD/T/FOoENHQG7UjmZvmUhAPnE6dj6LSECE3e0cC7lIQLJ+zUQ5KEhAZOJqL5fyR0CDAYImLBVIQGHJTDAX1UdAPZTTTOMxR0A7q6dDPgZHQIbnVeVYF0dA4kGHlMTLR0BeIkrZdJVHQLQ9OMQNKkdA7nZXZOQ+R0DiBiANeoFHQD68B7rLXEdA51Ow+TlXR0C0ff1/1bVGQHj9j7Ls+EZA4FpTRT8KR0AugX2OeiBHQPMVlvfXq0ZA/3j2SaI6RkBAz66q3sJFQPfa/yvsd0VAdrozT/n6RUBTBmLmiHlGQLN8c9xOw0ZA91vfP7O+RUC96QgCr/VFQAZvlm94f0ZAAVs9raQWR0AWq02YdIdGQO2A6IO/TEZAKdPj9RApR0C6NGnzImFHQP5Nixx2REdAWFMe9hzPRkBYZnV92F9GQGb3DpNK3EZA7PTaECv8RkBko8J0+MZGQKYgiOv5E0dAltDANNLURkAAqoGvAYlHQBQkJhAvM0dAJNu2NsaTR0AVLaRdKtdHQNs2aDAfOUhAUtYF2tlRSEAumgP+4fVIQDMC/KElOElAFFHa4H0sSECQ+5tqHatIQIRAVrrPL0hAOgtCrf66R0DG/j8/6x5IQIzxXGjZ7UdAZARjakS/SEA2bhcXrKhIQKH9s3BsNklA8b3RlBtbSUARsHdAe45JQMT0ovIgyEhAxHHRAyenSEC/p928rZNIQEUyOwv/LkdAYc+2gQisRkBKq4494NBGQEc6KDkPZEdAEifnLlg1R0BoN6KHntpGQESGagnHvEZAKD3sDWslR0CMcEfl31VHQIceZbrMJ0hAvoM3rPPBR0DLjXVjWjlHQNMb164j00dAkPHEbK/xR0ACPPPid01IQCjH/MD+kUhA6Ds2zKTrSEAey2tRw5FJQAxNYOePFkpAxUHF+dyMSUAKpBRBaO5IQC0bB8KAoElAwxNeIEwdSUDYnVLug0FIQDGn9w52f0hAPOrvbrKxSEAEkz5kSQhJQEPuHYxj2UhAbM0eWOhvSUBwY26RcNJIQKjCy8Yq4EhAQwcEuVfHSEBi/yXNOCxJQN6tvyo3XElAv73gbGloSUAsEIE3NAhKQJrGzQ9PPElACGXUr1JHSUAFJ4MTdb5JQA0y6iEv+kpA+3jGiOwjS0CFjv1Tp5NKQMPc0DcHBUtA6UpcI/X5SkBlgznDWuFKQI3n+HpP9EpAmC8gZn1TSkAsb9NK6xpKQJu9oEgk3UpAeLo2AKefSkC2raCQThFLQH6x4UJAWEpAcRoUNcrFSUCphBQHiqtJQLQnPYa7nUlAocOPJy+OSkAp2ZbaGG5KQNgslIkhAUpAxd2JvlexSkCaB5aCnkJKQIHqA0wvjkhA0cwq72mwSEBvaKqt/M1IQFx5htsSykhAN1NHAhmNSUDP2RSpJT1JQAjc7q29yUhA4jdBmbf0SEAQAyEleORIQN3nF7Hw9EhAjl5GVasYSkB8LIC/mC1KQMdKQpWMZkpA0Z9YvbOgSkBTHsF8QxZKQHYCpEU380lANIKiDK+wSkA1mM7sSN1KQGZjzH+nFUtAay3K9WXLSkBzj+ndjgFKQOYoolbuHUpAqKBjDkKlSUDi2N91aXNJQLuKZ2vj6ElArI8zn0FXSkC39wZ2NGRJQFj0YlwTqUpAXxTG5digSkBPBFTerv1JQDRKLeELhEpAlaNHhDtjSkBgXgG5R5xKQDWshC/YGktAmMmHO5K3S0BCh4zP1bZLQOd2S2k4h0tAc1KB82zGS0A0RWWU23RLQGndYwjHIktAAfw5+4zhS0C63bMWtw9MQC6fdrGdpEtAmePLPHs0S0A1nJsVB15LQDA/7yJ5FktA7vyOxY2zS0CUy9EFblxMQPshlCDWI0xAeXzqnm8jTECRKq7MhhpNQJBVLW41I01ARRWHkl2xTUDfKHkRohxNQD53OrLqk0xAGv403PbDTEA5V8Zpr7FMQBVijEjvpExANERhroNWS0ANgZdEa8ZLQIU8llM3ZUxAtI+KUq0mTUD3ICPX7ilMQFUBa3pMKUxAx0hun1BfTEBkDOpQFltMQN/09euW5ExAhCUbnA3GTECqsyW0mvFMQBadUfZfLU1AYnBILP+FTUBnYGz/c09OQORbE6zhM05A/fhBlsllTkB6ac2weA9OQOPdHZjkpU1AJY0fntC4TUCEFoU7urhMQKBHqK90p0xA2gaBXtYUTUAzmY0X7WNOQBLailL1101Aevyn2WqoTUAOPlCCkAhNQCJxDaG9YE1AjP5TlKn6TEAZVFNcdKdMQAjMQ5QrnkxAWL1GACQ6TEBxwvre2hpNQAhqeOu+OU1Am6O0wPUuTUB5DkOF961MQPUnVnzq4ExAy3sw8HENTUAD/U81y59MQMhslnTgP0xAullDGQ+oS0Bfi+Y/xTtLQK0mr5Hto0tA1pOPOrYBS0AvXqisUdtKQN2mnDFxR0tAZtIBYU3VSkDv/qSW1gZLQOJvK+efjUpAMe4nsNt0SkCnNoF+W3BJQAwZa4m7KUlAMlMN7ydYSkDTWbvbK6NJQK+p74iiXUlAIyrk7vEvSEDfa/6RB39HQDCnb4Qj/UdAtmQnI2SHR0AHrS7EAwNHQAxAW8Pjv0ZAv9XMU3PnRUCFu7/OFl5GQB6F3Rw7wUVAPKHORIioRUDiseZUP3xFQH8hDxoqIUZAsGIvU/psRkAxQ4R6s1FHQD35kFr1qkdAxSpk0LRSSEDyWJHhXmFIQG0NA8kGOUlAoffh4K5+SUAFMmbrn3JJQNq0Ri4jDklA2TE8ryJkSEAdMi5LWFtIQIQD987waUhA+R0tpGsoSUBD0jn4u1lJQH0IMFjTYElAyx4cmJSeSUCbY0sZsX5JQLc2MuQWSUlA067DeaVXSUCJ8kR6Ng5JQD7Ia+4OlElA7/WJHxdfSUBexWyc76JIQDVu3Wt3GUhA/vkdKz6gR0AqLK848yJIQC9KDieJ/khAJ2Y2PG6FSUDy/33NEdRJQIKd794iVUpARLqwMolaSkCTJPuVAQBLQNPKMP4XjEpA1CjmaHv1SkDtk3f5pI5LQAP4Cq/eREtAFxx/2IMiS0BJQJbOuIJLQBX/aM4qf0tAfPCXVTKoS0DOAbPD39lLQD7j6kdaB0xAMRvTI+C4S0CA6oNro8FLQFFBtv8nOEtAIntbhXgrS0CTqW+AsjBLQJ1prBoy9UlAvew0pgi/SUDqYT90JFNKQPnqFccuAUtApyj7d2oMTED8fxXpOmpMQG0uZArcmEtAj2L9eFspS0AwMPiQ51BLQJvarOp0HUxAp7JLy5Z/S0AcaK3Iwm9LQAgUg6be60tAj38/f6ntS0Cqstlt0/1KQG68CwW3aEtACQHiiw68S0CMEAifNqFKQEu5WsUz2kpA1zR823XTSkAhno6rGwVKQFEj/Tb1hkpAWkfnlzs8SkDOGd/JWuBKQNaUVCeZWEpAYSVjSYt4SkAVXsvZVOFJQMv3nwIyFElA9OSWcSIgSUCfvWQVNM9IQPweyNy23EhAATsSH8d+SECcLbA++HNIQK8e5MPVa0hAZx/MYNa9SEDQdgCChKxIQFlWXH2DSkhAcnl5OCtdSEC0FPvNzJJIQNUQTEy/60hANIAeMPcqSUClQ2wySy5JQMGv+sdfIkhAD41qZCpfR0DpHI4qg6BHQHTMefSg7EdAgjYxYVnMR0CrS9iK4QpHQLlrjurP3kVAeKMafdXkRECL7e93wT5GQFDZW4DG2EZAM2lFAkTnRkB10+lx53BHQBZKjHvDUUdAC6iRVCfLR0AW0gSrhApIQCKCclHueEhAHZ1xyHc8SEBTOW8akHVIQE/Chj/aNUlA/wbOUuUPSUAoV728OPlIQMudo83GoUhA0OcDQTrrSEC3DcMJgKJIQK9aRZnny0hA4cv+pk5vSEBRLHydBdpIQAy9LYPI6khA80cxdPYZSUDinLinMMFJQAzFvFDvRkpAQfwOmeptSkAwDArkVQhKQC7WTK4V90lA2eog4QUuSkD8ZVitMn1JQA+HN0V3XElAHpgYzjsOSUD0fNVkyzRJQK9O4H8bWUlAJnOoPoIJSUBzniFMYfhIQHXGSGG2ekhAMaauEP7NSEA2M4V7WqZIQGQ5WqEvKUhAhvCRlrgbSEBYfnAwt31HQOPWvuddPEdApBtNDHROR0AgwWqOTU1GQIY3n/0CpUZAOvYcBskPRkA8/AgKU6BFQF05j3AbRUZA5B3skBnYRUDAyo/CobNGQMzYcr/qH0ZA6DmU273KRkBX1Wq0bPZGQBRuR35mtkZAOmA1DRs8RkBs36m+cphGQF+yEw6PKEdAfmLuqLrORkCA+2fQhrBGQHrEUR4QrkZAERSKj2neRkAblaoefTpGQA/LgFLqaEZA8eArCFfuRkBZbyy3/2NHQF2yYGsGH0dA8cffoJk+R0AdhsjCC61HQK7gSF51oEdAXDNAnFo9R0AvfETYuIBHQIvi/wurLkhAA/wC198HSEDMIWmtcNJHQMahl+wtykdALii1cvJUR0Dfr5A4EsdHQCoYCrLeZ0hAkWM8gfr+SEBW0IZ2eGhIQCm9I/ccIUhAhYzIJPIySECOQVZD5S5IQOCe1Tv2WEhA2hNv0jP/SEAr9SXfkapJQJEB1OdLm0lAsAHvjfQ4SUDw4oJ51ttIQBgIfmvZT0hAJfYgk3uMR0CxbZq/LdxHQKivKDJmSkhAzeDiBMnzSEAP8mm+Eu1IQN3xcRk6kUlAtFSjKq/LSEANT1tCRzZIQM1DVW/DH0dAgyt1XEinRkANRMyAJTRHQNp9EfaHqkdAbyPhDS9CR0BETxBhngZHQFbipd2ZDUdAiHInjJjtRkCoFjhj37VGQLWEQLhikUdAvxS6pyBcR0BD1Ql5uDFHQFQ1BP5El0dAkHbEc93AR0BCIYIBXa5HQLROVzzH4kdAQZaILoXPR0A9k052L1lHQA+H70HUDUdAR2fOp3coR0C46C8OkPRGQMpfxYpzUEdAfmEha2TpR0CNiWSsFiBIQA+Qju8Sa0hA78ZX3afjR0CEnISJaNBHQKG1bAy2AUhAwOk9exffRkAMeQiyVJBGQO0dlUg4ZkZAzHMMi2G9RkDjTt44A2VHQKuO7FAkMUhATksw6A/NR0D784MYFL9IQB3fX/EGn0hARv0do38GSEArYdb/VI9IQL7WEKes5UdA02JK+XrmR0AAkHBSLLpHQACW16hl3UdAW3zKNyN7R0DOQkXpVthHQIHZLxmKlEdAXpaicJdzRkDeeVk3rw1HQAKSpgHBVEdAj8BsnpwdR0A2pg+QuQBHQJTGk2e2L0dAff8k6vNBRkAYeHWUuFVGQOIcFoG4m0ZAnHqwsB1LR0BU3HwOoqtHQINjIwObnUhAivby+fnaSEAHTuhMqWNJQPeOFuJUxklAJVaEwHxbSkDmBhnJxT5LQGz5kvC/NEtAjAu5PxXmSkDSoP50gaVKQNxeobbiGktAnHH4JyCZS0DLApFR+YFLQKa6ra8cgkxAFa28xokATECGznkUVsZLQPsE2XF4iUxABdWgKyVZTECLJFQ6IkxMQOo6ZzfLuktAF+NKbmfBSkB8B9tWbJ1KQN4rotz5ektAId9+vY0bTUB8wfOrtHFNQEfRzYSLBk5AMxaJh3RrTkBfS+xIgfBNQB4hKK751UxA1CW8AAXmTEDu9vHWy/NMQDJvuVNeYUxAMO7E5IdBTEAStI85oU1MQJo/zrj1y0tAhiFEZBArTEAwnklHsipMQOBEcL5DsUxA7IQkXBwbTUAsXy01/VNNQHq+LrNMvUxAmAJH/t+fTEDu7lILCsdMQHRustCClUtAha+phS11S0ADwickDQ1LQOGitWvUXUtAxxJgHyDQS0BpcWzXYJdLQPx4QuOFskpA7aYThpg7S0ABnViPiPlLQHgw1QBZeUxAg7UOFsM3TUDje0t8+4lNQJmpLvhGB01AUpvJ+aPUTEASYBq4eB9MQDbSSZwRUktAZex4Eqz0SkD9Dry1f+ZKQCr3CgVwgEpABEyXVogPSkDko2opDa1JQGfJ1dfiVUlAXZvTxxU9SUDoa4Acn4BJQNjedzRPb0hAY8ltX0AzSEBu0Pg0K+VHQK562FRxOUhA42+N96PFSED5rC6SLNFIQDOeQOcL0UlA3toIWzwxSUBE+nKuKRlJQKERtemxGUlApGg65OuFSUDjjhsYJaZJQJhz9SS6/UlANmLUq1CBSkCSCYeFViBKQBG6S4UR+klAqpnrine9SUAktoSDWYZKQMS7MzQQ+UpAkd6bbR2uSkDkcjqA9zlLQDT4LSLB20pACofFWYhqS0ANU2jXHJxLQEdFRWWg+UpAkYUqp87QSkAEBo/bvYhKQNXCxdxxVUtAETLYreGNS0CqhBAHZgxLQEuVb7gDn0pAWBb3mNsnSkBi0PzkKTlKQNTKVmwjvEpAZD6+a9N9S0Bv6wNNFOhKQE7za7dmAEpASCMANhRgSkCJxEqFt6xKQDNrU70bnUpAY736XsXWSUBt/d+6IKBJQPc4/0EwCkpAkI9IY/fISUA3Fbrd2BZJQA6uJ+Zh6UhAaIvqIEdwSEBqoofKqWVIQFLVtmY33khAqsLA/QFiSECqGyY4qIdIQCzAPFiuekhAfWdE6AEqSUAqng7FxgtJQGWrPFakBElAT+v+CX1eSUBuBNFPNkNJQNPIK/TRo0hAPXGUSRFkSECWwtSNZZRIQIyyZrt+HElAg+YRz998SEDUoKHzo7dIQAa2wZ3t7EhAlpKCdU/sSEC55SCjQMBIQHk8k+Vqc0hAVwjM212CSEBIMFU2/TFIQMeA5RZpK0hArxXrW+VvSEBv5tDZ6zBIQIP8k4mPNUhAf0ew0r0+SED0/PfMwhtIQN2a9Vn14UdAeLjqgItkR0D26QRecC5HQJBF3sRISUdAEAcJRSFKR0BV6Zt2bL5HQLlhd0HYMUdAt7xypBOgRkDxipxrwHRGQLlzzx1IwEVAaqTrDe4BRkBafTMzhJtGQCpYzDLES0ZA/Sd93vLFRkCi5233NY5GQAY+7LMyfkZAhq65xbeARkDW8PIANCRHQEl/31YgqkVAcVu+wWFQRUC1R4Pfp2RFQMz+GfoP8UVAUJbUrDnbRkBgA2I5yyRHQOB3cxVt60dAfYmvQ+RTSECzifq43DVIQIqWxgZCfUdAcZoDnoVPR0CagxXJs69HQBjmcHVtaEdAo/VWyhx0R0A6/6MZauVGQLI97t3oQEZAq3IE0xeGRkDZ8vSuH4xGQCv+bMem8UZAzZjMp78NSECSFzaNoxhIQIX1jmtvC0hAcvl1BxbmR0D8jN4rwrxHQJAugweB70dAspdBDPsiSEBJP3qa3C9IQJ1RP1bINkhASimVtH60SEDMYp9mTLtIQMpFNMpOZkhA2zzGQieASED7o9gQYwlJQD9P70siWUhA+WMV12GtSEDVGkiGjhJJQAm9vj7dBUlA4QPltWd5SEDkDvBjpONIQFoo8Yc32UhAABqnSXgnSUAERJHBfdBJQD2smSXtbElAIzIJlhrQSUBUPcujlZVKQJjdKYm2wkpANKB2IAMxSkC0935NtpJKQE7l3kVKVkpA5xJ0PHVRSkA9wXSQBCdJQJKxen/TeklAqJ+O8UX0SUDSheqmzqdJQBKPh9hshUlABUhFrEp1SkCI/mQ0sAVLQBHmzksxXktAG/jVEy2PS0AGayeZWWlLQD/dgr5fTktAHZw7LmeXS0DcfAM0ERpMQHcxSWGnfUtAFOs9ZVzTSkAxFj37hRBLQGRtcKmXuEpAUC7ZrLh5SkAIVNeNT/1KQAIR10MbA0tAikfo31kXS0CPBsCrEBtLQPuleTy8C0tAUccNr+VmS0Be184dZjJKQL7IN1DhIUpAEgTTaUU4SkBL7kNXZz5KQNUcg2WE40pALrKhJHslS0Acy2fDNz9LQIBkkqn1oktAytGWYnzZS0AA76hzSs5KQHaNYxiimUpA97M9QqllSkAc649UbZhJQKgNUbiVMUpAJcwSaKQNSkDMS80pzttJQAwMhPMT9UlAaJ6j21ZySkDGrI21qs1JQPsd2zjhcklAnT5rNH9XSUBLT8EhGYJJQAIpx3ZjakpA4p5qz99ES0B1ISmPeg9LQLWYRS0W2UlA1a7uTXmPSUDqpToWwWFJQPZoK+UoFUlAS+jvi27YSEBnqKe/4WlJQFI6PsS+GUpAb0cgk71tSkBQB8ACfwpKQCx3o2DNFkpAXVqCwypBSkAzdehdh0hKQJFB9pk0BkpAi7A5syQxS0BUmYFSijhMQAdQL8Z+KE1AMQKvVTXPTUAkkdx6UolNQJe/o+RUBE1AVG4EkLX5TEBsJT7hqZ9MQFXryfJNs0xAmenTnpgeTEDSR4ZlldRLQGM/SyvnrUpAWUEMjwLESkDK53icLx9LQMR+qZ+RIUxAxX0fByFzTECyQcYKH1BMQEnGStFDwUxAvgudhFfnS0BejZuCxhtLQM9+/DTt80pAcROxSc+gSkD+YenWI1FKQLAWWCMjhUlAo8cQbLPqSECkdLtx5hhIQEdSXiETiEdAP9/pVfzDRkApycpDCK9GQC8mlkTv1kVA0o/l0xFmRkCkbnQt0/5GQHnZ4uuY3UVAJQySs/DXRUAhqHqrX/FFQI1niTd8L0ZA8Rr1bgsPRkCTc8A7DoJGQLd05y7m6UVAAOpkWxkyRkD/0q1yQFRGQI18/9Pp4kZArWtpE3O1R0AqxcU6xKdHQFctt/msK0hAJWskIWHBR0B9b6khX/BHQIAsqy8gqUdARvwV6dIWSEC0ajuK4JRIQBtMyISScEhAa7GB8g/mSEDS+/VGQ/dIQF2A9xGwtkhAKYT77K3hR0Dov4T3/2tIQAU2nq6HF0hAPvWxs7/eR0B84lER2/lHQIDAB6WiVEhAuzLJ2QCTSEDNjZKIQUlIQJvka9VUp0dAlapzAwbSR0D4e1bGaU9IQNaf0Z/ypEdAOlIVql/ZR0CrC2OY/lFHQIMk6QIKn0ZAuJFbjZ7uRkClg8H82SNHQBjRgu03AkdAbE5IQes2R0DAlCKc5CVHQArzNYTgFkZA/rYK5Ap9RUC2fK3KufxFQOCsP/nCG0ZALDx04i4RR0BkF39SgeVGQJL/NcdW6kVAfa76bpnCRUAqVCYU27pFQB7J5tWyLkZAO4YuXTxDRUAoEIkLvOlFQJdmtDYDqEVAao0ZYtdoRkDUcbMwCUxGQNTvonrIYEZAsie7arWZRkDLj6jz+w5HQIR1ly6w/UZACFNf6DpCRkBLiqA/dgRGQCOl9i0Dv0VAySDdu8t/RkB+0j9PUodHQJG5H0nMjUdAb48BltW3R0C8loGnU3BHQOugA7DaXEdA2leBDvEkR0DI3ZE7dOpGQE+CX6LGD0dAk/C3PPPXR0Ap9ce3YBNIQPkxVN3MzkdAWBblIgnNR0A7idBx3bpGQHhp4PATgEZAolcbc5cxRkD2Sf5IeAJHQNQ9plEoxkZApMb8xQscRkDmQDQZtzJGQE/+nc2B1kVADleDwSBzRUCpQ0WfR2pFQGK8nfPpT0ZAlF20YeKvRkDSaw3uQDpHQM6Q59p7oEdAdI+pYzG4R0BiLJkSSBZHQG5CUbF2u0ZAPa4Kdoj0RkC2fWphlFlHQLcTe2kom0dAr3x+kWD4R0BZcnaUwzBJQCFQU8GVKElA+a1cz0tdSEDu4T6x/MlIQGCbA3YU30hAucPz1JVeSEDhWTpXv6JIQEUNpfX3hUlAK2aFMzcaSUB2bKotu1BKQMwBOojXDEtAkx3AoDicS0CT11YTDJNLQJjZl1doGEtAY4/gk74dSkBxBaeyfgRLQFOtIP4qUUtAObvHHHlSS0AyviHWpGdLQMuM/YaFWEtAy3WFLq4gTED7JsYYwepLQEb1thh5rktAv5jRh4nBTEB0bRgU8iZNQEbMlDE6+0tAhKaiBC/rSkCX1rgLENVKQJCH0gUoBEpAB+D/ErEiSkAVgcSr+/FIQJNnYcu+VkhAQn3s/lqLR0AAxAlwzt9HQOmPzknEakhAsLsiH09ISED41zdTUG5HQNRe+wwHnEZAtPmEbSaLRUD7Ftcc241FQDx7lCgUVUVAxAYHS3BURUBFGDzHfPREQEBp7KgWdURAwl4uY7onQ0CCL1UHBl1CQNVaSPDso0JAEDGvsidbQ0BEd/XfZjxDQNTLewVXw0NAgAaRvIV9REAg5nAreeVFQK+X+WFMd0ZAj2bAfbyXRkAkscRyp39FQB0hW4YRI0VAI6MLJ3+hREDLOpLbq4xEQI4cxGUzCEVA1rYmurbSRUB9IIf0WM1FQAeZSoqGyUVAffrKMN9fRkBb75B284FFQEpgZ48100VAkJY0T8vKRkDU2m0rU9tGQOcWgYPoZkdA2OV7zdzaR0ArpqAVbmtHQJBnRMmjnkdAZ0HKwdwuSEDJs60GWkZIQB7yGH9YcUhAMyjiErzpSECl4zAbheZIQCGKnKbPIklAy96TA6YGSkBLXiOHzuNJQOmDQs5QZ0lAjr3lkHooSkBpFegQNV5KQKuK75GLcElAXOoh7bHRSUCLov/KHIFJQNBcUC6pFUpAAfUv0T/HSkANc5yPp6FKQPWkUJ+/DUpAxF3c3dEYS0BvqfIsJyxLQI2wdybyTUpAXWJG0mp5SUCVFB6ROxJJQOL7AFKRPUlAyuuRqvRzSUCZCMjG1npJQAY5fh/TMkpAsQlV4Qd1SUBt5lvxo0JJQMNOaD3MEklACzrke10ySEBN8d+iBRtIQGI/tBVs2UdAgub8REYYR0DUcbYZ/GtHQOlQ/uZNMUdAKnlLsTz/RkCBhup6nllHQLIs5b5Wv0ZATDgQCtOJRkAG+7xLmc1GQCJgex0XXEZAA03kqDbXRkDF8RMqteBGQJop/QgOx0ZAYA+LfqffRkALbcx/G/hHQFeR2dfaWUhAVtU+sldUSEB3npEz60FIQO1c7B9vZkhAJBQp0zBQSED2nCwU5UpIQAoeXeIemEdAnRBwW92NR0D07xtaDLpHQGuPmJQYukhA/nI8Kd39R0ASdGUpPYJIQKSRqTYE4EhALaGXDZnqSED7gpcdhxtJQHDOgS/QTElAZS5+NChwSUCcwfjd2LpJQDObwhvdcElAN6gUttBJSUCcAfAVJr1JQO+RoyX/qUlAr+CwJ9XISUDmB9ogYvlIQATPNhIPSElAWocytHOfSUAZy2etHdpJQDWKGZxyK0lAYm543P4uSUAaNSNGRLRJQI3fU5saUUlAgutMTOGBSkCpGCMNrFNJQK+QiqfQkkpANCmO5dtcSkDbKMNOt4NJQMVREnOxfElABho3PzfTSUBveIvNM7lJQFafLgSJNklA0rshutTHSEDJlIzTl7VIQEIuAVneYEhAT1mxV1WWSECGXVeW675HQJbE43CcrkZArlJSukOSRkARSg77JAVGQABH9qE0BkZACy/EnLlKRkD3xd4vBqlFQNZuW1eMGEZAQnonQoYyRkAAfe/+ke9FQCs6AiaBAEZAmWPujrJgRUDD37hbH/pFQD5PkOLMoEZAvjEwHkmoRkCdUtfq8ttFQHqkd4kAckVAkgrj70vBRUC1KO6pKApGQG0d64f5BEdAENFB3I5RR0DZ4k1vvFxHQJdRnJaHPEdAHIwQ0MXrRkAe076qelRHQA5AlOFm8EZAJIxBp+mmRkDg3EvTxlBGQO8d5IevfkVA5iAKwgbPRUDLX0quzi1FQJEoISisq0RAzSlCsaZRREA2sevwS3pEQHxGdKzPTURABM/YkNm8REC0oNBP82lEQAc5Izvl8UNAk1yHoJZyQ0DcjXkwaWxDQIx80K6HakNAcld5einCQ0A/+KsCI/FDQI/K63EgekRAWfatIQC3Q0BT+XXB98lDQC0MDgEwkkNA+jcaUVGuQ0AW0sMB7rdDQGoYr6DO7UNAzVq6SxJEQ0COe5fCFeZDQOYmym8xe0NASUl00+GJQ0DKuxrbGzlDQClKZemeWUNAYS7EZKvDQ0AZUBT/ryJEQFCYUkDMBERAAGI/+VjwQ0A634m+eRNEQFT17KXO1kNA723ayDuSREBqOC+1FmNEQBXscr6eyERAkJDzEVTqREAZq4NVZVhEQANGjiAK0URAK5uj+qufRECHB7qiAk1EQOljts/wokRATAfd0Aa1RUCmEeh+3CpFQNiDtoDCeEVAiJumiZitRECsN+q04ENFQLbribld3ERAm5hqxvLJREAVHOiHSMtEQP8eKZSqNERAXjXdVoMyREDmT7ok7rtEQO6SFSsFMURAIyK2pIS8Q0AfirPo2+1EQNOJLnv9GUVAuFgCYaOrRUAsMyDOJyNFQFbj9KG0MEZAr0DRBsz9RUDZTfGYWKRGQDRcEqeV4kZACnGxr9DaR0Cvdy56xA1IQBdlVf5IeEdAfRwxAD8+R0DnxMgt6HpHQJzXUYyTmkhAI3bJJsM2SUAak9kZ9JRIQGFCY2NS+EdATnZi4gFBSEBilC5xY75HQBjG6CgiQEhA4HuSCdq3SEAaiV20rM5HQBZ6EgTiG0hAQbH0x9byR0A3opVD621IQPvpq4cFYUdAA0+T0YthR0CAl1TKnz9HQF/Op4bP6kZAQR8AcLDORkDpvJdEJwZGQOwYpjFRB0ZALtP6VbZKRkCJubF7J/1FQJvy2LIRn0VABfV70GdgRkD+VyQ/SwtHQH2Ys1OhAUdAvGTlVSjDRkDuVBUD6oFHQDgW4nMYNUZA2PNxNehsRkDZahftvt5GQGRP6s/vZEZA0r5ViF2JRkA9GIR+cdVGQHYVX6kwWkZAxvSqJzaDRUB6sPWFbXVFQDctmoRiCUVAYIWdsoQxRUDpSJhKbJxFQKTAHzkF/0VAhW6JeQQnRkD8NefgFlhGQJz2dLuEqUZAfQ3+9u9vRkAiXMaECvFGQD+n+gzHxEdAHRkHDTdIR0DWgw/7JQhHQBLqqteSyUZAnzB2lMDCRkBDgFooUiZHQIYjiGenyEZAwzubBtzGRkAzNhrR4Y1FQHqNrB+GakZAWVHsIajMRkBxHAV22QxHQLmNTCOZfkZAnvaxQE4WRkD7Y63lS3hFQENWrA5XIEVAaNdc3gA+RUD1BjrOsClFQNY9P2NoLEVAJr9BUgVBRUDA7HfdJ4ZFQISl2FB3C0VAwUEJupe8RED7geA2X2JFQBBQ36xVaEVA/l7kt9QZRkC4cHqyLQZGQJfp0duax0RAnvBi9sPFREA/DbPelFBFQIAz5tqEl0RAH88EAQCnRECG0cxqfbRDQOAHa3fK8kNAP+JeAnwARUCL77qCgXJEQBcdKCrY5ENAcyH/zrhcQ0A/ir/DV1hCQFGGhCVw6EFA3bG6+HvHQkAq5ffteKFCQEZ4P8twDkNAUcr4s04wQ0CSpYYRNXNDQK7bs9ip80JARkmxROnPQkD0YorA3o5CQLpBaMt1H0NA6i9wFpwnQ0BEoRyPRL9CQIWzHxFgz0JAqvt7BP82QkBIdBzztulBQBlYSE8urkFA24Hj2LnZQUDz1a7fDIlBQAKjT91b5UFAYhqTbsIjQEDcwfXyknZAQOeTdE6pXEBAp4YuWLpkQEA3mdKNFSZAQKai77dQ1EBArCovaip+QECc9ZtoHFY/QJyuCbbinj9AkP96hQ6fP0AOUr/bs8BAQC2dGSbWikBA5S/RXP6rQEBdOmHg3chAQOkZpxCB3EBAzjnO8kDUQUBNgl0tDlFCQJagXCfya0JAXHxe/8oXQUDYTspEk09BQHVV+3OsHEFARb1sBX+iQEDNqKANDghBQO7yd9HWg0BAM9I5/d21QEC2zP7GE89AQC+ARSRUC0FAT7oqgR+0QEDXm9jJJE5AQP703WdAvD9AW6EYmFiSP0CifNS8TCJAQJWTDiAo70BAAVT7XdeJQEABc4BcosZAQFSdEpBYjkBAGb9eVFhCQUCcjSYTOqxAQH9yRJZ460BA0Go9/VUOQUAV0GmPUBRCQMKXsSuPHEJAxhkW0jOHQkB8+qzle8tDQJd/c3b6l0NANtH3zAijQkAnNIPQmlNCQEwWe/02X0JAmcH71ihDQkDTAnzcRqdCQCCcBXC1YkJAuYqFL0PqQUCDLCI8+QNCQPyX3BwEu0FAcxeyVoLZQUDjCVf6z2BCQAqGqTYLvkJAioM/L8qsQkBMWOWbSyxCQJFuTYB+0UJAnp1aW7nvQkDUwz3/WrJDQC/EYIVki0RAn+BvAQulQ0CeHSHcoVtDQMDXHxYMuUNA2xPWtVhPQ0D7g05RlGNDQKRClpcUkENAjjEK86+JQ0ARUrL1ml9DQK88YOJqukNAt1DJqCVoQ0ALyw6zMl9DQCO3pC4K9UNAEZ1FeVI6REBtApM9N9tDQKwn6965rENAm3ib4RbYQkBDpjVsvftCQJgAK8JcJkNANs2zBOmXQkCAJNY+MpVCQGnoLMNJU0JAQcZ5k5bVQUBPiOHQu11BQNdnuJmIWUFA0k3pgBMlQkCx/d0GlcRCQPTan4sK50JAChZl+AFSQ0BO3WlPS6ZDQBAOhWcUn0RAAHbMtiDyREDgJ+KsEdlFQDqnKdNCB0ZAms7SAHXhRUBy0DPl5bdGQOWXWM3O6UZA8gRS3agNR0Dn+K/aqzxHQBUeVmsKKEdA+XIU691vR0ACe79jSO9GQJGhw1WJsEdA48RN/lIDR0CjgMggbldHQPHSpSZKBUdADpubQgodRkDCtHHgjKRGQBEPRdotlkZAd+JuJhwnRkAv9iTcORdFQElAImzZ3kVAFpedfNIBRkAQ48QgezZGQMYSG5eJsEVADA+rfuRBRkAL/Ub/xfxFQLrkUC+KT0VAi0WWh1TmRUB3cnjg27hFQKvB1MDnCkVA2gQwWlS6RUABBghaQANFQLUVpsciB0VAwgMcoSlBRED8tgL04OJEQBX+mt5DsURAPMq9vRAyRUBT44X810lFQDZqJiX1DUVAgRX+//1jRUDbWpCYZw5FQBr40TBJdERArDtxSqJWREAHrR3OGXlEQEnDq1Zb9ENAMOaTTX/+Q0ASbZSxe7RDQKvunNaTWURAZqthngf3REByWG/x2kRFQMG8EEZ050VAaZneCmm5RUBlq70HoqtFQE2PXAcRyEZAVL2dQYuxRkDPiWqDiFVHQEg8gPVmyUdAp6R8R75SR0DJs9Xz/W5HQK6+7aqPL0dAJaah/a1VR0B5skhIy6NHQMGpglihqUdAT+yeo69sSEB+a/ClDktIQB5bc8Xva0hAFLVlCRK4R0B2PDy7aW1HQFQ5E2ACMEdAU+gjBUj0RkDceMo/POZGQEioxZDpHUZA6w+wrExxRkC7HuI64ppFQICxsJb6j0VAmFH7wtfLRUCc00edq3hFQOW9MVf3d0VAP3/BemXkRUCntGtGJHBGQO+8b+4zw0ZA6Lp3uFcrRkCpCWRDzctFQKI+HQc9RkVA+7xJ0Mf6REC5R7/lTBJFQBBOOYQjokVA6r6SSiHCREBnw+9DPcREQL1ZEEzdRkVAX66ARFtgRUBthnWN7LxEQPohwLTuIERABQBZjW8lREBwSbpNdVRDQE8owFn1jkNAbh73tYxgQ0Bh+2lG44JDQKKyVuuO0UJAPynBC5KmQUB4jMtcEAtCQKzzxIl800FAN2QBf9zDQUCphLMzJQBCQOeHehSp2UFABJR7Yte8QUBbarBdBhZCQOgJd0OJWENAQSiGxM8EREDTD85Fj3JEQN54RJq4m0RAcDDzEiNyRECL1FECQYVEQE+fEpvi0ERAGmeUH7FjREAZ/RfPj4xEQA/eSicyvkVAdX4rtioPRkDcAQAvw5ZFQO3pKRhG+ERAOcxmkr0wRUBWidYfjYlEQLbRiAepy0RA1CmPUHAcREAna/cZaV5EQJZDzfwe0ERAsZV3bJgLRUBAbcKx799DQLiULC83JERAIcfOh0PqQ0As4DCb5UtEQEh6UJzBJkRArELIQkVYREBu9noQI4tEQFpkJ5cTAEVAfztFNWH9REAflTElp1RFQGIksAugxkRATwyxLEK+REB+I/utI5pEQH13ZnbRT0RAP/FLJdQDREDDG29kvzZDQNXarAMUpENAITuvD72mQ0BYTdppsVxDQCrJaBUyEkNAgWF9tIeEQ0A12Gjh/UJEQASQoOCdskNA+Nvq6cSsQ0DuM1wYnbNDQBN+BtH94UJAmmKt/Un6QkAAEsRoBwdCQEzAHHDyLEJAW9XIK9+AQUAShdOzyAtCQNIqIo9Pb0JAcVTT+qGUQUBNDlxbs6FBQJwfamOm1kJAPiRjxi/hQUBh49P+NlBCQCGeDyjwhEFAJLNPxXSBQUDdVSHRb4dBQGfxCwgbe0FAMTpTTLxwQUAJp4nWhxRBQH476bCqP0BAXfAwwyCvQEBS9hCiSGFBQCs8A+jOskFAwxQuoXJmQUDD3snwsPtAQGLI/ktieEJAGbOFd/k8QkDZD27UFvpBQCmiJy0ROEFA1nCD8JXFQEBIqZb4HrdAQHX8HFDoCUBA/7m1iUozP0BL5YMKNq8+QLPt9jXRjj9ACR2WvsQVQEDjA/gTt48/QLpTKkv11T1AYXRy1r1qPkD5I5GyckQ/QOhKR4+qgT5AssRAaUUOP0DKlYeCRPw9QFjowayicT5AEYijmtrLPUAg7bFYyG4+QIPhJ9hOpD1AujViszLTPUB0Z/83RK48QOMq8uMvxjxAO7HEOETDPEA6M/A702E7QDWtOxeQ1jlAE1Za95s3OUDAnpywSLU4QMhJMozkgTdA+TS3qBxsN0CcpYe2TW03QEgHmKGNSTlA4VbTd4RgOEBXJP6J+KA3QKWPFZ5YdzhAqG2PpDJ1OkBWlT02eb46QCYVdfGfpzpALlE3XGCLOEBFkNmHaOY5QAmYKRKTYzpAxJaXjf3wOUDA2wVRL9c4QPvrF+NvuThA6KY+YJfSOEATV2CkPCI6QOTbdVnIGTpAP+Ma1D8XOkDTgIhWoUs5QOh8A5RrcjhAAS+CeN39N0BqbNlzS+I2QMROluNxZDhAnbKOJmqcOUDUduYubhI5QGWjCzZ5kTpAaOkSawveOEC8KIqecmg5QH/hXu2PfzpA2bJ253FMOkCAtyEeYGQ5QJ7L8gJNZjlAte61UcGON0CAwgad51o3QJx/K4g9oTdAhfUBaSHLN0AcjkGlLGI3QNZ2XKJNfzdAPgWwG44mN0AOUWjXfAI4QOEoWkKEDjdANJ9dqhniNUDBxaw0lQs2QJWFCs1brjZAGAP00Pl8NUDyNB+ifZ43QD47VDcS8TdAmBSbW1IKOEAhRf3cTHc3QK7F16VlcTlAahsUPglHOEApOGaW0YE3QBlToHeHuTZANirSZlvlNkD4uB5A3A01QL8IFMQOBTNAH6Bd45BXM0CVecOecU4zQODWDU5IXDNABUFeJ0VEM0BaTriMCn40QOQfjA8hvTVA2ntRJ5R+NUD/mBCkqbs1QCvWY+i//DRAl7VlayhfNUDpgZxZsAo0QI8ZlVvdXTVABQJ2807CNEACUkiwMTE1QFKOnqwmiDNAlZoRe97JM0AQYpApaXU1QGLC9lKWhDZA42RNB/dLNkDr+fGUDWg3QESxJF6b3zZAAg3ENphoN0DL+CUnvvc3QJDWSjwqYzdA/bQTO8w5NkBF2HRHVFQ1QHkmN0KV8DRAOzse05gsNED+gcFF86w0QIk5XurbaTVA2xSAoHsNNUCMoBjlYu80QCpAGW1rkzZAXR1mzh21NEDdNEJqj/wzQAa/spGskzNAiPTs5abKMkC8IkBlYhQzQOzuexNgUTNA3OXyVk0VMkDtnLHY2XYxQD4udBR+njBAoTkJn/EbMEBiN6cqqiIuQIKkOqDWRDBAGPpwvjR5MED9GwjUYysxQIYKJRgUuTFA66myai6UMUDb5gSNt5oxQIA5NFmQ2S9A09Bn4FtzLEBjphtnHF0qQAuEkVkWsSxAjxVCzqqmK0DcBKxAmEwuQP3SRJY7VC9AGW6wqdv/MEA47mpYxUgyQFCftP+S7DFAgy8ASulQMUBy5f1ILloxQEwSSDXrCDJAiZSFNL0YMEBfnChp0Q0yQApyS3NoUDJAB4vfkAphMkAy91/Gls8yQPauULcsxjJAFMCgpqEPM0C4HVwFuGUzQIaiB9ovVTVAePPJmJm1NUAy3+TLrqc1QAUnu1kySjZA0aihjUzqNkC8pFG0elg4QOxb0TBa8jdA/KHqG1cXOUDzbSxdHaM5QDUPMyscaTpAo2WdwYTKOkAbhhil1Z05QMF+eVuJ+jlAV/AeOx/COUAkBsrSEDA7QNEeQkqVojtA+V8axb87O0CRKiyyiNw7QL3UYkCLujtALKdu35vQPECOp2KmwXk9QJejSi6lfjxA+zMtJluCOkDWhHKKak05QJv4Q7GdAzhAbNAYK8DsOEBaxW/COko4QBzIyVfzvDhApxmLzVAgOUB3xTBzlW44QPyriCdQCDhACSE/6uZNOkBTwL9vyAk7QJwmxRC+CT1AYPS5f+rvPECWCIfI/TU+QKJ78wGp8z5A0EW4LuHCQECMbnw6EYlAQASIXp9IMkBAgKUWchweQEAdhQzVgyNAQJzIt5vBLT9Acaf4UHOXQEAyF+A0QQRAQFAOb6Pg8z9Aoafk34AnPkAK1HpiBUE+QOC3TAc5jDxAz88d6x2sPUBXIm9H+pc9QCpVruNYmT1Aq6GtoVKEPUBdAcOrfJE+QNE3sJaWqT5A0kN8JAbXPkDJQizq7k4+QNIb1fhT1D1Ark+l6FaFPkCXPctNyxVAQKsolsgbiUBApEV2SrinQEAVGSNopQBAQNRQ9sFKRD9A/8D6KlY6PkAlNhsoeUo+QGsS43UuwD9AiDD74iKqP0DbzO8TuLI/QA4j+oD3TUBAIwrkc2OiP0AuYWRKrao/QJxAhFwXCT9A5E8F1P66P0DUdkACkBQ/QEcd5V6GfD1ADXppnWcDPkCfbNnAZfU8QI35PLgR1DxAMHfNVAeCPkD4g8fqo48/QBKmMmwxGkBA0ll3sZV/PkAMfzeprjA/QBB/ENMj7T9AQu83sp17P0BEgba4Los/QL7chpl/6T9AgM4C89AcQEDPT2QBu9w/QO2Rp9zXZD5APJXrMesnPkCPWBC27KY+QBPcocsHED5AqzzKLKeyPUAsiZn3bdc+QARb8AFgI0BAz7wji3GJP0BUxFW5hO89QAQKcArsMj1AY5fHZGe/OkDlF+3+MwQ8QE7s1QycvDpAdmxGEvUKO0DVB26lgas7QCCwwViP/jtAvOZCmu6xOkD3806kIpg5QHc30F3+1TlAUhCcD76nOEDOU7qREZI2QPoKuKSvTTZAsgPdXVtbNUD03rcYnJM0QPoNgqbjFDdAdAjf4niHN0Bc42moZc83QP4Lzk/L4jdARylst/DUOEBLN2U917U4QDAOyb9gtTpAP/3ssm5HOkCmEVFxlog5QGvWcIrWYjpAZyHz/sb8OUBX8anWBls6QKupT4KkcDpApacvU6hsOkDg6dCtlmY7QDHWX162NjtApjl33ZhIO0BFgKqi6GQ6QCQ2lD2+UDtAWeKDvq4VPED/eESAePo7QEEqFc/WfjxAunPXqrMRPUCYBojK3Cs6QIv2OEapQztASEJEIjIPOkAo3g0r6bY6QH0lTNR1zzpAs3YbokiROkANbDqYYKY7QFA8E1XYZzxAJ1ihJVGVPUC7d/QTEoA+QKdGKil0Ij5AVtzF8S5dQEBHBE40/1hAQHi/0utnf0FA8Qfb9rHYQUBRXF6lE/BBQLZRKLTeLkJAmC9myPfiQUBs8vBwf5lBQNg0SbFMkkFAsb4U7j/FQUD+rhbQlJ1CQN/zL/ihzEJASXbzqTzEQkBp+vhxILlDQHw3FjHCsUJAZviie5n3QkCSjOxrEGlCQJytYjVqyUJAOLD38yXXQkAjzP+QTqdCQOCZ304Nd0JA8Bjk2WosQ0DC48DMi6RCQNzILvQGa0NAJOBuS40qQ0D7Fo9aESBDQMuSVCmJZkNAzBWyucReQ0BNbCq9R5FDQD7j8SlnjUNAdRHKcbuiQ0D7evCd5mREQI+hDiWseERABSS7Sh8ARUAQvqIB7T9FQDWlknDU40VA4BNtNxr9RUAz8+Z0KhxGQHyUs2hO2kVAFZMAWe3ZRUCVc0YrdTNFQISTN461YkVAwWs+KvXdREDVUxkL5OxEQIKPcoPRAkRAe5dkrt4wQ0AWca2ftmhDQEt1/bXryENA2AnQt0XGQ0BnrKb0Y6pDQL4mGJmCpUJAQ7osGYnJQkBj36+40pNCQEBP1tMqh0JA6AIRR16GQkA5jr4WmmxCQFhiywD+bEJAneUoHwAYQ0AfzlKCitxCQAtyP0dzXkJAfxmv7J+iQkDh6XE+Rf1CQCuaWNMgHUNAHe7ydmV1QkAFa2EJfV1CQIwX/7YEtEJAPsFm20R9Q0CcJtTXjlBEQHQnvYJ0LkRAanDhCYQqREBssZORS9lEQPqJZgEjwERACGrWmGtmRED8pqAqj25EQJ+VH2wu9UNA3i17X64qQ0CTmSuCzuJDQJAq+lG98ENA5z1mRiifREBM0Z0qgm9EQEnLEJXa/kRAgdtVmgoVRUD0cAfhYQtFQB+IT1x7MkVAwypZG4AIRUC9PkFSzEpFQNNq2VIfBkVAn5P84uODREAWlK31wstDQLld5QLHf0NAKbxFnpxaQ0Cmdblke9JDQH/Yux451ENAtDWuar7OREBExDLzvgxFQNMBGxObCUVAOND0+td6RUA6WYYl3X1FQLoZ+7SXPkVAup/EsTFrRkBtDz3gqGdGQKwauTek/UVA5pI1nLQ4RkACHO8X+9RFQIABhMBZuERAI43zidWcREDE17xqYvZDQOddgkTx5EJAP/N5M+mBQ0Bgm5wp6AtDQEeVE9b4uENACkNcIAMAREDogmBhoFlEQHmp7e4V8URAVbM02IetREAJTnyWXFdEQM7dRu7JekRAF3JwyA9tREC51u3Ec9REQEfRg9s5Z0RAebtNR7gnREBEMxxI4ndDQG+cKny4NkRAc9jm6eYfQ0AqSnM4vU5DQHVbpQWHAUNAAqZDNyRCQkCk1bo0faJCQLSURCikqEJAgZTSN6yeQkAWDs9Q8FNCQFfpWpo2P0JA1Gq5jPA7QkBk3+mhb8NBQF5sp8zsmkFAa0EloBfHQUDPBdVIpY1BQIIRBP8P6kFACWHfZLhcQUDAq7L0gEJBQLyrxpEUq0BAu/o2F8+rQEBtCcnBz55AQP8WdB6Y/T9AuzIY6oL4P0BGOtanS0BAQAW3MlQsgkBAl5AzxSNFP0BSUFPiYbA+QD91ReNNhj5ANNpw6KhNPUCkEJ32xk08QPIIC+nqtjtAF1F2Z/wSO0CYoLMneSE7QJFt33GoSTtAPUmLnjTIPEApSKbDyqM+QJP1/5dmYkBARphqPunWP0AjvslQQBZAQOCoLV7doUBAV4s1n4KCQED+VNymqzlAQM1LQVeCJkFAkIh4oIJyQUA7w8YAFd9AQKGGU7agK0FAFtXulLHjQEBwVKkXV39AQOwPX/8O6EBAPBCywho+QEDXfmTmrRBAQJoWCV2lQT9A/hC8esbKP0BW53Jj/21AQB0l/g5Biz9AsAW2khaWQEBBtWJlX9tAQG5Bj0Yc30BAM5DSJLWGQEDG4+b89XJAQMpatbjXbkBA567Ut7LJP0BS+BEt6OQ9QOfvKiCaND5Avn1CW4lKP0DHr3TbSao/QDxAOG6CXkBA656cMxVYQEAGW8+ZfpJAQMRjyvXLRkBAosEjPZUTQEAxHZG+tW5AQCjLPOTpKkBAC2+I4xcBQEAEq2A56Nw/QJglgQ9UHkBAnBsTVYm4P0CBdAnqYHZAQPMiT1hXpUBA04CM8yP6QEB+2dpypw5BQJr/opl420BAdtCZqB2rQUDkb8FuITFCQJA1QPUsDUJARBJwfgmkQUDDkKEUCoRBQIf3a0h3IkFA57MKRxfIQUD4yEXrIsRBQLmuNf0cWEFAwG08/HOWQUBYJDlAzHNCQNVdmfomvkJAiZTs7z5TQ0DE6x1A865DQAv+ZAS+WUNAos/Nng+eQ0APCOPHGaZDQCySQ9x+nUNAcL5mGqFpQ0C4hAw4XbRDQBw7PqcrnkNAabCpCwHuQkDXgzay9XFDQLYGblPNvUNACOEuLoMfRUCdBmYzEKVEQNDDJt+9KUVANODWN0MvRkA7RAgmQmVGQKbk6XmD+EVAFPlWrFiGRUBJNWLIsMhFQNa62JtlVkZAhuqMIPwIRkBlyd5lJYtFQOGrw0voB0VAQ2XWjyI1REAOyRkt4ApEQG3ILUMav0RA192QGI80REBHiJ0xSqhEQBep8E5RoURA9Sx+IK3tREDKv5VQr79FQEZKvo20zEVAStSN3vspR0B5zf7l9b1HQGVuL9iLCkhA0JrxFg7+R0CTeVvSD0NHQMRx2895B0dARgn0n2GORkA9lFuHykpHQFaoO7iDm0dA1bMWTSmtR0DtYIPqgzdHQAO7KkZK/UZAc2AxcosiR0AP87sMz6ZHQEe1gkHiLkdAtae5t0QlR0Cqg9N1XgZHQHcOs0Xxp0ZALlqW1lyfRkDqBWnvHchGQKJWVvVPdkdAL4+qtYgFSECej+Om1FVIQCm2hsijH0lAdTynJhmSSUCW6XRsaUJKQBfF0b9j10lAuK95Za+BSUDqNYd64eNIQHwYcK5wJkhA4UB+I8FNSEAn0o6ypoNIQL8kaWAPM0lA4U5MFqW0SUBs0425q2BJQIqiC/WpnUlA+4NY/DHWSUBVECgIJnxKQJCxOGrcpEpAkVx7Ya5KSkCvF4p1nHpKQNv232+Dp0lAGIVzAuQ0SkDnECdCEmVKQOMc1kapMUpA869DgX5ISkBij/MsfDdJQL7bb9i1mEhAzJyxlP+sSEBa1mHGTYJIQNwKDO/DKEhADc50RpEASEBdjbmU4rlIQENUhIXqcUhAp7+xUthNSUD5+aaczaRJQLaLZF2cqklAGGJO4GXaSEC1z0gdTqlIQKWrNTooSEhA3nz+C7xmSEBxK3qhGHtIQEpJqZQdL0lAHV0W6EeMSEA+EHvix6NIQALet4V0ykhAiMQO94V1SEDfaKS1ygRJQNpeNEoJ50hAvqRPEwsYSUB4nmbPqrlIQGDtWATJeElAA12jcgQiSUCEzIjHtAhJQAzR/6c+y0hA07OQuiG3R0AbYHPHM5hGQB5k0pMb0UZAP4X/mC4VRkCom81wflhFQIx1Rj/MuURAV7g1yteUQ0Dzvl1DtA5EQP2wLbq8mENAosb0rSlXQ0CBv9+bCgZEQANzRp0DsERAYNrBfVbMRECoNTHbM6REQDV61GLwmURAahYYqjHJRUB3fJIqIitGQF/BmIC5OEVAqIi+q04sRUAKWI8cMiFFQBwqAmyjzkVAitkDoYPVRUDEQQYUnb9FQCk8VBzn2UVAznzf8N51RkBcOJFk/w9GQBfdLrxu2EVANIC0fh27RUDWyStUlc5FQIC0SJOheEVAYUwT1qM8RUBx1Q3GIdFFQN7lmPObzkVAPBgZUOxeRkBBsKYJSqZGQKqXsNSN8kZApMKDB8zfRkCRyenNTGxGQNbi7cMsHEZAoOFHZOi3RkCh/1BReR5HQIzVvb0DYUZANOkVDSYsRkAmfFMuKJ5FQJkGi0oXEkVAyqZWO6yQREDVdyz+LqFEQD42Olq/ZkRAI0YdC8eHRUAstXBUwSBFQGw0uleIDEVAEp/pWVurRUDJMIqu571FQNra6+Bd6kVATVv11RZlRUAhpOJcKs1FQBh08qX8F0ZAuG1dFDNURkBBXBh+gglGQNeEYlBzvEZAmgirCEATR0C0gcTjX9BGQB64a3n/JEdAeF7+03wvSEA3mvFiF/5HQN53D9Pp/kdAmTjA9qCkR0AAiBFX58JHQN8JbbJ0HUhAFR9VVC5xR0BtQ569nyZHQJbSspqIpEZA8W77pZMjR0Amg/MSinVGQFcME3D/0EVA8KUUAtk8RkCrqXAcZHpGQLFTQwGNt0ZAe1nVPT2+RkDOFshcz5NGQCE8znxke0ZA5fkzJRuORkDyJI705j5GQAGLREJ6VkZALp8KVL29RkBpp1wVMmVGQFVQq9M0FkZAJ+aKJW5MRkCeVV0hkD1FQIXEzhPIGEVAINMY6MYMRUB4yX9EdEFFQBm4xGHY1kVAbOARYHjFRkC1hdBrZEZHQOVqaa3SM0dAsg03sAh/R0DaWrYdbTtIQBEvJd09HEhA9NjGnCdQSEBGFZ4zmfBHQLqXh9qthkhAXHpl4p6cSECxRGhL4dBHQIK0+PYsKkdAUVCZIJO3R0CLyJTOsRVIQLuaIzKoQEhAyaLavID4R0DAZo510FtIQIJNLabn8kdA1nDP17b8R0A2n023LxNIQPPaLtmd30dAEiLAzWpsSECOWCwN5qFHQHGMZnYvdUdAeT9JVowNR0C4sl3NWDhGQATxIgsgyEZASxDBkC7KRkDF4BBMDzZHQMoo8HQuGEdAUPxHZ8bZRkD5AHMC0xZGQPSr+GOlf0ZAODfxSnwqRkBSqucl3VFGQEHkiHSPM0dAztQ3glAkR0AOpCEz52dHQCvsT/MWskdAqbMkBfMNR0BrDKyvTZNGQMpBiCc6akZA/aE8ZiYPRkBIrOxVYYJFQOx19WVX4UVAen9hfpU8RkDSA0hAYQJGQI1qbvQ69UVAIflFdDT4RUBGf+jrxr9GQKCLTNAhWkVA7rWErQX5RUCI0UFZdRRGQLTLBLklmEVAK9tVPICrRkAy92rieGZHQLVLNQ5bo0dAYrhd3PJVR0DZg3Zg3dxHQJs0xf2vhUhAc5vV7e8OSUA6dcnX+DhJQDxcJSo/AUlAbbs8SCvcSEDv7cFNYQxJQB8vjFWDP0hAqFXHq3SXR0CcxNxgmFZHQKtjiP0FLUdAP720kIwcR0B2Tpo7j1xGQAV44ZhWc0ZAL0IKblubRkBg1Z9nEv1GQGVdKad6ykZAx3bZgqG1R0AoFQKt9N9HQOU74mPcoEdAsiYHTNlkR0ApWI7Sg+NHQN1j7CtrIUhA/GyyfZi9SEC795w22dpIQCCpgn/BgUhAl5hnGYyxSECzdmppgqBJQC0tgY1k8ElAJb559nf5SkB24rFMwJ9KQJPUMEbzlEtAAavhnPu5S0CJsuqNcgxMQGi6kqJeqktAgAJiw66JS0Aq/hp4nrNLQC2SuzlfgUtAISPgenAjS0B1kQFN5/lKQBqxgLCaW0pAQLZXaSRkSkDiVHtf5AFKQCWcK7+T6ElAhyqLWmMlSkA6fvpRrjFKQLs3HYCeK0pASSnknlukSkBx1Fw6l1VLQFx+3tkzh0tAy4FoupsgS0BZiRdJa9NLQMqzx1zi0ktAqV6RJdM9TEDLKta4ROtLQBjmFz3fUEtAMJQuwu+1SkCAKGI7U4ZJQCuQHuSpfUhAF7ZZkBuSSECr+iO5+aNIQL9zIkZuy0hAl0UY7INHSEBke+o+DLhIQLgFwVodUklASXBHi59SSUDEcysnNtRJQAMMkW/waEpAvww4RUuDSkCYbGcpbsxJQMO2R7t/DUlAZ+ivY8uWSEA6CT8jnOVIQHUYaXEg1UhAzXTNIVleSECBxYq+rPZIQJ2dP0cYl0hAM2goTQerSECvOPpMDYpJQJaoWtpt2ElAgQC6/qxoSkB+7nKv/BpLQBuoVlSOj0pA0uGBA52aSkBvjk5q/U5KQLSvW66rsktAv9wDKdcLTEAzKZszUoJMQHb+dJZYJk1AiejyKDQbTkBT5IKdMCtOQFTTDqVMD05APgHyUxHlTUCxSK5m2KlNQC8WXNk+101AwwhqJe9xTkCovyfxK2lOQA9FVjyiyE5A1tzJIAIET0Cyv+NVwvZOQFP7ZcqSj09AvMWdY+aUT0C2kkIEdXlPQBa7AupJM09A53xc2O18T0CjWCWnel5PQEJzuUMwCE9AiPfgP2zGTUBfORhcFjNOQNa9bERjok1AluzCtkW3TUBgkSrZofdNQNUQePVpn01AWQLVW9V8TUCojgpX+vRNQCMPJBPST05ANeVAdZizTUD8JbKRg9xNQIhjLkouQk5AfGLgQARLTkAtFj1CWehOQEoWs1o3VU5AphXrF95VTkDlmEUsmdFNQHVEEM03+0xAABJJwdz8TEAdwwGpQdZNQHP5iRnpT01AIGt8294TTUDOamxe/eZMQBBZhZMJh01ARgl84L+iTUDmV0yHfS1NQJNhEwiF5kxAiOpCc5xVTUCGsaiVPEBNQFhIAnXBb0xA9mk3jaczTEAOvhlYYftLQPND1Bez4kpAicBsdOE5S0AFPmIR1j9LQEoiBzQKnUpAf6gB3C3aSkAeohu5cb9LQBL+SQUBjktAs+TS1BxfS0CsTWX3KftLQHEqIlnp70pAJOWqjel+S0ClSZNTsTBMQLgUYFLOm0xAAA2WViHhTEBuPLYRhWNMQJFdSWPaLkxAD7hO2SxiTEBaI28G+4JMQHTRC3TbckxADNqVHXIwTEAxJ9u/qzFMQHxZVW6sIExA6r+9Oh1FTECwcjkbjHJMQBZ5Ve3H3EtAfONThr8XS0CWKKe7ix9LQO513Tbv4UpAAC25sHZJSkBqaxSVGj5KQNsu1Wp4u0lAKjabUN6ZSUBUiIVC4whJQN/CbCN1uUhAY3GGwbt4SED6QDGjUcxHQAUQJVX3NUdAjUeBYd7ARkCwAZt/l9dGQFHX4iou60ZAQV55MIWxRkC14jEBVplHQJDrMAEOeUhAeXHu3+YDSUAApfioVc1IQEufRYrufUhAKQBiN+CmR0ByT6AO3+xGQEDpRF8nxEdAXsCH4MXhSEAJKxfumPhIQBQNhhrG/ElAPhDLNP6xSkCi98lEdyBLQJwnDBGvtEpAhyMbr8rfSkAooyA2wVNLQDLezBr1PkpAgSPhl7kJSkAExRmSi2tJQEdLONslSkhAgPDFyvhWSUB7EmRFjhNJQPLS58bUJklAksoLfctSSEA42uR9F7BHQKVE8yxynkdAYvB24WYBR0DNxMlwMf9GQOJv7hb1SUZAP6NdO+KCRkDa+qjXdz9HQEpwG0JpyUdAq73Hw1lqRkBW8Xfng7tFQFQerVLse0VA2ndP89XXRUCrVoQDbvNFQCqApSIgtEZAiI8LsRXBRkC56ypUArVGQOK5l5NedUdAB/KUp2WbR0Dxg2da4npHQOAA3zq74UZAxiHhM/m+RkCrhE4riYVGQBd6A3p36EZABomrnBvNRUAkM15J2O5FQGfRJOx64EZACMEDdKvbR0BNRzKaKzVIQLHGOlk9rEdAo71OZL0lR0AnRHluZetHQOJflmbMN0hAx+pN7800SECbwXfPHeFHQP01MDnoxUdA0uoabSVYSEAjNCOWaG9IQBQlClVvjEhAgHs4CYnxR0D6y/Kow2tIQNZkKTw9eEhA/Ha5NA83SEBnfHme1BVIQEaDrCEt5kdA5GGIdAyFR0BhC8duyVhHQIZc/i0FaEdAOI0v7y9bRkCDnwnl3hVGQL7JIvuheUZAz2e2dlSgRkBTjYu/7sZFQKqggFhJakVA0C3Ho+6yRECokq4LXRVFQB4B8w6rBkZASkMyddEZREBM9cMQXjZEQFov/WQf2kRA+BQ6VIu1REAXb5RohslEQBe17NvUikVAKi4M1LFrRkCPsSWl5QhHQPbgmvdzF0ZAZAxjg3e1RkDxzZQvQ/VGQC1UBjagKEdAS/Fw0uJBR0AgKywQF6ZHQDDBPAsseEhAzVvx1OT0SEBCAiVn8ZJJQBzwhGXM+khAEBV4J6BxSUCU0+a9MxRJQIvBsRC1XUlALxLL7vkcSUCsTTBy7bdJQM28h1rAqklAfVc12McrSUBg6dXhHRVJQKAuJkheB0lAEjrNx5ZpSUCjX/+TIWlJQEcZng6yDUlAycOZzXu2SEBRth8sCN5HQPb+qTZVr0dAfMHc2xykR0B+ybZEulNHQB3N56MonUZAp7wyWlsdR0CUcepclTpHQB+4OVB/MEdA0AN+XJLDR0CWlC5lKyFIQIENVTtQ5EhAQw+h1PTHSEBIeFnmP9FIQONA/4cF+UdAeNdJqA7mR0C5buv6DOBHQAIhNKuRlEdAykBs0rOOR0DrbqaOSUdIQLUP0MnYIUlAGOHBp1owSUD6prk65wRJQIyLcWfse0hAFGKDYXfiR0AQJFNm20BIQAHxQFiickhASTuwIZ8ESECE97GV/PBHQDb/AqMk2EZA37yYjUGbRkCozZKodUFGQEO2sjiD/EVA8B2Q44uhRUCSY/bxC4ZFQELSw1nZE0ZA2VmhqyN6REA7pBOPW/tDQGQY2GTqakNA96CKlD9wQ0Av1COBMcRDQKDQmUUgLUNAyfu2r8YPQ0B8EPBUxYlDQMUNbhviAENA+HyhLEqLQkASRvORy5hCQALyhuVK3UNA2t6SErR3Q0BjmnVJVG9DQJwJf+rc30JASw4Pp5ZLQ0DxKcV/09RCQADGqDvQjkJAk6YZqKcHQkD5OYBWZyZCQHfB7i9zXkFA+SscIzDlQECpkB5OrAtBQGsbajBHLEFAYeriB+TZQEANyRdCi15BQISaE+f5yUFAzt97xCDlQUCF/g5UAoRBQPQOjv6wKUFA/Eg9xBxxQUBwIf6Z/YtBQHLcalYm2UFA4tQLSYvdQUDGxPdUoJ5BQMr7NZAogkFASl8Q907iQECUC5ReJr1AQNWyQfFPnkBAfUDxLt5CQUAZlOzWuoBCQBZ/a0xRcEJAXZxqcelMQkB60nLkqCJDQM5UDJI1xENA1NGHRP3ZQ0Drl+QpmqpEQADBZ5myckRARdiqGMtSREDCAwfarq9DQPSdFbz1HENAKTGMNFGyQ0DvCwQ6OelCQKpX1Dj+80JAvJhaoSqiQkChH3X1+wNEQIC5dWQTykNAo6ukZPtHRECpLakQEK1EQJsJXMga0kRADpyoFqsIRECFKXkfda9DQC1KgVOSykNA/W9NI0ysQ0CI1neQh7dDQANr8D5b3ENATyU7aRRzQ0D3z2xPEyRDQNyXipm7mEJAJFuNlSprQkAiyF7dgU9CQP4llPynv0FAOd0yK8R9QEC+QbshPY9AQMbbhBhlZ0BAo7/2wxBmQEAr53mXZKtAQAxbnWJwWUBAhHNHQX9eQEAGpxqDhL1AQLQ5Jc7pc0FArtG3hY9BQUDimcQmzAJBQHnh0ex7vkBArbTofjp9QEACcblnBzdAQHu6plOzCz9AYpx4JhuMP0Dm3hd79WA/QGOmel+nAT1AYUhUJJ3eO0DOuvl2NKA9QDQO5L+ytDxARD2zvqVePUDGVwBj0SU7QL2Jx6ltsTpAMznWAY41PUBMVoDeVvg7QOS/BopzejxAYRrXLtvBPEDEYMzJbuA9QOePa9lmoz1AM3acVD4pPEAKG8c3E0M8QOPooSK5OzxA3Y23oGeBPED10O6rbiE+QGAIj6Im+z1A6Wn8w5B8PUAkGTakgto9QG9lUso5TjxAQWE479SbO0C+tRP5bk47QOfWCjGoIDtAAIIf40RyPEB14dOvaqU8QOjrowH4RT5AjhCPbW48QEBerCMIiZM9QBxlXg4gZz1AmknFuEz4O0DMEGz5gbM8QPjJKGIWTD1AQ4A162EZPkAby2S1lGY/QD7ItCdLSkBAQNfrAPnqP0C/99vW/QFAQISan7i0gT9AADT8BBzGP0Alcjt8IgFAQCCh3KelXUBACANWpihLQEAFKiJVwJtAQAxVc3bwTEBAt9YRdd3BP0CR5CR5oQ0+QAg7haSs8D1ArJ4kePT1O0D6ZqqFq249QHDFrj4mOD1Ag2lQ/Q71P0Apvdq07GE/QFLNBACalz9AGdT8BBC3P0BPKIr6nnRAQE/a3W/jtUBAnz9GQ3KIQECF6iYeqQdBQIvTqQ+CQUFAgRz2nf8+QUAqpmQTyeZAQJHQBkFerEBA4UhwALtJQEBzf0/7wURBQCH7YjjO4EBAtuegdCcuQECJHonp8lNAQEbEhV2P1EBAyH4Qo4fPQEAWlB6e3hhAQBwp+zHgDUBAI9+M6awlQEBnW4471P8+QNFBnGhDlz5Ar0W23tz8PkD51kSD6D09QO1Mt24s7z1An3AGnRjXPECb+xI2aZw9QCz+V3gt4jxAqPSTXTy0PUBeyK37GU4+QMpCyPfe7zxAiDaxb5v/O0BeWzP8LGA8QHUFeOxQCT5Ad2Ecud/BPUBBRGLuerU9QNdzrQO0Fz9A2CnPdOBhP0AOxLD3r749QHlmn3siDD5AesF30yOtPUDbbx/c/8E9QG5STtbkOj5AuFvkNAVZPUBJscbcxRA/QKJvtwmIsz9AhcJtLmiQPkDMa1Vsth0+QPSitu8qbz5At006PptSP0AmQNDh2Ns9QAxm0LGk9T5AVwX9e23MP0Cipw6eOT5AQPrp1sbmVkBAFpBf7j1oP0BMr7pOdsdAQAISEnLmF0BAeiwvGRBZP0Dyic16aIg/QFtFHh8Hnj5ALp++EVu8PkDzPXfkCpU9QJQFlE5/Mz5AggP/N6zePECsKcU90xw9QFLDKCVUpj9Ac8OC0RUkQEClatlDDGtAQLiRQQv0vkBALueOXZSYP0AQJB9QdkRAQIpQTBDtu0BAL/GxEPv1QUBt3rL84h5CQBnmk41UuEJAnSEpqTsDQ0B5YamY2GBCQCem3dQhPUJAOlye0reQQkDkWpGqNxVDQAUjR+BTLkNA7WPz0T/3QkA4TqiZVE5DQP6eaZyK90JAPCOE6dUcQ0AUGLmtw4NDQMHQ7V0fzENAQKIj8JDZQkDSMfFD4XNDQHYJ06wGPkJA5tyUBU46QUDjECsJUkJBQBrlj8d1+0BARtbH2404QUB65rPndkFCQFCo1Oa3dUFAAxJTJG/SQEBZBfs28TlAQEv8dVMjtEBANMlpiOG3QECV3oNP7hBAQL8/NxEnekBAepkVkOiiQECxehoZgDZAQGgRI14dEUBAVd+635NxQEC9XQCJcr9AQBcwpin6REFA1aDBGHkuQUCyDFuNCzdCQHdpBweydkJAwrWqEyRWQkDFnY1nIGhCQP5YbKcSBEJAJW4wpnCBQkBl5KfZPH1DQKckVcYXS0RAX58S5RvARED1PhPN9j9EQJhzYDJ5PkNA1DSfMFTiQkC4i3IFjctCQOWHKISKOkNAq2fdvQWOQkDUkc4az3hCQEqbCwYSyUJArwtSCWgOREAFzdXiVa9DQLx4UjvvpERATm2faFQ1RUDm36AD79VEQDJubJuYx0RA1KtqozPuREAMviNcXpNEQKl+WVOWdkVA6cRmLLSRREBeWf9CwERDQHqKKYIGdENApEw9hTPwQkAVI7+vQJVCQFqlzwB5SUNAy5oUqWmcQ0BlEMj4T+1DQHhikLSXuENAyF53mx+xQ0AVlCavQ5ZDQBmNu4NzF0RACVN5Xoc3RECsbHOyG+dDQE3DUehvHkRAIoRWeR6IQ0AQuI9yGO5EQLWMqe+CekRAexw/b0CKRECVeSVA63tEQKgS53GALkVAEkjJuBYfRUDfmN+kIudFQGQAzuPLV0VAtvsCXzhoRUChltjn0k9FQEZh/JC1CUVA1v8Aw8inRUA6kcEy0ddFQDJq0FSBqkVALcTfRpVJRUDvSl8rlVdFQNIj8yyWbUVA7cTBQCy7RUBpa1Tyv3FFQNpHI5GszUVAhcxOfrzlRUA6j+bdPaJFQBIC347brUVAmqoW1H3vRUBNZehhBUNFQNdRkAcvrkRA1wfvNpDTREAuvNjLDxZFQB9rCrDYMkVAqxq0YRmgRUBst0n6zhZFQHRgPsej+kRAjAPSr7thREAxy2j/fcNEQGe9g7/3bEVAWQ+nZCICRkDoJcPPyixGQJajHUQhfUZA0pXLLBVNRUCvjGGm9DhFQBxdxS2ohUVA5H+8gb7JREBXtxnTnYxEQGVu6p7sckRAiuOP8VkhREAWfq7vngpEQMf0azB9LkNASVM+oPf8QkD25Reuh6BCQECnWpo5hUJA0T/eqQ0aQkAQabUyGIpBQJw/85EG8EBA42xgbC3oQEDrhWuEWNVBQPk8Q/1li0JAlPkZ4QuAQkBXDHWcQupCQOYlJKNRgkJA4bx0cMhiQkDUjWbZPd9CQMWhGnq5DUNAU6a02gHPQkAWxFIHPT5CQPMdbO8x5EFA8xrImaziQUD26Q0xy7FBQIOqL8CElkJAGZp011XfQkBGVUUnIMhCQPmIMGfH+UFAA7NmJRs3QkAVhd2aqVdCQPkqI6PPm0FAVkjYFJM6QkCgjgN5ek5CQLo5XgLBU0JA8gQwYD6XQkDubcU1bH1DQIL23RX9k0NAeKDuRTltQ0Dvl5o2Nm5DQKT/eDeEKENAPyoULWTfQ0DPBKSPDM1DQNw4ve3PykNAvcZ6p42tREBUpF1ENM1EQPNhhIecL0VAvlHbPf1RRUA7E/2FwTdFQKkYxjXyxkVAWqWo3WseRkCTxtfLsfFFQL4i13/FGkZADIoTlJtqRUAS0VF2QElFQN2Pudb+pkVAGqP5jyuDRUDSiRAYNN1FQLj/taJ6XEZA4BXdWnV2RkAJOfRfOsNFQOhZsYz9C0ZAp8SPEoGBRkAmQ6j9dtNGQNNbyYJxTUZAthv0dZCHR0CcwVNpp5ZGQPvs0uHgp0ZAer9HGQWVRkDrcK3moCRHQP/a9i7yakdAZn+WpU+WR0D8ag1p/fFIQJfvzP+QYUlAn9PVOK4YSkDg3QtIlz5KQI3v5yJMaUpA0bkBBpSASkAB7RtK6IxKQPCuhPB/mElAPkVkUioUSkCnM8YdMy5KQA4Qigqlc0lAJo/yW+TESECuPGv8WPdIQA0z/5Rth0lAY1TH/fmLSUBAXF+qtOpIQDCHZrKbCElAAvUOLMyBSECW997unPVIQEQJ36dSOEhAXKGsTBFHSED4NU3e55FIQBGUfUGZ0khAt5s9vh/ASED47usLSopIQCUTVPb93khAX3sLNkLbSECLPTKBAOxIQO7uiY/VW0lA5oFm6r2BSUAXJbB2bgZJQH9LHterXkpAjw6G6WpKSkD5YwYUDTpKQCKIx7PbPEpAnitaqcbpSUBmObz1RPRJQL/vkveuREpA6GCPRUCsSkA0of2LIsFKQHe2LfOCnUpAZOWDihn3SkBKBX4EGSJLQKcQVoh/TUtAAt9Am3xESkCHRbEI1utKQKtDOu6XckpAuVA00PK+SkBskssnNqJKQD8VbnbzWEpA/f6r9I70SkAzwMG5ZGVKQPrxU2zQl0pAC7fHFw81SkAfhTg5xQ9KQP550iw+0klAFwmEepqYSkDdHiPxtyFKQAT4KamnnklAc7tkq41hSkA1S6fjEtFKQGgCK+zIF0pA/m8yh5itSkA+8HIZs9xKQAzkCL/i8UpArfu0InwDS0CS31jX7QlLQNVfmhjECUtAtz0HSYOVS0DHWHKeodZLQF3Ev1ykBExAFsbe0nCyS0BJZ4W2+2hLQBYaXBs76ktAoYmTI2PFS0APPO3Bj4tMQFUJLCLq6EtAFoQuBgkNTEDaIznZBgFMQMkm6Ux1NUxA1r6D8FOKS0DiYC37ydhKQKoxJRO1w0pA7RWNucrmSUAVxC6YVCtJQPzgrFksy0hAfGhwJ708SUDMlAPze6JJQLprXySLo0hAK4jjwqX0R0ASuVi5bx1IQLS+KPXlfUdA+e2IX2CZR0Bf06lceXpHQGtXyIqd4UZAG7hsBz2AR0DJQY9W3yRIQLWS0ZxZO0hAhN/t/rqVSEB1BMU28MZIQDUI/eRhFUhA7kKbtS0JSUBH0qDi6mBJQDfaitexv0hAtWisbAkNSUDMlVnlmo9IQOevkLiwMEhAs8xsi/bWR0DajKSosftHQA4qWtyNWUhAD07DLEMgSECW/vPm/pVIQJyLhzr6VUlArnM+MPfISUDP9FGmY6ZJQFBQjBopV0lALM1uGlYySUA9LqhSlilJQDZo/tazHklAsgLr3vUnSUB4i7R+ScVJQMJJkdWBcklA5hO9abh2SUAq96vZAkxIQHNint6fHkhAS+RSGl5vSEBMWh5ovipJQGP8qU5KI0lAGyHhiEGLSkDNuqfV+r5JQHc6dbntJEpAEJ5zEa6eSkBjHs2oG69KQI27jPt27ktACkqFEg0HTEBmSqIaOXpLQODjR96pA0tAOaLIk2NOS0Cg3LKZEz9LQBSG4cVPgktAth9IiQfpS0CUQlIPrk9MQGgCWAbOkUxAe12aygoSTUAsuMUyQvNMQJ63aEwank1AfWVlI5S9TUDlR3H59RtOQFyjcT5loE5Ah3i3suPqTkCT6w/v8N5PQMdzRqqatE9AGCqEg0tNT0BMHXDz+C5PQKaF7wSJBE9AZTJb9mieT0A5VXrxt+lPQEFCfO5dSVBAfAFmI3JMUEArD0SNzjVQQEhl9VXACVBA6Dr0OU84UEBfKCFZAHBQQGdrRTFtzFBAPyOEMFr/UEBx4n+5vg9RQAE0PI2d8VBAEnsRxJPGUECSvdX9awFRQIV4WhB2JFFA2LfuYP90UUBm3IxeOGlRQCs1obq+wlFAybXo/Z6KUUDO2iqTXHxRQAuM2U4w9FBA375BTFwzUUAnKoMJxqhQQICyqKMj1FBATAzuP0AWUUAEOn7D1tdQQBHWYUNLp1BASONzWh/9UECbDSFPh9pQQIabeHbze1BA+WL76XJuUEBv3cJUamZQQHjDAyU0IVBAL6cXoBZAUEDD4C0sF0lQQEtRSHyvyE9AHrCMbeWXT0BSqyGUxChQQAE699vXTFBAUg7Y6D8TUEB1kx/x6ydQQHcnsocWD1BAyMAoUfbAT0A70GZSUxlQQNBRX62GWFBAjDpgrFclUED1leSvqClQQLo6Nqq7DFBApURptnmJT0DeZRiNVZdPQCdbX+FtLk9AOAhFDi3iTkBSTt+6yj1OQDtDoEJaSE5A651lAKcNTkC5If4MkHFOQMPTkAoTyE5AISikyCwoT0A9uIVurjhPQILFzjdxgU9AcuN2k/z9TkDC7qjBJqlPQMBy2KGyYk9A3vX78TK6T0BQNkdhjlxPQDg/YZWIyk9ALIHJkRuFTkBzQO8ilY5OQM3Bp4Z2x05Ai4hEQGRET0BdU/8g66JPQOifsWf1VE9AW7Y4XOCJT0BSqjxUPMZPQDYTc7Pa2E9AVSHEs5NhUEAFVoAf5DpQQP7LTMwsp1BAoxNyRECeUEDzuWBXbitQQHzZ7fnF4U9ACH1nhpYnUEBxN3L6FC5QQM7YDizcJVBAYv2qD6JtUEDcGUZjW5RQQOdjOJU5WlBA5E/4V0pDUEDprWnpLzNQQEj5d3LCNlBAIuWHmrSrUEB/ES4SGahQQMH8pFUs3FBA4g8NArg7UUBx9ieVux1RQFT91X9hQlFA9M/rLtdUUUCQPYIu9UdRQPrqFPIf9FBAaCDfEg8UUUBLVo9C7MZQQGv0Nh2nAFFAv8xoVvTlUECmj61Cww9RQG/1E9wpTFFAXmaqLgv1UEBa/JojF7BQQPKnhedXWFBAoNUCG3s2T0AsIO7hhiJOQHf9HOU/001AON3oAolLTUBM1duM7MZNQAxMv2vbiE1AwBmEHCCpTUAnYyZzWPJNQIaaBchxBU5AlPWY+t2jTUA3KGbUhTFOQB4NP4RhIk5A7uiUcpxTTkCbeWXGh/5NQDvHyZFkuE1A6uPWV4ykTUBJF6+BOFNOQCbcKbnPM05A3eXhtHTDTUAKXn1mnWlNQPe9kYL7o01AKlHIe76ATUBeB5/RDdNMQI3kxSqt9UxAAAETIht1TEBvT8uNAr1LQNUqrOaZ+EtA0H+yfc67S0D0gMCPxdpKQLEHE4X39klAWeN+pBJxSUBgFqnygdJJQHohNGIWmElAA432aP+OSUDY0Fop9jFJQCZrp3ekVklAPVJ9afYTSUCYaIk7P5VJQCpRNPW16klADkPJYfg+SkAJvzKE1yFLQPoxnNqEUEtALnAy2t97S0BlfxBUzZBLQD1LDftOyEpAqJPqDDSzSkDBwVpfV9tKQEt7WQKcoktA1SjALg21S0B26Z744ylLQOKFn/tuK0tAA2nU4yKvS0BORZHeNTlMQI5SDuFmFEtA6jTtfM2jSkDtTwLSjnRKQFysq88FHkpAOpUFaqKQSUBWFz/CvItJQEVXmXpPzklAvMYNDD5ZSkCokegHGShKQGZhc6I+YEpAvTHYbtL+SkCJY2hxvq1KQBbrokKGWkpAWNpNPc9sSkAw56LvIAJKQJeiyIzi5ElASZROw+wLSkDaqES+KtZJQLQvJYkUI0pAxQdJvEZxSUDrTISSo4hJQNqG4L8/+ElAH6S78qNYSkCckChy03xKQMw2Uqrla0pA8M7e/UiZSkANW0dgfXZLQEyTj/sGr0tAUgmi6oroS0C7KRLhkKNLQGbGZVOHBktAgo6nyn6nSkBlV++2j6hJQEZXdj+/WElAgP0j4HPISUCxCHQkFhhJQDEzEV49P0lAIARGbseqSEBy5/wclu5HQFxeMVs890hAQjssetOLSUDNZn6PtjdJQG/pCauRjElAP/or98P3SUCeC/BXWI5JQAGQMjP6DEpAA0cpALLUSUCOjLRYECxJQPjYYUZuOUpAS8j8t2HvSUDntdHA47hJQDyf00ABJUlA6fUw3SxVSkBA9C4eM0FKQICzZbDhUkpAynjKCyZ6SkDdhHbu3wpLQGjY7Tfzu0tAp+JZcIBhS0AdRaZGCHZLQJjnGllFZUtAtoCCMVTZS0BEzdhhm4tMQOcGwzuhxUxAiCtrqqCBTECm5f2GJ3dMQOO7x4EApkxA8aQPVf3lS0DbPJqwEFdMQGiN96Bo7ExAaHnyfKUmTUCVhCahzhNNQI11Zy0MA01AoMhfON1mTUB4eI280zxOQOoRxzusWE1AmZEHGMV7TUDQqqVEQxtNQJHibMXgeU1AD1bhIdZyTUB+kwm/MKlMQCYpfJZINUxAV3GJnD6sS0DdgcbjH5xLQBMnynyhj0tAY+1qhEGcS0BlEkvAYfZLQLjjfFRS40tAixTW+WpPS0BemvPbY5NKQHu+QdG65ElAmOsH7veRSUAFImb7yhtJQHaN/9WnEUlAZmwBgpXeSEDCk72wZYpIQEHFcQhRBkhAjWDOiRgeSEBpXuvt1GtIQLZAvQc8xEdAP4pNnSLzR0A8la8sb+5HQEgEsr5jF0hANXwhIAQlSEAapcSPMHZIQIiIB8+lhkdA3yEc+l5wR0AFL0pVTS5HQKBPfIR8yEdARWPOYOfWRkDB1R/gc+dGQIY4epmlS0dAuUxrohgkR0DHUDPdL29GQPOAAeuqRkZALdLe41fORUBren+bZWdFQLNvGvqmA0ZATAxhSlfhRUBJSiGBS5RFQKrttuDUy0VAllR1F+nsRECP6cKrodZDQDGb3EjaW0NAI+ogbDRYQ0Dm3LJw9DhDQCBQlo/nqkJAof5K+E9kQ0CijJU96gpDQF0b1pT9BUNAjRi/ctQcQ0CQpBNzEaJCQMaV8uyLk0JAPMWGVit8QkA/y12oAqxCQM+I5MC1hUJAaA2Gj2cUQ0BxFt5mexpDQIUsZmzIakJAvrE4DQGXQkBr5ry3+IdCQH0deKaJbUJAdV0Lq1YtQ0DbsQRI5ONBQIJk374KhkFAu3daVRtiQUBE9iEZaKZAQHmyOOUc0UBAqcWsyr7NQUCY4TcVS01CQFqk02CXDENApN/NyD/MQkBocZYPj8xBQKyCYOkcIUJAbvRzihbzQUDTzaOgNm5CQPXfYTsGxEJApl+12mRkQkD0ScP1mlRDQO71va3OL0NAuAxFpwyxQ0BZmFtr4XlEQBo92jbP5ENAveew66PbQ0Buwpp5qi9EQN05c6EWoENAIPUrFbiSQ0D+PjFrMjxEQI+hoi0JtURATo2qttgsRUAvCHWQqxtFQPTxQAeG5kRAv8pW8XynREAkRBZTyPJDQOwVD50IsERAVaepZojpRECmEs955QJFQJdaY5R7tENA9L8GbuPEQ0CJsrzXe3FEQAlz4J1/DURAv6XGzneZREBJyfgmXCJFQC0XI26TJEVAud3+NCP2REC7DLe/EvFEQCJGgPyX8URA//gmzwkKREAOwDP5DNRDQJEThBxZ0UNAYhP3ussuQ0A69gLNZalDQFb5MRhSUERAZCPjrIpXQ0DsCGvTYwpDQO049vW7b0JAcV5QOX0GQkCe3um4PDRCQL1tCPeZE0JA6U34uwbcQUAr6TVKknhCQCwwdpq8OEJAWUiVKU+fQkC+GSRMh29CQEePHrQLmEJA462lAY/bQkB03NcvkOxCQLcXxYpTTENA0YWkWrXwQkCW6MF9D4tDQAto2ayFkUNAgZO/2JbLQkBaEx4CL4ZCQJzrKw2UqkJA8WiKvMG9QkDdxqnKJWVDQHq+SjY6I0NA2xx+pCOzQkA7CAwKaZRCQKzUSwLiS0JAg7Y8OrA8QkBWruIUCfpBQNkwznwnGkJA3i1KN47NQkBZLRF26JhBQObnW8zQXUFAds+eqaRDQEAnKJLRNgNAQEIVe8J7bEBAUKhZYY0+QEBd+4tm/7pAQAu1ZkQGbT9A/lqi9NRDQEDTuFN0KX9AQCXRlGrO4D9Ai0Q48dTRPkBtu1wTdPA+QFRTPwAzeD9ARacuPR/+PkDQvcXWhlI+QAaNuR4W6D1Ak4ywua85PUAMNh4dd0A9QKzPgDhdfj5AMbD02iDPPUAHrvAELSU+QAPASydt0z5A5GkJzDJWQECU6Z7rMN0/QKDe4QaIyz5AZwemQraRPkD6drmvQew9QE7BSZJGaT5AmMdyu0a1PkBB7Hgy9kE/QEe+SPBKbT1Axf+FiuIrPUAYyHXd5jg8QOWqRKVqCD1AMoOcCSfUPEB6RH8LFDg8QB5ii6aCTT1Az0/23s+kPkCYnjC6qi0+QP77pzCaGD5A8HFxAKmxPUC8KDf/U+08QCX9V4gQhj5AvD9GnGjoP0CeL0pIyPw9QLJ4CzEeDT9A3xiPzZVzP0B2KCnA9H9AQAYixoDFtkBAg/wVLSIGQUCh+TPHYB5BQA9LY565xkBABitj053uQEC0o8GZJZFAQNIuFAcJYz5ApKobJsG4PEDirO1u8s8+QFeEWl7gFUBAVbdfVYRBQEDLhUdHKXZAQP2oKitlmD9AclPtDHqsPkBVlRyreFA9QLLwbuGLfD1A9oYWltOsPkBfuifI+qk9QJ0lzdIwBD1A3lFRnUUDPUAlGVYVI108QIbbVVKZkTxAVYeen9MCPUBR+D2Ld3k8QJlNR57iRjxAlK7jYW2eO0CRHSl6Zfo7QCb9kqw2zTpADE8Uwt1PPECN+vPcm4k7QEpbOjT5gDtAwmjCWC/QOkA0I1KC/Kg6QGfgLiax8jtAMIOG692OOkCDMTjjveU6QFstspeEzTtAhB9pHuYgO0A4Ch81I5Q7QMR18msM6zpA25bxlxeXOkDIsWLGmpU6QIg4LJhLszpAUdXOxZVjOkA60oEr1tQ4QBLg3PKAZzdASG3aotfBN0ANS6Rdx2o3QPe31OJ0FzZAszTZcQIFNUAlPQ1kfg01QAn8A04klTRAWE3/+qh/NEB/wsxNE+s0QBWQj+TPDDVAd/NcqU8GNUCgMIjUKDszQF/0sxFMbDRAG0lptpKCNUDd+LMIZIA0QFiQhbO4LTZA0otdawBVNUDKckFNa+IzQM4bO6HbQDVAdsGeYvHJM0A/BV4/fwU0QNRtAkp5+jNA/UEn1xw7NUBsXgbmHqc0QFuJYWhemjNASqabw8CVM0ApS02cITkzQK2CGssqEzRArUdaw1pBM0DgxF1tsdYxQG+d/uHVBTNAxFJprEGMMUDaMU+9kFkyQBTRyJBSPTRAyhYyxwv/M0AotD51k3w0QJ4uleq6FzVAGZNmJ6KSNkAziF3RZSU3QDc1uDxbWDhAeMEAh5tCOUCuYOMYrAA6QIE9oSF+tjpAPhPo1FBRPEAvghHWvwQ9QJAl6W/q1jtAmrWP6s8SPUBCU2O3BgA9QJBXAZxVHT1A0aFh/tUuPEBTMneLdkg8QO7bFFLpMD1Ah8feh7HtPEBX0hxYoLU7QDmgkwcqNTtASLIyvGH9OUDsX9GIBGs6QE2cjyph6DhABMhJk/BcOEDl+faAA4I4QO05xX8UODlA1n3ro3G6OUDL2kVNbnc5QNtnHA02BzhAtz1MLC5wN0CuXZSuyII2QKaYyqhjPDVAYnAc1YLsNUCG874gO3Q0QMKiXG45yzNAXBETkSAIM0AwpvfGgpsyQNmKKZPkVzJAPmtoLDngMUCReTCEFKIyQCnop/zZCTFA4FioQoglMUAFUYbMzeQwQD5wIbpnNzBAYQeUc3JpK0CLGAmGkpAtQGc24IOVvy9ARZlIJFJuMEDSR4yG83EuQEj/GYAkvTBAeJE+yZMQMUDCyNegn/0xQMDZcpUbbzFA3LKu29wBL0AWVKOuo64wQPMRAJ5DxTBAFuXiavMDL0BUp/WKXNIrQBycII43BiZAJj1spXQJKECswAh978omQOCLTn7euiZAWey24q+iKUAIbLMfkD4qQIG2PG8Yji5Awf31nVwoLEAvz8nM6+ctQCDvxoraAjBAZxkUAuxNL0Dw6AiPADAtQEIKXLe+pytAFFE3zM7AKkAJHqutWIYpQC9b8fCeYCtAJSj4bsUhLkBpWRhovEksQHfPCaB+hS9AG69P1T63LkDkla1/vhUrQLqtVhKZ4C1AiWO9RZbxLEA5bu62xt0rQA0+eH68Ri1Aov5OABaIKkCD8nFna3IpQJIu+BQiWShAwdqL/d7AK0DijIENBKstQCsIrrpKiTBAwGrOjcI6MECBFEjOwWgxQD8TchU78DBA0ZV1qqYeMEAXO6xzX5UvQGiIhiQEtC5AVohONY0iL0ByMwScvt8sQP0NEkzNLi1AobQKfhh9K0AXvVWSnZQqQEEkxfICxyxACcyF+alkK0BZFOaifEYtQAA9l14OSS9ALJwbxe9MMUBG+C6yAiUxQB44or85OS9AmjOVejByLUDiZUYTZm4uQKa+ret/ajBAjDR6R5EnMUDtMXLh/LowQEyF8K7lSjBAPdMawa5XMEAFM3JQC4EvQHSH5RiFZS5AWzTy60m2MEDvjwe5EOIxQNAbrVE5ijJAkFZCQ0AsMUB2nAvXMGQyQDGDxn+EmTFAfvR8Tkx+MEBbfnZ7Qm0wQOHzmMh2JzFADrKBm7VaMUCq7S3tHSEwQPs9m5sfyy5As9nFNOTOLUBjH3Eb0dssQPtVVF5hfCtAiPiA7Nd3L0DFpI3/0WwwQOLzUg/dbDBA7vPaItC0LkAANozD0lsuQBr00s+uKCtAo7JW+U24KUAIXLbJ/94qQOj6NwE6xClABpn6+25sK0AEW6djuXUrQIpCnsGHzSdAZXYYl5gqJEBvmC/tea0kQAeTg+4iXiNAOpE2lZ81JEBfZFxBYnolQM9QJZNYdydAvhceslKeKEAwzl9Cw3gmQKqucuZFESNAktcAb492I0BkxpXrMcglQOYsErKIpipATmsah4ozKUCHedOoffcpQJOdjGCKkyxAF2fBsrOoKkDA43zgh4YtQOh5ERK2hClAzBQhiPHHKUB19zxg3kcpQH7Td1awtyhAFmNyaVntJkD6Um9iCYwqQHSGDflOjypAuiRlCAcvL0Aod89QwIswQCX3fGC5XDFAaQjCzk8NMUApebdIIAkxQO86Kf1ykTBArC9a5b0MMEB3PR8GC0MwQG5LJ96MrDBA5R7GECBvMEAQsBWnhcYwQD+Z8TpNdzFAcJVV2Dm4MUD3Z18c12kxQG5qMKEiaTJAEcMnMdWcMkB7coKDVqExQKHe+h/JVDFAAdtNH0/ALUCprR30gu0sQOkhihUiiCxAfFbJB/R9LEAlHwMLoCMpQP+0O1/0oytAJRSF+EtNK0CkWo9TassqQOm2qaombChAS1n8X7x7J0DpWrD0jlwoQEnTieGb6ilAim6EjPSxJkDHOpIvSZ8nQIprAaA6VSdAlL8WC54TKUBa4VXM2mQrQILdh4vDpSlAm2FEplLhJ0AKjbRX9RkpQISnMNW2aS1AIGBnXiCsLEAPpoARLGotQJDsJZjxzi1A22XIjxb9LkAtzHVWiakwQBcHzMcfLzFA6d+pb0XmMUDUSlsIcQsyQHT3gIsBQzBA57/wUU/GMEApwzzwiDkxQOz8xbIE/zBAYtAFEqMiMEAXTa9HUCEwQNoGSo8PwC9ASNtsK6xNLUAYmrNH1YQrQGrVk3RYwy1AKjKjVROOKUAntP3fFFYpQNRvs5oaqytApysDasrNKUB/vDIQGsIpQOiyTcgBOCpAskLpqj8mLkA2ANZa3wAqQIhDJX0IfitAuwdtpkCzLUDOOB3qU7QuQDkx7AiQQipA1IXvItI8LEC9NFYhwtkoQLQeqxxNuixAjHVHIBe3LUB6ojjFW6EuQND4w2IJ2S1AcJSU+m+6LEC0oN61JKQpQMFdzU7mtytAmXoqQSVrK0CYS+xj2IcnQGKwhJjBAydA/mcQY6g+KUA21YObqeYnQARHCXhQGi1Acn7QVa6hK0DHg2QSbt0rQAab4q4UYStAitscsVlVLECOJHLJa3cuQHRbUmiIeDBAfScV4mCNMEB0phZal1wwQAEgf3zcTDFA0jO345Z1L0DZS4SX/kIuQGqrGSSazy9ArQtknv7uLUAYtl2/QbwtQN+EW1nEyi1AeCPCWec6LkBevwbl9uQvQHwSJJRGgS5AtUjVMthJLkBAAsPmMOYsQDSbtvrFrShAsMmV7gBAJUC7G3y01G4mQIsnXqeamSlAjSkjgxdIKkBhks7iYg4qQGimR6SpDixA4DL33c7ILEDOqtmwg7AtQFXAua6RyC5AY3aIDTKrLEBi1oyLG8orQCn1eX6gMyhAUAAZswr0JkDBEUflnaAmQE4NbDh4LydAbJYvB1P/KECvcN9dAWgnQPCQaJSePChASUKMXFvCJUDLeQ3S4lMmQJiR7yGN0yVADwhQiiprJUBMNArAckUiQDJdyCR50h5AfGTJro0yIkAKdDUfUwUiQHkkXORy+iJAaFeWvv+YI0DH/FMVnoEkQI7lnh0kTSVAVpx/6QwHJUBEBwCbbqIjQJTcidyutiNA5yGIhk/hI0D8RPlUMBsjQIdJ6YYCFCJAtJo9a93xIEDpDf50wdUfQN1rDh2OxR9AFMNsbqyZHkAmReMyJAIeQGgsexnL+hhA5gaG7J5+F0CZJ5IzgPYcQHIPXYRMkB9ARGhTjWyVGUC8dFZWuuMYQFSh4mnpmhlAou4A661YEEB641JHT4EVQEcnxl63qBdAKR4d90K0IEBHOrUS0AQjQCsn6oSKLSFAEOMqBF4wIkDcCMnCW9wiQLVIspyq6iJAVCEbnrvZIkAYgU4SwK4jQE1WWyf/yCRApM1DEGSnI0Dsacar1J0jQEquIQkTIiFAGPUhYKaSIkBNSYIvFM8fQDD43qALJR9Aa74KDXo2IkACyqdcy3wjQPHdME9+wCNA53W8v/5tI0AEGOj+A18gQKULEumPziJAQWhJGoU9HEBF7p8MOMwaQBCwc4FKKSBAdLnnFrjPIUCyGfT9RMEkQJVbxX8BMClAKInAECJuLkCdgEOGA6wtQL8ELmz8vy1AvjyhGKhpK0BrMAqkHsQpQBCLETBieilAEdTwnUFJKUAYCtzSBuInQEQp5QasbCpA2uh95qtVKkDmnCZBlSQqQCe2LBxbiSlAhoxN5tSYKkB4iul3+T8sQBf/L72CjixArbElkxNTL0Aaa24Nzg4xQMyd7IU7fjFA9soG4k2/MkBY2NwK0BszQMUBqDb3TDNA0YPfI1WAM0AqTYBK3g8yQH754v5n7TFAcIDt4eBLMkADGlwwZXozQHqdlNzdHDNApfY+GsdlMkB+NP/TFzozQPeIGw5mrjJAT/W8GyLfMUABd1vzVv4wQDUMBURFBzNA5pVkJYC1MkDyZty9ebkwQNWMXgT/HjBAfqPeOsKRLUB120FEyNstQIMc/nYtEi9A7gYxMPFVLUDNpCZE3dwtQExpumSf7ypAhjw/VNU6LECHH54pP4IuQFRwn+idOStA9bfN2tNFKkAsIxfG5+QrQJVf4z+UmC9AR1caHLdyLUBeRlGhmJouQFiaiKvkgi5AZod0cfNjMEDXf3C2PIkwQKEqRcPLlzBAoCFjOv3KMEBMySr1yf0wQKz38wT9yDFAuOba4KoXMkDl1tlA6ZoyQNRauRdefDNAZGx2WLWfNEDc7QXokWAzQP/K1NGJLjNAj1kaKk4BMkBsXbcpY/kwQPzIDWMH1jFAXprd1hDLMEAbBGPMbtoxQK2dzrMLwzBAFfQt4T9uMkCPGW/lQZwxQGwx6lM/ji9AKnkV705qLUBZN8ZMzZ8oQHvJzGpAhSlAdhd9q6WgJkACt6XSrQwnQK3q+brPcCVAfSWTKLM+JkCn/LAnyusiQKOVKrhDzh5A\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 2\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"4Y1tEFZl/b8HOIaiWN74v8g6ipBjoAXAFD90IB1j9L+EDhcCSErWv+x+ubno+eE/jmyxJHSh778olEeZp9HGPyP4CFsKos0/6OeblgNFkL+WTV8oTe2rPzZvGRoPPdU/X3+i58Xm7784jGkgIpwDwNJLICIZoAzAYgeODW6RAMATNNSqRz4AwBprDpko+QzAvvwg6QTPEMCbp0ISavgWwBLxRScJaRTAzUyCz3oNCsBrkPIikokVwGWfGsDiaBnANDEETjg/GcCanb4fkBYYwKhPYeA+6xTAwBlDKMEDFcDTZUV2nY0RwPcMSbaVJBTA0F3ZGHc+FMBV7mH9K6sSwJi+uTuB7hLAZhYoN+/BE8DwUHI/vwwZwFpST7oD4xHAHF//i9uJDcBO5xzMcbkOwLBr2/9s7QfAygO5nlsPEMAwyeqDDk8LwNzrNr+6IQ/AD0L/NJQ4DcAgEJbgIr4IwLJaRp2c7QXAZh+7Io/lCsB3TQ/KpeISwGa8rsBGVA/Axt0hPdaYEMBcNwjq5fQRwI4dHfi9LxDAtFkIW1uhEcDVq80esFoRwAHMA2EnmRHACtkWDpM5FMBH9ICEBoUVwFIRUWHtlh3AWYOpSYQ0G8D8fQQYJGUYwIApCnr1DRTA5t1BcmSyF8A3UBB5lkIPwKe3u9v+GwvA+LZaqnMxE8Bk7UpgeC0ZwHEehOlhrhzAxvWSpZ/cH8A9GSoQn1IiwM5oWZrPeyHAkC6M+0iMIMBUGOiaHf0gwH1m9e86RCDA/DVz+RHFIMAOXoSrtrkewAZD2s40OxzA0ffFYwTMIcBwjZ0wFSkjwGJUC66MkyHA2lMJ7yw9I8A8nLoSYTgmwCno4pMR5CjA4nkXBto7KsBICkI0zNoowKCw6z6gHSjA1KgEWcp+JsD9J/HZHywmwLDqeYU2vSfA7ok1FobvKMBzH+s5iDspwKXtX31CiSfA5J/LTV6BKcD1/30fJxgmwLQ/uQpXMyfAYV2NKPhlJ8BB5Ns4KiInwLSE79qD1CnAFqt6Ia0GKsA/pZGMGZIrwHz5wb1V5ynAdhUA1XFqKcAEaX+uWL0mwKSkSxYMTSTAX/k3z7U1JcDV965mBcUiwL7BpVtxIyTAIsOsqZICIsAPPN3gqkMgwB3jEaPfgh3AXJaQZXCUGsC/TUlZC5UTwMUrW3L1/A/ArP4mO6k6B8BLiicBiTIDwIZb+qsfKv+/RN3YqunBA8CCNb2Bi+0RwBLKEeHNyRHAC795fIGAEcB3XY/KmLkQwLMzCuFItwnACr8dvbVOCcDEwxB989IIwHxcnjDmkQTAyBwS36k1BMCOF0+Vmbf+v2XiRmPJie2/NviQDoXH5r8ASnw5zAGzP66nkRlk6fM/ZN1iqZf8CEC0sT2ncWURQBBVZJJ99xVAOlmmXnGcFEDtqQhzQ6MTQHZwzHBZ4RFAnyt1B4vCFUDkMotg8xcVQJFlrkRLLRhAogUU5INCGUCCB8ppX9MbQO+/WazhNRtApHyDXFKVGEB/LWocyLoZQB7ggF5WVxxARYYFXqGnHEAQHEozgiUTQCyDs2CKNhBA6G1hbr7T/z9FAn+IO1oDQHh0CzEGdPg/gbFvc2m7/T9QDCUaQccBQIPG/+Fk5QJAOi+U6al5AkDruucgapMCQGDbQ489geY/EcfY039L8z9cThEn07j9P6VBlic01vk/lkj3ZHCjDUBT15hdZk8OQIS+OsBMHhZAfPD4LiqVGUD1vuVhgVwWQDOXvQ8e/hhAlRHnYOSPGEAAaboQqFUXQN3Qpm8mBBhAe3xbL4f1GkDIflVPKWgWQJ2ffqbU1xFACXdXRNHCGUB+mWwnKPwVQKTvKfdLJBNAgVOR/M88F0BWix8iDe4RQFmkAt4vlQxADUrCKpXzDEBUMTZpXP0OQJAbcAV9sQ9AsOP89jhnFUCsRfDq2TQXQDxhmZDbWRhA2MROoWM2F0APvO5IeZ0WQOunAELdSBpAWonnShh2GEByriYr+RMUQNi2MXc3ORBAIQvHEQLAD0BoyrewBq0LQIR2oAQnkAhAJMiNswwx+D/gaX0ylcnxP4Y6gWY+/v4/uBc7JrIZ+T8ckk/GOZLjv2zHkcdFj+S/9JiOfwz39786ivRqgXAAwBQ14OwAvAzA2n2uk/zkFcBhMZ5RxNwUwDcZTeBcNhfAEp5vYSYpEMBNQ4jwwxwLwAVbSe+GUhDAtj40cjXhEcCaS01Wd20XwMK+oLBNRxfAcxZnF25eGMCmWQFRvyIUwELbhqPlPAPAlj5wyBfLC8CWkQXMjvEGwET1ejjTrgXA0jWirEzRAsDCodswppgLwIrLR4myKATAgKjBc/WQ/L+CLNYOq/f5v/KmthkkD/G/Ah3cmpxR9r+W7gaLpMf0v61rF0ZoHPO/JlPROuUB9L8juIjz7nsBwNegq0JhFAbAk9hXe3wJAcDM38e6e3v5vxlm5Oc2yfq/yyD102k4BMDUbkTjQCEOwDjATrFirRHAWrVwnRFhCsB5WLCAFaAAwCoWM6V8HQLA/wbFtHlcB8A6gukfZq4TwNgTpQKmnxjAa22niBPhGMDgO/8yA/MbwP2XUdnSvBnASM88Xda1GsDLyAjoD1AdwG78H7v9sRzAXy5sX1LDGcCiuYZqnt4ZwJeZNLFhdBTA8GBqYNRzGsCf3nOOcfogwGBcq5tEwhzALZZE8pSFG8ApU3YfjEkewCPqdbb6BiLAwjTvNUD+IcD3Dbxik0MdwGgNKWminBzAeT+5TPo1IMAVbYWGWEIkwDbw3gFCjSDAMqsfYyE7IsAg/Z1kXPAiwEA0502hrB3AKM051UkNFsBOTa8CWYMZwCcIZjnS3RXAqxUIH+TtFMD4/JB3O50XwMduhPEF8xLAwD2OFNTCG8C/WCQX3AscwJ7asYdz0B/Aty1BV/oIIcAW5U8CzYchwEo+nHvA3CDAdW8MFtT6IsDGObLSVrAiwM6l1UirfxnAGbRpgfwiG8A86gamVmQcwEmPYyw11BrAnJZxPqw8G8AW1zeIASwawNFxtkqWTxvAzSqFIP72GcAbhthsSGAiwAofJgpt/yDAC69wzJCuI8A6CVaBRy4jwJGiGCKwGSXAb6hpIFKpI8Bd95yWrtYjwKH0EwDKoyLA57p9mwMoI8CKJEsXgqIiwENTgMvdECHAulvtYdalIMAceGibsH0cwBpCw+WCzB3A0Akx7BOWHsBDIs4Js8cewDQMjCfn2xXA1w6C8QsoEcATizO6bi0PwEfuc6cFqBDA4nNSOULTD8D5QcwEZJsRwHahLvIMkxnASkJBWgAnH8CywQPHxBIgwMScd5xuZyPArMvFaRlmJsCHgw1QWEMkwNodYwhjCCXAqkQF1BSCJMAc9R2g1HwiwKhIqQQhFCDAfT4UR/wiIsD/CPMX0cIfwBaIW8lgOSDAc47tcaDIIcDTL8/ba4giwBkwYnSGtyLA4Fh1brxkHsAGpErJHk0hwGJtfr5WWyDAqPlPU80DIcDzJh8scmIiwMy/gJ6P/STAB/IgToeiJcCes67MoaQkwM9PZ50knCXAS6AShGZsJcA04d03dSonwJh/0lIaKSfAarBVmFtPJsCwPB3oN4knwCXouFvFvCTA03cNRO7NIsAvx5IvmOMmwBtkDfMNqyfALsWwrWuvKsA+Ku65L4cuwH9kdE/xuS7AcjswfjJMLsCK92WlCHcuwENvbjiQgDDASVGm6t07MMA7RftDfbUxwJIUnewh2THAxr0McGPzMcBKLjpYWUkywIQW33sBYDHALHhHvg8gMcCIdKq1Ce0wwAq3EcghlS/AimX789j7MMB0i6tNgpsswBrv9k2YfSrAMhAavOXXLcB4L/ARfjMrwMAofJcmzCfAhYZGDjG4KMC5Y2ddnqolwAxONI+01CLAsopVgh2fH8A5Fx/I9dwfwCuOS7amtSPAGiEjfT0zIcDUb11PC3EhwB+ndwB39yPAs7vPWsWwI8CBl0GGa4AjwIPxjVQI/iTAh7ZGQjUfJcBDwAbmYv8hwHEvZjyFiyPAlFA9Cm8hJMDFuuWbscgkwEKg8oAiTCTAu08ropctJcDlzuX7ps8owOLpjHeHGijAkgLcbeSiJcCnxwwWAZokwAOXE1VqViPAlPuG2LCRI8BbxLTqfjIjwF6Ev5WxfybAMPI84JzXJ8BysVhRU5QnwBqQNMFXqybANgB1BAlZJcDoFH4BaDIkwNlCij84OyHA8CSZ/E8KIsApE0KUGeUhwIhIlp1bfB3A+1VUNrMJHMDNa47kYZ0YwHMNgRL+sBbAab4cKDnAFsCZA8/ixewWwKhVB1ZrJhzAtb6WFmNjG8DorFXu+zUgwHqTryjB9R/AivKCB0wjG8DYwGcZOmAdwPoWnKVydh3AuLwXADVVGMCCzqWRUv0YwDjVqH11Ih3AHSTylsBUHMB4JXzxAnAcwFTc3M+rph7AmwJL5q7xIMAFMb/M4gIgwGsgG9Od9SDA2e6lK1i+IsBthzJexyshwOkqQRL23SHAXdAQY6IQH8AMj+Y/gAAgwCw6zDt4+hvAiFpiSjrCHsDm4VE4knAZwHfOGwxm2yLA67483GqQIsA4Bkh3tTYlwPN6RMjNICfAzi8Nt6gVJsDzCSJXu14gwIajm0d4Jh/AB4OB9gKJH8BGpLcL1EUgwP7Nw3O6ZBvA2m3OmkRbFMCFB2KNwOgTwNF0RAT9jhLAP0v4c8FZE8Dsp3Kr8UQRwPYyFoxbLA/AtMDYJoBkC8C4Yg4j1kL+v3gY7Fu/1grAS8lseDr+DMBIz98ZksgQwJuhHObZcg/APbe2SjoXB8DABQ9HGNcGwC34acETRgjAf/o1sg6F97+rPv5yR8Hxv2BVr+nZlcW/OOu/Isx3wD+0koYb7cfxv9RhSx4iFO0/pH9eia4U4T+69pueQ1Pvv2jzO7ey6LS/s+clRSUkAUA40qRL093yP8DBr3bsttA/2FyDanNk6D+utYd/oCn1v9iLVp0lP/a/CivS+vxL+7912WVPtCMBwISdrgcZ5OK/4FDOoEDx0T+T9M7zJFPzvxYezFGenv+/ECCUlQkk/b+eN7wtqmP3v3D11MlTobO/2JgToiYEv78f1YIoDs7vP/jARMMPVes/WHBBsZzzx78CVxNLQ2TsP3EIhY7OtAJASM5boZro4j98bTi7KF35P+xZFao6RuM/di6s5jMhxT+GimrOfhjlPzBM/DbrwwFA5PyMV9OgBEB7XgP6B7sDQJjhXHL/nPc/uryu+FsO9T8fW27fRjL5P6IRmKHGEAhAfCIojk0LEEA+ju9CA2gRQFjYkGfL8BBAKohsogwJFUD1rRwIbPIaQFXpw5VJwBpAj+9Os2MVG0Dee01H2iQZQMJGBJ8wjxVAvFAKk14zFUAOQJWZw7YVQKKX5vuW3hVASb1cO0wZFkCL0utrmX0WQIgtn0EYXhhAo92KiZNqFkChbm4voLILQDM2kEcycA9AdjNf09CIE0BKSf/auuUSQPL+AEdp3RhAWI8Toe73G0DWQBal1RsXQLKoP4fLIBRABgEu3l+TFUDycYJK5YYRQOJGHB+iyg9AZb5g4+6uFkBKBZRhsNQVQCkYeJ1aLBNAveynMJcKFkACSe1GCHoXQBq+QLyBJBxAu0R65XUlGEDOv800IMIaQEX909XXQBxAGMA2lZaXIUBS/TtUmSMgQIAOv+jDYh1AJVhY2rTcH0ACo5qxrTQhQNOoOZQyZyJAl+nfEXo8IkAqr+ypGbYhQGYjNbn4Tx5AZJExDOg2F0CWn9QbcDUbQA1U5LF/cBVA7MyvwChJF0CvtX1M8goWQCM/7n9cehxAnjnmLjyuIEDcVi/Zd5YhQCKGQcS6CyVA91lCdSjBJkAeh4TT8wwmQDnq+SsQ2iZAkTVIunQGKUALqjW0Al8lQAV5Oj8gTSJAtMGDEyGlIUDatpucavIiQCYMvgWMpiJAWcn5pQBtI0Du8iQIkM4gQAg1hhNRdCJAHooDQvsIIEBrK6EmmqAfQGM+aa9T0B9AUXIF3DsPGECcGmtJX1wVQI7H9Lk2RRJApusJBaASF0D7bQHHBi4bQMZC9luU9RxAUt3E6onQGkC3K45TrWwbQIavsy+U2RxAdH2Itl3SG0CQSZdF3QwjQB93RJMeGCNA4uDRFa9xI0BotfITI5EnQFrYaqyDlydA48hK7rZjKECM580fGKUlQHXj+eFjjyVAa7a0p3fJJEACencNwj0oQEQtd/SCXSdAf2D+cXQSK0DRW7ZGBq0qQBthgZ0NJyZAuBdEFzNjH0B1X4+18xseQF1lp17+BhtAqG4IB2gPHEAVhicfTwccQN6P6UWyLRpAxhYTB//RGUBPyrN2CokfQBBjaAFRUCNAk9gakal0I0BxLmMvpVEkQMX6S/znNyNA8x//I4JHJUDPhhIf/4InQJrfNsT+2yhA8jsEqMAXKUCeiZfOKWYpQK04FN32KShAkK7dJKWOJkCQTeophrglQFqcRIYOwSdAC4T8OXJzJkAWVaaz5HwkQJBRbeT55iRAiuO0DnRNKEATWql3lJEkQMUBMLRXfiRAL1UoN06eIECsc6swzBQcQD6L9/m/rxxAQFIfo5d3GkA05I1CmXweQDuiumwM4yBACxiNFaUvIUA8m/0bMOkcQF3XWmTMwRlA4uXA6wLXFkAz+eBEmvgQQL5dx1t/nhBAWBOId/AyF0DD7p7wVdEVQPwXSbiuAhxAOX3g60PyIEBopXMHRcwiQD5jviHyPiNAvuL/oUQfH0BDhEXFcYcfQLW9EBXnVCJAV5FNMb2yI0AqwF68rxclQFxf2FnFvyNAepSRdN9jJkBFRFjOUTcoQC1LZbCJBitAcumPrhYAK0Ac3p5z0wcsQPP6582wEytAjBtludTkKkCLsVtY7EAnQGAjm/YiSiRAz8jW/lNkJECVnw9MkuYhQOP0OKmffSBAg2LnmjhaH0BWMXIX5ikiQMrrAW2kOiBA34EocD8SI0CYjZm5lhcjQKKNtZb03CNA3qjEQ25AIkBj2Lh6RXshQHhF4JHp/SBAFhQe+KACIkAEzkb2O6kiQMgVjCDGryNA2UcdaFxeI0BfG+loTwUlQLcJ7u7bVCdAgXV6+2adJkClIt/AcM4mQMM6nn0o7SZAwD1suldGJkDkzaoZaOsmQDd6f6A2oyhA4lmKjl9rJkCSN5EraAcnQPPyqVkEzCpA6m+gz+YNLECjl1YJWpEnQFPHgy8v3ClACXEsvby3KkD6xghqjH0qQC66lWSqMyhAfQuHUwapKUCNdvSXwsUpQPzKSCcyTidA3KZ3Ij5+KEAsIoulUGYsQIXp0nreMipAdP3OhHoPK0DbRUC6mZEuQIo4BD/P8C9ABSVUhMTSMED8nnh/J08yQAPtXGpeXjFASCTfwfLRMkAszlMi0wIzQCyBPErqgjNA8WOpumGrMkBSqOU7vfwzQEKH0M1PSzRAokti84QaNUAlkudXUJw1QCsBtkkqrjRAIp9t8/6jNkA52wSnpjY4QOqPn6mIAzhASCJ+c0/xNkCOnO5JWnE3QAQ/2VpIGDZAQm1hHiCvNUD892h1AnE0QHUAffGZFDRAxj5czMJPNUDywcBiA+40QJX4/4fevjNA6+UvWhvIM0DnXCQXyFk0QKbB5iLA7DJAvqsn62KFMkA7yG9helkzQMi04b4siTJAv+7/zl6qMUB5+roTYT8zQMBSst3ccjBAgJfIhSKTL0BwzIQJ7qYxQM0SUnfoHzFA2v8VQFbqMUDFSAW733swQJf1nVfg1jBA4VyXTQfsMEA2V9BxEEQuQLRHYXuiEC9AQ5N7H6qhMEB5KKYnbLwwQA/4yIkkVTBAL5kb0BF8MUBn0RF8hygxQOJkovs9QjBAXmfbBtk0MUABp7dnhtQwQJrLJJ9wazJA+F3GZFo5MkA7vypB1egxQF421it6ITFAFdTXSLy6MUCdUsu0NqQyQJK2w56a+DFAl+0XqkHeMUBJi7n/fRIyQCyIkhQNETFA8pTeAzU9MEDB1vQUTxMwQOt8FhGI1TBAvlxkkfKxMEAcTDTy16gwQKPKm++THi5A1vrKIbWdMECAWAEqrOcwQBjwbABybS9AEzg06xN+MEBiUL+eIlIyQCDe8JbzDDNAYaa3XREpMkBXJ1LzcvkxQK2S77DgYjNAVbulyIW3MkDeK9lIusUyQP67l2jnOzNAhgUvKc5EMkCo9YE/b1w0QJOal1u58zRA8s6omWftNEADqbWmK/g1QKMk+Z2nKTZAeuN9TsipNkAYWsd2rtc2QF9IZBYb/zVA8CLq6/RqNEAGHXO0UXE0QMcFzDxE4jRAwl340i0RNUAeAfwMJfU0QLYdYeSmszRAQ+aUDkNeNUAHWod0XZY0QNh0bupvbzVAsGGWrtUaNEDWUcXP49AzQI0YmCMpcDNA+TdVRmulM0Cx02Maj4IzQDPU7Es0nzNAXYOX3zOUM0DTw1u/PR4zQNZx6y7ktjFAmo7kr9ELMUD+ygXW4DYwQPgbSjH3oDBA6NQdFwmNMUC58U+ap1IxQIX/r2WlXy5AmG3h/8eZLUBk05HgI3QvQK6bYaebSStAS5de15AQKkCyFHtIIg8mQMoVPP87HCZA1nXcfmaTJkCwlxLO1NQkQEs/UAfEZydAR2KwsjQOJ0Az0YstpXwkQBSzIzv5yyVAGILENiowJkBhJIhj19EmQHbyOrZo6iNAzgororW6IEBjWTzSz7oaQOj0PxDNQhxA4IB+oLNlHUCgCOdk1sQhQPUzYvg9pB9AuhpVyfcLHkDLjKKtFvohQJodvxUHXyRAwQv0zXGgJEAImESat5ciQEHs443fsyNAaIeW9sg8I0DG3ompg5AhQIT0c17gTCFAZGe6CAP2IUABgXZHy9khQJkSUH5/qyFAUFXQwNvKIUBn4DtIssAkQH7L5jjlLCVApWKPh0yKI0BeR/oGEwYkQMQ0l8m4viFAaMi8lc+mI0B1sD1ZtZEkQE0vvYn+uCRAjf1nr/wfI0Aq62HNQ6kiQDABViLJ5yFAMpo8WHs/JEC5Z6RsxTwmQArvHmlu5CJA0bRVNLQ1GUB1fdBZDJcYQIwyhYzbFxpAudscec6sGkBxyRWy7DsbQIFhul963BZAY1P9Het+FkCrfJVUNWsTQDsD4ErnBRNA90sHDjzQFkAYwZyaVMAXQGGgdhnH1xtAvHf6JDm0GUBm/KraTikZQCVwYRqk6BNAMP/laeXvFUCUzlyGTgEYQLMLVUxaexlAxZVl0/VmHEAdm9iX0LMWQL5YYNolZhlABw74y2ItG0A+Ro9+dnQhQEZbWlzTMiRA5fBu5bPOI0CrR1USzgMlQMLHlnUbkiVAaw/UM2GRJkCpOCfRaYklQJPa8IHqZiZAaqs950TuJkDx2JnchPkpQD0V7gRcwStA4qQjg7xHLkAW1DM+4pEsQMwazp1kZS5AI/5eYMV4LkC/ijpu6SUvQPAPF1ki3C1ApGIYeixtLEC5p8yVc3gsQC54D+TcMC5Ak5gN2zNPLkDvnMFhxVcsQDJht8EcRy9A+TCh/+7DL0CDXLE7Dp8sQCRF6gNrTSxA/fsfBH98LUC4cBEYulgvQIN9SwykQS1AEQLoBuVuLEDNUGqkTDUsQOckhTeVUyxAr9f99P5HLkDwuyoGhkkuQCoetSTYvypAhnjTjuB0K0A7Q2gSW2cuQF4TWA3ZnyxAVvevjE4vKEAkYaEZiGQmQPy/nwY1riZAaUtRkmR2J0C/60AVDX4rQEw9p85vjyhANW/MMmUNKkBYbGnvQgorQH+8VgoWpylAApAyn2bvKEBNnHC1ON8nQCFQgVI73ChA/cfTDrj0J0Cx3woRBrkmQFLI4jSYACRAwc6kmrClI0CN5nghFRwhQOJAdJNe2x5AYgstSUbUGkDUCdOu/AwdQH1pSX7iIBlAJRT+RVdDF0Bv2FoiPBEaQFDk+ojx3BVAeyTs9+4pFUBzHbXldNQXQIUZZ7Q2lx5AJaXwM+YUIUAUMioLALkgQM2SYP2R2CBAQForU11MIECWLJYiAUEbQN9NWKUS8B1AqpdfQgnBIkAs40uLJ84jQLMeC5KHYyJAHj9xeCbdJECvX1cYWvclQDbLraEJ9SRAdG2WyeRoKEDRNVJuRgkpQLiA+/pTNStAsr4BAAQXK0BjDfdHdowsQA5c+xU6XDBAzvO4XUkgLkB405PVSpUxQKdj3egRhzRA6CTH07NINEBWlu2D70Q0QMOBg+nJhTNArYKW0j9jNEDoTI3L0cU1QO1cQ9vyrDVA5cfIzbewNUCb8H/6qqA2QDZ+AeBMojhAMMe5/OO1N0AB/NQ5sXc5QNAwMvYbsjpAd14mCnYcO0BTT/yfFEI8QCmATckdgD1AMVUiLM02PkAzzEOx+389QApSEOr9zj5ABIzKYqVqPUCmFphsTjA9QEDa87c6tj1ASpbGOq0qP0CjsUlGEDg9QK9KL3JlMj5AfMxSvdNePUDoUK3DC8g8QNtYEg2bjT5Ai2YVz+NNPkAZyoQd6HY/QJ6xLlPrAT9AwlM/UQ70PUBTNf1/FLM8QAKZBhfvljxAMLvIgBDIO0AQGJVxIf46QCi6zPF6cTlA9odQoKMEOkAKIdSS3Tk3QHI+EjDvuDZAqwHObbvRNkDwzCmsEu42QNv3kdE57TdAXOXCCPm4NkD6iWeJm0Y3QM8DTtIC8zdA12iXr4xwOEAN57s4VH05QORP4tVDoTpACb9/3TwYOkB99BZuoGM5QBW2uSr4+jhAWtw0jofjOEDKfjnbTF84QA6QZUJvODlACHU9mtk4OEAE8vjvy4c3QLkKK7I0zTVAiDrNEypaNED3g3QylvUzQMqpU5CWETJA5Jt53+0UMkCrq6hsPCIyQDQ5qkIbKDNA+jFDicoJMkDxVBuydZIxQPUHjzOAhzJAjyhMWoi+M0BfrnDTztkyQPeq+zONZjRAYrf4p3mCMkDunzugroYzQI1sDwTRZzRAn3AN7VZYNEBNhH3zbB0zQNaJDdVbCTRAhSg+NGrfM0DkiArR1PgyQEVbUJwXnzNAmH8V1P0lNEDTn3FVXlUyQLgziN2VBTFAbMeBVcTlMECM0T5hu0IwQIHPbB6Iqi5ASkZLW/FrL0B6Kr841pMsQOu7asNZFCtAMGXAWzJHKUD01CaXqpQnQLXh7ERa1CdA6PoeYcIhJkBRh1lGFRcnQLZhjsfNhyVAyC7lfhtuIEAHfeAr7FohQIM1euitpiFA8LE/zmZMIkAz98Bje+kkQNd1Kwl0fiZA1vRgJJq1J0BtJtFfzu4nQP5TCEJLLSlApwi5N0cHLEAgmXaZZ68qQMtp/NMQVidAzJs1MbH0JUDKB+Jg0G4mQDSvFozqmyZAstzOHy2pJUBUayfQLy4iQBExCGtqwyFA1Ab9KGvPJEBHxEQ8q5ImQGGGvixfHiVAjARwDzOnJECZfQWtd7kjQCQegHMWeyNA83tYSEjXJkBtAOy4oeIlQMkRYFKFsiNApETqxw9vI0DIXDZ9JlElQPUfgTZ+rSdA6jEEm5G0JUDLiWRE1LAmQFbsCLo57yRAMAmSi5dzJkB2uS2haIwoQEFkmcOEAyZAMmdud02xJEBlzgMiRUMhQNTHwyCPlCNAX6snYBmgJkDuzOh2FQAnQDDT+k/hCCZA67eEuFUsJEDEnYos9JAgQBd5I6WySB9AiPnhNwh8GEDHL7EbiOIQQAXwFudNbBdA5JXcOnq7DkAIsOiJTC4NQAgPKfmSqgdAyVhhnqsrBUDQUyoXKIMAQOjQWEkjDfc/AL8zqG+gyj94KFQ0MC7iP5j8dWWRoO4/IiijYkZ10D/WzPVqALbgP1zMsGP20dm/COpcNryJ1z+P5w63qvHDP42apT/MqeU/rx+MVDL+4b9bl7bBROvuvyqDS2P6hue/YxkEsvHK0b++TzPYquDev/RHuPdIlfm/9oUzEVsx47+bv7uKmQr7vwgk1thRPfK/SYs1C4n4/r+0e7kCyqf7v6dDiGns2++/1AUOgG9nxz96owYVP0j2v7rINl3FWvu/9VhdKkdD/b9yPjE6HvwHwM4l2HrpGA3ALVd0X1E+EMD5CCzZuzQTwAfESgRiUwbAqijUZb9iEcCmzsSX+csSwBeOQUJxkxHAPGWywNAcC8ByASSYRNgEwAxM90dk3wHAwqiA0q9D5r+rL7vzwiX0v6xPqzHbsPK/RJupWDKp4T8AaMTinmi2Pw67VDo0Ius/lT6IjpadAUC680DMeKoPQMVObg4KcwpAPRNWJM+/EECPZxDwgMsWQOheC3IuCxpAubkL/hanGkBJAnFzGqEcQM+r7hLV3xlA1ZE3GByGE0CZ/S4c7+AWQJhxUnRkNhhAH62Yi2KTG0DJk1eg3pwZQKEy+px3rhdAVFECB4Y9FUBXFTTUR9kcQEVPzLrTeR1AD/i6VTjlG0CY1KIXSrIdQDC04XAsdRBAwLG3OZDTA0Ak32ggdUr4P8UojXrdd/M/bBfgLrn05j8rgmye5gD0P/t1wgyB9uk/WJv+o2nhuj9UGxfhmoqpv1QHacXpD+6/TCpFeQ3n5L/w93pi4a/AP+hlvG2gPtm/zcbK7Mdu778Y+4Exnuy+vzqQ/1Ttvc0/U/vnXGw89r8Coci05S/7v/gHTxGCXfa/tDwheJeQ/78HIuLvTp/4v+ZF0wq4dO6/RGi5y2qz9L/Il6dyin3ev6Pald9fYd2/rbjFvUkn/L/IGS0QjMfFv0sHp+ZZKPa/8eImJ928/b+2kKkks+72v4kuGsXtJuq/CB/aEF2E/L+CBQJEGXTyv2VHguRkiwHAXsJ42K2SA8BOIOYc7xDkv05nXoahTO6/pZ2om1un8j9gZ269FgLPv1tDwYPgkMm/SquzLcNq/r/JYl00rAr5vxjAVNN6osS/5EKQx7lV8b8hNPZuff/lvyNzijFU7ui/PeFiYWRcBsAlGKpfPcMDwAHqROUTePK/uYiREGeN9r9bKylLRq/iv7RN5P6my/S/hiq5MgB+6r8qb6nMkTH+vzua+JKB9fa/9nahgVDlAMBzlopKL+L/v+sRH6zRHfC/KmGLhLyl07/UIYmCwKH8Pya259YurANAMgQG0qcSCEDFaTHj663+P7ScUxhs2ABAxR/Nw/yiAEAy0wR/xyviP9hDD/0Ez++/kMMz4/1Ctz+nkW+MsEG3Py6E/31Py6W/A3U85P2G8L94XsXvSqnEPw8zxeAkGPO/EtkbxTffBMB3WnLMQlAPwDZXm9E1hwHAjYqSGwuNB8BuO2lxz9b6v4ekHHUUTgrA4h+4dUOFCcDF7A5d4MILwKwOVkd9kBDAxn0cUB6xDcBfhIsA4AQSwA5IoWR6IBbAypfISyyTGcAysI+4B+YRwJ7YnyPoUgzAZl8NPBfGBsBSSzVsGf4KwMiDh5nquxDA+WbRrO0EDMAaFN+YWOMEwEIn8JSMEQPAjVc/A6dGAMBUIANW4zP1v8bqn7BgMe+/BADZy0K5+b9QoR0wK0G7vxVI7eT6afO/EHrLGgkD2z+058w4lT3vv4AsKCLE9Ki/acjxH/MH4z+YLAtM+xPuP0LFbm3WTfE/NfDH8HVt4D8AmnL5wuVVv0muWq12zOs/qt8WwG4N/D/iuVK5+n0FQHQmTPNpHhFAA+hY5oFRE0Cg9qczy8kUQJ0ELM2bJRFAs7DCdmxmFUDqHehdfPcVQEtJJ8ioRRpAKVLDuPjaIEC6tIm/ClcgQMS8/GTlqBZACJKuqA9nFUAGTg4iS/4ZQLvox0pMXCFA9KSsEH5PIkCFAxbeOcUiQCylbR5aNiJAUvBg6HEpI0A2Ag8KZO8jQFuKXzEJ0CZAVOtxO8QIJ0BYG7pvfjImQBkafrIHsyhA2UF9net+K0DMwneaGCUqQEuHELGz8i1AYIcYE1gCLEDFUG0BirsqQBr1kYOqVi5AKZPMN//ZL0B1o+lswPMwQHl3UIxgOy5AhULGdGuCLkDmeQc81vwsQIoJWjJdHi1A9A3AAdO1KED2UuVo3dEoQHtlviyg4idAe68QUbZ+KECWtIgMmFsmQEwQilcWnihAhjA9rcEmKkA15h35JbsoQFvOq+EZwClAECVffI3oKEBLlrU0+gcoQP70MV1ytCtACH3gw7bXKUAwNZY0hqYoQGb99OdntClA6sTcL5BDLUClFFwXdYMvQC1s0HImlixAfJxAwoR8L0B3jG/TP9EtQDiB1h0Evi9AREq0+3kZL0Dl9sEyK3EtQMryiJZeZC9ALimZDBCrMEBwRpz65yIuQGvhOTijfS5AN/fJkZx+L0BP2N1Z8xgtQM86fxUWXypAHTO5ydU5KkBFPUF/peUtQAK6e34lXjBAcah5jareMUBgfZRcAkQyQBiIdmWiADNAQ8P/L69XM0BeHO6QpEAyQFEa9CELyzFAAsbd7GBYMkCIpXuxowMyQDwY7YH31DNAEbvt57z+M0D1iOzcKesxQGa9M/KdzDNAC8m1C4LmMUChDoSEhVMxQDkJ4MDPqC9A3RURQo14L0BDm981rLYtQMquK1tj3TBA/5gorzrTLkB0hSILAI0wQEMOdTJDXi5AHtDYHUu1L0BqPcsWlBEuQPccocK5oSxA15OMH64fLkCWgY8QtakvQOkvvis6rS5AXCcGLGFGLEAqn7Iaz5gvQDioAyKQDDBA1LF08YG2LEA1MXTexastQEPrPEod4ytAWlqOe7K0K0CedawogJ0rQIouJQvrIzBAu+LGfiRkMUC1/FR0QAYxQDeaTB8WiDJA7qB//xfZMUBFRwPnvQUxQInBq6EOfjJAKQHwyoIXMUAEr9WRvLIwQBO61af5VDBA/DKNJCd8MEAUmVBxI18wQENH9d5HTzJAhx5RBxENM0C2u34S/AgzQA6bgas7uzJA+tEzIUlNM0A2JuoPeNkzQE7vyw39FjRAT6OSamYDNkA6E212GAw0QPWUroZV9DNAuIWfHqgkNEC9t8yQhxcyQIoCcWw05TJAy3bE9+FpM0CACXcaXz8yQKZ0ma6bmzNAWEfNiWtbM0DKlgIwVbUzQHSjnExr9zRASBa3unCCNUA7AQb1TiQ2QJxvvilMeDZAdkHZ47aiNUBqoRYHUlc1QOE1Y/TbBjdAUDqOffaoOEANZlrXrjE4QHplVBN/ETdAHZTWNev6N0DYPbGAha04QCHn/BFoxDhAWbdRdlbqOEAWAsD8Zbc6QKpeEfENFzpAcnEDXwCLOUAWtIYbtHI6QIdRa3BBBDpATXFPNqnZOUCjr+e0D9o5QEvsaInAuzhAc1hVpOUzOUBiYWDrppU4QP+d9JJ8kDhAABDlKpRfN0BrTgXTXz43QAIIve+2mjdAu3PVkEjENkBYmgjWcGg3QEj1JhItwDZA2sIWtIT0NUDqREDa1Mo0QHYnog3qBjVABOtK/DobNUAH+Aag3lY1QGPA/AoaWjVAd7zyw20UNUBIdXJIKLI1QIgBfHe5VDRAxCjC7VHHM0AODQuSJbIzQLxcgX2scjJAkh9hoNH0MUAEX1Awq4sxQCsMvZ2pfDFAw0zH3/2QMUCMijajhfowQJxNBnqr6zBAsy/QxeqYLkCSHJsOb88uQApoTYHrTC1AUoEYCt9fKUDXkWTYm90nQBIwW4pCXipAnqMA6ZdNKkAglNQXkVspQIqc4nCuzSdAIq0BdzvwKEC6TAJ6WugpQI1ZgxNOnSlAClfAJlHHKkCyxEJhCuErQBNGmqdJ+yhA9PgrG0mUKkCDUv2CpPcmQIBV5VivDyhASoRkgXsTJ0D4g6vZWg8pQJCmgClLTilA7RwlEsCOKkDpwuM60hAqQCcxAL0wgilAgl0ar8WFJ0AeQGR4Uu8kQLgqiruBqiVABfWue9B5IkAIArZAZWMhQEybGUCHHSFAeuWu3QXjIEDYeekcU1ocQHRs+ehwJx5AfXOqPTSAHkDruQifYhEhQArWHG9i3x5AThyIqAV6H0BnYPwtf74bQN2S30BIKRlA3eBpCiAtIkAbDLZO0rUgQIvB4h56pCFAqzElybHbIkCGa10jisUaQEYxSpQ8aBxAbAy85oPwGkD1P3WSWRcdQOyO5irrSR1AztPWJ52jHkBIgW7HBA4YQHpky/qmtBJAEZsIY6TvEkAA4ybKifwPQF6KMgm30RRAl35dB+isEkA1Kthh7EoVQCvcmnGULxZAPnD4L4M3FkCYg/rS3+gbQKa1TNKgSRZAYO5je96pFUDjGHbrUzkUQN8106QQShVAz5F1y0KrF0AQ0crW/nIeQFssOAPc+x1Ayot4pJBnF0AwkpHnzk0aQBNc77oa1x1ACQ56zwYNH0B6HdFhov8ZQGfJv1RuVRlAxaBnxXqIF0B3QX2GiWMWQPGxjS6tbBVA84cyrKHdGkDaraP0cAkeQMbLFSeGvRVAE8KorH2vGUD+rnwd9MwaQInzU9vb2RRAvDlc56X/C0AwAwnEMwIFQHC9FmkXOw5AZMMPWEpyBECGacO3k0wQQPuBjp//fBVA1TFvP11bG0BAyxLvtCAfQEP0Ygb7NR5AlZJnNtJwIEAjW/+j1icjQDEqTO45OyRAa/KmQBbCI0D+P0QrKc8mQK9ebFwykyVAm5e0rjXjIkDDWPT9hE4hQKMTfDA9IyFAesijHz5GIUAfgGs5/h8iQIzzr8H33CBA+gtFhqTwHkCxBTnh1zUbQBu8zzII2RZAhtvTKVoeIEDkCuk7UUkgQLvg4WK/Kh5AdBV4UTsyHUCn1QhRKeAbQPnAyMcWWRlAezyWcwpzF0A/FvuyhT4XQEMLCBpbsxZA3MoUFd9OHUAmXCh0DvEhQKOJqfHgzBxAW3ftN0ZlH0BFK859PQIcQEB6LRULaR1AR2vo7PU3G0DDFOhnbrAfQD2TRUMNaCJA4uigid8XI0AS/e5kHTQcQNKkNuuTayBAGgIULYOKGkBskKZu6kMWQL2HAj5brRZA0oO3sMnHDUC9DzXBgSoSQMDI5eF8GhBAufipf0TNEECMv5f1674TQJTlN0HbhA1Aog6UVFEaAUDizJOn8MwCQHNZ/ktSqAZAIia1nuR9A0A0RvO13vv9Pwbenq3o8/4/RRnd4rpPA0DdleVq70ABQICq8cDe1gVAEUBUYXUKAUC2HaVkn6/nP6CO9QebivK//bOKVa6J57+98qpakRzZv9WekDzR6/S/piXSjmil879RtP81Tnz5vw3jWxnvCvu/MHztICnj+78UZhP4BL/rP3RShaQN0QtAgbO3iIbgDkDiivdovTUQQMFUPAyvJRJAHJO/eAz3EEA7IZd9XfkQQN2cMdlzGRBAy+p0wg0BEECi/nLJRzIQQECelW88eQRAvh0vxj7O6T9Ul7HJ7X/EPw4CA+ETIce/POPHp9bZ5z+o/QpSxP0BQN2sHVG2xPM/HZFeVc+5CUDr3YstqbMJQMZ2a6hUqQlA4GlzSBby8D/lpNJNGPnyPyL4nWSl5/4/ZUekm+gl/T8logtKkU8BQKqTIxBDLP4/Gs+1hkLlAECOICzG63L2PzC1zRt+Ofw/B2UYKnAX9j/Y9wP+k4P0PwBGLV4j+Nm/tLLJXX8D3T92wnjbGeXTP1OMPtirOOs/ElJypiw14D+UYr0tkILoP44DMoXXv+s/YAcUa5dttT9eWYZ2ed7ePxUWtFUlGM4/ZbxJtWjpwr8vIoJgr8zEP9nOXOUc7/U/phUMly1P8z8Sf4+tx73TPw0unJLliAVAxlWUM2YACEBp649EY/r9P2TBSeGD7tA/m/dv08QK5T90qQrBd0AJQHDv4p/RrgNAJtixtOAE9D+rR/J07Hz1P/fFXo4M0fc/puUjtzVE+z9syAcMAkvvPzyb22Q+ot2/eDHF2Vli679wC2mO+LDPv9gsxOXX356/YJcUfqBj1j/CQQkYCqnaPzBj1mNst+w/FB+3HWBW/j/SNtyYweUAQJMQH2kFIAdArEhaEB9nCEA5gg+MJz0LQISj9pjSjhNA+QREKP34EkC4dJvdF1cVQHBoDWhobBRAaKKyFxgVFkB4WLu9GqsRQLQDdZxEhxRAaA5vuzSaFkDdVD7dDFgXQD0AO3JRTBhAj+VRzq/DG0Agp5jR2C0eQDWeedCQox9AXC6MZcgXJECk5KgGJ8MhQPYg4FTdPyBAGCM5v92nHkBrlfvwopoeQL8YH8pp/BtA23C1TMmdG0BcewNokoUfQI+A/DqU1B5Ax1Ay6oueI0DfotBglR4lQKQAeZfB4SNAeufS38otIkD/GdiBazIjQCyoOl75dSRA7ijtduAsJkAQWZ7iAc0mQCb7x7R4/iZAU7wZHCPsJEBJJt4ZSBAkQBrWvxtzJCVA9ZbzjhnZJ0AOmygbhwQqQHNWL7rcsi1AmspxEx+IK0CClr1HARUqQNrUG1ZJtShAwkX/hNvFKkAC9d8pVOQtQLkOdgNlBi5A2PzGukLcLEDzfhIpJ3kuQLXQcO2pISxAlCrmFJIvJ0DanhIVqXIoQG1MtMt/iCZAT+eSWRf6K0D+CgOcdWoqQE3joENYjipA9bYHg336KkBGd8+ESiUsQCzBFu39LCxAIxwy5eQ4LECgvFn5PNwsQEwMtZkyBy1AnCaAaZZPKEByquNw3hMpQJRJxKKwkStAB/fMokrnK0D11fvIyZYpQBvA601d/itAfFj0LgXXLkB8qvWKX0MvQFW+Qfx9ji1AxjdUVTP2LEDBf+vsrlItQOCLNhDOfC5ANrAhUvEkL0Cg1Rezlc8sQKqkgEryES1ALbDvG6mrMEBPh6n09xcwQFruM7PXIi1AKFln9BTXLkC7VVb0QYEvQHoNDxhkCi5A6ToB9HADL0D0qSFx4zIsQC0ZtreOzytAlphRrft+LEAHlmYLOcorQMB++g0mFS9A3QOLqTkyLkCCX/7El88tQG1mLSvujDBA6YcoP0+IMUCZma9HIoUxQFejeVKs6jJASMFDQN02MkBtmxar4LUxQKThRePqYDFATRgho9LtMUCJpfflLl8xQBqDKzqC4TBA1U27dzWQMUBSZgzCCw8xQITzkgsULTFAXtt7ktnIMUBsR6N834sxQCJ211aOTDNAGAROjemUM0Dz/4u5xNYyQCdi/VKoMTJAxrUlblOyMEDG/S3xipgwQJjcBBeHRi5AVJLsBL3gLUCAjvSk1WgtQB3M8SFlHTBAEPGLyEElLEA4KmNTklgjQGD/3cvjKSZAnLis1/bzKECGqK4348MpQA9Qp9FkZyZAvJDGqDbyI0D1s80O0DsjQDakkI9ObiNANcnWx4okJkAmqRRnQgQlQGeSeO1LhiVAJEmzMMfFIkDpogDvf1QiQCNWwoRpiSFAWcyPJFW8IkAcBJCEOZghQHDxl4fSlCBAIPv6xemxHUBPrCbhPCobQCcefqZ0fhhAMhezzTtmGUA02W2PktwcQHaSPScC/xhAjElWNx5gGEBpRTfJAg8cQFN/fp/OShxAQLMWL5txHEBP4YsuCZgcQHZu5rvx8BxA/+Cf8UCGGkB4qvbuTTcZQDAaXM7FBBZA45vF4VyMFEB4xtW+8KkPQMwNQolT4w9AWONV+r0fFkBGvpr2v6wPQN6yuo0tHwZAPRBTNovWAkDKyPNV8g36P2TTdb1XmglAYrJ8IlSCCEDqRC3keQIRQIA+M/OJMxJAH9cdzMxhDEDwtDO1LtgJQHUZwgNbxAhA3oBZ+rzh8T/hhnBiDsfiP2hjkVX7t/U/CANm9v6vAkCAI0e980gIQG+ZAeoHVf4/nWi23VIXA0DqQODg1EcBQFMTBBMPygBADsQOuDOhAECyy0MVoPz9P4ifT++WfPk/MM7crIx7+j/WYNeB7GsBQMF8IZ3ZSfs/lzqAT7MCBUAfhHvmoPv4P/jK+tza0wFAvp/4IZqZCEDviA9wokL5P9S2VWWRAgJAjq9iCrOo+T840jP0C+z3P1AS3im1ntU/fcK73NI19D/+sVk7zuXnv9uKKMGmC+O/FpFmPFYF8b/AJS0p9jfJv0t0ExgxTeE/xdXnUoBID0A2ZNgEoAwPQJTUYNEInQpAv7UzPXxlCkBShgANN1sTQAcgR0as4RRAH5TTzj0bH0BK4k0nwS0hQKez64LR+SBABPIdpd4KIkBDZzdZno0kQMHBKRJ63SlAsCtuixoeK0BxYcc1T70uQL55RoYhLzBAZOg8foB0MEAuJ/LD2XIyQL1QfWmYXTRALknoQqigNUB4OlG4Ios2QIhKfugM1zZAqUpO8e+VNkCKy1mFX7M3QDdY/aFEpTZAG/GpketDNkAmImMPa284QKY10bVxNThAvOz3OMpTNkDVyf+hjIU2QDOeXW8R1jRALbBU6/DIMkAvpoE6mE4yQHqcxOQ53TJAwKnHh5InM0BwzUMZ2N0yQJJr481s/zJAvjUziosxNEAP264Hq9EyQLa8A80mRTJAmRLs4sySMkCotD546tEzQECPZRM9BDNA1AD/wK4KM0AmxTWnke0xQHpnC0FlNzJAKgO5LCueMUCwPt0PWHQwQEYLiAMwtDBA9wAtS3XoMECOr1z88PgxQEoTcJGhEDJA5O7MI9YEMUDI4p/egikvQHQgdYKDri1AZniykW04LEAFPki9EkovQPf2Tk9QqC5AeHaG7+ySK0DNlqBedwQsQEo8+c9qgS1AvdBaTP5kLkApPlJDER4vQIRuc/pbaS9Aiu5CwejOLUBQa2V3NF0rQDr1FBw0ZClApIHbI5CWKEDzham3YPooQBcCK9qQWitAKZUJ7h78KUDGlUlpEQQpQFBAT+lphyhAtmagcAS2KkCJqzrPoQwqQHZXBvgnSilAbrCPJtHcI0DwTMd1tHAhQDnBvm7sUiNAJkHbnWlzIUD9AXxdKKQgQGNlhP257xxAVImRaYBRGEBl2HWtzm8UQCT4PUQ6yBJA4kQ2VLE5HUDoY8jMAvMYQB85DviLJBpAax/ThqJYHUCeajQziYIdQFBkvvbPdyBAPOSfqMFxIUAmADHx4iQbQD0scmQccxlA+SVs3XjxHEC3GdgaqioiQHeOYVIc9yJATF69Rd7+IEAvG0ScEmggQNyvxK9H8B9AmcZ5MjGJIEDBEpWKbWwaQND87/drsCBA+GMwklgVIECjY4mYLdgcQCsWERm3wyBA5+OrtKQ9IUA5cAeM22keQFucuJyVrSFA2c90pmpiIEBHz9lBV3ogQEHSDWt82iBAVy5TJ60LIUAL28EeGEcfQGDVJM3Ywh9AbHS/yjUAHEDHt6BWvZUeQMLvWS6g7CBAPOeapqYzIEC4YgV/yfwdQH/r4w6X0hxAPlBovW82HUCWFTjpigkgQIzzi/E2kh5AaocIGNeQHUAkZRuTv20hQL3z9gL0AyFAepA1tHIKG0CaRcF7pBIbQB9Vj39Mbh5ACL6y2+gdIECuWWD7baAhQFwSoLzHVx9Ao5pu1nBIGUD6Q4aj+v8WQA/wWYCVIx5A27SSZ3VyGkBcF/wm4/IdQPi1gmI3IyBAklnicDnxI0A7VYBEymYiQD3SVqw1JCBAjGisXwhuJEClR+LKiCImQEgOGqqO8SVAeg8795dyKEAU58ap9PwmQGy9ugVD3ydAM6nccSSwJkBZ5IFoB5okQKQrtCl7SiVA3WANMGxDJEAHxHrrWvskQMoBbBYBUSRAL6d31kdUJEDDFiUM0GwjQIcIS8k+SCJAaz2y+bx0HkB02tKqkicYQHkVLS/2AxlAzvh1ZVC+G0B62o8bjGYaQH6dMb8cVhVABoOGjXArFUDa7zbHZ2AUQNEljpzkNxlAeDgGIlvVHECLaGYONXQfQCe8bBiTxSBA7iyHS8WLHEC0bU/bCnofQKpcVTpGAR5AKW+H9IeyH0DU+D/wCJYbQIWHs8XLtBdAjg51Cy1nE0A0fo1v++UVQHI7PZTSKg9AzFI6qfkGEED6JstCcQkNQGCmtDnyog1AnAR0qRqhEkCpJv4gSaMTQNxR1OVvuRZADJs8MCcZGkCsGJQ5o5EWQN+BGQOCfRFArLp2JWZ4BEBwwPueT/H2P4x/pa3SUtg/sG3xFQn51D+VyOLDAsfYP27YKVLVZNs/FEzx8w/B07/W5zrPaL6zv2IrpUpGqOc/IBw/WhyWqL/SQM/KzWDMv9DfIuXj9uu/gpuVpTvE8L/8x+Rt/GXev659XTGr6+I/5GxulmKmzr/yM3qP1DXRPwz/KYAC9OQ/Rs+UB80z5T+msVEBc4bZP1KySsp7NgDAfDR1PJtfDMAw4SSqCD4WwM0sLUv0hBTALabg1vhWFcBQljCv/VUdwOlGx1eP3SDAfBRDh+EOH8A/ozeNMbodwLzuPQDhWR/AVbB+A8gtGcA8cFmJxGkZwKi5I+QF9RrAKNbzWz5iHsCuclgQ+0EfwGJWG18r6R3Ay/+Q22a9IMA7Zh+mgsghwNl08zj3WyPAF7puZnVhI8Cn61Eo+DEkwEA4pQ1YpiPAM0rJLcQBIsAZ4ZBbJW0hwKStW+g4KSDAuMdMstP1F8CYJIMxHnsZwLjqp1BXkxvAtoiL2oqUIMA/YlDl2q4gwNyeTvVowR/ADv+adJBtF8Bdy6YClyoZwGDz0KxZoiDAXe8GcIq6GsCB5B67qhgZwJ1nlWg87BnAChI+xiewGsBJNZfeBoYZwK8UHN5ZEhvAQY3LfIwdHcBAO1c3HIcdwBoDNqanSCHAjHbPb8d+HcCCVVeFa0AhwLEimQxTJiDAzHOA0oCwHsBUbXFXXB4fwND+ufC6OSLAeMY4VnHUH8CJXaFdlyIgwJsuAxDIiyLAaHN/lqqfI8BMc0KEDp4jwARFewEj7iLAdIgx7zJpH8CcAU15sRkiwJKkSbzXUyHAGBEnSi5ZIMA6oXOcYyckwO2fhhLNaSDAFORW4icuIcDCmyR1EwUiwPB+oq6dMCLALESXHbUXGsCg0dXzPyYbwFpRCwifPSDA8kSwnptKIcAl+Tn4riAjwNhb801d6STAX3T94tAjJsBchWj4vloiwG22OKMA0iXAJvO5nDtEI8C/03lcM+QfwMVRKKrPeSHAohnV3aseIcBEi+EgU2MiwLN9bkIDkh7AbYUN23VSIsB8M5MU7UAhwEqYA3rYbyDAmqDD/HqSGcBegyC59hYVwD5twIZLKxjAEJRMW6abHcDAub/vtVIcwEvPU7DvSxzA4eY+RMKcHcBwP4mZalAgwDdlohNm2yLANlgui4G8IcAJIGhOlV4lwI0QgQXLsiTAkcTHauAsJcB5Z8pl/8wmwO+Z187sBCrAogJvb7WoKMAlvKPfB3cowNSvaaGpKCjAPPsFnEnPKcCNHqIZhEcqwOusU4a/ZCfA6A7sF2KFJsAMnRanKL4kwFVvwi0wSyLAc8xQA078IsAbYKqOD3ghwDWM+nIPfiHAwH2THZu0JMDhLOje4r0mwIPjae3RgSXAm7kbu65tJ8BX1xgl0t4nwFaEbvzv6CrAEh2TMNHEKcD/Y0m27M0pwBhlhBQ3bSnA5E3Ys0p1KMDDZJVIFpApwMKYnQ2w5CnAC8ZTXVN6KcAX/rY4l9kmwGis822CYCXAzcZOUiBfI8DCNl51XD4kwD7K2+VJOyHA6k5BlwL+IMDI0W0DLQMiwCldIHS/SSTA7AwrEjWSJMDzSUSO+I0lwKH5+sawlynAr/FbBy87K8BNtZqVSTctwDNnzEU7oivAJMsCJL3mKsCCf1hqnw4swMIYK3Vn6C7ACqj4AMGcLcCHjGutV5UvwBqJAP1vVzDAwOymnFFCMcDyOQp00UoywHMUasV5+DHAmuIxsl2+MMA9JSJKFqowwODIX2ri6C3AgxW9B8BhLMCRnXyH0DstwLgVuwq4Zy3AToqmhdDTLcAV5naBjwoswKOu7FuV+i7ATg5SSzUoLsDnE2RsEeIqwInBnRoNcyfAGlwgBwxfKcCipfaUjFUpwLvrDPw5JyvAe+xxddCZKsDZUsE1GhAswHnZvhA2EyzAdtCwgrWBKcAjN8euZ+grwFw1Wd7eKyrAcm/W8kzkLsDMJmN5f6kuwM+RO4zrZSzAzb48q4DOK8AkHJO/sogswNdKLxc6Yi3AEwxTSwGLJcDB8T7//98mwDxPdmScCSLATej1g7cWIsBxrDlpLogkwIPJZIBCkSHApM3TfXzcIcDKzunAOqghwE6merkdvh3AqmMYFK65H8DDveF3EmwhwAyj4n3r7CPAdxA91JwOJcAoLd5qD24jwOTWc/SWASXAMIunjqScIMBQG8tTfxchwCp97JevvSDALFBLsiN1IsD2kIwgIOgiwOOqIik7OybAUqF2oleiJsAZfZxIGbUnwNX5GfnkbSvAo2RIRbfPLMBsiMf5YBwrwFQ4+TeCgifA8OPbUfh9JcBs+sMcHwkmwBoWR/QQPCzA6v2skj6+KcAAfG65+ukswG3RildfsirAYRTZDcW4KsDC3+N08rgqwMmDLb4ZwSrApwu7/MkNKMAuMOBp74AowEbmxhuhLyrAgS3kFKi4K8BIb3AvJXAuwFmn9skoTCzAhyCC3szgLMDn3Q8LQpsswHnEVteISy3A15Gx58jGLcD4eu9QEc0twL5AzOE9KDDAe2QWhRs/McC0EOezrhUywGGTPYoU0zDA2WB7ojskMcAaz3FNGvIxwLC+bJ/VhDLAX3Sx71p/MsDHs0wIrEMzwLhifVoxxDPAGfbk+5BsM8Bw+zSm8e4ywFQHzJXn+jTAeyrctECNM8Bjsu1G174zwDTsWccrQDTAE1MMCVb6M8Ce42wkgxk0wPNqdHqaHjPAA+TyTaewNMD0tiei5W80wH4B8t9HADXADy9ONyp1NcBy7NO/UZo1wJEt5TUgoTXAe/6C7eEXNcAS8pMzOhs2wO5R4Qdi4TXAd26e60adNMDxfFVJelw0wJalmz/bdjTA0n+4MGkpNcBmU9xFGoA2wN5QfV5oQDfAoPBNd7HUNsAdL1jA/4g2wJF3wpVOSjbAbLRXTs47NsAoBRg6TnU2wPVM7IUdwzbAzzB3ykRNNsAJR6Knemw2wKOs7ckKCjbAqchfnikRNsDbyvw8ANY1wJ0W4zxmFzXAXlnfXPjhM8ANscgYi1A0wOyOy0kE/TPAbtT4L2WxMcB+hWY7e7QwwDRZ3SqKJTDAByPR0MGvMcCUTHxfsjgxwEWRe8FKajDAbAZXaL5GMcBnEdZD2a0wwKSgRFb2Vi7AVWdDU56LMMB2/QxiblYtwNpA7IKZwyrAApvGb/v6KsClTCJnYropwBRIVNKAwinAt7mZmi3qK8BKEmc9lvkswJod+axwvCzA+yoJRYa7LsBGA8P6nLcuwBugifq7qC3AnX9Ga1OSKsDoCqj5DaMrwPdEyUJNly3Am7FdHnmQLsAIfePfZTMwwHoRr93wcS3AWXENhUFzLcDAqyIg4VYwwDUtZVqlqS/ACanPJpITL8AkJJ7DhOoswPgtDhS4iCvAJ0NSVhGtLMAROsD7opEqwNLETqRx3inA6E+TdXYyKsAYF5+/L60qwPqGlcja/y7AKtwARMszLsCWlROtssUvwCParmdw1i3AF4h1UEkXL8ATgkcE/uYuwOnRtkEkWy/AoEYA8Sl/McDpNUuH15IywIyCtYDrHzLAT+cMPCGTM8As1XOdBew0wLkuW34+xjTAQqvqm1epNMAjtNO+d2o1wPhAXiyvfTTAi/wsMRd2NMBoni2KQTQ0wFQ6vIu9EzTA5j/PiQBiNcB/mpEXl8A2wEj0Y+921TfAttgzSt2tOMDtdF1Fy044wLa+m9jGXjfAeWbm3EyyOMBeP895pBw5wFHHz1v/NzjAJCjYxOcBOsBlYKDthfQ3wLWgMuTTsDbAtv3TIJcfOMAA1rH6Dsc3wLDnYmqSMDbAqfE/DF0QNsBEOui4m6s2wLpShTsfwzbA8u0V8iHSNMB6CKxIlWs1wAp7gIxErjbA4HlI7GL1NcDVRphWtQk3wHv5Zu+aIjbAnpBZlE73NsDIdVwu6T03wAa/X+g1wDfADtaohgrGOMCfTtMHLNU5wADcrlb33znA4I5S16KbOcDvmk7GEN84wPPXrC9tADfAyEoFw6GmN8Aj5YAmUZs4wGR5mmAtxjfAfjHaJLS1N8DKtNuC+sM5wLL+E+mFjTvASjrhl7S6OsDloSxC7N05wBrifMHoKzrAJQDsNjLGOsAYo0QgTa06wIsQnBCFCznAAwocqbnFOMBK8ZZdKQM5wKByqDQZBDnA9zmgjeBUOMBuYBmazdA3wGCGRLiDCzfArQDahVtONsDuWK1uyJQ2wF8NC4m1xzbAo/F3QZS9NsB5E6o1NeE3wBVp5n+QYzjAtMlTcNtDOcAFaSjddA85wI7gKaaWwjjAyjttS7GPOMBRxe+RtAo7wMQQ6SsjajzAmFpj1tI/PMCtG1ifdyQ7wIkj0sgD4DvAfCDcSTWOOsCSKcYDivo7wE5UfKgpnDvArx2DGv9IO8C013hdrJM7wHPCk5ITOT3ANwShHsI9PMDzLJZAFHo6wPz3LEL65DnASVHsf0DTOsAbxhSFFGE8wP+KCXIZ9z7AYuvvLWxcPsA1aWHaDd0/wOfgwd8aOEDAS04oo0LEQMD5RzQVLMZBwI++8T7MLUHAgdkOjqmTQcDvFiLxVcxAwEBJBZDBZUDAgsAKaLN8QMCv8IGrOgdAwDrKQaHHLj7AESZPbV7tPcAyXT+vuVk+wOsu7ttFdj7A9slF/HDjPsBSi4z7/Jw8wNR+9AsM0DzAeQYRvFrUPcADAQ2V9Pk+wHYl4Y/RQT3A+KkInkPVPMBG9NfOTIg7wHDXmxCqGzrAgrYQo3STOcCrYO4UTGc5wKZ5LCsLRDnAMMgBuV+kOMCjzsHr8Ss5wKI3patWazrAAleuAvHGOsAg6lE1WTQ6wPCKBFBFKDzAmyFfQxoTOsAP6cbzPYk5wElxP7oeJznAmYxHx2LqOcBwNW+/lDM6wG3XHUJ7+TrAExsxTmXOOsDxPa62Abw7wGEJAuJMIzzA5rL8Pr7FPMDf/095kOQ7wKz+E/a7rDrAt/cRCcvjOsAMTjbDf9k6wHHj7NL1zDvAjKBuJOOWO8Bh/RbNo3Q7wCsfucqFozvAa8XssJYZO8DgVR/U13I7wErQa+eWjzzAL2bgv3snPcCp19YLPYo8wExUEv/dvzzA6e8BX9vBPMAtB1PF5WE8wOyXf9TXtzvAxiQFLh/hO8CAGgspYLE7wCPY/DEUyzrAa1I86ZwSO8BgjPfh7wQ6wJipellzvTnAd4kIWSGAOsCvxOLFZDM6wAbevk4whDnAJmoHKlj6OMBUHpxQXuU4wKaAJ4z/MDrA7rKEIIHWOsAOnW1yFno7wOuu2MiorTvAPYG5JoyWO8BSazTHjKA8wI7PfEoezTvABqUzzgPBOcC1do+YSME5wF9ocXGVOjnAkjOr2MG9OMDMIZKoXYw5wG/HSCrDaDnA0rX6BSixOcAAiUHHjLA5wCXeE5htezrAyVEiqDcWOsCNYUG6IeA6wCMCB0pmYTrA6LlktOHDOcAgZ2HYmvQ6wNc9H+55iDrAVXBl7WZYOsD/YgKx15o6wEo4Iebm8TnA1UA2QZMmOsDwplRow1U6wNNLLNvhnTnA6MVXfwqgOcBxwTodi4U6wKRUsZcwzjnAgLqM7/VXOsB64i2kcW47wNPEerw5qTnAZf7DY02COsCNpzfZJmM5wGYqPcdssznAF+cNgi/EOMDaWGzoZmA5wJELxxQd4zjAwgAZfj/kOMCGSaUxRLY4wFUckULstzjApIiaFrcyOsBdK4DDBoI6wGNOC4CGijnAOwTDR0HyOMBbhfjK/iQ4wFlpXe/WFTjAQi8tD8PjOMAzrC8oapM4wGjcO/qPBDrA9/XVrevQOcAG1xdH8945wAMuD2i3zDrAGNb0JQPoO8CosuBL0mU9wN7ApCpQaD3A7bWFU62TPMDdoILDTnI7wEHUmOxmfjvAEXDp+petOsCy9HWXG3Q6wIvR8SYdUjvAA+YYcvr3O8A2BU2U/248wIRIEPxCvD3AquPLTMBoPsCNSge3GFk+wGZjieT6I0DA9K0YhgZZQMAsFfMuCcFAwOLKx4L7n0DAVTN0oO8/QcDZ8RISXi5CwHrJegWA3kLAni1VCt6eQsBiv0KZM0hDwJWOZWesJEPAxXRmupR9Q8DS3nXAaZZEwEHAFju7Q0TA96qY/JHrQ8DUC9fhGzpEwF/E7KHreUPAMOKTy4coQ8DbLXMj+LFCwJLTwt+zpkLAftFKXlYaQsCa2MixXYlCwPH5IDi3TULAg5i7nfW0QsD2mQnExkJCwJ0Hqml4iULAQzgWof5gQsDgUUlVXOpCwD7pNEPG4kLAY4R5uNNgQsDxt0xxZFlCwApAiVmchULACH5JfvQfQ8C2HS/bYCxDwOHrhMt6KkPAKa/peWSgQ8ASVJI+2tZEwFbe3p7I+kXAEKTQKo9eRsBSAwdtl49GwGLvVafWIkfA20iKBhAxRsCl0CkW6QZHwC/+5XYx0kbA/Xt8JxQfR8CHHEjUIY5HwL4b1MgyL0jAAh/a5wWoSMArGKpj4DtIwJ3kaJUic0fAuugCz0K2R8ChVSXG5rNHwNjKYLPDGUjA74T3Vn+8SMDPVKS9MetIwDalExin5EfAsLVZiMP+RsAIRRSxdoBGwD01mIV7LEbAppONgkGzRcB0AAQ+jN9EwF3IKEOi6EXALMWJ8p2nRcDhUsCyt1NFwMRBYbrBUUbAtJP3xq1sR8AKQG0xNlBIwLGYTeMa+kfAG0uWCJwVSMAVM8O3Gj9IwMDxS6p9NkfA82QhhLuxR8BIcsracURHwCpLfB7ZlEfAS25cr8ZcSMDdAeSSu5dIwJcndoMOIUnAZzDr+Oc5SsBZstdQw55KwJinbE7uN0rAG0Eb5drxScBPHxxo5pBJwNpOZ0VOVknA/AvJ8pe9SMBz2aGs+z5IwIMLLwGMlkjAz0CXF6IJScDjJnT8aE5JwFfHbORd4knANqcnMMbzScCIwQARd3RJwB6ty5QW/kjAWZJZXURuScArBEa54PpJwOip6Ssz40nAFiQS3Vy0SsASU68H/VRKwIILVNTT7UnAUrsV1Q7MScA6PX1HpItJwJJ5HSgw7UnAn23Yf/sLSsDNVHPrXidKwDfMxjVd5UnA9764GsmxScC51a01y5xJwGV5OxqR7knAbH8gbrETSsC0msINr/dJwOEtpgqQd0nAAMeSv2sBSsDaldoBAS5KwNZmLA70WkvA1fhzGfIdTMBlLK8IY5RMwGi4GQFvBU3AfauBPjB/TMBwChKE0iZNwOO0AnoRT03AZLe8l0vXTMAngAd3VdRMwE+S/9R2J0zAP9GeKKv4TMCp3qN5j0VMwCClbOykLUvAbNI2lHyDS8CyDVsvtUtLwDlX781stkrAcOdg8RoeS8D1N8E3x7xKwMjxEzyW8UrA+gFS+O06SsBP1pnhr3FJwKEc3Ab+5UjA1q90UUvDSMAxJaf/z9RIwKb7uSYKkUjA4tFN7b4PScAgzi5Hxf5IwKC0Fay9a0nA1Ow83UZ4ScAyMhkHfvZIwJp2fTEVRknAa8Az7oYsSsCO4QfSliZJwK6BhBs2YUnAySUfoc6sScATHB70KUlJwPUVy837p0nAezNJAnRLScAJ4ANFuc5JwIlm9bOhd0nAcJ/fQnp0ScBP3u4HkGFJwLzlJd/YHkrAhQ8FHpmSScCNJec0FwVJwFADLtUnI0jAzhXlTYCGSMD6hjrgkPZHwFIkHnIArkjAnKJYkimhSMACI4xwrX5IwHnNYG66s0jAod6rx0w9SMBPt2wEjelHwA0iNdGFIkfAoJ0ZTWFtR8DR4jZqtJhHwDPVXVzHVEjAaD3NURiWR8BIis/P+U5HwEx2X8EF1EbArS+TO58eR8Bhx/USV1dHwBnDH0IIC0fAMGOwzhMhRsBJDn5sTzpGwP9rPgaMp0bAnCtAoHZaR8C+m7wpRLlHwP6HStAwaknA9DWMLONOScDU6ktNBQZJwIW9MqdrzEjAioktWqqtSMA0s2CCSl5IwFMrdEIkYUnA4u+qX+MqScCpSt0E8KtIwORrhWw7qEjAuJRViSNzSMC0oGfcDH1IwLf3BhzUXUnAtuYnE1yRScDXokcxJVpJwAExrYkzKknApEqcL6m9SMBj0CrTNRNIwMWemqPR3kfAN63tJYsYSMA979MVOSVIwGOoSK96JkjArGnBMUTSSMBg7RW08EpIwCtKMLv6ykjAZAboZ+WCSMDlKTTsrbdIwCAbmL3lzkjAErYlndYIScCncjdZd55JwBB0/dnfkkrAiowlp4oaS8C7lQ3u8G1LwDMnXcTTJkvAcJW8xGHvSsAHeRjR2OZKwF3/1tch2ErA/VSJUWxNSsCmaoF6YqBKwICTInjdNkrAhlYDVmWFScAvWYjR5zJJwCK7Q/+oKEnAmScHzmlBScA/5xtmw0lJwJaybTsFtkjAdIqjSQEhSMBzJxOjpt5HwDz0OfNopkfA1jCr+A6nR8AgpTLL9LdHwBlk5HgR+kfAkP4CIWkpR8DkXBZBWSJHwKvHDAMdeEfAv3H98IIySMD0VWoyftxIwD5tqNMJ0kfAuqjNNaYKSMBoHDI42LhHwPbR0OtBzkfAhJZWjAs7SMAQ2LKjmqBIwErbbGguL0jAFTB49jnhR8DCXVVym2dHwA60rsVGjkfA2CdFzRIySMCnkCeEw+dHwGYyVgCY5kfAWz9da/PHR8Ar5fmdiPJGwCMG0bBog0bAde10BoPGRsAdeFs9LEBGwAEvoq4OvkbACwmmU+vAR8DNkfOIdVdHwDy1BNi5v0fAqRSmDkkXR8AyhQdkD4ZGwMYT3HDE4UbAX7IB54AjR8AH1rGfIHVHwLtsSNugQEjAafbfy0WGR8BSIzoE1GNHwJ0rXwGqL0fAY+Ciasl8R8BzjK1oBhpIwH1wEuEv+kfALM31ig5GScAXfH59p1dJwG02CvFhZEnAXShkdTcJScD5n95NxfhIwDVVHTN2EUnASHLxBpxvScACBYLKPPNIwF5HSdVI7kfA80d+dtc8ScA8XUAyjnJJwEqGCElScEnAxNkwTFb4ScD1eZlE6vxJwEoe0OActknAVGjRtQeSScA76UNwXwdKwE4v5fJ+H0rAi3zq8feYScBy6vGAPWtJwEJppeLrDkrACKxpHcZlSsD26Mhm775KwJZUrJA240rAD3VWcrMhS8Dsz9aAccNKwMyr0zUYZ0vAWinxzXWUTMB8XmQwlJ1MwPh/0gL0dUvAOww9wVyCS8B4kPIFNvZKwLamfoNNxUrA9bADuvqMSsDfApw/aL5KwFwPQ+yhTErAoAxMLd4CS8Bsi9GRSwxKwJFSWDhRn0nALftjV//9ScCS4dUNBOxIwBpOkUlTREnA3cdQby7EScA4OG4fB+RJwANgvJav8UnA8OzC9l5UScCc3nlnh45JwAyNybb3o0jAWrCqZxtASMAnQ/6ylv1HwAkhntx5lkfAHMQbtf1CR8DqTxoQtNBGwMON56qveEfAJjm74CiCR8C4a+seFBpHwMuHqixSCUfATCz4hIGsR8ArekyACa9IwMTsDhKFUEnA0yBF5GGsScDaIX3sUu1JwEOFs177E0nA0K94J6JYSMBYHu6rBRhIwBj4KgC4OkfAj8m2qXb+R8CvwZqFaiJJwH9Y7AjsQErAs+CcbgnRSsBT2hYQbpRKwJlAT2PTSkvAvCHqbIsRS8AUZgUInDBLwMm8RqXuf0vA9TCxdNOTSsBTJtBdADhLwPmUPovolkvA4P3WHFIETMCIMLhpsKVLwJs9T4oVlkvAaQCZYyzDS8DkZi85sahLwE/ynzGjnUvAtZTuZoH9SsBO5RC+VOhLwMHct4gBdUzA3uscEJo4TMCPLbQHUdhMwKdMHWozD0zA198L8P02S8DznWvwu85LwC7/fwC1I0zAx+a/6Y77TMD4uiYtV0BMwIgJd9jLhUzAJiE5HzLHTcDCtku4xuBOwIrjek0F3U7AVJLe9NBGTsCX2j/F7DROwLop6Pmoi07Ao68Umn0eT8AkqhsGd4NOwKDHqjbCqk7ARWXbN8SnTsAmd9pbh0lOwNqdJHa/u07AMm3D5iOtTsC4Nq31RxZPwGxx77H4RU/AwgQyk+QKT8Axky/AmLdPwNuYxrRzK0/A37vGqIjRTsCBOZucEIJOwHbolzaHHU7AYInTfYGeTsC0l0YViYpOwDIDQo9ulk3AFJxG4g/mTcCa8m9pB/lNwIcFK/VptkzAItZPTCUkTMD0nOefV1NMwLZQ4lxnmEzAWzMdiIq+TMA5yShWwQdNwMbdOfgR7k3APu7hyR3uTcBGT9wEiIlNwNaW8SblFE7AeisEcjsiTcARimZePlBNwGxAA2fUFE3AGuKVhTGVTMCzualXu2xMwNCIuEXAiEzA1sE2oy5TTMB/PEs+SpRMwOacB3f9N0zAx3t2GZnbS8Brh37AiBZLwDKmvnScu0rA0t89AJphSsC0ccvb0y5KwLKocwDcy0nAXuC0YxHKSsB8CqDKq6RKwDlRIDsef0rAXFwhia0lSsBQubSrxatKwLd32dY+rUrAZ/ot8FEiS8C4O9FaoINKwLzY3JAF0knA3lLNkBdhSsD0few768NKwPKnmvvnLkrAmR6j2rYdS8Cnqp4Zg0pLwBzUyeSdhkvA10bzQqsbTMAsNUZ+29RMwFFy99d0SU3AYg7cA45STcCivHMvUTJNwPds6oUDZE3AwYZRMoHETMDC/TOLkBxMwLlFqbGQL0zAlzLCnfRPTMCJbrjq2zRMwD75dwD/vUzAVHNhJatdTMBKrlW6VzlMwH8LuVunE0zAe8cIrpU5S8DhoTbGPIlKwCorkJlPaUrAEQzSiPr/SsBoBS2WbthKwKnHBT2aKErAdxJgdsBBS8Dj1uBRJf9KwHcP9O551EvACAF27GkuTMAkyL+Bf+lMwNUmTKopI03Aeq/GINuaTMA74RGRegNNwMS1GHov8EzAapJoZ00TTcArfwtZNQZOwCqRm99WWk7ADdHryJcET8D4Lwg6xl9OwDADUiq2RU7AS5V7VJGRTcAizu0zK6RNwO8vqOPcp07Azzk98eHjTsCRBV2mlfhOwKdVUyldgU/APT9j4kHRT8A5W4fWmGNQwNKwk2hlNVDARuENBRqDUMB43porKSZQwG5WVquwT1DAoQox/us7UMBbbFB+/FVQwFBrVRipVFDA1QMCUsYYUMCd16d65EdQwDWuY/nkXFDAtKE99q5/UMD77PHMZDlQwPfzmd4u/E/APD+7J5smT8CBJEtpgIBPwLfYCkbXxU/AA/UyfOutT8B8YJtOqxJPwPCpJfhX1k7ApFGsN5QBTsD+B+kdxdJNwF7O9xGeq03AdKexDDShTsAvH+a0w+FNwL1JWwBy8E3AZ81e8DjWTcATzTgw5X9NwMX5H3Hp3EzAb7dLRIgCTcDqOtvJWu9MwISY6fwNikzAFLB21eAtTcCYF2ZWZCZOwDqU8jRTr03A7wMiRTbxTcCtBZ6HkftNwHpPHuHjI07A9HBq6tAWTsBE12ZOM4tOwCqiidz52E3ALWuxsx2rTMDezx/06KFNwMCJyRlIrk3AF337jfWrTcCqJlR1zeBMwDQtAvolHkzAn/Zo7fAlTMBTmK3CK1FMwKMppcWJjEzAEcPwJf17S8DiePaHYiRLwCDOHC7RTkvAcAJ0ZguSSsBE2M8Kv0tKwJj6MYFGW0rAORwp5z7iSsDDUYN6VeRKwBvpHl41SEvAIe3rGt73ScD+xeVJR3NJwF7gZcniRErAYOjLusoISsBNffOn3kZJwE44G9nDCknAFsnBH8GzSMCILle2+NhIwFiaJsSOpUjAXRmvwwdsSMBsZddzrfpIwACsaWXfkknAZ1REs5JPScDvrI3BmetIwNYHBu9cDEnAFxhvTn8CSMARAZkIExtIwFVpYzJ9lUjAynDwz0Q5SMDCuMv7Jp9IwFQ4quJPpEjAe6iX627HR8Czk8HbrZhHwFT+a13z9kfAnPOx4HXOR8DI73qYrlpIwKmZim3QxUjAOKOz8X7eScAFeo5rcWBKwMrYV/TtSErA4GdGUysQSsBFx0qJYbtJwM4+Tg1Y80rAbtn/Xhc0SsDj2uTUws1JwPXJ8qZijEnAJAFsx40OScAV5+cYhOdIwElNrC1Q0kjAmun63MQXSsAHEhJsW6VKwDVH6+nJR0rA3ldHgOXUScBeEiMCY9ZJwLpaqQ+R40nAVSZCUoJsScBE1e3V9XlJwNLsf3KNEEnA8SgUUE1UScDv6KJCuRRKwNHvLmqwtknAZY9YbrBhScCIHb/kgWtIwMumoVnbc0jARkreN2SvR8C8UA6EIeRHwBfGK8k8N0fAJ0ut9DzdRsCSmikYV3dHwFvC0NLs8kbA78rOKRyoRsC9rcaWq7pGwD+YZwvxMkfAEsR0esA9R8CqGor0JftGwDLk3/ggRUfA9ROXB/OqR8Dm9HlmSSBHwHFTXTeYYUbAz2GKF+/oRcDzpKNik11FwNzOhxQQ10XAygWIb4dgRcDBa9tVsqhFwLARiCLYxUbASkrtD1pER8Be9vwTp7FHwPqAocVjFEjAcukRefaXR8Bmz8JKE7ZHwGBDRF3YOEfAooZWWlI/R8CcjSuxpLlGwGVsB1b7xEbAsScQaVnwRsD0vCp04fhGwMJoK9E0NkbAd6Sm9iixRcBcDCfvVxVGwGRvJM8lMUfAQeqCzt1CSMD25fZU3AlIwLgZWcIIj0fAuUd7HbQnSMB+hk+PPnNIwCyom2k2BkjAm4eoM1zVSMDP4jr1hZRIwNDwlMh9v0jAd2NhvTU8SMDvbdFdElpIwBnWrfz5GUnAv4zXn/bLSMDt7U6nVBxJwHbAzHP3SknAVMoKi08sScC3EzPfA7dIwHYzHxbtnEjA089UF6/iR8BF4ekJdKdHwCGei6U8TUjA0OU4w6XrR8BtiEgZ2MdHwOuwKNJETEfAJrZCGVtLR8Dh93tLw8dGwE4vIjjJPUjAf/ANMqBLSMCsKRZ7UxVIwL7Y5WOgdEjAAMU+PuLGSMDoxArD8UxIwB+GmH36MknAerd2/QuvSMDBaLl2RIZIwFac7VXCDEjAqf+4e5dXR8ClME5F6bJGwC/ADizoQ0bADzj6XuUDR8CUGGyLT/tFwG5demNj8EbASb84sjpHR8Cp2Z4sVm1HwH9+bb65wEfAd7AbmYhNR8CaPqqfhQ1HwO8qEAbNbUfATgI8RhpIR8CkDFJZoGFHwGU3l8vAZ0fAhLyf7B2dR8Bas56zJoxHwAfNvM1WvkfAHhET710qR8DeNYT0ontGwByHjZTpskXA0q79KMdFRsDsMYXPEcJGwCP/TOqyrkbAJpLTIzQKR8AiDg1nUeNGwM+39XW07kXATl2USYjYRcA2aDAIO8JGwKtAicYXmEbAKYlJGPY7RcBH/yPV5olEwIHeat41ykTAb8iN6AFZRMCzj7gBGN1DwJLuewP+CUTAeq/EpCllQ8CfbaTPyrNCwCO6CtXmJELAj+i+7AdNQsCurXtaNzdCwKdqEfWA1ELAhUhP8ufTQsAeFqFoz/dCwG7ts3OZrkLAvHkd6fqYQcAJlxhe/KVBwGCARFKqbELAAFHj7dTFQsCJmcymeENDwBkxFvaSZkLAmcAzF8AXQsCwpT9VrvxBwMEO8i+Hb0HAy1Ukp0vVQcALio8+6xZBwGQVbEVPS0HA4+u+dhTAQcC69ZCpRXJBwMndJ3cKqkHAzrZVjwUSQcAPJ7wlxnJCwF7AU+WqQELAzTMVAA5yQsA2DApDFYxCwGoJl5CjckLA63psCQQoQ8AlaNLzyTZDwJbWGec9DkPAaLclt/uVQ8A5bH4i0/xDwOfr0rjAg0TArHFrDZOFRMDknWxPDHtEwD+CnqCQZUTAwkA9N/0gRMCAa2hWV1RDwDug6gx350LAy0ZLNu60QsClXWyGa7VCwClb2IrtxELA1zBO8a3+QsCGotKPrB5DwM3us2+aCkPAawjrFT/NQsDqDELF68NCwKy2vfEqlULAQxr4v+hGQsA30vI7OvxCwLYhe8+12ULABPjJTNm+Q8Csfk5/qgZFwG50YYryIEXAHqVNmjmcRMBlXWi5FXpFwGQLcM8AdEXAMDfwWgRFRcBoqQ/AW95EwA7R3huKYkXAnqHDzwaCRcBIXGD5WbtFwGsislBpFEbA8vEX54u/RcB9lggXTRBGwBwqRpC63EXApA1tZgJ8R8AAo2qeMaJHwP/S4RLyC0jA2yFc95J8SMCs4uSZTZRIwE/gfE/I+UfAwTUfLyvLR8A0L83CTKZHwL8XYA1x1UfAFCEnTEA1SMA3xrlCM7BIwGxwXysYuUjAK+1LlCibScCFqCUsr5tJwJrs9pwcvkrAtWBBF7MnS8DJayJdibhKwCuwEZD/YkrAZC/MFNP2ScD54ZcaIS1KwM863wxsRErAZBhMx4CTScA+QMhkay5KwN9LyGDX+UnAFJGuVJCYScAxITocNhBJwP2ZUuJ4uUnAJGMVRhrbScBqN0HwT/pJwFi+lko05UnA17WJrA+vScDNxmKxcflJwGtIqp7NHErAwzbAR49iSsD4FtXuTzNLwIbXuE/3OkrAiTbxhc0sSsAm497cMBRKwFajHg1r7UrAqyAL/dLmSsA1vAYjksBKwEReJGZRpErAQBCOkcs8SsABl0A92GxKwMzqgl/7d0rAQx6xIfDZScBK+ia7cHZKwODv73EV8krAxPaE7kOVSsDcrdVf66ZKwLdlVKCpVUvAvcsksaT6S8CEAXYc0JhMwH8D2Xg7H03ARs0ydTGlTMA6ijpv2NJMwJhxu+1sskzA6Lk90Ny+TMDG2WkGuYJNwBiXulwlc07ARMbitZpXT8C5DxpJDyFPwF6jF6sheU7AO4Z6MMM0TcDvgxLWGJxNwPEOg/VC80zA+N7wkXrQTMAnObYsh+xMwHB1TvgHzE3A2WB9mlJATcDnhkj9WNVMwNUuXPbzwkzAfARMLg7+TMCmVIxw6elMwKr7nSQU+0zA2cYopqOUTMBTXtTuEAZMwMkmE6S+e0vALa3c4IdGSsDwV9SMYrpKwPtKAWonvUrAbSZoPJd/SsBfK3nH7INKwPpX133YJ0vAETeokWxFS8BUccipJ5lLwIaq900S/UvAy0TfNGFyTMDL2s2TEUdMwE/xSsJUn0zAQs5XSZ0aTMCUnC682cJMwASY4X9T10zAhA32Y3jzTMBABhv/LtRNwFOjTgRUak3A41Rh3xa9TcDS+4SIV/dNwH1dlmDiQE7Atr1zAfnXTcCqMg+iPORMwD4/wY5HxkzAGolCuAnNS8AlWZDMf2lMwFrQa+Wjp0vAs5t8NKjySsAWgcKEFtVKwG6vwcczyErAVsfjixu6SsAi8T5lu4xKwGxFPeKzQkrAVSP+edN2ScArhcXGk6RJwK54ojJe1UnAY2faAZJcSsCnavkvPSNKwDz2ygDBEErAX4BCEzlPSsBFS7XjDQpLwAo4x/+QbErAswnKkIr9ScA8TfRcY9VJwNWyO/LhhEnAsN47pJnGScCaBsY+TFhJwIok5amvWEnAbJroNgcCSsCRo33st4hKwM8btAQ3pErAkZxXftR9SsDjf8B8bslKwJ9GESs050nAoHGuitecScBamBaABrNJwKK3BqZJnUnABeeR7rjgSsAvnqy2XaBKwGDDwUq3OkrA7YZ18CSMSsBERJaTzapKwCAjOJt1q0nAu03UzwwFScBc22Y4PuVIwJxtjwzmbknAJMLPJRsTScBA51gkTshIwP7X5udPlEnAjNz3ghiVScCtCXVN1PpIwCAtVwNK3kjAAFIsBL59ScA6Py31fDlJwDG6tW6VLknA+sEPhvxmSMDNmW4btP9IwNM3RMXTnkjAUMcE5wqFR8D3w70M+vpHwEBGkFcv80fAgk8osbuiSMDD2BZB6dZIwE+b6w5ud0jAy3qiSamdR8CF0bViHrJIwIacS3Cwj0jAxY+5vJXQSMDnFAniffxJwCvo9YsYh0rAyG+1ll3pScAWzA2q22RKwGyjb3+wdErA2hduJUHgScCDPqsfVCRKwCt48P8a9EnATME1Tp1zSsAbDHyj4NVKwGN/QZp6q0rAQ1KAe0rSSsBPcHothVpLwMBXeG3B9krAOa27KZPOSsA2Qt63FWFKwLMcghVK+0jACloo0lxnScB2LhOOScRIwMlMs0JXqUjAeA6Uv7RnSMClPS5vOydIwKuffiqJGUjAA4tkSSv5R8BKM3hVzdBHwDEJI24+hkfAUycf4tEVR8Aa6a8mrz1HwHIWilNRaUfA4FIPYSq9R8Ae7Si6HQtHwAiMHjtYiEbATPyyBD30RcAfXA5Il2NGwO3+O6AtY0bA/6TArcr3RsCZB8hB72VGwIOYvKfVzkbADfm9jm+YR8DzK5eQrT5IwBHA75PCd0jALea9UqQ/ScAKFwKed+1IwHFmmt/QLUnAi5F/vAAIScDdjESzdfFIwKOiAG9fdUnAmlxYgC9ySsDeXtSCePNKwEr40TQElkrAyF25+yH4ScB9Bgs/v4dKwKFHzkuDR0vAiB06EzAdTMDcM/1SaSdMwN+pqqNbe0zAc6udAZvaS8DDSSkBx1BMwGytBfxDGUzA2QYCN9kmS8D6P+OZqE1KwAuLBFB3kknAvvy6idKQSMC1WtHoiHZIwEQ0qpzGlUjA9tLKB+GVSMBdpbQReI5IwHRVO27pwEnAI/qpqzKTSsBYlQ3QiIJJwH3Zrs3hYEnAMgm38fyMScDhRDxeHFZJwCQTHk5CnEnAmaa5L+peScCcmysUu2VKwBlE4K/oX0rAnjCTXd1ZScCMaj2IDQRJwOVKW5gcZEnAmD+N1n8qScCTKuZSzpFIwM8alvBLZ0jAYaA4CpK/SMAm+zzpTx1JwNGzqYnUZEnAp3GmTrHoSMCW5UYdGUhJwOAafLlwkUnAVoVofBhXScDcMcJ+CYBJwOKrJPuQh0nAQpSqyjidScBOAKhmnGlJwPZxnwQhUUnAugChAIp2SMC2ENId8YpIwEmSb0c4dUjAc33IH+0LSMA/YdYg5o1IwCAFn7K600jAKX5W2qmqSMBm0fDZxNVIwJYj3sflSEjAsp+uxD9GSMBUUrJQTRFJwNnSO87PY0jAfPT8b5JrSMAjxOzQRLZIwNWSmQc/l0jAmOxtxG3CR8C9LgN2Rh5HwDQP4Qor0kfA0oXxZlLwRsBm1vyOwiZGwGPWpaWdHEbAWqOEBUhWRsAgDVyobc9FwB962RZZI0bAsABWsUCDRsC+/U0gWy5GwFrwBDaUnkXAg0PSAuy3RMCl77qMQQVFwMVCgV3gUEbA4GuWkameRcCkDuYPa2ZFwHjC0oAFx0XARJ0bFvYSRcD0fD/UGFREwGL0Cx942ETA1E0Wi43XRMA5/sZb4tdEwNdlGqkVf0XAx6DtnH0LRsBDQJAO/EBGwN0fmAl3w0XAnCpGuP+JRcDS9wtB4UBFwFvOk0Mh3ETA9cyODw1+RcAKE8X7maRFwCDWV2Dso0XAZvQ0/JCIRcCjmgN9HFFFwC/1WURYEkXA6fmktupGRcAlFbuBXrFFwETOMmfufkXAlzVwS7pbRcDrRkh4PZtGwAKlqpogjkbAyYdHpb36RsCHzxwypkRHwC4w3RHZ2EbAzDRwOiIlR8C1fxjmTLRGwHQUBoxYb0bAu41dM5oJR8DOY8G1qFpHwGEBg6POKEjAibG82LD6R8AT4JJNwJ9HwDyIOo/bRkjAb3un16lOR8De7ie+wKRHwLGKIkl65EfAQ1oLpzXRR8D4uv9QEpVHwHTkxAR/eUfAY0vVAjVfR8BsjtuXIs5HwC1motGJXUfAEqImzgPhRsCwsKY4bnxHwCaVKwnqdEjAuGaP4ysCSMBXPm9N+OFHwNTEfkxr+kjAOA+ynUKmSMCRDPBeuKJIwGy4W2oHdknAC4GlRcPLScCjAGDaQ8JJwE6oH8gUg0nAN1qxdNYLSsDewM3b2JpJwAmfc/gWt0nAyFSmO6E8ScCpvrSqU19JwAlZK/DDrknAtl5uSBQiSsCJrXICkfJKwJaIRT4ZN0vANyJk+Tq1SsB1oHwinzpKwH+6X/iDeErAepKTmuk0SsBx1n9a509KwF2QVmyMLErAwioj+H6YSsCnHSrv5EpKwFQkCQZTDkrA0XsdjN8WSsA6KIeB9htLwK5XCNXY3krAaW3GNoCFSsCqP8hpF6VKwBhfRv00XUrAWTmv6ecBSsDmmpL2QuBKwKf+K6Yut0rAHq9i9D1RSsCYsp9dxLBJwFibFzhu2knAGET1WdDcScAd9q4+3KxJwLM09uy7YEnAGgU8k98NSsAZixdI/T1KwP0I58mG6knA3nkv4CW5SsAVOx7RNaFKwHBBcO0jMErABD51bAm8SsAk5tCkDihKwDBDLqqzKErA8qoMof2dSsBaIHe1gDFLwE1DRa7wrUrAJMg1j85QSsC1MzJg3xFKwPQq38j+TkrAc3bxnoDyScAZBm3JLcRJwL63NxBEFknAkI5JT6f8SMDvuA7I0qRIwGud7RtGckjA2LWNaRuzSMA0NPfpdU9IwGuP+Sza9EjApHYfZ5i/SMB8XEQZ8hFJwKFI46ZBmkjAgjnijCJaSMCadIa5T2VHwMEJZc0my0fAUWNgWykJR8DUe1vyNi5HwHsbirY240fAlYdoGwigR8De/1KAE3NHwOP3R3QxBkfAI/v0KxusR8ASH2Zfz/NHwMSmdob5xkfAHKk66poaR8CjDA+SESJHwEx4LL5g7EbAu6jstxP3RcC6OORLTdxFwKzx8SP2eEbALsvtdow4RsDqJAmJCvNFwN9qVCO1f0XANxcP7iXpRcDmSLXfxQ5FwPv97l9faUTAPgq4RbzdRMDOk7HRedBEwCnoD9q9wETASICeKwEpRMDT4Rk1su9EwNqlX+fk+ETAudiNtPGTRMBJ0gcucXlEwJzwTIPFHUTAbJxIL7E2RMBA/4wfWhNFwFnThQdieUXACWthxGMFRcB2sKy9i8JEwP4QGwaHaUTAE2G6hd06RcDFj6SG1tlEwDitagokp0TAT9QFDFRNRcAzFSwpm+9EwFeE8lXbakXAzYUu82OLRcCPC7VQDeJFwOf20shFP0bAsxx1GXPiRcDy0oGvmGJGwLLcg8mRdEbAuuY5SaIkR8BT+fmjo7tIwCn0G208kkjAGG14pwrdR8BIeUyuytxHwJzQTC3Jo0jAveDjnYGMR8AWdTM3Ky5HwBaVVIMu4UbAJLeGrI+9RsCIiRybUL9GwFfX5/qk1UbA4Gw2tXryRsB1Upup08dHwPRJi/6AnEfAculuBYdsSMDuREGMDW9IwDsJzRTOMkjA9IcSnWweSMD4Nu2+ippHwNexSNecdUfAnubFluDzR8BKAmYW0U5IwLrw2cKCGknA8uC3mqk/ScBz0fX+GLBJwDPEFfUH30nA+UFvq7jqSMD8venCcNlIwNi03pXsOknAr67nTnD9SMAjJRqPgdNIwHUE9M5iwEjAafEhv7t7ScCeZzpOw0dKwBG+zJrXYkrADjlW4BcwSsBIH2RIaTtKwHPS5jYndEvAXm+va0t8S8CukdrjlilLwHBM8/nF20vAUtl6OnvSS8Cl17OFDpBMwGM606WgzUzA+qmsDCXjTMCVEgCE6PtMwATGRMPP/EzAIUPLQqWpTMDayfuzHwhNwOEbNJIJa0zASEu2dskHTcAAYs63AgxNwHPTyLLz00zArZNiYjI7TMAITyIkDpVLwIB39inktUvAxmk7khm7S8DfY6jgnNZMwFhCbJb4uEzAJkmFv1tdTMAVkQlSmEtMwCRz9O7hBEzAft+m/z1sTMBknTAlIuNLwJBgFZlwdkzA3QijHJXbS8B08dqrgWJLwB7yY49DLkrAQ0ihR3MiSsAtuL/9waJKwBI895aDDErAN9ELaxr+ScAW7Er9lG1JwKMKnDp3pEjAUHKbZAi2SMAB+MrO/4ZIwEB8Qsj1xUfAbneps6MhSMAGigSMQVNIwDK19niRgkjAyNdXOZfqSMCSDv5e5h5JwKw6egNR+EjAGpCvpw05ScDJxqZzL31IwBHldx3koEjAZNRl/cv7R8CCDlaUHiJHwKwX7HypdUfAulXpobIPSMDt5W+/oadHwHuUpKHMQUbAlh9ARazeRsCfqrcAo5dHwONPnuaBc0bA123hV5wdR8BCAElZU4VHwJ6ycQQVR0fA20H5kw0uSMBq9V9vaYBHwBT9m/KSWkfANA118osTSMBaVHAl6ztIwOw/gDzjUEfActeOlygZR8DXhzNJdKVGwEvHox0CBkbAJgB+Zkf+RcAURyKuQJxFwBqvZLx92kXAz6SksDmFRcCgWlzlrIRFwJ5a/n99BEXA7+loqR04RcAY6Y53sfZEwK9STaqUEEXAqCcLqJfhRMBFCo6TV7FEwOiQ+XFN5ETAg892mA3bRMB2+3bGLMJEwJ9tTpJ7fETAiAIM4qsvRMAF/y5RSSFFwKE0ZyWIB0bAnliMvmTIRcAxZkmQJeNFwINIMFp+XkXAP6DtECERRcCYU8Q2bDdFwBxSASlDhUXAhEjTbSk2RcANNTr5+KNFwAQo28tMbkXAai9156zxRcAPzXJxXFBFwO2rFHDNKEXAqt/sdLO7RcCZZrx1He1EwCoiIBsJnETAeQbGigojRcDHpFiqLrJFwFDpadMu8EXAIlxULcMCRsB9PjZmebxGwEU6G87meUfA/ixwHf3rRsAgQZlvaZ9HwMF3mueu20fAyJZPoN/XR8Ax5QfoNkZHwGl94T33hEfASvYuQdolR8AhxfLW0G9GwI3r74glakbAID43QXATRsAny8/N/PFFwATZt6UC1kXANKalGrprRsAjUVNEzQVGwJilpSAIBkfALjDp3n4nRsAhBnkTEVBGwMweENRCCkbAdTleH6ykRsBv62nze/RGwMsMEyX0zUbALkoNx0lcR8BUC4Z8qJ9HwA1/KJucwUfA13/rdGjLSMA9eMD6VAJJwNJ2/JjlQUnAXNT33ThdScCeVa9kgFhJwO5icco790jAgejyiNPYSMBqhVYTxB1JwFubaVM4U0jAQSe4LavIR8B6tBzQI59HwK3h32m5g0jAfJltpRrKSMCLwSbh9nxJwEDBqOfBREnAch+YG5LQScDrZdezMndKwCuw1cpu/UrAS8J8GkPUSsCNukxADolKwLjVtwqWVkrAZH1zLl7OSMDZCNuF2ptIwEmXQo6V8kjAcOY6AV1nSMCuW/YGx1ZIwK10KumsR0jAbsNa1d80R8BbPpsUBGlHwP8x2o8QI0fAekuNNK6OR8B3my1PUwZIwDeHl/8thkjAfS8K5j7oR8AYp++4h0dHwN9hCzBbEEjAz419xRGtR8BQdtOmPGlHwHQLnBxfF0fATHPOALWsR8A7Uk6bS0tHwOouWMVd3kfANrvMjsudR8CNBgB016RIwKBm8EUm8kjA/IhtiW43ScDz/EiCrNlIwLIAdHFLgEjAEi8jrQ8DSMDj7GnbBtxIwH4HZuQXEEnA7yw5NbYFScBWs3S8LUdJwN1bwy3VO0nAWJz0tP6xScAPM7n3RaJJwC37s57aT0nAVVY4w9SSScD//xNDMF9IwI3dPIUAf0jA7mvxdktbSMBPZesXLxRIwMlO3Gk0ckfAi8vMwA6WR8BEGj0UD/NHwGLNX+WfJ0jAw7D5jkRCScC1BRqdfF5IwMSKKBzjakjApOyBw7+nSMBUEMe83UxIwG9oS/eacEjAte16rRuAR8D21cM6+ohHwAADurj8nkfAnN5gjzH2RsA/vi1WTj9HwDtgmPsyqUbA3Yq5PBQzR8D6zWbde/tGwKlLD403XkfAgIHQ4oB9R8C04JDRClpHwPxuthCclUfAn3vLnQFASMAvgu+KD0xIwIphVx50lEjATc+bLQagSMASaTIQZDFIwPhxK2kzKkjA/QN8Z/88SMC+GiL8EdJGwH0fHwAOhUbALSoT13kWRsA78iC4ssdFwIXTTV5d0UXA98/y84ZXRsCsoE4thSxGwILtdDabzEXAGtF271x6RcBzed/4HMZFwKcRKkBugEbAPVG6jdTKRsDiLkKv4rdGwB5XUj873EbAEMLJJWCJRsCQ+wQcp0ZGwEUZFP2sUUbAeCb3KSnaRsCuERhC4JlGwCRQJxV6d0fAOKGtw/2wRsC58r2y98dGwCXLTDBZRUfAiL0bUe6bR8BkngiEVexHwOZ9hPXx00fAL386GYA/SMD0p3lHWdNIwIt9QolPhEjA6B2UWdGNR8DuJ/Oft2JHwLH4kXeNV0fAXDPJLtsFSMDL/iGlk5pJwNyVJtdXzkjA95RKujZ3ScBKdBA/FJBKwEjCrdiFikrAaAJq1FOPS8CPJc959S9MwK0vzfDxSUzABQvyT9ylTMCtsnNFyxxMwKF1exOVzUvAXwNFgbcKTMA0rQQOcptLwAWWqd8EY0zA3BKOcDTxTMApjVGwgOpMwKNh/179pEzAxHpr/NnLTMDWBWKqmnBNwAwwt5m5tE3Akq4Mg8U0TsAp+51/yzZNwNWzXPCA/E3A8ifJ3sNOTsC6iPDWb+RNwFltOoTyO03A7APD5AhyTcAxe5f9fgFOwOtKLY5Ms03AZDjQi/DNTcA0rHg9nqZOwIl/p7bOgE7ARAZCahm2TsB5KsLZaP5OwA10SGOaHU/AqPyzHNuNT8DwHnNcEuxOwEZ5IjLBCU7AetIaeZUXTsCn4sIaVYFNwPqpSDjVNE7ArH9VfOSvTsBR6CEJMKxOwGlbn/CCM0/ACaoVz9g9T8BeLMblZKFPwDjiEyBM50/ADOJkFmvnT8Dn6YxAahJQwM73BelZY1DAa1r9amwtUMDDLlf5ro5QwLlvJ6KHD1DATHv1Ois8UMBqiKS1RDZPwAxewFL/W0/At+SgId0VT8CABleB2KlOwDB3yQlGi07A4hz9pW7bTsC+EgPudvlOwL2uZ5z1GU/AdtCSyb9KT8AT5fMqfmZPwLkGmf4bQU/AxFKiVnYmUMAUnaVENEhPwK3+a/TX1k/ASdID9dChT8BiLipxBYFPwPvfteszuU/ASK07QGCRT8AXujFEmtZPwFeHU5x0H1DAX4rWo1kpUMAlPgWathtQwPcL3ePqtU/AT4HOz7QpT8CE6nYYZiRPwFFyrxcnzU7AoTOQbaV4TsCBFGiDoStOwDj+K0Y5KE7AbI5kzVIFT8BrrXbQufdOwAmDLBnxBE7Ak8UefW+vTcB5hOBzb41NwLDbGlXjwk3AyOsX3O2rTcAZFkdFmMNMwL7yzEssWE3A7OGmFbo/TcA2gixdGS5OwI0RLBZxhE3ApY/6EhuNTcCsJCBVcOVNwInBJ47hqU7A5Mmsiy9ITsCxc7BQrkhOwPoG1I6Sp03A5Hc0NTchTcB4yebS/ptNwFfJgP+r4EzAQGkjsdvzS8DI8CME/NFLwGOMp0DBnEvAxRQBghsqTMBF7LZzHIlMwEh3RYkGVEzAa2S+1hYFTMBQi6BIiPxLwOxy06Q/AkzAJ3DbeYu2SsCI67cA8BJKwE1mO2z650nAJwmorpnJSsD7897lbz1KwNPyo6UdjErAiSCfAW6OSsCoMbqGGM5KwC3cJVX8kUrAYQcpRPPlScAhaSv3CslJwDXMQhyg+EnA7ekheixpScB1BExvCAtKwBzrfWst00nAYRMnsFVmSsCkLtGzsEhLwPmK/ercMEvAAbAVgfqiS8CTK5uJAhJLwMbVP7dZjErAO/HZqA/OScBI1s4Qpa9JwO5FIQYU+UnADIJ2eyc+SsAbBOZleWZKwHBOGcvsMUvAObFFKiS1S8B349xE/odLwEnFs56zl0zAaySFCqWSTMAWlcoJ+YdNwHLDJbwoAE3AIsx86XjTTMCkTbz3C85NwGvCCvXKfU3AwpzhkaFWTcC6Uv5jWNJMwPIhvFamcU3AK9vB5T+sTMBVOLnxxWpNwN/hrAkjUE3Aqh52q1KKTcDOhXxyerZNwGNwEaxH2UzA0/85FMK6TMCSq2OgpMJMwBz3NxVQhUzAgPAbQA6MTMDNwzznwJdNwG6g4vv14EzAdsJg+FSpTMAHXl6lS6NMwKyzMS4Y2UzA4XykY376TMDJSzdWHPtMwAUmGg2DOU3AEwBkAsj0TMBPLujQAdFLwBF5yFkYk0zA4Cu5v5j4S8BVaxjOF51LwPbCFt1PBEzAsnrUFGtlTMCJhDHlZ2tMwBIg+8CV4EzABGYRSTN/TcCG5BjB1oZNwL/quXaOH07ANmCpeTEdTsCNeopWZXFOwK+atmLd3U7ATVAFFMQlT8ArHPpXjNZOwPpXnvFwKE/Am7hxgsAkT8BYe9jUAlxPwNZUEn5qf0/AndWfEEsKT8A1ysg9b09PwHGYDLCmU07ADi8T9W9LTsDm0b6UCeVNwLqm0pxhDk3A4PmtNfLpTMDCi9GeyexMwMpFNfr/zkzAdvqHHXrETMCYTzGQvmlMwHRS8MEhQEzA36tAfhM5TMA+lSUeUtxKwIRq7icJaErAXgJjde7KSsABu9fRorlKwJeUFJpq+UrAZFvYJQUhS8BjE6XiB5VKwMl962VOoErANGKQvzEhSsCWOMESpSJKwDYHe/yM40rAJwBW02zhSsAMO39IXrZLwMMJVC4R6UvA7t6GENw/TMBjYvH5aVdLwKM5JyabUEvAUEJt70gZTMAe2u811uJLwHH1s1ByHUvAkQTHADJVS8C4ugWHQ01MwEU99Oz5OEzA7AKacbQFTMCN5Kim4PlLwBkzT1b0J0zAzYYhaXdhTMA0rLnNF/BLwPvoCcJu2krArfY3WIchSsDPBfmwas1JwAndxQt+oEjAHldc5zgwScAjBmaIW6ZJwDed9m4rQEnAvAuAjL7QSMCw6ehoWABJwGVO3gSUjEjA2DrwufNXSMDpKFUIsR1JwL4Jd8QTTEjAinXkSw3nSMDYa0cI5JZJwNDLBmd+RkrAMlPRe80LSsBof+QMxbdKwDx3TkC5OkrAOaFtcHElSsB5tZw0gFJKwBERPuvj3UrAIGRyEvsBS8ASIlo/4spKwP/0vuVoDUrA/6WFd6OOScDkc8zvsvpJwIB5ne0Jy0nA2zvXJ7VVScBptTaKGYtJwFsvS0d5/0jAhRWPJv45ScAMDpa19rJJwBSucG6p5EnAP05sG+twScAWnuGa4t1JwOy1d0l4nknApvuHD0HHScBgyxy5u2xKwAg79Qrvs0rAmXHARXtKS8Cly9764otLwGUZuRqku0vA1p8hmPWcS8Ccg3TtCKpLwMQUWYNuM0vAmcH9KtCRSsBj1p7q0k5KwJiG5biWi0rAwNEj8rp4SsAVtVxl0PZJwOplECfszUnA5iZiNyxnScADR2Bt7NNIwNqjKb7SbEjADBkCcVggSMDPGnqMRcFIwHzPe2jbYkjAdMvf5iTMSMCT3A0hlSZJwD27nPd4r0jAP31bmv9aSMB0AxM4tAdIwEUBlDMMhkfAsl59yyMkRsC8LJqnhwdFwKo/ylbjxUTAcVJHRwOvRMB/8m7f0RRFwMJ56f+Ks0TAuDIQuuB4RMCTYBU7xGtEwKK4HYkwSETALGiKDZkAQ8BZzBEGiKtCwIJMrAkcw0HAsgp7MKPcQcBLt2TsccVBwLkuq3CyiUHAfpHADSa1QcCTX+emPjZCwLDIZMmHEELAIHx0B6nHQsC9xX8xMQlEwMTKRlsXnkTAFQQA9rWZRMA2m2q9TuREwFOwNUkPxUXA7rcMf4OzRcDoW4k5uP1FwAvRTtfJDkXAZ4I1rgJMRMBK0TUU895EwGbRF1IX/kTAFI2Vq4FmRcAU2VMpmwpEwBOUmkxGU0PAInj26DZbQsAu0AYiAsNBwKF2YNicZ0HAyLpmWnbHQMCJMOlDj/pAwMgwMMq2WEDACMBnD+37P8CsOhp+UcRAwAMYxTRPWkDAYQ8vXgR+P8COXVjokW9AwCabqj1ZuD/AtLNspl80QMBuxk/emOg9wJ0HZgPu3zzAy4+Nj31uPMDWn/9T5ZI9wITpghaF3j3APoB88TByPcDXpMsuWSk9wH5tH/M3/DvA+IosLuymPMCQLV9C1VY8wBKSNMzXBTzA6kbyHelqO8CtI+iclpA7wJNqiQqhYjvAF3TA0TNHOsCjNk6E1Bo6wLGtC29rjjjAfWwdiqZuOsBOw1pxifU5wNUoZlcT2znAIIpJRrdXOcBAQTcoFWM5wBjsSgUrizrAgXVCq4RiO8DUuwHZZcM8wEjcNIQn9jvAkzIrMztfPMDeGATx5OI6wJyUjvGZXTjAYgWZL/C7OcDUZaalBew4wO9nRlu/nTjAFnF88xKUN8A+8gUiYhw4wPtGxu0z2DfAaJEjE4IUOsDjw18mEPg7wAgLCGvaDD7ADSV49ZAkPcBfJNrhBBI+wDn7ILxlDT7Aki3jZYWyPsChLRTd5P49wG0cGrg+OT7AENqN8ANYOsC2ZnJHKpk6wAUFchCs6TnAyzGp1ed6OsCkVo6z16A4wLhTUuSljzjAZ3ShWdaFOMCEnlwxhtE4wBBo2WydsTvAKElmVYqgO8BFq/LzfxY7wOuUidKZcDnAKfrZRhSSOsCFu0ial0g5wMy7EyHejjnAHPQIzOajOsCCkkEv6/05wOQLz+NEkTrAUNgQUnf7OMB/kLI3Pd03wFszDOfEUTfAv0r0wAHpN8BYj4s8P842wKzW5xtXZTXAc0o4TtKnNMCNNqLWyAI2wGtXkiqTojbAR7qhZq+lNsAVfz3pErk3wBbSgpfmdzbA2vfASxoTNcDaL6KDlKo1wNHui4KohjbAaXRKrqV0N8DcGpPsYZY5wMLPJwwWLjvAtlmHBQqCOcBWazclvuA4wKxlZNH67TjAw6b7th7UN8B/IHRfjNo2wMn8raw3YTbAxBVtMCOmN8AOLl4jT4M3wEW3YBswtjXACzzBpF3eNMBNxM4dMDA0wAd+KcBAxzPAnmxsH4usM8ABt4mWbaszwDxsBSJ1yTLAUjoMH/2qMsAErVuBnK0ywAbA/ZEpVjTA8UhkP7YyM8DobIFKOjUzwG74j0D0JTLAh9H0fa8VMsBzqIANPh4xwPv3Naz9pTHAR4vtBDLEMMDDGyJFmzcywAPuHu74MTPAq00UnmpXM8AEZwI+UEczwIReVDokrjHAiPkw6F2vMcDr5Ne54BIwwJ9+beTWrC/Ai6zdXtb6L8Bh6BCiHJsvwOL8FmoBVzDAjO67xKARMsBJUo2D1PsxwNAf+70CXTLAndrFHKrLNMCl9Iqci6k0wAzlPlnurDXAMekvQnLuNsAbBKvbpyA2wJcaceAHPTbAB+MPQElzNMAsP3csyoEzwI5t5wzN2zTACVMw590ONcD8y+k7R7E1wO80oTqqEzbAyAmgPYYjNMAES91LmaU0wNsoP2v3ijTA2E8eIHoVNMDDSC0VIa4ywJusGzGJKzPA6PlsmNrqNMC3ggEBtfMzwMieb+tcuzPAm4oUic8eM8A/zT9aDAUzwLxufGK9xjLAKK+fzfxCM8D6Ev6svBEzwJ0Z0Hy2vTPAT9p92qhNNcDkfRJd4cY0wGRc6xIAfjTAGnXW3LdPNsBLaYc/myA2wL6j/BWRADbAfn7G9vuWNcBKV/J3gac1wH2XcJ89XDXAIzotTxTENcDbdGqp3AE1wPe+BPQWYTTABoYt0bp0NMCnbQgTZlszwGhsIGCxkjXAKyWQk5UQNcCqw0BhlhU2wJquqEkQPjbAYDbpZxntNMAl3kxzSR40wDcATRuYkzTAUgMg+lkXNcBc7HGs9BQ2wPryaONteDfA+RB3SvVZN8CNN4ktOxQ4wGeOt6aq+DfAdK/SL9gbN8CBxUY58344wKWEVXcOIDfAnnnvAuhnNsARuIJAxvI1wOs4QXEwrzXAXuKMyoeMNsAOjSYXou02wLKUnQABfTfA206Qutn5NsCRaG7SLvE2wPXytfzRZjfAgv58m1dAN8BZlfrxYUo3wGPrmsVAITfAH/KCyYJQOcCgCA6qcDg4wAJKzw6tjzjACqKuGR9EN8AMQZFHg284wPh6ddY0cDjASsZRM5byOMDd7FqRl5w3wD3kVJ/IujfAOHo7YOlaOcCAjc/2NPA4wKZ/mNvEZjnAHQ6UICUCOcDXiarrANQ5wOBlMZyXdzjAYXHZJr2XOcA/578wUCw5wGh8cH5oIznALSXyyxYDOMBqSLsGhsQ3wCimAC/edjbAZsC0f1MsNcCoPfW90Fc3wH0JKrluWTTAtYn7XmeaM8AoG0wenGAzwLyu8EAZ5y/A3RG33wcgL8A2WyYdk3ctwHfUM4aMUy3Av5j/AsLeLMADIbi66m0wwOMZkYmQ5jDA7lXiQ70mMsA/G8ENR7AxwD7ZIBoZFTLA9qQJjQRtM8BlAPIY21E0wFkmElKQHjbA7+T/uQEpNcAc7eBYmJI0wO689uoX1TXA6r4RfzOLNsAGGNOafDo2wKAgJQ8vOjXAW/CFRnwiNsDXYhrzWz44wPEVYIM8rzfAHMFCscesOMB2+z2Ft4Q7wEI2ELu4RTrAwMku39h6OcBPP0ApX7Q5wJ+1bytcUTjAyJByGXzsN8CohX7wXjY2wJn9tMXv8jXAPIqg4anaN8CFEHtOy8A1wMpYruOJyjXAR45coB7ENsANXDTLE6o2wPkYiKXw8zXAF5yX5oLCNsDmd/Hep7U3wHqNEy+iezjA9UY80mRJOMAwQhQHQ2E6wGdcq5gNcjvAqE35thgYPMCZSaEndL46wJ5Fw/qrHjrAh3uc9Ff4OMBCMrM5fn44wIEHQ2wwYjrAmBFQhITzOMBjJtOj2tc4wFufN6SA/TjA1H88DPLtOMBU12Tfib04wIhM4yWHUzjAoTXeGIDaOMB0kLB24Qg5wA1r6+AMLzjASTj/qtAAN8DHWgOvfbA3wI1n8phzGDfABjpqI60yN8AhrRMPLDc4wMi1Iwhp3jjAf/DBDRO4OcAEsk/bx5Q5wARusaZ33zrAWucS0hz/O8B9fWgmpl87wNThbafq/jrAi8p92ZqiO8AvwX2nCIs5wCbD14lI/jnAvzVib4qiOMDqg07qixU5wL6ByPNU3jnAfdUJJLVtOsD5RJtAc608wNs8yNqfVDvAVzYZ/Bk1PMAZ0JO3f5o8wB0/LT3A8TrAQ/PUOcgePcBIEUHj97o8wFVTSsCaLTvALmSJ852HO8AC3BgXdd07wN61U6/TiDvAIEt137HfO8B6Z0j2SmQ8wJMkzMfPFDvAy0MZEgS+PcDv6+eDcFc9wFEYZolDlDzA8tp/y2fBO8DJiNv2BKo7wGQHwqYhbTvAnWPtJC2mOsD+ixdLttQ8wBaOGlPWDj7ApXM6I5l8PcDceZ5xZzo+wL0PJ0gUgD3ARWHkmBwTPcAZfRIa4O88wPzS5kB2Aj7AAaiRopVJPcAkqXLQmak8wDfTIxCIxjzAwDR7pj1nPsBdpTWHKBg9wB8YBcw0oz7ARTifxuO4PsACL5CnO6c9wFzHMqL6KD3Aw0JWKjFaPcAWQ29l5z89wFoMFTAneDzAKcAYMSFMO8CXkOJDKkE6wFeqDQhYnzjA3JIka9J/OcCmLefr/mw6wJhqC70oBznAwDh4dGElOcDY+wjSr2k4wLBWEeSETTnAuOalzK6NOcCLZIYVfpc6wIPDerMXODrAAs7aMDFcOsCZkqU2YyM6wD5aes1/9znAZNgwFQ4OO8BL1wEBGLg7wAriZWJtOjvAU8L7v4duOsAxCxCPcIM7wAx9a5qouDvApCPnkSYiPMAhXzv6sqg8wOQGEW1z8T3A88feT2PEPcCujvFtp208wG5txTKaRDzAqUUcC75jPMA63Z84w5Y7wMfk8oPAZjvAaVd0YJCgO8CfybDGLOk7wMl4KvRA7z3AjZc4qi2APsAjC5Cke2dAwLmAm36rjkDA5Lp2vN/GP8C+qnnCxQRAwP5n39CErEDAoZJeHFz/QMCQoFHdD4g/wO+KObqmdT/A3Nv+1dBcQMCnLyo9qFpBwDsSYZPGykDAOtAJMOhUQcC/vJWb5kFAwKtl89Po4kDAe4QCDnEkQcBrpBjOsR5AwF1dxgu960DAy9rvD7uIQMB1ZTruc21AwPwHQ+EmnUDAxEmbo0ERQMAwoft7VtE/wBPAamhSAUDA85GJzkFbQMC6BaSRGRFAwDAurOMDeD/AOwWymPPQPsBliJRRIANAwI3IqnwXSUDAMEnOWhc2QMAJK5Wm7MlAwDtG4XWMG0DA5JZuRgj3P8A8TyJL0fI/wImGonAPaz7AJI6ii4AfQMAkNqQwGg5AwDjP5jeYAkDAJqdXJYKUPsA1KXzsPy0+wFcv4FKqUz/AUU/zr2ZwPsC/CHTre8s9wMRp03yGHDzAVKNu3AlrOcDlk/eETYo5wKqCvEd9rzjA2TgKt32EOcDhNS+GVX86wCdXvFLytzrAYwWcs0h7O8DJyEikSKY7wL5zOEYyTTzANYuSkbSpPcA76H+VOIQ9wHA9k93fPD3AfAQt8sWoO8AexfYZfOc6wCQ9d8MddjvAWkEGUEAMOcAefe5EEh05wGeoNSbhejrACXWBZbMwOcBIK5ZKDMg3wAieqLy0DDXAViKBOv5JNMCVuz4sWis1wAE5VdvhQDPAloHzYvIjMsAIlqLCnsUwwLzXWmrmySzA32wZi4sTK8AzfjWSln8pwO1luuSj7izAfB3wyoaMK8DVfdMGqV4vwAlRvt35MDDAKvrencuIMcCEQF+Ly7kwwI3gePs+ADDA9ZY27aZ6L8B1jNpYQU0vwBJkllLEWyzAp969tbTQLcCbICua6ZsswHp3XqwPcSvAkDWNeBKwLsCdnVBKs7YvwBnboOTbSC3A0Kb/Uu12L8AGUH7cYAwvwKMuK/ZBYTDAVmzwf+Y4MMASI1RNSFswwGosJM/tJDLALwGvOh3QMcDFtXKmVfUxwEiVRgMU2jDAcOCDvXTnL8AaH9DJsBAxwKXp67lYYjLAfoLWUuu9McBarGsp0+YywDqw9gpfajTA4SgdnAdEM8A4ROWrnVwywIRCTRdLezLAVtp8CAqgM8BxZlO7etEywOwOm+lJ/THAIteLcVj5McAKcB8ih38xwP5KFzi/4jDAt8lsHM9pMcBbZrjr+rIxwIZMr4fmfjDAup8uMt9XMMDekKpIILwvwNCS4nh2RTDAvNc50cDXMMB7N5qOYFMwwADF5LM3sDDAPnU+QHUsMsCqjwhD6mYywNjqly8f2zDAZ1DpLM3KMMBco2wAzegvwLwxDZ9EBTDAxRBXDYxgLsDyLzeo6EouwMfSd9JRAzDALw5a7GFoMcDqeLA2LPszwI2FcExb9jTAsLct6SKINMDbdl/QLSk0wGIYLdxHbjTAs/uKtk5TNMAUR89Jj7IzwHT7fgqjejLAcS2f9ng7MsD0V4PR2gsywBCXCURCNTLAcq+AF+PRMsAyZguArQMywELJdYnCZC/Ad4YcwqefL8A2C0O+fQIuwOGEwPY8Ki/AOPrSjbsMMcCKupxAOXswwPE89ngboTHAnSt3lOngMsCYgIufMDYywOyKisVFKzLAj5RCYDTbM8AUy2Kq4+00wBv5FROQQTTAuYnklKusM8C90XWettIywAcSad3k3jHAEcF9H+i1McCnZJcH6ZMxwE7lnQ1HpDDARGB8GA6LMcBmeuUX8n4wwHqKeUh1AjDAJQCJaE5+MMDm8kBIQlsuwBq/UJlzxivArt7PezRJKsDZxRC3hLgowPl4qokMASjA1G5klvUvJ8BgpLSf70YmwDHV+uPn9inAZXfiEaF3KsBgoektt2srwC7VXir3ESvAxXTzV0qCK8CAKUGLqcwqwA3xkqJ1ainAhUYFqYSiLMAC0ze8+RsswGjL/SocQy7A8T/LhRBAL8B799YMPu0uwLBOoejMQzDA8/YWXN1QMMAB3uMeYH4wwKa7MSLflDHAVOB1+/TYMcAXmANbEJgxwLKEGQhzpTHAwX6zS104MsD1rLepFv4wwC18cESn6zHAxh/JpI9OMsDzC+j29WIywIk8YzKXtDLAXwxCNiA8M8C8iVd7evQywMpBl1Am2TPA9Fo89LF8NMDyaK7VXKc0wF7Kj63sBTPAAjpt5wiNMsB0IMSzOoYywNdhzQi2wTLARQ3nHUrIM8DeZVB8FyEzwKKWFuCCQDPAP8ZXsVxGNMBrxUryN3EzwMndM1vJBDXAz1E3izCDNcAWFBT4PQ81wJ0tyuMyrDXApz1LC7pwNMDbPa4XvPs0wOI4hzDVaDXAqbbU8m0ONsB2myg4dxw2wBkO5uM+QDXAOuFwcmx7NcD1s9wriBc1wIV55Ys0eTTApfhWnsscNsBK03y0aaM1wBqWOnSPjzbA5YTCw8ffN8CG+cun+6w4wAQldskWyznAHun0pLktOsAWjQ0Jl0g5wNGNafidJjrAThRFr6mSO8Asm9Coptk7wP7wdHFjazvAaVxvEKUuOsC05nZ3dDY7wDoiyle6/TnA8Wp/b4q4OMDi7mgTGQk6wIkJq1SYCDvALb7wlfDiOcDVrfCuz544wJhtfGd5bjnALseG58laO8BjfzJLn4c6wIJTPAV9vDnAkaVjgFyuOcCm9MXgRmA6wGlQHJsI0jnAOu+Qv38jO8B+BxWOBQ07wBn6QfFQmTzAHGmXZGwDO8AHU4Mo6DQ7wEKtcFRawjzAWO2U7DKUPMAaidm+qxQ+wOtOxrZfWz/A0ff7IekTPsBEdVR39vg9wLCKdZGl6DzAcAfnQhngOsAFlV3Cttg6wBqrT2f6qjvA7nFVUxqJOsDj6/Ytq7s7wA/tSJDp7zrAws1okPYnPMC4HOflRUo8wHnnNGOKGzzAjPSnHtmDPMAaoET6PcY8wG54Xo6NaD3AigBqc90HPsBRYULvtLE+wMuHqOV87T/A7ABX74jEQMDD1AoQopxAwAx2rmoiQ0DAxAZ8quFjQMBgZwB8Hy5BwHQ+LOJfiUHAqNrdE94eQcBGUKqi0mJBwGRbUAb2SEDA0h+ISz8qQMAJH4gnBfU/wIxDLZS+KEDAjT76eU8/P8DNyF1q1ZA/wBqXzej6QUDAK12/POYeP8DyE7j8LY4+wOBOGOwV8z/AvW4w0W8VQMC3AEbrVhE+wB6DoUI2kz3AZ0IlQT9/PsAct4gkUGk9wCbFaXynqD7ASlxlBEQYPcD8uFhjkzU+wKHaY61gtD7AhdDRjAHcPcDGBowm59Y8wCg3ZKDK9T3Az5ZjOREtP8BUbwR+ZCNAwFC/F5ZNLUDAfZCmLdpZQMBA2KKA4f5AwMaCp8RVlEDAZPC29KK2P8A7yaCHVwVAwJjCJpS8LEHA/nixbn72QMD+M9uQAzFBwDmH/tpqtUHARkwHdqs5QcAeP+6bFuVAwE4+QSaaOkHAoaDpABScQcDoOgkQNr1BwMHR5Dx7n0HAY7EQ5e9OQcCDnyXWoQNCwMHKKA7HhELAkBvJpvoqQsDAOEpylndBwESWIV4d0kHAo8BD0sh9QcCVxnOirblCwD5bHbHYIkPAlss/ZoQKRMCcHZ3VTlFDwNRYCDASu0LAd7xAkOeSQsCc6mPFDU5CwOEtZyNPI0LA+CRaHrR4QsD3bELDf8pCwNnL7UrJNEPAoAE/y7fQQsCXMpwPBUdDwKoo1tDWmULAKblre+/VQsAurPBV+zxDwGPxoCDdPULATjeHE3WCQcBOcemIH9BBwAo2mlcFG0LAXwD9W79MQsA3M2FyxABCwLo35Js4PkLAdro7+dPRQsAwjozUjYxDwHdkM0zZYkPAp+kTfuRTQsAbCaA3sE5CwACo0MgFz0HASWLvXZUuQsAh9zL5endCwBZCBr+n5UHApcKo7a87QsANtJBo5sdBwCm+UxXmGELAlVS9PAPwQcDWRYKWmB9CwBuB02c4/kHAW2RlbYvQQcBr3913pglCwAYudLgNq0HAc8JYuUo3QsAtSfSeE3dCwJuOqUTWx0HAWwk1OPMhQcA8dnqmTpVBwMSVeuioB0HAx18awtQrQcCQWPEZfMhAwIhiJER6C0DAl/rWvTZGQMCQ/vq/u3RAwJv+2SkfckDA339Bgsz+QMAi7QvslBdBwNgcfpGOtUDAOYq6biYdQMDbJBG6AqxAwEoqOU7g9D/AM/rMxD+bQMBvIuPmQ/dAwKNSkcB1JEHAJkYvDT/FQMBZOqUz1+ZAwAOT1VjsJkHA58dRrF+2QMAeeTxw9txAwBoSeuEEO0HADSAUG6DvQMDLrsgHD4VBwC9fkDLrfUHAMb3d1LeAQsDe1QyRLspCwLBM8jPmhELAKEhNKAVrQsCbTXNfNDZCwEzuytQxzUHAwVGqvFYKQsC2u9WrytxBwGesgPQce0HAfzbyvZ9VQcC657MD9uZAwLNx0nwezEDAjX9AXDLpQMBc2JCF0x1BwHLxWRs/MkHAQj9UIJkyQMBV2XTJBrM/wGuZyqpB+z/AyHpXLFrnP8D6/gOeWghAwMpFMeKzKz/Air7wJdOAPsDdybQ/Fuk9wCecsXK8Gj/A4wNPtSbnPsAGeaYqeQs/wL+UoimmEz/AS5zIe0vDP8D+TrOSCdw+wH6kCYu6oT3AP06FXRfxO8AG1KfxuZw7wPsHUN0zGjvAQ8rsnrqPOcA/NMH1xtU5wJjU+jy9bDrAvwu6W+sUOsCOP7ZDOKQ6wOxbHgtwBjrACkw07wJ9OsA8YhYRIaQ6wArqJ0Z9tzrAiDNQIY7AO8CzJAQ8scs4wJXHnQvl+TfADUckOV2sNsBEe99Z51k3wJSg/5w87zXABfICVL7aNcC/9j94szo2wDPd3TyX0zXAyzSGW+dNNcD94hjoiWM0wDtGQ4gKPDXAulQxwJqENsBy0Q7dwMk0wIvT/ceZNzTAzz4+BcjlNMD4rt6PZIo1wNeSgdZR0DXAM7kzVYYnNcBg7Teot141wKja5zGEqjTAbo5aQ9kFNcAgDAhPE7IzwCwQv6HwRTTAstqi8N1ENcBYIHRfFJo1wK9PA9DrvzTAY8RnJtEmNMCYxO8sZeg0wFwQtxUyRzXAy4O2YMeINcDCGlylTAs1wPfY/DN54DTAVSaFrx2bM8ByDpGrf3UywAfHfDn5DzPAGxEL5V6GMsCSH72Ac5IxwN6Rk90bEjPAJJml2eilM8CHyVIXRsszwHV+LciIOzXAfMCc8se6NsA4SCpE+xY2wOgSvkOcRzfA+cX4zYEVOcB/PIRxRO04wCKQbuKdgzrAgOKsI4UBOcCThhlWsl85wFU41AnrHTvAWMjdcN3zO8CVfv7ihT88wPXoxI7ejTvAPvPhJVDxO8C8rrYXRSM7wNzKX9ShUDzAYcuf2phwO8Dur81yV6E6wChAW2/zoznAMlBIJiH3OcCHm+oEWBI6wOn6Psb0AjnAu32hYfk1N8C9kvcJ6os1wGcVQHuDTzbAztihkR3NNcDBtm/gJjE2wBcjJU4cDDXAaivjLzyvM8Ar3GE+pbszwKPb0JwnzzLACYyj9JL8MsA+PQcJziUywPurhdJiJDLAUiA7qx2JMsDrx5UDSrYywGuYat3K3jLA/+QcV57OMsAIQf0VKj0xwAf+ApkG4zHAe4mz4hHvMsDSjQpO7bkxwBaUqoBKrjLAlTLxBYcGNMD3tibhKL4zwCy74n5K+TPANWX9Fm2nM8DAeDbo0NExwHmdWNcsUjLAnmvbjk1GMsCsOAoo8A0zwCEW9Vzm5jLAbko7dSc2NcB9yGRhHi81wCqBYAoURzbA6HumRIZYN8BDGFePggQ4wOB00egI6TjApo4F4sH+N8AubN05aCA4wCfC9RnrZjjAN+EPY1NFOMCc0nhv4Oc3wMpNdC872TfALN9gExj5NsBO/u4FiGU3wNbkbXysEDfAZu0kkc7gN8Bl23Pssag3wItccrnQcjfA6I8x+QDSN8DPtrdOm3g4wPhyqCcrsTfASmycBGd/N8D9666+fG03wKro5JWOVzfAeu5N7P7aNsB6jiNWMqE3wDYwYoB1pDfAF4HZ2x9DN8Caq6tmhmI4wA4h3VBWVDnAOfD+JOeeOcCjSs6bv4w4wC6+DM69YTfAQKF4FdymN8CibUcqdKA2wJC7XQU6mDjAnVmyNB23N8A6IBFaARE4wNuiuAJEZjjAS/DmHuWxOMChJfO15Ec4wAwpouGBzjnAcn6zTHOhOcADOyyrF9M4wPeeBCFbGDfALlNstXzROMDP8ELvg+s4wOtlwiOvbTnAzFr9BTVkO8D+qUnZr2E7wOf3Q101qDvA18N9+ftrO8AKqlaZETQ7wLmq0nc+3jvACe9DipC0PMBo9S408448wIgfg3sDrj3A1E9th+uZPcB4JhE5KiQ9wGTREiF0CDzAsB/HvuTsPMBnaVb3k6Q8wN4pKn9uyjzA887Y/YItPcB74hxRJfM8wDmu0KGMJjzA0cH3bUEyO8AW07OgHag5wNh8+A5b5zjAp3sTMLsTOcBWkBWToRA5wBDTYwx5RTjAgVtzakNJOcDH3VjOXPA4wEONOFs4JTjAt0kpQ1ZfOcCz1jXHzto6wFs1cl5SFz3APJSCnqKMPMBkZ/oyBwM8wFG0tkRPqzzAQHM9+P0/PcAj6JwAZ14/wATLMvCqgEDAI2xrK5cVQcDE4zqL0n9AwDUJQmKU0D/ARSbHWui+PsB+KMh3ais+wM7kzKp/IEDAUWlXApSOP8B9JgUmfag+wMYqlNnW6T/AfrG+IhzAP8BrxZamt0M+wM/VyTA2Jz7AOZrpiaPxP8B6ULPdqbk+wPKkE+zjhD3ALrMn2oS9PcAh8W0DNOI8wNfRRX6+izzAUuL6oXV9O8CtJWtDqmA5wFsk3an+KznAwphsttYwOMAeiY683X44wGLdnK09FDfAO/yOAHHpNsDj9iXqH8k4wBZUeoQBdDrAxuFNLnLiOcCNfNl6JLk6wL0WWrc+TDvAPO5HcZ/9OsDFx2lYQfE5wNM2JI9XHDrAk1auMgZHOsDJV7jjmMA6wIw+hPoNAjvACe+d1X8gOsCymXmv4h06wI18yqU7hTnARB9kL05rOMA6ooMyFnk2wHZ3Wg3xHDXA6Ey+i4LXNsBwI6fMiJE3wGFK0VwPXTfATVw4zH2SOMCPKZ/QyuI3wC5Jc60e/zfApGvBIlySN8BDYdxRTk84wCXfuVij4DnAAfrJg9euN8BuvwRs5f43wKtfBPQ/GTjA3CHa/zNzOMBBwEPAwAY6wAaoCnVPKDrA0+pM5O3fOsDvO6NeRI87wIoRE4G6yjnAEPzwEzmrO8CyD5EK1Qo7wEpHF6IpVjvAOmbZ8DusOcDRP9bnNBY5wKJusbiw5zjAFxc7GCo3OsBCC305nPs6wCw57WxiLTnAtyNzQmh6OsAkM1Fur/I6wKrnR3FguDrAwKjU7UlZOsAPlf3fcwk6wK2JpVzSDjnAZoaXTvF6OsDvmj0VV2I5wCkM4KToejnAIyjJ4N5ZOMCdjL5abVU2wLB2fT4YrjTAcwGfbiHYNMAlwX4Pm4ozwH1jTFrIWzTA0FgiDgVTNMAWS9ATNs40wHl04INVrTPAPKb/QVpxNMBYfjl/Tyg0wCo0z8Bk8zPA+ePJZAnEM8Crb1HLSQc0wJCLSIiXMTTAkxwKUJo8M8BGDs6VyVUywKpMIoekPjPA5WHnpxXyM8DH4/lst8oywDNYozwqTDLAuKYRAEn9M8BJCpSGDqkzwCieL2VcvzPAeTm73LIBM8BtM7/+E6gzwCvKz92egTLAYZysXVllMcClGElS9X8xwOao5syCzjLAoL6kRwfvM8AW8L/DiWkzwEIersDV6TPAgZNgxmAuM8C28rHt/aQxwLu61fAsQzDABWYELga2LsCKKwVsg50twJoTTmZ32DDAhQh6zQeeMMC4SLfJXcQxwAV/4S0b2zHA0P3S6fQGM8CBlYirKaoywGQUemBJajLAJvVfUbJOMsBdswfZGuExwPza+31/TDLAS07yy3pLMsA3JoHjt2kywCsZm2IpwzLA8b0g87wCM8BvuswhQnYywCrfQKEusDPAlIDEBrqLM8AZx76z6q4zwFWl2Iz+4DLAbknDGMj0NMBXmSfkb7o1wNLwPx1WeDbA3LjrYhMRNsAJb2aanDA1wOKE/9hKCzXAnbrSSwMWNsBYWcEWruc1wFW8sd2buzbAZQ/vHqtCNsBjoRVmuW02wIvE/GemxzXApYzAUAiANcAFLU+3Bvo1wHiNETXlHTXA+Tzcu5f0NMD63mMsCl41wCbUieiAHzTA15O6o93iNcC5mH3Nq0A1wLinlfJvqjXAO94cC70pNcDzMBbC+AE1wJ2SIRzo+jTAOmz1634XN8CfDKq+wLg2wK3guWp+bzbA0aXveTwvNsDxbxpM9gw1wLFK0uaxwzTAEqMYAtIDM8Cyd9EIrs4zwAGAdqAPNzTAusp20urRM8C55a07odwywMyUpb5yUjPAS3FpodMOMsBi2vCdMcQwwIXlQyMymTDAWXOiNz/pL8BlWR3+kSMxwH6NhSZjLjHAN7TS1amQM8DaqOrrqWUywHlX6Ln8NTLAkkL2oDVMMcDnPgGxawUwwInxLuz0XS7A7QJVfCjgK8Astr+9AbAuwBDfrC/NuS3AfAXIK5z4K8DZ8XtMD24rwNI8iQRJiirAEDe/+sBnKMC2JWhe+cIqwEPo2GK/NyXAXrsbfDuQJ8B+CwUQckMnwBY1XYnA1ybA5jwBMqR5JsD/E3GL+1onwDb/t+488ijAdS9JN90yLcABoUzBegUswO1zjj6riSrA6tP/wlrqK8Do4ysDArAqwFrCq5KO4SvA63IEGZhKKsBMazEP39gqwCzJXK7WLCrAcf3geHbYKMCmX6zDcmsnwC9YNLUacifANrMDRMIeKcDEyDjs7wgrwCM5QzSkOy/AfLCafs2hLcDm8ODxuBouwDiNSEfFxDHARKgEoG7gLsCN7fioeM4wwElBAck7hzHAUDB4QwOAMMCdOmPMlk0twHrstSwAPy3A6fY3zgQtMMA6YcBwSGYxwIncjL89TjHAmtFHHcpCMcCxz0d9UYMywMJ41mr+DjHAj97u4ZbXLsDWo5MrEJ0twA7SPbCrdS3AarodN83rLcDEWlgAiDstwKqlaz+ARC3Af6aF0ywnL8CkoPGQNawwwLSimu5L8zHAuwsb6KZOMsAGGoo00OgywKUfddEaIDPAImUjmJKnNMCCb8nJu+EywNh9S6+4SzXAaurCltFdNcA7e/9AiUA0wM5Wd9CkJDTA/4/AzhKoNMCMeWsm7jk1wKfCNGxdwTXA9rfryxlHNMBqYx/aJngzwFJJIEMxWTPAjAyeyg0lMsCxAbOAyrwxwPHf3ytCBTLAaoK3qk1NMMCwBt2dyrEuwCEF0ooqtS7A4kPYuGJeLsBIJVyeUSEvwBqclS5xhTDASxwaEcksMMDyyMZYKFwxwLAlHNid6jDA5wbfdIYdMcBKLLgu46IwwItSsDVmyjDAopXpZKleMMDeLjQ6xEkywNar3swYcjHADStsOI/nMcA2rhD2CqMywL5qeuTVvDDAojibJKVoMcDSzDJJg30xwKgDfrmamDDAgrQvm5JkMMChII4ZpH8vwDr8bTceRi3ApovRlsyrLsD/D+LbdaQtwImwYypVkizAJ63fRBkcLsA1ueaZa4ItwFz1v0EmrSzAC5gCdkifLcCgW+Zz0CYtwG11yBb6xC/AgukXtO1yMMAqQ1sNa4MtwJPevbGEeS3AgCli3b0EL8Cuovt00wUwwPO7ZBb4Uy/AMNinPfH+LMB3VnOWR4ApwNllKQyspyrAHsYRiJkDKcCVm3uUlxgrwFI8iL7KMSrAZx47IJ8KKMCvku3X1wctwJqzYjlcLy/A0WzSdiXaLcCPxOfEy9AtwIUtJXmPcy3AKzsKbgqDLMDlZUz+/LQqwNbCNL98hSvASX55CiHCKsBZkEAR9FoqwIP7J9GnainAryQNGNMkKcAlkM1w3VQtwEpoB5wJEizAAulm+TQnMMCuj1GUgvowwJ1pLimk2DHAY6OGbIYaMsC28o8PfvMwwDJORdayvTDADWMNittgMcCkJ44uxwYxwE68CeEJzjHAVzOgessFMcADwkwKTB8xwFwOCGyhgzLA2ye6wroxM8Bt62K8qVk0wO8c88JfjjTATQgJIvRzNMDDxFOuyP4zwMboKEJsGjTAwDED9tnnNMCf+sNZ7yo0wBFt6AvUdzPA8wh7b/NoM8BxaGkM5Co0wCWDH56sOTbALALrmCeoN8CbFxI+qbY3wCzeMxhpsjbAtyBgOZHWNcAAn5qXzwQ0wIEiCVT6zDPAqBko8UKEMsDny2zvRFUzwKjD8tpKoTPAnjbixYMmMcBAYW4HbW8xwEET+4mgTjLAWpXHsw+1MsDaqOny2vkwwAPFhScJEDHAUo8IooBwMMB5m0EcLekxwD0M+FbzKDLAZFtZ1T9VMsAYrBgq/hgzwA/Nxm3WiTLAgepTyaCAM8AJgjUlLlEzwIhZolshTjPA2s3un6W2MsBNlfnXoUAywFiaVbPsuzPAtwkLCK3oM8AFxprezVA0wB+GXFXG/zLAdf2VDTBuM8BMdUmWGaU0wIi4iB6S7jTA0qq/PZOYMsAYBksB2YwzwFbh5Jd7/TLAHBTD6SmmMsCOHFNKaTw0wKL6A+D5aDTA/gUaOs+SNcCFiKkIhUw1wDkPm1zxkjTAH73ucsGuNMAQc+IqXTk0wKBZXD8DnTTAVBuh/9uqNsD+iiOeb7Y1wO9oEkITAjTAlkefRqcxNcC9Uiw8qJ41wI3NPLhgsTbAuS5h9zc+OMABEbqU0P43wKx6bOzX0DfApn4+ib+aN8D0lyW7nlU2wMLTlAyw2DXAlC95cLUfNcA2Yg2KHSQ2wHjtwNu0WzXA/9cmNXDANcDPkywvhf00wJxDV433yjTAt3TnWgpLNcBd/nSaXxQ1wDRoSb9mPDXAHHNyUrrNNcCDWPs3XWg2wBqYE26cxTfAqMflYvWYOMDgozrCFUQ4wCxcCdONYzrA1HbvMeyQOcDim7o0Ui84wPkfnx7pxDnA1ibcHZrLOcCF18274gk6wCm7gfw36znA0fIublfLOcDJWWMOABw6wNrSRs+ODTnANZB1NZGPOMC/n1S225Y3wOEO6rHyrzfApyIVVhqENsDN3/p6lf42wIyFHZQHSDfAICaKyoyONsCq3YuE7b41wFrYfe7krjTAayeHLtk5NcCxwDgGuVE1wPkMjYCdNTTAD/4Ca/ydNMCdZgi3lbM0wJMkUNrSWTbADDYXp7mRNcA42HXSSpc1wPtLll3PMDXA3TuqJetYNMBDS3XAybMywBGG+YtVZDPAF7Qrw59cNcC7FmV8XRI2wJ4iHNRakzbA6QN/l3oFNsDknRJDYbE3wFWfcTrlGDbAREGDf4jwNcBc0PPXlKE1wLgOoc1YZjbAo/7P1/etNsAFhXAZHP42wI3TIU85cTbAXsICA7bYNcDoWUcHgOY1wB7SHN+5pTXAoI7wP41UNcBHrX3Ge940wFUiinpa/jTAB2rR0fCqMsCHKornKCsywCXf9aaGhzHA+sJ2eIvXMcB8Zs8G4RYzwK/3UZms7DPALMhjHtktM8AkopjuPOsywIJMD9iSxjLAEHvdBoQ1McA6vmrR8CMxwMvu31g/RDLAAXtM1Nw0M8AEKfGzyK8xwDoKrPfIEjPAvu4KXR/dMcBSUiMDTDcywIHLlYOeVzLAN7ij8hkDM8BHojEyevcywHZLe9apmjLAPPCR6UECMsDgc4pI9NAxwAnsHsOFMTTAoBYpS420NMDQ6p7Qef0zwNo16K6hgTTAV4ZWFNNmNMD7J7hgpeYzwGjmoj87vTLAgEVtEjx4MsCWqvg3bZcywOtGDgTRCDPAQTJUsmoXMcAg+IkOMSMwwGJInWbPBTHAoK8BvpcHMMBVzJO25u8xwDKsV3Dp3TLATsdUzL8pNMBfcyFeCdQywPW+gRxHszHAqK6C9CBxMcCNfhVjLLYwwL3vUGSa7S7AGh2DhGKTLsAlWMDIgEcwwJzc4SER0zHAFMQrNT0BMcBJkNh9T2swwCAH5ZPzjDHABhdADMiWMcANApw3cXgxwNqu6w3cwDHAPp05MntDMcBatB1EZj8xwM3XOnVSATDAxqiUyX5VLcD7lnM44PkqwF6tzLn+TizAkP9kwGJNKcAFnbivdSIpwKEMBSv+BinAHwWLfqY3J8ASDZeGqn8rwAe30GXj+ynAkmtb1XX5KsApQ3yk28cqwHOrs6PBsirAm4a/3lzhKMDh197mZCwnwDCFg0qtwiTAp4cvgAzvI8CYT67k+XQgwE+ygSD4ECHA2E00arPwIcDOoE/qfK8hwCXayUpykiPAipPA6aFxJMAU34zx9H4mwIiyr99UfyLAWPX+NSCSIsBtse4BAIMiwFXhe61HNCPAtFBwlyfOJMBFmZWkAD0mwI27tmC+6SbAwOLvIp8HKcCFUoR9MDYpwCO/CpfYBSjADBxpsoZUKcDdKRgPWLIowP04ZB0DUirAy9u2ICwqKMBFOJKwaGInwLyOgNsVgSXAOp5w3nlOKMC+bo6wBhoowEeCww4mLinACzEo6i05KcAEjYGjN4EtwM27q29QfC/AZXYQg5TpLsDcdYUTCK4uwFvfp+Eeyy3ALhmJDvG7LcAf5TFT+SItwL1xcUDGGC/AYEDw4u44L8A9t7cm3UAxwLT2QcJIsy/AA47+WiCvMMDWdJlwI4cxwARHQs2E6zDA1+XChtHUM8CWXSaeh8cywNTvO3B00zLALJviWiRMMcCnGFxOF04wwFv6AiibQS/ATqDSkvIEMcCewos6S1oxwGxn4vXobjLA2JYw5TtJMMC/3+ecOQExwHmkUHiYkjHAzLzMOROsMsBAj8cnHJczwHx758mfxzLAilInugsQMsCZpjs01BYzwP4nWq60szPAnXtsHAfWM8A+M9LxR0EzwBbJ4TsOajPAFCvjNmbOM8AwhVo4IbEzwBCRd6btjDXAX/7rHbiSNsCHIRxvgPQ2wFRXQsO9/TXA9BiQi9KmNsAilgWwbdMzwHhRddFYoDDAFbA9MQ/wMMDs8OxN6OgywBI+3Z6AqjLA3Vhu/1DsM8BhzOlqBS80wJexQnkeYzTALiayCBwzNcAfESPe9yk0wEKUbpRdgjPA+L7yeceFMsD0pcmuqbI0wFIaybsrbDTAAv8O7x98NsDmZ0jRe+o2wMY1hffkIDfAeS+Xo+tJN8BknRBCzAo1wKT7TId7EDTAC0V/lLDKM8DrN7LQQWozwPidNCgt0zHA5XR9KsvuMMAtwQKRfxQwwKPOCZbDLy7A/rs3PD/GMMBKgSKaLQgywD5yPiQlBTPA2VFrLnR7NMAJpdxfATM0wPI0LRacUDLAsXyMnFzaMMDBq8pfQ5wwwJOu85SxpC/AMCK5k/qpL8AaBgvkaRcwwBA4me6zwzHAcfY95dHPMsCpLEHBqVgzwHf+LcmBFzPAGs6szFx1M8A0ilNXJ2QywGqnIT0ZfjPARRkwDVD9M8B4DoQSXX01wGgZeMeDfzXAIZSPTiq5NsAdR/pWOjQ2wBdW5wTnyDbAREgP+4OmNsC7G1GxuQ83wDypXUmlKjfAWc/TqHsZNcCaYFnOJvE0wCob42bojzTABWIG4tUpNMD8rRWtnxE1wKN68rIccDXAAB3K1lfsNMDiyL+3CFo2wCwCgTu6aTXASjKRbqoeNMCelqJ11pwzwLq7sEnbBzTANeoqo16/M8BLznNF/JcywMN4RZmBujLAIL33x8cVMcAUxJ5Fcs8xwKN2BeFpxTDAPiicSPvqMMCTEUOG7UIywBDRcLe0pDLA1tM5kWHKM8Dfqc3T4ik1wIIbvtw6VTTAllkPKJA4M8AyE7lVWmo0wMjVdXSx1jTAilDzglUPM8Bay43ts6sywK4u4Yd8ijLA+LKdvX/pMcBNs7Ma7woxwGs9C42GDDLADF8qYE8fMsCG2ud0toEzwKBbJvI4pjPAEVrDOWryMsA4lbYCFKMxwG06UethMzDA+zeAUv4QMcBCJEvO3g0wwDHGGgP8CzDAXHNzHJaYMMD80mQtegkxwCkUtMokhTDAuQdjbrV5MMAVhgOtvwAywPBaWsYiVjDAeo1FSpO6MMCKoeJAMgYvwE4EJ7MOqyvA2yvx6/5wLcCwADimJpYswCEhhByX7CzA/w7cBk/NK8AzQ8LqLBcowMfRp+IueibALp+/F9LvI8DFewXCRMMlwL8EiApo4iPAhSoOwuqfI8DnDvdz30IjwEZuKzfFcCLAONppBvaIJMCnI1rVzIokwNJnx30cUiXAALDDD1GpJcBIaBITUWQkwOZn1Z0brSXAqPrz7Q8KKsBjAVRNJ20owKgVQ560cizAIzxfYqGFLMBaymj2RdYtwOw3OpN2+irAJz5fiOl7LsC/d6ZM2YkswAa8V8DBWyzA1ba0rzPULsAT8YeH8qIvwJj8Vdw6MTHAOdPOhkxzMsDs/LJI5dAywAtC7Rc7tDPA3f1VPJpSMsALXuOGonYywHgoZkk3NTPAsoMkN2v9MMA5fzUr5pkxwK5kWVevYjPA7zuOwPgZNsAeryGAHIA2wPxJHK9k6jTAe4ieohKVNMCH3+08l641wCOfDPXBgDXA+d/C6DYwNsDBQm4kOaY2wEghXNangzfA0qzqYFhjOMCpMbCSbIs2wMBRTB9mkzXAAUNsJm+NNMAzPjRB8nA0wOQNRT8X7zTAVtph0ae1NcBJi99c/eo1wPb0dmvpwDbAWDyrAAK4NcDmcROanpA2wAeFyp+wGTbAZKI0zvQwNcAUY2uTrd0zwAx7r6NiKjPAZZ0tOkcDMcAgKM7e2RYxwBfl7WEnuzDA9odRsotCMMDgq2dqDrgwwNYvg9JKjjHAB01mFAhOMcBE02F+mSMywGPXlP1chzLAtWGHTR1lM8DvGiw70p80wBIE71AEVDTApcpjvqN+M8A6VN7roPYywIUxN+DM9jPAGLxmdPi/M8ChRwb6zyA0wAhS9QMoHDTAHwtbhcHvNMAslsAL4cgzwPic+klU/jPAXSu97KuEM8BoMLL5c1E0wFXS9qOZCjTAmZhooZa9M8AvVZgBJFo2wIb3YWr3yzTAnHuvCkdfNsDJ8XQMrlw0wL5VdfavijTAyeB2Q2R+NMAM2ZDkjxU0wMFWFjlSmjTAzo+tCWyjNcAn4naodSc1wAcU5I9+tzTAGrqqiriZNMD443Ilj+w0wH6M3uFZaTXAyf4o8JZBNMB1BJIB4vE0wDtM2O4RUzXA8BdYzwSCM8CIcGpAgUoywOloVVEoAjPA1W54a2KOMsAT4u/gzNwxwMO8cIoXjTDAjCjwVZzLMMDiCpA+VlgxwL/dQpfECjDArkeiACVEMMAYcKVKDekvwJKndtRG8C/A8XALdrtVMMAG9jODsq8wwLao1O5NVjHALRn58t37M8BVy1HqVNEzwNyLBAR1XzPAc4MBo4mFMsCITjdIrPUxwElIkp23wjLALkjfY3EjM8ApbndhOrYzwGRaPh9DXDPAP/Lfm584McBSxdFcLiAxwOr5yPhtmTHA1lVF09fWMsDw68lprEYywLsa4kQL/zHAr6/ucAkbM8DzfQ4xYh4zwHcVIYeAxTLApTKPN6B7M8BTlfQjz/AzwKrXPkNoszLAXYiPVugaMsDZ8iAizEsywBm2k+vbPzLADTZ8XdBqMcANrLjFbD8ywOnxB1NYNjPAqdINJVWmM8Ckko+1nvc0wJTLAONPHTXAJzKwP4D8M8ABpczO0Wk0wCbtBnve2TTAf2DoTfZmNcBZFfIyCRA1wHx02P/HlDXAIoSe7lfCNcC2FbnRgSQ2wPJHuvU0SjbAT3x+hIYQNsApp36ZHjQ3wAvBGQtGoTTAnfQBlJl9NcChKpGfk+I1wBvsdCRNWTXAFDl2NNfuNMCiJbVD2aY0wOysoaQAwzXAhohuyQo4NsAYkw1vkzo2wNzBYONp9TXAEFkG/qttNcAj1LlfcR80wEKnEJblUjTAv8I89oABM8Czxkg9IrsywPmVO3z5HjPAJ0gxGTvfMcB21q4BAnkywLByjiQ9wjLAxwDU2G2wMcBvbR6o3Ug0wNfacHVXYzbA2EMUUOb6NsAX0WQtFn43wMVBzggkRDjApLO2yIcoN8AjE4pZaMw1wISecFPMyzbAEeUlbwdMNcAt5wDdpMA2wDx5Vr2OETbAC92JRZJnNsBpLbgCic82wDLp5OLFkDbAtMCDnqlVNsBPh9pVAkg2wFDsELf/gDbAUE9r0OHINsCmUXL0Jbk3wM9akkdBpDfAjKMcq/YiNsAwLo68IlU3wP9tJ7j6MTfALwnUPRWhNsAHxWOnEuk1wNaLaVgpojXAtUZTw5m/NcATOtZ7rr43wDw55/BzEzrAu2j8b1l/OsDf/vCquZE7wIu4FZPE1TvAZNkfZ2U1PMC7BdsuzfY6wHQLrMTVGj3A3FCPSJEAPsA8z3pMzPQ/wG/RVBSHaz/AXra6GPh5PcCip2RKmhY+wPgQBuzOpD3AvYRstvDcPsBvIHIbFYg/wNBBEpCvYT/A2VpEKM/HP8DLQaHfS5g9wMfKpjvx0j3A5t38zvMYPsBFAnFMSU0+wP5HrmGKyz7AUreQfxksQMBGYJYfrv8/wOP//h+/gEDA0P1tA98EP8AGYQnlLaNAwCCK7/MmEkDApb9vtulLQMC9Ivaj/X1AwP82K9GjKkDAYjAOovxZQMAfJUAjt5RAwA4uo7uDaEHAqRtZwzNGQsB4iBBcchtCwJ7Mpho0CELAAnq0rinxQcCSRzwo1jFCwCUVN6boZELAozGEk7oMQsDwcfLHmHxBwE8cCMhDHkHAAyafrNE3QcB6XaRfrDxAwLWWp16TOj/ATQdu0kTjPsBcHZfMP3Y/wB0Yquv83j3AiOpuQDXPPcDQhVTN0B8+wLc30F6fXTzAMDeWB3cIPcCw49cIUP88wMrGcjab8jvAViv4V1kSPMAjxjJ1GP07wD54//MUBz3AYPrQpZaEPsAYGGee2ck+wHeRTmIsbz3AWyGByIDGPMAO3mLceIA9wA7uRTB5vT3AM3hYPkQHPcCJL5Ft9YY9wA3iMryyuzzA1s1hA1fRPcAIYpryKXE+wH8fTxJwjD7AWE7Fxu7hPcAS35vlb3E9wNd41paiQD3Ap6TXR9/3PcAKKKSnnfI+wI2e5a6awT7AQS/8w3jBPcCXSyw0gvA8wASfp3CAEz3AV15s69WTPMBNPlJryt09wHj/el78sDzAUNDunQ3QPMB4DBOmbJo9wPnTIFWPcT3Afh+84gtMPsAboMYuQJY8wDF0OodU7DzAURPXDLgHPsCt3toU5Hk+wIv6z8eHYT3Am0wuUtEDPsCc3hqK5mw9wH5k0gR4HTzAffATqHMCPMBsOdr9u7g7wPFcXAszfTzAbRSfNw0qPcC5IC7a48w9wLTGBBMyRDzA8VeNy37iPMD44FSAcCc+wDLzCSM6cT7AIhOihTl4PcAm8WE8dOY+wMh43Si+7T3AAEvDxelGPsC7ZXOplyA+wG4slIXIuj3AE/uv7F+rPcB2zYezxRE9wK2DszcK2zvA4TMQnY97O8D8u0l7vMI7wFs5z3Np3jzANmakayCBO8Dhur+PF8M8wPJ0pCW9Dz3AFuzyoifMPcDnf7pUMUo8wEkjn1eAvDzA4JgJB9WaPMC0yEK6qMw9wP8RiUL5xDvA14fG5jSoPMDCsN1fg4w7wI99n0zVPTvAP1iFdcq8PMDj2TwB5Gg8wHm+2htSBzvAUBDMXXDWO8DdNLr+llw8wNqAEQ1TyDzAKcHOQRDlO8CyScSV4j49wEV3ROLdxz3AWlt2hKvuPcC9eR9UuVQ8wFPYM1sGMTzA0KetKMUuO8C4zkqYjwU7wFBunx8oLzvAt/f9/zoHOcDMr6sRnfE7wOvAuo2qnzzAiY85BP2KPMAu5N+MRFY+wP9572h3ED/AqlYIh4vtP8DbqnGRK6BAwMUNNpwUSEDAh86oC2fsQMCTYYO/SYhAwKE0pNV3p0HAQYg1c40/QcBWTg6FTOhBwKSu/HOLK0LABo6z6HrEQsDJaTQAcNRCwKBOWx3S6kPAnREeWR+MRMBPRKFF+0NEwOhUCk99yUPAPXfcLD66RMBUp9lp2ddEwCfahJPz20TAVDFjEfqKRMA476uuDe5EwMc1qA3mdUXABcfN5fL2RMAZP1JnB5hFwON3vQDGykXAeN8dUhV+RsAfnXwSb5NGwIjhz3sQr0bATYHhrb7lRsAvEB0wTXNFwCvlIJ3ejkXAR7h27AKaRcCOQEanazFGwDDSetrbEEbAsSJEzdY4RsCQRRlN6tdFwLT8CPalHEbAw41oNyerRcAfDDZYK0hGwNGVKr8qPkbA4MBjKc58RsCAph/aHeRGwGqZY+1AGEfA/V7aZjm7RsCFVVyOJVNHwBRrNSjdHUfAXUupykXoRsCZhflCUhFHwICCq6bsNkfAyxt5G4ahRsCevXQKpeRGwE2q0AApJ0fACBY+HZ0MR8BOPnJw/OtGwAs4Cf6X0UbAzRD+Op5gRsBOh8cDWftGwFOk3mJYe0bAnmeUVm21RsCaHfePcaxGwDbxYMC5lkXA/iyNS21ZRsAotZEAh2dGwLpk5zKKP0bAGHkEx3TPRsC/IcG/RjtGwKGH6oNot0XAGy98y6G0RcDQJttE6KdFwFEXjYthQEXAQWpAas7WRMA2ls4A/n5FwPwTifX2fUXAVNcux69KRcAtUTnRDpREwITZOSd+0UTAGRT3rCWSRMD7md1HbdlDwJcelqPDt0PA/wfxzXeIQ8Cf15e9wpdDwJ9dr+a6CUTA+QOhlvWoRMDJan45y/pFwNqUis7kcEbAVAEeJ9QkRsDFujFruPtFwHZJhWVEsEbAXGd5XjvSRsCfJFIDDLpGwGEfg7+exkbA0QpzU4LxRsBgiaBEdo5GwJk+DsRyEkbAhTIhhOLARcD9Fruv11NGwF0cTT1C90bAmynTTu0YR8DWRPKjNSdHwJJOVbZOrEbA+8PWYiPwRcD1sztq0/dFwMZdIqcvKUXAbogfKd87RcCFkOG3PcNFwDG+0HIdvkXAIqeyY581RcAK60XRQWlFwHVgh2VxYUXA7D3EG1QKRcAjPvlQ3e9EwFfhUo2m1UTA2femVZaVRMAqjLt2yzVEwDN3cI6SAkTA4LKxpUauQ8AQ2/cZh0ZDwC3TtoLs/kLAIpsMYp1+Q8Bumv2GdNJDwJX9wbwbNETApW2KYl/LRMBZtHl5gMREwE0fj99+aUXADJzIVYtTRcC2bnABXXtFwL9N//sAcUXAOLFuASgzRcChlc513tlEwMf1zCukXUXA1d0NxOSyRMCuOyKnXS5EwNpETR+MAkXAHE7z6IKLRcCjyoekEHNEwJMC8bCKfkPABDnH9vxmQ8BOnHl0xStDwDChc0+dCkPA4HipCx3CQsD8Ik/JoJxCwDp6jDHdj0LAsy5corHmQcCvi4QYsV9CwB44Woc9GELAQ3+opXKKQsAY3cg4LHNDwMCIlKAg1kPAMDNbiAWsQ8AlD+ORtGxDwJqz8rZ88UPA/JsjDFxERMBjV6x2TnZEwMT7Sw4bvkTAiZ4U8rCyRMCKL8+gKgdFwDuzRBJRl0TAKv8eKLe9RMBe//YvV6REwAr811V6fETAo/iBc6ocRMAfKfgozLREwNee/ysfMkTA6+UvJ6WbRMC0ZsvS2aREwO5lNmYPikTAbqwEFTwZQ8B6Q2Lvl7FDwIvhVtCUKUPAzvxAIqW4Q8CJtafVb5pDwJmh65O0RkPAVKUILXHcQsAEmTT1bSlCwMM8kDumSEHANtfrBKmMQcAetrwut5dAwOWhnHUIVD/Ai77D5lywP8DA9EXeb34/wOkZuYQDRUDAyPJ80AzNQMB2U1qSHy1BwF8uJHq9aEDAXohWmpyIP8B2mOeFgIs/wA72ztI/zz7AjFDVvgYVP8CA/wy+Ucs8wE+TuRF2WzzAvpi/rumfPMDCjH6/p2Q7wFxACZxcWDvA8G2vGz5rO8D/EhIC05k8wEfcbzDebTzAt7KHBqunPcBjiNcjC44+wDacr7W7xz/Agv8oQ7DhP8D1pVfjSXVAwD4mZu71EEDAtcNkjG/nPsCu50BrgEc+wFG/AxRzbT7A9xUaMVYLPcAs3i1rNPs9wGicCssHKT7A7v+0wSKNPMBXW7hH/oM8wB/yl1gkrj7AtmFrT9FgPcCxIxLNFTU9wC/9fnCQoDvAUbeH9L7FO8CINsmDkMo7wP3+o0/TbT3AR/Btej0MPcAqb0v1px48wCGIRTOIojvA23Ll2b5YO8AE3Kbd/W49wPD8xsWNdz3A6nMxYUFqPcAQubuxr+E9wMzOdTDUdT7ARDWheT9BP8DDMBdnU58+wAfI3UXN0D3AIH4tCfHHPsCI9i0N4us+wNdtbvD3qT7AO02RCdlRPcBbZqqqtIE8wNrfpDS+Aj3AGWftlUfdO8DD75zTl048wBKUOPyvszvAgOGtQj/pOsBbVNhbKnU7wEnyeeoFtzvAtlBAiGABO8AsNmmZn0Q6wCzQAlWZhjnAEhFTfZ7MN8COAjJQ8Dk3wG0nRPNCHTXA537L2pmGM8BoXyaC6yozwPXyG670HTPAebZCk3ZIMcD5lRqxbdAxwIqFx/+BgzDAauclG2I1McBQvbT2ZrAuwLf/UZcbSjDAozbpmTjtL8B2UWcmve8wwKBPlSlxiDHA5Eb5O2ghMsBDaqCR39owwMbZ6KWJQTDAdxXhrygPMcDKdf97c5wwwIUZot2xZjDA/ZODuyrPMMDOQGnK4NUwwHGctt3QcjHAn911fjgEMcBaTjMkEREzwMK5P00ixDLAei7wA8UhMcAUI0LIehIwwCMjMvfTETDAH7NTQp17MMAaFUfkOewvwGWqzmZG0C3A1eePMQqYLsC4r52igj0twCDRNyUDQSrAF2MjfNkDKcDIecvqGGoowKpFXOuyYifATKz6htthJ8At61pqDqUjwJydzBlxqhzAtpQdJdPBGsAPeMxRhBwbwN+KW5keah7AMFB8+nwWIcCwII3NU30iwDR66sB3gx/AXw6yZ50dGsDs297DHCEcwJySziWh9BnAnom0BXtDHsAcfZSDhtoYwM6PpLJ7HBTA5RbAIYlYE8BAuQwtBC0UwBkPHsKhRhTA4wDg83fsFcDfzDf6UN0RwOqvzGxc0BHAt+GUZXdbE8CsuZTWBjYNwFqwoCXZlRbAvY92YeUXFsCpTcT+fjkdwJTLg9F6KSTAq7urGcUaIcD7XyYkCuwhwCW4eWCQpiPA6HShJzxjIcBebpjzxpMjwDvfRTwQ0yLAPjMy21xXIsCqkRNBFgAjwCl4prnXUSPACTm9EKTfIsDROECGV7gjwIDij+daniLA90+lCLGuIMAE6dNo6nkZwHJ5WtoCdhbAzgJV3xcMF8C6Dk3ECccTwCkfoho6rhHAX7JgpAs6F8D70tsmKGAYwAg8nqbjcR3AMTAofKthHsDvLUa1HrMawFh13ZVTdiDARjZNIAotIsCD2cCd32QhwHON12+pViPA5SBYkYfDJsDpM/x30KwmwGO35qrV+CTAYtomDcEsI8B0mM5yqvghwE49INFaeyLAGLILOFT3JMBeP2ZhrwokwKyZYOhAYCbAn/QaFc/fKMCcBMrqPfsmwOJRlx6fySTAOnvdoo6lJsDj1b+/oPYnwJ1+tqGLjybAXzKOClCKJcAvWGDIfbYlwEujfnA4VSXAZGed789YJsAIy0jvKOgkwLcqtowzXCPAy5XNPzBMJsDRE69E4yoowOONgklIYSbA+daFcvBgKMCgXpwm41omwDUh062M2CXALWUT/NX1JMCD5g9a9qUkwEE+Q2j1FyfA5yoZr8JJKMD8dF5m+cQmwAmXcu35hSXAm1eRpQZDJMC7SAfs5NIhwNhHw+rXgiPAgQVaJ+78KcDk8IeenVMrwH5iMP0T8yvA6Kp0YsYrLsBGQ46BC80twG0uYH9SEC3ARQc90nSbKsCeLs069PEswK5ZHyG1Dy3AddV+Les9K8C8kVROR2QnwNrCZTNKBibAoreReyYFKsDX5kKFojkrwH3+/8zHGirAdMBsT3wMLMDuqBvRbSwrwJ7/+t6LEi3AcC1FJTEpMMC+K4KU3EYywNLyU2s6eTHAoK7B/nACMcBNm1PCHX0xwDe39mZevDHA11A2P73bMsCwxyUaCaEzwF5cwIsL6THAEMl7TO/IL8D64fhc1lEswFu42BRwvSrAC6AOIbbELcDmvLQO9pQvwLn4DiDJyjDA5EAhQL+3MsDl6TiV8sUxwJHq/R0fxTDAeEs+cq3/MsCVcVvwceUxwPZhN/+vzjPAkU55D6SYM8CFZ5qxRoc0wBg7durhkjTAmxzegwikNMCSkXGRu38zwO5jBNwxITTAGBHZ5BLcNMDZOStamH81wGUnQvSAbzfAvIPoVpi5NsB6q9lj6V03wHYJ28EqtjbA/zOZFsCpNcBC7wMzh8Q2wPoAmUM2+jXAM+JjLQU8NsAoBPZ9x7Q2wGOVDy6pjjbAn2sutE5KNcAgSMU+r5g1wH4+Lil8yzbAqRktYigON8CUccyWRyE5wO6P/V7j6znAa+JnVcJ4OsAFUkDQY3U6wKlHPaSTmTvAUfYwk5ofPMDzK1+ZCZ48wO07cFPd7jrA7L4LlOmxO8C7tKVH4YY8wJL1Nf6t5D3AV/2CjtEEPsDOiFSC+g4+wPkg+pFomD7AwhtVbttPQMCACK//Qfg+wAuTzSMQCjzAfQiiKzEHO8CB17BGRts5wJVA/wGRLzjAS/Z8x1tyOMDAD35+X8E3wML2DK6gajjAYkqbxqtmN8AueJS2/JU2wFdFUN0PHzjAELleAVOfOcDjhdM6Bss6wIrOz9c3XDnA1CsM6/pOOsBQIEbC1pc6wMgaNJlVWjvAsKuvPGmDO8A0ikzJQZc9wMea1N8yNz3AB0s6PMFQPcDPu+jifKk7wFBdyJIxIz3Aqs9bSe3FPcCMCfyZCNY+wCIVBfjd9T3AedTEAny6PcCyB9WF57g9wKBtfIzxtT3AL3SACV+EPMAohOZQscU7wLX2+QcPUjvAlmFL2Z64OsCEkVtmIRo6wPDIMktmNTjADOlRsJlMOMBTeJKtPpQ3wC+rjc2/OTnAxLZlD5U8OMDc50akEvw2wDVx/WBN7TjABIZeKPzCOMDsX3hlmjQ4wP8bj/LCXDnAwbgh6xV5OMA07j/Tk5s4wBFCm/U+1DfAVh7LedmbN8AralLYEZQ4wHftE7nomDnAsS2Ys2HBOcBPc3uqnME4wICYP2P9BTnAG/2EYkzgOcB33vi+p4Q6wIeFv+F4vTzACMGArGzdPcDDET+Qu6Q/wI1K2ZJXzj7AUfhyYsinPsDmkFcLV6w9wFNEIMzTyTzA6XZIEJDvPcBRdBaJkaU+wJp3MONKxz/A6NYFqjGNPsAnCsPkg1c/wMqq+jSRuz/A1SO72v/KP8DSTBD0naw/wOgmhiDJB0HAHITuR6JgQcDeJJVEmn9BwBNhhWcyh0HAj0KXqCheQcBQ0R/fE95AwBI5m9Y1N0HAYoP2lY7GQMB06Q9G6W1AwPtwgMeypEDAtIRqdtAVQMB8cyY0Xas/wN/3zd/AqUDAzWwRRV1BQMBWDNYKR31AwILsOjMunz/AKlES3FgIP8DQSMxtNIVAwKh/xpHaXUHAqT7vZalQQcDKCrLb+X9AwKkbztyh2EDAWpCdUhFkQMCbXifQs0lAwNoRfEfAsT/AJ6ApCttjP8D94gTbvrw9wLxJJ1xL9j7Ai3WFnQOuPcD2xdrEKbM8wEvbZ8+ocjvAKiZqUnZ6O8DIPwdyANk7wI+tKOOwtDzA5B/nouPIPcC0LmZR6RVAwAyk1G1qhj/AeZgkVcr3PsB3EJH0Uzw/wMmN8pZzlD7ASliroAtSPsAyOYZr5us+wJjtJf7wiD7Ae3XXQvlAP8BiGYa0glY9wLUDKXS7mTzAYcNOwLUPPsC6LHK56Z0/wBU4oU9pnUDAauAe1L2YQMBT2wL0JGg/wI0/YNcKuD3A4RjiXpstPMD3EcasZbk7wCFwnqEwyDvATQlgTBk6PcB3R2wWuYA8wCjBh5tTZj3A6eyp+htFPsAYLmzcs+08wLbsqyzVpzzAhvTFGZIRPMDb6Mgx2uc6wJIs0GSVDDvAr6RUyUMKOsDr33ADB3A5wLwx77MDcznAJetbvetnOcDVQlwRT306wNgDoerGYjrAk7RBlPZ3OsC9OpR+s2w7wFUiz9usnTvApxC8Mq5tPMBlaSFN/FI8wFeJ8Ot4UjzAPwlLlAGePsA36aim2ZA/wGOmmeiLO0DARQKy5U2QQMD84+3GccJAwAMKKeZMEj/AWLVS4aj6PcBMQ6ZHCYU/wGeZfeyywz3AE1q63U/sPcDlfTJ9W1w8wJVnMrXWgzzAVqUzoPEoPsBT105mRDU9wAGl9CNtQj7AE2rSYZMNPMC4JIo5k3c6wPy+2Ke6cjrAVICz+IRcOsDBwacodw06wLXjwj12mjnACPRdL+o8N8CB50oa3ZM3wEQ91M0O/zbAT1CSW7fQNcBOc764fgw2wBgRzqhPgDTANM4A7hFjNMBfeeRY7dkywE8ST/9JFTPANKypfb8rMcAx1lLi6mExwLzQzVqvEjDAnq4uXpUVMMCKK8P6kJAwwJBNDdgC2S7AMHPCwtXaL8AVS62rRqEwwI7EoGDNVzDAq7AzwPDIMMA9/hEEQ1owwKgxPI1rqjDAk4YAulRCLsAVwT+ZN3YpwOt2jHWSzCvASvxkqU21KsADKz3VN30swLrdvs04fS7AOZMKlCpvMcDH4bhrY5sywN9GtM92jDHApcVPJRvFMMDIjcFC00AwwGefmwaSAzLAXoJeU0VCM8AqF1uDYEkywKcGHVSOjDLABT4aw1PbMsCNtZpSVZQxwAMYJxBYRDLAYTtEWOnxMcAzBSYYfEcxwAGM8vPraDHAbgnLpsDqMsA4FmDU8/EywH3HuBbQsjPAx+hqIGdUNcCGPDXKO2s1wIPr++KnTDPAWWlWwJj8M8D16Nsc5/QywJXciZJkFTPAKAoN1whjM8A03xYkwO0ywMs/qXYYJzPANMplg444NMCGURia/ks0wLdPxF7HtjTAVJCBZ+O7NcDBcach3WA2wC6VTeTMsjXAJTIs3SS6NcC/jwnAZls0wGxFEP8UNjXAWg8XYVnmNMDtFvzOS1E2wB6kb1HtVzbAg4hR501+NcD8fqcrG0s1wLWi08aZqTXAtNsUp5VJNMBvjZ1vo5U0wM9cqW6baDTArR1tgrSuM8AvnUFDgs0xwAGNZIRWrTLAAoDdH8v5M8DNlkWxr2YzwE97mOaz/TTAjNmu3oP5NcD+/qfgIdw1wDgdV/tPDDfA39FNEdVqN8B21JL91iY3wBhUOFas8zbA1vEfE9hlNMBL2WdRu540wI8uCLkOdDXAn0Fq+Kw9NcBp/hIxB8Q0wLQSKCHRbjbAEl79R+pYNcDQAI5DWFA0wL7BOgdQfzTAaCl5juj7NMAYlLnpR0A0wHhoQK1N4DTA8siQRAKbNMBzrA5gAlI0wBSPK7R5BDPAckgYs3/AM8BCgkNOjcgxwHe/Ckx6jTDARLT7JO70LcDoyfDUCpMswDyIrus+lyvAL6oMKurpLcAhZaQnW90swEAQ8t7OIy3AdFSSyqDUK8AqUwMEHi4qwEAHsS1wHCjA/EOJ2j5uKMB4DLbgucUnwLojRyrufCjAhrPuroI3JsCqBXFkV/gkwPEyeoxxMifAeNeGGohKJ8C16AtW+8MnwKGgiK4axSnAB/SLEG0hKMCIuB03hackwDkQASihzCDAfqIziLBOGcB7aAZIGSYawL6pe3IJ0hzA9GAdk/sZIMA51ZmofA8iwHQ5CIkH4yLAL3VIWMN7IMDLs12ffF0ewFF3TPR4Ih7Aq0X0Yvc5GcCMbJWeM/QcwNI+YInt8h/AaZUVvxLbHsCWqdShBtwbwJvk9wQrsx3AID3iKl2zI8CPAUMueKMjwGADyD0ZrCXAn15mT71vKMBVDajXQI0lwAgJijwyOCTAEamvks+vIsDSNs9v7sAiwBzN+Os+ViXAqTJhotM9IcAEt5RV6VEcwAQxgydZhxbAu7+oQj9oGMBT4fMyNycWwPGnUJ0yhhLArqp0sZVrGcDMoZt8jioUwHcSYVAaDRvA2i4qMpRVEMBlK0BAH94VwLG9i4DlDBLAtX8GoL5IFsBEGuPVHYAcwBlHDPC4SCLAMUNtYw4BJsA3HFV95YoowLw+f2juBCjACvMW4a8jJsDwlKYEApsiwFb5Urlt/iPAdpwXgu1GJsAMtXVP7eYowPO4+gTtWijA2UggYxbnJ8B7H6y/0JMqwEccgfv/mynAjWGnODXfK8AYsfdg8jEpwOc+glvG0CvAA/fjSnd7LcCpMmoFEwQtwIpffDSmNC3A8/DzWEcBLsC7mHjEZXYtwC+1HbjWIC3ABfhRB9QwLsBFU7nmbkYtwIGFhafUGC/ArUquzOnqL8CqvapeIZswwJLKVunrsy7AANBf2B0+MMBS/nS61M4wwEDT35duTzDAc1ruZwvdL8BQekaZHnMwwFHLZe2vczDAvoJYz+9FMMDMCJMcUgExwIe6z+czWzDANHyWVZZSMcAhZd4smmUywA6X8u1BwTLAUXz0ae6+MsAIkI3V/aYywE2pS0bTwjPAfpCOeKeYNMAlWHbvLHE1wKsqYEhenzbApzPvnO6YNsAxYwEo0rI3wGqas20tuzjA76kbkXwVOcCz+5INV2Y4wNkfrOVf7TfAXWlEnDp1N8BxfPHONyY3wCsI7jJWmTfAfoNx4dP1N8Chydrg+E43wE5q/DzeczfAY1FifGTWNsAJCBaolUg1wJE0qPFMRTTA0ltTFB3WNMBf7h3KXn00wP7Eiw68vjTAiIg0Lnj0M8C6lPPao8kywLE21ovZoTLA3du0CUeKNMBV9MDDZlY0wIDHA7qhYzXAzJjls4nbNMBgKPWWpvI2wOtfzkVVNjnASxZBSI4MOcA4pK8ZYbI5wEs3lFzTGjrA0irbwZN0OsC8PI90v1I7wFjTlIZ0cjvAVprWR7n6O8BeljDVHoY8wCrmodUXyDzAzNNCi49HPMCxWjd1e309wAxi9011VTzAOOPJABRKPcDjJMOMD0k9wGfh7+GduT3ARvTPxwDQPcA0ztgGt9w9wLJpV8PFPD7Ashlc7zgRPsDShJma4p0/wD3UgU4T6T3AZcv9DH8DPsDKEolneug9wDodkQaW+T3AuNGGEWsOQMCkVuyhpUs/wExJ8dSEXz/AwfMpaxwRP8C5Yi2oMCE+wLnkYtt9iT7AK6mIlKBvP8D9AQtGLLo/wFl7SjRIY0DAZVSh+hmGQMBU7w9l4m5AwA24aE5xC0HAhtqw0KQGQsCRliWGjc9BwAFIQ57wjkLAgvheGfm2QsCbl0+zgpZCwEPQzq2MJULABZKr4EJoQsAyui4dJwlCwE8hJx8CIULAGIdUAhsoQsBEg5qGK5VCwPTaSp1HDUPADb4FlYFVQ8DgTuqCJI9CwBeo31QfAkPATd9109nXQ8DWEPXxzFZEwNXRuN2qpUTAcuPuWYqXRMBdR2NbaetDwDugmiPmdUPAo55uSrqHQ8Cz7666azpDwOpsGTI4X0PA0OFnRB5NQ8BAGr1UZ2lDwPwXnuTBMUPAiqUL4NwhQ8Cfv24iiKBCwIQUfntCz0LAh32BCCtZQsDlpextXRdCwKQEr3C36ULADUsdd3PWQsAcaYc3aoFCwNNuNriS00HAGJXNoEXmQMDVEgKdqrtAwFcR4qB3z0DAbntV1fevQMAxw5BtDklAwNBSKL+C/z/ADVwUHUhqQMDELxijM2tAwAV87lCthEDAkxN5bsfyQMDICF0rCTpBwNVaRjy7FkLAMqwbLdTGQcBL4AN/gg5DwAPH9AUzG0PAbAc21HvRQsDEhhj3qNBCwGluqMFyj0PAKIbMstkXRMD7JJfjY+ZDwAqcezZT5kTA2t9Oe7mcRMCs7uB1um1EwNZTv1XjfUTA7QBUbAg5RMDGi+sAFhdFwNXcXFmLKUXAn7NN5S4xRcCWy+2Zy2JFwLsrIlZHkETAJLcag380RMDaqKPKcGZDwAAGwpUpVkPATcaFscpyQ8DBN84qowJEwPk3vc93cUPAR0cnSTzNQsA3YyPlt6tCwNhnR4qeAkPAJhhjxliCQsBuhYdU4JNCwCqXUGMXEEPArIGT6fO4Q8A0+jUn/ZFDwC3Ha+7Hs0PAxRIfbeK7Q8DbA+NbbsFDwNaOWSuI10PAJzKjoKlmQ8DKF0azMpZEwFq5te4ww0TAsccXSjVzRMAIGTSmsQhEwEuncDC490PAzbqV8yl8QsBqlhCPOHlBwPMVXKduO0LAW/1Fkhm5QsCIkPfChmBCwHSkQfJtXELACRfDxKqLQsAsb7RmhmFCwBVYuLH75UHA1eC3rW3zQcAi8Rg1fTJBwMVaOwa+aUHA9qXvA/piQcBtYt+onSZBwBSgwKHn7EDAQF8pzuO2QcA6l0v5RwZDwAAwbguolEPA/h0V++SIQsCVNN45j85CwD3CEgvOa0PAXmFvCQjxQ8BW9eSd3/RDwKn5b2PvrUTAX/BrWRkiRcAgMcpmPCVFwELh0gu+tkTAc3ADyDvLRMACc6RcA9lEwFMcJAG05kTABLKg66vSRMCZa7TTH5BEwKbFKq+jekTA5PZeBL+HQ8D6Jp1QKuNCwCNDMcPW8ULAOoab5AskQ8CC8m2deJ5CwMX8FgKLqkLABD12LWC3QsDSlxGb1PZCwDK4TbINY0PA+0180ySfQsAdp5RkE8FCwELYIduchELAqImcwjQyQsCKRwxqgOBBwGK7m4iE6EHAjo7yxnHjQsB40M4t3zVDwE/dK+aj60PAgTpZCdX9Q8AKQC4rJHtDwE6P+ZmKqkPAP894+9oZRMA7YAFwNhpDwANm9y6mY0PAwDoufh1AQsCeGwl5dXhCwIS7jMghpELAVB3rCoTWQcCPaIg5IHtBwNMgoxnxQUHAufyIwOuWQcDP7rE+NlBBwKozdLuGbEHApNTignzUQMCubyucvL5AwAQH7V8IiUHAIOnjy1dZQcA6S2JyzIlBwNTfuvnxdULARxKuPWyeQsDd1aZiWqdCwArkcNJfv0LA1+R3Lka1QsBBir6XQylDwC7l7yQVpULAURExKcV7QsCg++/q+lRCwCETeectdULACcMcEODnQcDaOnE1mylCwPA76r3z90HAVIGIWpIhQcDaA0A+ggdBwAsaVbF9FUHA4THOYX4LQcBNkJ8GGZNAwCrJAGnilUDA3p3hwNArQcBxVvfKYsNAwMCp7KnTPkHAPugpyW5iQcB5+jfnfdBBwJBEC5u5o0HAp1hTg87gQcCNeayrVaFBwC5H5hex4UHAyIzvGGzSQcA8Adc1H0lCwIznUG6pEELAP9uFlcI8QsBensZaA+ZBwHpVKnJPD0PAd+ei/YumQsDR7vtW5sFCwNyz/HEE3ULABnZ5OpRVQ8BfhdIxhe5DwPEJn/mOJUPA7uEvd1F+Q8BaUE3tqm1DwCcFtshUfEPAIEW+rGx2Q8A7Zibpml9DwDr3zkce4kPAA4AoZCG9RMCwRGfTYA9EwMomd7ecGUTAXX6nkSGlQsDpYuYqEsFCwDvSyxn940LAehXtWCNVQ8DarnNfDR1DwGIOyQrSe0PAEx1wUeGLQ8CGikTS1pdCwP8dpPWiQ0LA37wjVpMJQsCmf9ask1lCwAHSJGLTmULAJ/ONGytyQsD1qtM9jPdBwLusgWT2yELAVNJRh65PQsAtG91eHIRCwIT2Sf0+3kLAgEM+gT3uQsDtOIbej1xCwDEOZmDOiELAt6uJ+2vYQsBX6aOQQfNCwEXaYmE5HEPAKcRg06DhQsAEK8jISkVDwPZ5OWt9p0PAhHtjxwtpQ8De/srJaSBDwHloLJnapELATu1ODU0PQ8DPfYHw/ItDwJNpZlKBM0PAAstLSX4NRMANGXZXknZEwJxh87AuMUTABvT2X0JwRMBfG5vtjjxEwHMzkDkwJkTALFhsvinzQ8BJ7uFZvWREwAfSmxv99EPADm6ldLNPRMAFKjnJZjlEwDs3LBJgeETA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 3\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"T58mMAr99j/EwyE+a8DuP/2zITqlF/I/wPVNMoy1nr82RLVA/XaUv9GJaQkWyeo/3AVMN8Gf9L9gzB5EJxXfP2DO9xJiqpy/EkKcNsg/4r98OK0Nno/jP7+ZrbCrivw/5dYVxEbY9T+JLsGaU5kHQNDtaH9gxw9ACVvz+tcYDkAGpezvISMKQImWUnTNHghAnMBXdhkhDUDhZaM8e6oTQFydS357XRVAwgJyH5U7EUDE/30hlKIaQIGLU81UuhlApeqmoe3OHEAekhWnqt4XQLijSnlW4hdA5KTAtb9KG0AS1mGRPsAgQKojAaZJAxtA3g843yQ+HkBHHb1psYsdQHf8TXl0Bx5AGEzBOOJmG0Dq8oeGt4weQBt8E8lwXRtABiHvbyWWH0BxtXOoGiIfQDF30KtpBR9AeAPezER+HkDPSU6wIo8gQLrrITO3WCBA3D74TWN1IECbsgSgsPMhQAhJKzJJsiFArOWL329MIEDWaMdc1SEUQCchvi8TMxdAK5V1ADoZFEBEItyLr80TQCKQEssqJRRATaW4hhs5F0DI+NjF4A8dQHCnk1ojWRlAuEKUVX/lFUB18d3scJcYQMhDnhC6BhxADvyzHwYgGUBJnpO4/cocQEnIkLtAKCBAgHLAdaIxHEBKZsC2XwEhQEYtACwwCSFA6XFuVeP0IkA0xtfqRVYhQFZzVkqshCFA2o69Jw1YIkAE6cdLlnEgQESxVXcuLhtArBNxNdIAHECnffvrNcAbQKW2cB74xh9Awj/XZufCG0DJT63Rg4QcQPWyoVNb9BhADcDAA4ETFUAlDVSow+UdQESfKjwTeRpAydWc5bOvIEBm0YBL7GwfQEDt1NbwVx1AFWLd3gOYHEA721zAsOkeQLnv7XSibSJAoicMm9HCIkDII2UFhvkkQNDSiYW//SFAoAzW80tXIUAvz5fRMlkdQDVQpwrVWhlAwkViCcTbGkDj6Vw7FYUjQBaECQjcOiJAA6fIaI55IUBPK33TDNskQAzKjjZR4CRAxKV2+xk5IkA+d6cmOj4jQAApbAGDuCNAxjSMPWRhJECMQtk7i+0iQDyVrEh/XiZASmlnIeKWJEAM3BP8zRknQMZpPM4I8ShAEF2i64QsJ0AQVtwGqF8rQHEw536lXytATIGfiOa+K0A9hVUKARMrQFL/wZqGqyhA7LYaIN8mKEA+aNQVD6woQMzFSGJWmydA/2WCLT2GJkDxYh4xlZAmQIZDwCDjNidAAwOEVpPgJUCSUElT3dEkQAHr3fTj0iJA9Bq/L2zCHUDwkR+Y4q0aQBn02XLCqhlAxZ31OpjPGEC2V7trkX8dQEgSnGfSThxATDfZYExYF0AnM0ULGUoXQIi+0NaF8BJASgPk5WOQCkD+qCoUypoOQHoleS+T2ghAYhxB9k6SDkBCeY1dYIYBQO3gTygnYf0/BkxNhjN5BEB5CnXP5H0EQOmJ49+rsAlAs4mllNuREECu1IbaeUkQQE6tM1NnAQ5AXX8L5IeSCEBl7FuMW/IOQCoYeVUYmPw/eLjW6o0K1z+NUfwmyMz0v5X+BGv53vy/MLmvyU0X679HeI+LXb72v7p35CE7sPK/vFm1ae8H0j/xDp3TQz/qP52YtE59Vec/fZUSoBkm77+DxhF/mczsP+wEVLAd2co/fI9Q1FJlwT//eNHZSubrv3YZw6VPofO/XDzUPr1/7r98pjVQdsXOvxWW0rrPkeY/+PsMk9+T4T+6kFohbXThv5oB/Q9RYg3AGSGnwQxlD8Bl43XVkP8QwFC+jZZQQhfAod0+IExfGcCxx/PVeeoVwEMGSsxZchTA8HEI4060GsAcIQ3eC0EhwHyddUxFeCDAbjs3tiS7HMAG7m2Yh7YbwIE2HNmKzxjAZMuDmm+QFsCay2O8HCgSwG6dkT/gUBDA+ENKdlwPBcBeQptXCx4EwHjryUqSWQPA3u4uvZRPBcAq/WXMMCgLwBvgZLccZAnA5+843PDMA8AXmG5QL4kBwETnCl0nP+W/ZBJ4AOAICcArFRM92BIMwCbk433QFBLAprdT5OHeEcDdm5HYbowQwEyy9+nqVBLA0qoUp2ppFMC33Qi96QkRwMZmyXuhbBbAOksPcsJ7HcCr5QV5TCUiwNNX0KVFoyHAWMP6oI+nIsChGLLuap4gwJAfX1YwriLApucF+t3DJMAgkrD7iv0jwI10NtmyFiHARAkmbD0+H8Cn0u5X4iMdwEBupRd+FB/ANRiqBKljHMDeLyAjQsUVwFlJXd/GGxPAQvigwfYnEcB9dwPyZvYKwIDXm79GnQrAenptvwdZEcAbJq8E8lgSwPyQitkL/hPAnMKNGISwGsBjdtNBzHcUwBFoMcOnmRrAf+eqgqZVHsDMM231qx0bwJRSzL2EpiLAPTBPQ6qpIsCSjSB9lj8jwOR/CXrERSHA6bSWrxmyI8B0U+ifHRMdwFE0wGecGh3A/vyDf7djGcAF9ZrmgckVwAWvR9rgpxrAsJX/BQHFHMCCPRRdDpQcwKdI6ajD+x/AKXlywksgHcB6YOYthF8gwA4KXSjQzRzAaqA924GdH8AdyV8E8CkhwNENzb1JhyDANLkT+k15F8CQblxkJyQWwO4c7sq1mhDAExojJhPkEMBQS4DSkwYVwE32HxPM+xTAj9ugURj0FsBkNeVzwv8XwPPt1BwJIBnA2etdlnJdHsB4oYutiP4fwOh90+LSVCDAtrJp54AfIsAtb8+HhHkhwGa5Y3H4pyXABFvsbXGaJMDLsNMzswomwO3HCdCLxyTAdTJHw2pFJcDE8Hig8kMlwAbSAmOx4iXAqJ4o38DdJMBUVqQnf4IjwOYluIEIjSXAntqd8BraJMAGx/a1FPojwNT9MnKYvyPAisAFX5DAIsDwIfitQcsewHp6NanTihrARGts8i3QIcA6ceci33ogwAIFwFcsZh7AFVvwFheTIcD6ai4i2ywfwKwHZAhK8BjAaT9QxjfUGMDJVKoczGkbwKLGpKYpKxfAwwzm8rv/GcB41uV7gOAXwDxg+pD3SR3AXE2aL4APHcB94y/THGgawAywEjd9YhvAq2awF6ViG8BCjuFPRAEawIuOCqgxTx7AvShi4XtDGcDpdk6XVwcYwECDMSsC7R3AzKYxuHC6GcAebWqEjbEbwM7/MJFE/BzAB2HlnKEGG8DgSuMVQ04awE0a4RiA5hbA2AlESYasG8CO3uihvssgwPNsCw2oLx7Ak/D4WTlXIMAhRQx18nQgwETYBXRzlxnAuhmdfTjjHMAZ4cUc47IawLA8xsHYDBrAimoKPyZJGsDRiPc6HaATwFy9haedpxnA5g15Vy/OF8BNDNsas88UwIJDe6+7gRTA/QYEisKDEsAGu2shmekOwDDjRFN8uwTA0Rnm91qU9r8AhFaOg/O2vwpTLkFs1Oi/NglnwnfK/7/g80WvHRoBwNzK+Y22xPK/Opkk7unp6D+GQ4+RoCviPzkX+ir/suc/9iLPnQvM7T8vrmlEH1nxPwqepJwVBwpA/DNKWpSsB0A0LtcSwvUDQIXsZeJzRf4/Ug+u8Dht8j+uX+F3M/T1P1apeEQKFvc/x8XdTtktAUChwIARga4FQK86PEC3g/o/Y6mi9P0N6T9USSguhkUAQNRbfZpq6Ok/iuX5LNSB0z+QS3QPotu7v3T/3TGR7vQ/3tfttzeuBECnUX+4x4ECQJz4tdDyiuw/IKKe0oNT6T+yCxPsvhHzP1WMl9M0LPQ/pDc8EF4v0T8i2eYZnL7dvyYHlzSB/fC/QLTtfNFm0z9qjHAsaLvIPx3oF+sW2ANAxQCKOhVu8j/OqczQtIL1PwC+pPkplMS/R0+japQN9z8ESZQlWQruP0gKVcV13/s/srrF3LYFAUC9oaolX58CQH9qGfX7GQJA7n4c2ndKDEBP/5bOSnkSQCBqCrsssBBAHcf8F57TDUDAVpUatHcEQCByd79mIw9AmwwFA0sCEUBvJZNvylIPQH2M0jqyfRZAKm1/Y3ftGECi/cSgstwUQAmTbBVr0BdAIu07ciqtGEDr2s8f5TIeQLmDK/r3ESFAHwQcGLCYJUD7KnCgUXYmQB09VOWnpyZAwHGsfLgBJEBa4Uvp/tsiQBYROXCwmyVAWLsfc/4zKkAWGEhSwk8rQN7wyQJbeS1Ag25UwMD3KkCgPX48n3ErQHqDVmGtFyxA9RNvX7PALEAmiJThDhEtQBvULQ8yZClAM70CPAllKEAKCiVxzVIoQCQdmfME7ihAJhwBhcUQJkAAV/9nMeslQDs0sL5fiiNAqueFE8sDJUDDl7Z4h8wlQD/wNuZYECRAk4tmbIoqIUAjDGxU6fQhQPkzK3R4bx9ACUQbPeSiHUCXF/H/vhMdQMB/l220LiBAxy46UYm9IUBv+UfNWPkgQP1/kdHwMCBAOQAGZuuGI0AyA0HCNGsiQE1IJWG4kyBACU4DX3nrHUDsZcBbXWAlQGLnrSAZKSVA/Vqd1QeJJECI7QiZGAUjQKIz8ps3MCRAsLBuiubSJ0D0oU0gwMMpQKZM1mG/Sy5APiROST5aMEA0lqaUUbcvQJknIK0Xni9AM7EQ3GmhMEBjAyuBPJcyQFLABkOhyDFAdC7ZnL/XMkDm0vOJ+bszQKdbmB1roDRAtiDAUTcgNED21Xi7csAzQM+ZLpF9ozJAjnBRBnycM0Bl4ZWbmkIzQLxaSjkeMjRAeKr3vJV5M0DnTIgxyPEzQMnCxEengTRASGFkbassNUCiNsuYhho2QOQGjWdzWjVAND9123e7NEBJgPUhdSw1QBncja9I1jZAfZNEyICaN0AYYTkfPpY3QI1kuH86bjZAkTCeLrH0NUDFOcPjRAI3QNqHml3ygzhAXtIU5D0nOUC5ODbTsAE6QGXTgXIzkTtAUCJuVl9IO0BTwjwYjcI6QBE8pJuHtzpAlIFot9ndOkA3PuuVyKE7QI/5ePH+QjxAiuvJ/HUDPUAOmlYHxN49QBU2NA5pWD1AZLtUE0qUPkBQ2VGzXN8+QEaxxPmnXT5AJUqZOQdIP0DVo69JxPc+QEQh9n/YPD5Afrao96ebPUACOBL1rYo9QHAX0/LhID5AClU0I5czP0CEbK772609QAeBHyeFqjxAEGhOUoTXPUC/9Hsx9j8+QJzUdRFr4jxAibakn9rIOkDodY8F93E8QCO2QKikCTxAi66WBTvKPECUE2rSlnU9QOw1gcx0iD1AMANcdbvRPUBFL575x0o+QAdCLgeVHj5AmfLxlabGPkB0RfpkhPA+QDMQzDnNtz1AQnqA0VQkPkBP7A9Ji+4+QOVNTRTP0j1AnA12xEbaPEBXcdoVhIU7QDSt3+NCEzpAMlr0HeNnOkAL7jCGMts4QO0ykEoGIDhA6e7SKv9VN0CoN3ghPaI2QP2d4uvyNTdA07xPyEqRNkAdGEfdEFE2QGwBf5qaYTVABkPcWVyKNECqOBpBQ5M1QBAwH39xvTVAyMJ97jzqNUB+EsDejMc2QMMAFwDfcTVAW11LRdquNEDYSMgGqu0zQAe4K5NIazNAqnhbY2zqM0C0okZjrF8yQI56x5olGTJAz2+gmTT4MUAfalrd+pwyQAH/KKvvAzJA/EnOoKSkMEDGMcvmQv8tQMUNjGVVTStAX3kJvp6CKEAU0/eKeDEoQDHWgtetCSZA8glapLoOJkCsYwBMPNIlQOnibsZTaiZANmooEUivJEBFRFZr4CkiQL5xqgd9MBxAOMVIuoAxI0AMIWrRVT8lQLrWSm2R5SFAm7z8oWBPHUC2mgOUfH4dQPs/KTaNrhxAWkHj+iU/H0BoGXcZ3ZEgQJ2Ms9FrBB5AVBnAOOzeHkD9GX27uhoeQJtqKWo01RlABtP2NyJbGUAIuqi0rvUTQGh77kc2pRBATThZmJcVD0AAmWuvbuEQQBaXFHHz4AVADkYMSjS0DkD716CzLQ4HQEbuDQqdQ/4/oHvG0eHu6D+KY1J2qYXsP2eEFrHVuPE/4ItniwjWuz+aF488NO+hP2ruEDyOK/O/bvx8F+kz/r+u2aFGerkLwKTAHSL36gjArGb8faypC8C0aYjcgh0EwIBF13XctQPAzRG2Lb0LB8Cy59LIbQMRwJjwjECamgfAaBKfV0Q7/7+8/JYSvHkMwAfLJOImYBDAGGsejEY+AcBWiW6I0UD5v6lkLfxmYgDA5TCItiw8CMBRpRG1/P/8v7m5FdWDMAnANEoc1TQ9EsC9kgkNB/MSwBh9Kx2z+A/AWBubv69gFMBewP6WevgSwA1/2KPtOxHAkl0d0AJtFMBT2gpDqK0YwMi6XVv9vhjA8eaZ26qNGMBGikcaGioTwDuP4Du2bxHArLgC0vmzDcDfNlqC0cgMwIumTE855hLAN2LChBnrE8DAouTe+KEUwFYkJyIcWxzAfSv/FKh7GsDRPhxABpIYwDw9h53qYxnAjsjuIvUWGsCcQWiZbyAWwCLMTBCFTRfAwKriuJR4F8AXpFgZviQUwAkHaIg8AhHAxgxj+Z+BDMCnqymmtYEJwLK21lLZBQ3AvzmNLTKpEMB8ksTOTmgTwO1NAVFf9BnAJC2kM4rbGMAcjFepkaQWwDwIMSmCGBjAOxMK49aXEcBQGA2vTwELwNEIGPKP6g/A9knGjdGnCMCGjiHBs5cMwMEC1tDk9QnAeP5hOya79b/JlqQiPEL3v4Hpyp4KMPa/pxpNCcW06b8mbDjIPJD/v3CSo/LcTA/AWUx0JLl4BsCOI2h3bmgLwPr0vwuRAhHAEIcdlKmZEMDuPxIKyjMVwOdPP3So4RnAdfFEMmg9GsDYlNlgtf4awBJvrVJ47xvAFxk/FbldG8DEHuc3G4sXwIDzuQTKTh/AkB4k2XwYIMDkWwAGEhkhwPqLkolDOCPAQZm7iQLHI8Cz+0sFcqAiwKgOePUEJifAMDKab8CUJcDDpRp11jsmwMBAO7nDyiHAicXREKA2IsBmFKtFOCIjwGAcfAVKZSTAU4KMisQIJsAUaqghc2omwEFeTD1WfCXAWOPlSs4lKMDMWeMys5orwKSo4dWCXC7AdZ6TmQRFMMDMMwQnJYkywMXp7XqJdTPAhqn211tZM8CjJoF4eKszwMHBpm118zTAk7XRWrspNcA0WIjCxjg1wFPBcnJKNjTA1gQ81Vs9NMD6/gjA4eQ0wAt3ozK6BDTAh42yVYlyNMADHZImUuE0wMyrvfH3KzPAhKITWdr9MsCnGh9KI1EzwAmpRw69BzTAKkKfJCgUM8BT24/LsHgxwJ97K4aY1jHAeGrzIksrMsCw6uqO/iEzwHnylP9vWTPAY8KfNXYtM8Anl5f6ntYxwEkq6nyNrjHAC8YlsKTkMsAxupHZE2YzwAjiWu4+bzTA0chR8o9XNMDNU1WtHFgzwA659GpdYzTAJ3F0iv30NcCCKhw9cAY2wER3KUXtITbAwp6tqZ9KNsCncElI+2k3wGC1MQbv0DbAdn2vYFttNsDUd6ZwNog1wFhUR06egTXAzMp+3pIlNcBHRooFjAA1wEnEs0NcoTPA026dJf0gM8D5igdF7FAzwD8qmoLUzDTAuGvWvq9iNMCoepxPHrA0wG7a2s8ktDXAg0OOGOEFNsDvTcTYQJo3wISHcbvIBTjAoylu4FgmN8Cige8sUf02wEJs0Su3ZzXAGBpwLtVYN8Beejo8KVg3wJ+xn7IndTbAZL13gVrvNcBQt2p0eVE2wLMPbFsRaDXA/s/SmCs7NcATE/F8KRE2wN8vzUOtRjbAZHko7TXZN8DSpzGq0Ek4wJNk9zIt7jfAm/S5nv7RNsAC5ArNq681wMHnHfqSljfA5wFMX+rzN8Cxh+xCx6g3wHDe92TEyzjAhC3HNFUuOcBugbv95CA4wC8gdq9qezjAzWOfnyfdOMDqJ6YvArA5wJ7vACSo8TnA+bmFDq2+OsAe+6vdKZY6wC32620frTnAyjRU+1FlOsAvgUanqBw7wGwo+HlKsTrAzjpSE/K2OMDxLCCxEAk4wGB8qOdAizjAkxGvk4EUN8Bzh7H7FrM3wKMqbB/3tzjA9FjkC10uOsCqToMdCHY5wP8cEOBWUjnA9RStmMUmOsCPUJCfZdw5wAzWkDekJDrATp9oJJDfOsA96U64wmY7wDF0MoZ/5jvAmtkGiIWuOsAXZMXbuf07wCZ+d+42PDzAY/WVzGhCPMAFqZeuG2c8wMmI6oYZuD3A/2qyGB8CPcC1yQx3J4Q8wKZZwVSE4DzAAEgkuPa7PcDRSiAM5K8+wBDHdwZwXEDAtOz/CAtqQMDv9mLW4x5AwBrtU+qwiT/Ad/EZtu61P8B/eqVNKt49wP654pNjbz3AGJlJj/isPMBlHch9lU08wLq+wnhcMD3AxUYtz7KwO8CjSGSiZxE8wN06TyNqkzvAiEmIK88APMDNpXDoWFI7wISn773tODzAaR73NlSNPMDgkukd/8M6wFvcbUtt8jnAqiABfcgPPMA33aOfRYg7wNrcXfzdeDvA2ITEgF92O8A7XBJJMAw8wErp6zJGWzzAu41Yu7CwPMCAuSZsFbs8wCvkU91RnzvAjcO0E+QVO8DO3bbmoHk8wEBfUrKKfTzAiD7GplO1PMCVyXA4gIc7wG7foqVz9zzAbgvDu0aQPsCDw6WL/CU+wGE03TrrIz7AvlZHYbh3P8ARwXJG3jM/wNaToH1eIEDASjH/PMlPQMCkNhwoy4JAwIX4L4C8qUDA/8iaPSSPQcDoJiR37DNBwPbXbmkQV0HAzSArKthCQcDD7NYYgzxCwKPXuu2740LA1vJTvXRLQ8C8a9OZl8lDwCr+8L50xEPA4OWl5tCtRMAYnd/P3J9EwJpppP0L4kTAlqhwESluRcDtXkOdMsxFwC6LAqC7Z0bA4wVSQSMyR8Cc6JJxgZZHwN0U3cscN0jAyP4vJlL5SMAoJKLQu49IwB1r7EZaB0nAX+f55vGAScCyMH4TLzxJwD2vWn4bZknA1LPBhT7lScCaLwPSnkpJwHTEcFAdNknA8Gf42M0IScDGwjDa09ZIwHJJZWkBAknArG3lBUEqScAYijpnB5dJwCH3HKtf80jAf3ZNHO4HScC2DcAV1WBJwPI0CMJqfUnA5YEzmwOaScDRX5ERpONJwPUAcTI8bUnA67clVQP1ScDKazzomOFJwJdTFtzgCErA4NQxTtE3SsCtIiuEDlRKwB/+5/DUhkrA8jTN7F8OSsDMBZxaVgdKwL9rOljsQErAm50S5LoySsCtwCj+9ztKwNU6W1BJfknAPqOdefzCScBSmxlwkpNJwGjorZNqyEjA7IgqPzYxSMByzGR6MaJIwOVBvtECdkjAJujzSS48R8A5+fM216lGwL8hJtJkWUbAwzmK9XVvRsCA5rUN6/NGwFha96zgOEfA0tv5+5SwRsAiP8uRHR1HwNjfXp9RREfAFT7mWJrRRsB5ogq0qWFGwLOtRtt7VUbA/QQ+4BR0RsAyUx7JuLNGwJUiavqZR0bAxXPr14pKRsBLBERcuqNGwJfZektJhEbAe7bLWtAsRsBaVPu9+VpFwLMBUsMZpkXAZIjClf/uRMAVOBWx4NBEwNE9+nC3M0XANfz3AW9mRcDMnx2p6nBGwFgtnLFhskbAbUAQ5f2DR8ATtkDumixHwGGNJ7gjQkjAWIl2PrrdSMDxnpY6nPJIwAMW6/RkiEnAMpG2sXg1SsAevAps2CFKwID5Sk6mlknAheAXXvwqSsBr53ecXZtKwFS9MQDgVkrAnpeq+y9VSsDserwBQARKwN1EiGRvBkvAOZ1LfPThSsCH7yLKGelKwBTN+KxhkUrAql6NOihMSsADBS3lnW9KwPoq/tBAZkrAh/i9FcdeSsCWin2EcIlKwBqF+eYZQkvAlYesckstS8DWQRdasERLwLa4Nh3CjkrAqiYlQtGYSsAv5MF9EclJwIaE3VIS+EjAmX9Jy4vYSMDzzwyF01tIwCKqtAhppkfAiP05hZjrR8CTC4y0SoxHwB1ZQeq9o0fAw9xR0c30RsDvAF8+6X1GwEN/UPmIg0bAOtgFIpUOR8CJ8m4Hmo5GwO6E80H9OUbAKp8Kv/iQRsCVoEHr4UVFwPs1pj+k5kTA5PakTIMMRcDmcQrL6opEwCB5HF9K10TAmVSx9pXkRMDGGff78QVFwPqrjnkHskTAdGmKUcOQRcD/FNOTtQVGwFSrhk7wTEXAoxIhRXjPRMCflJr+qx5FwCeFt2/X30TAhhRap+QbRMD0BFkXMpJEwFzUPsdR30TAgnwC4goHRcBFJ5k149ZEwDThXoXmN0TA/VDSWeVfRMDlwrnkFCdEwGReMrZGf0PABXU8Z+jfQsDGiw8ysRdDwKz4D+Qx80LANyGytpDpQsAe2s/FNU9CwGkCEGFxXkLAUMxWSv8vQsDG7B7l/nlCwJbAw2s9EUPAOvFsAJrUQsDtnhng8fRBwCD3zaAsQULAho7MIUNBQsBXYjEWSVNDwFgzThJ08ELAxFMZprj5QsC88/k0afpCwKl+9bSLsUHA59NSg8ZaQcBsg3AzjYpBwFX/UCIY8EHAnzOn6VRkQcCX/YzUvPFAwOvuZQmpFEHAWHxe1EjIQMCuk4mofolAwFLwouXEqUDAK12ihCkpQMDIBCoxw5NAwHW50zSzbEDABubxrjI9QMCoJZZBiLU/wA5nHjKEcz/AfLfBVr5FQMBqJ0yB+4U/wOsdui6IYD3ARTW2a0K9PcBAosrVv/c8wEnwye9GGz3A6ovUU0exPcDgkCyGfTM+wEiPP00uD0DA52+ebIeTPsCuqYVZXxM/wIw5hCaoQz7A4/X0KwVvP8B/LTrjIQRAwKbSxqd+Tz/ApTgzMMWaPsBXYpMrzBQ+wAADJTYM1jzArIic6vqkPcD+3VPXdx08wMIKQJZ6FD3AG+zkVeYhPcDzcJOVQjE9wEwbyxFNlj/AWciqWgoOP8DUF0V/fhA+wOln0QH0Qz3AW01iwo7LPMB5g6Bj1go8wNXltlMnwzrAapS4vfQPOsAOxSPJDf85wIrMFXboWDnAqtcZTDCVOcDVfIMNzOQ5wPzYFmV/zjnAA0CLOUbXOcCiCBkY/rM5wOmMDLGa3DnA5WReXQwQO8DiaA/JyKU5wLXeJncOADrAQfoY0PorOsCAiQ+Xir46wNu2aQduwjnAjYj/9knGO8Ac3YoQo6c7wEVC8nrMIjvAh5fHa9nTOcChUXE9V2o6wNxH98Jy1DrA5VfIuMooO8DIK5x4V7E7wPTG76WsUDzAa2cGgeuyOsD7prTda4M6wHStXVuG0DrA5osLK+GUPMDQOOE8ChE8wHY/CvD2Iz7AAtSm/wf9PcCMdx1aFOA8wNiax/n9FzzA5/bQ8VR+O8AR1MTJR6E8wLITy3WBcTvAQjOJIecPO8ALy6Yk+Yc6wOq43+z7zjnAzcfd0UYnOcCjNfOygrI5wFUdch011znA87brHKBHOcD/9n09i1g3wASN4ntjFzjAwBRW673VN8BroVaInic4wOSFscRCtjnAhHLavwdLOcAWMagDEhg5wJE/Ds9M4TnAwZGveN6IOcAKDjPnG7k3wGx5AAOSEjfAKln6V0AdN8B2Eq53Kqs4wDfz2cx9WjjAeGc9jRxYOMBWDEqPYvs3wNPiHO/cNTbAtDa0+3OfNMAid8fCobo0wPMDqGU4XzTAXX5l/wqfMsAvKaMNzagzwDCjVsrDHDLApkneNHaoMsBXPzSBdUAzwH+W66KB+THA89o7vyMZMcBX2IxxOj0xwFugyinCxDDAdVQtwERDL8CFWEJ8qCswwN7So2EQxTDAV/dOIgfnL8ChfHmGIgowwHZksOVg2y7As5A5+lb0LsBQyuvciDAwwNdqtGjNBjHAtaBlxQMiMsADdzidtVA0wNH8LLWgeDXAVeccxtkDNMC7bf+7t00ywHU1RSzW3jHAchJ/KJFvMcB34AhNfbUxwM6P58sNHDHAjI4E+YLGMcBnzXFXJHIxwI1rGlKx4jHAaGDr9qyYMsBE4Ef4HeQzwCvMkMM/0TLAyw8Z2NrlMsAk05S6kWUywLfo8dXOEjPANHHyvZqYMsDnKhivt9cxwENu3J9USjPAHXBGB+dbM8Clw822/qEywIwPb4KF0DLAPiKJ/5OlMsDode8LD48xwPfN7C4V/zLA5OgBLLsyNcAAdrvOLZQ1wAY6Ik+MvDXA1bCjQOkkOMAq5sTLxas4wBAUiVYdwzjAjtiaXWTFOcDycb93d5k6wEroPajKCDrAyBoqChcYOsAFXu/0J+o5wK9WXZKnpjrAWSDYWTh2O8BLmjiozgA7wH3muZ4wBTvAnlGlWbH5OsATP01phF47wK98laIzETzAvgx8r82fOsCnpCepQ687wE1+tWKZRTrAUZ8890QEOsAsWEO1l+k6wMep+IzIYDrAoGZRxCELOsC4aprJZj46wDZ0bTavpjrAtH20DouEOMA9Q7jqfGk3wAu2xcz+xjbAjuEC8w/sNsADm+XFwks1wKAyDlq2ZzXADP10m2gSNMCE835wBEo1wEA6o8KCVTbAxt/dSRvDNsCeTYdQqzA2wNFAbFdRujPArXJ3dzysM8DSJBrCvig0wMKdo6ejcjPAA9O5sx1SNcCeJv1DvMc0wK1dyrh7FDXA0R7qAMuRNMAzrj4WWpUywLkt/HviRjTAyxzRUN5INMBkvbD49/MzwPkjLUZ72zXAqLJheG11NsDaCVc/Y7I2wORw7jQsmzfA4kxW63xcNsCOOo0mVr81wNcMZJq7kzjA3xYyx1nyNsAMun+IHtE2wH9aLuYbzDTAa1fwYvMlNsDsSrybjcw0wN0/7D0EqzTAi/siFJYhNcAStySU8hs2wF2I7a3OIzbA4g0isijaNsCqB+cCSBk2wHFUhEnO2DbAHb/ruvNMNcCLB9lpOqQ0wMFYRZy8ijTAcb1lRbH3M8B5xScePr8ywIyEKYIXIjLAL8+L4lOaM8AhbNlBNz4zwHg9jX5kDDLAE5O40SVEMsBJVt7YPP8ywL2vEl5uaTPAtIahuRgSMsBnpAkR7CsxwLqU+Z52sTLAlIDxvcyjMMA0XPzhdFwvwPK2NvVHWi/AYORAHfEkLMBhnF/eCloswEvFvk7+7ijAj5A2PmNjKcAylwcQlkgrwL6w3V871ynAIGp6OhwcJcCRMAb2K+gjwHKsoJ4rLCXAc+XnfpRyI8AN78PqAb0iwMIFJykzHifAFHeJExrwJsB+fnp/MJYowBLXa+WFbinAuJgBPCRhJ8CWbIiPzSojwJnd0Nf4USHAxbl9DdMDIMC7iQ0NW78iwAMJWCAq6SHAXg5CanwzIsC8zsx2LXAgwKwr1xoZDx7A1rSEdFBqIsDIpuiLndMhwIaWPcejeh7Aqco6BG7AH8DP2SbrEdYbwCo5fd3RPxnA5E+yjkEiEsBZhA7KgYcPwH2hSJYkjhXABp6q1CIxHcABNwNiO4wdwN6TgswjUCLAGCTTzHaMIMDtg55UtlwXwEPE6I4C2iDAN6fytKYmI8D6iMPe98YgwJPlzC5UAiDAgFikGZjNHsC8cx//aRwgwBoyiLa+jiDAsumRaT9iIcAD98N8NwAfwKXM2+NzAyHAyvHqb3ewIMBiwnB4t40dwCipL3Y6DiDAZIQkpEq0HsDu8+dMM5UgwJ75aH+h0B7ADUBzN4i3IcD2CFRRjlYhwP4OtLc/fSLASvN/QnfrIsDbFjPQbq0hwHdQiAQrMyTA/KXBMKMDJMDBUqev6v4lwFkkGY8bnybAIEfLLPI5KMB/GwtTjisowLE4Jb9lTSrASNKUG2FZK8CqWyuj7KUowNx93zJYAynAWIeC0OsDJsBFPXO94YcowM+bvHj8hSXAIWpdSKZcJsAj+6rTtHwmwJJeNhgc5ybAPs8AEluZKMCyXZX3A7klwHBAc9wGLCXAcjUPFezUJMBMzXUN0TMkwOhysdFaLiLAUzv2gRJRIcDo4ak4y5cgwD1X8ppuLhrAEzvoJ1UMG8A+W9/Gh5EewO36c1HnbCDAkZW55MtyIMBzr2H/D70iwPa7yhE7UyHANDQ3l3RJHcAjcfkZ23MgwHsg3aH5Cx7ADkyZxGLSG8CVs21OGeQYwKAzR+U1WxvAkjFWeUUIHMASewKdVDkZwIiUkfs9wRfAojcjZ1qSGMCmy/6tC1EawFReU2ASgRbA1Gg9mDCPE8BgLp3yZ70RwHoNfOfkjRHAuTK51RuPEsBmXmgidU4IwC3tzRuzJwXA2+aI15nQ/L8iONz5IIcAwGsvbqOy0/u/uUA6CNI7A8BBcoknXKwIwGcqdCrDWQLA0so23JEWDsBmLAC5xIISwBxAbM3XUw7AhEzRGcJHF8CKTLIb0AcbwAdkLJNEgxXAZP59+HobCMCLsoUHlxYCwOUVbzjGiAXA2sktqlriDsDI8ixj5xUEwOO8EgMVCQDAfGa8lHZnCsCG211UIwYRwCofsK7rGRfA1Kw3z1ckIMA4gGq+7N4gwMfGJO+z6CHAoKQGUDYaH8BKW0omcL0iwB0FPZVftyDA5wpzTYRZIcBI0Wzq6EchwEagYowkNibAgKtdOfQYI8D5udJL7eMjwKa/C3D2biLAWCnenydaHMAek99zvHAUwATtKXXtJhXAbpvTtkrWF8BKWSU6Qj0SwJazsbg77w3AtA8SclNvDcDul8lmn0rxvxQxEWkewu+/eMrjnwmg8j/kl9w22Nj3PwC2f6man9Q/ftfvbA5J9D8xYHZvmxT5PzA3k6Pib7k/tH7ZdBSjp78Loa7pFfvxP/a75w3JLQZAzSNZgifPA0AqBNparO/yP2BY8ceGgbw/GzXHPxjN/L+b+XTR3Oz5v391fBYs7QDA2A/84ZgxCsC4kayQoEcPwGdff3ig/wrAqtLx2JmeEcBUEwt84JkJwCkaoQH4RxTAPH27vdM3EsAEZy698IcSwCCW+M/b5hTAz1YAS5g7GMBJckUCu8MhwENQDU6+PSHAq6xOcxKQIMCYU24y3esZwGMpgbEKchrA0S7F+YRjHMBhoj8hB7MbwAGL7HK0ER7A86CNYIBtIsDQyoHabk4ewIeRAlufhiDAJKuke+hsIMCm7RDXIiMgwHoLoeL4MB3AYDWSodHIGsB03smxQ8cbwJGtqyLK+xvApKj1wjdlGcCsIexi82whwAr8cYJaIyTATCqQmGPcKMAuyDEPj6oowB/dBhm5kSfA9j8t1OKjKcDTAydtjAcqwPHCJOukbinADkAMsZT6KcCs4wmBtK8mwHexRzfKFinALn2xAOWTKMDdGShARKomwAVwJ4wKfCbAXO4B2WXkJcCZtUywgmEfwPBFuiy5yBvAChmNpBgzHcCir+sO0KUcwGFjTIaR2RrAU1HbmIF0G8A4yBrLkoIYwG0W7PcnFRDAFIZR6ZX3CMCv0GNLg3kDwGW+AUV09fK/V4WA30+N/T9gM5vPjY/3P/SxtKjjJAhAgMi8xlOLEEBKKfqeGegVQA63SFCQihZABlWjF6OMHkDaBa65/rIcQN7lV6Hk7xNA2QqpdhNZHEC6BPJCXsQYQOpC7PSb/hZAqjpfD1JbFkAM8/vmySEZQEgTDWfwyhZAyBy1RcjjFkBsD1UArhMVQLnBrYtsSBpA5B612WYHIkDgYcbyBAUiQCDayOZHhyBAPQIEBbnTJEAejgucoDMjQLilwbsmwiNAw53fkkSPJUDiodFcZ8knQFrE0+C5tiVAYtrz8tQhJUCP1AMZJiIlQFylliC8jyFAzEM2lDCGIUAHH2oinYAiQMz8lTO5nyNAUrjfpLjsJkCRoHx9pzUkQFdHLjKpcyNAJO7uDT6hHUBbULS/jCMeQKgrtlnnahhANMVzOEe4F0BcJgzL5e0YQEbVhYZ6vBdA1cy/cOnBEkDK56MMgdcKQIyf6P9tSv4/CcITqst4/j+o4+2ZYvYDQABV09P25aQ/IPKiHhhN9r9mIpVel1gJwAWyQld7uwLAqqEWkk1QCsAUm9QSTosUwOK0WmhSZgvALGmotWJdEsD8LUQUQIgRwLaynwZHHhTAIrtlreoiGsDN3VVvTRMewC7s/fDBaBbAWBv/epBVFcDc+scZwO8SwDEKkr7tIRDA6PAK7XIACsC0uSQt+ywTwBbpEV9sxh3A9b+PN7BzG8DhH4RRR/8YwIZ8QLBB1xnAVlSKjPvJHcAE4uYr3cMWwG6uY966jRvAVbVr0auwF8CrFuVUAIsQwOJUE8uX2Q/A7yEBBQnyB8CfdpeEqLgNwIFZ07HJrw7AOqIblGXEF8AUollbEP8SwCQGhJ85cg/AT24assjlEMAA/QnUA1UIwFzqL/nJTxLAba3TpbCFEsA4O8ydvh/9v7x5h8nxluW/SksjGmkS5b+7OGAX2fv8v4yHNrksRN6/gVdtISUt27+F6vezZCfjvw2QDWvE8uK/xdbTW5A14z8PB/FN/FDrPxZrpn3J/NS/GgZOxwKZ7b/wYjCO02aoP0d8p4yfPuu/4YfR5wnd7z+SIBICHHTfP+KokUDqGAFA7izMZhSh/j/l0nK9IMwDQAMOU7stdQdACugYiqDCAEBI39zuH9cIQMxV3fGN0w5AA1IWw5bcEkAIMHP7C3AKQGqy06gshg1AkSBk7CKLCkAuuoBfrfcJQMGUAwEKkQdA5QKZeGQjEUDjYKhoJ90TQPpQazqKkQ5AlUPec7MwDUA9r2AWYMMLQCX8+Hjbwfo/yqIOJkux8z+Igt92rU4EQAZrcXMhXAlAVBz2om4sAUDGIIEVA5/rP9ecELzQees/TGnU5qcFyT9Iem69SYidv1yE29v6csc/gHq+L5iSmb9OvilyN27pP1hsVFn28LG/UJ1x2O/s0D+imdArCuu2P2r/2YilJOg/YBF1VqGJ47/U5UL9wEbIP1LY1EEfhvS/epKbpVBW4b/oWQFnEcXxv1kVA+EdEQnAXCk95XZ3CcA8BVxXEg/mvxiNuC961+U/YHGxhPeOlL+sgZeGuvH1Pzm43HksagRA3YRDUm+GAEAQonjzb5IJQOTYBDMXbQdAejeq19jdEUAWGP3gdh0VQIaiWZqtRhdAoK9zNRAFGkA0Xno7eLUdQGoQgXmgsB9A8Wgqn/RkHEALb/MENbceQGtxv5+hfCFAXFRX5kbAI0BBm2e0s44gQHz0qPgxsh5AneaMQ5SJHEDMO2bSXhMSQFYYvHM+8g9AIL36eR0JD0CqTNdZFEcSQPj94az2xRhAOxykgKgFGUABHkwRbB0fQNfQWAXIVyBAfRRwuIiNH0CxsvjJ0YAgQFwm3vb1WSBAbQPnZEByIUC7SY7xjEYfQJTJVB3h3SJArnbhwzkYI0CuCEkifqEkQEO70hNd1CRAS/zQxLepIUAw750VB+4gQPJA0UODKyRAq97uOcHYJUDHhg0entElQEa7AUEfCCdAHQVEqSVJJkB/vC0w5bcnQMMdauGbPShAKIzmAyY8KUA2xBnOmzsrQLRBPEUEUipAqiGZ9hTAKEAi9nO2TwAoQHOBkYn61ClA1SrdWsFvKECCKY5qTHQoQAUoY8tKdipAa/tbaf6jKUBHr5B447YsQILOLiVpgClAb6PxGhXUKUDP3PRPpNIpQBoP9/URRCtAnNPODzOYLUAWGtkTXmAuQFLUdPMk0ilAPLwtJsvTJ0Bi6rjdsY4nQOmWAZlUGihA6ufw8Z5bKUB3TTPi8OomQOJ31+6H0CVAH6QT0c8FJECAWaz61ncmQBwqpVoToShAlS97Mwp/KUAZkXuJLMMpQNnFJ9mzMypA2b2fwpkCKECRqxLyyOkoQK4/YE5+WylAnP06cDzfLEADx5mdAVgwQLXUhoGNHDFAQBmGsbf+MECOk9oVbmYwQOo/WgmwWzBATnQVS8k5MEBMwko2gO4vQB7g1LgnMS5AQogg3tINLUBFxE9hjRYrQG0pULL9FCtAgJDP0bgCKUCv2axkIRQpQNSFZUV5vihAdOFrYQTRKEDpcVB1DZ4rQOAL49Syvy1A4uhwoeMPL0BrigP9ETUwQAqv2xMpRi9AzSxDWEnLLECEZeMRqBcvQJ4ipa2PxC5AVvap/2iELkByebDXxnQsQHEiWKnhQCpA1m30LZNHKEBWBEowmwopQJGfvu2KPChA7Pra3qnsJkAH1h2ksxomQLwDVh1ycChA3P1IdA7KKUDxBk10Mt0mQJi1ZpXd0yZAJ2FSdG3cIkDBM0pNqzMgQJnVQ3JP9htAoJ5n3J9LHEC/UUJsBOQZQFufvOjINBFA1GYkYqx0EkDiN680520QQKIA69As6glAPAEv5X3pA0AMID3feoMRQAMcWQQMTxNAuthyNZLwEEALDkOkHXwTQMMB6uVHdwJA0Hghd80n/z9mmzfXZvoBQNvl6pAp5QJAO1O2UGiX+T8h+sMTmLv7P6ciaomyrgVAQpZRs5jmB0DQTVECGagKQAdmP6lM8Ps/1GhAx5Zq3j+IZPjUkjXRP4WgoHXzsf0/N1ehqwvg9z8muu88e6QAQIBbDR/+jvo/sGOdF7rksb+ym4b/PeT0P9Y5w5UEVeU/HSNxWgTh7D+GrfDcQ13cP9p/euLD5Pg/5gy4SQZq+z/PT7hF4C78P9oo00eZmO8/kFOW/8n0yL/vgmyvh3P3vxx0M8/GmgDApvcVLKvd9L+gsWfl1MgHwBzldkllxwfA9GpvzJ6mCcBbprEPFEkHwNg+peQMuRDAogltzRDGCsDbbFJSvAsOwLTzY/vhAQzALydLWHz9CMCKjN9rhj8DwB7WixeYmgXAPFBXgRFUCsDO2jSd4cgMwPgr+mtEsxHABqFC/CBNCcBQUBvXz0kVwMjYfEON6xvAMztiJOHkGsALJJ9v9p4ewIfLT0WpXRvAGSqb36j5HcBrOz9mQo8awHBvin9tzBDA5nmzjhCfEcD6rRNmOvsWwBEzCL8n1hvAwrh+rkE2FsCtMBI9QBoTwNE9tYU38xPA/ioMHwwVFsAtAf9DtSsTwKD9TO3E7hvApMv0JIoJFcBGqqYJCN0TwOjSFSKfvhDAvwweiK/SEMDBhENjKIwTwEd5656cIgvA4mn0vCobDcDCAoGaF5QWwNq/PyAD+xTA6INZZbJXDMATiRY+e6sOwNdPkdK4hRDApG3+lpfwDsB7Bv5t4vUMwIbYh2alUgLABqjyiN6LA8DcdDfd+vD2vzS1ze3n8OK/2HEVDXWo5L+ckStILJPdP5pLNzZ6+Na/gIphOp8EuL/FuXgBVcsCwCbL+0kOufq/YG0yPvglB8B8MYKIwWP3v7dYX5PypADAULwi/FwTub+qcxkD9+/4v810HRsk8fe/AHdvYZ9nsD8ABXSTybN5v3FoK2gU/tA/I03BVuve1r/EZLQ7nNTjP6DNRSOLtfC/wKhECAZrBMCEoySd1xIGwAfVuGNnrAXAhiCWKpff678oT7z1NLvyv0CHoLmIBcS/dKFa9egd4T8+yC7rbynnP7gcSFaNGfI/bkg/CLB00T8d+egmySAAQEmd7LbJevc/6WWheyDm4z9ACF3rdCycv5gLx3NMGc0/j1PgTHJE6j9nk9tsIy3zP2Ide1HBQ/Q/YPUM8tZy9D++DcZQVGQCQKteMoWFiQVA4/rsIv5CBUAXQvDZVn36Pzyq0WHKIQFA8DO7TjkJA0D9DKLUj2wJQKHZIHFkYQJAphFoTISyA0Buz+4AQED5P1gli0NM1PY/f9qg/1cY9z+OQGsjXEXxP5DZ4ckP6ABA+AdSMWe0BkCm/GXcHjwFQJT+IgsLYRBAIAcLqRVyB0AuhdBvwH0BQJMXhgO+X/E/Zqkl7uOd4T89W7u9zuz9P69/rZLlSw5ARKqIS2RuEEBWWJWJfjkQQHiKRFVHOwhA1w1Jc1z5EEDlYfXPfPkSQAiZAKcvsBJAKn0oE9hsE0CEhKDEOwUWQNL7NTDdoBVAnZVQ2hhJGUCt+6eZBQYUQE8/afY6sxBA6EBIvhPECEBVWAJURcEHQKLUgGgeewRA2XnAOrHKAECtxu36eLfxPyCrssOAXbW/ldGc4DyByL+RmpyGYMntPwPbRhAfKOM/fDBaiHhZyb/g5+qlo7nOPz1WC3uaM/I/yTIbexY19D+JrilVvAP6P99amHjpswJA9ltsbg8UAED6zlHuovEEQM7yHhEtaANA5kz+x4n7+j/dOeBF1ZT0P7YtqCr+kvA/6meJ6GFQ/T/wr5lMoD6yv1mW6sxjG/i/6ADKhCRxz7/N9+e1DLvkPzbYcXoRKug/MbzyGM/j1z/lPVeLqwXTv05aGjlsqPO/2nSXPnYf/r8cjodCBWj9v9sfEhNhj/m/hieoB+PYB8AqvV2EoSYMwDXCmFfMjQfAFQhqxgFKBMASHHS7Ea0TwAG8g5Pk/hTAhvBw595CD8Ag55ckMdMNwIgrhndpiRPAdCM1waGDFcA4c/8Td1oTwMUDIJJMYAnAuRLmZuqxCMBHRrRUWxEGwPUIsK8vkAzA5iAwTyZdAcBggHDKFL75vzQQ/C9U4v+/rEWwSvvR379M/2Mscm3hv/YXD1+24va/Cms6UV1q/L/pcE/uKUj6v9Jr943u1P2/3pEOiwVdCcD674F8TWIHwG7o943fpgfATsmn3UuGAsDI8L9s+obpv2wA2p8UFPa/GqXorI35978UXUFTpX3cPzh2wcs4Vbi//KxZwCM/8b+KQw1K+10BwL7kduCEWeu/mZ+ztbww97+41yE9wmbHv4j9I6SnJOk/3C7TEN+L37/sUnhpXPLwvxTOcHAuxQPAkF0VuYhU67/BGyTHyDD8v/96hRXxXAnAocrYbNd0DsCCSzN162kUwI+104Ef5RXAe5kGps6VFcA/6Q89pIIawGR1qexufRnAZncGsxVCG8BM3wEnc+MYwK2Go1VsWh/A0klQJy70IMAmLgpYYnMfwPTEv/zwxR/AvqV4f4NXHsDpKE6fFY0hwJw5htxSWSXA5gna3EqpJMAfGdI14ygowOkL7Dz9XibAhbCLlEGzJMA9sPt8mCQmwMDbrUYfeybAMts5Lu7tJ8C8gH8u9mklwC9QqgWFKiXARA6xNWG2JsCcRs5s4NknwCg23PfYlyfAY/w4qpToKMA7aQLWzVApwNw/Vj7RQyzAQEkCEa1HKcBYMhO42zUqwCwoQMCS8yzAZmtR2GmsLMDaicuTBposwFuBjl7CkSzAQghHIanAK8BjBZxeanAqwAZPt2wiESvAGo9jqrxcLcDX0anTtMUrwFtKNaeS1irA1+qqgLAAJ8CsAGZkkJcpwGtM2LtR6CfAltYxaTB0KcAc3cBAJ40qwMsZgLpLUijATNrJTV3yJMAAMY58XOsmwOh6Dg5EYCXANsOm8veJJ8AyzF5RduwnwJ9/BIudxSjAukbjIjaKJcCoo9yWY2cmwN7P4meyYyrAGx11bfiRKcAhpSxIt7wmwD+v9qYD3yPAEXcaB7+hJMDci+Ff3jwjwKM4DPA1nibA3PNeqkLIJcB1MeZhMNIkwGVjHvLjbiLAEYOEL9ApI8DzNbD6JIshwHYWW5qYaiPAiPZwK38KI8AZ0Jt5LhwkwOp8+kVpfCHApQRE0c0zJMD3AOcP41MgwLEn/xLCUCLALkwTZAOxJMCmwK1zfB0hwNDalnVYjh3AUHcS2N9ZIcDaQu1flakhwGf36NjvdSLAMnVLxYn+JMDYjnsNntslwDaNeuIvlSTAfbPilJ8qJ8AWiAeeZkUpwDwRd6nvsCXAqLzkGfQLJMD0YBgWg2UiwKsKLuFUfSXA8PfYMeCTJsDObl4ZmMsmwHr6bA6HLiXABHJ150mQJcBaAACnGTEqwITJ0j38iCnA+TW4Mfl9KcAjrnPygNQnwMti5Z+vCijA+M3aytR6JcAYysYG3p0jwAkwEodpniDAN8I/2BftI8AEK8V4hcchwDJMrBp+kyLAIDSFnaV8JMCrnjWCL24kwDZChcKLkSHAQ8ahBk5fIcCGAWxNusEhwCYepAU3eiDAyqut91S3H8CqQI1uJp4cwHCq5m88NhvAr7wDI4Y0FcA0uuyRRyIYwOthPDwufBjAOrwknft6GcC+0gE4v9wWwHe8EUu+ihXA4c9/DdXzEMDCb6CnVssHwH+A0868cQnAwsQr0LVTD8AI2vAmETUMwHJqxSWRogvAohRG7DIWEcBqsx4DUKkVwJRgIOh5uRrAb2tHdXSqG8BGPLeyEMgewKu2quqmPiDAcpbHya2zIMDtKZ8gWeUhwFbOglcVVSLAaDmvgtVoI8D+apA9JRokwDvnslgeQyTAcJjyxlFeIsA/CpQFRjAgwNBOUmmmYiLAjTmT6TQDJMCyMGTPL18iwBQO68or4CDAwjTol6T/IMCmKuhS/doiwDH6piVi9yPASRie8rQtJsCyXuxwnCcjwPs8ceTW7iPA0Q62hAdJIMBmimTjU7AewB7/Jbnb4h3AUEaqkhqJG8AuensXG48dwONSmMZePxrAJ/IFISsrF8A0JSwAax0QwHSh9I/oyRLAp0VoTk49EMDKTTP1JjQUwGZCb+eetRfAi8uRZ4J2GsDnGCchf5QcwOJT2GiZ0h/AQ+6PQ7IzHsCpfab5mzEdwGxCcXj1MyHA9QCphXxSIMB+Kyf4WfUfwMPPzfueOSDA6yWh/tl0I8D4yBiPTNIkwFH/6qkKpyLAYIXi5hEqIsBp+jspjlshwPZHNZAZ/SLAEZ7hxIAAIcAu7f5UnloiwP1XHOBLXiDAEjtDyxmWHsBto+cbjB4ZwHbsOOM2axXAnPuwEaUeG8Aooy7l86YbwMU9iq5Y+xnAbtHOLd4mGsCJo/lQHJkewI0sro4ejiDAVjyyYBUcIMBQmPkU91UiwJxLpndhTyXA4ZbQKarfJMCKwWC7c4UkwBcR0+qaaibAKNc2gkNQJsDrDd+bHDQkwNGRoDMiIibAJ/WoX4VGJcCc5Dz1dsUiwAzka3QtqiXAvoLCwyslJMCV/smGvMgiwCIj9n1RIiDA5t1afISmHsAaEjl6keQYwFxQOr32QxXAeknB8fwIE8AeVABSzHcOwE+QquqQQgvAFlWbnbsaD8Df+VriBaQUwJSWAECijBbAJeiElBvFFsDXOol0pqASwEase7d+9A3Ama7RHH2aCcBerLzat2sAwDXi6c5G9v6/UPJ7nSCU+L8vgkft8rEDwKVk7EDHvfy/fqTmdBW5CMC07Tz7vhoQwK6/BBwIVBHAiHAwSXzCCsCBunpS79T7v9kqtZzGmhDAMPmIOBDH/r8tfWi7H3r+v0C3PdTw2gbAzZYABrHEC8DpCocChmkRwM9+gq9p4AbATDY69YnBAcA0ZlQ5320BwCXxQTNpNwTAEPEryYUNAMCon2h9ICQBwGnVCmVxJwDA634gCKVRA8CIZrtFHZMJwK5jMoTUDwvA6htAdfvVDMBnderqX+8SwKd+g6oiXhLA5JymwnYdF8ADM6BwSVMVwBIoYnfp4RDAIjBUoGKUAsDMonRYPgPrv8OtHh5M7uS/moZtjn1M9L/Q7/is+9nXP/LF45X0ue0/g2IuPMi//D+s6/EHgDkFQPbg0J2Zk/o/kUmvjfdT8T/ODdMCOIL4P17vJeitkAdAQKzCFI82BEA+v6C8ncsHQJIJB6ljGwZAEBTCLUve0r8sHvkX08Xgv52DFAdClP6/eJUgp9VmBcDIIKM0mBYKwIq96f8IzgLAvoSE/g7P47+keLrYL8ztv7zS3ktU6/q/5CwyA6MkB8Be03V7ZlH4v/TNmHU3oPO/UWHc/GoM87/7VcJcNBj6v1ykL/S2j/O/0BVKCUWtvb+w8WuA5SrGvyW4dZChrwNAtxSsEAH0EECfzhuMD7kUQJKr0iYLdhdAxJWzlkGoFEDy3KolY8IQQMj4HvBXVBVAwRDnF88XFEA5S2+medsUQB5finEY0BpALQ8SQqTxGkC1g9atLSEUQHCO841aOwpAfbrbEyBUDEBjPVmLJBAOQNJzxgmTKv0/maloMBtX+z/M2F95I7j0PyzogkL2tgVARN9W1eCBCUA4Ev61pkkOQF25igMsIBlAVKuUhdZQIEDFf7z0Tu0hQCyxthSrfyRAqG0Kc4lCIUCTYJ2z1MQgQHG4MhVkSyBA+9+Aj8PXI0DIZNIdNxclQJxLPxrk9SZAWboe43PEKkAzRnX1lY0rQApkdeS/IC1AJ4VQQGX1K0CCIKJEEYsnQN0xpwALbSdAaDUlmqexI0ANRlpZPj4lQB55/AcyOyRAou39XDIeI0BHREAFwtUjQERmKVg9hCJAU9lZnHQOJkCuBRTJwOMmQKxw7H/9NCNAJkT0Jl7JIUCuuW4weR4hQP7aop1csx5AOvNSarSOIECqtsfgxA4eQESg8KHiPBxAvFEJdDmgIEDhEVRvih4fQEujlD76YiBA3RVthQJEIECOH7cWNJUhQBguTYQ28CBAvKRVs1lyIkDJPWNIFBciQDKDJtDzIiNAckgOKORsH0Akn7voMWYgQMunEUtC9SBAJxb1IuO+I0Dbxi+kWHgiQNZM7MPk+SFAuX9GS36wIUB0wCI2sb0hQLLPw9Ze2yJAHguza1gBIkASegZlmr4kQIqRC2eLRSNALs8i+OvQI0DPC3BQ3RYiQNjRF4L5aiBAK0iukwcSIUAUcfhSVM0mQPILCU2T9CVAWu3+oCaQJUBqCRubKd8nQDHeVYzJRidAGsbuLbbfJkB8A6WvUCQlQKUs772uBSZA8D1cGIZCJUAPfNvcK4EjQHDosvwPZiNAs+7Z22FKJECUj7NkAogjQMZpzjFAWCNAA/v+FYBDJEDYyWvwRm8iQNsvgrNNbiJA3s1enCJIJEDoamZ+DGIhQGYGKQoScSJA576FZXB9JED9sAlF/EAnQGM3B+cWGylAcapqY3pHK0CptMyY4S4sQJii9Gh7JS5Avy5bxqe6LEBoNDSyyLMvQPu+TZzfQDBAGh9qGEg0L0D+oqF6gL8vQM6YlUXPXTFAkOUCxe8yMEBLjjLdL6cwQLNAGmgdmS5AgUGBtQrYLUB7l8CbUqgwQFCRulXbOC9AoHYCmUauLEBb3l9NAHkpQPZFFPX1HCpAGPE8SxtQLUBVdAHVc+UtQGrh3deuSCpA5BxzNcK7LEAIgliFr+EsQGa9HMjCvSxAZPjYDB5UMUAfA5OtfwgwQDJXQvr5KDBABvU9jh1RMUCalguQJZ8zQLl3zLb/wjNAQfzWTU66NEAtFJcpvX40QAWiilcZHTVAc1T8/I4WNUBcfk11aSQ1QLZQioAHIzVA/aQWOX1sNUAP2ngzFlI0QAZKxTR+2jNAOVw8PWoTNEAKipnDyPc1QLeDGqKNnzVAXDmhtArMNUBsKfaeZQc3QMnFPI5gQTZAxwEjxfS6NUD58CRMDbg2QG5Ts+fwIDdAjsfrowyPN0CPxYPKSns4QJ/x0cfBfzhApIK9dkTsN0DuD0im26Q3QEcyLC6mjThA2D/on/PdN0C8D1qmSlw4QMVfMlMZvTlAoq+2enlYOkBTeMG391w6QKtQ7kkhqDpAVRD0jfXTPEBogzF23Tg6QNTnUjCEFzpA42sTGXEfOkCL5dSdRZg6QL5WyT87bTpAKkZBkSsCO0DlkPvLrb05QIIMMICnijpAnP3jPCb5OUCbM4GP5to5QAlgc2YXOzpA53lsv7P9OkCJNyEU83g7QFI1Fm9FtDpAdkXNPf6rOkAZRXE2znU6QMjN6SeeyjlA9MSqBJuJOEAtNpDMU3o6QHnF0u3NbDtAOH3W3+YPPEDWyFSqTWU8QLVuIf2PgDtAMrIeP9FyO0B7PoC3EVI7QMWBU0T9VTxAvf0Zzzr0O0Ar3RMYJiQ9QNdUGBn2Rz5AUXS2HPkVP0BB+L39780/QG4n2ZbzU0BAngLy0/r2P0CXOla9P9ZAQFk+n9lA6EBAMDMRBEI/QED4qs7Cluo/QHMWiqs0h0BAr8Dn33ALQUDvhS/pfYtBQDjRM2j9HkJA6s5EyE0nQkAG1aom74dCQLgufFcHNUJAkznstLo0QkBFN+LwNRlCQALAickDy0FAmoHO0p16QUDBJx237GJBQNTSJlqCLUFAAfGmqpc7QUB92ZLhdhRBQJeE8qgWvEBA3QMPiQHmQEDxccf+vvtAQB0iCCPQ/kFAL3Bdhwu7QkAQfdmlApZDQMZkvZvJOUNAoW+I8hfPQkDicUuZSRxDQCfQF+EIckNAfrOQktCaQkDPrHWvErdCQE0BQbi8A0NAK+vSGGvWQkBTQMqGI9BBQGpCkLPvWUJAdtUGneCXQkBqUOONvZNCQGcHsao+a0JAft3Pij6TQkBzybs/tH5CQPMQ3+mkgUNA6U9xXAEBQ0Dfon9WN4RCQKSDAK/vRkJAIx9dQlO/QkC7CpBJ+QtDQObZm+KfgkJAd3umH/zbQkCkOUal/ZdCQEypwKwHmkNAf53SXTjJQkDlKSUipWlDQE+chHUO7kNAd3rQZJJmRED8e3IP3dhEQP3jnfETnEVAcuxGURXDRUAKk+W3uO9EQCaa+NUxJUVAuqH9/ApBRUBBIVybve9EQL99xZIcAUVAwWLeXi8RRUAvqmn27LFFQBGxcym+F0ZAg0tJt6GvRUCn+/ypvXxFQGtdmv/YMUVA2dmmOpBoRUChv0Li7G9GQEJUxJgCp0ZAA8XmP2cyRkBWKwkSFLBGQMNluS2fK0dAEIss0QsYR0DRKwDw6YBHQM1jYiWCGUdAAMDTZ2q+RkDrM0KrFqJGQIDPmKRIhUdA3WNfyS8tR0DEq9wOywBHQOsAMf3CwEZAh5y5nx28RkDkBhKRUvxGQKiv57lJOEhAewDLhXU0SEBzx9rimSFIQJoRsABCZkdA3rVHbhz3RUAMyZ+Rh+1EQLd90tQas0RAChy3rJbHRECvkWNMFLJEQOkvOwV7UURAL/ENRX0GREBvSDZy6hhDQMEEK3J6/0JAuzQqE8ZDQ0Cb5XvQkGJDQJsQ3I+6CkNA1AZEpvPmQkAt2i+U0DRDQOHKNX9gp0JAi3wHN/J0QkAlALNcfqhBQJ9lQpY5nEJAPyaeawE5QkAlZqku7shCQPb8F0nbuEJAfPo2y0bfQkCzEj9IcI1DQE8t94Ul5UNAFEjO/WinREDqaaSWwClFQG9jJzGe80VADAyT50peRkBMLBZlEahGQPcSiRS5nUZALy2gWzMLR0B4n14g9iRHQNKwEq982UdAmwg54PHUR0Ac17HwgUFIQCGn1gQVq0hAyEF4qwBdSUD8GqoHonJJQL4H7qHjuklAOcJ1BdkZSUB+Y5u/CcFIQPGrQc00ZklAm33scLIjSUAiabf88aNIQKQVEE1nUUlA5Skl9WXySEBLM/dWHhBJQIFjohB4sklAisb7365BSUC23NIWKSNJQN5p1NvKc0lA3K84GT36SEATu9hgMrhIQPxAu486lklAIWFkRG2BSUCNXOKlAUNJQBkm0x+vS0lA4tlo2m7pSUDrTD+6nktKQNXmWjSyP0pAN4o5EWyhSkDEIM0LZypLQGqecI3UU0tA5zJg8GgHS0D81LzXZ1ZLQMxMqX5yr0tANdRTIDrSS0Az8ahYrNpLQM75U0mjyUtA58gP97D+S0CtHE7iFSFMQHP7snDVD0xAtBT3mp9uS0Ccse07s3lLQFZJ56CTX0tAz9Lg5OCvSkDjFBVNxrVKQCHWufVAAkpAjni8XRPmSUChEMrOQPxIQO+YVCaAJUlAEtEXOldHSUD7t8QpfyVJQORaE+FVK0lANFKbp3FSSEBGodIwYjdIQNLEm+f79kdA8QdnpovkSECqCAVrWzFJQB0lXOInxEhAU9Yt6MVsSEAj3bOePchIQGkee3/rrkhAUzakmEckSUB0e2QFIQlJQP/OgBShXEhAaWw2LBInSECcmlfhLQ9IQCf+BRW2m0dAqmkSEk7LR0DBk5xMM1pHQHV8+S4aI0ZAK4DMMXqhRUDDmAKj3FFGQBXiscDPIUZApSs9LPzKRkB+S4DODlBHQIwaeqA0akdAuy0vpxH6RkBg6jXw1QBHQAqXfstIkUdAuTlQCmFhSEDH3D6+aeVIQJU9/gaiDUlAwKfOR/l1SUBamfe7vyxKQLhJ/tN8ikpAE7FiwgDtSkCV5ZM6YUNLQEhFgVIO6ElAKqkorL5qSkCTy8MTpJ9KQP1m4zJUKEtAuHqRsR/3SkABOiVCfmZLQMhYiYumPUtAdLQQBI5pSkChUr02UmhJQEV2z5Jb7khASyYciOJuSEDtIC3tPnVIQIG0aYpNjUhAzp25buy4R0DnuUFK821HQNzmFYs9FUdAJZiD/V5hR0CPHvIi7h1HQJWRihneOUdAeyix5BPERkBPE7tOePxGQAz8rVPctEZARXlDHC3LRkDAdNcwwShGQKckfYS7c0ZALvaITSnuRUAlVt2a+dxGQNfWg21+r0ZAHShN24MpRkAvZyXutmxFQLPCwTfIAUZA153nCrWdRkBJR1qCRk5GQLVVf5TQ5kZA+C+rvHpaRkDKNdxfJq9GQODPziunp0dAZmxVszAxSEAGNu3K8Z5IQEYo+YvBRkhAE3HflJTmRkDvDqMxZMJGQKn7nMtp+EZAHAiqt3JPR0CNU12hbhVHQJ8FRHMG4EZA3jztpXNURkA8UJ+EXUVHQGbT7E1IVUdAYVPHzrXTR0B5QIKkmQJIQBiJkxkMXkdAY3wJs12sRkAHpHCFQmxGQHsmOombNEVAqPNzjEqYRUAdUUpmZ69EQLX9WIsj7URAidO5hXXCREBpKUg/zL1EQAcEvQ+R6kRAaTTpdKBiRUAkKXUyyelEQONcc5zKr0RAeXxqYtlzREDxIPu1N5dEQHxq3SPT0URAypOxmqxTREAHLJmjxFVEQGMmI7dGtkRAGiZEOYiMREATG1gPBzdFQNJcdBV2a0VAYz3eahb/REBohRtWU8lEQCzxhzr4IkVAlQEsEEujREBNJJjsUuZDQKjR7lKRckNAzS6O4rCOQ0AEeyDu+DpDQKLkrQAHsEJApUhzNoPlQ0CIGxmFb0BDQNigun4M4ENAV9Y6oBQ/Q0BtJ5O/BGlEQDy19Dd6t0NA5DQFmwhHREDw0UI85TJEQH9s1np9Y0RAsoDZTXgQRUCjQ9pDYtZEQO/9HOa9EUVAghcxMndXRUDMshGinatFQHZApjwyX0ZA8zHs50f/RUDIwODbFF1FQGadKlgjqUVA/grhy2n1RUCANlEEHOBFQOKKygsCLUVAcNsXavUsRUAoqSNBpfVEQB3OlUBt80RA1D6iZEALRUDxC6NX/JBFQERc1/iW0kVAOVMcxFbSRUCv/UXVF/hFQB52FRdVikZAUxwMBHNgRkCavMgVCc1FQDtVEpB5N0ZAUNJJVg3ORkBeXRv71d5GQBk357zJkUZA60XEU0RhRkAONP1+2vRFQLVU8vyJ7ERAyr/StE0XRUBMkxMLfmtEQBwTfLpYBkVAQhCboeACRUCN3vVEvCJFQPD3gOYRR0ZA7k3cwNPZRUCEBYklps1FQHnNacVnukVA+uhfIKyPRkCKjmPbWEJHQOLE9eegmUdAOSYZtplwRkA+KA2BrJpGQOFDPVYbekdArV9VvXQDSEByttT4lENIQKHEJWxaCUhAspZffeAKSEBLvVsYWeJHQK33rp7uvkhAG8fhPsfnSECuzgHAkylJQISVaFMf3UhA7WEtXFQkSUDacKygDZpIQP69gaoh6UdAjMMiaVULSEADbIPIQPRIQGlrjda7o0hArCFbX2YTSEClGr72p2JIQMHEkGDgFEdAJeQJlALCRkDIjTMWRHJGQDUrg7ytwEZA0iUcd0vKRkAnJxMjHNxGQF7fNik0OEdAko26Xb+5R0DOWJfYR0xIQCXtQCxdl0hAVnmeqfAiSEDORczT4eNHQA+12ddW00dAFQF3xY3bR0CrKa/IJZhIQEONfSkVlEhAkev47D+KSEBm3HppwotIQOxjne9Ah0hAbjbs027USECvkoj9659IQONkdv6TS0lATz1P6jlBSUCfDaKpXqBIQBqA/riDkkhA6JzkxYy3R0C+IchGV79GQOcslcLx/UZAL37of7CURkDXspHNoaRHQOGqtgiGlEdAF061YC8PSEAcKdZtkXJIQNmlXi2pOEhA3QHZyQ3zR0DBeHATPUpHQAqGhe/5IkdAeYJzgqabR0BXiB5h4zxHQB5jOE/3PUhAVn6GfvWMR0CLVy1IZYBHQBrufeF7rkdAA6QncuypR0CqMLLHSW5HQA3Xv6SYBkdAAKPX+LA1R0AtopTl4sZGQK00QmL6lkZA3+FITyDIRkDWPOhlTYJGQOSykUjtH0ZApNrks7QmRkBFx49rmC9HQOOyaE2MN0dAhV6IsVaER0DYc32U8WtIQFOHwTz+M0hAVDtxjuEwSUDtVlLV0/xIQPO4XJnnfklAiDMtUVCISUDn9y7gRUJJQEcskkDipUlAw/S/Slz8SUB6lF8ATFtJQN1qPd5EkUlAR9hS5gydSUCRn7+DYmpJQKbtzjO2YUlA6c3ufYAlSUAxMN8PhG9IQHS6wXo2NklA3GFkjc/vSEC3XKnWhNNIQHI7s1iEm0hAT70Plc6tSECV9IpraZFIQEOJPtRDvUhAWMGKEgz6R0DOARzfFIJIQKdUCp7j40dAUad7WvqSR0Dc1CRFW8JHQFjwovJsC0dAUfKgJ0qeRUCXvz7mAaBFQGzVI0xTckVACoNTzEmfRECsxYbzMTREQLST/FKUC0VAkhO3qSfWREAoUUc+DmxEQPP/VLy8TkRAtwTEEvh7REA2yowzIC5EQHPcszEBgURAAUB0GlV2REDgv6aFtFdEQF7eKWZ1d0RA7JfDE56ZRECZhDszUZdEQK9r21hWSERAoHCbSMEoRUDlWNOJ8sVFQITK6juj1kVAirkopyQQRkBeNuzfTP5FQKSoz7cSQkZAPOXVndMcRkCax5K5KlJGQFMGy6Dj60VAq82ayIA6RUBKwggWooxFQNd6KefFd0VAg6sypWJURkCcNOPL8FZFQFisJOMnMkVAu6Zmwv/8REC7T+9gP31EQASg84fp2ERAva5qIIsTRUDN0KrZ1zRFQBSYZ1+l50RAHcI6sqgeRUDoUvj1+uZFQH2L3sco1UVAiz3nRYRFRkBgBlq7YQlHQDBqJtlfgEdAdjXpO+68R0BHJrKkbQJIQL6gfkxN90ZA3dbqNuK/RkBFGubMeRFGQFkOiMf0fkVA/LP9edhtRUBRawPXl7xEQPkwjHyOTkRA2NC9oulZREAh5i0Uuc1EQAt5jLVO40RAOnFcoNE9RUBpZaAzAlZGQI30mLAqEUZA1dimt5pCRkCz0yvT+iRGQJRsIgWG4UZARnAhefd8RkA6qYbTRFpGQA72kZQT+kVAUKdnXDpxRUBmLhTZQsdFQMD749CTTkZA3EXGNChgRkABD+Q2WOtFQOP/XRFvsEZAD+8nCBLeRkCSTukwmAdHQK1/8XWDB0hAQaU6XyNHSECL3PFqzXpHQE9cZwmYvEdAgBbdx46IR0ANqNhywbpHQN1gPM13HEhA0TtJgHf8R0D5PqCWobVIQHy2y4StMUlAFEHbS9GQSUAnukLKuxVJQNZH2ZPmBElAZwqaVAcZSUBYZnhRD01JQC1mWsOuJklAzan8JHcpSUB1XRFwJmRJQK3a2DCLTUlAtbb3x606SUDml8+U9itIQJ5jTEkHzkdAp6u66dKqR0C/FfCxZBZIQKPsa3W9WUdA1PisQIBBR0CRzREk3TZHQIb9WdvhUUdAOTQqLmKWR0AhFvn1FepGQHVnmZLWdkdAWGVCAtyYR0DUvMfdWe9GQCrTBTuGukZATjygGILERkAZOA9e+eJGQBfpHwFzvUZAmq8iLxmVRkAG4j4FzstGQNm64SS/h0ZAZPx2cuDSRkAe5qJJknBGQHL3PQY1QEZA6W2r4meHRUBSDYVy6kZGQClTgF65A0VAbsq9hP4hRUAhCWyEVqdEQI9gVDxpbERAmYG1U6bkREBtQNkj3IlFQIHx8mkynkRAtRY/NswLREAi4fiwZh9EQH6iMdjnpENA+jGTrWmSQ0Ca45Mi4WlDQIc9FGUXBUNA75ZoYsqHQkCNNtjRbHhCQHeqZ1tBsUFAxq0OKiDDQkCUkmYrOYZDQK9ygGcmv0NA14Yw4lsXQ0ARh/xL6vNCQHLf6IQFVUNAOg7ry4nMQkDIoIRvmq1CQD9BEOf7C0JAcixPhL9gQkCykygQjLpCQPmK8P0tO0NAK3XxOE4CREBNVjC17yJDQIvp1EEQ40JAPc65T6gzQkBXaRWk6itBQOnPqZiNeUBAfBDKO6p9QEBbE4yGAiA/QCbsu8Q8WUBAs57e0nRTQUAoLU93rDVCQOntndLq3EFAZnmmmQoJQkAruHUeOPFBQCKTgKSGbEJAnRJgbrjcQUCLWzi1MV1CQAzj8prKZ0JAuxLKaxlWQ0AGbpUQQrtDQLdfL97bZERAd7LXB93NQ0A9aqXGwX1DQAmlBs4qckNAQDNxKm8jQ0B5db27h0tCQAr01rmLk0JANgPg9zMoQkBxaYPFRURCQLfgaPo12kFAgAnZV81+QUA5hbzLZWhBQLgamacEFUFAG2RCDdOmQUDiuEg1YRZBQPY8cZ8+A0FAXeWxBqOAQEDj4K9PXKtAQFE9Xv7BB0BAdq5ks4dPPkC7OTCHAr88QI/4LgIwCz9A1mTX+Cd+P0CmX19f1pBAQCJV0Ae7f0BAHUyAsUvZQEA13+JKZiBBQAulFB21bkFAk2+w1TXnQUDJ+ApT/05CQPdJl3ek80JAa7qUrvxORECinUHbbDNEQLOZsndKFkVAztMjuDFOREAcdpxpPDBEQOuK759DAERAtAyfxfslREBG1sW/k/5DQHf8dzlPUkRAsabtQA12RECdZ0WyZgJEQGT45clbQERAPXdO1uSAREAdvhi85bdEQPUi92ulpkVA1r4Q812BRUDnytq5o29FQLbhMGE2XUZAN6967qyCRkCLcL55aftGQNbQKForGEhAgc73yXCBR0C9xE0BAWtHQMEf7jOfnkZAhYPrwVjIR0DKaqgBK8ZHQGjTmk/w/0dA4BAJoAwMSEBTomU4rZ9HQBT3bCu+rEdA8sTkkggKR0AwmniU4sFGQHavOstZDEZAWiXNyfqPRkBDRJc5O1BGQD06igxM3EZAx5kH7ebVRkAVX9qajFtGQDIhj7j1KkZAmN1+Y4PURUCp90rjaRNFQE1X6WuJwkVAb/CV2/mvRUAZtizJMHlFQKW6kwOVkkVA9hAklB46RUDzX1bzJWFFQJiKF470NUVAizti9wrGRUCLhF9JVYBFQABLfoxqFUVAWRbWVtiFRUAaAQ3rffdFQDt3MlbFZkVAa4lMTRhORUBk4myy5JtFQK4kqITWiUVA8gs8rjF4RUDQ0SQbMz9FQPchX2FdN0VA+CiexTuXRUBPRNx2adxFQOY1uGYiTEVAIM3g2ZzYRECA8PeRiVpFQFaJqJ1XFUVAL8D54rcsRUBfeeOsrdZEQBAzJgMjCkVAYwVWwE7HRUCeVln/R9pFQDnt+x0s70VAGxASzTiZRUDaeRjMC/9FQEPKb1pW+EVAj+mWJlulRUCzcKTReWhFQHP84lsM/0VAeUTtCRxARUCfcO0vSKdFQPESOAmRGEZAK9RVTWmfRUBvMgCnS+BGQDpqGZHSdkdA2Co4b6SKR0Ask1Q2uRRIQFbBkqi4eUdAxDbDizuGR0BmaKO7rNZHQLGlAsnMt0dATTsTUCSCR0CDYj3hzGBHQECJ77Xwd0dAEyRY420xR0ASIYcq+7hGQKiBkHq1vUZAiROhmo40RkAeDwjUARJGQGeRZhbXN0ZAHATzsX3jRUDq+x5GSChGQN3mYRqmxEZAe4Z4/+rqRkAR0LxogHxGQGelpxDObUZAm7SosZyxRUBZV9ICns1FQC5EHP+22EVA0jEbvFuaRkAfsp2dDkFGQBGWv3KUk0VAlt4Jl+pcRUDegI3Q3CtFQLscQB7IukRAqmGBsgPaQ0CyVHbxl4FEQGi+a0l2WEVAN1Dk8/sZRUCy76LvMHtEQIW+jZ8rjkVA13U/p9FCRkBVJcOnASlHQDEiHkbYJ0dAdkTjySN/RkA289EG1aFGQI8VdOMPr0ZAJKoM0Ba5RkCzHt8A7QdHQC/OLMFonUZATJE6MDnJRkDfkvnvGMhHQIjwbI+s3EhAXOLCtTt3SEAI5WlcI/pIQMqMCN7HR0hAmaDwwhEcSEDEdQfx+51HQFuseeAhmEdAiNMDstA0RkC1YiJHe9lFQCnnIukqjkVAvfmEEHtjRUD5Wm06RyxFQMSdxYquCkVAKM5UVTGmRUBk7jyfOIxGQImm475nykVABcKnnLWbRUBfM8VgSD9FQBqE8T6P0EVAIZBJEU+oRUDUoh+KtodFQGCuc/LZrURAFTM0mtOGREDpcxA9DiZFQPG5TycC9ERANHMWwUZ6RUCZhAuqHfJFQEUyz5fNpkVABjcQKBp+RUBPiusxz+dEQNwqf+x7HkRAlSsnHTUmQ0AJhevuqBJEQA3yNUPxEUNAPB6wMT5eQ0DlAlTB6EBEQEE56Cd8PUVA3gg+EPz5REDGwM+gCzlEQCHTBMAae0RA4xHNUc8IRUA47YCn0p9EQArR4XmqWERApQh5NkYuRUCpsHn6pdhEQJTRBifNRkVAuWs7nDX9REAFKnYb+GRFQGFEALdgl0VA2gDRRM7BRUDdLBpmKBJGQNfc2aWW8EVAXB6ZvhwTRkDYpt9oluxHQNv8xlRBI0hAAUXKk2S8R0BJjcHymUVIQEY+7YILM0lAkpz6itqzSUB72923YcdJQAoXT06+hUlAW4HkBpI8SUCUnk3qKXpIQCijsnZIJUhAIZ6M8oKGSEAPNGTKBgxIQI1RKi60fUdAZMQhADNXR0CNlcyAEI5HQPUqI6vijUdAQAwTS0eAR0C+RFfkZg1IQCfcxVgnwkdAdXEqBC/nSEBAy20WXG5IQNfJl3W8B0lAMD+1kf3vSED8KwQEWwtJQNeGpShocUlAQYLb8AJdSkBsNAv5KNFKQKDfA9NvhUxA8fx2foXfTEClGkHvicFMQAyNd4JOaEtAFkd5bbtJTEBuqRrdS9RLQGHMvFv6M0xAea1cZQVbTEAwk2z0KV1MQNfOnI26gExACFd/uiZYTUDmEOrgr7NNQCPReQSudE5A8enjm6zDTUAxYhfEV+dMQNjlzeA8ek1ALzjRHp+3TEDc1vE/PhxMQMa6ecPd/kxANzpXX3byTEBGv2PQ4ORMQJoMz6JBD01A26CpsDuMTUD0C1b2guVNQH40GKvO1E1AL3vjmO/JTkBaqdNLG3dOQLcqHbvgoE9ALlcemtkzUEBN9+Q2h4xQQIVhK1RdGFFAHc7bD0pPUUD8szlnq/1QQB80dBCnXVFAZuEGgLwYUUA7t3trsktRQM7LbLE1IFFAvM5MkPN7UUAz86tCI8NRQEBDJxP4klFAjvk36P6rUUCUDd2CijJRQHdlm1zaQFFAls99VLFcUUAF8nlCTENRQEtgpVv/XFFA3O79adqNUUB6eV/pQatRQIlfUQy47lFAZKc0q7wyUkALzp5/C81RQIuz2vUJeFFAiUFr/7J3UUBPE1SSAWNRQFDlTKZlc1FArre85deBUUAaiS25HRZSQBOlTRROtFFAjb8IB+M7UkASX0boz35SQPy/LEzKo1JAUumvrmI+U0ADuupQcCZTQHcsmNRD11JA8n4YORiqUkCKqmJGwplSQGzv5JNmdlJAbufOptEKUkBAykj2v3hSQLVM0gjip1JAjEb4VLkhU0BYc3lUmStTQK2a/4plN1NAwsVA2Ec8U0Aa8HyLzkFTQJ3fAFUmBVNAg1cTyV7oUkAdPcE+9iZTQIyrmJkgXVJALpL7yBliUkBKV33FDNBSQP87ndvbuFJAfYhske/VUkBY5FYTf+VSQA3h+U63G1NAUnK8sjvMUkDUNl06C7lSQJoqhb74sVJAFzFmr27wUkBfX5ruBoFSQL2ykndX21JA0hIWq17wUkCh5EyIxHZTQL3NEClFelNAGZofRPtzU0DKECaz/DlTQO3ZgmCralNA0OyAma9TU0A3QaKImV5TQArrmXoOnlNAxm3yaPHNU0ALgB316JpTQJAmok+dBFRAGRqdhx7uU0AIXVFQV/dTQKw0wvv58FNADEXpgxVYVEAZisjPPzVUQD1fiZKWRlRAv5TP+yEnVUDcH3bEQCFVQAb3rvIoBVVAMJDWax9SVUBAdnSdDnZVQGgAA88AllVADRnBs9FsVUDyJWRy/lxVQP20WmDmllVAz36FudqxVUAJBfnoQ3FVQKYc4jaCClVAd6WnLxyRVUBEtfkXW1tVQMzSlNIWU1VAqbCRx5OKVUBng29ZE1pVQFtwG8bAeFVAQNSo/OExVUBQHmhMU4lVQITKen9YPVVAEJh9tXIAVUCd+l+k27dUQEi/8GxcOFRAEYo8EXUTVECmYR42cGhTQEvUs4R+XFNAHobosQIMU0CiqMvg1t5SQNp8y3zmClNA5jhsK9c0U0C9J5QXzSpTQCTwQww1N1NAbP5XlwegU0B2Oq/71mdTQJkKL6AXU1NAEROL2XWFU0De7lYHy6tTQO2YjxGEn1NA0qUrwm3TU0DipAvWvp5TQKEBx/HR0VNArsfPL3InVEBH8PfCYYBUQEpkaGvtylRAgjV1eKepVEAj4j1s1d9UQKeb0RCv+VRAvJqqaCBjVUCROuCWvlZVQH22ayKaZ1VApt0ITat1VUBgeiBl9sJVQPXA1EtzBVZA8WUFlw8rVkArTpOMh0JWQO5l4rNTClZAAWLnSfBTVkBJ5VereThWQL8iXwECVFZAtF1MTfz2VUAq7qhmGXJWQPL1wYHKelZA/R4auNXwVkAs9fq6IxJXQNxLCawnHFdA65ovgpUkV0ALTRn361lXQBMwy8ERWldANaz2NildV0B0EKjJQZtXQLovyYk1bldA5ICSvq3VVkB9PVbhtalWQIkwYc1R81ZAwyuDoKs9V0Aeq5lvnopXQMJ+HwkCU1dADWZgS5FuV0CM3xIJGmNXQE3cgwGDaVdAaMHeSDbiV0DdVV/E2/dXQJvMHeWtkVdAtTcjUf5pV0Dts9fNsKNXQE6H6mY3eFdARHzFaYFlV0DhYW3tyCZXQLP72CMBZldAT6mOgXE8V0De4xlW5wBXQGssgCeE61ZAsmhbtMFfV0DAAwkFJzxXQBpIfdhmsldA00ctfjeJV0Db81YNJtRXQE+cjcJo5FdAMYYhJdHPV0CLbjDt0b9XQDyFvDQwBFhAY01i+Wg2WEAlOCwpmjdYQJasISjYPFhAhr7Cb2LWV0BmX/2w26FXQObhCclrT1dAHefWU+BJV0DVZERCxGhXQI2GMkSQDFdAHnQVJebJVkDX4zeF1ZtWQJzj4ZBZ1FZAgUzF21DHVkCOK8Ex3BNXQDOeR0a76VZANe0HS9QRV0ChUkvhkTtXQAOYfJGJVVdAKCu3CrpUV0BcE/xpV/NWQBRYZwcw1FZAp6FOYqvlVkCILxZcRRRXQF4pd9FE4VZA8Hnthkq3VkDU52i8EfdWQDen7D+t51ZAdzRIz/UBV0Aq4ptcDu5WQNQvLx2m4VZAvKU8gfK2VkClzZNCtspWQIbg5Vo/L1dAtZIhxEQUV0CnzQ61vT1XQOYNpUtIMldAnaUbaVwEV0AMDn31Nc9WQM52dcsV7VZAPUdjYsvbVkCs4y7cVuRWQCCZEq0be1ZAsHSib7SWVkDJ2Nnk47tWQMWaC80hsFZApeiAeyK7VkAxU0OTRIFWQPLw1BFXS1ZAVNCeNmIiVkCEQFH7diRWQMvtyV1Nv1VAN68WRqpSVUC1M3Na1z5VQDOc4DfyFlVAJPNk7Sf6VEAtLUMh/jBVQDcz4YQddFVAnE2PVgagVUCg8vFUHZBVQDzAYK+/F1ZAhyI6JIK6VUCWIYmGuQBWQBqqwHMpxFVATT6JR2UDVkAYohU0EAtWQCSs5qP5GlZApSLzV8n+VUBDSWM+rglWQIl6CL1X41VAamdj0uJAVkCoQSIUeQ9WQL2/m1Rp6lVATvmomdhMVkAWDd9AN3lWQBenRGMHulZAkecVhJkpVkDLdli+0OdVQDL2+wMDflVARTs86PjKVUDTENmT1MtVQLX6AC/H91VAgHP+lowHVkAQWoyLq65VQMOxP1HVU1VAWTpev0F0VUBCJb0WfbpVQDqPwLqvpVVAk7Xhg5IGVUBMDutTl6pUQOuuRP0M9FRA8Yc1ZKULVUAXts25iExVQOsaP4T9hlVAU3dka/zaVUCLDIPSrHRVQHz1x0aOcFVA8LB3KU+kVUDiS7/Ji6FVQB1Bo4F8kFVABOAg3/JbVUA+p2zCcr9VQDX76dMJsFVAr+N0fuveVUDqjEnWaANWQD/iNcZNr1VAegFfTnf5VUAaqk9pDBdWQEA9UgUMhFZAuKwq29xrVkDfVhrj5kJWQBecy4jAMVZACX1RshY9VkCIGwVTFSdWQDuy3mfwZlZARhjwe4F8VkCoCFdKkYZWQI+O+XvBi1ZAPOPQ7k99VkBis2Rj4VhWQHfEBw4NAFZAxiqvxDoMVkCvfuMhZbZVQKcXanstB1ZAFYKsVIIhVkB1DFpxnZBWQBgfD++MeFZA3ohO2P/gVUBlhPm2Xr5VQPJEjkxFtlVAkW1UMj/0VUC6czxLvsdVQCMbhlqSElZAYK3hJBQhVkA550HmkTZWQBbPGfgUOlZAl2CXoWlnVkDomRK6iyBWQDdSLnUwtFVA0bugQ7tMVUA95MMZvyxVQFjFuj4ZllVA1hiMxCTeVUCbE8iyeFxVQEuwQOTSuVVA8aRMNeXpVUCwTO3kQL9VQMn6/kIgIFZAex593HjsVUC/qDRSrgNWQNJkEFqo21VAQYDlHWM9VkDPYim7HI1WQClgodo2yFZAPrmbTfwkV0Ae37l2hHtXQKX1tjQMa1dAOoQ9AJ6PV0D/ayTMD8hXQNJF3NbfGFhAFW1n1zPrV0BERd78qRRYQGXZVvQSNlhAArZSAt/YV0AiPmq3IZxXQMrui4wbFlhALs8WrjX8V0AocxebXexXQGEb1GBA9VdAJvS6dPQaWECYQSV5kBBYQCqSnMYuLlhAVk4oiOMiWEBZd3Yn7KdXQOtDDI8kMFdAzMtum+R7V0BClJeNj/JXQD7U67cQ9VdADJqXO1PrV0C4fRNtjp9XQAjC27fAJ1hAZEwaITZcWEDgbPdHD5FYQAjSYmL2lFhACm9KPNKzWECxYe3FbPRYQHsu0H6hU1hAKcBMjhk5WEB+cgoKB1VYQJP3F8q/bFhAcRW9noDWWEDb7NhBdAlZQBbAnfRR2FhAOIfbHhLeWEDm4DsuaG9ZQLL5V/JRV1lAdpCvEzQOWUATUfzdbttYQPCgyE4adVhAWrQhGBnFWEAO85sW1r9YQNwYZLAIFFlAdDlJDdgPWUB3LIhJ+zlZQMUDzqqAMVlAqDItGkRGWUAVm4RhwdJYQCaRe2L/01hADJJjVybdWEDJMfl/NoRYQNUYkunjt1hAGLNUQyCEWEAvO+rfen1YQELMBgH+nlhAv3EVt3CDWEC3a1fcaOVYQGo8pGMQglhAoLjpFll8WEDrk2dLd3tYQPVfmbxBiVhA2z6m/N6YWEBRm2UHFJ9YQFdIffCi/FhAgypU+YjyWEAgilwuNwtZQGmoJgd3nFhA2lNGQGD0WEC2TeLGawFZQCoUUZf5xlhAnNTgMXPcWECpMgaL1M1YQEv1drm6rVhAw09mW7uYWECgoq4I7JdYQHdTvlUUSVhA9bYZspYSWED94Co6sSZYQF4Wqd0xalhAvmdrOWIUWEAzRlePMytYQCiMg2KkXVhAN29v6Vi/V0B9S06yy8BXQOyKTjl42VdA4GGs77rDV0CLc+MlFvlXQLZfMGTk3FdAQZPLyEN/V0DglWAX28ZXQAFTyGsjD1hAoYA1NoQCWEB9L6Q1DFdYQNYHHtmkRFhA4Q6DklpIWED6dQUHQRtYQKZuQkWM0ldAgsLjZw7gV0C/lmKZZ3ZXQOWKKFRxi1dA784gZOyVV0C09dxITylXQM0hJmv0EldA+qfhWFhBV0C3rPJWowxXQO5rgqRSAVdABe9QZ4haV0BplFoEo3JXQJa6QvMhdFdA/Gx5IKmkV0CEUecbjnRXQMldXXt3X1dAjJTXAm8yV0DxBCgjO7RWQKUN1kP1XlZAOnCrxVI0VkDgD5OH+P9VQI33bgGXJlZASFNPnFUiVkA5ZjIJkshVQB8DjOCrhlVAdHuiwXWhVUBz4ucEp5hVQGedWVmJ81VAxm32/r7VVUBmuwwWPUJWQBHhjxfaMlZAFzXA0zhEVkBlsIHWqh1WQOy1+G5eaVZAQIsn8tMmVkDJ1LsY6glWQFcrdLSwCVZAKZ19JVfyVUBmb8jm0xdWQONHm2W8eFZAbsId1udXVkBQMe6LxhJWQF2W9WxSplVAvh1NmPHVVUA+wo7WgMBVQJxWwVRD11VAkPseim3LVUAzopy1iihWQCOHVxMo7FVAYtiiiYEYVkAbech3cmNWQPiBupUqTFZAg7xbPA8uVkDl9+ZgwxxWQIisJzXjG1ZAqmdriejWVUAmRL6icu5VQEK4wOcMt1VAQW4UuxR3VUCTztdhPSpVQKIQeB0TRFVACjtegXgOVUBU0eU41hxVQJWeV9E0q1RAVqoj0VAXVUACbGUhnPlUQIMvvJxgq1RA0TPbFXvxVEAvlOug7StVQBQ4FQK/PlVAA8KXqrtVVUAG3JOkJVFVQMAT7a+qiVRA7tTNVK5TVED+X46Qf2xUQMkNzPd0r1RA00xn1xB1VECkb8DbtK9UQCH3Uq9P2FRAbktq55o+VUCnXS6QMk5VQJ57D8NLX1VAmNhIk+QaVUC/eaZHq0ZVQF6zVBu2VFVAswXLOGo6VUCeLQaeV5RVQMyGtHRd7VRADi1d1/QPVUCEwmE7qjZVQGJ3mZCchlVA4Rpr5nBtVUCr5oh2g5ZVQIjZkZ3ouFVAkbM/QIOrVUAomwcy93RVQMnFI0at2FVAID87ovMiVkBj2QMFGCRWQGleXiYaEVZAggOElpcLVkAarBZaKZlVQDMriEaU1FVAYg4WexxsVUAzSMGJ82xVQJ9MA94Dn1VA/BWLqQNfVUBOYwKMyzRVQNhxKQXYNVVA+j8gHrkSVUA3ZLmYmgtVQCuqhC4+81RApiyOtvYYVUDe9ud7GgxVQIjzUm19eFRAf43zAkiKVEBmVCRivR1UQHUlmxAO41NAYCJrxmUoVEAReARi4mxUQF2b4Sv/LVVAMu8RHhP/VEDouChuxihVQIrtGH/fR1VAIMvnQRQxVUDfXPWg411VQJhzpjsrC1VAWJ+bffITVUAUooAgZxFVQF4iA9off1VAiLwhefUqVUAItkpSOwdVQHYvx9/SEFVAVWR+/AIcVUCfsJLq/qBUQLhAuK3de1RA8rWQtpOGVEAJucB5TMFUQDH3wyHgrVRApho1ZX6tVECeiBHZ35BUQJkvhh+zlVRAHpz0eIjuVECEPicor6BUQKpxmngKpVRAUApDaC3MVEBtpdAMo6pUQPRA7nLN21RAmPp2fQuDVEABDK0bk3xUQHWKzJm3olRAUPUCtKCAVEAyt7zAH+pUQIWqBYNvNlVAJMiC9gkEVUAJ4uh9tftUQJ1USTzht1RAiW/ZnqyNVEDVPI8GCClUQMoA+oMxblRAfhHCPah7VECZc8Y7YbBUQCmKK3BirVRAPyklo1ncVEA19dYmF81UQO63XvRV9lRAgKjPu8QYVUC/I2bF3ZBVQOQ7zOMWlVVACN28RPFeVUCYlOI5g/ZVQM86Nz7D1FVAsauQz3zkVUCFe8mmAThWQPs/f5YuFlZAHU19q3oxVkANiaOos2BWQHxeIdwaH1ZAhvqVOaDbVUBCj4uvDeVVQCX4AIW9fVVALvfQU4u1VUC2a1Crm6JVQJPZ481KGFZANl/aiuSOVkCLXcaxt4lWQKXAPkO9g1ZA/Wh4DNxQVkB0uq6oixdXQKv3RQUHRVdAIi73B+s2V0BSOT4mvEJXQCmULK9pIVdAD93Ws0GyV0C5jM7+UcNXQPnlXTp0SFhAWw80A9ScWEDe4988Tz9YQM7P0DTKMVhA5QTmlMo0WEDc4zYsUANYQCxP8co5B1hA3reOV3AgWEDU2pwoTNxXQEQZSq5xAFhA2NEwndfBV0BF19ZRyLxXQG2DFhuYqFdAYJyfytCiV0ChmfzYIKJXQFtDkMkbrFdAKXcRRYmoV0DAHdRd+RVXQKv/pp8GOFdAgJpENr29VkAlM6RNE7BWQAGDbEwImVZA35FlPREfVkAVDr9n3MlVQOUlse3j2VVAlqLph0fEVUBqdouIduFVQJZ8HybATlZARUSfLh7IVUBjvN4veG9VQAD2HTK7Y1VAX3PW+KmwVUCwZk55onhVQCNRnpoo2VVAUpl3SDYFVkC1sNUoJb9VQO90Ly62u1VAiY27bjjlVUBpComQl89VQAbhfplGVVVA+t/XS8moVUAHifhV+I1VQHEpA/53g1VAhYrN3R1QVUC4grnzhUNVQL1C3Tg+klRAXRWe/mneVEC1BCKI59VUQHOSMl4uA1VAT3CF63tKVUAq3etISfhUQEbPFnWN9VRAAYeyx+fWVEBSJ3bADbtUQHwkh4lYy1RAuHYCI3MPVUCe08pjGRxVQGs2HqOFD1VAdBrvtQjgVECMRf3RgEZUQD07PgqGNFRA7xh5PWJOVED2SFbFDV5UQOXWBB8qfVRAE/GqCdB9VEB3HEgBDhZUQICIAQn+1lNAaGi09E/cU0ASCcjPbvFTQInYWNiclVNAgjKUY/24U0BsuhCFytdTQP36eOqntFNASdz4XPG1U0AMFaAk0PtTQEOpiLjhylNAfSY6WHwhU0CMWOr8svFSQI/mpqvi+lJAMNFyYrneUkA/sWbjCcBSQCefssXtTVNAGqML2vA4U0A6TOVA9q5SQMmE6RMxuFJAqgZ7sQO2UkC1/khthm9SQJP5md1ITVJAVQl0e+s4UkCFZw6TmgtSQEZogfKJq1FAM/o6h+PvUUDMk73qsgNSQHO/A/rl/FFAaxy/EOAgUkATkn8oaUJSQBC50LpHLVJA0efyHQKKUkBJyu5r02hSQKBxAGz5SVJAE8GUxuIlUkBNeA6M8NxRQFTRa56pFlJAbPS2eTELUkDEmaBz10pSQMS8nvZZM1JA+5WJ9YMVUkBGHg37+qZRQNbWoWGMQ1FAroj46OCmUEAhv+ICtZNQQH8CgUv7XlBAUSPgjn99UEC+M9CVDYNQQLkiAk/rbVBAEGhHXU+fUED3o7qRy7ZQQHM/E1nddFBAIuk+divGUECkxrhWMK5RQD6RhHM8nFFAo9DsgkZhUUAgX3lzPqhRQImB1R+yNlFAUD7yfvWLUUBQZc7Y4jxRQNgnFDil4FBAWncP3bQHUUBX2l+X1ypRQLM1s6L2glFAl86YucSgUUCiBbmRfL1RQLEFoLRfL1JAXIblVBAAUkB7yLi3YhtSQAIVLVKWZ1JAojUciSV4UkAUm9ndfbtSQBMzodPGzlJAdvj3+wSmUkDhYS0sU6xSQMjpxhoB91JARv6nLWe/UkCtAE/7vJlSQD09hGgm3VJAuwMCxm+HUkA/EtaEuYNSQIJfkrmURlJA20mM34VSUkDkACWgQVhSQIBIWRYlblJA8sphWcGpUkDvXxMZBeBSQMIDmceOelNAp2rnZn9ZU0B1idUGVCFTQLJ+kB4rB1NA46EAozbqUkC1dkNIKllSQD5SSs6TjFJAq6eh2wMxUkA4YTBrZxhSQJ+1zvPdT1JANgCSBZ2IUkBHn56+VChSQFds1GMrLVJABAFZJBPxUUATF28cOz1SQCcmgrIE9VFAvCANM0UZUkD3uRr8/WpSQFoEA9p9RlJAKiIebCn/UUBJ0MZM4KNRQEqU6s2JY1FAgx20dPRKUUDOf+2VtwlRQGbuqc0KG1FAhu+b/FoPUUBjS9gmghJRQPLkgOqiXlFAce+TsMaIUUAkqsN5tPBRQFBgCTBmH1JAxcdcsFPeUUCfqhl1Ey9SQI7LQVpPI1JAWagA4V4ZUkAf9T/v/gJSQBgU9wE1MVJAs+MEsqDqUUAKeEcWeA9SQFLbnfJpdVJAWMFM4SliUkCIzWiV0lBSQMELU//Ec1JAuI+SA/v+UUCD+geM/ctRQH6b4RC5oVFAXhD43nklUUCjFa0sxhhRQFnTpo+neVFACCxUIYLCUUCX8jCwhhxSQOIyPEp/RlJAJNGGYj5UUkC49HAEf3JSQN8lidJZP1JAj8E7Ve+nUkB4yO5KuqFSQL6Mpm67AVJAISvG9VwkUkB8bQz+5aVRQFwetwUmxVFA0Jfm/dL4UUCx85qQbCFSQA19QnRd8lFAz/GfslLkUUB50loi6CxSQI/XIwII31FADrDlOkzTUUB37nUn7oVSQBM5UYwgBVJASV6DMLNeUkBFPeW52HFSQHewcNmVYFJAU6nkDz8JUkDkOdWxDDJSQE/JnBNoRlJAjy0+AT0oUkBwkeklyQxSQPTv7Qk/RVJAfzqCd/DkUkBSZUwr7edSQDnKlxwOwVJAHA5az/2+UkCHfXYjg85SQDb9QaRExVJA7SOovCNoUkCGxNjzgEhSQJORisJkVlJAzRFSOsoCUkAv21jXRhJSQPJmZYCCCFJAQtir6W47UkDTHmR+mYhSQEKGDL0HhVJAS7F8kv51UkBIg2mdqPNSQGQUJPoZGFNAqTQykTLlUkDtuWhm7yNTQFeamFQpRFNAhOErDyNzU0CcWxZUSEVTQKxLA4WdIVNAuf/Ro+/HUkDF1n73Ns1SQFanExBFT1NAKua7WXTzU0CFK3zLHgRUQIO/xQDWKVRARWOtplcKVEBfqwyIJt1TQP8uIhxSClRAapChMp7lU0BqerkKzLpTQGdLER4rUlNAeUn4tX/4UkB3muM4egdTQPmOw+ozEVNAj5ODl5HTUkDNTG7qHIlSQKKnmat0glJA/TZ7RXIxUkAnSIF40CZSQEk6fTg/WFJAxiSP5piFUkAkEvuVETRSQMwEIScReVJACo+m7jKvUkDzMedJSV1SQJHxa8aWJVJAn9+Q47Q4UkA6e3aUf1NSQAR5e+T2jVJAH2LmBXtlUkCiV/ud1JdSQMfW3EHWFVNAQF9a3LspU0BHdJSazSpTQDakEEb66FJAje8XuL+aUkDNHJ8XXpZSQBQjqv7Qv1JA+I7XMc/OUkBSfAQ95TlTQCKtq4bkLFNAsrku4zTqUkCNrF0eI81SQP/B1851+FJAXANkTj8VU0B+1eYAHfdSQOfHC0y8w1JAzkn5DHbYUkCbF9DgSqFSQNsLccLOmFJAkl0yLnMNU0CJzmpIVeJSQPjWWWLhh1NAoaCTtQx2U0DrF/zFBphTQJA0yXRMPVNAYMlqerdWU0DpO7FCOE9TQNe71lsQTlNAEmMh4A66U0D/T+RSx8pTQHuOjfOPN1RAS7Fn/ytqVEAteJCw4A1UQAEw3lIl6VNAY+32iZLKU0DoczU1+31TQD4XBQuc31NAO2uof6fSU0BpdnN6QLJTQCmaoS8doVNARxeKqYNyU0CTmXmMyPVTQEvpka1jAlRA3ECnlLowVEA3ASxy975TQPMJa8hAzlNAbjmdFumuU0CA++T4xM5TQOxOl1LrgFNAX14t5uSdU0AkLEckFQVUQItDhnU7fVRAPQDVgXGaVEAX6yHEatlUQCj2iaMgmVRACAC+vvUBVUB9kHrPsE1VQC+Kni44WlVAi9bHRjSBVUCyMZKTDCFWQEuCUNViylVAPmMM9DKCVUDKo/DjrWpVQAwzkkFRc1VAYJn1zKtTVUAeU1qXMoNVQAYtVIHaDFVA23hyGjgDVUCLL2DlaQJVQNBP6gvIwFRAskCW4LkvVEAPn/CUMT5UQM4DFll1bFRABUhXxPCTVEAmHXnzA5ZUQJG1WemyqlRAfxMaBchqVEA89xKLlHRUQHuteh56M1RAQ/W622dwVECzK+zkjnlUQERSIGxbY1RATClxWYKlVEDmdRBWiWFUQIIYFTOaJVRAf4zLY0YEVEA8UrwARCFUQOmo2etE6VNAmt2VZFf9U0A4HmIH8eFTQOIX008jL1RAyyL5xFNKVEAjeG1aSzVUQBlNGFYEL1RA0EAkc/VYVECuYvzSr2lUQKPc8k3XUVRAGzn5e6xsVEC9ShaOIdFTQCkxyGGzwFNAQnuZT7HCU0ABlIIYTrRTQFwZ5SGLtVNAuWnrj2tvU0CXnX3GKk5TQMezz5TnMlNAvaRICUNuU0BX5ogqAvBTQFMbffhun1NAMgCmOvW+U0DdAmFba+JTQJ21K6yAZ1RAWcBaj/YmVEAbhBHp2m5UQKnXgCgkvlRAET0IS/qwVEBcjmWOHKBUQHkUGw0T7lRAsv8IiBlaVUAvbmWzW4FVQNiSmHaOwVVAPGSdij6kVUARYWDNN29VQPOe+elA9FVAF7ikWtzwVUA51K6kGtVVQIqkiy0PsVVAqwpJp1pLVUB4qXGZkRhVQJFksmcH81RAcfv5erVFVUA1Vj3vn7ZVQN0LGRBmj1VAu58UDeGMVUC0wm+qGopVQEivxpCnKFVAYFLUYsCEVUDmEbvxVCpVQAmGm9GqKVVAWwPKEByTVEA9mrE8Ad5UQItyTGhL/lRASVs09skqVUAN7GyPh0BVQLcaAZ66klVA//OApxprVUDs63oOwwZWQHpmPDq5/FVAYPgOOvraVUD53RGqasdVQBe//4Zng1VA9tBhjADNVUCEeE/e9w1WQHmaPBRkxVVAT5VOTKPhVUCJ+xotHQZWQEwO65IgQFZA8YFX2MPuVUA+AFjnSZVVQL8aZGkYtFVASmpE3UbRVUB/xS8AhqtVQFNbp+UchFVALZiK+BxqVUDtAQpBdnZVQOJlQ+brp1VAVwPgzpPHVUCk6bRG/oRVQHuuDEflPFVAxebiE+wrVUBrF4DdeAlVQE5bD4gUJFVANHsxBT0wVUBlNPMkAvVUQPL9+6R4L1VAcupp/2QcVUCE2aC3SxFVQDEo0VzW4FRAhl1nldCnVED3prubUd5UQBUTNPGxyFRAhHu6TeuzVEDgQyD/64BUQFIzdyhqXVRArbCX+Fj4U0AqbdZj41dUQKvk91bpNlRAQw5Ubul+U0AEz8nTflxTQAM7ZPSzs1NAvggMGwj8U0BFZMrDHm9UQFheKNyBXlRAYCrWE4dIVEDGN0u5VqRUQGcuWvCRtFRA9tHFsebkVECUXf6ZWuJUQCnIEVELzlRAZveZiHWwVEDrKnGjfPZUQI8lKeOIbVVAQmvHZ3ZsVUAmUNzEBVBVQP0+me9QilVAbRvckaBgVUAb3LTjPUdVQKJp/e2JYVVADSJE1gHJVUCXCkKZLY9VQL3Ag9Us5FVAuW3uisPgVUC47bht9LRVQN8cZALzvFVACp1WqjzxVUAU2pizwxNWQBnPLhc2/VVA/CJQrXsEVkDZ8YRdNkZWQGxKmaaKCFZAfmT9/E23VUCP6ogx2f1VQIjq0uwH21VAYhY3nG29VUDgOMgH4X5VQDzN/n6/iFVAkP9ilFdWVUDu2qCPWnhVQDkBzo2iuVVA7PzZHAqvVUCB2RywMM5VQGB/1EFig1VAKntKKPpHVUAfrokCKeVUQB2FmKtL9FRA9xAoXfoRVUBgHiBI5UVUQF75wJ/U61NAwpicAeJmVEBp6FuUDX5UQG957t93aFRAtLQNezOCVEAUhdWOClFUQNepIQ/Fe1RAztxvpGwNVUD8DRlCdNxUQHjHc+o3GFVANtuE6JdjVUCFr6wmsTRVQM5E5AXpaFVAvaLrBSbJVUBzbx4vP4xVQNp1DbzBvlVAbipaJOLGVUAKJJFQxNxVQDvPwUT1WlZA27qvDSnpVkA6BPOPPAhXQENwsOvuGFdAloW8Oa1JV0DJ69UjUppXQMXXc56IVVdA3YC1IFwGV0AX58xgKqtWQGvkRqqpHlZAH+bT0P4+VkBK/ACLPRtWQFxwTC3BFlZAF9q8mpNoVkAiZjBwyTdWQPQqgpZE7FVAsAaIlJJkVkCK/xzX+DhWQHCeACgfXFZA8kaMgTHMVUDv01jvrddVQALgPiFSQ1VAZR65myZdVUB2smcRkJlVQHtU7gY1cVVAgbGNVlRNVUB9LAe5ZqFVQEWBCxGga1VAJ8++rWBgVUBitW94C1FVQGd0OkkCCVVAWZgAQoEFVUDh9bn5965UQBCQNtEGYFRAbtBv8jRQVEAqisKcmHNUQL3Wi1K/QVRAtJoRmNOTVEBTySTFJjlUQEOhboh7zVNANKE3O8p3U0BM5pSwnZNTQIWrSY3bV1NAsmCWxVIcU0BgCx5bVe5SQJvCJ9qOulJAhi3cK0LVUkBnMaZ2lmdTQF9e8Pmzq1NALVwyLkPSU0ASNAVqa5VTQPLzqC4L31NAixI+Z62XU0AUNnEXKKNTQASxQBzuxVNAKhoiZWzpU0DemWwyTD9UQPlPpkTvWFRACcNIuoDLU0ALXupgMbhTQOLvCs7PcVNAJQMHlFV/U0D/oHWspKdTQC42Wz+PVFNAkmQsv8PXU0ARmBYAw/JTQOsuJXCj01RAeGmkvwFXVUBcD0Xuo91UQDM5foepI1VAFUT8eD8rVUBY8m652uNUQFsaph9N/VRABosj/dbmVEB5MXPHK+ZUQIGFzxyXklRAqaPPuPCrVEASmpOBB/9UQDbBeLRyg1RA/SR1Jl6SVEAOBxEIfJZUQPlwe2c+ZlRAezLfD5MmVEAM2Ex6ph9UQM6XEwRaNVRA4jVdATRjVEDGi/1IBS1UQBSoD82B9FNAwjzka4vdU0BTSUBFF89TQGcxlH1Q3VNA7BJKFLvsU0CK0gVTZqVTQGb/W+8rnVNA4w/y5RK8U0BmZOsrWrpTQENNLLaps1NAvpRx3g6pU0BL7b+u671TQLiBnWqBw1NAv1FBGHW3U0CVT8YsG49TQIIRemlnoFNAb4rqcydAU0Aw6jpfALxSQH+/qful8VJAInyiq8nvUkBCqxu6TsdSQABq7t5HulJA/sHCbZCGUkCcvTACh0BSQFIHjonwS1JADFz2qIR9UkCHL2lP75FSQERpLgMPTVJA/Q1FzX48UkA5aS0Ys/FRQJGWChp9oVFAfStwOC9ZUUBLC8XN/nRRQIu8a8h/H1FA16BdHxkEUUDXFpJidixRQJooHXK4NlFAuPlk8V/cUEDHV4sabBJRQMN/e2NIK1FA84UDGhbFUEDoqFUSPNRQQKwoH5iR2lBAlS67RDOTUEB0H3GobmdQQMe8mhg5aFBAn+l9q05dUEADan2BOoVQQCNQR86mtlBAQYGkTR91UEBJ+wFEHIJQQJMsIGZgClBAjiWEQ00nUEB27Zd2wrNPQEqL1hg1309AdAsg6RjET0D3sCHv7fxOQHKB8WSOF09Aia9SwnpjT0CZ5nakkxRQQPutfa6h3lBATMl3+rVAUEA4D1XrVGlQQPq24cGhaVBAt4Q1XgIzUEA58wyxpSpQQNU2aAU+eVBAhaT80NizT0Aa5/VlE1lPQIn70K3CkU5AzyH/ytiDTUC6bawbjg5NQF5nXf3/Ck1AP9chsHgVTEBnGJ09GBpLQDukUZT+50pADtBkvaAbSkBMS+O/M1tKQALlNKJ92kpABVMb8WBLSkBA66esekJKQHXNI8/Iv0pAaPeJWhVWS0AzRNFxc1FMQH3JER2pz0xAJVS4+3XWTUB+KZpf8vRNQD4kFdE0pk1AU5icuZOiTUADtTClZ9BNQIulJHtpo01Ac02jDFEBTkDoW8TMy2ROQN0vjBzq605AyQSUnXy1TkBydbnOeKhOQH5c/e5Wsk1Acvj5pnJvTUA+deCAWs1MQMgrIq+qyUxAiqGIYKQVTEDKTYquzeRLQFVuOkDpHktAy2pOgVv2SkBKoFUifM1KQF/Z42uAHEpAN723DCcdSkAKAOWYm2FJQNH3ipKEFklAERUFQpiSSEBsQ3X3GBNIQIN545J5YkhAd2CB9GxSSEBBkgoLzARIQFy+2lfLdUdAkjmyCiejR0DfnYDXRRpHQOosMUlwdEdACY6z+SEMR0D1BRqJOmRHQNDpe4TolUdA6AZDyweNSEApMD6z/ldIQJz1csLvzkhAAiwd/KI1SEAnstmOqORIQLclsU3N80hAYj7XCpQISEBplzQnM+NHQKGEpfGbdkdArSj4QwzjR0CxKypvJWRIQFBqvYRGikhAG1/OSfkYSEAhEkrkg61HQPD0XVy0IUhAIFvccS0nSEAiQ9PvX7tIQGBKF8707UdA/N+MsuD3SEDoXXVqp3FIQJ7279uoj0hA3udV5w77SEBcuuxJufBIQMTdxNi8ykhA30mEMRnBSUDRFdjCZslKQKTPYggAZUpASm7yWFHzSkCWYfgnvGpKQAVK+JQRPkpAGtH0uS25SkB+HfSp1zpKQB7Uqwm0TUpAwhE8SQDwSUDUNDiSP2JJQIRYdWz8+ElAFnN8ENKMSUAdThG3MdtKQD+VDBfKxUpAIgn3IntjS0CSr8CFPQNMQHhhWBlgfUtAweb/X78aTEBlSPzy6rVLQGXHQxpN7ktAyfb9GZ8tTEDkFH7oBuJMQFKbkvPRjkxAyVHb47TcS0BLIM4ZaFVLQCmogVrFhUpAyliJq4juSkDScURi/c5KQAzjHJKZN0tAig4Bwd3vS0Ch+upo/2ZLQOPWkczWSUtAO3AyWesCSkA6rdxiJCFKQMbQDN+wQUpAd8af+CB1SkBX7qM0WyNKQDSM5eedlElAdY+4Z3QhSUC5359t9O5JQCkR6FDV9UlACcLEhJ7KSUB9tY+8W41JQHoC7BKd9UhAOxBfhpzxSEAZKv3wWP9IQMy/unDn1UhAesPrWDjsSECTwBNXHe1IQIhEI2v01EhAhjw8iPUTSUD4Yx0CuupIQDUNf5BczUhAIlz7UMNZSEBJbBn1/RdIQHSjY9n4MElAJbvZTjBWSUAx9v/iepRIQPux9ROgm0hAPnDRsbFLSEAfOd8oWuBIQHI/sxvPRklAaTpnQF3GSUArGzozORNKQOsq/ukyB0tA2jyRdUxcS0CucXneNVlLQBnFEnRmf0pAePUBvSHnSkDUaS8LEMpLQCb9ZUaBN0tANgw0wHnNS0DHUfjRwjJMQFmwO06ZSkxATLvVJwQwTECwOMNWkVZMQK5mafvyck1A2JypknwJTUBqFJMl3FJNQBU4Q6Eh0k1Aq0wDa2YuTUCawKFaWnNMQLFcSRVjOkxApRNHFKyRTEBVqm9g0H9MQNbB1fmVOkxACXMdxPYDTEB8ThPDW2VLQCmLMyfINEtACy89q341S0CYYeLQYylLQNra/KhIvEtAp/g+Jn8UTEDTM7cYjwtNQAaK6DVb10xAN9ozYgEmTUA4WhKDcZlNQN17OiyXXU1A6eJoALJGTUDxb3dj12VMQK7FtB5qLkxAb2m7IZX8S0CBMRpOwIFMQCqP6iGkv0xAd0ItOidITED1vzDnz4dMQLg564H+80xAg54rv3FeTECM5NoIzetLQHIKOfBRc0tAvIcfqAtxS0C16zx+gSFLQFcz/DfB80tAdmETkb2fS0AkuvTkhJxKQMri2fqtk0pA3yaNnANQSkDWS/G+0wlKQOXFu4XdlUlAiL6q6b+VSUC9pOVZr2hJQCXc4uqyA0pAX8A1NQq2SUCD0adpcFtJQCD1xC5KwkhA7pe983rASEBLuQgs4FlJQMEMFuA9lklABxPOQDAISkBka4pC+dZKQPwqa10Hk0pAayIYo1MJS0BNMQ9lq+ZKQLwLeomih0tAalAYq0SXTEDa3tyg+nlMQM1QoMeYfUxAyd3+BiavTECSu+bTNPVMQOHYV1gt+kxA6FG83k+VTEB7IfWIVh1NQFYSnAbDXU1AyT/iOThWTUBfmcXKYwBOQOjOwvrUnE5AUKHNA2UnT0BB2WUCb4VOQOON7tLoYk9A507/+1IlT0CWfnh/tD9PQAcriwE6ZU9AuCQ8Li7BT0DhEQ5HC5hPQAWWRlvaJU9AyGh2XrnKT0CwKMGOzXdPQJZOv6LQck9APWE+CEW/T0BrBr9BDYNPQBGDbrQYck9AO2K2Sqj9T0ClJw+L2N5PQJ3ImKF4FE9AKbui1pqWT0DLufXZHgdPQItBsnOwSk9AA/z/vULmTkAmwL8EFNVOQP6T8wXB0U5AMN0i+LAoT0CA5lNzdTZQQLdizkCQOVBAOAfeMmITT0CMiZUfYUxPQA3ea9K5/k5AbIz/fBewT0CqYteAhk9PQIGk29E2AFBAAMyK24SGT0Das2IXVrdPQN0sb2g6wE9AdsBhMF+nT0BfHGn0HeVOQPWCX2+ZjU9A/lkley65T0BtKPkKSlpPQJyyCt+yjU9AToGW4z79T0C6DFqj3NBPQA57gLDTGU9A6iEjOBuGTkDcMghXgnZOQBOF/8nFiE5AiAKahagoTkADdHlcjWJNQA7g0Nfd1E1AvAyo0G3BTUDuFfxUO8BMQEFkytEN8kxArzdK+qt4TUDYSjWtKdNNQGNXwcgEVU1AY8e6TgJRTUAmY/dPcM9MQECI0ezayUxAmSAXE6PNTECUin6mVF1NQAvH7r0LxE1AbnH4GDA/TkAgbUlUwEpNQCXNUe9Ci0xAzidswH32S0ADjqUPjohLQABSFtAskUtAjbyTQRNJS0AH6ncmzc5LQCM+/bPphkxATdni+koNTEDtYAqUr3xMQEe8h0JUXUxATZK44083TUDoGjpWsFVNQCVtgflN+U1ACgmLalUETkDRB3q4VfBMQA5vkYE/bExAmm05LFjTSkDaZD3uilVLQBMZC1KezUpAqt7dfzP/SkC1QGCigGJLQPc9obDTBktA62sHmY1IS0DmLJNBBmZLQATurqS/EktA7nCqIdO1SkB4LlPp6NtKQJKZJLCM+EpAV1drA7jmS0CDXzA+N59MQN8kuk0Bv0xA8CpQXYKHTEAzOvZQAc1MQOsqeOyBMExARFQM8j+kTEB8v25rdmFMQHb+0oE3pExA8s36lQp7TECYxe0IIDVNQDb3jv2Kv0xAYa1UO96LTEDgdKuUHaVMQA0mHiGVVkxAbWUtTey8S0Ds7G4Z1mBLQB0DN8TkXktADQyZN1r8SkAah7mVKQNLQC9qejmBCEtA3q/EF8J+SkCErxkpxrxKQPVswFyQxkpABsWjSduTS0C94/q8w/NKQHG4AyatIUtAR60TQZ4RS0DdcdHpoZFLQHkcXCmIVUtAjYIsVe+hSkAMmHRlIq9JQEh7fGsRTUlA8uHkyGTkSEAygo8N9UlJQF7YrPyR9EhAv8L5KPKNSUAhfQOf1HxKQKQkF94vpkpAkEcfyWVaSkAFYKSvyp9KQOZZG2jKKktAIUrEKKM9S0DoGNspTKNLQEPDrwT8hEtACFLRE1AHTEDgzLjP8G9MQCEbFE/t+0xAUSTKeKGtTUAjM0t62/hNQPD+uafVnk1AWrM6kCY8TUALnf65KsxMQMVw4VtamExAVhfx9V3HS0CXmarzJalLQJQIzHPxmEtAnUHqPMC/SkAJ16/rNHZKQDkxEcynNkpArHlNabOjSkBuMC9RAhNKQB/esHD41UlA9qs6SG+uSUAkAyYkz+5IQDsH+7X0c0lAJN2I/rTWSUAoczSXKT9JQAloc8cNgElAIQTohvgFSkAuP2xTKU1KQFHHlKdYDEtAapWj6r9pS0Bv1Vu47YxMQAD5cxmN/ktAppQu73SiS0BMiYCt5rRKQGETpiuQwElA0yqTS78nSUC/IJEI9l5JQOWQbaZ3yElAgEAH5SAHSUBnHcPl1bNIQPV9FR3uJEhAvm+cU9T0R0CL5FARchlIQDe/rRh+dEhAChi5fIYBSECDvLZ6JtdHQAjCHcPFFkhANWCb2Q4hR0CH+GRQKfFHQP5A+a85rEdAvhZh/6TWSEAQpvYckclIQL71MklaR0lAVyk3M/7dSEAoPJae7YdIQGlCzxb/SkhAlCpq/HZ2SEBoMpb8FO1IQKFnpzLejUhAB6Qmbi+MSEAZkhfIMo5IQG5E0QoIIklAcf6fa10ySUBziAcJu8VIQIrEz8cRs0lAZKrpTdb0SUCU77HXf6tJQFgnN4Z3PEpAkfMbtlUHS0ARfPjYV19LQAbR40s31EtAfGxuZFTMS0DhtdDZt1hLQM1nm+B9QkxAVoMIl8roS0DvB7h+TxNMQLNpKnPLMUtAv8UAe7fJS0C6TLD59WVMQKEGvEAFgExAwI4KiF66TECBbzC93phMQMnl71Qv30xAH5vLLl7JTEA4ncHZD7RMQH/1RbMjN01AT5JrHBSyTEDVkGxb+49MQMQn/98Re0xA5yoc/5RrTEAA4MBVUZtMQOS0Hu5ggExAyIU6PzCrTEC/DtyIoA9NQPFs9nmwFU1AxdjigZg6TUBOuBrwEHtMQEa/sE4Tt0xAAAOHoXZ6TECdbY1D4YdMQFXnj7REIUxAchxJjn+cS0DPHeQXND1MQPCkfl8wAExA9U4mq9KbTEB9t/aZBE9MQHojjRNXMUxAAY1fdq9OTEDleKQ0UGVMQJja6oMo90xAFNQRKpVBTUDZwOzOAnJMQK+8PPYNaU1AQJMpcqWXTUD5l6/8v5ZNQDj6/K4xlE1AvT67pkKQTED9pgpwy75MQCsQoQiE7ktA9p26XHVMS0CCN4p2Fs1KQH+QaH6oZUtAVOzv3yunS0CTh7z1lZ9LQDeWKqSp7UpAgYWQWGBISkC5AX3bDx9LQOLsXN1DlUpAsI6VFuveSkAvKXO06INKQCpt+EHAVUpA7zmfSTE2SkAaWOFvpHFKQL9VxjmQuUpAGpZc/v/ySUBlfpMiNvpJQCb00AS4o0lAkzEqShNVSkANHm580FdKQLsmumMcK0pATGmsOdwBS0B/zPQ/vzlLQGX7Ns/lkUtAEqSMlkwfS0ARqEs3DrlLQL4ljC5tz0pAX0SfoMFtSkArmhIgSvdKQEC/JgF3tkpAjvaKVJxRSkDGSRyAa/xKQA36vGsvsEpAcrBXhIhvSkBUAqGLs8JKQDH746n1WkpA2tx5+oYXSkBWiaAVS8hKQEQy/uIjCkpAhZn5KlbjSkD2/xr8njNMQBpyvrGM00tAUIBJMFYUTEB3rzm8ClFMQDeSNJUAkExAnXdZrEuaTECM3lzRgaVMQO5vS4ptV0xAv1jGvkIjTEC3rc+HFolLQMhcPDOrf0tAZEFlBLj8SkA0iZV+OjRKQJEDSi4QDUpAer1btkEASkCehRMp4BBKQKaJiLN7NEpAiEzyBpqPSkCUmQruUAhKQIjsI8U3FUtAXru4iyzbSkDij1TuMkhLQNBdr4BwF0xAUuMxsXPmS0Dipn8bPrtKQNZy9ZwsQkpAF2PPDpwESkAsxR9S6spJQKqCDt2VIEpAcO3iv0nBSUDElAEM7TZIQOhhcpCz7UdAXZGa1C7LR0CVS/BVL6lHQObryMnRmkdAbtgFWEQRSEAMu9zd8wNIQDi1H2nfZUhA3vqkUn8GSUCp78nKZS1JQOp2ElJn9khAO8ZLyXghSUC3x0oQ0HlJQCRti6WY9khAd02qlXgWSUD7GGKW0YtJQKUqPkPHIklAj6K7FdrASUA9uYEuB3NKQIrgdkmHfUpAfgjDhR25SkAURnt/5o5KQDbbz2B2IUpAv5B6UoCRSUBehCkiv3pJQE2bvjAQBUpAwdSZt+3FSUAR8J3/mExJQM9sK4osMEpANKxUzP8HSkBwtQfjL+lKQFyMnppQl0pAMqSB/tJnSkDdU6m5251JQJGtZ8oZLEpA91XSVwcBSkA7BSA7oRVKQLQsvuztiUpAbXhMqB7USkDgsElv4eFKQNLRqTrpC0xAkZ2Gxg4XTEDTY5CQ00xMQIe6O+xjikxAzY85NGnJTEBBng9eUZZMQCt1MMePP01AXkSURwD8TED+zS90nbxNQIG2QUz2iE5AtVOKbmI7T0CWfEMRIIFPQKwH79ySKE9A1SScUQY1T0AWXbHUi7tOQNGHSVQPPU9AVbsHnzXvT0BHZ7cni65PQDqDsAWTAU9A4T61a5edTkCUoV/FfaRNQCbuAzQEUk1AShEKQbG0TUCPO5PSqkhNQNFg7LCSh01ALI4/r8FOTUBRnUDxdYJMQKsSyhlc7kxAu8eMYjuITUDdejNwfZFNQF27EOcYz0xAxBYo5YgrTEBBpzYejQ5MQLcEP/fSJ0xA/peSwtOES0BnV8sPPjZLQIhcbrDwyUpAu+p0PtSxSkAxTvmWmSBLQOh/WpKjnUxAspqkWdbwTEDuYfHTxwtNQNSyvT3LQ01AukMvbh0DTkApDwrI3CROQBvcZUqQ7E5AwnpmDTvCTkBFia611EtOQD/wjEmmbU5AxK6q2kfsTUADTSC/8o9NQJtA5GiX/UxA6gJwFtb3TECwGYh12a5LQCIqb+FETExAHbPnXOoqTEDWz3DLcMpMQDz7hneT90xANIc+NJvkTEDZ4lEDOzJNQODtRztcR01ArRN+Ej03TUCUFmjStQJNQE7pRc0Dk0xAjQXvSZBnTUAGhidlh2ZNQCon3Wo/5ExA4iESPjeWTEDAXVKwr91MQAtH1B5bZ0xA3LOtD2NiTEBmaTmZTrNMQIgagOcMoExAwq0iOcHgTEBEqp1wcyVMQBLcm/ZnV0xAuV6942i+S0AksnFrpoJLQFb8d6uWBEtAEjlcCIUCS0BGDaZKj7xLQAAXiyHM3ktAjIGJ57/cS0A3OBnFYjFMQBNBiZozwktAnAxFG7DrSkA7ll25ZxBLQKRPZ6Z3bEpAIGewzOP6SUBaxm0Kf2dJQB+2heRJjUhAmyVk//b0SEDoJZnUOFhJQO5bc4fan0lA8h2j1h3kSUD5/5nwkOZJQLAaFrbOt0lARt5wwl0WSUDwKjaDRodJQISQf6mkdUhA0hT4Pn5wSEDstGGhzW9IQGimAL19rEdAYLnFHdNAR0A7Wu50tgdHQF5nl2NhQUdAN0ILRLtxRkDDFljuVSlGQDTHkcz2zEVAQeCAi0JURUAleOA2CCVGQCWgZMjuv0ZAQ2K2aKtWRkCysQGOreJFQBlB7fV+jUVANCrSnNA4RUCR9IJ40mxFQHTcRD6uCEZAe3+/1HSiRUBcLJpao7lEQK6AAl8DSURAeu/7aNWgREBl9aowJvREQOgm7A/fPkVAS0dyLaJ3RUCNgN8uiEFFQFi/SE5ZUkVAgI9L0H9KRkAR3cM0NONFQGdi8vz9EEZAfZjZzXWPRkDDfwJclORGQKRLhhXw6EZAm4HYiKqWRkBLVgZu+hRHQDD1h/v6G0ZAWH0yWe4mRkANlQ2lEuxFQD8MjR7wOUZAZGT7pcsdRkDqzjajoW1FQLXE2VmSVUVASCa6QhozRUBx99GziPtFQK9OiXans0VA3s1Ee2ZaRUAu/H32NoBFQLifhXIGLEVAwObL6BHFREDZMEZJvaJEQEQiOAbtxERA7je7+5zLRUDD+8QPmZ5GQD10nCzPtkZAuQLQGHRhR0ChzVkcPhlIQJMWhLpvUUdAo+uqKtmsR0ABnnzxtAFIQLa6VElh8UdA9I8h0/UISUAz0igs3vtIQJFrTD7oLkpA9z3zertdSUBd7ctXWXJKQJ2KcEn1GEtA3wdrztUxS0C59a0vZ1JMQIAjKRySYkxAcEvq4JqXS0CWniIGh+tLQL89MF8YJktAxTr7Y6j3SkDowWGLkXdLQP9TJQOqkEtAunqJGOxKTEDMzUBTNGZNQAL8QCm7qkxAaWyJRqTcTEADVQoZQyBNQHawbMbTyUxAm71C/98BTEBHMBji69VLQDSIgvWDa0xA3pcQRAc1TECPeXmkMg1MQD9fUX1Ie0tAYWPO+I89TEAA1g0a7tJMQInls+6k2UxAnO95uUkmTUCVuABQU+9MQCYn83NIv0xAm0ARzegpTEDyZcwcbmlMQHHAPL1CDUxAgQL3Eq+GTECb8pMJMUBMQGhX7X3kE0xApT6KcThCTEBTMAplfPVMQJLq6ZGAokxAGJ0fHNoRTUDM2qzsU9JMQC3lyQDHHUxAQisDseRvS0DEVfnShElLQPxO7/B7bktAyEN9hiqsS0C+ht+F32tMQFoPo8Lv3ExAiU8ewWGhTUBFgjnJcYpNQCdNNauij01AHm5HQGAKTUAGMccEqr5MQCzatzmpjUxAVpRuI8+wS0BiKcVaxPVLQJqbXNczxUtABPJ/T483TEA3k36Au7pMQAOXeZN7mExAUwN8fKRDTUCct4MWY9FMQBj8KNUsRE1AvVU7ReAuTUCuc6xKMilOQDamspzT/U1AMaY/036ATkDCY+qYxU5PQE2dLMqVcU9ADua9tM93T0CAvWQUSGdPQJxUy8Nqmk9ARHDW8DRHT0CcsF3Oqy5QQLqwr3QQi1BArLDiU4pWUEBaXnfGuTBQQBmK+RFtTFBAw1opf6NnUECZ4GW0ydRQQLMiFMevWFBAusL8XYtPUEBKMwIxSHNQQPpSbao1Q1BApFHjqgceUECqSc9ol1ZQQBnis6iGw09AsDFn71aBT0Bg+gWYZS9PQOFD/Ng9gk9AlqKU31j8TkDVxNX4sd5NQLK/pGKqAU1Ai2BogJLfTEBu8lpYLxpNQI4U6iCs60xAJLY2+fZoTEAAPrUn2lRMQKpjxkv1lkxAm4BrZWs9TECXM74igBlMQKPjTiFlAkxAYUGy81bATECtALGnTNdLQGN5eFca7UpAv8mOeyJSS0BD6FTxQRlMQPEZJIKoXExAy6Z/d+WNS0DAgyt6Ju1LQAcUFHGAbUxADwacNmC/S0BrwZ02lZtLQAToMqzcZEtAoSew3ZBuS0C5wRXLUuhKQKl7I/eay0tAjmi/bChaTECvBTNovkVMQC+hVg+VpUxAfVqw6kM4TUDw3Wkc2b5NQJlUA/3VEU5AgJtsvjE4TkDru53p2NlNQI5KYo04NE1AWylcchb7TEDHzrwH0PBMQG3NKw4MlkxAr8bL2GAFTEA55FeJCPJMQNAkCLvjD01AEm/mcNkMTUAJ2JIkzwlNQDDrhAodRkxAaa050snpTEATDNXzLM9MQO2DpKqR3ktAX9JhTT4oTEAwljMXuRlMQHtYfqZE7UtADQ6ZJKPdS0DlqrTnBUtMQJsZqTkDX0xAKsplQuIKTEAwUMWuZMhLQMyT9DN1CkxAIBn7xzg6TECbvxg4iLNMQF/EzU+X+0xAFMvtqc8pTUB4rrLwe91MQAvtwt7xzkxAY7T/svErTEB+App9aAFNQM0tWJpzlU1Aq6mgtNjhTEDGbkVl/ixNQKAmnCUvGk1ANfcS0Q63TEAqTmRlwMlLQHOupG6LN0tAjT6GAescS0A96wL5hLhLQJx5nOf3gktADbiy6hvlSkAcglWlzAJLQDNfKOz0bUtA1YGzSu+mSkCmmNnyfsFKQGD5/Yv/0ktATQHJNuRfS0AG8oL44ppLQN6CkWSuS0xA5n7ssWMvTEDyznKrzM9MQKfPdEjPSkxAp3gxbHK6TEDjxCdAzllMQK5rhjFG0UxAxMTj5ZQPTEDLx8tt94dLQFklwjwIHUtAusGHp3LDSkCVg92iYx1LQGX2WWRACktAxTOg9/fMSkD7Y14DUkxKQLNQbOVt3UpANgmo7DwvTEAUgzBJVKNMQFK/DapHrEtAWbWWsKBAS0AzQftaowVMQDtwCmq+oktASBbxm64UTEBUSBIsqbJLQPZwCXos1UtAcdclvjCLS0C6zsHvmCVLQIqtplnG50tAO1MvLOYbTEBrVKVtEwFMQO1PMs2ZWEtA+Pr7eYMOS0BiMMqwHytLQA4A/iOP/kpAQ0r9jYSxS0BW6RYhbKZLQLQHZMb4i0tAkuKS9qDKSkCBxLaUjNlLQOHZW+1W7kpAd7Yxjsm2SkB028Jwc4lLQMuDEMBVEUtAcEvzuMj/SkCmlv9jnv5KQMwROysWLUpA8SJ12YC8SUALVNA/CBlKQIqoKBXGYUpA38hByjxDSkA7GEMbM2pKQCIvIMUcL0pAl6q7DE0BS0AjlHIeHD5LQFVe00tGyUpAeZkqkd/MSkCVH3bTbXlKQOX9Aar5Y0pAn/RKt5GiSkCjutg+P/9JQHw20sYXXUpAD4rIZlYFSkDXqAVZvjpJQONF5weTRElAs3dUDk/DSUA10h1XaypKQANlZaPUBkpA3mxk5SdTSkDob7Q5UK1JQP/Beoq/TkpAeAt3HA3PSkC3z9xUQABLQCu9sdS7rktAPvnci2jMS0AUOBxPK4hLQMnmR9PgPktAPBrbEr6wS0B22UrFoxJLQPc2vlMGg0tAdhEwLWMkS0DXPTpTpw5MQCNsW7U1UExAZFspeU09TECtpi/dlNlLQMtA8KrYkUtAU0KZt5KgS0ATzUCpVhlMQGkqcs6NyktAb2ljSHDpS0B0zd93b2VLQD21P+AEvUpAM1NtmjBySkBue2BeWnlKQOiWUWpRW0pAczVATDYkSkCtq45aqXZKQDYOcu9R4UpAH6wFvkyaS0B0thIDTH9KQFobBUp5/UpAU6holWdLS0CVsz6x7clLQNTXielJdktAypdsHFtFS0AtYXiVtu1KQAmduL0gWEtAaf6ZBFzpSkAsfHtHyaxKQPBc5jrcI0pAQS5e1hDwSEDb6AO1wDNJQPrVCrH3aUlAEXamv6FiSEAajyj2E75IQFar5qyLMUhA1UekTq5OSEDx8h2l+BJIQDm+tOi68EdAit3nOapESEB8gDhISGhHQCOFwq389UdAThzRYELzR0D1jmsveNhHQNf6VV96dElAe1fGxI89SUCVzE3ioQ1JQF6XKV3XEklAJUjJ5r0ISUBbyIOXIENIQA/OSTfyrEhAxAXeYTOlSEA+mkU4VStIQFBHSIVi/EdAOJzPMbQHSEB63rGDtJRHQHppagtVJUdA99W639qcRkDSZjek5TZGQF/RYn0omUdAn4vdjbrER0DEUR7U+DJIQDJqPeWRpUhAwFWsXWA7SEDSMDYlDnxIQKTI37g4/EdAY0mR3QjQRkB4MBWM3tpGQHoSjoyce0ZAE1bts2GKR0C3LSnTigBIQDkaQtZqgUdAbLtrf4SXR0C/yCZcU3NHQGLZXCVBVEdAtEJasM8JSECSERmBIRJIQEero7clfUhAC6Wm8FQ8SECLgQEfCmRIQPhSUoG54UhAzQUfPDvESUBSqoEjG7hJQIMC/wJ4JklACTYfKMtZSUC7xbc4yFNJQLQFLeRSnElAQ37Xh+NGSUDBTl4xf2ZJQBurG9utTUlAbIAmuYmeSECpihuT50FJQIiSxbkE6khAxevYou3DSED9QTwWQhRIQHKaOJ18PkhAIj63z0xYSUAEdRzmwk1JQP3tEpBiMUpAm5oiaXfYSUBZETFMy21JQOU+EyGgHUpAuO3Pfy3JSkCEv2KU8EtLQGmaScCEnUtAOaUTM5x/S0CypfR8bmZLQHvUA9+2hktAefOaWiO6S0C4uzRSOjhLQBGyKyuEqUtAjMhxBz8iTEDtzMbkPtVLQIsNpyeunEtAI2qIypVtTECDUdO7VFlMQK3agUy0Ak1ABNrn6KXuTUCvdghIv1lOQI0+7nzGTU5A3trnNW9gTkCJ0ddxgGBOQO5WInUt905AdoJOWwKjTkCabJgd65JOQO24fEpxgU5Aaoe7uuH3TkA1RvPJvGFPQDB2h5Cvpk5AwcL7+nUzTkDmA5mlIGlOQOR9QBKlKU5AyYuIk4UMTkBQjuunIRtOQDVJWrRkCU5ASPr9I7a/TUCNojJitgVOQNFe52OhEk5ApyLlcoY6TkBZe98klMdPQLXart45jE9AtLX815mmTkAZvUamJZtPQBHLez6VZVBAZ1Mhw1egUECwn0wDvslQQI6ox8v7sFBAxcfz+oVSUECDVuYrmyxQQA4fewhv3k9AL/KWlUbrT0AUwNKHHnRPQHjJZiwpL09Ao99NHupRT0Chs+B2h0VPQIqQVtDaxk5AGD+XsgZPTkA2ypRMENZNQCDYysFKYE5A8k3AoJFnTkBYg6/Lo+9NQMvr7IBhQU5AQZaIPpqXTUDVhpkn64hNQNSslClH7UxATYWchiHRTEC385tBQAdNQACxSfg11ExAMWpw3YEhTUBtuRfzSStNQMuNm6Cdfk5Agex/nA3STUCjFkw2fEROQIqOI9HRh05ADWST7N3MTkBAUsHsrvVNQMSk/aup7E1AyKVa4AbITECXyiRHhU1NQFUB+8TfMk5AhiyI5sZRTUC0QBaz82VNQA61RPB8nU1AG58ijWAbTUAhSEwR48tMQDClGsdGZ0xAhQnKcUpGTEBGS4ogLnNMQNbWCokOakxABsTlDCtfTEC2Lgpd7r9MQMqnhPACrkxAsq54BgEES0A7K5xQliJKQD3RY2x7M0pAJjC888xGSkB7cT++Cs9KQCzjtnwrdUpAr5NUwf/VSUCEVGKvLYxKQBlY1j8MskpAKongP+5zSkB1b17tG4BJQDCG3DbDA0pAFMe35DtOSkAgkhOjIbJKQOpfTsOMCUpANkwY0gmaSkDIpB5T/jFKQNlFh5rCOUpAdQxYQdgxSUDz++KUW1FJQB5Xd8hZZElANF+W/PzYSUD/4o3DBKVJQMVYkdAJZkhA7Eb6vf6jSECY2FcHJIJJQMJ3bq2waklAJPNi9qkSSUDGVKgZXlpIQGmzcF474EdADHsabrH5R0C58nZFE7pGQJsVRXJ20UZAWjPbbWnpRUCkSymlyIJGQEggkYjlvUZAVnro2cwyR0DP3x1UjdZGQNqEC/FO+kVA2QxqdthORUCVo1pR9xlGQIMzzj2n5EVAHZu+lAGwRkDKAx3i8fxGQFluTrZiaUdAIqRdHjPoRkAfzqoV7/dGQFpOFTqPIUdAA5rzCC7dRkBlQi8c8w9HQFtyaMc5wUZA8Z7nPdlLRkC6a61p8ztGQHd6CjBkNUZAJZkkCkQsRkCCsFMMGXxGQH6PIj0fo0dAZZU3vM1pR0D0yW/N0UxHQEqpc4gG1kdAm+hxjoaaR0AFn21wSrtHQOqlEPbjs0dADpueo8rxR0CuvugMkBxIQAkvyc2CpkdAw4uGBfkWR0DOhqewj2hHQM3mRVGHEUhA4u6HOyJ2SEASWMCcNudIQKY3eQt0QEhANc6pD3jESECFH1Gc9MNHQLlzVA5Be0dAQGP9hyluSEAce8A6U89HQADyr0jGE0hAByVeqZsKR0C8ZBzIYVJHQKJIUoYMp0dAEDWvgMwfSED8Aa00vxFIQEqF0LfeMEdAiC3JSKlsR0CdelUEFG9HQBrJpnTCiUdAPsLkm4QUR0D7mK3uskxHQCfPuaehJ0ZABUCuYAeFRkBA4eS8tUtHQP1XJlZJl0dALKtUteqQSEAo/R1qJRVIQDuOph7WYEhA8beszvyOSEDbmNkHoP9HQKwNn1s0RkdASR4fMAQ3R0BcKhJ3BWJHQHjK3DAHwUZAHG5ZeyCnR0BhxYNbVHZHQIlsakKM8kZADuEWGmjuRkAzRmzDFCRGQPVqOd6vTkZAxLG0Oe5mRkBK2Ww2Cq5GQHvQ+FXheUdA20SVy8KLR0ArcFXIWJ5HQL2ktwW4j0dAEGKy6PMASEDLJjr7oitHQFtUKbOw2EdAFy1eOdcDSED9fYFZUWhJQKLxQa98KUlAGFd7FeC/SEDS6Db3nwRIQBmr/VAEUUdALt0gX1INR0DhbfdZcNhGQDHhEPY+iEdAh+fPHS+lRkDpztmgoLBGQMMtf687XEZACXTXYBKtRUAbogUVApFFQHXDat76I0ZA1jeT+P2ZRkCdl1ta6vxGQG0t4/0ZCkdALuU+D3gHR0Ajm7Vv5L1GQKAIvXCzckdAafwN3rpFSEAOKB3DeyFIQOwcOFitYkhAVHA9z5TNRkDbEG/grLtGQLBqpMHWZUZAZGTyUyHGRkD2kBtPp25HQJdMO4oNHkdAi/+k6r0YR0BbkOnPAMtGQEX7KNM/HEdAG+myHSPqR0CoBdic0HxIQIC7/idEc0hAhh/K4d9mSEAOvte7u4FIQNQuFgANpklApJYi+SvvSUAiH967exJJQCAq4rLHf0lAYBMhqhaqSED+Im+4K6hJQOExJxUhQEpABwaJIK+SSkBKEut8TFdKQHyzpUQR7ElA9SeBTHyISkBkoXKz90FKQDvQp28b2ElAcV/Dq+ykSUAhsDLGAzZJQC5HhE0K4EhAIw+LB0Y2SUCIFd1fmopJQHVAHSk3p0pASjYCuRLnSkBmGq4jyWRKQF06BbqIk0lADjS351x3SkBjlQiG9K1LQOPSpSpgxEtAhsNFulfAS0CDZrgPzNJLQIx8/+6bhEtAghiQt0osSkCNjvAMeF9LQLiphYRBIEtAZjz++yS1SkB/y4i620BKQP468ttWeUlAp4CWGnMnSUBQtp3h/cJIQKjBDr0iYkhA0KdXtPpqSEDnsyMKUVpIQI4g/fHXqEdAGc6y6AxoSEBTrI234JZIQKK3aDvHZ0hAJ13g2tgVSEA//AlnDWBIQEUP81iOW0dABtwp7VnTR0C8QEq4ZpNIQN769no1oUhA41wnLWskSECb3TMCBplHQODRu4Boh0dAhsDNMy0dR0BPj/8ehxZHQAxUXriCOEdAWgfiNehTR0DyGZAtn7dHQD3TEmitikZAraBhxQNXR0BNtEzxqg1HQC2HA4Xvj0dAQScLK5LlR0BRVF4So31IQE4BPfSrlkhA1clEis2iR0C2WD0P6wtJQAfTuJTfkUpAHAXP3wqeSkAVTpIO0sVKQKKu2W4EikpANQcJgVyQS0DCJXyGvt9LQGmQtsGD2ktAoMbfkMlUS0AAb5/7dihLQLQUvIFgAExAt7J1g83oSkAMSrUPT4ZLQO0frzpatktAbeQ/atvnS0Bq03w7NzNMQB/Zd7y+HUtAQfpouUW7S0B7fHq+NdpLQExfLYRgHExAYPd2hLffS0CdsvwJe4JLQMq001ODdUtARkP9IIv8SkCQxhnrOB1MQHiToQTrIUxABRxd+m0wTUBDtPLel9BNQOCUfye99U1AD/ZsxYs9TkCWxejJb1pPQMjuGlY4+k9A9KfenaR0T0A4qzd2I0hPQJEPFL/rOE9AZB1XsHzSTkDSNIIYzllOQPev9HMZVE9ACw7fy6YsUEAcaCKev9pPQJcmMEqmJE9AumIWyAzFTkAkTOFakBVPQAuK2fnq8U9AMqcH0mwPUEBWONSjpuJPQGQzsoccOE9AF3VgyQxpT0AVXorIHelPQFjXUaEj8U9A8InhfJ10T0Ce77bgGZ9PQG/4j3v6qE9AbraRXGu/T0AEasendC5PQKfvIEOFmE5AqyrwZ7w+T0AqTPAJRYFOQOro34ZCiE5AL++9Xzb3TkBH6DYrCl5PQH9jNqe6EU9AG4q8B1XYTkDGa/I/2bFOQN+1+dM6ZU9AyXZEXmJTT0BlrQNmulJPQJH/VwmrfU9AfQf95HM4UEAVHT+4AhlQQES9pRBLf09A1wmx1wVgT0CGNM2SGRdPQBdQkhO8BU9AvY+CEFScTkDn/kD4PPlOQAs2SwOse09ABwhiK5/7TkBD6RoimTFPQNA8WOFkB09Ar3IGYYkaT0C/6EUJYjdPQL3u0YXmrk5AHD0jT5EWT0BCrSoSAjpPQM/QydopF1BAKzZCqvTqT0ASarUoxbFPQKamrLtAqk9APz4cwo6LT0Bk8nJmXM1OQKitTKG7YU9AVjrj3hkKUEAiuCe+7L1QQKt9uIE/YFBADEPYTgWAUEAZhyvMJYZQQGdHOrdxcFBA20rdd3WMUEAaFZ+PkstQQPwROVg3vVBA3OwV/TgdUEDwtsGOuZZQQLm7vcyw71BATsvPEnH4UEBMULZkrmhRQLDHzqLoxlFA7ZnjhyXdUUCvsBRC9BZSQPDlv5Jr/FFAxPGXCAekUUBUUs1YDf1QQBNr0RKWAlFAEUURJPYyUUBNSIndjehRQFuO9B22t1FAQxDTnyzeUUDD350JFJhRQE12D7JHXFFAJrHT+eoPUUCf4+UGphBRQLtMD05lVlFAkNDescTpUEAjKIn3WPtQQGa31dqQGVFAL3tx7k7GUEAU2WzWAwlRQNUYHiDIjVBAR78DeLp1UECm6hYhIEZQQLc/nAY6WlBAmWFSf/p8UEA6u4DXdHpQQO39GSerVlBAW/OBqYFtUEBwvmtsLrJQQEZy3GsdKlFA57RNFVMcUUDsdlDej89QQJzUpIkh0lBAvr4EU8+zUECjScmPZ2tQQEAL158IWFBAlLlFHNRPUEB1JwlEW6NQQC2bOePCjFBAqKQi7FVxUEDtAU/5yWNQQIfhiykuDlFAAXYIx5gAUUAU1ehsr+JQQMmLrEMxgVBAV/jaFJ19UECecLyOcKhQQJ6I6EW9CVFAMUEauaUjUUBHNHq7lvZQQBrKz7yR21BA+lGVJEx3UEAYVkcZHHRQQMcXyK4welBAt2NKRSjRUEA5vLMpDHJQQDHdCyvXlFBAXLUodpySUEB4w0TPkU9QQGQPzxBKh1BADnJQyCq2UECni9vA3X5QQFGqk6ZQHFFAtSH71YDUUECIg53xGtxQQICfm1VYrFBA0q8UTD+sUEDNv1YTeoVQQKpI1cNx3FBAT0X+OPLnUECD3d2168RQQKtvU2Uk3FBAb/NtkKkPUUBWe7CcZyBRQEFSKIOaQFFA5gGl4xD+UEBsmNX+3XRRQKoBTLy9dFFAbnXbnaN9UUCFh5QqRVBRQPq5gmDCKlFAhZCq9TP8UEA4aledTJRQQF0RXPDBqVBA4Eu9aRSwUEDfOYWE7Y9QQPl/Zb4+8lBAm4bQHIjqUEBjt2bYtVhRQDSGVSvG4FBAniebHdELUUAa8OVk8O5QQAcqZYzN+FBAJueMc0gYUUDUzwiMHm9RQB3d431c91FAzA7mGZvuUUBVYMjY+eZRQOef3HDACVJA0j5IrtgbUkB6P0W6tm9SQFYlzgR4NlJAo9Wgtw2jUUDNtO2PgOxQQBQOJ2eGCVFAcsqC5zwPUUCPER698R1RQKDUWFTaaVFA6phLkrxSUUDD/XaVxltRQNJulfNCW1FA1BuUOa1ZUUCTmm8n+zlRQLynE9OyT1FAMs3MwkhSUUD3nR31+mlRQI0FqMVXGVFAx8IThB4FUUDOFD3xvRpRQCYPOOn1QVFARsbF5qpmUUAUYc64DSBRQL94HxGdCFFAf6vS0gbcUEDj+DyPgLVQQChJFFu5A1FAymVaAcsgUUAZot5PAytRQKW/Byj+3FBAqpaEgQXIUEB/UX9Px3lQQIsT1HLijlBAU6ELG7M9UEA6wWi+jZZQQA4RLEyyv1BA3EiTDBBmUECM8F3E4LxQQE3nD/8goVBAkaJPpcHFUECBN6IsTeNQQP0r03ivWFBAHiGV0LssUEAfYN3gxhZQQLRsBMz8OFBAb8lySB04UEDh2fiFiNxPQOPcTo1nBVBAv+DPFEURT0B3E0XZwAVPQPfHeHjxgE5AnQ8/2APvTUDFvYqDum1OQEHLpEp2Vk1ABtSeMkoGTkCqCKAKqJBOQEYthgehLk9AHi5pV710T0Dj60+oL9BOQLe6ZhFr2E5ARTqgqmk4TkAq7WsfHCtOQKz1oqeft01Am/vokWqkTUDFxQ1qO3hNQDIP51EC/kxACxmXGgpWTUATz6eZuAdNQOBIJzRY5UxAcPX5GwebTUCEWktqmPVNQLJu/a4Yq0xAYtVLYPsNTEBjmzOqLH9LQPWy9N6T40pA+rhErPv+SUDQ6iIAM3FKQEcmvqeQTElAOdKWyRbLSEBZgM4JhktIQAEFTmw2XkhARio55D8SSEA8KJ6izBFIQFYeRpRcN0hAjoYtYAI/SEDhugqS+fBHQHwCKoC/xEhAuh+iMUxkSEAOYaMX9y5JQCMhSvjkAElAVNu71UitR0DGL3VDlBhHQLJoiD5enUZAl/JtoZHLRkBn3sBbd9dGQBz7WUGHNEdA2sFDJouTR0Cz7mnaruVGQFlwjCJUj0ZAUwEy0bM1R0A3BWZDxZBHQM4vh+0NBUhA1263B3izR0BkP8iVMw5HQCVRFPCojkdADDm8C7NER0BUt2Eec0JHQJRebOVSTUdAdC5bjW0nSEA6stEQmtdHQKCJHDomEkhAqFCJAmkHR0BdrZ6any5GQLOvC07nI0ZArBts5iJhRkCXge9YDeBGQACW6D0mRkZAj8JrayqoRUD6vyo7KUpFQFyJ5YI0HEVAKyEadNlJRUCCofvco21FQBK3mcctpkVAT9Nc67AkRUA5gS3bKudEQCunvyFktkVAfF8UNlQZRkBqmgG8XBpFQDzcBeQ6MkVASuMC1z1ORUChrzrNA9VFQAwMyCwRXEVAIR6kko/WRUC7eH51on9FQNMybATbTUZAeKa0i43eRUD2Tr6UgXNGQFEVsSuVOEZAsX+rAw0PRkAiujG3gF5GQMdCV7B8uEVAwriP6zXZRkBixrQ9o9ZFQABUgFQmSEZAJt5LclCMRkBqJ/Uu7a9FQP33C0thEEZAWIiOOoXgRkB2yjAyS3RHQNZiu5zOiEdAEVpg+y8xSEBDnweP2tJHQBY0gY61j0dAodvF8qH0RkBMFe2/b/pGQFP10PVygkZA+YCGT6kqR0DhM3FX3z1HQBoopXEO2UZAOyPYtd1sRkBVDwVtPbRFQEFsAyRDRUVA1QQmbzHWRUCbVib/oaZFQFYkzg9erEZAqvLx5VCqR0Cy0ofwUjtHQDScIVPjykZAUnl3ByfPRkBG6Mxk0lRHQDoXyx31OUdAWL+ficpXSEA/KLCKNupIQOFZuK7LsEhAVNzrkxerR0CJmw/DX+ZIQNdk/RwVoEhABcr6inrSSEA9bqaA7BlIQJDFxSdXYEdAwKlbQmMsR0AEiZOk2IJHQIwefe9qgkdA23rJ6R4cR0DQcNjJIgtHQISW1m2BzUdAfFwowp7ERkAUkmHRXpJHQCDDv6fo0kZApZ8oilJpRkA04Q/SA4xGQGCW2DM8fEZA9uUzZcVURkBeoBde711GQNWetKPZ3kVAxzzneZ0URUCO8n98gvJEQPhWQWIOJ0RAR4YHzO6dQ0C5XtKlp2dEQLuTm9NtVURAs0ThyamIREBTrfPzwTlEQAjGYM0gkURAUKtvPbyxRECV5NXwo3tEQGDiI8SQCUVA/PnuDrIeRUA5dIlubB9FQIvx5bF0/kRAa2/j2WTbRECYcNU8bg9FQLPsfar290RAsEZB/gqNRUCcW2fJucBEQPiBGjsvMURAn/Ssz/yCREDb2AemnmlFQEA/we3wTEVATPsX4cIvRkBfnXQBwNBFQNiat/OJekVAapTBe8HqRUAO2Eg6bshFQPS4s8pIuERApyOW3aM0RUDbAtzPY69EQI8Ass2GxkRAcJYpE3ABRUDycnm6f4REQNcStwVjW0RAD/6enC+IREBswmuqRdpEQH7vXLzpFkRAqH0ZxMUiREDRILXKzz5DQAPDOJrLr0JAOoanJdOGQkBdcRC7QIxCQDU+EkTr/EJAYx1025xeQ0DdsofgvBBDQHfKjg1dokJA7xkS3A7cQkBfAYHbNn9CQPXoO45JykFAh2Lh1qnIQUDQBCh4jqVBQLcgiAp4VUFA8cPsa8ZBQUCI3WuXOANBQCCT2Wx1IkFAzB5X3i/zQEAq3zV6yjBAQIYX6Ys4zD9AlJYL7HCOP0CUhElgHKQ/QKGhH/rqWkBAcJ0SObK9QEDicqVGE1FAQOmP35Ri1UBA1YWeqDPsQEAQhkx6ZyJBQJQ0jrgBmEBARL2r98SnQEDkUsmT9SlAQENspa1QAkFAgQDAIDysQUCLo15kyfNBQD9+OFORXEFA++rWeeOYQUAUCkiVLMZBQDOWbi5fNUJABeuW4gQrQkDnf+19enlBQH9d9qqv90FAj1h75UNnQUDiaxBuJQhCQC/EJZQ+yUFAsd9woqp7QUC3HEt0Wo9BQP0993X0OEFAq4e9OllIQUAefj5v/bZAQDAkurkpSkBAwmcmHECiQEBelI5VAtlAQMRu0uWNU0FAf0ppai1nQEDy02GKwOtAQE9g9uPafkFAjBtC315HQUAbuGekl9VAQM10sAy/TUFAAxnRbGr7QECH7MuAbgE/QC5a+bslIj5ABNzeSXbLPUB7drUXbqU+QLzsFJwuLj9AiYhIJH+dP0CbILVMMLw/QPdGcyGUtD5AAJEaSJDPPkALJBCg04E/QPXcY+m2EUBAPw4JRl1HQEApJ6QMi4E/QD4KDchnwUBADcP+bT9qQUDRhYdRzYJAQIJPYEnRZEBAo+6UJiLSQEDkKCdcMzNBQCE50lAoW0FApVnxYKihQUCeJG44PApDQHEgxmqBckNA2L7B7tdfQ0BDYC6PTfZCQI6oB/srf0NA4ue4JZjvQ0DGd8N0YxlEQOIN5hWmnUNAaZsbA6ynQ0D1Xw9J4DRDQK8jb4vOKUNAXhK69FCyQkAyUtdJYvFCQHUxLpf4sUFApeOQo6QuQkDERlU9ZGdBQDXk78qeNUFAv3mb5WCxQEDYlX5lC/hAQH/m06GXTkFAjBH1WDmGQUDy5eVxqw1CQC8wboY4akJAHLei5asuQ0DiECiFvstCQNBKaleQh0JA6ZSvAMbvQkCwKW997qZCQJAN/s7T90FAXthDpQW5QkAbFYHC+NdCQMDK1w+mrUJACNlqkXYQQkAl/D4bHVVBQG7dXGO3HUFA8FgkPSkbQUBt2dDdNGBBQAeBoeslFkJAzFOhYew6QkBLoLXjtvFBQBimHyG4HUJAZJUjEdkYQkAB5Q8DntFBQFLJuefj7EJAt2oJLp9iQ0A65P0Xy/tCQMEoGz7CFENAxPjwMo24Q0ACP4KuZg5EQCLHhD43eERAA0mtRNp/REAzvUAICBJFQCq/wIllpERAwo0McaoUREDR466lyB9EQImziH3380NA3E8sM9W3REATlVwl5eZEQN7+q1NpNkRA2fTWfKLcREABQiqZLB1EQC0PbuGP4ERAWYCGm2XDREB0SYG6JNZEQGqw4+n5EURAc9YGtcKmQ0ApBTiGNVtEQMmzyvS2VkNAQIaDctnfQ0BwD1VMvf9DQEZpqB0DYENAx8avEdNGQ0B/5l2GM1REQIFM5W14hUNAXKXoNBvGQkDdProlV7JBQM8oZHBejEJAI1pfZSG+QUC/vw3aEvRBQGlSVxqq+0FAjzMnepffQEDCrSqtEeBAQB5gINpQBkFAWQKFMj8NQUAkv/krsmNAQP1QeZ/PoUBAplQarsjlQEC8SLtBfZtBQO81wD0kgkFAL0gCsZCqQUCWI1TpT2JBQNtDQ60L4kBA99h5ndYIQEDJDHEEsbNAQD+jcdB7oUBAw43CxZW6QEBOx5uWoFdAQEzAYEE4B0BA5LlBUl59QEClq79/YVFAQGT3e7LWRz5AmOY7cKTJPEBFzoToHBA9QMyDyDHaLj1APViMF0SFPEAtG+ZljrU7QByKvMg/JD1AxqEQZMuMPECben2opeE8QMk9gBZKEj5AYffxsbsmPUDbyxNmtwY+QJEHBE5+lj5AyGCWLRUOP0Bu7Ofz+Os+QCOdkZjoqj5AqsAYcm2PPUAg/Elmbbs8QKXYwLy/rD1ACj5XT92pO0BH8cQNEy88QOWhVLmT/DxAXpBF/CpPPECgDu9Hmo88QETl/OpuLTxAg8dVDYf+PkD1CwQn1e8+QOx50um6+D1AOiIAT+ZQPUAYU6Nl+mo8QPz82UKZvjxAPakY/RVRPUAA5ZOOzrQ9QOCbmBj58D1AsMMEfU3LPUBGf138IFw9QAH5cIFu5D1AF2CzGox8PEAMSrqOMZQ7QErUwlQYAjtA1A5dTbnhOkCddMMcacI8QFxXSTPxwTxAde8YHqwVPEBbTWjs3Ow9QJ+nHmCrTj5ADYZS/ZYsP0AFpSo9zww9QJ+qI25IFT5AImR+m65cPkBm8fQemAc+QLj/qTGO3z5Arb7L2dS3P0B06VvGWpE/QJeLTk+f3D9Ah+S5wgu7QEBeHmqB0m9AQLphdn7IGkBA0d0t8cKVQEC9sSzYNZJAQFOxrzHgPUFAsA74n+FZQUBkLVZ42IRAQCGjvG3VxEBAIVeqWTHxQEBIIzG10MNAQEfiKwU44UBAfpU0tmQsQUAJmbPfyWpBQE9hZRgqw0FA/343aePRQECzJiCFarE/QDfBDW354z5AQ432YhgJP0DTyvHureQ/QOYzYZ26YkBAANrJmE5xP0ANGHZ1Xbw+QHjLkpUX5T9Ark59M3ZNPkDpPZ3Sfyw/QNcgdZ6fpT1AoUkSfvRBPUAOqpb7F0c8QHgEpZ2OBT1AH5SXgSwLPEBXt2RSanQ7QLxb026RWTpAe+9clszMOkBuFuedU1U6QCdx7XWZFzlAwmbegRfjOEBNeQbCezM4QKJyD+2eETlAOzc7FGEWOkDGhXYwjn85QHYBjW+YRjlAEn2zvqOXOEBi/KQ1pk84QKXUF8bXBjpAL1CzbNmdPEDgBRkR98M8QFneSb9HJTxAfumPqFRFPEDaMA5AEvg7QN4fUqH61TpAO7wdqBiZO0Dw6s0Quxc6QO12AFYgLjtAvr9Tz6FMOkAdE+eSZEw5QJbIsQ1e6TlAkPp3+/siOkBKEV1Jnms5QNb2YicY7zlAsSC29WDoO0C2gaNWpS87QH6/LMEcaDlAlOy6xgp8OkCz3N+xNnQ6QJjHOQ8rVDtAkaKjS0djOUBQcrVfaX05QHsOtuG4ljlAt+YXSAFzOECFf7Dwt1w4QEuHgf6MeDhAMVWn7AjsN0Bn6XzJ+Uc4QLHwT3OPfzlAlR7NvOS4OEDIRvGiedA4QCpGE8ap5TZAhytVrrAZNkAwLlyR26c3QHHiFzjkGThAMICY+zySOEANyyTPdS45QCDiAPMk0zdAel9ca2EZOECig823Gho4QNKjnBYBLDhAt+bY8mE2OUCVpa0PazU5QOvEq2RzyjtAB/wzppsaPECOvqtS2ko7QGoxXZDlVzpAYcfSEf3COkBRKEiTMnA7QAxxfvPdbDpA4vUr+0sSPEATPJ/mPTw6QBDw5dZuUTpAED//ZFSGOEArLOy1QCg4QJRIidMFLzlA22kJuw4fOkAWAqSw8zI7QFBNzSApPTtAxz8LUvnmOUDFG5NnO+46QMeWuZRSSDtAjMU60SPZOkCtX+wr2fY7QJCgnnAlpDxAtEYkIXdfO0AkrOl6Gs06QBlvBIiMuTlAYI6IvHj7OUDOvWr9V0I6QFD2GnT0EDpAWdpHZE0gOUA87yYe9vE3QAe0DzRoCzlA/vFzGC6mNkCzugrQrS00QEYH7xgTFzRA5ftnVBB5NEBUEJ/P5b8zQJCio1ZIjjJAU0x1XWA0NEBcUCmYtuc1QKh6imoIFDRAjSiTbtSOM0Cb08qpHBszQLiWiR8OvjJAre0maettNEDBe7cBc1M1QEM/fUmsljZAxboW/RscNkD8MX4IhNc1QG16mrcFSjVAcF0OTyE9NkCIXCs01tw2QL5JHkMf7jZA76oSAGlEOECb5Tv+hyc3QP4HyBXPZTdA+7hGivhHOEBvrRNvvJE3QLMxgMqhyjdA8ZQkhWIjN0Ax8jIKlHU2QKTtWEb87zRAsrjmm8FQM0AzkvZarJg0QC/vRUyR7DNAF97ivjznNECcvce9Xhk0QPZsym66sDRA05Z9AhBsNEDk+qWVNwg2QOglOqnBFzZAMxoSLWgIN0Bb97gLpf83QLV/zW5WwDhAIx93dKyiN0B45NeGKDI4QDpgeet1TjZAyGKhu+s8N0DxarCbwCM3QE091Aih6TdAPb/bO531N0Am0+4CTXM2QODjy776AjdAJi7iazpvOECHptf7fcg4QOnXSYeYmjlAJ2/RXkUZOkD81gX5TGY5QOQlwJaTezlA/YU1J3sJOkChXFzbtUw7QMvF9fmOAjtAHeeA7C0MO0Bs3uwDAU87QPOWrgKr6jpAVJ0UpmFBOkBoSQczRUs7QG0FqzvpmzlA3jqZcukQOUAvhrXhBtE4QKg1SaWzCDhAqfS4JyOTN0Azjcso0vs1QEd8Ro3aUjVAKMpgjuhMNEAG7J6HtFY0QNrbdAD6VTRAsglXI+8pNUADHOjTBTE0QBMMFqTw3jNANy0gdpxtNEBkXIoVV+YzQBCM37e+BjRAERSrHw0RNEAVUQYW39Q0QDuo+BLoOjZAk/NHo1JJNkBJTvA4vTQ2QI126pmjXjRAQfnkn6YNNkBkvuzaU0s0QP+jxIXJvTJAR+6WfjczM0AMRBBR+pYzQC801qBO2zRAB4H3Ub6QNEBqereIwQM1QBQE1OfEyzVA3uFNZBzbM0AA185BBf00QAr/qOIOpDVAtoaByu7HM0BhD+OYlHE0QG3PO+vytDNA7pEMv6+HMkDbIKIRoMEyQGCcWyBJhDNAjrVSJquNMkCcx/lq6rgxQC70FIvd6jFAHlBOExKtM0C+lHz0WEozQIyw1h9ICjJAHvMn8FAuMUAptDDfuBYxQNBNWmf/OjNAkQrCF7iXNEDE/ecGeSg0QEWKod2MUDRAgDudeXriM0CS8YZESvo0QAUpQjL+yjRAK+qve4tkM0DUGJnuOlI0QO0jrWv8ozRA65C9ZR+yM0Cs2cBa/I40QD925JCqIzVAnLTKmucXNUClBF+E2/M1QAPhXItddjVAxiAAyBxZNkAJf/pPq/82QL0UkQqMXzVA+MFwxno7NkAgG6xt8BY2QBTJugkDmDdA7FAPmwjrN0CK7nxnx8E3QO6ho8UFWjlAe28Jfx3xN0DtEviprb81QOZlYuumNzZAfNen6FgPN0AastRImeA2QCuLjYgXbzZAst+NiGx3NEByJdEe7jozQN85AryjEDNAUCDhOBQYMUDC9/Bb4c4uQK5lIocEPjFALllz2VevL0DdNl3Iq/ktQPgkEoTQmi9AX8xUedjGLkDcLr61SdArQOk5uBptoCpASmeq/VcHK0AXrzNXgc4qQOC0QNI86ixAn/bZsGehL0A0mSQ4+S4vQEwIydfjNjFADG21eO4EMUBwCR0d9R0vQLCrydcjBTBASd7Lk/IyMEBhDjg8TYkvQP6MXI6DFDFA7lxu1gXBL0Dia63oAeMwQAgIJSSwojFAMVerUVXEMkBttD6RvjMyQNpGjDBhUTFAOrHBWBlTMUCKiJT5fykwQM9oUeQeHTBAWqAP2fmtMEDkoajho5cuQHzP0pTauS9AiS3pV0o+L0BnFv0rjsMwQHquXz6/WzBAckWjHz/jLUATEYRN5MEtQMQCYN64DCpAHZ5QyLMBKECxqaji4AYnQCqyA66gFyZAuVGH4TWOKUDxs3X6YnMqQL6BbYfeOylAdWQgbSNnKUAPlXfGIe4rQBsiUKFiEixAVWI1puNkLkDtCmi5fO8uQAMp23lsXjBANU1j/CVxMkBgDS26KDgxQJ6zODH2DDBA72Ma9ncwMEC8ZAPYvqgwQAmmQbObpi9AYuM2n6bBLkBg7ZDDn1wtQEb0JbfJey1A9nwyLdVuLUCOOnD0pzorQCFyj/z/AixABPCHkVkgLkARNM77rakvQB+YVnUpES5AIYyBTqO/LEAARHt9jY4tQDoMEqgMPitAUiwGC2P/LECpjcLwpbIuQOKWjSV7ATFAkI8rYvyWMEDSDddUgCIxQMUbDAEaPi5AR5/wgEY8MEA3l9/qYg0uQHJtD4BuPC5ALfjCKpDzLUDjUOqgXRwtQFHNecEPuytA3neKteSkKUDQgsemTwksQGLqV7T2ti1ADHtkK3eyLUB5gFlVkDMsQF4FbcDb8ClAgVnrsc9UKECVo5KAq0MmQAbSl6feMydAGoFguZ7yKECOT6niEpAmQJEfjo3rbCdAc8Ba5tKrJkAqXilw+IMrQBoKORNtQStA8EeJF1r3KECJ03ueAOcoQHcx9cVZ/StAQyId3nxJLkCOjs9MkfYtQJNIOajC6i1AgPhD1QpILUCmguWiYVUvQIH0tbvjkDBAGumSHiVXMUBPm6q45IwwQCTvjva1uTFAb/opZUdyMEBV1pRVa8owQEBmgFnvBC9Awp/XcayOL0DsV7PVa3MsQJak/QIpUytABsyBsIRMLEDRJ5KeWNgrQOzevohGMyxAvzHnqxJgLkBKCwd3Y8srQAMACfR6wCtAKXv56adKLkAE583ONDQrQP97eSn90y1A4WLxFMXKKkCB6sQzXn8nQG0TPwH9YiRA7Sa7xT3oJECX2CWy4WAmQPCQcnpzWSVABjaw2wHxJEBEZQOoA5smQIBg65ia3yZAfizXsxNxKUC3dcQCjwIpQPx7BULLSyhAW4w+3VAzJ0Dk1Dkq15QjQFK41nSrLyFA56gj/AP2IUAMQHERfsYjQLhqnD+nTiRASO3nM9dsKUBCUABK7isqQBwKWW8CyylA+BilqjE7KkAeuRWUBjYpQIuHG9dxKClAv0ray4BhKEAGYy8qKN0nQOgSGAxPrydA/stOSyHLKEDZsGakejgnQDvIctFyCClAv4Qzc8/HJUCBEuR/bospQGZx2NWE5yhApgz86YJ3J0BU20O1JKEmQFSTv1GACilAj/Rso6CcKUBuvoZrZ2orQOu6/vAEFypAbqRoE2uUK0DHOMOvuVMtQLs5rSc16ypA4NYFPjUrK0DMpHIqPLIrQECPTmfW2ClAWN5i3dLKLEBmK8cJmGApQCLbR/to5ixAg57lC7ObLkDY8soCjUAxQC/8GyaLMzFAEat2NwHoMEAKmxc2WFIxQD8dtO6j6TFAHNA+WfsYM0CZYCjy29szQKxhSkAkgDRAvTzCJuPZNkBLIa8iZ+s1QGQRTabQMjZAiGfP6vd6NUBK08qJJn81QEk1G1fVRTRAE71Djvx8NEB2en2kj7U1QCBUmAVF5zZAhIb1QS3pNkD2c+vNm5E2QHzlEj5WkzZAsryy+ONmN0D8QIIt5yk4QJQxWD/5EzhAY7NNtIibOECTofXXlqc2QGVSeSlY9jZA/L2wRBgWN0CVTSXF4Ys4QKYe30D07DhAmEPXpUXfOUCgVMb2P5E6QOiMzsOAhDpAZf7uWImGO0DIJK0vjhg8QPpLjvEFoz1AFj8IZUhGPUCA+thlKPs8QGgHpOADvT1Aj1/sygJAPUB6dUWbIT87QJuclz55gTpAw1QfALZPOkBl0ArfmoE5QDswClCiljhAtPUamBwIOUDCfKNZYAM6QN/vb5WnYDtAKrqDsdeROkBufgHK+yk5QNlRo548VThA8Chx99bqN0DpS0wbprU4QCLOydHZUjhAlCCrGFUVOEDKaVMhZPU2QAI9EMbB4TdAueBXiApBN0D1PqpLR2c3QK5mjWNr0TZANFtqfmRuNUBfyd4RQgE0QIoLwUsogjRAFnCENflSNkDfudHLyrs2QFCJxDNKzzZA3FNtRYokNUBfJo34UeU2QD6yVBAV/DZAaUCtrBxcN0DYTgPJpoY2QIw6NuonPDVARiJ7lMUfNUDqIDSwhx82QDwsm+0a3DVA6oC+mjGMOECr5PJgGVs4QF7pmJbbkzZAsP16DBBQOED3RrBGTD82QPWpck1DETdA+W8gHFS9NkCz8HQ4n7Q2QNY6fccVkTZAIq1sJDspN0CspiHgCak2QH12CyDjlzVA395FdDE0NUAWFwcQWDw0QL8bSjLYbjNAdb4mAkQ0MkDaWHY1n/IxQM36llOmWjFA0WhUjCeUMED5otWRjzAwQLclWy6H3DBA2kXtx85hMEC+PyX7vtIvQIlqlukJmzBAE6qo1Ka4MEAPQVAN3RUuQC7qrLJdYDBAeoWhtKgCMEDu9pGITdArQLW0PkAzwypAmiE1WZ18K0BEsThilSAtQPePFegRGC5Az65uZPSeLkD5p+ELI9ouQKyd3CnDbixA0mZaIjnXLUCCO61IXtAnQEy2oVVf6iRAXhwh0hD/I0D3eqyhpBcoQHRs0nsQjCpALyz0Bm0nKEAm9gVRmwUsQKeCP4GKUS1Aj0xsmJtwLUBcu5NJLgErQLRGY/3kVC1Az+PwviFPK0BM3NAaH4wrQGTsiADYLi1AMoFZ4W3dK0CpyG2x8DcsQFZtstcg8i1ANmtwS1XXLkCMsbOZlVQqQLxKAm+2eyxAT1C3JNPCL0AzOBcT1/swQGr2KBJjOzFAxUmC2lRtMUCqx+Fwcg0xQCkgDCfuHzJAxV8XW5lpMkBIb3izvS0yQM6G6Hzs6jFAj+Fq5Mj5MkDRKXe+k6QyQIEVrfmVtjFA2lZYRX94LkD5mON89nQuQD6tgNRq7y5AVbTF0GQaL0BepG9HlWotQLrKBUuL7DBA4d7rW82gMEDcm02Uv2wuQER/nlsWDCxAexFYstESKkC1iU9HMd0nQEwpsVQg+SZAukfpc2HQJECCaU3KbvUkQJRWgP7QpCNAMMBIr0rGJUA8MDArJSAmQBu5GCwwfCZArihgI75qJkBFyVA4BkYmQLndHhcfKyRAPMVTogadKEBDWra8ShooQKiceUNEfiRASDK/6tS4IkBO624K9W0gQL5/gTmwox5Aou/mtur/IECOgrrLpvkhQJt7SnwquSRA47dM/4qcHUAfE8q8sl8SQNOQLzN0vgxAsi5ayJFSEUDq4Sbrl0oUQIulerSY1RJAlxdiC9D8E0AistfRDpUaQOmodPy+WB5AoR6pp/U/GUCrfuLoWLYZQES1ZTKrBxtAg1TPUJATGUAkZZ6G518SQJy1vze8IQFAF570jxImAkDX7KEwnj0BQJ/DP0MygQhACOvsPF+VCUBKdRd2G2sKQDq+qQe55hJAGH72nJNnEUDSbxgJfyUVQPbMMqZkzhBAg1ojB0cIEUBoxOWLTqQSQKJhiTHxTBFAGaaDGdSvDkBPVux/HzILQDSP+afLGglA+6o7W5XL/z9KdogWdGoFQESqV9vnWxBATCZFxkFnBEAUc560tWb2Pyj2pF+AusA/+D4/8oAYAsDcj0PxZ+vdv0A4bnZ9C+0/RpGacCI58D88xmK4+lEJQAl2MlJct/4/8kR7sC3FAkB/8ogWUR4LQPUbr7RUMRBAXpeh121bEEAqYPjjeyIOQKqnfEVK3fg/h0dGOQz2AEBqV8sHR+YCQPBFb4F+zAlASYPcpb6JEEDYgeIm+40JQGTuaql9fAhAWa9E2hf0EUDqmEe6AhUZQObNBwrIkBNAGcnhR0OUEUDYTxa3rIEQQGyS0tEhrw1AP5uebGeHE0AtigO0zAwWQMGI9aSTjRlAebRqGSHyGED6bxKzTAcVQDk+d802dRRAqdWHgogfFUD8qap3GmwZQJgwn6OMxhVATnX4/8hzFkD9ri93JOEaQIXfuhuvthdAHNRx2JqXFEDcDcV/dOIVQKkrRGu17xJAS5ktBhJUGkCuLp6K8p4fQG7Wbm0LQhpA8bD2Pi5AIEBKbDMDtOIdQCIeSAGnAiFA/qAHtx6HIUAaoqeZSWEiQNJ0KcRuhyVAlmMDCjeVJUBp+FPAaPolQDNmINLFuiJAuBfJF9e2IkDoqUVqoZgjQHUynYyBBCdActAcXKO/JEANxvx2a6MkQGRfA7O6qCRA3S939+NSJUBLCZ63EHcjQB6+qN8r+yRA93oDEWnaJ0Di8QbvjN8iQKaCa+aw5iNAYfU81ZGUI0DXB5V4VycnQKWiFBji8ilA0sTKxutTK0AFvoW+NXUsQJqCdjAfoi1AfiKEQPlyK0DJ363FlAkpQF2pjxuocytAhanQmYEjLkBfqiRSS9stQHWH/cuGQy5ABJjPwehNMEAjFsKF1D4yQGzMSqky0DJA9nO8TSnsMkATxezzLvwxQC2/kOv5szFAsjBQeXfcMUA/FSCLeVoyQP3TtCBYRjFAxcfS0p1nMEBrsfk55GUwQFTDa65TRC9A2tCR9avgMED4S5S0+SQxQBLtctyKzzBArGqLfXNcMEB8d7n5h3QuQMpROyHPXzBAifLuvYtQMEAqFkcxSYMtQF4ye63qeilA0eoFKxD2KkBDJHK6urAuQJkWwF+iHi5A9xYJAAj9LkDEBBxMCNMtQL013hyCgixAqxDBH+qmLEBaeqzI6SAtQDGWc+qQNixAPTyqYUOUK0Be0Z7ySlAsQA7VTXGJfi9AI0Bc/ZPsLEAxFxi6Tx4rQFwkPp7ZRyxAk1LGaPAaLEAqKxz8GQEtQAuWKF4KKixAPfdsQ2CdK0Ce5kYd0TArQN+TwIMR4ytAgMs4+0A7KUBmMhH2FtAoQIKL6lWZUSpADIHDalGpKUCd9wPtjR0qQHp+qxyWTi5AW20RX3UGLUDAxm+GLTooQFkecLdtUilA3wY7q0bnKkDhmFEqgSMsQLq76xB82jBAmMu4t7c/L0CRTgJuxuYwQFUte7ThMzFADDcl7HFcMkD5Q5D81kMyQEpWlv/qEzJAxQ8Y4orYMUBUZvl1yUQxQCkEcDU9GDBAwuhVPIojMEDf3x+jgSgwQHXc1WUT9zBARp5ME3L7MEAwEkgsS+swQNcucAMgSTFAuWZqbRp2M0C04CwmV2w0QG9P321BXTZA/ppvjwBiNkCVOuQu9SU2QHh5c30rJDVA0WqEU24/NEArh1nKRDo3QJZK3Z4TVjZAG7x1LfR8NEBU2GgT1WszQNs4MudeTTRAcWLSYwJ+M0Agv+IS5FEzQBtFQIXDuzRAbIZxmTE/NEB0xaSYhfg0QLVK317EKDVAeNZzHM5WNkBI+tjaR7o2QLL2VWgwoTdAcWfBIH0yNkAoQ70oYE83QKTsC2ZktDdAKbtUfcC2OUBDe3QSBbI4QCKs4LIraDpAN4C3eXBEOUBemqlEbAc5QLBstyTw4zlADq6aBmXmOEBTUiFJXgo4QHDj+5274ThAPgq5kTg+OUBM4V+Narc4QGuh+buqLjlA/X6ns8O8N0Cw5xg+J7U2QI5am/yGizdA7Kr6lwmWN0AlZZdUkxU4QLfI88a5nThAtHfK7sqsOUD6SxvSnGw6QN1xFim8njpA/WibdSuUOUB7axdyvsA4QDK2V3rxLzlAngAt+N7gOEBE2q11ykU5QE7ukOS1PjhAfLGizN8vOED8IyXaOfM4QKaWOIKxkjlAIjTK3ZHLOUCm2cb1zmc5QCs2LTLMNDlA4KdRzZvEOECVEzEmSsQ3QD48ILGM4jhAattrk10qN0BU4KHEg1I2QJhcUm59+DZAz4j3jUBNNkCudSY48XY2QOJgquEnszZAM/z4Uj2ZNkCKfdPL6Yo0QC7LesJ8TDJAph82JZRVMUCUIIoWo3oyQO0KhxHaOTFAnm2dmpvLL0BUYIlEtWMwQMRnq8cAOi5A5cFpQspnLkCVGD70eDsuQNaBI/GpOjBAYY3gSmKHMEAAyiN14AMwQFM8ANaYei1AvwpEIuHpK0BB8OPLGuEtQOV2iyruCi1AeT7jcdUpLUAekTBUphEvQBP9F9HROi5A/aywpjHMLEDoxWdWPQIsQIcABR8SlypAfxfTjiakJ0A+EWlvN+0oQMmGfCud6SpACrHovykDKkB2Wmx0bvEmQCfKtM9sTyZAT+InWCXDI0DZevwZzUAiQOKbiZx7+SJAmJ7SrtYNIUDkJN6pYL0fQFYi8odu9h9AGbmSdBh6IkDMBVhUtx0eQGXtAWK9bh9Am9d1T9FsHEBgTO+cxO4bQFcyz7aNKCBA7cv6TP0rIkBKZ4Sm/YEiQIyo0AhEGyNAXVs4nnUvI0AGJLPUyR8jQGafH2ZdPiNAX9UW5WR6HEAgaZQg9REdQMwA252oxR1Afi9oR8GCIEC3iRtFExsgQKBCzhBidSBAqlWW+VagIEA8ELi8z2AiQG4OXEVq6h9AWrq6asRPI0BgpU5c4kYiQGUT3JizJSJAjCXKCzCbGUDZaVJxpqUYQLaw4+Cg2xpAz18+29R1HkDyHXVqIBwgQN5MXyk7RCFA5iMIfs3ZJEA6Sn+7OMMiQFUw6ViguiJAKkGyceM+I0C5yf1Pzz4nQDzsi9TYIiVA1el8M/nvI0AV0zu8jnAjQAeClgQNyyFAPxdg4/lxHUCCdBVJk7UfQMVlHUfRPSFAUuqvj8BlH0CQD1IuvJIdQADbP8bjqBhAXb1zaL6IHUBbuR3OKR8dQNaNXDHlrxpAGIVacI+MGECZsz4tqYIUQFYrnQpBXhpA6KNh6++rFEAyHU/f71IUQAIqvN6pBRZA/u5EpzDwE0A63U028/saQAytRuCbYBtAA/qdFAp9FECt4NsKa4AUQNPTf6QCLQtA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 4\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"dWlZ2A587T+4U52GfA3MPyiKMq3mZuM/VC2Nt2iZ3b/pfWUBySPUv6RKaDLpruw/5QQR0aJG8j8U8TQn91zRv+zVOZOCE8M/iuDOXM5q5T++V8si8hH2P/pH3n5s7gNAKAJ3+lhsE0CMn5tX/JQJQJr/zaJmcBFAXXntFCE1FUD4+y+yUfoUQJRq4rcT9hNAnmIqEHIJGkBpbEXAveYfQP1RGJ+LEB9AZfn8P7gZHEBF+4MVYMocQGq6DWNAexxAzKE12mXZGkDwY0D6n6wYQL0wMKNv3RFA8w25y0wIE0BULhaNRZoaQLZ6crMG6RtAL8zb2hUJHkCj4bA8jhkYQJ8QgO0elBZA/pO2ZqSuF0AZ8fNnuREdQOjBOiTIdSBAGM6UjfpPIECe0DeEcYUiQBaYG5dA2x9ASxooZILgHEBRVHum5REgQAT0tSycZyFAOqo6YqxSIkCChtnUJngjQPTORo1Oih5AJOm/qF+gHkCzaYjnz0UeQDDlsI8gBCFA3F9gCb3VIUBPtLAfa8kgQBgViTkPuCJARo6Zj0P3IkAIRbT5SAMhQItD921nlSFAt3WUKAKXH0A+1uYJDuMWQF2oIQICHxZAzZFU8fEwFEA2R/SPHfwSQG7e+0LK7RJAhmdvH4DVDUCqqjYx4TsTQBiZrrhk7xVABgG2C78pD0CZLf7+/AcLQNAEx/5NUgZAF7jn9OAb8T8g1pXtPpn4P+BodVt2S9w/7OyunJN41z9HnGRXXRHZP5S99tWUvuI/FTHkT4xR1T/a0XkkVErtP48cFkmWMfG/RngPrLwk2b8LBR52kD/rP0B+2zdv4fs/NhNIIm1T7z+FhUPF2PX+P5qwoVX+4AtAxMdVkTOaBkDAdIOmRd4NQPKA9C8kKxNAjqdqo08oD0BlawK9XtsSQFpM7Iome/A//AAaWmQ707884xSzdUzav1Pv1eBBs/C/VGSft2dvAcDVh/wf7hkBwLhLNiY9V/+/rE9hv82XA8Di/SSdzQoMwPt5WPEOIAfAPoqUMrCWC8Ak9qrQNKcRwJQuUmQDNATA1dlyxP8MBMBh4Vb0Dev6v1RQp7fxnvG/VNidNtpl2D/MupUgr3j1PygTg/QTGcw/Zmlm/QAt7b94I3UcRtvUP94Dn6ibBdG/6zvOJVw66z8qdLlULPX7PwB0SjpsbgJAapQY+zpa5j/w1us33FwBQLDCAapBKQRAVyKzdMuTBkAytss3tSYGQKo+Y9ZcXglA2AcQ+PWcC0DW9klglZ4UQOD0ctrOQgxAmrFew3YIC0A3Pkw27xoOQAhs2Cr5AglApF/myAaQC0D0mlgJGh4KQFpAvPVBnAVAus1dQbMS9z8MGOpSfiXZP3bXW+HU6wFAfKaJuZqRDEAOcvPZks0JQEKQDU7JZQNAZ/m0qt7y+z9SSLlkSFj3P/pCwG9JnAJAqCPahsm52T+cEhOHiXTyP3ZIJr5P8fo/YGkvljZA3j+Oq9yOoz7vP3G/d/qgbvm/xNNEe3ul8b9csJTcvOcCwMl4Zb3FUQjAXJFkz44c/79aIZm8Tgj3v1R4lggydNa/LLF4hlKm6b9yhXqoNy31v254Qxqw4N6/imRKSYlc8T+OrKvWLroGQAa5osPcZAZA+pgwxb8xBkDhemMiO8sLQCE0uQn4LhJAHCyKfx0vF0A2o+FdlCAeQGsjQqZ4Wx9AAWkX4nAUIEBUSw2yEt0eQP2irZS1eR9A1gMdsNuhIEBEXDbpGbYeQGFIGrScQR9AQsaJ3xaiHkDEr7WeFp0fQLXODoDwWyNAaDEi7XAeKUAgbA51TAcrQE9EgrW1sClAvzSfVeKfKUDOT6ZP43gnQADyAvZFPihAtX+CDJujJEBmg3JzMmMmQPoXJvrOZiZADF+CXQ9EKEC7LD7pbE8mQKxVDAzaVSRAsWn8CWaqJUACIJxB6kclQHCY3YimySZAuaXuCfuNKEBYEmuQWeEsQETaOHDdxypAzH8fPrLXK0BbhnEEb+cqQASVvhSrryxASnSWsaVcLkCkWkcJiBIsQDscdNYcKixA+XiF0XQQK0BAFI0YO5ktQBsJnKIZrytAwGqICQE4LkAmL+1BPJUtQLUMbbsIWS1AByWHO3dFLUDomAcOwqQuQJ5aNNB/JyxARVY8DN7NKkDqnCaOs+QmQP4pDmC1JyhAUFA5G9GyJEBWyHj3hGsmQFW1WgL2eyZAAdXCL3FrJkCbx3hXCcQnQDSwZ0D6PypAki1aYYywKkD42ab4+RMsQEIfU9qibyxA1Wuhb7M4K0CA9tJrDwUqQEkMcUT2WClA+2nzRmmFKUAmQ13ciWsrQIj7kC2Tbi5Aq9W/AoTFLEAeNRnJQBwrQLnvLr5IjylAmTSSg/5aJ0BhccPXELQmQFKA/KX0PCdAQ0Z+DIYzJkDEiM6v8TcqQKEWq7LeCSlA/Lav4CUcKkAMqg5eLVAoQGxx0Q070idAy/y0P1arJkCDx9c3b8IlQCy74vCtGyVAPx51kyORIUDY94hxtFshQOGNX3UQziVAeVLcNRvyJkAzq+aEPZkoQItQ57xB6CpA4Dghsh4JK0CD5tU48dQrQLC/svzf7i1AzSdZatGQL0DFAwyrCkMwQIoX/pb+bypAe/ILglWXKkBPrzSE6FgtQIxz5SVU5ilAdk34YOhdKUDgqxNfm/UnQBaJldmiLilAscWFUSBLK0DVK3XjyqkpQJKlNEfd9SdAtUDbugxjKUDk7xJV7R8rQAgt/5z4dSxAOI1QC+hOLEDRZYsyjc0tQNFyfTOhVitAPmspGxGvLUCcx9KCErIuQJADzax8PCxA7CbYIjoaLUABbOgKfmotQL/vMGYG4itA8sEA/bWULUBeSlVqgg0tQNrdmMO8HjFAoFIJ27/IMEASIBYPhp0tQGXaQfSRKyxAW3fLs8fdLEDO//XjwGEsQIXh84XfIi9AnuNTDQMULkBVX4j0tYEvQAIbuM2/PTFAT0EHoxZMMUDnoZ9wpCcyQECDArRNQDNAyG/ObGcbNEBDW99FdnMzQE0k8Yf9TzRAYA8CsMCzM0ARLQHQPTk0QKE/lf1iBDVAxtIgBXpONUD/BsW5O7g0QELM3RcR1zRAJxCS5PY8NEBEP2jpaRc1QLF6C32RiTVA8LV+nS1IN0AQGtcmvmQ3QFyo46svhzZAytDjFlujNUD3HHfOTPM0QEY++ceiOjVAdT7WizMiNEB2kf7YHhMzQHi5VzxKtjNATewg37OINED4vr4eXOk0QIlYYLnbUzVA8etteS/FNUCwCX3rm/I2QKiwy8WmwTdAY4kad7IDOECHEjvGlcU4QGgOjXUrWThAaJ9ifYQLOUCv5TUQcx05QJwrLf2DMTpAXJJRVf9GOkBuEhsc2zQ5QCTbsCxSVDhAi28WVIH5N0AzJ7n2giQ4QFS+QfyBwzdAdqra+VhjNUDjrBBAS/w1QF34PkyKmjNANTH79Tu1M0ALAIFwKEA1QOpIHAjcjTRABsVLT9EJNkBOqpjLpFw3QOsHifLgsjdAd9R4rAI0NkC1MwyqT6M1QFB1/N41bzZApQIR+pSnNkBoa+ILUgY2QFyDJqhrVzVAMQVk520NNkBUZuPVKfw0QPT6IH5ApTRAkrF/MYdtNEDRKfM5x7YyQN6g9YhIjzJAnfEuF6xeMkDYexCcibIwQE1ZXczmrC9AaAd8U6tLMEAu1Y9h3hkyQDMj3YJDMTBANSXzyFJyMUA2540DazoxQAcjG6ydwDFAE2bG/woHMUA/scn0bQExQGquFR2RWDFA//mrROTeMkAaTuROi+kyQN6HGp9OGjRA98RTx8nRMkAj+TkUCrwzQJazqnluATNALu0ZnwOKMUA25YJv5CkzQA2lAVMjbTRA7Kjg4/p6MkDavWDxpO4xQHJRg87LZjJAJ3/u7jJ+MkAkWZRXZ9IzQKmqY0HLMzRAaqT7p0N9NUCLgUMtY580QIo1JKuV3zRAjcxgKyCdNUDPUjxh8Ew0QLFakgIpbjVA3b2QPsn6NUBM8in7MdM2QJn2WuqalzdANUX1h3EtN0CrWNEeDd04QPX0+K+FUjhA2AN8nwaoN0BUwdcep+M3QLsbZcTBKTdA07T1LuruNkDo+5UqeME3QHiAg91IqTZA9JKcr27BN0Cn6Wicya44QI0oeS5S9zdAfE7b9fRzOUAp9Yjaae45QL/JNt3+XTlAUGl3v/SPOEBapQ3HK0s4QPtIK+bnNjZAlBKORtNtNEACVEPxL3M2QGtgzTw2BTZAcdbggwvTNkC5YyaMz+o3QNaUEBVInTdA/BMwHL38NUDhSaD8AJo0QPScSdPmwTVA6UeeoEDpNUBoPZCFrN82QHoh/kjt5jZA/wO0ov9YN0C9xozxul41QNULvIt7yTRA0mJwyOZaNUDvZmlky6g0QDNgiBLCrDRA1HdW1lZGNUBFCkD9b/s0QJCN+WH/pzVALSQktg9fNECwQv16MlI0QCwEc+BunzRADqGAGNXNMkA5yowBOjszQE/B6odlAjRARuMl1vxLNEBgluPuHW8yQEb7ipJfLzJAAohZK/aVMkB5bqX+buwxQG4+hntnUDNA7YkcTrAMNEAnCRixcZo1QO4BWYnHozVA7Ce4XiBwNkBTu5fE7hM2QCpjrNXLhDRAypCtWr7VNEBTuTbi2381QDsiTSZ7RTNAgukl+ftmMUAvVceBu88yQEPvP0961TFAKYgGifTwMEA4O16j44EwQLrGmkbmEjBAP4vIl1T7LkBaS1spLIEwQJs7DkmcQjFArQHj/RsCMkCWlRtgcdwwQKR97Mt5+DBA9ZUN8Rv6MEDzbiaDkecrQHe2fI7Xhy1AnneQT6vNLED8QJ/DkaktQMBTGvsG7SpA/gXq6bH5KED40YUTSkspQJnm1m7pVClAzn979dURJEAkOVzf3DUgQKcKwSpFqCBA1usmk7ZgIkA+Nb0oH1oiQCwRinH1ZCFAJsOP5orWH0DTDyWvjSMeQAmAjECCuB5ANbNub8ppH0C2JeZvs38bQFUD6HLRMRVAy3pQdV46GkApxF2srYUbQEA7CONEMB1AKpsXz/7xH0CFjCGlSywgQAX6zEMshxxAasv99O7CHEDxZ8A7J4YaQGaFIuYl5xZAvyUWqauGFUDkF37MlXEYQIIBy/iwBhpAjAZn2Kc1HEAGQ88VlOwgQHwqMIPPqiFAkeaFKBg+I0DBruNEzgYhQAI1T7J/ox1AJSBhGGU2IUDDLxOB0F0iQBkxHZzjmSFAajyHEXuJGkDhyGOaYcgdQJGDzT63JiNAdCqO1AUdJkCw+oO4oZUjQEm01ZtyJCVAPeAB1d3cKEAfGqqlAQEpQEGpd8XSXSpAR4sitw4QLEDTdZoTXa0tQCi1R2wm/y1A36Im2+ecKkBSX3lPX/0nQKrA/WPvvihAQCjB/svcKUBtSu8TFq8sQMjxfewinS1AFEtjKRFGK0CyMGxwKX0qQH4ti45zkClAVRl3BgspJkDkm6h+/zknQDGwE+WenCVAGTRZD5e7I0CJLjX9mtYmQAURjufIxyRAydudlJcGJUDkkeIi5nIkQI6hORKkTCRAQ+eiCvjWJECnEPE0GqMmQAbMsOTN9SZASkzlOi1SKUD7t77n3JQoQA7TBKvSdCRAwXjGAPp0JUCx8E33EBwmQOA35kbevSJAmQ5Mcf4kIUBisy3AruYhQMhDDUidjiFADhT5u4icIUARRR1YctsiQCbSN+JmLCNAnfVWZABxI0BUdbE90QImQIr4SgtX+CNAUVBIESi1JUDPaB6aUcEiQEB6oDVDKiFAs6NQ/exLIkBetrqK0bYbQPI3y8I2BhpA4MIY8r34G0C688ZsPxMeQDKaXoFOdhtAjPP5SQ2KHEAzhbfo2v4dQGosWtNY+iBAJM+KST8uIkDSpj5MIKMgQKib5Q/jKh1AjlzfQCFVHED1FERMgm0YQBKY8RwEfB1AgMHrO0gaHEAmThsOn38fQN/ZWS70nxtAmOtXgrZSIEDLItAKZ7gdQF4hExcSnh9AzAgG3MdoH0A1n6YO9G8gQCBDalvQXCBAbnEgtsh2IUCUYnTWVgcgQK/Mh2xKVR9AkS2RcnMcH0CkfkMKgEwiQNLf2I+1dSRApH4wUjVZJEBIRMmPFHEkQHloWk9k5CFAHRtMye+HIECqhGcyimkgQFQGrH65+CBAlxCpXRxzHkBY+xTse1gXQIrfGuxeFRRA7OSlTT9vE0A0t31eEwITQEzEljNXrBBAG6gf01BfEkBCmWPoxowdQAaA1lSaMCBArALUZarYI0Ac5TQhbckiQF1WaoDbJyRAJK3womugI0B04PH0r/olQJ1zTIeQyCRAYYtUKy11JUA1YXfpstYjQMoks7ZYUCFAUbCj9iF7HkDsYbglDx8ZQOu9rLSDyhlAWCv0KJ+YGECzqvzSSfIUQOjWHqa8sRhAgVzmsH3uGEBcykVl2AoXQO6fRu64ix1ACheAfhCBF0DDWnyz1GQTQK6y2G+w6RhAFZr1pVNXGUBdYn1flC0aQNLGe1uIZRRAz6ICrMeBEkCoZ3hV8ywLQBSCB66kBBFAklPqMOHWFEDDOSFeQI4KQKKWjBKgmQ5AWC22r/R+DkB9VtCx5f4EQK5d4P504RJAoNqhJwWbDEAmJDI4lngLQKZI7s/g2A9AA1U3X+VCDUBd1AF4ZKEOQOTojyZFXf8/dQJjalYqBUBRcG8EcyL4P/8IDuiPduY/KIc+1Y2R9j8ktypYaLvoPxjekuKxnrO/1bOc2C323L/troAfSOTav8nTL25ehfO/BmHwu+qG+L8etQ2UXpvwv5U8fExwfOm/Az5PqajY1r+EOSrdvZriP6lIk8ojeP8/vhLn2drr9T84yXir5nfGvzo5KgqCJfQ/ElMZEAXF8j/QPPqX6nbxP9R+rhLcQt8/zSJmQ0CJ2T/47qwzfDHwP46DiU3Zsvg/p3QJ7GIDAUAUr1B9CsvpP5dEbwlhKPc/kCQy8Xl9tz/CZzmstub2v6uyxX3A/wDAzJN5xgyx7r8BHhBjgoT3vzTiMbJmT/i/RqZYiI2eCMCxvmm6pZwQwFYXc1WyxxPACVWM4ZJAE8Cr0wefE0MSwNSSc8yVPhTAPtQ28tUeG8BngEiYwoAcwMsQkYqXLBvAtpIT4kewHsAq5epjRtQawEcuFJ0NUR3An/ZwyM/NIMB1GrXE6asfwBXW6t7YARjAgEXq4uYZGsBqXqQ/dxcbwCIzjCKPhRfAvrBycKw9E8CK2fWRnFIVwKIu3C4oYxDAdl7AtatsDcAUXHqvUCIRwApU3L+R9xHARcA0waseE8BPf2PIjOwUwHgLuELEVRnATiNwCehHHMC4LNZxhqAcwKvy+qp+3h/AY2Ny7BdLGcBwBaWk/NwVwO2xRYtWXRLAiu+eksMxEsCtoFAsqkkVwGBfKoaOMxjAAh2Y7FQYHsDU0kR9uR0gwFKBvFc1Sx3AHwcDTkljHsDaKVi9OToiwH+VliM94x/ArivNOFK3I8BR7s1DxQkgwHmyea9LIh/AsCyFdAJ8I8Aj/UkBRQEjwEpzh2PpNSPARyCvA24ZI8ARdHweba4jwFZu5JC04SPAdcOEI0efJMBCRhcKrGwmwNK4ydibiSfAeMbhm1XXJsBqBuy6ruEowCHqmlIbiibAT1GrVbpzJcBwcaAt9k8lwPvyPPfO1STAq6IK/jPTI8BuEcqxw7QhwD5G9OXeJyPAXuZSueDNHsBZdkrzpRsgwE2TNWFe5R7AcKuLEU9MIMBM6k61uywbwGFyoYb7NxnAl/3cGLPaHcAcro+fEZ4XwNgeVmUwxR7AEssPeFXAIsA8GlUB8ycjwMxfhnJHoSPA7aW6BK28IcC1Li4+XeIiwBjvanKkpyPA3X9/fnfnIcCBlylu4/kdwCE73FPxmxvALf3bgsRNGsACc60Gpj8YwJkox3CVbRnAypkAousMGcAluhdeEBEfwEDu7LHrMRzAEUDyp4OjG8Bx2/9ViOsVwPP0D4tjQxnAGj00vU3NGsDmM/7yzsMXwHEZgco40hfAVthvxGeMH8DC+pY8178iwF2yiXNbDSLAbyIZVWjVIsBH5uidzQwdwLtKevcsDh7ASHRLXuR2FcDCFT6p1fcXwIu50kAI3RfAm2aEieT6G8DGK3Mi+zsVwMChY/lUZQ/AaTH9LpvZDsDOnnWb954SwNaT7hh2hhnAsLrQoA6BHsB1nhznzH8ewKuDSN7yaiHACbc8s0bwG8AxCBGDr70YwDcaB0eO+B7ArAokAi/ZHcAI7croDvIgwFEZRGq8nyLAGNLphvgaI8CHp5f2sKEhwJ4DJO3BjyDALLxs6FBVJcCLeI2av9QlwOulWi84xSjAhfQ3adfGJ8Cc2DIe55smwOx2kDS0oCnA3KEBiGzcKcDTPcELDlsnwFCrZu9tpCfAdCoutud+KsAZXEtGu5kswOxQHm+QESzAFaq45oQwLMDotLzY0csnwOYrKcETwibAnXwsXzcTJsCD4EjvVj8lwAj0ezQDoCPAg3lD5GOJIsAZAtwxsAoiwAvnKeRmKSHABIFSZYdIIcAwyPVXhv8hwDnHIJVa7yPAdkRJMON2JMBINSTSorYhwBivmy9jMiLAmkhr0tWAIcBOdLomH3QgwCmI0VZ2vCHA2UMFRAkoIMDiOy39DXohwO90dJUTnyHAKBVg1aVOJMBczwOuW+QiwPJWwNm5xibAU2fKAr5UJ8AozKEOWWIlwGoANnlkkSfADEZ7WIWaJsD1KmZDVTMpwGe2A528fifADm4ZWEOXKMCnVLXPfw4mwAhIi/WwByjAX75UX0QFJ8CSAo6njZEpwBml9RXMtCjA3uZ5WhjnKMB0FSnPDoQowD6SJmq8CibAhxcRDzT2JcDaYYFt8vQjwJLSPpDyuCLA3I5ILd9lIMC10tCuPkMgwCmsGvVHSyLAwrKvodzSIsAi9GvONlQlwK0keNAkeyjAdywsUy2nKcBI121KbkEqwMSJG+ku1SzAIEyXESEpK8BLML+vzBcowP5UHmJVByXAyTMkb7udJsCiAfystlsowLaLNwAlfCrALmyTQosZLMCvvLB0cDwswJ5ThG34gy3A6aa51wJuMMAGFB6dP08wwMi4bAzjEzDA+c1RfUvYLcAQ+MsWLtMtwK8/UB8lrivA8h3S/iaSK8BC3djcvpcowHGJq8Jq9yjAACRvGcCVKMDp2gH4444kwA37ilut5STAhHTT2dwAJsCfu+noyBojwFXAYfMWdyPAi7oJUeQeIMCu1AMqCO8gwMC/1jFdRSLAPbUldlQWI8B7zdAxIDgkwBSW+DLV2yXAklcsZCCCJMA+OZSp0S0kwNieX3+hlyTAjFSe4py2I8DGqdOkuRcawLFgEBPAWBfA9rd+F5aaE8AOnaMSGEwWwJBB5aOTkBbAatrW1sCEGsAUDIKuh3kawGgnYOnfZhXAomzvhZKrFcA8BsEEnOIbwESw1J3WVSDAhHetnmrFHcDADLS2ktUdwLrOs2hCtRrA9FL6o/sEFcAltQlihP0QwAaJ4025YxXAxPWUaGZwF8C81EX25ukSwCXTbytYAhDAFY87oA9kFsBxuernZdgbwGKWn51JchbAdB4D6VFUFsC+oh9W7fsXwGbqtMgQHh3AXUjQ2G6bF8A9zXrGRoQVwPEUamBW5RDAVFsaarv9E8DTWHj9cQ8MwGOd7T6AmQnA+sSJ8aBxAcDcSJZ1vzPfvz0UzlBU4APAUNpIyJHt+7/AWWT6yfOlvz2t1gFIMuC/anW9PzDhyr8OQqNESHrkPwwvPlSJ++m/UBuoYoif/j/46RkXVa8IQEmtPBfgtgtAmoSHHiuKC0DJWoKA1hAAQGSXT5QJ+QFA4gY9+IhO7D9KhZFPMsH8P44FbnAG8fk/DJzqqZRkAkCePJCQmnAAQPR1hLpfCgpAA5jL6YxADUCfJn6cZ6MSQP3y2QEYDQtASuIPcs4UB0DscWTNUWUUQK+ptjIFShxAEoRnPDMZIUDCJTr+ZwMiQPLh2drrEiJA43jJYplaIUBsCimYem8hQEplx7QRfyBAyf6fCvrkI0D8QQO0TlgkQO0UGwnuQyRAbFSLKIQlI0CJfFMBKK4jQIC1FambhSJALgy89YHOIEBk5G19H+cgQHsjJRlM8hxAuDtBgpoqIUBWOpdfe+gjQKkdN5LR/CZAbA9JTyz1I0Byhfw7e6slQKuKz/I8FCRAMw6rIQBFIUAJsZVL9bkZQKX7svHQthdAFv6Rc+2gFUDZ4HCZPk4XQCil6yqPcBBAQQEeZYcKE0ALWDYRDwcMQDe+6ZcxlgdA91U5wyfjDUBeNOF6Rm0NQAI8xZZ1KQdAFnhXq8C0BkA0RkdiRg8CQEvFKE+AyBNALpM4dzxDF0B0ddXX8IgVQCoM29L50xtAHQ/7MIDWGUCdSTj05dIZQJW3UqO2cRpAPEj3NU/UFkD6XnT1/G0cQOcyo0UZjR5AcIKSQNRxIUBW7VbLBZwjQIE9NpjdRihA9hdIEzqVKED0AlbCxMomQP2Dd+cO0yhAyT7/9ydgKUC8+q+tDlYtQHI3NZlpVitAMg1W9GnPLUAvDhBCNHArQKTta2+AcS9AgDVpFkfmLUDToLZn4lEvQBjsDaDliCxAAXR7QZElLkCodwQEZDUvQA87yPqtxy5AEdj/iYgqMEAFxk/Y3cMuQB3WMlPWwi9A/+i0tDoiL0Ciiy5jdOgsQP0uO0b+sS1AIEfmgakuLkAjBkw0jMYwQD6Ur00UQjBAoD8btLWHMEANsyDk+NQxQM2Z7oYTAzJAeaIm17IQMkBPrGUVgsMxQKF5qd4mFzFArFTEO8MuLUBmXSD/bv0oQFVPWi++MClA9pLWRMguJ0AaNx3x7v0lQI3jOvDPXiVAVkeu4Uv5JUAWM8QQmA8oQHurWgnKTCZAias2pQ2OJUDp0bqRe6IjQBYI6bbYMCJATzpUjl4aIUC6vaDV4JsgQMG6QmqNnSBA2ptWfdcaIkDnO9ZTw+khQOZJAUnkRiNAfPybPcs+JUBbGQj8xZEkQFZj5lDU9SNAIMEzO48rI0A6bg5AfPshQB+sAfmq3yFAKQOHCMzmIED+QLmo410eQAbtxY46rx9A6kRYHZlgIkDu/GeQ3LkjQBwpavAjMyNAT1QHZbDpIUBYye8crlUYQHSXGKJJ8RVAS15XYGrMFkA6nY3y1g8gQO/5cLMdmSBAVx3lXfjdIkAEEtztJ3slQHoxKXjchyRA7767vJFaJkDFJ7MclMwgQCi95gxfgSBAxE/wj75TIUDnp0YDt34hQJFdqTwttyBA3eL+jMimIEAOE6suBCUhQJgZLYgEQiNAXcFd286mIUDaYscsjmYkQFmvHLQrpiVAIN3tpty5JUCmJVoeuF0oQBlM55XqcylA9i4poMVmJ0CgJASeRKUlQN7pxcza2SFA/HBJvF/BIEAcvFGj1twgQL6X3sCiRCJAxXr+c6lXJEA8HGrMlBwlQA8t9JdWoSNAeOedUQalI0D0+cIpoYMmQEhyrwWy8iVAAPmo7pT1JEDMBfq2PiQjQBRBgfkpdSNAJKHXo7nxJEDAI0my1O8eQHLGsjOsPCJAdYWTPwPUIkBaWyR5OEglQFp+ihfA4SdAGbhNKLiOKUCjaV7bgFQoQH8Zl71niyhA9ySbXrukKECPnBPEbcQnQDFooNW5lCVAmv9Bc7IOJkB8WSG72lEnQPknH4wohydAP8AZ7XsWKUBy9zMf9CMpQP1baIKrvipA7NkZuOpaKUBqGkHn4bkrQItEzXp4+CpAL8qMhAgSLEDfZh6ue/0pQDw8WaRg1idAUCAghtK/JkB0ZqNKZeUpQOoJO/M/AixA096wYefFKkBho9gguHQqQOkH9V4zQSpA4pfde767J0APJZWg908nQDimz8civyZAftIHDXSmJEDxVTrAj2AnQFGIuqjefCZAejxaR9n1JUCjnG8VD0QpQNcAqU0XBylACx3p7hpcKEAMTbWE9OEmQLO7EI1Z9idAMmQrLSQOJUCyuoqKIpskQPGlyIC++yJA/ya+Bc6zI0DAoLyhXwEkQEyMIyf39yNAkyWqBiKdJEC+hyXvIrUjQBBxZjAlRiRAclN4Q2yfJUBcVF7bM7olQDegkaI7YydA+8JY41WmJUDJAfPCYGYkQIbvDHZNsyBAxXpsZLCvH0BC80lLZ+EcQCvw0S+eRB9AR837gYfFG0DGmI62C2YXQEigS8VC0htAwmj9XIZ+HkC5Wj2ScQchQFzwTTHgISNAHzxmkWIdI0CF0QWZY8oiQLURlujrUSNAi40RaWcVJkCKUUQpaHEhQKIyL3rNDCBA3tLzlUfeHUCjThcRCl8eQNieEXFMgB5AFyceUqunIEBbSNX45e0fQAd9oUGJKx5AR+81YkeiHEBmXkRNx/UaQBSgkS9dYxdATmJE/FV4FkBtLYLbOUcXQIZ7yRmdsR1AlrHhjHoEGkD2bpuQm0IXQFr3H5hTQhlA2rm0zRzwHEBbNtyn/NIgQPJwaeQKViJAf04a8iKdIUBk74khWy8jQKxHQDZXdSFAhn6X27VsIUBiisBBcq4mQHPYz/eFlSdA3zRAjJBkKUApse6YH8ElQEnjnb/DqCVA9i+G+ebLI0BOB2Svu5whQGfoeO3t1SBAqU0FagpaH0AKxgvZGJMeQOE038Fn8B1AvDyIxsBlIkCbvmtdOdgjQAHOSJsaHyZAivSFqh4WK0CETN69djAsQEsLodnSiixAdolQ8p+HL0CMQ8U65KcwQEOOXUXJ6jBA0YUpFZxiMECGTnD+D0UvQMD6uCcLgTJAUPFv8zQHMkAaXRzrpIExQHRCnreVuTBAzuxHLeKPLUDQ+vYdSp8sQFA6H6jNTitALnNUkgWfK0AIFok1+PQtQJ1RDx7reC1AcBQpnVw1LEBs2XRjeoItQAQcC0trLy5AvFwRyrg3MEBW7XYPvGItQE6x/aLaFytALDJy3uegKkC+ae+K9vMmQHDqkRoofiVAvqgcXGb+JUB3feHW9mokQH6aUcF7xCFAXXIZOXemIUC1fogiy44hQM2yp+W5cBxAcjE2pPmYHkDgtqldtZMcQE12Kf7NaxpABTJ+EchkG0D1UHMGIHgcQMkmEr0SkCBA1aQhAzElJUBIChd4k1wkQNDzg9fkriFAFcOwn21xH0BnRyR6gV4dQFRGbMDNoiFAiqVm8gvyIEDqg1hiDOQeQLSOwgr2jh9AIpgCD5JgHkAYHgQQZkweQDI/aABD+hVA/vCa8E74F0DYzy3LY3cQQH2ch9eiChBAGHeD4gr6BEDRmi0UIZsRQCglgwfOWA5A1Fs22I97D0AVBQN16WYEQDFsxqfPQQFAjw1ZzDbL+D/vMojjg64DQDjZ/645Bvs/hcj55+PlAUABed2ulWwAQFTSb8Wj2wdA2O+Ca69vBkCxuMoRErz+P0Nv+9z/cvo/oG1tH9EusL+1enV6G8flP18GdAkiOQZASo6tqJex/z/cL5vBqY0JQEW1iDQmWBRAeC04r3wzGUBvrbJ28gMYQKnC9DOnzBNAaBwioH2VFEBghXjb+skTQFv8ptkKJBRAGEwstbmeEUDPqEGkX9MUQO0SlecctwxAQYQh4bPGC0A3u4GGa8IQQGgz9s4GNxRAeT4PapigAkBsV4DJbq8MQPr+6XYyIRFAMaXH7QRTEkDOzptzAKcCQEgXz+gsNeO/suUXDyKn879G8+sNM7H0P46kNiJaV/A/TEMcLlba8D9xBfoee2/3P4zj+H3bstI//+0JOlux9D9TJ3h5TLsEQD4QLggbqvs/kjaMlbH6AkABHhMtYgALQP0UffRdYhFAXokdSOu0FkCPsmWiKeASQMD8ByUrWBZA7LC2OzaYGEDOLLquKIAbQEwY+8WCmhhANoWGkb9TFUCzgEBdF8cUQARpS3VfIxlAJvClhVpHG0D1Cs7u88UZQCCdCzMzPhVA1DD1+xFzCkBfcorBFr7+P0DpIRTCyas/9uTlTAJi47/qsUwBMnb7v/CC+VDkEvO/es12+aOk/L8iYPNyagYBwN+CujMANvG/fJ/WpjFk6T+gJ0KNfXLsP9xHlfxwVfU/AKoz0OT0pr/rYGbZDHrqP0yTP+6L9MK/5x+4z+Fd7D9VeTp+yc3lP+zy2ImGzsk/YNk7kLum8z+G6DJqxYrwP2u0mVOAZPg/Q9pdvrk9/D/gD98M0qTxPzi09qGm5N0/NBM97aTg8T88Cn4HzYn7P3Deg8iaRQJAlB4AdTGWAEC0Ykw0/BwHQISgDBlGeBRAXwpy8F2pFEBP+VDXQqQQQBjLcHNcdQBAjPVFe8X/9j9YM0/91sbOPz+cIVSh8/A/QGJSMz5G27+stzUFe/6zv/iZN3jMBMk/9AKOS529+j9W+2BkRg4HQLq9nD+Tfg5A8fBVFoypD0DdMiMQtB8JQG05hYc9QwhAGGGTeC+eBUAB1YdoKb4CQESBKhQdCgdAtCkxxl/jE0CIoPtAx0wTQEp15pCwvBZA+CKoH2WlFkCrC+Wxh4sZQA7NoUJi0BVAvJeHqPBTF0C0rhsYJtgQQAes9b8bpARAOS019h2qAUBmsbyOqG0AQAreBpHygwtAa0kMmI4+EkCVC3scT2kNQM5Huh2GBQ1A/uO5KgWKCUDK+fUAe4b7P1TIeRDpHgJAKrjWC07s/j80sgq580vzP55pxT4CkRFA7RrFP5PwFEBC4X0MZ/cSQIzc6cgsHBZAIEykxtMuFECFQVtMLxsRQOppVZOugRFAvFxav8IpFED1ud61k+4XQGVk5V8+4RNAsugwOhHEFUC2NRumL4AQQAr+hoTB+BFAkFA2oT6/EUCItuB9dm8UQGo6+PB/3BRAp0fESpcQGED/qQWRcWwZQIKgq8CMbR1Ap0SGlX4jGkCyp8Zi1TYfQDMgrXnOLyJAWysriIDGI0BI0NDjYy4iQOBKYJMbOx9ADFsC5m1RH0A/PzQrN9MeQNRvp1Sz5SFAzBkv4HFdH0B3K8J+ikYcQFTF2Xmjsx5AvQ+A/KVRIECv6Xd+QUciQGol34LPGCJAnEOfVrF9I0DiZVvqdo8iQNwzJX8IRiVAEk3cgPJTJkDgkxeCQSQlQDma4UmfyiNAglnEilsyI0AAZRJGocgkQFoP3KKfnyRACXVJsyJOJECW8IpMYw8lQBOFtsYWsyVAhiipPppjJkBvCykaY4UnQEAYJdwi3iZAb3F53v2eKkDRlqP0BVAqQPAZ0EZ1iipAJa94SnNjLEB98o0+Ah4sQA0KQ3/dgitAcDyuc0K3LkBmGMspJt4wQH7MzqthFTBANG8/LQWaMkDwOxozONMyQBg6h4kZtjNAFnC5aN+ZMUBGP9cqOqIwQLXsn+8nKzFAHwN499QhMkAxXbFigWIxQER3BuO/gy5ASeURtyNEL0ChsB1jM0grQG09WA4fsypA/kOq+EzxKkAzAR6dS/YoQGNqtbtN2SpA3dnsIpowKkD+i0Pm7OEmQM5QVo+VsydA9/84KoO/I0AdkNfvhiomQNnZ3xiB5yFAE0pkxkJpIECMHijzcrccQFvnSZLM1R1ALg8vubbBGkAYD9xbQXsaQMBdVK+EgxpADMl0F0mtHEA6cKyrsI8cQBqyLp43uxxAr44k7yuPH0DEXMOVSTEeQNcYQFDYVR9AcUhYqdiKGkCtI4yHREEXQFRXFPXaAhtAJjyeaVTfF0C7pI+U1u0UQAyHmw5svhpAKi9TXG1QGEAiPmjmO/QTQNStRPJJmxRAuuz1ldU+EUAlKQ4xUvIPQPWicbtBQBRAz1f173NsFUAO83OteDkWQHr7Fe4IrBVA++6nvix9E0A+pQCVjlMWQMXaC8+W4A9AY1Zbqtu9E0Cw1iA4YUQaQNxSvxMbEhZAMmsmtzLFFEB+epNI62gTQO9fGzguABNAxAMnnG8UEUD+dgZGwPEOQMC+5GjVjQNATooeIZnJ9D+HJkCjehv1P89erbNOpP0/aLJTqp2ZAUDNTTPekawDQEq9yeuEmfc/vlP0VYsp5j+M0AUincTXP7wopyuY/eM/5kXbmdWR4b/TCxkOhwXfv8BgE8A1Mo8/tOIhkJaMAEDyDd87ln0FQFSRtdDyhgRA9Or03suoBUCYnTU7+SgSQC+hWJ1b0xFA1+HQpfcdEEAednKeXbARQIqQyvH4zBBA3gECLAQSGEAaXNDVIBohQBKkCoFu/h9AbEZxmQVRIUAT99GOm+YhQHDVYHymAR1A+B6EL/ESGEA9MGfI3UkaQKQMdgW3Ex5AUrrkxCpTIUAtN4A/hmkiQIPHs9DV9iRAuarbWGSEIUARZ5YlC20XQIFtlLKJCBlAxLD6HKrLHUA2C29rJU0gQCBg+eSwgBtA6n3RglowGkDPldPnH0oQQLi5CcYeHgZAfo4l6qpCCkBdCDxo04oDQH7e/gzf3hJAQAf8O+AcFkAuCPkF3JIQQHH3lxOByw9A3++WF0ZoE0Dy/uX3eC8YQBJGxngntxRAbN2M84W9FUBt2czzxTwXQKAupm6o7BFAWa3EnlEAD0AsHGerB5YJQFzaRBYMZAdA5nY0BqBaB0DgPs87xMn8P+jj54vqdNk/UI7Nnng1mD+BJJgZyeL6P54dPlbD4QhAk6jzblQNAkAcIvOaHNkSQCX9KWMxRRFAOucChBWgEEAgzgspkKkYQEZp4N83Aw1AsYR+/GZLEkCamSYXBLMRQD+wFSIvBRhAMwAzmyW1FEAm6G/tuPgPQLeXLFN3BBBAUH04TIDPE0Asziknck4dQNLIYRN2CiFAe5suGA4pIUARnio5L28hQI61RS96HiNAEvexKA6+IUDap5NbNv8fQOuMOGF2DSFAxP7MjCCVIUBQdJ5atwwkQK5bUYHfoiZA0ImoXhF6JkCIhNDQOOUiQDfsEBOpqiJAdfm3iMZBIEDNrcFLtywbQCXB9RRYEB1A+dGDG3kQIEBMvvAW0v8cQMolpwPJFx9AK/beTq/KG0BSMLDXAUsWQGHWHUw7ChlAesXSywQ/IEBX6i2VG/0eQBI6ZTmLkxtAmHglf+2+IECF8gasS5ogQNB0wZ6xNyFArbLEN/HqHUCZMBAEIT8hQMwUktOw1R9AhaL/ogwRIUALXYCvvcIiQMhAxdbKySFAIudRM6MAIkDKSby0RvMhQDcVi8/bLiFAd0NDUCINIkCIz8KxBtMhQDHBEEc1GyRAZAHFQxUWJUCqV6c1khQmQBA011GKuCVA8r1QjL7dJUCjz6VYhXIlQG679GyYDShAxLndiT1BJkCHjVTTlxcnQNvOipIq5SdAvqFxNK7wJ0D4fVu2BucoQOhs3NPXUCdAvUhYX8bkJkBq2cSal30oQIg6fozCrihAFeVQ9cTdKEB/XCj9/JQqQBPkFdOpkClAQUdftP9wKkBGc4gmBaUrQKjjcMTa4yhAkZc7Cl7qJ0CVlsomK3AkQEt+Se5xxCJAwwP7FyF8IkCUASbxxBMkQIBmBJ8U1CFAjKobZQA/IUAmgQmDM1AZQMhL1uR9ix9A3kObruxFI0AX2K7HW3cjQHTunP61YiNAzVALESgbI0BUh18EfwsmQPoQhZ7v0CNASVJC0puQI0CRqixRYK4kQAwrvV7QlCVAqiqeVmy/JkCWRVwgLx4mQEhtQAgDziNA6DrHgfycI0DIT0VYUPAmQEAunhkjIiVAO8EUvmalJEAvcsstBhUhQHCW5yWssyNAGkAfbdkvIkDLxKni05YfQNtFs3PiSSFAqjGhKXJoIkCDNL4bjz0eQKTFDKHseCNA08wmdLlqI0AZdnq6DpgmQD+M/7Z+MSRAIjQG4MheJUDVbHL0hIIkQL+VXlV5HSRAnlbexJhjJkCrjXMRDYAkQLJc6n4cZyNAZfhoNxWIIUDrdFuDdtIkQNbDRxLo2idAjlbpfKTvJUDt49F9hEQnQMbd9blr/ihAFj6+/TkMKkAhW+kbp6AoQHTlGovKtyxAZ0TsCYRHKUDH08DvyO8rQDvklH0xFDBAn13fcrS7MEA9WT9bTIwxQJ0fskPNoDFAxfml9AWcMkAKbxXLD0czQD0AHZ7G7jNAEqvjKAGiM0A01KEwuU8xQFb0CBw8YzFALSbO/tY2MUBms8XMKz4xQD+rxkf9zzBAqB4DfhKkMEDa3rkRF9AuQGx/D2IETzBAqJ8k7gasLkAEMGb0gSYtQDQNzrdqOzBA31hriBZiMECKuHT/nnIyQN2G9g0dVjJAaE4rYc8qM0CK/pgUzU0yQN9DDMeGSzJAMtNG2hQIMkBd/QprytMxQBEUdKVe3TJAjmtH/TyWMEBCyIHqd3ovQKMlzP/wDytAldbG3muMKkBbP+EX87QqQJTUxR8XAipAmtT5iL6TLEDkXqloRRAtQNs6xM4L6S1AQKeJHEWCMEDW22Sw7PAxQKEVYWzwuzBAr8MoU2IAL0Bj/4b1vIIwQAwo33XoyTBAU/FSzKS3MEAOg0vP5VgxQLBbpOFgoi9Ah17AiW0YMEBpZKG2TlwuQEiv3GIDMDBANv/Ro+FZMEDofLKwNPwuQJrJ9faxby5AXHxdeplZMEBi4iFnasktQEm/ROYxiy9AZlajZpHeL0AtHCELxvkvQD8lRWIAITBAS9WuApkBMkCfyanLBDUzQN5QnBQL4TJA5GI7LGGBMkCJ5ugVd00yQGJa6mSZ/zBAB1f8mGx3MEB47JkuGysxQEbP/Sz5LTFAORkQHAV0MEBsm4deH7cuQF/O7B9aLy9AwYSc5xq0MECZpcrx9n0vQELvpvQ6ki1ACwuw48QoMEC6Y3Uo1k4wQAk88Wbiqi5Akvp/XXT/KkCdTHNiq7YsQO6JNpxaDC1AS8Ba0XU9J0D2i2EUTBkmQCC5xQpIeSNA2wHTbiyLIkCyCAMcg/oiQLlL1nOioiVAHk3gCx82JkDTmhBEj1UnQMJ+1u70DyRAEFRSBfcCI0DsUDfIlechQAqXOsJ7fyBAktcMh12yIUBplXULvGAlQO1E9hhyzydAqsrFtQ/ZJEC+VdscoN0iQCIjAAOhhSVAZb/g0tryKEB55AOjt6IpQGJl8srpzixAYZEb/emzL0DVIAz5fJwwQEqDmsw6BTJAcx5NMLKYMUB+2ODtda4xQC3/y35CczFAfa6MdoGFMUCFwwVRzSwxQE2O4WAhRjBAqgXiDvECLUATntpnd5crQJ6ks3JxGi5AfEKXzxMTLkBgIhCzN60tQEDUnFhV3i1AOfSKz4NPLUAN4ECA/BMvQF7lF4pmwjBAC34FzNaRMEDYmDdY+6MzQB0GvcFW5jFA2nT3S8ZqMUDQjcHlYeswQOb3gHMqPzNAaLzTDAkdNEBlG1LCHbAyQN3n7BxHcjNA5s2axA+2NEBsAuiduBI0QOzchAlJCjNALethZAVtMkAo7tT8/2kxQCmlUtVj3TBA7Wc3l8KsL0DrLkYUOHIvQK5JhdlPgS1ArXFg57SaLEBzih+1ox4wQEiSwS9PNClAn3cuqpV+KkBhTuG8QRAnQO1ziayILCVAmsCmlxXrJUC8cJer3sIlQH28+3Mo9SNAsdu/2VwCJEChd5IGyDkjQM7zLOsVFSRA5MhH5qQuH0AgOriGxkoXQCK1bqcxbRlANkK7lJu6FUCiZ6U0AD0QQAJ2yKkQHxFATA9IuNkVE0DKaLyD9DMQQLAx/Cj+sAdAh0mPHKowDkDWiuVFjFAHQMU76yr4XwhA2uGq0cQ3B0AwaNGXZI8IQAhosIU8mApAtroY8PE1E0C+TMUYs0wXQK1M949PFRdAvQchIB5DGkDTUBOVCDMZQG33/ABLnBlAVenm4qShF0Cgx/r6Z8UTQJ6QQKpErRJALDz937zVF0DkD/ZkuPgdQNiG8D868hlA3CQgClCBFUCeH6XKiwYeQFeXBfFRURxAKgaI/1duI0BSUajW9tAiQKoxuswE4iFA4ai6MXZQIUC0wDNAvU0gQNYzO8nsKR1AmCNwU0HPHEAMRdC/nyYYQMquAxPE1BVAXf4Oyr61FECDchbmoLcUQPZHW5sC4AxAsW08kSsEDECA/RNNIOoLQI0UMZl5SxRAoNJGd+oxFUCDevyq2usWQPVxAyetchpAUlSoUiBmH0BKDm2rhckcQEqwmTZhPBxAIdm4gXrlF0Ar5WmSOJsXQMgVNvxmXApAMVJjWakcDUAEbCUm2QgHQG6LIczoQgFAJA6pjRR+AkCEMu27m0QGQHKqQ98Ag+4/qHTMFcZt0D/EqUStNsWuPyqlUa2j6OK/py1xToKd2b/pMmeKukzHvyftsbtUNva/ziieAlHW/b/EQ1XmwmACwExYJ0OxOBHA3u7e9GonEMDG+wm+wA0QwO5/jV64hxPAvDTk6GyUGcB6BC9x5fQbwFf6qu27OhrAGWxBgLa7FMBdzoydDHcWwEqFlxuUFxHAOqj4bEXmBMDM1N3/HRMIwPBJPUNDmgTA50coUz/IBsCDfxCULRcHwNgQ/ebQQ+u/gicGW3Wq97+v1Q5TH7gMwDrXzWTzQAPAen4SqxTzAcBUZKky6/MGwJtEAiaLYv6/au4A+r/T/r+jGjmNzh4KwFQAk+YJyhHAPZj9l2qID8ArQ0Nkao8RwBitMYAR+xrAvbbd3QqBG8D1c7h9agMhwJK1IGB5LSLAYgt7vppiIsCy1Jfz4kMfwIZbjXf8oSLA1QdxathUJMCBWaCCkiolwHtgHiEcuCXAuMUV4GB+IMDC4WO/0zEgwBaQEs5kVRzAMaS+QvNwGsDjIJtkf7YTwAbZotfK8RPAmd7/rMCAEMAwCQ6yv8kYwH6Kgf1GeSHA78RWpj1gIMCv88f/y8shwCcHD7U9PR7APlp0h0aMH8Czh8LR438ZwPMJ9IhkMx/AkIODmKNbIcBCT2uSOrwlwJMLHAVtPSPAwF1x1Y7JIMCu2wfzlmcgwEB4BRw80CDATztm5lyTHcDWkBvlwXEawNd2235Y6x7AYX1RDcPAEsB+Gl2yU/4awN15hT/GbxzAQ1HRFKvpHsBrkKk7fBYhwBU/JRLQpSDAfVmQkUtXHcAYdeIqgAQdwNpRpjqV9iLA7d3ChlTiI8BoO/6RmvojwDJq4vW1EyfArbhbPRqEJsAehKHpEsgowNyyfwrV8SjA6N3m2VdpJ8Daf7uv9lcmwMAyf9K/dSbA3MvJS6ALJMCSXyRfutYiwO8vHGr5ESPAySe7qRjNJcDGRBzTOFgjwF/3cD2vjSHAeTJwfBzBIcCqhoYf1QUkwC7oLxRYsx7AtsjGA9NxIcAvhQcZx9wjwCRC7tuXSyTAkfWyFx2rIsDkSQr+3xsiwBWyridd8yTA6Ilm4ScEJcC0By/+1MciwKK9R1hMzCLARAtSsPJJH8B8kuBqtB8fwM6A3REAQRrAtB8UcqYfGsCl1+WlpHQZwKtIM7YErRHA0Fe31pBwEMBturRXvqUCwKAXf8Iu4ve/prsLERc28L/04iFNcoIAwEqbyRqoXwHABiz7zJuMC8A0Np+Q7J0TwIJcYQHH0Q7AKPKCmDjeB8DC+9SFpS0GwCnGOxMM9AfAsaGqd5t6DsBUI7SNAXEQwL7SdtRt0xDAHmb296p8EMAMjRKFFscMwCAgP1hephPAcQ2x6WzzD8DBcr5Hoh8TwBg38CdmIBHAOKHaT9CXEcC4FtoDlG8TwNbBnf5BKhbAzjOjrn5wFMDAYcffL9kYwBFMWlkYdBrAIhTjMTSSHsDmWH2x+NwewL3JwpX97h7A4f918vtwIsBE4+gQgSwiwDYiGV97wCHAt9ZB/yC4IsAb0s2TWKUjwFz6nMH1/CTAGqDiYGjXJsDHwOaVfNEjwIqmpa4ssSHACM8BR2XqIMA6zYIY8TghwBx6/i4hGCLASn50fjGUIcDfH8NVmmcgwPDkqob7biDAV3WWnTkXIMAt4cDLNzohwLBuL1qvah7AsNlj6EO+HMC0fxNmA8gewFYwfCaXbBjAX4r2QcKUFcDoNwGG5OIOwBQijkKvoQfABXUhTaq4BcDSXiqwfPoHwF/644dehRDA1BN1I32wEMBvj+rm1FMUwMAUvVxksQzAcFJ3IWaRCsDUOAAojlMKwNG2OviT8xDA5YeJxprqGMAT0xkR1M8YwNkMsSbXhiDAFboIXVV1HsDo0K8teOEbwIpfFLl0axjAh23l2WZwGcCPPwN2voQawOUm0DmUHRrAKhlX3xnZF8DLSPZUx50YwJXGBkFsqhrAQrNSjoxuFsBsXfdz2G4YwImpXiUsxxvAkv1X9v1bGsBnFkQ/atwdwOPOhZSyDiTA3N6h1hpOI8DyixLazgshwHJaSqW4lB/AzxXHs1pVHMBpYlPvt/sSwMErRhFKexHAJulyvRZzDsBOzxpIs04TwGsFKBGMCBXAJpJcjuFCEcDnWr4Il7USwBSEzEgq4BfAHrlKw9r7EMC3Xu2pUcUQwLRlpyjSXxTAgY6YoWsIFMCpXmEWfq0RwLOFzlriyhPAF5zTtP23DsBDV9ZVU2cLwIwypV9zuea/KmZEjRjuzr9gpJwdhIv1P6OFeM6kyANArq/tMOxd5j/XX11/NV72v1ylU/nEPwHAic28OMPy/r/SkHRgiRoEwITcZ+fbl/i/2NDr7aHg9r/g87tWEt+1v6UcZMHZpdu/U40zUm4A879wgTLQJO/Wv9d6OczJCvE/97D5ZyA88j9/gHhb2r/xP1IsRj1IFfE/BW2/E75++z/R/UbbHwcCQBBT7EeHkfU/Yos96zbE6z9IZ9dCrQ/Jv2IExUaYjsQ/VEDhHdda3z8dINxyQI3gP1iGdgmKI7O/EhS5fiumpL9Gqivo7TvZP0b5VUmts/c/J/iNjgjcBkCs0P+ecmXpPybH2319jei/sCoqt4nVvL+oyN9J4AHvP5h7Cahst82/Z/X98FWL5T+PQoub4afTP/8A4KL3pfY/GUTIf74Z6T/vB7HJaab7P/y1TVEmTPI/KfLeKWVMAkA7R/LooRkDQBoc31DU4AZATI5MtE58DEAku8zKEgsPQPj+1GrobAZAG6onUBUBBEBmFkk+XtwCQBQ/MLadpwRA+7gi+Z0D8D/0l4yg1kDXvzeYSyJa0fy/aOJCOaEPCsAVa+O7VQgJwJaEnDpkLQbAY5SumPOLDMDJP1g6FsQPwEj4BhPXcBXAxZ3RxreNF8D7np+EXa4WwPR+Nn0NuxzA1MfgzOO7G8DVbP0o9HcewAtj69QaRx3AeTHUkGd+G8BZOopOFyscwDfoDXvD/R7Af7fH0JLNGsDHJPPGfjsdwPxTN0UJkR3AN4/XTxlnHMDBOuFPSHwZwFvQ39zy6BzAPEmNmCm/G8DQLnZ+k7gbwPavL2vJ3B/AFgC0/djJIcBSyNL0Q4IlwADoibsuESbA5axNaidEKMAxnkgL5KcnwFL1SnqazCXApuXmlP8LJcB4PWTswKAowOUbL8OPPyzAb3+0S8DQK8BW+oCHj6QrwMRqek80wSzAFMBgLFv5L8A5v28cca8wwHdEaYNUUTDA33D5NE4IMMBuW71/wM0uwNvAbhgpjy3Aol0Te0QXMMAQ8ayXC/kswAQqeX54SCzAdQlPTgTKLsAawTMJqHMwwLbNJFqMSS/ASasL/dM8MMAjddxn9tMrwB8jYwg9JivA/1zdHRujK8A/8J1syGUpwO8wbCgYNyjAlIKBIWpeJ8AS+B148pgqwJIbW0CwdynALtkcrxt3JcDx6boM5SomwERugWeW9SXAx/OajMWDJsDWi+n57g4nwDaAuGMEKinASg1Qg4SAKcALwACDZroqwKSDpNCXfCrAuvRsjPKmKsAce3k+V9UswFCBua5zMinAxCkUiwyiKcDDDvCxkHwqwM/VGVJWPCvAcmt11mOoJ8Cwq7P+ZYonwG2EZKn3FCXAVCwj8lRFJsA3SrpQU7ElwNp15CuebCnAvUBYhvTFKMClYtGyxaQrwNjW+HZd2C/AgQ4lNRqcLcB0aCIJk/gpwJqMWwPBHivAdpJXterIJcAvOAwmV/IkwLOxJ3VPuCXAPhw9bQ/YJsBMr8zSJU4pwOIAJ7EOMyrAhMBi0My2KMAgZrUdftUrwIfog9U2oyjAF3tgDvs4KsCZa83B22UpwIDUaq1kXSvAqMoG3gV9LsD1NQs9aW0uwNFBgl550S/ArA4nkDaYL8DeQTptLJYtwLBKxXMLcCvABOwEM3rcJ8C/zbWlk6UnwE1x8+9JOSvAp69mHcIlKsDcyNgwEDQqwMyHQvx22ivAyBVwx4w6LMDNVAt/rGUswB4GtVtJoy7AQZiyMRZaL8CeWGrCFgUuwG6shXm5DC3A4BNfadnfLMCpyldZ1VkrwOBHtSct7ivAreRB2/xALcATzjvfekwswIjhQMbb3yfA/4BjxsaqJsBYmSRw4IUiwBZNJxCGJR/A+Kww5WNRIMDXWc1v46kdwPtYIQOgSB/A65JZuGGEIMDzJyNeEf4fwKJZ75WuliLAR0Rc8kyTIsBYFBNVJS8hwGd8fspuzR7A1gfoyO/jGMDIMzfBz2YawM/l7srSzhHAVCDDQgsSCsBMDW0kWlsGwEqkfOoLTgvAK+urGNjvCMDCSd1m00QBwBTaRWcbzPW/sJ+VWiAq978lMnudCT3kv/C5n1nE79e/I/vwucEX/r+wjAlqEmPxv8Z8NxIGvvK/kx767ncpAsAT4pNiImQOwG2/2zk8Vv6/Oi4KnZYDAMCaHuuY3DYKwJ2NnT/xFwrAv9H22SwFA8AFLJWmi8QAwHLrO6z7awXAartdhd0TA8BYL5rJfTH9vxm6lKHBiwPALKXzU0LDC8DoFN8wU8sNwC8OvFEUuA/A+oHgbPU+F8CVM9ELkYAVwNbJpXsXLRjAEELEglY8GMCwAW0lmCMcwBc1HWFk3hrA1Y8KcRcYGcCm6Fo5wYEUwCw3s4051wjANHP91Wl5CcD2nJBqQDcKwCAByjEleQXAx3RpCS7V8L8uZPJFLmP7v5JrnRhSMf2/rbyy8rDm87/WRNVn65kCwCk+K7ZJ9xHAcK8fvxvUEcB4madcOgERwMKK/qGdPxfAQvX5vw4TE8BC4qES7t8XwLNPu7kfqhjAJuKIz0GqGsAXvlfsox8cwB9CMdR1Ox/AD5MLLol7IsDJDFMzCNgiwPNJ5MSuBSPAgxuy5sAUI8BMhZu67Y0owD1v+IvfayvAyHevJOjTLMAgj32T02AuwEd5gQmwYCvA9oru5I38KsBJlqHRriIrwEI0tdsj3SnABfa18rx6LsArgrdDzPUuwNeJTmvCiC/Atwdq1e3ELsAk0o/aiAgvwERmruC9NCzAOSiRJTUpKsCF32MqOcwmwAZFhMftaiTAzLm10A6cJcDL6FHUuFYlwBQ98tM6XSTAUQA6x+FgIMD0yOE4uHkgwIvuHZ4YQB/Axj8axFG/GcDc6CJH6FMfwBELdVzoUhXAuzLsHFP+FcBNvo3mxbwXwGFLIdQ+eRPA8fumioJdEsAxYOc47HAVwLdfvCVuqhrATsa3vNSnEsA1L08hgbEUwAgCICioshnAPo2j1PZVIMC8bN5+9e0gwLykupPHfCLABGuzlfkVJcDjFrjDP00owEsGruB4OyXA7De02w52JsCXmQaXc1UkwMiJk6zAzSXA/iWbbVqcJ8BXfloY090owN7Dc9FP2ijAcMy/JXNTKcDFBNSkPcMowPOqxvJGsSjA8ZM0VEx1K8AbdltTy1MtwBhzOml/+i/Av0ep7mf+MMAO+u8kJPouwBekgNkBcy3A/TmB2vw7MMBFVPTFXRwywGGUHK6JuTDAtW4p5O6yMMDc+b6OWs4ywG3DdcZYKjHA/H2NyOzbL8BUgwuE2QMwwOfbKEHZFzDA5tP1xNN4LMCAsNLCiyQvwIb6RLCV9zDAuCBx2yKaMMCG+EESA3gxwBCMD5YqqjHAwZ4LBfXeMcBUmc8XE/MywL//1HsVrjLA10mLrV0zMcDYWwSQh8QzwGn6FrmjYDTAlRNrrZ5+M8DsaShRMCUzwF044lzJzDPAakbg3yKhM8BTsYCTxhg1wD3+WuW1KTXAGFsqzc4UNMAR3t8U1g80wJNrXe2VOTTAJ9/vAgpYM8B8qp7wAKwywABOTrph8DHAqVK1orKAMMCD52J9kY4ywPB/6tXKezDAR1DbPsiTL8Bpo5GPMtUwwIuA4JYWRzHAv2xIvIuWMcA7Ruqsa5wywNfO5ay33THAvxnwegkOMsCcEiS5nZExwBM14cNezjHAZFTPgNP0MMDLiZhSDygxwK85FcLnazDAP36xM0slMcCCtKSYu9ouwOxHBDLTJTDAsr3yDlbXL8BBbKJHjL0uwLhXjRCMfjDAR8wrOtouMcA8HB+iOl0xwHDgBsFm2jHAyfdxUXZwMcDoz1U9HsIywJRStJx6PjPAKnar+Bs6M8B8JPoILAE0wG5YZfohvDLAFP4rAk8yNMB+FI+3emI0wAH7BZx/2TTAPI8Zi0j3NMCNUBG2tbQzwItrcKUi2zPAids0OS1UM8BWUI9kIds0wHfrpwmYqzTA2/y89P6iNMB4+1JAw+4zwBXqlcQnHDTAUMZMrti3M8Ba9ZsvpUwzwAZpmvF4WTLAuQC5eBv/MMCl5n6kPI4wwHwAwR7VLTHAGEPDILygMcCJNGr7AC4ywLkfE4/9dDHAhIQysXDQMMBHDRm9HJEwwM8ytmw1XjHAwLjd97nPMMBBaXdSqb0xwL04jRuzGjLAsENLbgMeM8CPngmE8dMywJ26eDbWETLAtVM1JPNYMsCYe6lVQy4ywHKab0Hc2zHAK/kP6QZSMsCwr1P7HSMwwF6zcRqRZS/A5Ub20h4bLsB8OJMUXWguwClSr87i7i/AFemRQSjrL8AtWSZSw8gtwKapqbE6ATDA62P2zFDpL8A0nY3igBgwwDZk/cZiUzDAf15Fbm3lL8A3tl4999wvwJymDSeaBDDAtUma8GxkMMC06J9e0DwwwLrSIC5k7jDAJKrmyaN9MMDO+EI9jZowwIz161GmxjHAU/f9F2SmMMDTtfFyF2kvwF0UT4x/fS/AEdGCChc3McBU6UWcB+AxwEQNJWfQbjHANtZjEv2OMcAmxEYzmVoywANrvcurDTLABlogc3ZBMsAYqwLs5+sywCr10rZsNzPA2XMCg6gpM8CBzwo/+FwzwGLzxs32TTDA33a5O231LcCTcZjqRXcuwAimiw6QLy3AzoFRhFVzK8D3treYV8EowKHTDzKg7SrA0rFP4fsEK8BnY45ph6EswFNNxC9qei7AP2yThc29LcA/1hxAhQItwGKZJh03Ey7AoZVFTrGbLsA/3YvbKSorwELgfn4LNC/ACUJkKIzeL8AqZ2ZwebouwAw1ZgcphS/ApmIwImF9L8DyLMGqT7EwwCX5AFP8iDHAS6d8crgGMsCqVJOTjlgywPBajguM3zLAW4QkQWAyM8CSw2LuHKMywLcPuqX3+jHAuof4XovmMsDYQgunXYIzwBXXePU2HjTAqhYJ3ghzNMBKrmGL2Ek1wGaDOvrYEDbAObuF7I52NsA7Tjvsuu81wOyhjriYXTXAottqqsPHM8C0VUJY48oywLrPRB2/MzPAnJV7nJA0MsDg3uEHp4wywNdtxqUc0zLAK3mEtGUfMcCWVU0VfeMwwEfoKQe4dzLAoyDDN5WJMMByf1aazpQxwEKumFmg8TLAsFxxYFBVMcAeqZiV2tovwPal5dU7Pi/ABp/h4vOIL8CWm+rcj5YxwKomfnIWgjHAEQ/ouR9YMsCyAi9+KD0ywL6MZF4A3y/AbjuYAqCnMMBr4Dh49kUwwC6PaclmXjHA+s+j3TTjMcDJc2U+ThgxwNbB9O8NHjDAgxugh7hwLcDETUNQy+QswLTDnlUOoi/AZposnMoZMMCEo39cb28wwPdN11cwVS3AAks8DPy+LsBuBY8FjeYvwFX0B3N9gCzApN9n+22fK8DMZB895UoqwCWiN7050SjAa6ySe0BkLsBqT6mvpYstwNUOAKu4mCzAVRvGnMj5KsBJqr8WFRcrwLjVTnb55yvAwvWsdd32K8AL7uQ59UYswEnwLrjCRCzAg33khjBDLsCfHWcZd/AwwIjMiuKzizLA9PACerfLMsCOfxxc1yg0wEl8jUortTLAH/9tTK2RM8CWf4x/EB00wINr0Dz/YDHAwLvrHnyBMMCwylJb8GkwwOntn6c3XzDAfuufTiR8LsBdZ627fsAtwJPC9hD81C7AMEgLYHC7LsAOf7PsupAtwBEuVv64nSjA4FnoFg3QJcDChaMAgBYkwHji1wvwOSHAxI/P2dQyIsBVqIjf3molwBVM6mjXiyTAl1fZYwfSJMCPcU48rqAkwByz8WbghiTA3w7ns8uyJsDeCnmEEfUnwPy506bMDCbA78PP/aoBJ8DssyMnGG4pwILMuEmnMSvAsLCsimYZKcCnWisIMqkqwP/2LauE8ynA2ARDjVdkKsC88sAIwBwpwA2goot3ZinAfVB6iHE3KsCrwy8bf0wtwIzZ8/84GDDAjXbytajALcD43y04pQkvwBj/AnpAhjDAJzCXe3BvMMChRAlZYwsvwBZfKz4RTzDALxsKNsWrMMDzpJJMbKIxwH8ukGbPTDPAufUc/dGSNMC92T0lfOUzwLCOHnk3WDLAuGjGoBU+L8AMTl/i1MwwwNUlLGJ/jzDAVKSsNPreLsCgwEudHWovwIQ4MPgHEy/AKRXLnBBpLcApZcexy34twPk/UGhqbi7A1WTO6KMFMMComOqTTHcwwG03ZY3g0DDA/zixR9DvMMDuHvFUz7wwwBT6av20UC/AgeTKJ6zyMMB9q3zAcyIwwP7XVwZpQjDAHqzHn2vLLcDnusk3OwcuwHlskQA/oC3AIbWjo3C0LMBE7+KLq8EqwHnBT6HiMCjAAVF5gMzgKMBk4izDapElwJ/ObAC0DyPAv2LIOedOJsBcC6z6aJAnwABwAtoNBCnAS/rJwvRGKMDXWPDxDOonwJv0PzlYKybAHyaIuK6HKcBfHyjkPGknwNLVcClt8SXA/uZH3NAzJcC302KWkBojwJ7v0PikoCbADm2HdI+7JsDF+fp5BywowDicK28mfyfAjfVn4iAlJsCnav01EyklwEyrYAgpTCLAGdylTGw4IMD0T75p8sUgwEgfn96A9B7AFsw8T17MHsBPCUqbY8QcwK3k1U1CKiDAhJp9tdmKH8D74YQdTfAdwBiJQWMuBh7AfJW9QPKgHsD/TjsDxQIjwF/sSwZy/STAfDJVmcO1IsA197SSRSUfwK+zAa9kth7A12dUtsUIIcCy9VFSTYEhwNiT5lIAaCHAZ97NxE2JIsD8fKQ+MXQgwDt7CIi2TRjA/fB5G44WE8Dv4NjnPbgewOy5TApMlSPA/VaZa/hJJMCI6/fXUKskwHFpVcy0tiXArWPXvs54JsBWejo18wYmwMgBMY0/vyXA9/Auf89jJsAvzJXGreQkwEe9icybHiTA7XLVN077JcC677vNOxgowNESPbvDfyfAYFDuab/UKcCvNAa2b58pwIjtpuYknSrApj1/jD92K8AckvZmq6omwJ5Fvd9mJSTAxvqQ41leJMA2qneZBPoiwAJXt9UFJiLAn53RnQqiIsDq+Q40R+0kwAAT1xrLPybAXPjYco/QJsBplGhyIwoqwBFT374nFSvAEvCMCDvgK8AsaAwjdhItwJUMKZe5iS7A9WHjTxTpL8AVagjX/o4wwOFu6tCn1i7AOitE01e3L8ADL32/FRMwwDCaScJ0lS7AzXXYfn48L8CU1Gdy75cwwMpIU/Btai/Ao6vNaFcBMMBV3Jcnc5kuwAUdSVyFzy/AuPnC5JyHL8BqKaZPy6ovwD6lfym6OzDAdTQsOjjrK8BoauluhKMrwIOiZcNnoC3AbfJc5DC1LMCX2kQNT8YtwG89kbOc+i3AZbWLTjkKL8AEcOBjkZUtwFxPGoAguC3AnRIaiPEwK8An36BEQVMpwIAnw/UgaijAOkTwVcg8KMCYCAgayrEkwGRI9SX7bSLAqEPX4w9sKMBzChtJ6f8kwLQ4HPUGYSPAcGWNDhXtIcBZsOw7n04jwFDRA00PFyHAzn82Osv4F8C4fhb+EEUawCuBMVvh7hjARkirndQlHcAe/qM+2XIgwHJCInl3PR/AAVZun6CCIMBSdci63SAgwKiQlsvXiSHAuq1kpr8aJMDJ7BQpQ7gkwOrGzTo47SLAiqa/XzbLIMAO8Ka82x0gwPhUdeo+Nx/Ag3dKH63qHsDZmm22obwgwBz31ISMnSbA1BWff1XjK8COssG0VgYrwF4wF4IUJy7AEjbdVclkLMChe2f9A0AswPRGSIOAKyjAdA8+KRCiKMBROkLOV54qwLv0A8oKyCzAA2EQ1QyELcBdNuwx7OouwO0G+D1lii/AKFew5ILzL8AxCSceEXgwwIFbAHAtXDPAS2Sg/KB3NMCCB8YwJXE0wDHdoLNhhDXAFXCQakqmNcBT92NN8as1wGg0WxsMxzXAkl4Ak8OeNcBjMgkIhX01wHtiXxKUZDPAMxLrqxTcMsCXysyJceUywEx3Ft9tUzTARxGmugxRM8CVSaQVxqkywGjKJMn8nDPA4ueycfvQMsCUGk+QrG8ywKqagU0/HDHAzx4JQWYBMsDO1+sf56gxwOCtYW/ZODHA9h5emy8iMcCOUF/4Fi0uwCioco1/USrA3aNZanrfLMAPbTvx/UAtwCK/MgP77SvA2sgYlM60K8BkVHgtQRwuwJAliMjjMy7AjvbxsqBfLsDKG2TxE88swGJERba6Zy3A34nl4xk7LcCW9Y3Mj6QqwGws9rRbrCjA6Y0mZro2KsCxxMbBvoMowCS8JMq6aSnAWFDCHNohKcAEkYhO/xAswD8Z6ZUF9C3Ag7uinL7ELcD44LPun7wrwAMzdHYKIynATTcONj/gJ8CKyqQwi4wrwDx4EBScrizAWSS+JFcyK8B/OW8n+XQpwFaUDyw8aizA1Os78WXXKMD8D2OZRMEpwHhyDQMCRCnAoMpT77odKcBTQYo3cuopwNReQw3X/CfA7a10ACBZJsCvxv+2xVQqwFRuSRLqtCzAGcd1YHyGK8Bs58E4oUkqwFBLlno3WynAGdf8qf5LJ8DsIXL2HTcqwDzwpIYHnyvAQMi1wJV8KcB5hhuI7X0mwGdb0PGD1STAZF8R8ZtdKMBZpiqZfH0owHZ6c+JNcirAtsY/6qteK8CZwgiyXUcowEn6zEWuHifAzOtbJcjbJsDJqeiaQ1YpwLpXdQnTjCbAfw4K+I4dKMBwK151hJ8mwM0bOl8Z7SfAIf6x6c+7KsBWWlz2ihApwDJCSm0KbirAbiG8zFUtKsCL+5srm3ArwIhLe7qgnyrAyycEbQzwKMCMYK+so6crwCMNsF8XdSzAh/cj8CZ7KsBmDiXynAMpwIDZMH8brSrAqcSji38sKsC5LTp55pwowIX+vPFvLCvA7HB0Y2ZjKcDAwXttl1kqwFCr45BcACfAtQBEv7D6J8Did1Gu9qImwJWSa1C1lSfAXZW7m60wKMD5tjOXSAMowO963Am71SnAqGFFpo8LKMBWDXoa/IEmwCiuT54UCyXA/4ofzI4MKMD7tJaQj30pwDmChujbiynAOgM7zGYiL8CSvXLQC2owwBjzeEokJDHAq4iSAUQ2MMC7pwKb/jQwwObTpI3E3S/AVjtzgN+RLcB50vPc2jEuwLcYzt/kESrA8SIvwLK9KsCbUVbarSIqwK4gGUdSCijAwksnPy7qJ8Anw3rvEYMmwIMEChJCkyXAsW/9gxEJJcA8vizhvLcjwE307GwsaiLAygtYLBU8G8AcDe9E2BUdwHXbHP0gcx3AZTuN/brzHMAcVjSwHAohwKxa/cF/USHAGS0dVgapIsBuawE4MwYjwHozeGCl7CDAkQGJEawGHMBtD3qrmJQYwBnT8i5HdxjAUs9ASsYzHMAo/c3pRkEWwOLGRzMNihfAqMFCQUJnFMBPlSkaBOsSwA5YGSNASBHAzFLkWGi7E8BX83J/d1gXwKqktfKiIyDAs9llGig0IcC2g7UgtyUfwMCR55l9gSLAks3juOuHIcDTIGGigQIjwHjmYEztwCHAsfRVb7GgHsA9nGK+xUUgwF/buH3V5R7ApKFEh7IoIcDLFHyY5eMhwOTRqBuG2yLAX3N+cMaPIsBEPq8I1TgjwGpXpqVuJiPAxXcW4wXGJcBEkmcTZZklwMVUkCWgwSDAjo9nOhOcIsA3iMkrvZQjwHLMAdlD8iPAFUnvoDDOI8DkBL1zj9EmwM3sUjVbMifA+18Q1tH9J8DN0xq49ismwB7wWqvTXCXAHdkJs5SQJsBsQHH/H/MlwI2A9o1qJifAYa6YwRwpJMDMsxScieEiwFEBQqRrnSTAcChDE5GSI8AIkk0R5m0kwARcHkR49SLAsAZ+JEX6IcAvmNubW+UgwJworlWMlh3Ay158XiGjG8AybTdmouQhwNh3IC/zPSHAzslOYRiDIcCOq0AvFBsdwDsGPytmTyPA1T4imAh9IsAFoksqSKohwNDsff0pPB/AlDKATFuMI8DsJwhLynEhwIjPsmWVOiHA8Ca9EYIIIsCuhtM4pSQgwE6ICI7WAyHAi0rYGZcTIcCWOdc46PkcwBv5pBAVKh7Az0Wxj2yeHcCJOr457XkYwEgGO1sRrRrAhZgGBFQtGsAEoTF5shQbwD6kBBZKZxzAN7aasn84HsDTh7lraaIgwNGErHE03iLASWKJm70UJsDHUatHAN0kwN3mxv4csiXAA8pVPZimJcA4o/EWfo0nwIy6PeRtZSjA9P0It0bUKcCWJnPlu3MswErF6XsL/i3AWLVfRxWgL8CP29vpy7kqwFt5VCI93SzAd2ZCtwAxLMD804nuYnkpwALA+eEM9SfA9YtSxhSdKMBdCerEkJcowNGkbqyp4yfADRPmA+52KsD8hZxTs6srwHMeo9vdQi/AbzNcFDyEMMAnsMWCMLgwwAjtyftxlTLAJhCKgER9M8CEEsxAjgc0wFBS7DfOZTPAJlzvNwCNMcCncBrZ+TAxwFlKHZ/ZOzLA5ck95jQMMsAlaajP0HwxwK4LffQxNS/A/Tj2jWAHMMAPPk4mDdMtwH3oalaDVC7A0hcwjnqnLsDcArahFgoxwNbaipee+THAdmVdSBUTMcDbO2aAMx4wwKP//xTY7DDAJqWKCq7KMcCl53mIIlEywKQ4jxoNNDLAg2tsWvZsMcCRBqGOINowwMOj+MBpsjDAQVjhEP0PL8CnnlFExwsxwDzqmMUQdDDAbh/f+Ww3MMDbgENAtVAtwJUMjrKVky/AY/hv5x5lL8AHhcYQeaIuwJ4002jdxi7ALOSriBH5LsCwmNiL9JsuwKzEBDsShCvASRKsi18jMMBtPH0++JEvwBmDd6XQFy/AFhh6Ik2IMcAQFVQoujYxwFOD8dnZpzLAoh7ckFDGMsB2+BD5aVgzwMBqTIGsmDPAopLOv3zzMcCbWERZYYAywDdA4Kv1hjDAnl5/bO/0L8BGKRxMCEsywLJk0MkPrzHAe025AnU2MsAft9lZe480wKfbIb67MzXAEt32Ph++NcDrBmWbybc1wLz/+nN14DbAoUJTL/EZNcAiTRZu9TQ1wDlwniVAKTXA5lWUpKd7M8CuTb9NoxYzwNNplnqFLzPAzkgynBgAM8DEFJ4LlDQ0wKotx56pGjbAn6F0xqUcN8BoGG5ofUc3wHmEBrl5ozfAGQtbznKGN8ANTUrC8LI2wIFXT5jI8jXAs7+qrvuFNMBObtY2JHg0wIhsbXiLcTTAUBIcOR/SNMCjdhD9i0g1wDJItYa+4jTAbdekjHD1M8CCTo9bBpsywKq/fPWomTHAHda2nWtoMcBuE2BiYH4xwAlpQ3zlajHAtn3BcsX1MMCADCMuZJAxwC9p0EEZCzHAMo/PA8iaMsCik55hlWoywFT6j+VeVDPAKTBOZtdNNMC3XwwJh0Q1wE36lM+0izTAp4590kR0NMA3fEN28UE1wOK0Nv/uvDXAc/1m0p2aNcCjJxpAEDM2wKjUyz3HwTbARRaP9XPdNsBdgH1gQ/w2wCi1Agf5azjAutliKIhVOcDLepBMC9U5wCt4abWdLTrACTNhChbsOcCLX/S92jA6wEg2mDRHaTrA1N20BEQQOcAYTjCp3Ck4wFZUZ0cafjfAOpLgE3qONcD0zIhFzrM2wNke7icDajbAy+WF0XdRNcAE40ZETEM2wLA5u3zJYjbAx+9nLFD9NcAiI4YBtBQ0wGNMPWqbMTXAgKuElIvANcCJbWZfNGU0wLfS/OCWWDPAaGmyZAQPNMAWQ2uZNSMywNdoFHv2IjHAmqyt4HzbMcB7NZd4CM0ywOD0GEubxDTAoYLWV0ZNNcDvkUjp7X41wK3BQ+kYLTPACB8h/trTMcABEzIjRMIwwGHISB2CZy/APNgQSsvuLsCFpgGPZhMwwJdVvHm9EDDAABoOruQuL8Aa1sNL8l4twJSN9BJm5S3An0V6rmMVLMBQnp/Tqq4uwJ9MDqi8SS/AWkg3+W9lLcC1tkB9R1gtwC+c7Obx1CzAQTXLW/V/K8CZfZnEAEMwwIMel1g/XzDAXHsMNSOlMMCxiaWtBnIwwN6d3ltWbC/A4TzfMCgPMMAgMm0Cy1wuwDTLUl+gNCvADoTJAfWLKsBE/O2q0yIrwHxhR0guMyvAvIbqCRqLKMB7QRHTVSYswP7mBYQ6QS3AgPGdvs2WLcA72T3ONSEuwA7AT/tGVDDAkQ0kUB6LL8AexcHN9AQvwJij4dOidTHAwi9mJGcSMcCeNwnBLXowwKMl0RyZKTHAxBMmmq4sMcBrlfTGQRQywNGFgycGcjHAAmbnp3YJMMBHGKJ+d8YwwPEAAkyxQS7AkAC1NW0rLcBq9VEqqG0wwHbvCTjl4i7Ac/s3D2+cLMDWj+lhg/YrwGRN1tNLxizA67EZAvOyLcBXqRiOYtwswCkVxP4k5y7AR/mgYHDpL8D130WmJIEtwLNVa9TPAC3Akz28eX5RKcAICpOZSLEmwDI1Q4sVzSrAgfrI2j+YJ8DQ0uGBnlcmwEWZmeub+inAbA4HzxA8J8CfdupddMAlwMoDV3kR4yjAwyhzNy7yJ8Dj5uzV+9UowPhKcs2aAybAHUnlDbtIJ8DlsrQWTSopwLloF5RlPibA3BeY3Q1fJcBnkjiLQyEnwEEQ3J7TrynAaod2oH5IKsANlZL7uU4qwMcorEdenynAOr0MznLtK8DG8Ik4l10owGibn9GShijAL7csvlDrKcAcscE56NopwOoDV1vYcirALlGO1LatLsDvZW9LClgtwBG0DCScNyzA8HHCf12kLMDvpI70iN8uwMNVZ7Y8ojDApQ5tY0j6LsBV8emS4rQuwGBjB4J7iS/ATU9dV9apK8CTYFYPfcErwOAe86XiGDDA58h/7Fp5MMBtseOkjrUtwCzEQnfJgjDAnYhqHNgjLsAY75FEmz8vwGvdGFmELDDA+XpSEzG9MMA6aZQFnLIwwNfw6qBUhDDA4FI3FzwIMMDJNatRPgUxwD0jtpuuAjLAjTQ1QO4kMsAsGKfMEPUwwDAbiz33njDAZ0bvWOz7MMBosS5oGX4xwCwaWaa+ETLAYYqrbqUNMcD6dLVapnQwwFU9xtQeti/AJYaiwVYgL8CbD474JBIxwFAVwc70rSvA+xcRMw7cLMCqdWowNxwswIGwWmjDRS3A690gAbTsK8Dz5qNuEWAswGOMQrSlmCjAG5NGExrwK8CO0891OEIswAN0qRu69yzAfrKsw0zaLMDviSoQIe4pwAFMSPAzjijA4itwKcSOKsB/aWnXq1grwJtsSPA0+inADgWrILKIK8D909kNJOEqwHDiYG6aSynADRQJMoA4JcDhiDRH5yonwPciLFXfjiXAGjwvfWKDJcBQQZnOusoiwNXRU6ejkCbAEwQEir2eKcB2NnxaEBMpwMF+vvSZhCbAUjRPA8j7KMAbELXdziQnwAtA/ANX/ibA97WgsKR4JcCsi9AZiyMnwGdY5hr1WyjA1kDkm04CK8CtAgRVqu4owDd5LUtf1SrAqydizVa8KcCivv+7y+opwLbpwtIyhivAQf6bykEQK8DhjMrGKUwpwH/YLz2E8ijAC5L2h3IWKMAYC5+NUcUowMFLoKEgdCnAfFHqs3KJKcCMWnJFbFAqwD4gENSa9yjAf8og+GkNKcA+DhSyIzYswCYtKOHusS3AZMt07U2ILsBh/opCq7gvwERUFhdhLzHABTXysVLkMsAOVhUqsCUxwD2HsdHXMTHAb8b2T+98L8BCmWBK+R0uwKp4lVbXwCvAaoSjZa+lLMAkY7ydRj0wwBRy1zq9pjHAHNt8HBh4MMDfZ1Yu8H4xwG+ery6e4jLAPSFpWmUtM8CyKR424J4xwIQ2I9do4zHAEqRSjgd9McBDVN9li2YxwMWUnpHlfzHARr1NhyVlMcBB8gFhIm0xwE0SdUbnDzHA16VGj8e1MMA7x0cTQgAwwNravdzDCS/AD3Wh4sdyMMAher1ObO4wwLFKvDGT1CrA2sfsfLH+LMBWNH4OFw0vwCszS822cS3Aq7iuyA15LcAOCpx5VmouwGqin4MbCivAWGQ9eP10KcDT+1YkA4YnwA2lSRKlpSrA4+NiY3gRK8CoSkofH/YpwOV07bbiFirAEGrQt/eTKcDmXfbI62MpwK0y4jQ80CrAYKFu+of8LMBftZDtUUswwDVW5GFBpTDAm8MqDhNLMMAntiIuYQowwAZz2h0ZEzLAJ839zDMSMMAA+BpcoJ0twPYZVsW/5izA+SwMB5Y7LcCo6ZnnKF8rwHSK78mrwS3ACMz3Vr1wLMCrfeAWizkvwN+dnV+L/y/AAhPHdW+FMcDo7WR5AG4xwB7nPZ61HTPAQi/hjBDCMsCAxF334hg0wMVTaa5AzTLAkHXCSKGoNcB7S0lslVY2wBxzL1KTZjbAcy3JUcQuN8Co4wmpyPs2wMG0ATCPNzfAcsYhL6Y5OcDxDRGxEAs7wEN1Ga6ZHzvAkeSaXQhPOsADedlr+306wJSiz0jIvDrAL8yh/Wc4O8AGqSkPMns4wGot9t0UEjnAfliz/xnDOsAcDLlhOPE6wHWyhWyLUjrAmcben8FNOsD0NRLIjjg5wIByJbWfLTrAWku3YXbSOsBvN4VWDtQ5wC3ofNu40znAkDu1ZEcfOsDEPf6Zo6Q6wF1REMhHtDrA2EE5xQqXO8D7on3vIIc6wAdoV+UEqTnApFMMiEn9OcBXrCk6vCk6wNPyNqza5TnAzf0oeQz5OMBnuB5MWnw3wIhkZnefpzXAcPf1EO/MMsBByJkN9sAzwAQvDi112jXAXdzyDEisNcCE95y1RXk0wGpSZmHY9zTAHWLfHkioNcAPIZmQiwI1wBVLkWWH4DTAIForDozrNcBwoSlOU5I1wH2r6qW5zDfAXemZNmEVOMBgiXXddeY4wAsbhA2M6zjAUNq/H1fDN8D2AhOU7gM4wPVERQi8nDbA/Zhm4ew4OMClFsRvqNc4wGh5owplWjfADR9nGOrDNsBvwvtECSI3wIPKFmL+uzfAJOgFveOONcCPk1LG6nE2wK1uwuv8kDXAJFTqbJnlNcBPhHv8ERM2wPokJPxDSzXAigvpRLyhNMDuFcBlqqMzwB0N0OQkrTHA/FXeEf/KL8B4gXFp8c8vwHe715HEZTDAxLwK4Mh/McC+VGINioAxwBpV2NuHQzLAo2s51OikMcBegiuQw5AxwHwhiBEurTDAwIid+joSMcDX+VhKZ2UxwCgrCGWo+TDARTzqs7D3LcCmTDZFiscuwJyjEzwrYyvA4gZrrHC5KcBu/jEylpAowLHgDhE/nCjABFcuIyzRJ8Bl1iTC5QglwCmbzcyymiXA+0rJ/lw6JcBA5gPHLjEkwAjgqN1BdSXA8I/e573XKMBEaLir0VAnwAaf6C6BvijA9OQIB4SkKMBqudoxbvYowFn5hacowynAt/yc+PjNJsAYe/xOrMMowEVr6gg86SnAlizB6z1yJ8Dl5a7/nfgnwGOH3yWdgyrAzDekxN+VK8AEiDf/4pwtwGxckoBY7yzAdQaUA3AbLMA2jGKsfEIswKBizE86QS/AIoX2RNkFMMDrRDeHtRkwwG7YTr+/ODDAm3y1bj/ML8DRbm+aH0cwwEP1s3/mCC7AzhuTBbAqLMDISGq4sjYtwMHSHaTpUSvAZoGlnlTOLMA0FvCPiMAswL4CLmrT0S7AhNbyTv/2MMDPQ3K8ElkwwBvXqoWHVy3AEOhWSqoLLMBzrkFwGtMqwDafcRkAzy7Awr/55t8+MMDM2D45p+gwwEOEemDxBS/AZbiHLPTILcCCVH1LQzwqwMh+KiyFZCTAnwZ/smHaJcB4AHJN6lYnwMu5Z9niDyfAGMgFNGERKcBmnH++vpcpwLrAAUN3AyvAEKraISoaLcBrAp3dSr4rwKzLyKt2iizAsN8f8mxmLMCWgclOCOMuwD0WPe5gSCzAKCM247fdJ8BpWutRxC0lwPfXNDxmmiTAGj489UgrI8AaWIu+qOchwFAA60WTYR3AMEihte3+HMA0MMdwD6EbwO4vaW4J9h3AI9JfgV6nHMDqaNLClQEewAbBHHZ7niDAgn6cCmLFIMCwC914VaEiwDh6ILpjcSXA62BHPmkaIcBPBhRF+g0hwPsTrh7kPyPA8nga3WayIcB+XobZbusdwKdpe9XUcB7ATw0iL7qEHsA2ErxL/rAfwIq9uKZpoSDA+F3fZGSGIMD8K6TV86siwC96oj1CeCTA7114O0M4IsCSCwAfY9ghwJD4XRiAOyLAk3HY9xl0IMBwSGr3hgUiwFDgMMkbpR7A0tQtgfmMG8ACWT2fMBsUwGsN8J2DVxTA+nBwDdx4GsBYfJzLUfMcwB3Yc99W5RrA437Q4IlhIcDvyAQgpFcdwPp6pqlacB7AAJMgCgnNGcCAXSDzI88ZwKXXfqYwiBrAq1YlqSdlFcAMcYlQcGgewCn151vDHyHAVJJno32UHcC0XKK9YkEcwGLKGPMS7yDAuOUnrIzdIcB2qcUwY9whwAYFJB+QoiDAOOmOYBeUIcDI5zspMeQhwB0WjL/9aiHAPoxEgXYvHsAJYCvO1GYcwKa3Tjp+Ax7ArICTZC8sGsBCd/7JTi8XwA2OhFVAcBbA1VENAH3TFsAdp9K50zIUwIS8CabkSxTA8uKTcRasGMDPOeiT+8QVwDuB/Vvw7hXAtjKcDb/zFsD0NQcG8HUbwBvso5TfKiDA7hZ/gAulIsCGAuuojeggwNMwS6MYOyHARMFHLym4I8BJ+WnEDgUnwBXZiyP03ifAi7uqd8EtKcDr9WH97ycpwCASbjJneSfAPX1j+YgXKcBrvFO22iIqwDo7nQEmDybAR9qFW7CUJsC6UVNI7mUowOQGoBmY4ifA339LLkTWKMDG967S+AgpwAoc7dX+iyjAiumaXihOLMAJikFtdzQwwAMbJmREgi/AMsE/NW7MLMBlbY97m1wqwE1d8WGKOCfAVs/ZKEPlJsCNDF3e/ecjwB1zdFg0VyDAa3goMNKTIsBpefBwOb4gwEQHp4ymTSDAO2wBkNH4IcC6SXwPNQQfwO6cO3CJBCLAmYeT43dLIsCsRD57eEghwI/7mDCuVhzAGn0mSLYQIcAtq22bY60cwFZjD7BzbR/Ap2PodmgjI8CPGzdOWZghwOY33zHrOiHALvSH8n3QJMCscf2x1BEkwNJywm1hqCXAULIrKIJjJMDNk0ftSmsjwJppWCe8NSXAFbVWwmVeKMDMbKvev6snwAFf8IIlmyjAM9sL0IyLJ8Ad5hOyR0gmwNmPG2DWJCbAvmQpACAgJcC2jWZIKMUnwOBqx+JS+CfAV6CQqsuWJsBuQJue7OAlwCUt8Cio/ifAiGQFuUPCKMDmRpn1Gn4mwKeE5dxqKifAhhz8JHh9KMAxOww78nMrwPJnT5hrMyzAS+6smksoK8DAY7TndtgpwCdyVhWOISjAgBjGLhHqJsC/hI+RbXgkwNFLOmOHvybAP/YZxT2yJcDHmOZ0zZgjwObkMA6B2STAIdMn0lv9I8CR3pcYP78iwGhVtrM/uSDAnBr5phfQHsCUBs+cW+EfwFdATdkGxx7AXzA9aIjlHsAJ2tmgSG8YwMbVQ7OJdR/AxrLamz7OGcByzOxxQRsXwChJSqY/3hfAN6j/rpwNG8BkBBnkIT8awGbexsK8zw7AlYHXAtDRB8D7yGf324wJwK7C6WheOADAJr9uAuCQAcAWcoLP3cwOwOsQm65BpRbAksznu0FAFMBv3GxYVPMSwNuaaDpfBwzA2OXYJIzVDsDlm1volGcPwDLxZ9powQrASTaJElxTDMAAik15Me8IwNLIriPW6wLAWvXFm/tnDcCF4pHsoGkSwKwO4elYJw/Ap3pBJF2aDMA0YaOQAfMKwAAkcmcRfPm/wGM/tCeYAcBThJ6XJPACwNA048eCCP+/APIQdzyi8r8iZZYMdID2v+iAh8Yu+Me/ekPBOfRdz78R6flET5Xwv5+kSlBoigfAbij56sjUCsAR8NL4hRENwJ6Bu3k4DhLAVCr7hxtqDsAPZkS2LugTwDvXQwV1thrAsIxdeBjLF8AHiUvj6c0YwHa/rh0IXx7A3ugyj8JZGcAuGVCrY8IewF1njI6VhBvAaJBRs63cF8CUrOX1EqIbwJi5Hi56KR3Amu2QKSL6IcAjm4DwnpUhwOhlmis7PyTAtcRA4W0TIsBSOCgA/wwkwHH286BQuyDA1hxp3sqkIsC5trRqueEgwOOu5ZTtAyDAEDb2LUNrIcD0ckha7s4kwFn/acxAGSPAfydcRjK7JMCGNwmhEwQlwM38EvY9gijAwmpq/vtZJ8C51PFoM/4lwNtBhZ1z9iTA8h3B+K+5JcAfU64ZeIwmwHaLmfz0DCbAYILrFxwXJsBwrHVpNo8kwCv58LjoIyLAM7X4e6yqIMBEK597lj4gwCztWXIusCDA12zzDA6vIcAEaNv0mWgdwFJj5wDjaiDAR1BY1rg0IMAqhcukJn0jwFRa2rDUeibAijOcNYllJsD+aZQC27wjwDLDO5iRfyXAtCczia8/I8AdhOIRvUQhwMQax6gEgiHA5qArrju+IMAgLFFQ8K4fwInzKYlbkiDANEhjXjYwIcAoO17kFnAhwPQXCl4hVyPA0qLLyRTlJsC+jvohPhEowL92Nul3nCjAGngMcnb9JsDYlC2FIIAowINv0gzKeijAgOrKTKoYJ8CUaoCVYoMnwAJfIApmTiXAYhBXkEAlJcCo6+ZqBMkiwFvuE2QqgCDA7GDtymUZIMAo2oRtji8kwF/M/WqnhiTAsdYYUHLNJcCnm96zoXkkwPAcGaT42iPAjnl8NF+eJcAg3uJIbpklwOCO5Ru8zSTAqlMYuLgmIsCu4PPMoygfwCPTTKSZnRnAYZSZmWxCHMAfKj9CeSAYwKozuZ6jshjA4VssE0nqGMBgMgyDsHMTwGtxXYKXoRHAMLJsTYAvFsBakg4FW7AZwEfyzfIrdBnAe7AmsIVVHcAaCU9Wj68gwDoW4RoRpBfAV2i8z6TqFcBYyTVFrv8SwNOAmNDNBBPARdo3YKGzEsCla5FjcWoUwOiRb0QFkBjAhBEN4+zxF8BuGfWLV64awJIR7D2OdBfA3HjJFgISHsD2b5TOwEEbwOKhs1iamhnAcR7VLYvAIMBen1igFJQjwO35fgbQQyLAqUi4LO25JMAAaf3CQvggwLNBvpK7vx7ANvBUTALTIMDxoPuy77AiwCpZDycOlSPAng2v31KXHsBPG5AkCpMdwPwdCqydkB7AiD2uxoXEHMCLlYvGgVMTwGtbi1R3QhDAyj2V+924C8CyviSYNi/6vyO/SI3ojPu/0TxwdzRC979KlOOq3Qvzv2ytIiaWlt+/gJG9+rYL5r/8tK990TL5vw4DI1N+mPK/dAQTnYYPAMDF79ndYN4AwPp5tUM2KAnAatJlv4b8CMBV3zGFAmMEwPU5jWKm8AjAT4FvHmRABcCswqqketgQwDNccPGV7BfA/TvyF6tUIMBSwIreIK0ZwAlCNBStbhfAwy4iDCr/GcByl/L3Fm0YwISTYiZwcgzAHc4URQrSC8C+Rg5Gxy8EwGA6eNgPyOq/sAg8kuAcyz8YU5LWfBflP3uyH3XhqtQ/jTBqOEEc8D9QJsSuBo66v5KVoOf6Jtc/mJZjI10F/j8SSy7p+l/7PwjmvM3Fd/g/UiD0xwJS+D89WSJ8y3DrP1ZpCyxQJwJANu0vHtKZCEBiiFGIGfsHQNBWaQllVARAzlgH/T+FB0DdQVXvtGIBQE3rqimtKAtAqS5WZ9C8D0DU4vpbaoMOQIlepDFciA9A/HRwF9fcAEB+LJabpoAHQAz7wY/ragFAHjdWR5rIAUCINLih/gIEQNAjjsuzCfk/drjOiGLRBUBopiE6bv4NQIDre1y4zBBA6yIeFvPXE0A391mQxkcTQOZGfloLKxhA8FkYpbq8F0B7hbnHJEMUQEP0hrmF5xFAoaHY5GgNFkDMWcSWMq4eQGuOZeBMmR9AiJeRFs0gIkDVuydVUW8mQAnOujzVpylASgN50FkQJUBJMZZfLGsnQOnkFdhmjSlAh9mi0y4yKkBbMGBGcTgsQNVFhy+Z8ypAIy50PJKmLECXrHAFr/4tQGxBgqmLpitAD4V6AbvzKkDmLoWsTSYuQJmjxilGSC5As4Jb8sOLKUAIjzWXsm0qQBqqgw/cVStA0TLCfTuxLkAeokmI/t0tQBQeUHbfhi9A7rF95demMECVOKmeLqExQBzb3PupbDFA3JcgluPgMUB9Zbspiu8wQHhKFCmS2TBA44fqWxCiMEAR5PtyeCIwQEmxHjnXcDFAtSGxlEhxMUD5ONskejExQOMf1h3/7zBA6YnynZdhL0BpSSOyTDIuQPSRDY4AEC5AoH0zBi7dL0CeQRqmZyQxQKxAAwJGsy5AskT9kYk/KkAmghmt8GEsQJvwTFgaLS1A3ySVhktFLUCCZjCwjbsqQOVR4xoiCStARurQxamuKUDpHIIUGJ4rQBogKCb5LytA4BrAEbIlKkCg6FAfyk0sQOc6TDWY3itAnw32pcAeLECNe9f76q8tQJ4sneVUOzBANn0lDdl9MEAO88ROI6MwQIcE7rUSfTFA/iitYxJ3M0Aa0QiKodAzQN/vlC5qJDZAWnmjXl6ANkDVPMfDtmI1QBzEzMzRcjZAkO3EXBMWNkDzWiTsfQo1QLcSeiiJmjVAp5sWIrHjNkABsn79FEU2QNsEaMJoPjVANGnq8SaENEAjZ34jdn4zQH8upQ6vRDNArVo2uIjlNECR7fLm/DwzQDpnYprfDTRAHiJLy6wNNEC7IrmAl4Y0QEZtNmD1mzNASbRO6k/kMkCPJn9lVtozQM2pSybBMzVADKLjpSw7NkAKjCWtwRU1QMG7+DuvATZAcJFIjTJYNkAN7TdfmWo3QK4pkhQ3nDZAJn58FIqjNUBVaORC97A0QL29On2vbjZAf0yVBN2iN0CZPA32HRE2QAeSkmW4UzVABg/3dtUHNEAXc2jdc9kzQIqAi35F+TNAPoQFqIiENEB6E2ePwk40QI6pYaQQfzVAtI9ZJJTONEBjdxL82Yc1QN9mCjUq8DRAG49Vt1+BM0AzfM7ywDUzQARPzePvnjVAOfU5KkvkNEDY4WktYi01QBDJK462gDNAvHQ6nLVVMUDZG8vNf+gwQMyIS8n1bzFA6GkQVVgTMEBN2w/QQY0wQB5tiHLGeDFAuFfpkS1vMUCH036DaT4xQDpHNLaxNjBARYTlnwVsL0BMne/dmpUvQMj26AH0wC5A73+5NXIOMEDqTIP30wkuQCgHy4MtmyxAWcVUF5+HKkDvkzcPunUnQO1V142NnSlAU3ZuQZ76KkBqOc4YwRUuQMiYK4/YOy1Aa7K8VzXcLUAWwbvJuAwxQOCrhoKT5jBAvem3zSueLkC889YyzpEuQE8I3aOgJDFAzg68oLhMMkBzjRN06l0xQOlvdRmB5zBAIevBlBilMEAxVmgisa0yQBEyn5eJfDFAEel5MQT2MUArdxo7zAczQO1r4OPVTDJAn5fSr3hyNEC3OaS0z740QIdlNEQMsjRArg0zlC2oNUDOqrUi5Tg3QLp8hre/izdAvYtkFjjJNkAgN74pGUE3QA6Is/+uLzhASdsfWdjJOEB4DbgvZ/o4QH13SDWD9TlA1OQfK6OxOUBnGUWmJtc6QEL1hQ0mKTtArq3n0jyjOEDIdQpXbnw3QB7fkLn2GjlAO3stq+JoOkBZ0s4SuEU7QDx+D/O20DhA3mNLbmj6OEAwwtw8b7g4QP+QYA0CIzpAmkzsQGj9OUD13cge1nU4QAfL8djs0TdA8CN6nQWcN0AFeWsoqkc2QH955dTpVzZA5dZY2Fn+NUDv9/0CzAA2QBnBuomoIDZALE+BXdN+NkCGljj39Eo0QJ+UfkAPpTRAxda3HDkWNUBqbi6lBcY1QMsUCN/u7DRAsBaQezGLNUCal6AUNhI2QCKRlsQTRTVAxOz+jlf2NED1rX/2u2w1QLx83O4bjTdAq+Kg/J/xNUDcQXN/19g0QEKElQTyMjZAu4m8sESaNUChVgFKetM1QHp8LiviazZA47g3TP5RNkClUmURQNAzQLUYtTIvGjNAAG5hvacpM0ClJFXzEfYxQK5JHHFKbDFAuHSrOW1zMEB9dtjOcnAyQCJ6JFN04DFAtCoLFjTZMEDRgphSx9wxQKvVFlBPyDBAIeAFmC4aMEBHJ9AmdbUrQBsGTVBYkyhACkTGH3icJkCtcqhBVb0pQMPw8YILHi5AtrfE8M5VMUCcwhaRrXYwQKe5bgmwojFAGWLVKEqlMkA+h5egos8xQN6qGAx8qTJAid/MiwsIMkAGiZ0SRRAyQCChpxycnjJAWTAZZXgIMkDU/6FC43YxQMkLgSfNCDBAn8yGmm0dMUCxQPAbsgcyQB9t9xHiIjJAnzkRa0FkMED+9/cCb2MwQBGTak4c7zBAxjKhPbdzMECfSYmJV8QvQM4TveLlvy5AbvNba8ZQKkD+Pazy1JsoQDFr1rM4dihARIUJhgShKEDpvr08nqMpQMJb5h7ezilAudhyX4hBKEB1G7Mo6QIoQF7q25B83CxA8T+5DGJoLEDWBHdpuwsrQGKGoYVmui5AUwEypjoiMECa+4Mp5+IvQGq27648tDBAyHihaiFXMkBs7otT+KsxQBraj1nYKjNAp3VKWx/wM0BC05nXmegyQIzwIuuyNzNA6X5I2XnpMkA7DdyZ6GkzQMWuQyD5OTRAasjW7MyoM0AJhG0rJaUzQF9EUtlrjjNAFA4CsNI/MUCF0gFNz7gvQAoINec7Gi1A8xBd02L2L0DX5coHZ+swQO0cDaRurDBA7dp2HgV2MkC3R9/pLjUxQM9rBFQMbDBAM7Gu1xPIMEB1uP4vgpcwQPIeex9TSDFAavu9q3LMMEC8sJtF/8kxQHg7n1Jw2zFA3CssN+7YMkBt2Gh6cSozQN4yODhgwjNAPaEP74O5M0Am9L6ZVFA0QMGKzIdFpDRALkCVUzGVNECJY5QNMyQ0QAuJqMIm5zRA4kGYzLVkNEDX8zs5auIzQMD5g0aOXjRAFsNs9hX7NECUs61bmlA1QAf1sUjBADZA8j3dEtmgNUCkpSLkzqc0QFQp77CUOzNAJ2hcai9ONEAsdj53snczQF/pv6Wa8TJAxtuBtiMtM0CIYW15lVAzQKvZ4RFabDNAigyWnin7MECdndcuZIQvQGQ+lEh1SjBAaclXHHvOLkBupA4B/uArQGf5el4/Ii1AzlUtch5dLkDCgmlWgwAwQHs7SmHRei1A98DFHMyyL0B9uMNYp/guQNL3bbVUhy9AQZri5EFFMEDBsTkYJbcvQMMk4mhB3y9AxYgJPwZsMECljOwRUeMvQLpHxHbzyixADBGpL5yyL0APijIu+hYtQJK7KDhlLC9AOskfIHodL0C5LmPnrBguQOn1iJye8i1AJn1PZOEKK0C7u7R2YksqQLDUASW8eyxAetv99a/9K0CAywRdi6srQBy5AOOBZCxAw/wukYy/KUCdqNT2NOElQNo4lhdJ1yNAZ2xuuLJQJEB3JtR2nrAkQPZ3FkafbiRARgvilGobJkAfJDXLyJMnQHqynuv6JidA+HBNTnp8JkCJobLFGkgmQDOqJF8pJydAQjnZPaSWJkBJHP2+MXQoQFcB4IWsZiZAJhocK12EJkD0QYXAr3UmQFhdmUbNGSZA+EdAoHI4JkCTZAzMMogmQHalgzhNlydAQuTMRJFEKkB4VQgYKoorQMRWXcEDWy1AxN7aurMbK0Cc6xqnUFsqQJn78X51XylA4HnEH5UnKECe02we7vMrQNOJcYGwZSxA7ZqCqVOWK0CpLuDY+fQrQLaMvm7SsytApycM7XSfLEDcCsUIxnMuQDbyF6Gdti1Ak7HdZvDfLEAhOHBX8zguQHdW9we5yC5AWC6wrnimL0DtRHoH4WIwQBixFYbM8jBATxd5TBpRMUD0QUJ/dAswQAcqlHxfnC1AGY4Ckn/sKkBOEnUNm1wqQBoF6TjmBilAEULRkS4IJ0AJ7m1/410oQJvjTQDz2iRAv+UqcX1uI0B5+jaoUtgnQGgA41vI6iVA6IsFJ9zJKED83/+sfP4lQJ3wmYI7ridAsrk2C5VDJkDKSlnZrqUiQHLqoCWrPyJAY+LK2YZeHkBTMiEPN1ccQHC1p5IdzBdAFnOjfXmlGUBIhQekr9UbQPB09YU7vRNAfjwrCliRFUB3oWGIxogbQKacjxG7jiBA0xBZtGKvHkA1sLEM3CsdQGXy6VcmvRtAUsYcryJJGUBapdNwoy8aQDt5yk05dRFAwMsrlFJYFUCMDlFNPjIVQIeTJ5XbbBdAqgJj0tc1H0CYVJ48JT4hQAYrh3FOTiJAbek1LB9/G0A/LCCmJ7wbQGRz+fed/BJArMivG088DUAPnmCEWX4LQKxmMKEc5xRAg6eWNJHyEUDMMGDdGKgXQF4QJIgnHBFAI/yt5ZCdCkC0Jhq8kLQEQEQNkodXJf0/Hu/v1uA68j9G4iI5JejwP14ppsfaaOU/wKW9TwNo5T/ZYX1wnk3rP9QWFGmwQQRAZeRedy6wBUCOK8knKLEGQDmYiGEe+wZAgRyxUDNADUApz/8yYxsVQAosejxFYxZARa7Up99tEUC3dmU6dtMRQH2PjBHKVBBAy/IjYXrfD0AUsBwtJ/kEQOAopn2PvgRAVhNoy3LsAEA2cN5yxqYCQPBNMzqYnM0/g8judaxu7D8AGfhwtQHNP1Zhla61NcA/uEcG3PCblT/VkxszS6vqPwHh1oUYnAdAfS1y3ujVBkA2TdSDKSkRQNzlp+b2CBpAv3qohvYxGUDkSZZSNKciQKokwo5oyyBA89eDV+LqIEA22w3nkfEhQAUA4iGS1SNAGxV7DM2iIkDBXzllf8siQEi3ZRPeFiFAxi0BOyCRIEBUCradru4hQM/O4yszMyRAgJD0b542I0BlSD7JeAsiQHcvu3NgFx9AqKt03oe8HkDichy3UFEbQD1+HMzVsRVAzCwLywkoDUDKWU4NeAYVQIAuQilMQQ9AaphBudrVAEBku4YAUu/3Pyp07+CoDP4/lJvBqrXk+j8uVf07cYrnP4wv4z/QUuc/hEvIZzHr8D+w3rW8lSv+PyqgoQ4E3AlAoWLhv/id9j9/Z9DbvvjzPxIpoyFYbec/1etONntK9b8pG/2APE/7v8R6BpnGxP2/rjO1OQmIB8DcjJgk7QIRwPj7ULK40ArAYvGIkcKLCcC9epUfGSEDwEePzN/gTw3Atyr7yV6XA8CANRSR2Tz2vzfxVG9xx/6/QJ5M42MjCsDedcLv1pMQwBSaoaxXNhXAcAZKw1tSFMCx2+w7T9EOwHDEaXapLhDAMi1AEKAHFMBvJ8x/Q9IQwKlvBKoEMBPACljyw4EDGcC4ErrHrQIVwHq5gp7QbhjALHoEQGeYHMCs+TrLYK4ewM9u6LBAJB3AtqI3r0OIIMAdFhxBv+sewAc+hkNVgCHAzEIvPRHoJMAQ3n+wiEokwDwhQpmtQibAUpZqhLB6KMDiHDC7FEwpwAyPANAzFSvA4PcJnb0OLMBrdD0wkTUrwD+0bRKi+y3AOzoUCIlkMMAcu6LIEtAwwNLuwNrNMjDA7EU6f7ICMcBKzvP8j/QwwK+6Wtva5DDALBOROKv8MMCcfLiy9SgxwJafELzOtTHAt5pTdVYiNcAbZae76jE1wGFmda4CUzbAPmvXswhuNsDXXUx1UMk1wBUj6WgD/jbAlVvii/l1NsDgx+5ACvU2wOfg6OeHWTjAbD1E/N67OMB0I/6ZtbU4wGmXJ+aYRjjAE+j8RFyANsCXFme4pQY2wBEYD6rT9jbAFrS4KVtqN8Bxz4gSIJM3wCw+rciS8DbAysvctEEGOMB4W+Baktg3wDplAzvuczjAWxtkcfGCN8Bo1ytAmC84wGjmH3tqFzrAZ4UoRFQAPMB39me7KcA6wOzPugS2aTvAaLVwpZ5JOsDdgPwQV7Y6wJrHUyu7zjzALpC57qBSO8CvYqC8Yfk7wKkAEPttwjzAQkr2JDTMO8DAf8QmbCE7wBaVsLDonDrAllKFQV7NO8B9KNISVQM9wEqOc4ZRIj7A0AYspJexP8CZvR/FueI+wFFBU9kcRz7Axva/nKWZPMAsfejwARU8wBlloI4BRTzA++We9tXJPMDt+iYbvIE8wCexrmMamzzATvkEz1X6PMC0IH9CMM89wNQn2/r/sD7AF0p1oPTjPcANS0DcW68/wBnoFYH8xj/AiiItnw4wQMDt7DQJYDFAwME1bMrEUEDAAL+lB2NrP8CgobNKsLc/wM0UK3ZHcEDAVPTmQCSDQMDr1LKcGKZAwIjKxdzgxkDA/vN/1TERQMBwHJC2cCxAwArs/SMmWEDAFKLDZFc7QMBbBON8Amg/wBYPPuMSl0DAY1xO8N9dQcDJ2nAz9DxBwHTe6R3FUEHAfszBUP9tQcDuY6PlTVhBwNii9P+LtULAT48NaNE0QsAzrjEXg9xBwHPN96nYmEHALp+CCvjGQcBepxJ4/FVBwDrVs47LyUDAOxtMjcxJQcA4mA3rSuhBwPa31UH7u0LA6AubIwweQsB8SSpH26NCwCilnhmxZkPASmoU0fXIQ8A5X9zmYy1DwHBbxRv5T0PAtZixwtGOQ8ApW3EQxlREwLg4ZqmwcUTAc95eBTaRRMDoOfoK0WNEwOvReGChVkXAJp2Q/NBKRcB/sBMUsQJFwPNCA20NpEXA1T4hD1hWRcC8HZelwXJFwN3WJ7OgFEbARISPESmvRcDSWIdXNTRGwCRa3urgbUbAwWOy8yC5RcDPvbzBhE5GwMwWQydhYUbAi7QlMSrgRcA7ZA1IFlhFwMxB+YZjQkTA2HwApRw1RMB3BR64ZQpFwPF14Rf2Y0XAczMe/1/7RMCKsGLDlM1EwE04vwhXeUTAwNUK2HQ+RcB23fSiaM5EwL73ZvbHxETAkZK0b0RNRMCE3OwzgJZDwJMw1ABD3kPAv3sNd7l5Q8AQvh91qgtEwDjul9mM2kTARWN8u4CgRMBkEHUVhk1EwLeyMy804ETAUPOTMhM6RMAM8wRxSjhEwNRYssgMx0TAMnhwWBebRMCtF7enyXREwN+e+5FAKUXAb/K3WlbZRMBBK1/a3jlEwKVcLOb0/EPAY70Tbo+lQ8A5ODJgvdRDwL+y7z85ikTAOtEpjK1oRMBwA5gOggRFwKJ8A3lwkUXALZPYi3cRRcD7cgZYkCNFwK5mKoBvqUPAmATDYVsMQ8Bxx6JOVUFDwHiRY/lVOUPAu5lQ5+DHQsANGTvH9WlCwEipJSk9T0LAJNE9spY8QsB1jKJWeFVCwJEDgxdAokLAIE5Lpjl1QsD7ZSffkcNBwEeEN3z20EHAWRKYKLMGQsDOXAp8xn5BwB0GGIOMakHAEgkgSE/vQMCwL35tcrFAwFu6/JjsQkDAgj2Bnav/QMBu3jUReWJBwI65RQz4VELAkua9zGEqQsD82KSMHypCwKGRNH8mKELAZ5QFx+45QsAPdIxExapBwEBbgLmqD0HAdYqb6K8qQcCBs4tZbttAwNHxfyIkTUDAEjxwRexKQMDOClz2hRpBwOBT1Bk/kEDAa7SCT7rKQMACR6XHfPtAwDE5UgLGJUHAmJqxFShDQcAhyJ1B8zFCwLSsbclrFULAc+CEwSSMQsDPmkb+KBFDwIbc/t/jpkLAh8VS4MpHQsChrmM7PZBCwNAYC78jokLAS5khFtIVQsAwfo2b4P5BwP/xR+Cg8ULAMs6qOCS6QsAbfK1pZDJCwLJ9xnD3qELAnDljSHRrQsBvg4tbkq5DwEiqS5X5g0PAZ6ygRn0FQ8BLtnNGKhdDwPe8C8fmJkPAbkVypmPvQsDp5R3kHbBCwNaHuoW68kLAVsmjbMzXQsBVtLPPfKJDwAPR+oINpEPAi5S5mki3Q8CjDWSQC9NCwKzRPJbnlULA08c+giz5QcAT+tfBS+lBwApiwWuUVULAY55irZ0kQsAHU02TFixCwEp6HvpvP0PAcWe4dt0pQ8Bv7oaErAREwJwy0vVPjEPAInLI2gpjQ8AdmSy5+0pDwEZnVSrE7ULAR9yMH+W6Q8CJPPJE9UZDwGDgksX+r0LAdh/I92c7Q8C6nOJZ/JVDwFSnXDSl3EPAeK/kHlshRMAXH98Q6Y5DwF197PTlDkPAkArTZZ2ZQsCjQZ9MVQ1CwFDJbscf2kHAAr5xkcvgQcB7P9KXfzBCwJwQ/mnq/UHAxlnh/gNDQsDZSUGWsYBCwNn9pXUjRkPAvkh/zYXPQsDFebXw6XNCwBH8OjT9dELAnJ6dD12vQsAGEv5qALRBwEsLjLm5KkLA7ehhtdfLQsBQ+IFFawZDwLurK8eM20PAhrU9Zyw1RMDSyS4tl0ZEwLdhWMwsxETAVgwUlwplRMAgMnqPRDpEwM5kf7Ul20PAAtcb64nzRMDbEV7B3q1EwMeL9Q6hZ0TAfCswSr2YQ8CtLPER7yFDwPJBQCJyNkPA91nBJXNVRMDr1+fILWpEwLNMTf59DkXAb3Jn1nx6RcA9DILSbIxFwHs8ulSIkkXAbAHnbjpoRcBZnIpLkMNEwBtwIKejAEXAwVoI43h6RMCg5a9kUVBEwCGuK0eDgkTApWdf6wyiRMCiiftCnxxFwCYI1UwBKkbAta6gjb60RsD+18wX9mpHwLFYMR5s4EbAK1bWwDE+RsCrtt9p5XxGwDciY+sxmUbAp/pgBDEuR8CHUKN07P1GwJcvTSaNY0bAJzgrzFRfRsA04tzH9T5HwAylp3IrQEbA4bFLk91ERsA+1GIeiNJFwIufBSMhjEXAPON8OfymRcD09EaWyZNGwJ5+18OcWkbAyQAE1FKORsC1uBzu/AhHwBUTKUqPkUbAw/RTOW8WR8Cx371Cr9hHwOhEEr5rSUfAccIu7BuyR8AWIKhYWmJIwNE8noY7YUfAkULXFfQ/R8DucCv35MBHwBwfLFIgZkjAZXye1PTBR8DmL9CnD6dIwA0vVEcmm0jAJ1aPJ5RHR8DK955TcI5HwDti3WAin0bAUd85A3efRsD+ouXBNmRGwKfrxQfXlEbASsxG00hHRsAQ6M/+6IpGwD1YULG2t0bA/PfJHLL4RcAbDXMqEgZGwEJKvEcsEkbA3ZA72uihRsD0+wldzUdGwDG4gnqZFkbAs0ceZIiPRsCANKs3FXtGwHwqa4Bz2EbAXZenhrxnR8BIlAWNvdRHwHeNIaEtqUjACuI+gn0SSMDgO2Oqd6tHwPrPKv9/cEfASXu/Ch7KR8CtMurYOshHwPg7xY1MYUjAQIttxctiSMC5VkJhg5FIwOryJ1FMUkjA+oUo7NMMSMCpALf2Z1dIwP18lQogAUnAdZfz2999SMAzKjwxTaZIwJBB02eUrEjACJJB2+nhSMC/3NO6bxxJwJYyXdhmTUnAeEioS3KVScB+hl2oyM1JwDD5/2RzvEjAS8uVemGrSMDx4JvY3OZIwNcvw16G0kjAXSxGa4XwR8Awkh6SqDlIwL6urrdCQEjA0hLolzQgR8Bp+Rtw+jJHwIVSbpaHj0bAD1pNlVkMRsBqQFBzC8pGwAPN5N+B/UbADPfRPIA1R8BODLdXM2tHwP+3YdF+A0fApEiY6VzWRsDIdl9A8QVHwHrD/2qjNEfA0jhhAf+xR8DTy2lS+3dHwPwnIKuHhkfAOwT+UbsYSMBGwAjKdOBHwF+fF2NtYkjAtEPf/1fMR8Bu84TDIcdHwK1YhOGXwkfAO34zgmyQR8AMPqD8PZhHwPKBnguHvEbA/ssfnRKYRsCsVH1V5OhFwOpAZTBJckbALt2fP1OPRsDKRNuclqpHwP6RksGqKEjAtYz/seVTSMDn0lzU1jlIwIpQ2qSPJUjAgYYfP0bRR8Bo55pbowNIwIDTgzuf+UfAhjGEz7E/SMBgTlBTBZBIwA6P7PjeqEjAq/iKgdVUScArAPWPEh1JwG/VCNWKqkjA4tGUyvi4SMDyJL6xJkhIwP9lo0SD+0fAW/B/D9YdSMA4Ne0B8d9HwAKgRClVIUfAPkdegH9vRsDG4ih9CuxFwC3qAFuETkXAZELKe9NXRcBUtfDH2NVFwJmTlG8KNUXAzHzV/GG5RMD5QbExGLJEwBSBlOQAgkTA04scgFjaRMB/zsHbstREwG3xnL08pUTAbSR9Vr6kRMC6zpOJKOxDwBkc4aY2VUPArfOdNV8VRMBaIfGqE61EwAk5jKmdSUTAerebtTbpQ8D1xHCi0WlEwNZyhamg6kTAc5NFWPmHRMCeCPYbE+VEwOJzF+vU40TAEcg2Ds6LRcAJK2e4u59FwAJU6vmy3ETAmimdEZHqRMAutEAN0upEwNPykqafxEXA/Vo3JuvLRMDP9Ai7+fZDwJ/jwLT9vkPAHTIxdz8IRMCQYXX4weVDwCireLGhoEPAh5+CY7H5Q8DVnm0i2CNEwO8enfXFpUPAyHAG0JoGRMBh6EExNb5DwBr3SGq6IkTA066U8pjbQ8Bj1DbjPRREwGj1T1Qmp0TANDqOaqbXQ8CaAuyDJn9DwOMZXKV+pkPAYg8tx5ypQ8AYPSD8iwdEwAuBCssEwEPAe+RiyucdQ8Cy8i0x8ddDwPQn9ktEH0TAiqLddDysRMAXYlbc2v5EwMj2vP8JCkXAh5jZ543NRcC5x2wKEKFFwOLlHTqH7EXAf6erYwU+RsAQ1XTf+Q1GwAunnYglLUbAOlNkrZLORsD1PU94/rFGwMbH4MPI4kbAzq/I8EjTRsBTZ7Dw5eZGwJlSAenfQUbAT31C+FXFRcCEUt2iER9FwItJMrt+ckXASRFlp+NYRsBmZx9gkgRHwM5mCwuj9kfAMKvl629aR8BJ4J5+7kxHwB14i78FgEfAzsUgpQjcR8BbsaFV7x1IwJ2XpSfzEUjASpyhMwlSSMDaqZ/CdNVIwMSrM8pzQUnATV64OdlmScAxIVa+4A9JwM3KVCof60jAbsQjzLjuSMCSpTCLJGFIwF41QNULgkjAVibdTbghSMCKDmCvGtpIwK2Il0b/H0jA1YmvgMQ9SMBTQ4oQlSlIwLOYGfaMPEjAteOlRS3XR8CZrBPXmOlHwKJqqU/N+EfA0uBZf9RBR8DjkqFilQZIwMtzE3Bgb0jAmexPWpQdSMC4WmlpanZIwOI6pjHfx0jAFp0IHHO9SMAVmlSJJSBIwAv4CbCHT0jA7R0PXe9OScDCYR2EHXJJwJ2Nr7m8uUnACrNoEawESsBpjotRzbdKwBhrdBmfXUrAjaMDgm+jSsCSflivOPZJwM8FW4wQ0knAZVvTZY1mSsDSajcyILpKwKZ4hbad2krAi/diW2hRS8Ayk+Oui5tLwCek8c9WeUvADCyfLuW5TMDOL7jqQJBMwJRDvfEqMk3A5pft6WHaTMC41WK/ua1NwHKAw95gmE3AhSvgKSu7TMC4tofnwZdLwFUB3Pd7N0vAE9qUhwQPS8BIiEYYbZhLwLqEzmoaEEzAyt9+8fBpTMCnNx19GlhMwAGpAH6KfUzAHqbVCCFJTMBStptZFKpMwJmzH3FpjkzADiz9FVH0TMBy5SP0vaxMwBqPSQPfQE3A6eaR4ryZTcAmUdfbmV5NwBrIf3TAWU3AyJ8/loF1TcAzLPR8UtpMwIj7TNnaKE3AUq5hgZBhTMAVI+UH1ANMwDTd3BFJx0zAyDWHLe8PTcBde0+PxFFNwP/trHuxjk3AbzA4Zm9WTcAR91bf/VVOwG9lqqH+h07AyGYq8R0GT8D32UVSVGRPwOLU62PSa1DAuwAKoOBgUMDrSpyALvlPwMi8bHoREFDA4nZNorP7T8B2XdyWZg5QwKXtqEcqFlDA8HBv803JT8DmRxisMi5QwP1nakviqk/ADJj2oemhT8BW+sVIQbhPwG7/M6uLeE/A5bNBxIxjT8AFlOhWXTVPwMCTjHKwCE/AdWWPymIiT8A7mEfcm0ZOwHRvYfZ5cU7A9gDyjCgGT8DpCQTu3b5PwJsNGLWm4U/AiY9ce37YT8CzhmVYZjxQwAmZ0crhmFDAA7d+OxXlUMDsfBKh1fhQwHgGsF95MFHArfAKaQo2UcAnfCUU6T1RwLj15XzQZFHApTZfxtCMUcAUbIyoDt9RwJb7DjqIv1HAtXsvTTGbUcD5Jkmd3oFRwIPNMQdSNVHAs8p2jFpGUcBkgEadKFVRwHZ1/LUUBlHA8fcGDpDfUMCYfjV3YZlQwPat6eqb1lDASyy4tchjUMC6aWkN4ElQwDcgqdP+AVDA0lM3lDc1UMAskY3AdzVQwHrK+9nFjlDAhZGz9nO8UMDPxzu/D4ZQwABniNbil1DAx3PBWNZaUMAjMTkNf8pQwBv5m+DmHFHAnLw3QLzGUMCi6b1PyaVQwE4ZRYRimlDA6SAnUVW0UMB3pz20ln5QwEn9b1jEmlDA5zcpzvC2UMBlFXjOW1BQwMCa60nhZFDA0oIWM9Y9UMBCqxmy+AJQwB82u0fHOFDAlRleYQQVUMAluCQNgB5QwBq/4HA0RVDAVAivm/8pUMDOow2x1VVQwNsf/gFvaFDAGbgvqRVJUMDlrth8KkFQwE216RCIQ1DAYoUIgscsUMCnEtuT8YZQwKLajXzpoFDAA8jCaGeeUMBMJ+wWiZ5QwF89Z58bjlDA/J294sZKUMBxaiFG3i9QwPxZ+iam00/AsBAEMMv3T8CXtAdqIO9PwEQZoEECvU7Aqgc1aHJGTsAs4tiGXShOwL/5Pv5l8k3AHkiVrqOlTsAPMYT9UqlOwGfsYzeEY07AC93M+Kc2TsAsjKwp9JhNwIDRSoE4oE3A1uJvcRqBTcBuhKOZ+XVNwAYxJBsBaE3A2UJs55YcTcBsk9MrxChNwFCKtPnuc03A3h5D15J7TcAhgGWf6C9OwLGKa8lu103A9DOhKA/eTcDlbz+fdVtNwNri28E+WE7Ax/0/tuXNTcC0sFJKIAtNwCdWl3t4aU3AqPYQCS5pTcA/VdoQaYlNwA3FFvuebU3Ah3nQjzxnTcBnh5RV8GFNwNqOtWlMd03A04bds6C3TcDlHW1RS/xNwJ81KVXjbU7A0wq/okuxTsBSg0qtOXdOwB5nwGcVHE7ArTt03j5wTsCVYIPWnW1NwBXVnd0CX03AV7YLu1cVTcABUHUMwalNwJG5epukN03A4FtS/xfQTcCnxZj2nR9OwGPRXtXzQE7A1haa1QVZTsCbt6iJ90xOwDOWrPIv9U3AcFIQTZrrTsDeQWATISFQwHBHlkP1OFDAWekTe44lUMC04BLsXolQwHnXX1PDnVDA4gaxFjzfUMD5NCLtRdZQwC3vKgQiCVHACVil6mhyUMAa9mQEkE1QwOxydaTmmVDADzAp6vNhUMBkQf2vIzBQwBeqTxu8JVDAfdW4oq3+T8DroqrMRGVPwB2RrJUYM0/AS3rDMJ+ZT8AOngFOBV1PwL4rG8ErEFDAPNfHbvpcUMDat+R9JGVQwLYwI89Sa1DAMBj0wC0BUMArPFzGzVxQwMrH0d9gqlDAbj7rrWqLUMBrjQ3OBdVQwM+t2t02oFDAoI/5LqVdUMDeRxWWKjhQwA49JWKWN1DAenH3OwUVUMDmJ717S11QwDpDAT3PN1DAMZmQVC1NUMCtKGuxXYxQwH7HVhFRiFDAtY6KdrejUMBf/WGtqKxQwE2Yl4zLsFDA1wvUDnq2UMAQh8Eeh+5QwHpOvjh4NFHAiGc1NfNkUcAWHir3rQ9RwLZBPA7Yr1DAlAEQX48YUcDEAPZsA6RRwDyYwucHxFHA8Cz3GT9yUcC1pSvUXhBSwCd11c3P+FHA5yxSczkdUsBjeGCkWdRSwEsspzzQTlPAdBt6mVwyU8A7snIe9WpTwMs9k9OKn1PAMiCfaKBlU8Ddm+GXw0ZTwHm1uUC2QlPA8jPnEi1CU8AWuwe8jkZTwApGqOWO/lLA2a7ib5LZUsB/VTCi4+xSwEywmBnDGVPAz9QtG6IRU8DKCb0IMUhTwODT1JwpI1PAyXJbBZ7RUsB0/lMyBqFSwOvhtLmGwlLA3cdkjN1wUsCDWMGccI5SwI7gpzV+t1LACWJOemxYUsD7JS/L9ThSwAVfduS/rlLAENPrLpDmUsA1Zds2iihTwCNoDRwK3VLAQaKGqsuDUsBwRpFXdNBSwB22VJpaTlPASnKp2Lw0U8BwewOKLnBTwA1ywuJpo1PAbdUyWh5vU8Bi69Ngu1pTwDnx636i+lLA12SPbtS8UsA/NCK9h5FSwInXzfoUtVLAIRZERL7QUsCvnaGBDuVSwOwrZwOo0lLAqaDtPxzAUsCxP4lOheNSwKbchtWfOlPAyl6p5QX1UsA4E+8zpi9TwKjj8JQSWFPA5IcLIyJHU8AvKe56UGtTwJ3J9p8/k1PAeHjKlFC8U8BTJgZsHKNTwNHyXXRxkVPAUqeyX0hRU8AL2j/o2AxTwMMInZ1NllLAYCqinlmtUsAE08FNd8hSwHraQuKFs1LALc9m8a26UsC0q2z/H89SwK+XjV8Y2lLADMUMvzMpU8CMBoDfHfFSwF1LKJSvnVLAy7VY4CWFUsAUFeslopRSwGcRYoebqlLAAO6bEgyaUsBJ38dnUrZSwBrCz9k3kFLAHnS2uLRZUsDCOviI7JNSwLDdqCTCelLAso5IXOAbUsATIp6aKzRSwNJAEYu/+lHAMhudBqtPUsDwesfszJBSwHOQLOq9bVLAYmiMXwn4UcDUp/53fP9RwFuZr38P61HAUeLHj+4IUsDL5uGG+yxSwDL75zbWDFLAFPDU7blnUsBeIP/fFuJSwJdULZv+41LAmmsSqQuxUsBsLA/ghKBSwKp7+fF0GFPAfPb6sWRYU8DOqQcG/7ZTwD2P9PxBuFPAGLxq6SqSU8AZICTFb/dTwMs8NPmitlPAk8TIOdTrU8D71otbn05UwHRKvPdcZFTAOivCYjqMVMBquvatpqdUwB57G60kFVTA/9Ouc6r0U8DNXb/flvhTwIouEC3JcFPAmubgk7ljU8DhS5X/zqZTwKqTMyHmalPAXkPw8G9aU8AqN9QNSg1TwClYqQbv8FLAz/PqOmwvU8D0VloSkJJTwB3I3TKJmFPA3/U4fh5fU8A/WOPsiVpTwELtV4dFclPA+HvG0GFGU8DYfVAbPgpTwCZfRTV9JFPAjwTobJYEU8AHQATIp3dTwPTETDlRd1PAt7o4U3l4U8COnsHZYSZTwO44KgmEQFPAUskRVpl+U8D+D4ET42VTwO16e/fMA1PA7Fe/OSQLU8Dd8kh6zBJTwBCsCcYGk1LAMmVk6dmaUsC/NZDCpKNSwDDQl0Mqq1LAsebc/fiMUsBs/CwNTTxSwNiH/AhzaFLAy2K8qtY9UsBrFQnJFyVSwGEvQ/yNJFLAijNLojn3UcAb4cvN4A9SwAbR3FwTSlLAV+GMz+ZsUsBrvETQsXNSwFN98fOkX1LAvwvvBc4TUsD8zWcyfGBSwDsbop+LMVLAy+A5+2JoUsB/K+caxBdSwNUIUXg4e1LAD3CUXWUwUsCV6Rq8K5lSwHv90WDkblLA1vgrUDdhUsBldNc0d7NSwMzHqdsUhlLA11tvNkbfUsDeggApATZTwOMUHdmIcFPAnVddKp5bU8D+ib4zjQNTwBG+d7+rflPAbHvBlAwcU8A1oafv1otSwJ1Wamr9UFLA4Wg90nssUsD6vXJuDXRSwDhVlxVouFLA7pWRdZ6pUsDqGzBWX41SwCFH+7YSylLAqio6phmOUsB1bLnZV69SwFR6pQq8f1LAi6tqpYdWUsD0BR3hgmFSwAqQgwryV1LAzQAyLMy/UsBbs+EmmGpSwL90n82mVFLAbytPthUZUsA+mNSCze5RwNiyYQSaOVLAD6GEjjeDUsAMmAADjRhTwHQAE8QNT1PADpZDLTMOU8Bx27VZD9JSwDl7KxsEuFLAt2xJq/I4UsDaHCkXakVSwPnDEWjeQFLADR5eqqdvUsDxmideh3pSwJ2ut6Wou1LA/hS5Tv11UsAjikUfNqBSwG8Ww/B3d1LA/N5Ofc6LUsA/KN/1LGtSwKuAyvHcwlLAu9qJrgFSUsD0KbsJYiZSwIHhwz5ecFLA52bu/kSZUsDB1KfmsbBSwPh5kl1+qlLAiQ3bWaO3UsAfSiEYoqNSwK9xUjP0mFLAKH9EX09kUsBeqLfZGYZSwFovrG2QSVLARioXGlgqUsDRezbXEuVRwJTMVFK/rFHAvVqdzz7oUcBDlMW2bKJRwGyCnCPqfFHAhKR7jOlnUcCLisw3VodRwLVin7GBnlHAnYLl0WnfUcDJYFU8UalRwIaCrx2SeFHAKToQ9wF0UcCCPzjG6VtRwJGKUH60ElLA3X896AAgUsAO4uMcS1FSwHCT/pvEKVLAs34q3DPWUcAKe7bTm6pRwPVuJqAzDlLAbdSFkISUUcDD451y0BlSwCX7ZyWo+1HA5+kO4M/LUcCJVme68ehRwJENo580CVLAp+Y+2us6UsAEOwP/UmRSwOymEXRzUVLAQehdG46AUsDS/Yi12atSwF/xAhRzyVLAgeQVdDkiU8CaR3Ewb2hTwHTJEN+2dVPAA5KVHNKzU8DtMu9I0QxUwApDtSQg2FPArd0iV2zhU8C33YVhZDNUwJbb47yFU1TAKyTTs9qbVMDgpOAX28pUwL0zG1BK/VTAeiC0GWetVMCySYHqTJZUwD0dydgyjVTAQ3fUD95UVMAG4LOutEJUwF8roETObFTAByvzE/+cVMDtPflSiphUwPMb2xc1wFTAtDD8LCwmVcBtCoANnf1UwLQMokXs9lTAqM4SfQzgVMAXwKhsegRVwOIp4g+ROlXAIXMN+LqCVcCtXcWS7LVVwMdeHe3oC1bAXMBRWochVsBGnRcfrndWwNH+KAemLVbAVGG+zWX8VcCXSAYcjexVwE9KDj2dnFXA9NBDkmvDVcCs+mVTLp5VwDTsrk3Of1XAPdn6EMxRVcDo+wxWOm1VwFSc28552FXAKNjY2mMAVsBI7Er9SoRVwAvCopwCPVXA9Wy6aYO7VMCuCDtVSzxUwMUsMxCJh1TAwKtYscn0U8CNL1NwPLhTwH2tCCBIaVPAoWrwo+CeU8D1LU7WvddTwE2yDAT94lPAsDsPul8EVMAT6nTLWTpUwJsflUOiS1TAjuaMViVgVMBe8C385e9TwCLYFLhId1PAgsPCPiFkU8DqnG53cENTwN51IB+4v1LARJKELwymUsCZ8Ui1BxRTwBtmSQ0VClPAnyLGlb3NUsDmajn7M/hSwNcU4/y32FLABiJh66ZsUsCQxEZ5JZ5SwFEZumlZq1LAzoFZhTMpUsDXWpxVJvlRwKB1W5pfwlHAc7j3ChgqUsDg3ZyTzFtSwAFo3RQLUFLA1HPBNw0sUsA7ydUIFkJSwFBMifizZ1LAhN1r85CwUsCVM4icNbpSwOC3mI9NvVLAhsOYIWecUsA6B/qhfTxTwHjViQqYGVPAqTh2EdE5U8DXRCW/M0BTwAl+KxiValPALzASA+SxU8DJJdJEiNhTwDs/pR6/klPAGnh6AReLU8BSevn9WkpTwLIzeSaYgFPAkO7+PR13U8A4VuSXm3ZTwPCznwj6fVPAFwgnjIs/U8ChLpuiHD9TwApoA4EYV1PATRwqZIMQU8Cu1LcKw7NSwKTOZqAAY1LAP4jix/R9UsAmGrgNfYFSwGjwaqnlQVLA74UYd69RUsDa8zxzJk1SwLy6HaY2hVLAh9a1dZ+hUsDb3t871cxSwGBrJXZ4klLA8VmMZ8PWUsBxfRFCa6BSwMxEnhCiMFLAsPWWbWD9UcDpGERTZAdSwHZikTH7cVLA25z+1HFWUsAhnTNZPKBSwERK2VZc/VLA2jHgdhbiUsCh0B7h6vFSwOV95zUy21LA45m2U4tSU8AAE3S69xtTwHZeecWuWFPAIZ71sqhLU8ANKEyzwL5TwNFAPDJ1b1PAvmGVwgZQU8A+wqPdaoFTwOLCRfZXbVPAm4R2wUxTU8AZCgcd4HtTwCghsN0cjFPA/B8Bsm6PU8CUkkaxG5ZTwGkbI94ktFPAVOX1VCXkU8CNYF2R/PJTwAa9kZHPz1PAuob6nd5+U8CKl0yaPz9TwL3fjxGjcFPAfpRcsl9vU8Dc9bb1WHZTwOiq8doKOlPA+FvFzyE2U8DT0ITQryBTwAB3O23vDFPAC1mW5nXuUsAmqr8R28NSwGDVNP4KVlPAN03EdQtgU8AdPs59jhtTwD7Xchbx0lLAjeYAsfykUsAJ5//aHadSwEx45vqNGFPAst41CvMfU8AK7dBRqApTwNE7pStiH1PAkWUGIEVlU8BntKaS+VlTwHh9dXwyjFPAxdls6WtCU8B7S4DuejRTwI++lov7U1PAkjg8x0nzUsAzbCt7Q8BSwMD1eJY+X1PAJzjvpIhkU8CjG/S5+IRTwGeF8ao2zVPAiIbMOS+xU8DQy+tXmqxTwMhXxOmkhFPAnzAhVKh9U8Cetr9wOmFTwDxYGI1Y6FLAenJT5z/3UsAjwx/mO6lSwPrdhsjdXlLAHDz5T/mwUsD0QDM0NYpSwDaSBMQloFLAF9LagYuAUsAr/kS8AIxSwNGOfKaWSVLAm3Y4mU8aUsDmb7cALDFSwIB7j/NDk1LA0OofE75UUsAiWyESVhZSwAjJAWUWjFHAHKwHuDShUcB+GJIFX3tRwPuYZ9w3QFHACuNkagL2UMCiAQeFYj9RwHotqkKuVlHAxf6OPCsOUcAClycSIaFQwOKZ/b5ItFDArUBfnB3IUMDVMC+HUvxQwBKGww59OVHAYck18HRLUcD7sYL9dB1RwAcf9fLk1lDAuNtpReqsUMAmQtsDNNlQwPx5QkuTHlHALFNi36DtUMAn0NGnwfRQwOSpfdCMJlHAR7L3o+BoUcB1dbG/8/RRwBpUJN3l71HA/X8Bl328UcASQrwHDKFRwL9tbU767VHA0CFtPHJRUsAFrB/F7hZSwIe7p4r5xFHAfaV74tmfUcA1CSCjHHpRwKD5LIpCa1HAFLPgnmJ4UcBT2qjvPyBRwILAFAb0/VDAwSIzRPo8UcBjojF81jBRwHq6jG+BNlHAN0fTiJIZUcDSC2OoBwhRwPzAW6/XOFHAahTSpuULUcBigMGz1KlQwJbYzFzscVDADOQVUXsnUMAHPmh2R2FQwKtfngnihlDASytiqoCdUMC10prUHsxQwHIOGLVxs1DAs4g4orLRUMCKgZ97E6ZQwGGw8ySqWVDAdcS6TjY0UMAo0vLk/AZQwNf4Pa413U/A+evqhP5kT8AtAY4nRUFQwNOuohGwwU/AK1X1Ip6UT8DHezDMQ/dPwDQgAU2BDlDAQtl3Q77mT8A+jTfnTlNPwKL9itUuBVDAWpRz4w0KUMCQZJ58gj9PwJfD3DqyUk/Aehw/AAqfTsDCaXu+h5pOwBmffk0vTU7AspSGQdmMTcAmxTV/0yZOwDf590bo0U3ASBSDZktpTcCl+cLyOvxMwH3Up09kfEzA55urOfDNS8Agqwy0sVdLwN0C9FxwFkzA6hmLd12JTMDwVW2l4VlNwMqAJ5MOukzA7HBn8VxQTMC2Fqzbbt5LwPtn2vj4sUvA16Ox47S7S8B1uuKvKmBLwPGiZA7JU0vArYlZGHdmS8AfDLtY08xLwHH7B/G2x0vAt2JljnB6TMBEL6ZJ9vhMwPAPF2jnz0zA9glkQxLUTMD0kB2eETRMwGvLz0b0E0zALaJ9n4QDTMDRlIDSqzVMwGFv2khIKEzAlB/0jTOyTMBfadh4XuZMwKXdBfDztkzAzwXAATGYTMCoXRhEZc9LwEZC76No6kvAO6c1EfMzTMCPm/As+F9MwKN8ad8ZikzAt2KWYhsQTsCHbscZQn5OwFH44tpC307Avg/FvcvRTsCUXyOG8c9NwF5shif1TU3AQkpRMy11TcCKXdfiD49NwGzz6nL3bU3ACq+5mKHRTMBxOt8ua5hMwJHQv5sXd0zAdAJ4a1LGTMBOXAA+jD1MwDnvtVhsv0zAfHgzLXp2TMDfi7Ri8i1MwDvP2fRkh0zAskxC1GRdTcD8su/vJe1NwK00kvw6MU3AjddLFITfTcB/gBDrSQZOwImyjYceUE7AJFcK9Sf0TsBntBcotHxOwAjHOCiXqk7APfnlXakbTsB89BA80vJNwASX8wgqWU7Aph5gAowTTsBmtwFmcxJNwCL1jUWZSE3AYMmLeshQTcCaSjUueB9NwEM4RXpfg03AlwOfWX0pTcBRW4G/0vZNwPoVQMVbkk7AWNVSiWxDT8DNx7bCwCpPwGQGrVYt/k7Aqeb+fhFkT8CLRHAp65FOwNfyFC4zIk7Ak2Xzt+WoTcBCovq3OOlNwKllL9rySU/AzF7tdgMsT8BMcus0Y7hOwG4/0EGS+E3ALSA+wdI5TsA5kX8vFUFOwIeTKfH3CU/ACi66GdqQT8BTjsFx4FFPwJg+FYD58E/Ad65kq8IEUMC+MpBEuhRQwHhjg9NnwU/ATfD8S5t5T8BJVTM/F/ZPwH0T+38DY1DA4ZAtzHBmUMBktixYFyNQwJiyRXbJZ1DAw3JHGsRkUMB75asRr31QwFRgxn4BvVDAzU73wkMcUcAmBno7BjhRwEUtQyz3LlHAgGt06s4JUcA2VVBcmnhRwCNeeHJzvFHABnwFqaMHUsCWEVzvH1dSwOOfESi1xlHAiNw3hFO9UcAeIuWucbhRwKaIQnbSvFHAx5gQz3ZhUcBOJkPV4mJRwPtj/R0dS1HAm8v1YUU/UcBFEGZrhotRwEax12Mi0VHAWtK7QVypUcCoNQ0LBIVRwMlUJT9IeFHAhwkD1yVJUcCHzMIZZUtRwDdZri/9j1HA963mVluKUcCPYkBGZStRwMy1bXSYUlHALjZKR1IgUcCD1/gq6/hQwI42L3tGMFHAz7l+KdHkUMCCb4TVML1QwC4bGr3n3lDAAmeO08LSUMCOQ/0eNGhQwP7325uoO1DAAikFa42pUMBzkZKcP71QwA6gTNALY1DAQ1m1hGJ0UMDASNfTQBxQwBhI001JPVDAs0hOF38PUMA10Oo15mZPwKvcdmKSt0/ApPld6DedT8B0FYvCLwBPwDKn/riZvE7AS42f1GkSTsB/QROve8tNwLhLDsL7A03AXIA+aL5gTMATKkZT5OJMwHKcyAXqRU3AfD2b5fhXTcBotUXRRyJNwD3mPcMF4kzAV1tqDpFSTcAuwEscvNxMwCscbzi51kzAHmevMmptTMBlf7MzmjdNwEJxzjQO0EzAY9/rkFaqTcA3W7qEi6FNwAFb4XKB0EzAYnCEqgjhTMAZPPY8ettMwMBYpP7HW0zAwInEtYCiTMAo2GMvD/VLwAhKmMQpY0zAml3QJTYGTMBTUohCZrZMwE75hGmHp0zAc5ZqHJSCTMCzyWi+r9xMwNntQA59w0vAXOdko5ZFTMDkpI+mAkJMwNrXOdCWPkzAYYj2JTq2TMCPgyGQ3gtNwHwUbQb5ck3Aq3cDvrkkTcAhJrb1rW1OwNxF6DmBhE3AppNNgUVlTsDmMEsn/iZOwHjBk8Xyu07And3DazblTsAM4oJ8We5OwAD1vw0fv03A3ttbQVUpTsCkkPyr+nFOwKIJINma4E7Ae9/cIeV2TsCCUx7A/kVOwAIkR0gf5U3A8/nWh0jmTcBQjxEuQhFOwK4ib4bcIU3ABxPv+3q0TMDTKVuxbBVMwPlEhF+ZAkzAyvzI5SkLTMCogAnGT2lMwIkYBaT16UzAwZNLqwvWTMD38swlkwlNwGS2bsk2h03AwKRHH5BETcB294g+WcpMwFgmhOORBk3A3g1c7QJeTcDAyc9glLBMwMIXY59b9EzA6cDC669STcBlQStHL3tNwOC7QRlSX07AWHtSsjjDTsD346wX5nFPwHp6e4P9nk7AIDxBglFTT8DUVdIKv/hOwDnl0u9vsE7AeTrIyUyWTsDZc6D30AVPwGfBjeoeFU7AUX2rzoA9TsBn3PmDDqZOwB1Rnd2aqU3AmT7E8bBzTcC3FSsjYfBMwKV7eTppYUzAhNKPsk6SS8Cgco4NW0VMwByEsz8LSE3AqwYF2noeTcB3QoTx96dMwHPQqukf4UzA0NE46W8xTcAOed2gA2xOwL7I0N1DhE7A7vsF6wriTcAST4wqAkhNwLXYJ+iZHU3AApu2HzP1TcDl+9eDVolOwAA5xO1f0E7AT1+D/iW7TsCQoB2C9EFOwPoiwOwjD07AzkMbRpSFTsDmSJcy9/BNwPMOHIwKCU7A/3i/VgclTsDaheQRCtdNwPeoHCAo2EzANGlvBFG3TcBO9WEkostMwCa59DbqAU3AZVaFWRsMTcC/B6Yl/VVNwGp+tPBH1kzAKHeelN6oTMAV+2Ri1clMwI8kF34Kb0zA92hlt3lbTMCnshtLpsxMwGmKu6uy+kzABYpqA9pRTMC+OgnVEBBMwFJgyrBKIkzAzNRQm+xPTMBtzZ4cLtZMwKBPgolUR03AlUasPZy+TcADb+QHyZZNwPoZ66vwQU3Az4pXVu+5TcBzq9rF6mJNwMWkAZlDW03A6Ip7gmCdTcAhdsrPmEVNwITvpiLhN03AR9tMNXyfTMD77NGJsJJMwB9iJieqzEzAnezglGFZTcC76e/uAjZOwLC3OXVoAU7AjhvG7swYTsB/NVeKwaNOwDiAoLexv07ACheR00K9TsDmL30t/epPwIlgtUj/p0/Ab5eR1sZ0T8DqysaYO2FPwIJJ0Q9MLE/A6abE5KWMTsAk0v6Bm95OwABJ7ngNt07ACJ+V8tr/TsDKCRr9Lr1PwJeplXsn6k/Aa9qOZCCHT8DWOPjRHoFPwPtd229oNk/AZZlKZe4PT8DW5CirvcxOwHxGSkn1cE/A9OZPvoQ+T8AvTDbT2wVPwM8JGeD2Fk/ASkxFl8UOTsBatIsxP5tMwHGgPVOc3kzAhgcFb2FbTcBGyn9DIEJOwMqRQGPuJE3AVz9UQy+KTcCIBwEKNaVNwHcE19aa1U3ANkp21B8KTsAZoscGKmVNwCENt1pi6U3ABP2fqxT7TcAoNYoJaPVNwMLDcXQGqk3AZlDrqIFVTsDCa3SMeTBOwALv8jS0Ak7A84x3D9E7TsClUbZEuf1NwL4OS/28iU3ANDLHkDd/TMDJdcLjHzhMwD9caXMhB0zAd8xJSp8QTMAdRSZJ5T5MwAp9DaPgYEzAaEqV7iKoS8D6BPvErUZLwHKsmXo83kvATQY7D0aiS8DliZM2vRtLwLcWejc7VkvAdO78yX4SS8Cp9d170UNKwLwazmuhvEnAvyBGRAqnSsDOMJ//v7tJwAyIHjTGv0rAgvh8pGBES8DB7oPYgF5LwFrqvYFfXEvASuBVzL98S8Cc55kmSP9KwMQyu0RQYUvAg9RajdmAS8CWV4x3gm1LwO77qWaRakvAvmZCwRJMTMAF9d6aewBMwNFdNV61UUzACxQJhP8UTMAy4WGfoztMwM/abmwFqkzAz1X2Ij6fTMAeGViEOCBNwAZuqjO3eU3AY6dTj5fLTcCPYoNwUYdMwOb7qsLmDUzAmfIibsIQTMA2iOpJvqJLwENRayr9I0zAy0W4xAXFS8DY+EHNg3RMwJTmOHt/pUzAj8pPyFmRTMARcvIe5+VMwBnhC3KOuE3A21PX8aYGTsDu/AcSJ2lNwBG0t92Ni0zAGlHRWPUFTMAPlOyS2I1KwLiiCB15SErA9MLxOo6ySsC4ziykhNBKwN1B5KKtu0rAkSq9tTxrS8DTl0MvhJlMwPbtiHU4Z03AaIIuBLhJTcANpFj8w4pNwKoaFH5JJ07AFoZeeVm4TcAdQiiqcAtOwOtRpSoQ5E3Ax3SdGeL7TcAnMJ4rbHxOwPwmqnc6nk3A2CP+TKXYTMCNJgzx2wdMwEoqXTj2GUzAetfrqZBrTMBGzVxRAmJNwCbilksPwU3AFYdhvtw/TsCrQYTYwJBOwK64pFGxMk7A0/VMY7rBTsCMYKbXyRtPwAvJuxYncE/Al30S2+gpT8ATBPxpHvpOwNbVqfLjk07A8CMumyOqTcCVmwteuG5NwBvOtaimAE3AoUi+64d4TcAGChwcFUBNwN2ncN4vFk3ARVq6pFM1TcDtVQEvfJRMwIgQqmC43kvADSKl0w0HS8CFdlj2AE5LwG3TJ/5n3ErAuJiq51npSsD2v3omxSpLwCUn+zexuErANF2R+WtuScCZWoEY3yVJwCzjMly4xEjAZjTi722ZSMBWK0KSbc9HwG3qDdFa1kfAD9aj6i4qSMBkFgvMgE5HwJ+K01vmSUjA8M0Z9VG+R8DAszdm24JHwCxEUXkds0fAt+ZJCmnNRsAwroaeXzBHwLOPwe/2BEfACCoJw8CBRsDDdLfqujZGwGesJ412e0bAlhWoaGddRsAmwK9wq1VGwNtyKouRX0bA4AnD9HFRRsCeqjEqi8lFwORpPh+9WUbAgKLmo/CURcAvAvJd3ChFwExlVRxGcUXA7O5KqYMARcD1hwC7F5NFwFKGISC7nkXApvtmuwy5RMCa6FrdZ3lEwGTiE+B1GETAEzYtT02NRMD1HserNZ1EwFHt58a2b0TAotIwhsBoRMC6I+iNTCtEwGPCTzNC3ELA990xXxbDQsCTkVRQBPFCwOjixwhS4kLAaQjn5QkgQ8Al0WkNHZ1DwK3bQtbTiUPAsiF7A3JxQ8DDzGBfqFpDwMhY1Px4nELASAFvcFdpQsBUL6hJOUBCwJnHMtnYpELAiYMJfXVBQsArHARWah1DwAfSfmt1kkPAxWkn4t4yRMAK19lce71EwH92gGtcGUTA5duWBt72Q8AzPhwMScxDwOlMNk+x3kLAQ0Y6emS9Q8B7gQRIlrFDwA3FIy5mjUPAjh3AYj+eQ8A74hPxun5EwMFZxiK0DkTAbx5bUZ/FQ8DjavamoJhDwF65uYqbI0TAQ4dq2D1kRMC6jnDdO9dEwPmADd7B00TAVM3pk4/SRMCJmLzfmRJFwLLtAUvGY0XAMloSTHYiRsAY9rT2u3tFwMxnSSDKFEXAlse4WAz6RMA9TGX7KXdFwCYh6LtTd0XAcDjgxLmgRcC08qEjyeZFwI23TEXxDUfAj+p0Az0gRsA8IaStFeRGwE8Acvfib0fAampgll7pR8ARQT5Dz6dHwP9Twu45nUjAEc1DAftDSMD+SFaIm4ZIwC0h5sRlaUjAMkdTfibZSMCM85rvwPNIwKyzLlkIHUnAY+vSn/dYSMDyO/0EYy5IwGlqA9qX9UfAb4mN/jguR8DKrBQ4wJpGwPxrNFOq/UbAdhelmRkuR8DtZNrzgcpGwJoidU8Vu0bA7pa+QQoVRsBbr0Vz5UxGwP3BAelIt0XAuUHClhEtRsClUibhtgRFwAg/1bkiqUTAcixmXIZrQ8Dtvt6uqaZDwG6dmVUNVUPA9rCV4V4DQsCSIu6HCSNCwAIWmnbbvkHAbjupsvEHQsCXg/eZZhdCwHQJK46PSULAgCGwlzovQsD2Jn+D73NCwAoQNEeqFEPANwIPXLXaQsD5XfMrILVCwGAE/ifMWEPAzdEkKVMPQ8AnD3vqrzBCwAW4K/EOekHA9zQJJ/ghQcAFJVkVPhlBwBa9Zk/AZkHArHRyv2sWQcD7UbngQ9VAwA3r+qb1y0HAaBaBQ0nSQcCwOD2wtThBwPUNskbAlkDAp6Bb5a2vP8DQBRLg3WVAwOfoFg8qIkHAhsYVPYdwQMAGno77vTJAwCdUTKY0fUDAEDb+JPqYQMB+PKASPW5BwCyuGSbREULAA5NVMQf0QcBnBV1HLPFBwPzT0ovw1kHAXgtEXIz/QcAKQ3QkzShCwJ8ZCOIGF0LAmNkvKSDhQcCjKciFyaBCwP9L9QFkJULAajXaZ9sAQsDDsJHKqoJCwISy++ZdOEPAQpnmdFeZQsCMbQr5At9CwD4wiBfdsUPA6RmXL1g4RMDI7U/2tVBEwKGOuyJbfkPAiciLCg6yQ8CuRRmAH7hDwL7ZQLDCIkPAbG6l1hPvQ8AZKuFsUvhDwOjC1iftoUTAb+7UR1nbRMDYrlf/mNpEwBVNvMtHtkTAHV/u5yBfRMChj75UvOBDwNnmNNayh0TANcs5SSwFRcCdyryqqiVEwJhKwzjPX0TA/pUBkkjbQsB9URz7vJlCwElFuoHWXELAa3cH7w9nQsAFtSDo8RJDwDOZ/qlR/UHAUyUurfDlQsAgTBCM9XdDwMoSSsvdnkPAvVPMf1ciQ8CfUPb/oGpDwJ+5T19GyEPAa2SRxyYzRMC9pMHVnQtFwBsOPkhEjkXA383r2KC8RsC1P6C6EQ5HwDBcqBVhJkfAR5dlZrqWRsDvQlk+CZVHwPEA4aU0AEjA5ehXCnzyR8CE/rM0cv1HwH1baqB4s0fAf1VHbFaXSMCjhGtrNfhIwGgZuEXUh0nAyRCjQhtKSsDnP5u0+95JwFEH2S52HUrAChtQIMRRSsBDf8riWlVKwGHPWQgNfErAS4PH0fUsSsD/Tw3F4s5JwCViqIHrCknAPHunkcRcSsCMBnplEK5JwO62qT8QWEnAxi1CwZnsScCRu0xWz1BJwOW16iu+GknAUlTqd+YMScB3J4Q9BK1JwK2Jyp99NknAnJ8DUNxjScAg69upug1KwPYQslxJX0rAppYjm8CPSsDn5QDa5QdKwL6OLcanHErAptCIdEZZSsCAZ9wmd15JwOX2BQ89Q0nAmfvt2jGRScAcvoERQixKwNuYe00eQErAtuEdpkHISsC6SJI6ED1LwOnY+z+pb0vAVqrX23ZnS8BlLTEbuWJLwJ09J8m1d0vAdwwm1xMRS8CXhM7u0LNJwKV4r+3G5ErAE8Y/zrJ2SsDmd7Do6bRKwKCt3yNzv0nAwGPHID7ZScDkF1iLlzlJwL6NbQnSbEnA2nrZLCoMSsCNZml+zrpJwIZ+CWVdtEnA1UmpMecnScApfx48Ze9JwJV+5YJxg0rAHfGAxYYkSsBQgd39AvlJwPobVOeWi0nAip5+QLPQScC/vRHCjfVJwHu5YXVw3krAN4mk5wEnSsD9zWeELkBKwJhImH5f8UnAMw2KY0QdSsBgkNWcU+RJwJhpQdB150jA7LoWiGCVSMBw6TwWT2tJwEw3q/A8XUnAbcjkri5gScA2Hid3vvdJwJ3QFDeWsUnALyvLDRhqScCzJ0uLZL5JwCyS7HofK0nAhJDxj4YvSsClqLgkd5hJwAZpxOhOtErANS3gVu8ASsACtPJtpJBJwMzS2dscM0nAaSZzHJ6mScBupZD8a7JJwGj87CxuNknAUIa2snlWScBbu5W/9kFJwBpmfJoB0EjAJ6YuDX6XSMDLcFkAybxIwCPfCTBO3kjAj78qlFZVScDjY6jGlTxKwH5q8cPJeErAvXCU/2dsSsCjycBd+atKwGoiSasZCkvAyUrrWR0MS8AiXiqsHJtKwDHqVKp+VUvAhYWamfPQS8C8XyhtUa9MwNq/wgCGuUvAIQVs11gATMDTr9S907lLwGxAd+IE10vAs4OyHCUBTcBSX/YV8C9NwBqLuyvYiUzA7NQp7fJpTMCJjU1wqxBMwKnvI22DuUzAO/BOQf6uTMC0Qw9pqqpMwC94yyEuRUzAxwGWK8cHTMDDsXbtrilMwFXo9C+NK0vADUqzqoJzS8BcS5v4do9LwCjh2SlyUEvAyhfxmExRS8B2Y2X1vBpLwIHSGS7jo0rAHy3aGjWFS8A+QuCS/t1LwCU7friih0vAg0Fe5NRWS8Aow5tNfRtLwK2tph6zWUvABuObdeFTS8BSmN9SvaZLwDrGLxl+CkvAVI1Pnr0hS8D1U7luVWVLwAFqlV8p1ErAsfhDaV9jSsBHluQB8l5KwBkKm3kH/ErAuIABn7/LSsDLpYRNdpNLwApdkiYgoUzA3l7aA2IaTcBUn4RpbK9MwB7A5ppBjUzAe0YaskzOTMCbDTkYxWZMwKWRyZLNekzA5zW5kT9fTMAfiUZrO6JLwFCOkBhMuUrAp9aZnrwvS8BkffgFmXFLwLwNHq31dEzA2lYV53RGTMAReLRrb5lMwAzkLAdIGU3A0UsH7V4RTcBIYAmIBulMwCfXq7PE20zAEPnzP3vRTMCGT9XCMJtMwChfCaruoEzAivG6AI4tTcDcv2DrOfFMwIrGw31f6EzAz9xcXi5nTcCmgpNBGkBNwLixhgpTdU3AUUyynCoHTsDtS+Q0WhBOwNPsN8IQ/U3ABC706X0/TsC1p7LaU3BOwIGPIKwsQU7AwuoPKsl+TsAU72M4COhNwIloXH7GVU7A5unnEWIZTcDojFA+5f5NwAxhnU+HtU3Ac5TdU0wuTcCIbRf/DQ5NwCC66KCtK03AzrM8orynTMBX+0Ej9IZMwElbH7yPz0zAspYh35ipS8AG+eK+QypMwJjc/K7KB0zAgKGJMpKsS8AAraFEZy5LwPuS3oPvKkvAgQcKNhITS8DWL1AftjRLwGlJeTzJS0vAOMTO/EzGSsBm10IWxBhKwFMJbWMNVEnAsZp784ghScBPUY5guilJwAf+GuYzf0jAdZCOdUzNSMByxoEOwZhJwFvOutK7uUjA0y4DdeHtSMB8iuoezjRJwKsEAuMglkjAP6i/fOr+R8AuoSxcEdJHwLVby1+wcEfAsXxLZ2SBR8A2yEvcmsFIwPybsJS7QkjAqYb3DlieSMAKKey051tJwIDj/1tTqUnAt5Aox3auSMBRQyGNPzZIwP0XyXsE2EfAfr5lawwwSMBaRmlxSTNJwKoJLdLOa0nAmr/keU2nScCMI6MOwhRKwAdOQOrxH0rA224htEgUS8DQvMkOcqZLwCIqDX6dXkvArUWX6qdhS8Ap7pjL1EVLwGezFXWHYUrAbHfvWHXqScDTOG6WjiVKwEUQD3nuJUrAyO5FkUQqScAw2GTEuT9JwLPFlsrzKUrA+/CtXPqkScCvfETgyMFJwEpEpa24m0nAD8iZbgPtScD+gZAxhuhIwLUb0/UQu0jAsFO2Ie4QScAnW5/XdYZIwEE8+qMoGEjAVtEkqRZbSMCk6ilE4OtHwHeEVjlV0UfAMXNobl3eR8B3JI2GDu9GwGaQ6cZUYUfAS5cidRAuR8DtirIzjuRHwNXmgNesf0fADs/L0xEPR8APzkI/V9xGwPj2/SxszkbA3t1UbREOR8CdZh4eCahGwDdyxD3BW0bA08g+Po18RsB/7t9YsHpGwCkyLCVLTkbA9wi7LDT/RcCm+UK5iapFwNAAm7bsv0bA8bkvPK3bRsBRrCA6ihdGwLBentiXKkbAFO4dVOoYRsCXka9SOklGwMxIJE3nBUbApVV7vkm2RsCFfvGA4p9GwOgGFyFURkbAUep4oksrRsCBz7lOioJGwParAgbd90XAqoalvHFTRsDdiOXusg5GwIdP1iuANUXA4S7FWLnaRMCJ0TBcvjZEwE5MvziNOETAipavvLH9Q8BTCAlEG71DwCZS1lUDvETAYcbnL0O5RMCLLs9SW+tEwFNqgC+N3ETA4O3ju3GiRMCDNcmD/uhEwMIpqRdf+kTAjwSQuwBnRcCZwphlvVZFwKYIe/QUfUXA2oF5ZXjNRMBjznG4YEdEwLa2yCIrx0PAyKZB7ANvRMDbepzjL+pEwFZKjEf5okTAl2upMssuRMD6rLZlY2xEwKptWOoqVkXAFQBrUKnwRcCIskbrZzRFwOoBLIFsY0TAbfiDMxCoRMAizcqKZRBEwFP+PVsG3UPAdty7bA4ZRMAXatst29FDwMk3hCmmKkPAFrmR4aVLQsCrCLZCysVCwFJUsPnUk0PAiSwq1HFeQ8B7gxxpq4hCwGoE0nslqELAiTrc1prCQsCMY9sT9aBCwDSlmzY7rELAUrQflP6dQsA8BOz9ntZCwB6zfR7PCEPA26PaRGwWQ8AJIoHS9ThCwMiFvm+GtUHA+jBEtQ1KQsBvUYn21b1CwPcr/Y6bYULASIfNTEluQsCN1WNP5CtCwJnLZMmh00LAjkJRzc3xQsDeC9usHOpBwD8Ws2XVrUHAT4NSkS7VQcBsPaGJyuBAwC7/82v3jUDAN4CMKfvDQMA9Dj4xTelAwCZKmE1K+kDAi/Qq1OtYQcBk4eqz70JBwNMiMnTjfkHAyCzQufY0QsCBovdFBNJBwNbGC4ulWkLA88wYLW54QsCBJbFZbHxDwLW/b9VdNkTArqsE+86/Q8Ao70NEAutDwJwcS29CjUPAUZ16/w49RMCrLWFG4mREwPgdGAiduETAA3dQ37JyRcAdxClpWlpEwLYHdjb+JkTAvwvR3xZmRMAdzOeVXaNEwLz+OcnEnETA41bt63pxRMC2eiZEqZVEwBTWzwwF90PA0Y8pU7NPRMD4MtyhJhhEwHjvnKSfj0TAQ5a8M3voRMDQ85QTj7BFwJe0ML95+ETA7ayuWR/WRMCbEAjVOmhEwMBi/jG5+0PABKlswUSRQsAnD57Kxh9DwLLqhrItbUTA+NC6bhLeRMCioq5gj8NEwBkm6nj1TEXADvdNdx9ORsAYvs1rXZRGwLgRRXzjU0bAAKl43+iWRcCQ0wxQ+hdGwC3JoL3flUXArsQ4wXIwRsCR8WrYDUtGwCoziB0PNUbAU11644QHRsA54EAK1VpGwA0Y0bG7R0bAkL+bxQ9gRsDmXZFuXqhGwNqgezm3okfAgmqcgIzaRsBesA4IefdGwJSQ+18LRUbArTJvOUEfRsBMW195x8RFwHwUQoIynEXA47wSHgTSRcBsDwiTKu1GwJHKBQZof0fAa5/rXp4KR8AHUrgX7lhGwCsG6ksjREbAlQFgZ8FcRcAbOB4hHkVFwBneI1UKP0XAncnRPGGuRcD2W9+6mudFwGk58z3ufUXAZeE671YvRsB6Yc7pb1xGwHlUOH7XL0bA63PgUUVcRsA5SXtHCV1GwNbaui7MIEXAWxtICjanRMA9XLDelWhDwKm/oX1h+EPAmUhynNBeRMAvHEDxe+9EwPzOv0osFEXAOLoPCncVRcCFJf6rrPtEwEFBWJBx/UTAbz+Ya3sdRcA96yP7LE1FwOA2znbup0XABBhurKtVRcCfMq8clQRFwAoC1zO93kPAeg0/7iQlRMB4liGILEFEwB7liKazokPA+fX/r8FTQ8D/mA9BQUFDwLCc67S4x0PAyftWUcMYRMBzUIAD6k9DwAoar7TPH0PA25fRKghgQsC0nHXZdCBDwKgTD+rVNUPAk3UsnKvFQsDtMgw3mmxDwClaKpBkdkPAiMyK0s5wQ8Cr7UTqxlZCwK52J/X9TkLA4sLTMmhaQsBHho/qi/pCwCU/l1KvXELAU9T99/iSQcDt+ND8q+FBwILtrFGg4UHAsK+BRGAVQsCYxKhClhlCwFVvLTplS0LA9qDTQToCQsD8ggEtlupBwMoDwK5NRkLAXwrnBoXaQcBvMIc6J6hCwB/3l+i2oELA4EGlB16QQsDqRSk/+8ZCwCecibTcHkLAX6Kk84dsQsC50UPAMIFCwJcDUYu8jkLAJvanGzf6QsAjusJuT4NCwDEHYa6t/ULA76FZ5VZsQ8Cgq861cUtDwChez1R6/0PAZdFWDtQJRMDs9X6ZJnlEwPAB1c0egETA8tQotmkbRcBdNUoLGKxFwABQ608hMEXAWU7uOBoFRcB79gJpfa1EwDXVCciGMEXA55t9zv1aRcBDO3cf6LtFwCSQiAo2U0XAkzu6aHbjRcC+l1y7sbZFwNx4MRiCuEXAB1TJRXM1RsAz5igNNeZGwHBf/m5knkbAyQX08W5ORsCHWLz/J21GwLHHvAKn0EbAOED7dpFFR8Cp2aKJxiJHwMflDAu7BEfAZqxJcV6mR8Dl1BRtehhIwOB9CWXuxEjAkWTigAo2ScCoH20RLQZJwC728eyZekjAYP4ZwU24ScD/KHMl0dtKwNvODf6i5UrAXY35MHDNSsA4JxUUiv1JwJsBULaWqUnAoShc39wTScDDCeaBBHdIwC9bJz6JFUfA04tASHgDR8DioKNixGZHwCTryuDZLkjAG2LbZVRXSMC9aoalU61IwGuX3+t+gEjAx7i+bPwiSMCG9D9VjclHwOOnwN8unkfA7+xbWgHHR8CAjrfd811HwGAKlTmvk0fA2hSNBYjWR8A2SpwkOaJHwNlbyis6lkfAYOPZHCwRR8Ayb+rGSDJHwOhnA8w+akfAUPGTUje3R8BP3zQUgc1HwAw7r74MN0jAQgP/BdwfSMCq59aTNghIwFpo5rD6RUfA3vkNnwRIR8BQENHzSKVHwL7Y2YpRKUjAJjfa/63dR8CSmIPGWRRHwAVMyAxEt0bAb58YNi2URsB7PKZqjKlFwC8IjbjuwUXAkKEFKSvKRcDYx9P6cqVFwJp7VU3SkEXA3D3TYOAERsDi+37qz+lFwPzejv6K3EXAPThhQmu9RcAzgLD4uCJGwBs4CYDOtkXA3YKSUphoRcDs6m4U4qdFwFG43dZNFEXADg2ZOQLxRMDBHlJHxQlFwK/t9G7iBEbAgdTbafBYRsBhfy+eHbJGwN5Fy8CGAEfAY5s2OMtaR8AOifFM8uRGwLekb3bolkbA0GlKm4zBRsBUnruRa/hGwBRFcWISP0bAS34ZaH+ORcCsPS6XSl9FwNsU0XTf5ETACNUVD2NIRcCsk7gP3d5EwO78pEv95UTAVAwmpDI0RMBuCVAPuPJEwAV2xFURs0TAqXyCuTJ8RMCHGon2FT5EwPn6ZoRWjkTAQTwiznPdQ8AzTNN1D+ZDwC5GcyPf70PA053OLbCnQ8DihQ6MaVZEwE9ryLCeIUTAWp34osZrRMB6W05vQFdEwCVnrP0LIUPA3+IOoQ9UQ8By1im9FVRDwEXhLUc3VUPAfGz6WxgCQ8CsfenLApxCwNTmojzioULAhfbuj2SwQsA/uwUC9lZBwHN8RYAefUHA/YALxQxOQcA3iwN0tvtBwG1P+87KLELAWDRO0ecZQsBc0ZmcyZZBwPAoXcCiLUHAXyt+hnJ2QcCJjo8t3URCwOS5nxvGx0HAO6gNPGuhQsCJ45QuQtpCwLtT8gU0aELAVza5huvjQcBnjTHPyTVCwApiCil57kHAovdC100pQsAWJNG7XlBCwGNhq34sm0LAbCt6vI7GQsD837bTOrpCwDowV+9NBEPAH+PPRjaTQsC+2yp0a8pCwCXS8Eo2mUPAydftUMToQ8BW/pHiI9BDwJYeztbwtUPAfWYb/G2PQ8Ba1OeqzbhDwJWHahzJ5ULA0/vy2qHMQsAJgyWNy/BCwKmelScBNULAi8gdvhPAQcBGXY9xbz9CwPs6I+fUlULATYZflGZdQsDFNjDpWmFCwMhgveBpSUPAwJxDXMhHQ8D4REL3n1ZDwIUEOEgHO0PANqDPD5HDQ8BAK5VzUQlDwPx/y99nJUPA83LUmIT5QsDMftcLGaVCwI8fsr9ZxELA48hWsG/+QsCK+7PfCrtCwFUjg5Tv10LAuHerHsqvQ8D0ISd/d01EwE//2Zi730TA3tTy23KfRcD/tfa6dfJEwO1nXDKwTEXAEDvv+F/NRcDGA0Dlc0FGwHfpAl5ZFEbAlHzF5oJURcDxUL8RvrhFwIJOMpwT2UXA/twKHftrRsDMDJaivqxFwBAx+TX9bEXA7GkOk9iWRcBQzC1SmAtGwBGbhY2uEUbA5j/sAXzlRMAGoN1mBR5FwFgasOQ2BUXAstJkqUSqRMAgSOXVns5DwH3ImLHeFUTAzybIzsGoRMD6uPA6+cVDwLnJflb69kPA6I986srcQ8CB0sz36OFDwBSi5pjjcEPAR4TlMnGhQ8C2lcA3SJtFwIeToZvDyEXA1Ll8jEyGRcBdLX4nVeJFwFhQ/lF+mEXAyTZQ1nVbRcCrEKqplHtFwMRhQVihvkXAeFo689ZiRcDT3k10TjZFwDps/Y5jrUXAAO7pHqGLRcBHcm6IRw1GwP70rYzLnEbA5Mhd/5auRsBIW9MGbKdHwFHYDpWtakfA7Ksq12HPR8Cn75UuRslIwMQm5WTW1UjALPsgslFJScAi7QOR1qhJwEhSj+l/w0nAxFsnvkQrSsDYMOOoPaFKwATpbO4UEUvAsWOlk5dOSsDbBko9d0xKwEQRT591eEnA8dC3RqwMScCzHqJVVfxIwLHnaw+pcUjAzT9gU0NFSMC50LUTy9VHwPJ7fv/z80jA44l0LrdnSMBigwYCm7tIwNrNryOdaUnANHwvayjFSMDWayjjM/tIwJaL8dNq20nAkahwzqViSsBjCAbciehJwHT0nBfImkrAwSOsmOGbS8ADTKyVC/BLwLb6qDxVhEzAQfseZ/WjS8AzKVMGA8tLwDc8vo44MEvATtO7pmWeS8CWd1+i6d1LwHxBYGPIeEzA6BKBz7z5S8Axhu4e1lFMwKDUMq43aEzAhoJp5h0gS8B7XlzGwFBKwHu8NzHz3ErAYCT/gI0rSsApl4qd2aRJwJeTS1XyrEnAL/0xTFvSScDzAo7jsHdJwIrUoaNr2kjAlRvrkqpeSMBIbwnPShdIwLCT3C+k10fAFjhT51dGSMCsoPGbmHhIwBUTNus5ykfAqRN34J4YSMAKTmvtuSlHwGIDJCxca0fAemulFm90R8ATW9msikNHwN1NhhkbEkjASc9ZMvRxSMCdNiK+8YZIwBNI+jEwAEjA+lSVBAJmSMBHE/WY4udHwKqenZTdw0fATvfZtTZeSMD/iilyUYZHwHvW7CuvL0fA1kOcjEQFR8DBqSk5Ry9HwP8PLCvAQEfAyt5Y2VwIRsCcAVfH0wpGwIYy1eIg1EbABkfUm/7eRsAXIEYSRtVGwFGHmhsoGkjAXZ1TWZFpSMBrKvg6YuBHwKJWVTEJXkfACgOVJIZ+RsCec8ntb7tGwOCF+YzC/UXAELsdHzCVRcCjmAZVXrJFwFjrdgyxZ0bAg5xs2uEmRsB6lGZunUFGwN+dra1/SkbAt425zL4MRsBd9eAnPdBFwJ8XK4k1MUbA9uE5GCirRcD8G2W8EBlGwECqASgrLUbAa47stQpVRsBwvCFgQU9GwCoIJxK2LkbAjlClDGHbRsDBNNcm83xHwDuWnLSx/UbAHf6VoyDvRsB4ZKiNr+9GwDmpLjSdJEfAEtZaSxMiSMD1/1tT8zxIwBCAGA4qNkjAbd+GuSceSMBkXu83/6FIwFq6BCM5/0jAtp46txOpScD+j9y9hhJKwE/m+VpQYEnA3N5PCzbFSMBR1vsIX6ZJwMOoBVm440nAXwXIXQbBScBwnHvcVxJJwL9ie32T6UjATa0h0JMxScBkfkWktgxKwKRvrUemG0rAlfrMUBz+ScCFzMNImidJwMlbj77tUknAOVlkYxY4ScDGlazsDW1JwFyszIIlLkrAhE2Rzw0qSsBviAp6jJZKwCuObuOAikrAJQbqLAl1SsAUBjUA5TtLwGMJWJY03EvA0RToH8t1S8BGSN/EUn9LwDf8RfZMDUvA8D4yY3H2SsCdGqCljCVLwIb0mIgDLUzADUl0QHD1S8Avo0z7Kq1LwHRogPgyqkrAlabt/OamSsA6ZqFAqm1KwGlTlG+fUErAyug6uiKVSsAUa8AtqF5KwP/aNSLCm0rAvwsfsK1vSsDLhrwvbRRKwP/6x1965UnARNVS0xG8ScAAyoUiRy9JwFs0qgKb60jAOK4Ng4vEScAyqKI5N41JwPYrJ5QNHknAc0pCcZOuScBFSX+4pQJJwPDxXsc/O0nAuzICQFQbSMD5JeYvq2ZIwGIi+FNcp0fACNtFG1I5SMAq4Xs/tXtIwP1+Ut85kUjA4+1RSmXMR8D7OXrDPSRIwHQkEpHlTUjADP52bHhqSMBLzQsnKEJIwGn92bny3kfAmw+aOoarR8BuFCXJkRJIwEhluu8LbkjAGqC5EZ5ySMC/wAlsKmhIwIdKJ+bL5UfAfGm2YBjWR8Bwi/SJSRtHwGl/Ufcj4EbArDjZSEB/R8ANZa18XI1HwLreqRkDOEjAUBH7EvYsScC/vUJFPUZJwNMQPyAXvkjA2bB0uv/6SMDawnsFfy1JwNLJPA5G1kjAtg5HvVDLR8DfqyRgi5lHwE/AkfS/K0fA9efoFSIiR8DiH8tlcUBGwGHYQtvoAEbAihdPO/tVRsDoMFqVnmtGwANPdfMZdkXAS4ra7zwARcCFWLkHKMlEwOZCSy5TdUXACHdU0yeuRcBSsEOMbv9EwMswHrdn9kXATLQQ0lV/RcC4LC7gxYJFwK6WQCYH60XAb4amTTDpRcCQsHspU0JFwIGDy/oJ9kXAIf1e/ZEGRsCSUc2UOdxFwAEnxpA/WEXAM6sQoHMLRcCdnojO80xFwKu0953hEUXAroj6UugjRcDrwNbBOSNFwGFpTo7LSkXAKiggz08HRcDPDKyMyE1FwEe2mGAfZEXAurN+RgF3RcBo5RqCBnhGwFunm2A0pkbAfNbYtJ2aRsCCF6RmDI9GwEItFv8S/UXAT1egoXbRRcAMDFhNwqNFwNl9SLXSB0bAp4bYikGrRsDd53ZkyF9GwBKPWktqgkbADOc2Q9+7RsAhBlUfB0FHwJdgJbGBL0fAVDGxk7UIR8Dqd1ughadHwP9bKgBXb0fAKgOUhpBcR8DIA+H5hQNIwFvXdKSZXEjAg8YhxCt9SMCZjRJSghBIwKJnZplZqEfA1cm3dvdBSMBC1fptq/dHwF46MI/CEUjAtE0BylQ3SMAZd+bR4n5IwMinz4wbakjANjTCYbBhSMCAbMd9xSVIwOPuxSnqf0jA6wS9j/86ScDjPtND6jtJwPpLyPWMQUnAyN1t3EG8SMD6Chjj73JIwC8a8CnVIEjAalqcnRzhSMA7Ys3BoE1IwBYnNnSZH0jAOKfuo6ziR8A2LNg6aUJIwEaNMOg+KEjAS0Rjc6y8R8A+YquehCtGwDwh8DbNMEbAZzcYqHJRRsBfUukaRPhFwMCtEdijPUXA9gv725TgRMC5cHEJj7ZDwP09HOP9X0TAlm2rVp3qQ8DnL8bPiHtCwKWBvyIBRkLAaEfCu3zwQcC8EZWkx+RBwLVoeqZGa0LAkU9lGEXJQcDOzlNCHrpBwGqWIcPGz0DAE+ndX75FQcBTFxCBG5lAwGQWwQQ60kDA5sU0WBqNQcAROFTGJUBBwP5CDtr7LUHA7h/E/Z2eQcBRu2sV8nZBwPVTY3EwF0LAaj0rhUZVQsC2XhayTydCwDPNrmVb40DANjlQZFVKQMBZ/5oF2UtAwE9XLS6iX0DAlbF02SOxQMC/BBrjPtpAwOPuM5+CKkHA5769cgbnP8B+6K8ES0M/wJV2jt2rAkDARW32vc7uPcCdxrX1FyY8wNZclATBhTvAUXpWRABqOcD4TIF7Xh86wNoxGAunATrAnI7NXImHOsCXDqjZsQI7wDQ4TmS8iDvA8fgHxpKGOsD0Vwphs005wPmsmSvTMDjAl6GMpncaOcBrFY6P9bo4wE55NnKvdzrAXSVsHkUTO8CcNvpPM0Q8wKTOOqWfUT3AvxdCvWGFPMAIw9qOdqg8wIn2+dbQxj3AoN9G04iyPsD080ssy0Y+wAuUPEhjwT/A4LsvospsQMDqQ9gSlGtAwLyAvQTFoz/APObR8SQ1PsBqV5ESosM/wPx1CYzWtEDA5vZH9slNQcCe5+K2RAVBwOxdtnamvUHAt1G4bKwYQsC3GUwydX5CwEG7NlMkWUHAk9AJeXmYQcClagmZrqNAwISVPmUNjEDAutN4pMdbP8AbAKu1Q60+wIIrnFpXNz/Anh0HeyhKQMCdceNQ3X1AwBPi+MNiMD/A685lUhDsPcBlyFf1uUk9wH7qt00EgTzA78JdV3gbOsAPergy/q45wID7n7pWsDnAIW4nRqKeOcBBVYEVKxU6wIJh7v6jlznAh2U6CVO6OcBurtpWZBI5wJ5+zdkvBjrAIUFJLQkqOsAXPjxatqM5wJ75Kw6FwjnApKZxPc6sOsAGyRCG2D06wLnspGazizrA2/UVZ5jXOcC6h1xBpbU7wNFiOqXZ+TvAEUCGLs43O8B6QslYvmw7wPiie8C3zznAjkJVkp6dOMDTzniBukU4wOrOUZ9ItTfAXGoEN0VCN8C1HJTLZIc4wDdZICLH6zjAJxG7sIBdN8BZNbIp1XU2wHotPbRgEjbA18Hi/qD+NcAD49p3s3Y2wEra+5khmjbAXmDEX/ExNMC8AX54PDw1wGXRax6zGjbAYRAZvRb3NsDHJaIulY81wFADdr9dojXA6oQ5q7sINsDe0eC+GfI1wHGdNuodojTAYpf4GujRM8C15nrXv+8wwAUXThK38S3AEBNu3qE6LcC0RS0KO+kpwLvXV3+YdSrAtjYS3/rmKcAhOdvtgzMnwJYHHH2LHybABGHBcVn5JcB3TMO8cEkkwMyGeV/OcyTAGIBgxEwgJsAQ3G1ulAknwKuml+vZcSfA3DJYUMCGJsDC7WjI1ukkwKNH5V9LAiLAW1quG5caHMAs2uempscdwLjRtmqdwxrAQMKw3wJYFsDwS9rHhbsYwPi7ntoWxhbAz+t6r7GEFcAI5/7f3CEWwMho3uzulRnAZscipxjCHsCO7ySEW+0ewIaBGtUhjiPAlnO0qd/dJ8A1GBReTTQqwIaLMw6D+SnAR362QSTZKMCrBD0iBswrwAy38V3CuirA09oe5ZkwJ8C6a2CYBWcpwJ9UgEaJ7inA8xIIqJM2KMCNh6WGODcpwLgvW4sEECbAAaYM12I/KcBmyplN92ApwD4RyPH2cirAJ3HjLB+tLcAPPozyIwgtwANK/La+YCzAI3CPLyvHKsDeNCUs6wAowIv4jyEBxCfADoO4YAkBJ8Djo46hMksmwEOnWN5P7yjATNDqOAnVKMAmzI0IxZ8qwBIz1trqGijAYmZGqrLKKsCerfdZVTgpwHcA6MDIDirAYd3XMeehK8Ak6QdUoSMswOpaUBgEdCvAcA6/QseoLcDcrofBBjAvwFPrKI0BNTHAea1Q8O/UMMCZxfA6er4wwLCTPJqaRjHAn2JjRPZ5MsBq5l6l3H4zwOLTbo9OZDTAXVjjCfUSNcATP7OMjRg1wB/bBUXa4DbAi0svvtffNsCsRxMwgr02wFeCnxb0FTbAY56qPGDcNMAtze45L9czwJqFklZ2ojLABWVUgF8FMsDDBbtl/SgxwHgKZDaoji/AeHf6gBR/LMCYEFb4NdQuwObxsonPqS/AmIlmrU3qLsC5kS3YOhcqwEY6Pgb+GivAOIULL1xmKcCX8Yyq6nopwARvUOH9pirAc/j3GwhXKcABCsei4zgtwGIGceGsxy7AXp4qfJ67LsD7Y1WORu0wwKbDAq/jHjHAyXivg/zOMMCw2/zs1WYvwCjmqwbUJy3AMTHZg72xLcDt3K4/ifEpwJoSkndzbyjAJKxbaaITKMCyxqu6FGQqwA9JfUp/HSzATdamM5R0L8AGSw9Y5R8swNTi3ilQAizAGN1hB/vlKcBca+WLwIYrwJZ+2vqI2CfA6Y5vtRGYKcAsUeYZ+0wpwPpoRhAGPynAbNhrfDmWKsBYi+DUqLkrwC4+EXwwQyzAsk3LBmboLcApo7Mg8IswwEX4fl4YozPA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 5\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"q5BYRZbU7z8lEnXuLGDvP214OdOZYvo/wsC/7wG7EEAsdticKKcEQGhVZifGiAlA/YB2PXRaA0BkZOATF1PuP5p08jcz0/E/PyCq2/Ps9j9FuJ2ULzf+Pw/h0BnaNAxABE3Sk9ewEUCpKoYoG48TQKRWKW5opRVAMc29Ofc/EkAkBJa8nhoTQKhSSPvsxBtAEON2eSJWGkAXsivE0i8fQLaamu+/ASVA5obhCLJxJUA7cKp5ub4mQNdpjJr/5SFA1N1p1VdrIkAj0UbnIsIjQJC+Z7pPESVAKoTJPwfbKkCVDCrYS38qQNWuva1L+ylA+tfhwo3EK0AOIns2FbcuQLZzkTwUGC1ALirc6mHtLUAOZXro8vQuQLJ3McVlODBAhR6vLXmrLkBe3bAm1WErQGIDm8cLgixA21bNg8snLECpLFrh8YwsQESPQNPbSDBAUKq/4vA4MkDKO58SXAQzQPkMWJKdhTJAfm38sHEIMkC9eeSH3wAyQKSm/Blb9jFA7fPPW6BiMUAn4UMcQMkyQCCC3RAiojFA0ft0ECeaMUDeyKQ8uV0yQBorgfshqDFAMQPEOy0HMUDQFIfWcYUwQLI3WriPjDBAKuDM8LsEM0BmkUJ1DfcxQI/xFf1xlDJAh908Y7luLkA+NCjkiwYxQG6l+edSoS5A7MEAIc2qK0CW7f3X9zQwQC+XIfueljBAe6tMtscfMkCUUlfxvykxQLmj0k0KKjJAUHuKVNDSMUAF6ZqHDj40QLwTaN1SWTNAVk8psnAQMkDyStCvZUEzQCiWupPPITNAQHSqyMOGMkBE4/DpQf0xQOCxi7XEfzJAaKKY0swpMUDhVkstcrcxQHgX9bJskzBAlDU/79FOMUBDUgxMJc8yQCCyywF5fzJAOLZxoSDBNEAUoR8iHOc0QBfKwpxtFTZACSdJhqOZNUAlcU6cPsszQBrCd7FSejRADAE2dQFhMkDECuHEfoszQMG9hMUG0jRAbIZEN3gLNUAQbqfWxEszQNhfkMuGSzJApQ7IwPpgM0Cip5xrGvQyQFTEnGdJ7zJALI7U5pDKM0By3sXHZsE1QHSddukAIzZARci9cz43OEAFK6lHi+w3QG0bEu6KDjhADWExkhsWOUC27ntYkmM3QAJ9NB7FDzZAPh1Q5aqEN0A53X6TCmE3QLYXbpZSjjdAciDRtxgbOEASpJXjbXE3QIaAPW4h/jdA9Rhr/n04N0Dvr0WgcoQ4QORRYsLUdjdAN/laBbp2N0D1D71ye/02QBrO3IPw1jdAN2sBAQzKN0Amfbsd3m85QDz2QqetaTpA8gAZKrvyOkA8RxM8aYk7QN0+jWL09ztAsNAM+NhtPECmjBnKAKU8QHDAss8HIj1A3M8mQu+8PEAPVx6RGyU9QJHKdoHEhzlAYR28YQq+OEA9y5rg3ls4QOsex92UmDdAasM1y1VQOECw6lboPvY5QNwIZp2wDTtAjtc6ev2+OUD9MnV9Xs44QDL8ovuoEThA6ryFBfJyN0BAj02B7ZA2QLYuSRbZWzVAbmgoR9gtNED+6kzi6JQ0QCYwnfE0azRAfvSvZ+e0NED32QDmwcQ1QAimnrxVIjRA0JkVHq26MkAsSAA1RBczQM9NK/BuzjFAaTi5PRlfMkDy7xrJJK4yQBcElz1LJzFA6f74Sbs2MUBKO9Z5+QUxQITiG+S3njJAUgfpx5bGM0DwYVE16EszQNfto/fh3jFAu0hEVmpnMkDYDPVwpn8zQE9ooHpA1jJAzxou30a+MkCg6oYN/aIyQJ//Ni0qiTJAteyGsBeBMkD07fE0/9cxQDAAcUhRoDBAkqoenwpTLkBGYC40XkgwQLW4G0YtJTBAkgonMGXdLUAySKVq6eMtQMQ6cvl2xCxA9hQ58WXNLED2bRN99iovQK9UBoM/ni5AdumfTi4FLkASAAFGT7wuQG8xTyqZwS9AiJlz4mmmLEDPcBXlQGQsQBQZnVOJtStAVUXHfpvVKECXOWbrengpQMEDFZcufClA3dk/l0POKED9jDeODP0mQN5ff+9wJyRAeac13lcdJEBu8Qh007klQNxwcH3OZiRA42bViXnpJ0B2ekQVEcQoQAM3rRuWcShAp1DCJ0LMKUBpmTpYMVwsQC9wiwxThy5AuVWXcM0uMUBeyJqp0GsvQIvs2b5RNDBA3pueKFXJMUDTK978MQAwQCv2snZ9iS9AVjyXXbksMEAA5khVG80wQMUmH/MZMzBAao6HliSVMUCz1Y1yGtQyQMWh6KW+IzNAaDvp2zVFNEDi8pn1d6g0QIuWI6OApjRAoBIJyr1gNUDlGlsvsgk1QAPxYw+TCTVAD1MjxdCOM0DoCvmule4zQF726uOjcTVATtCLNGdPNECJHpT/XxM0QNZQjcVePjRACvBIJ428M0C7gZF5+eYyQG172Hm1fDNAzKtJS0SZMUA8uuum8UUxQKi/0oMURjJAqoCZWjtyMkBn8/q7rO0yQOw3vy1X7jNAlply2XT5M0CwdfJLmq8xQHuj6KCTnjBAQfMNt67XMEChPuOM7AcxQP3rWtD7pjBAaAqUW+LpL0DLbwe7noowQDtAV/UGdzFAZ/ogvEn1MkAJ/h+WkeMxQOO+GXTC0DJAWEsqisbIMkArHbti2mYzQHAfO9TlVzRA1H+en45ENUD+wPNEEDo3QPMqZ6JOhTlA+MBeHIRiOkBi0V9GCEQ8QDPpmKKelDxA9MeV2fWrPEDQJcCKC4U7QJVn6t5G8TxAYIPbwuY/PkBIqQHvNHI8QIpcljdcGD1AAYqiLk1EPUBXSxbqQRk+QC6UUt9d1D5AaVwFTnx5P0D1Hzb6F+ZAQDDdMp4/WUFAW+zRPGQsQUBDy2uO7ONAQNxZZt2Is0BAKt20ZjsGQUA4EBo5FwdBQKQt9zIHPUFAPXRfLU0KQUBJ0VUH8GVBQNnDK+03a0FADnpa9L7gQUAG+BcT2lRCQAi5xO7va0JAgWS4AQZTQkAAe1KZK/lBQAQvXHPL7kFATFEXM7dQQkA6rZUPg+1CQCJDl5w/0UJArUM+7hfbQ0DC31FEBPRDQK4ddcFPj0NAoYTlceiMQ0D0QI27fHhDQAnkANmoc0NAXvjgARzvQ0Aazw+qv/ZDQO3Ri6YBoUNAsosHMeqCQ0AwTRTo12xDQPGAv8Y8hUJAbKQlNOgCQkAevxLDeLhAQCakP2PWzkBAfDwzpYUTQUBlf8T8ZedBQN8suudq6UFAcoCB5B1aQUAtC99KtAlBQHp5KqhLNUFA0Gj8JZvsQEChijCk0FNBQLHLAay/GUFANARzvP2NQUA6zmLLqs5BQPeLH9UtiEFALtBimn1kQUAI88zCW1VBQC+yiSl3BUFA2sZ7aSCsQEBD+mAq4OJAQEu83H9vc0BA84rCVASeQEA0Bvxz+h1BQL1fEZSkGkFALeTmZLpsQUAKuJsHMoRCQD0LobbYTEJAy1e+Mvb9QkD72bGs/CVDQChAvkGXL0NAqkVhuatYQ0CTLb0XbOVDQJf4AvOG00NAK+08hyZYREBy3YHp7XFEQEZa6kHRX0RAkV75ECSmREB5r7PGVJVEQJe6ORoc20RAYsQJ9O8yREBtX031tgZDQPWTRYvzAUNA79A0zI5DQ0BH5ZnoZS9DQPW3rSAevkJACf8aNmxvQkCBevI97whCQLM6+Go53kFA+l+kbAWJQkCWjGBoNo5CQBKEWcgAM0JA616/uFeVQkDBDIIo+tVDQEpv6P3dKUNAWzPGkLH8QkBl4DC3C8dEQM1KofoWX0VAii6afATBRUAmRzwz5j9GQP+5TW7EN0ZAuHvYefYtRkDim0hQCetFQOrhalfEhUVAkOXB50aDRUCnvGlzjEZFQBtHcQAHiUVAwnlhd9aURUCf8i+l4dlFQFlBlY048EVAD/2J7544RUBDN2yHUUpFQAUqCUPh/EVAu4o09kEyRUDGSfWxi3VFQCbzYAGRJkVA81YfSMQ7RECncp0kCWhEQLz5NSk56URAbl/JzFvnREB6YYNkWkdFQIFvFnqhSUVAKO8efyWkRUBPYeD6CzFGQLgOZgyBkUVA6171qvpsRUBDa5N/uBhEQCzfjuhNmURAIkR5TuBtQ0B7V67+/RVDQKFj1kZoG0NA59QMI2s8Q0DT3q+EaphDQDTjZgc/qUJASGo7suWCQkC5/g6Ku9VCQBbcOY0S1UJA+x3sTdPhQkAI8JohcEVCQJ3U7F5wj0FA1Z9IW+McQUAswpsAVx1BQM/CvIuWEEFAQZFtR0RNQUBO4RhNHGhBQMpH2TL9AUJAXsq1NZHhQUDIyXqkDCRDQInlGKqoWUJA6py0NKQ5QkDtGrNrvGxCQECbkUvgK0JADSQNxWriQUA00c8oFnpBQPpr6O4PWEFAPFqCUZSoQEBSGu/Dj5ZAQEinYr9c4EBAbPrwpJ67QED/IXl79mBBQNf8vKypSkJA5m7wBKTMQkAW9KOwrZpCQNSsKWkKUkJAiVZPgzEqQkBqBrkY77RBQNbfmSBIukJAG5fJyuAGQ0DBj/LF+HlCQI3Dkx2l50JAmh7DC8tYQ0BrWVr99PJCQMJt8QFXmkJA3tTS3gI4QkD1fKq9BDdBQBYsFU9Ik0FAKu+pBx79QEAq22BQ89VAQFM9nH1o20BAWGgodeEsQUALIESgYaNBQKdM/zoF90FAH7IJxfhNQkBACPLgYdBBQFa4y/2+tUFACGCWve2QQUAik8dLm6dBQJnokoftl0BA9Kl/p65rQEAm3QcTrxtAQHk9676mbkBA911rfzqOQECYrJWlpmJAQNk0C8fle0BAtaNV3+2FPkDS3SGSUL8+QJpp6oKQNj9AYckCsdN8P0DW6B6zc9Y/QC5Phs7ZE0BAwUskGo4kQEAfCKu0VIFAQML9wxILiEBAA9OTMoqeQEC8B5WeqrJAQPenD7KkLUFAtq9dZLKYQECOPEGeWj9AQL8DVoTxD0BAV2D4LGTeP0AiBUYda1pAQI8+FhpfGEFAuvJybQ3BQEAMjL0WFCBAQHIbPjU+6z9Af+4rPI9oQECvSE8bNRFAQF34b6dqqD9AosFJGeNcQEDWacNjb1JAQAfERvw2MEBA4ScB15KlP0ANwwg1fHQ/QLEdTQXsqD9AGkYyjX6iQECWx6CVQk5AQADU8kkOlkBAbCeInClLPkDnuz1ylQc/QK3QZW9sej5AgqvvpvBbPUAHA+g58ng9QPqLWVUq0zxApG4ILINnOkDiMfYUDGY6QLW18pTFXztALXf79ktOO0AgM6m6EHw7QOtLZtPjBzxA1We+FNy/OkCtwIItGg08QEhBwX2AOD1AkAvjE6enPUAs7qNurE09QPy4L+wbzj1A39GdtZTvPEBREnrbL5Q7QNzdUlV26zxA7RSBeh7XPEA4BTFb1v47QDeUOjeDMjxA2qjpLsksPEDedshOLSg8QJoUic5y6ztASWXhsPkvPUByqb66flA+QOaoDtq1Yz9AjCB/vPaRQECT0I5y0JVAQOp8aM3CLUFAZskzedL8QEB1TOXKQyFBQKMS5uNM80BAIAF+Cz0dQkD3duWk0itCQB57cLHFpkJAs1Xn6+lbQ0B9krrintxCQLhrgB/NGUJAJML+Cw9lQkC33FfbT51CQLvdCLelukJA0ou2GWv2QkBHseriJ+1CQP5u+3fFcENA01IgydB6REB6TpC2ei1EQKVADRauo0NAK++VMPlmQ0Dw0ju78+5DQMDNkSRFbkNAA988zWDTQ0CYDgV41K1DQNJrdAx2AERAbAfiATMTREDZRHjh6XZEQCX382xhBkVARn+Vly9nRECW4vlYM5xEQJLaGhZKBUVAW+/+oQQhRUBRJ6YKP/JEQPOI+YdrXkVAhGDPtzhsRUAKPBieamNFQIP3ppRNvERACiiFXVd3REDBnwokw8xDQMGF4mmVL0RAodeGZKoGQ0Aa2JMh7jVDQNDttESgd0NAtzZLveGpQ0CpKqkJwQtDQEzTDdC6yUJAYh5gZC2BQ0AfFPmv7NdCQOxFtYLqEkNAGM5JoxRvQ0Av9wNy8DZDQMGff4AJOENAdah6YZHtQ0ANXIiB5cREQJlAkdfhdUVAiIj6R0bLRUANZtQdr5VGQP2JP2pxp0ZACepNepJMRkDjBmlH5uJFQHKzYRy86UVAooJ2g9W4RkB7lMl/bghHQHCstM2yYkdAwhysMOQxR0BaALwOmF5HQABMsIZPGUdANxrnYGXDRkAlaaX8MOlGQP8GslHPgkZAsb5OQK5lRUBXWOnWFCxFQI9+NEYfi0VAx7yP1C7lRECxr3immPlEQHe8iyP6j0RAZ8Nkw8//REDyXW/JBdZEQLLIOU5EPERA2NuPfvhQRUCquCxfIfhEQG2ULPVlX0RA3wLOSm06REAnPGrxO7tDQHOiOCAsCERA2ZnwwWzbRECk1CqCWeBFQBBd/edS30VAgXAePcO4RUD0KFjBkU5GQD5w0r0ULkZA0DWPb20RRkCsUgGz4NxFQOqMkdvXpEZALlsgSlfbRkAE5b0DPwhGQIrZQUTdu0VA6uxXyaRKRUBUEihI0hhGQGK3G0vKPUZAA1rpw+LDRkCP00PMDm1GQBZ2y4OreEdAcAGPoUJuR0DAw3Y+SpVHQLBdHsioNkdALN8BNMyGR0CDAehdlmhHQD6gZkhXREdAIFnJinyIR0CMtMKBAhJIQDc5o81A6kdAuR/BXby0R0CMGzexcOFHQNDkwmJjxkZAbw8EpFI7RkB7FG9vgEdGQNtRDvx3kEVAPecbCossRUAjsyE7+7pFQD7fmnGM/ERAyGP9nsYsRUCEzc2WuXpFQCP8TNONYURAqedHP2T3Q0AENbxpqOtDQPWyE3zCk0NA+W8E9Yk3Q0BvLD7xcedCQBmxn6N2lkJAdFOgsu3sQkDn0AfLCElDQHjzxW9Ny0JAifo/2T8bQkB+AMUOp4dCQBxC+/5kGUJAjl2cWGjnQUBgIDs6aLhCQBbA4FuWy0JAMgfka+bzQUASMHgKQlpBQCyUGjf0XkFA16DUKLPJQECYc+041ZdBQA5P/M//YkFAGCguOPQjQkAZzEAjbvtAQPzBw5FdO0FAZCUff5UsQUAHBMgWA4hAQHg2NSjktkBAcz228Nc5QUCzFKHfAJ1BQB6t5O9EWkFA1tRef3NuQUBagm6A5/RAQPlhXrEgD0FAfpPxedCjQUCz40EMuDBCQC1ppcRzY0JAPc5d0NknQkBMHgyxhXFDQPqwinkVkUNALifHj0htQ0Bigt5404JDQKAQefMVpkNA+6atkLoXREBnGFkRPc1DQCZDVRE4pUNAKXJHuW1qQ0DLQkRpiZhDQHEAkjdMr0NA8kmh1moIREDUcroEXI5DQDKqKazsX0NAISd+nLXMQ0BVHTA6V8pDQI5VbU10t0NA3+57zYlSQ0DuQFPFOBZDQGoGIvNdL0NAVpT5o0iBQkDPd2A+MrFCQGHKy23jhkJAJmFk/4PiQUCZC7mrfihBQHvoBowiAkFA+OurQhP6QEBImuJ/tKRAQCSdRnN6+0BA9bY68KN1QEDlbmdJfnFAQBeK6QUUF0BAxq3RHu83QEDex9jGh/8+QPnSHaJ/4z5AtYiELrawP0CKvOMYkSE/QEpF06j53T5AhmMKAinIPkCRQICl/QA+QLUhTlVn9z1AiN538KsXPkCcIxkqOHo+QLYy4VZCGUBA78TBvw1uQEDTkyxIt0RAQDbYoDFCJj9A3YPxiOb1PUC3svADUPM+QNiv9Cf4UD9ASUf+tsG+PkAyMYiyRgs+QHCsB1KbmD5AFO4POkHXPkCydnz3tOA9QC8ba+1rRT5ABk+Vpvq7PUDnJnVDrto9QAgMbNvmXz1AGSQc/V/ZPEBjm0etXX08QF99h9TazTtA88h1z+P6O0A5AeBbuT87QLxSLXJiyTpA3yX2v1kcO0DHGbQ6PsY6QH5BSLSfzzlAGuBNkkwQO0CBbuxPR807QIdoygHmsDxAz87WLW/mO0BuckVPVKE6QDrlEUBajDlAJLobiDhDO0AYoA1C+v86QGo8ThO/UztASS+7QYkVO0BgbbTYXw07QNgqBlO9Sz1ADz+nl44SP0CR4vOyLXM/QOYC5eqtBkBAaq2mwy0+QEC3+SCgtk8/QIBBi17rPT1AaFN2IiO3PkAWD4mWqAFAQLlmIhzC/kBA008G+oBvQEBeoSJq+U1AQLkUOzaEyD9AmWFKQvErPkAds5PqMjc9QJwW2dVPaT1ASWloIBprPUDxm7FKRKk+QMJhnHURsz5AgXYfRg6iPkAYuZDi1Xs/QDWYt51FxT9AgMRvcUNgQECOl/uAvGhAQLAPfZhhTkFALSkEeBnUQUCicrS6GfhAQJeby1KciUBA+oDs4mdrQEDJlOULSA9AQJbTMJj6+z9ASo5Tbm9WP0AQ8FMAQYg/QIrWPgbrmz9AHLQ8ubeFQEAxRNHj5A5BQBLnImn7kkFAw8MG4LCSQUDKtzonVK9BQEm4HD88Y0FA8tQdYpgtQEBbGXuEE2pAQBg/a9D5hj9Aa12QXcoSP0BRTA/uU8k9QLLUjfabgT9AXtEzaKOFP0DwQfyB1ts/QPkd2C9SMj9AxGrTvk1PPkDKsdaDS7c9QD2IHHY8Iz5AfrDNAttfPkDnCnWnQfQ8QPAenyYXvztA+9x2kgcoO0BMJIn41BE6QMd9e2hvYjpACpoaTuAOPEBG2o4m/0E9QMMPtw/G4D1AQrwrf9+iPkAhROLKi9k8QGWv7Jp3dTxAugLwF3mUPECHXBmBQZo6QB8w+ZOh0ztASHTUkKbePEAhufWOL/I6QCU2cvaDfztAvNm2QtcqPEDeALPcNHY8QG7v4N1uWDxA5m9aeOdhPEClTqS1MN08QIVzwxLV2TxAGm2ovP4SPUDJxjRfuQ89QLrETA9Y1zxAIPEPFysUPUAQn0wh0+c9QLfUqAQfKD5AzVe3AMwIO0Btl5c0eVU7QC/xI089tDpA9Le9Mr2rOkDDG1Cifqg4QN9YOrEcEDhAUSpVZOrfN0CUkW0DELU2QHwyRw8j3DVAbUXb7IxnN0C7q+UmS0s4QABUk0DKDTpAIsmDPn8lOUC1+Y8eW0w6QAmM5N7iJzpAINS1BxpPO0C0hlvflNg7QDAPompdbzlAcA6sPobnOEBWs6KyIcE4QLMHcEA4UzpA/MWMdsbbOEAIEUSvDDY5QCDvsXuGSTdALCIaSlyUN0CmDM/zMA06QCaVYm9jXDpAUoSjHNRfOkASWB2SBT47QKuN81EyrDxAOki26mx5PEBEqhzW/mE9QLUIVKBHUT1ALjQOlX4nPUCenl62zT0+QHvOnTlQdj5AAzx2/pXwPkBgmFdj2z9AQHVnSz2EMUBA+ayuvS97P0DihKwzOxNAQKQYNyqzNUBAVAgamETzP0AUT51NbCQ/QBc8W3Gebj5A91eJ5bqbPkDRU5KmfGlAQB/vZqBN+kBA7zUnIz9tQUAzd92saGZCQAw8KYvK70JAis9Js/MUQ0BZjtrXiVhCQO63MVGM4UJAHaG9Q7wEQ0DFs4YKAfdCQCOy9+70QkNAYOGcabKcQkA0ohAx09tCQOMK+6yMhkNAw1KV0D3BQ0BQ4VoRqQ5EQD9UtW03CkRA4uhTZEGKRECJCQFh8j9FQKvo8W7feUVA1s8ElmjQRUDiUO7vVO1FQETU4WoOG0ZAxMcIjWPuRUBmE2PaoeJFQDPK30GM8EZAZfrtbshoR0Bv9A1P1JZIQKId4bGHIUlAPX3fNkWYSUB28Cw85qpJQAREXswF70hAwh8vNlhxSUBdv28Mo6VJQEJPK/6Hg0lAwKfqhctfSUCur+uF7btJQH/b7F83gUlA1HG4wu7MSUDSoUrtRo1KQP/fF/YMMUtAXy+KNDySS0BKU2nTTaVLQLr6q5KV9EtAkjKByg22S0CqSR3s3mRLQPGVL/f8xktAc318hyGBS0BexLMv12JLQB/TToiMoktAv9XPHmYdTECA0ZJtzdpMQFr/fnft4kxAIkVX5MmlTEAY2dzCFHdMQP0qFodmcUxAxH+ChO/NTECa5xJBrexMQGsG+IZ0/kxAfQ9oS5XkTEBfbxLXL2lMQCCzUwN8jEtAixNQ+fXlS0ACZVgPznxLQF1zBoRCdktAsAej7xa9S0D6izMuM/1LQGCo3B43VUxANgJBkRmyS0C2VcAikH1LQB/Qe7MCxkpA1QBuvdcnS0BS0lRGD+tKQDDpNfUKbEpAcqs2rGszSkAxQQ78T+1KQIRSiUVFv0pANhuycZLuSkAaDYkE21dKQAcgoiGnrUpAh2BE7hDXSkArlEC1WMBKQGj5Ivw2okpA9av9zDAcSkDQ+kAwmAdKQJl8JwW0JEpApxCTdGYGS0DaBmqH+xtLQEQeu1m0KktAdx3vwuk6S0BhzagIvB1LQDlCgH7LN0tAFpf+VdWzSkDOb7OmaypKQHjaruIn60pAfzEJNh++SkDEQ3b+JrdKQC40C9QQaEpAdy2P5m3bSkBSky8OFIlKQHfCnTB5SUtAm2dBxb83SkB6P/qjF0xKQNjZW78RQ0tAdGs5lxoaS0Dw4KT/pkVLQPRgIMniWUtAaE+VX0PoS0Ci45b7/w1NQAtUVXyx7ExARK1sDN/vTEA/3DPKEcRMQEiekdE6001AVxqFPO5RTUAHQm2S5q9MQAytsZAomExAU67+9wFTTUDXJXB4KY5NQCIYUiNpYk1A1KuodZ40TUCQVl9KbUVNQMG32qv+FU1Ak+q0RhL7TEBYw0c5o91MQGEMJAeS7kxABtQOvTApTUDhTbKmYkhMQCcGY1QedkxAQOy3hXy7TECDzdQDioBLQKbtZq2yhkxAJ/EBa9QcTECUFWI+tJlMQO+0P9+WNU1AXDdy2kBDTEDU5/6nCqNMQIDBqC5DjExAUD8Mm4hNTECrXJ1Po3RMQNrW6deI3UxA8r2Ipm7QTEA75Gihm0hMQLn1g/WJN0xAXx/GHlkUTEAZX9F5bp5LQMNJlAttDktAsFnm3vROS0A3TmEiL25LQAofo34mNEtAIaFkfzjxSkBdqfV6ZERLQC+udeB1N0tAVarISwJoSkDFIPN4r/FJQCwqprQ3OkpAqc3E1mwGSkAlv1TKFAxKQNmAXxdRw0lAWbXE9mETSUBwWF36rMdIQOmoVPrLC0lA0Gwt+Pm3SEAAzuk/dLtIQD6oPxf2lUhA7OX6qlNkSUBe6zUbKA9KQEy5XruW9klAq93hcPCsSUA/CIzabQpKQEhw+wIkoklAMgJBG0z1SEC2yurII1NJQCARqLFweklAbmLqttlSSUBFYU4pt0FJQMNSKQswkklAtYA7OpIOSUBwmqDqeVZJQEoZ8irBeEhApmuI+4kWSEBAsfQTV9tHQKdb/2RxnUdAQ9nDuMMMR0Asn/YSuf1FQGuHXxpBokVAwPG+VwKjRUCMt2mEE/FEQNFUWY2T60RAIKAQfmLCRED1l8829TNFQHpBQ/QsVUVAk8kF+jloREAWZuImiBpEQO1/y3C5wERAwyJd5LarREBZifuNmNtEQLvD7/DwUkRAwnWMZGKAREAoHRnsbilFQJGMYjG14kRADBuua6GBREAwXBvIAEhFQEh0ylQfMkVAZ+NKtg/RREDYQHJQjIpEQH32E3xnEERAnGCKRi9MRECpcp7XaPZDQG2CcFqYG0RAjQhTHLljRECZB8NEQ3pDQA9sBN2sVkNApdvdjlbaQkCnVv7tNwdDQKpgi5ICcENAZiaL10d4Q0CFF1a5w6ZCQL6W4U5gg0JAk3nWnkcKQ0C82TQ28x1DQHbG+Ja0AUNALJdDL06aQ0Dcry32DvNCQCTxQX32ZkNAC6jT8G4WQ0D4HtuYx1pDQCcLt7M5akJAJc6dFEZZQkBHI+pulWJCQB/HL0RubkJAzNFNmP6qQkDpayLicuJCQC8yeZNY4UJAEl+r6NB9Q0DWlp4wYE9DQDgYfFQ/70JA91JDUp6QQ0BAVenBwXtEQMUE7lSJr0RAMOBjlJPwREBnFiIlnhZFQIasRPd0ykRAZe8HR/pjREBkydJFbUJFQPjBbrBgDkVAvzwLhqPUREBygpbsXutEQPDQGJrSNUVABxZGj6vbRUAZtXal0U1FQKyLRrO/6URAVf44UMqIREAvz478FERFQIUkHy1xUUVA9M3iFmf5RUAht0U5MbhFQNwNglkH50VAuLYB/YcFRkAlWUr73yNGQIGTdRpGZ0ZAmy5Kr9xuRkDmFHdbyFlGQL/zn1yXO0ZAjGUmx3QDRkDCNEYBfMBFQJ5ADz+YRUVAXCXCaX5cRUAOvf/r1pBFQHhjZSzZYERArUX62sCtQ0DMK0kcgCxDQHsoxHiOZ0NAvfcBizyqQ0D16J+HqQpEQHcPKsm460NA2F2ALkstREAfhy2/FrBEQAkXYMgpp0RA5xaGWahVRECkjD7G7rZDQC/u22lzoUNA8Y9JgbU5RECFWlpg3rdDQOQHWFPgQUNAiW95oJPDQ0CirLj7Ca1DQOzhE1lB0EJAuE61AZrMQkBMDSCRkM1CQGEyVE3WKUNALm7ZNql9REAufexT5pJEQGxEvyFy00RAn1+tHPmORECI2ZPswnlEQHdP71ZLTERAuZJ4H7FpREAj2bnAcCBFQC+rtdmIo0RAfBw7uuMTREANu46DbdhFQKiTZLFXtEVA6kSKBKUJRkBXWk+EGYJGQD7qvVSjAkdA5yGzstBgR0A2BD+/bZJHQFz3v50u7EZAdmh0JhqeRkDfSxGwmhxGQP1X5UQOLEZA5vIYCUDJRUCfBIKjfsVFQG2UzPG4zkVAITzAP4xxRUCRCAV4iPVEQPjA8beJEUVAhrFylPw5RUApoB4B71hEQFOpAeFTwURAyLOoMef9REAQU3cV8v5EQNW6iosgBkVAy8XATbFJRUDjPFjcgjRGQFQTXaypWkZAJ9EA98Z0RkChW8i1z0NHQFrUM5s8/0dAja6MMzn7R0Dn4D3tNwVIQBbj42q5eEdAu1nEdnBqR0BVCIcxjgxHQPA4EemklUZAkysNTu6hRUDhSryuj4hFQDkWVi1V+kVAGFQ4QktPRUCTOWZf+CtFQIK6h/E6s0RAq6lGSUpzRUC9HigoUjBFQICg4WP2f0VAZSZqYvvaRUDfMJ82S6FFQOeZDVVu8UVABVJmnUEFRkClVSpSC+FGQGHrPDeaUEdAacy2bL77RkCPRGmfZ9RGQCR10E92cEdAY84a19vTRkA88UewGyhHQCDUVmikYEZADGtgug8RR0Csm3qBaa1GQEYiC5Hd7kZAl5e4NcvjRkCZEZi6NYZHQNTT+hHaBEdABIwbAyk9RkD7ibV7JE1GQFhj17xav0VAuJhv7NFVRUASYpr3rBNFQM4W+dC0XkRAh4HGJbt+RECpufQzCdhEQI0wQ8n4rURAw/UHQ9OXRUA743YJgVxFQHQwYQUDb0VAF0HYEYXmRECe3lygcI9EQOZlZb/G10NAv0D6LAjvREASXFyDjjJFQIA9FI6agkVAu9jqbUcARUBRXQLQIwJGQCnlYxOK9UVAUrKMKV2qRUA8ulIPMUpGQL+ZJ/aXQEZAWpLHx0b9RkBZZrAiD45HQO4Sm7vs9EZAPpzfLGpzRkCgqmBWXD5HQA18CzGo8UZA6tpmBeVkRkDj77HJ5tdFQDLjehd+p0VACpS7i6nhRUDeSafL115GQKdtiQaUakZATDj8ERX7RkBUl42ZuhFHQADMKNNvWUdAKDwhVwT3R0CpGkxS7GZHQDMwFoofVkdATmpqmcb2RkA2WKm/2LRGQHpotgp200ZAO6BT3f0aR0DC6trLKXtGQA/kLlB5yUZA9nknPQA9RkB4U727/6RFQCJBjxFBVkZA2ZAUUdpsRkC6Nd65Gx1HQB72ewBnsUdAYjGrTYypR0BCIxCPqPBGQMUth6rf7kdACVWFth5hR0BgCK7/i2dHQB/6vexbw0ZAR0qcTH7HRkAa8BMjy2RHQJJksF3N8UdAFwpi/uCbSEBqQgVV+01IQMCxftnIikhAITkuRD5YSUDIdOIUxjtJQFNh5AISlElAB1uJ/qGQSEBkvrY8KJBIQF4mkWxDnkhAUmEW/nkNSECKMz4xhZ9IQLAY0Mc7HElAM5KTSduYSUDO3uOJAuFJQEwjg5z760lAS0w+4yAlSkB7WZjV4SJKQEeoOB7qaUpAZ7cFRrmuSUALc6wx4stJQJLCzI7k1UpAZB+k6nEqS0CIBCRQTrRKQE5/vjzHPEtAbNJt4qKgSkDMXFNuu3lKQFpvJNe0IkpAZ14mfesFS0AD9CgBpQNLQI6FnCvBW0tAaPAni6kWS0DjuaoIJnFKQAwkDRzcYUpAS+fBZ29DS0Ach/oI43NKQM/O0UHRfUpALSO3Wm6cSUCk8frVryNKQD7uxqYBaEpAvHLkingzSkBzhjMSPelKQO7FlYDrakpA7ihL3HCFSUCBjAgf4ABKQMqrac9I+UlA4ezXrmKJSkC3S/veuBlKQOSlBPehbUlABiPBCKqsSUAs85/SgCJKQGHZVnmgwklAgsMFhC/YSUDlmgHSC71JQH+0aBt1qklAcgTm/OTxSEBaOmp8UqtJQP/ZqOJcLUpAqsd6s9ugSkDFlq39sUBLQHyjuOrLEUtA73SA2027S0Cx/vg8u6FLQJdV4waC10tAYcddHtnfS0BAybHRXpRLQBR5shnCB0xAMKalBCT1S0AILdXOzgtMQO2KOs+YaExA1ang2oKrTECPaVeJmatNQO8ziJiXOk5AM2QMuCHPTkCTGb0+0PBNQIW91J3AkU5AJRoEeDcrT0DmnaRFk1pPQLTN6nCLQ05AlBMmwYgeTkAShZBKO2NOQL3WXXVAz05AFCPPtd6CTkBcmvxscQVPQPdSzyYBl05AZaEwMbvkTkDviveAlk5PQHzADXUTj09Alq+YvLyeT0Ax1JC9/8hOQGWBPPBbUE9A/DXLV3e+TkBTfKEdMv5NQO4PpU3kx01AHtyOSGeNTkAWM+Qqrk9OQPJlNq6LVE5ALnOoM/d1T0CCIte+fqJPQC+0gXsQ2E9AYc+Grw0FUEBd8JwyY09QQEJ7IZy9y09A3cjLM/huT0AH99giJ3dPQDxYOD3kkE9ALW39CC6TT0CQJoKSJQdQQFZrosdkP1BAHqjifWEkUECVyKSxsJRPQK0SJBEwgk9AZQj8wvEvUECVE+E/EDBQQAQOz+YgTlBA3Jc+bXETUEA4G5Mt3lRQQEnpnpgZTFBAN0bxTEqeUEAOp9bPxGZQQFfg8MbcWVBAiRMLIUlBUEBRDz0EplJQQFo3tPXnHVBAkD3EZ/UYT0BXgHZVdtROQGUg6Gmy505AAXHgwFzmTkA4+MCzDMxPQHWh1RJq+E9AdokVqIHlT0C08AdZh2tPQNi+ho8gfk9AhALqFNI5T0DW4bcL91pQQLPwyddQiVBA5KRbCzHrUEBTxk78ua5QQGWyXg9l2VBANpMIEtNHUUDb9M9LN3pRQNDs2dmdt1FAldyG7Yq3UUA91qPjxadRQKbh7QKfzlFARAuTj++1UUCYuMy0t3dRQOr5hTqEClFAN7LTgEenUEByoL0NEONQQLaIRdx731BAI5LtNhXSUECJOk+An/JQQFwqeFJ81VBAubehKMn7UEA8d03N8iNRQMxEOkyZNFFAGTjNGpkkUUDhqrk5RNxRQCtgQXi7uFFAmaCc8TPXUUBPnzc+YhFSQGa0a10DuVFAiQhGvwzYUUC4KsttdzpSQL8IdJfQgFJA2cmOdbd1UkDSD3MzmcBSQD14wDRuzFJA6i31VYNUU0AFJLmHsTpTQAYM/tpxb1NATE9TDJZAU0A5m8qLkgpTQAhC98hBUVNAD+E8Wl49U0AXq7kEm4RTQGKetq17nlNAVTDE9w3DU0DQCXmXgR9UQCV2oKGURlRABn6VPV4lVEC7muPPaSZUQDGxxPY/N1RApHo3gtxDVEBs69eeiUxUQMnxPmCUUFRAYlDDFcChVED6wmXCnbpUQH1+kntki1RACIUAmzaiVEB0b0AG0oNUQKffn0KYd1RAIOKx/upLVEBGzLDzyNZTQALDSS222VNAXoTcsyaGU0B83a7wUb1TQCVw1ZVjdFNAK2D+sRm5U0AAWPtSsNFTQK1n1sxRoVNAx1sJxUmrU0AAt9KUqZtTQEbNL13l9VNAzZ48Z98BVEDJReMEmxFUQDSH3sv5T1RA/1/o/9IEVEDms9CibDNUQB1Dwrld5FNAo0aMEjbWU0A+EDAvzO1TQMao9L217VNAZeYIKO3TU0Dj3rrS4r9TQFzBL2STHFRA6qaIbBdjVEA4dmmX5WBUQK9krdscP1RA8/3LhzKGVEAMYeYSneFUQIUVFn71H1VA4SNE98QUVUAzBmXy+UlVQDjL2OHNu1RAIHiTsZOtVEAdn9PZ/ZlUQP01lJFv4lRAJDcfsCM4VUBffjqqpwpVQOPEdkBt3FRAHZCAlv6LVEC/tdeqzi5VQOSlaBYXZlVAE2RwUh86VUBeLiCtUEFVQG9wPgXvTlVA/pHJ8y6LVUDQ9e+Lys9VQEylbb/IklVA7yRVBJa6VUD3N1dbD9dVQIsP4nL06lVA9TcgXXMMVkBRvhW+3UxWQKEvPv9sRlZAZVGRi4/BVkAB/DBLj29WQCeoPjXDTFZASvf76LpEVkBUNB5sFXRWQOGH825uKlZALy9LH9UJVkA1i1kKsxpWQBS9c+Uc7FVAiPLr+q3uVUD7T6qLOOBVQJHuFXiCVlZA1biECaJiVkCn9X4M8SRXQMegYqYwUldAbF+yKVAnV0A6tt9bvx9XQMd10iR20VZAbIkX8nQXV0CY+HBaCfhWQJrLezKo1lZA5k2qvasSV0CaHxLElxRXQPW10kygA1dA8kHClKvmVkBhKd8Y0JRWQAYm0hD18FZAQt3ey/22VkDT15bW66xWQMvayb2wH1dAG1iM+gL1VkBwkTG+Xi1XQL/Yv7dR8lZASxEKtc+OVkD6VYh+PblWQHtrDtmNvFZAM3sD/CKfVkCMePuOMw9XQDBIpI4zTFdAhDR5DZ0QV0Ax9cmdcvhWQCIIaO+H7FZAa7Q2MFAfV0DyN/S39D9XQPA3rKtB/VZAfivOzW5JV0A7LdAyHGxXQArdCC2V11ZAdHS60W2+VkDKtqpzcjVXQPQhErybN1dA8o8V84tMV0BffJYlEr1XQANd0gwc2ldAUjMPj07PV0C+3dekyPtXQE5DdYFWHlhAt112qQ3tV0CGg/fPf1FYQFYxYdZMZVhANG6pBSqSWEAB0XJwPJpYQITuDotsjFhA8b/ZiFPWWEAv9nilrs1YQOCioO5RqlhACmyxOn3IWED31WFSmvdYQGpR5mje21hACF/3HnKsWEAmAqzFhZtYQPeVNZFMrlhAe0BX1upXWECgV8CyRCNYQCEd+Nj5glhApS4jkL/nWEDNrvCsly9ZQOAOqj94V1lANVakrldQWUBuH5MLVzhZQHwGVHhYIllAUQgjUpBtWUCuwYF2qplZQIJvYM4z01lAwbG09wW7WUBPSIEcQEBaQJviJXoBaVpA0XxghLQtWkB5QMNcEwBaQJX0apkHDlpAnoXLX34XWkCTxo0BLTtaQDfdqvps91lAEVkVuXvrWUCizXAgJBpaQE3mxkxrwFlAQsel0FXmWUDddEdCOIJZQIw8P+MI+VlA3hsD8gxPWkBqN1NFYvhZQIXUU0BUAFpA6/VIPRX3WUB5pOhKqBJaQDVpwjQZ4VlAoExwYCE3WkCulbIK7A5aQKXWsSAIeFpA68w1LHZ+WkB16s6Pj6ZaQH7TugHK+lpAnRhrL16RWkAOjqbZSD5aQP2U9Y0xNVpAYynS2m8lWkBilfuoQXBaQI/BHdVa3FpAFMJk6RTwWkAiZGfqtTJbQLgru3Cvb1tAgctdBHtCW0AXFB5tsVNbQGWA5J77AVtAWBLJfGygWkCHcW6JKSFbQE1fwdzpr1tAdMdiuOH3W0Czk5BFQatbQEi067z+A1xATiBe3XjpW0ADvsD3qQRcQFfTvTPZzVtAnXMSy0MuXEDOBe7ShgxcQCdJDOlmAlxAr9xlt58RXEB8cUApcmpcQBzrZFaAPlxAyz6ERqYVXECmc51QMMVbQKPH0CMIsFtAwvVWpZcDXEDji61wcjxcQFOfKNp09FtAdYrTDNv4W0A8dMEgtOxbQIR9Iy5jzVtAqbSvJCq5W0CbZCyuAcJbQOd2LVWJaFtAEd94Fh+JW0CtgGl2nnZbQP2xkkWZhVtAHfMan0R4W0AG4wzVCQFcQB1fo+nCDlxAW7G0q+C4W0C7MHkdlvhbQDWa6X1UU1xAO62pBtU9XEBp4sRkqgZcQHamjqmw61tATG7EvDKrW0BLsLVdfrZbQBsDYx2tu1tAiQ2XnpyzW0C9sgdn0tJbQO+1HspHalxAnyyBT3hpXEBZLcGIloJcQPL3GUjCjVxALDnHJShbXEA3Z9hbgNVcQBACO9zG/1xA2FRvmA3EXEDyLgbkhyBcQPKLsVw0cVxAGxw2Yg7qXEC4le1opnhdQDSSXMtdjl1AP+7SesFmXUAF72tPFfhcQHLwgPemPl1ABrlZcQEjXUAbQJNIp35dQN+syFSyK11AQrH/Z4FuXUCT/RT2N3pdQAbkO77Xbl1A8wUk1A9JXUA3l268QH5dQDjZAoiKhF1AqaK12qZUXUB6nEIfqBxdQMiFh/PyTl1Alp9ZHAHZXUC5/Na19+JdQEBoMorLzF1ApTNixMpPXkAw6la3bwleQPJYsdrV1l1ARqfWpf6iXUAooRjJzGBdQMX1WCsRc11AjQPYdKhAXUBdxyp0uHVdQIROnFIHxl1A+vFxuETzXUCNvEI2HZ9dQNxRitH1H15ATYt5+m0BXkCmemcDCdZdQMAgHbfRR11ARJdWQhuoXUB+ZOy5U1xdQE5h2HJ+GV1AKgPACxDxXEDNWhQ2jhxdQJlpkQzavVxAY7KSR8bzXEBF1jmweR5dQP2e0MuTPV1AGjjwKgI4XUDVEepFpyhdQJb+H6wL7VxANXI0AAfYXEAf3qop3gldQHxrjl0EtFxAuqkkCKeqXED+bKzNpn9cQJVTBVIcN1xA49nhdNRfXEBkwxNXC1pcQO6JVDV0dVxA0uUb8LBEXEBYE9frf7hbQCA/esqsm1tAHrQxzk2tW0AcHwZ/3tFbQE/9lAHpiFtANjbVkCgFXEAGV+hPVPxbQEbt3pk1m1tA/yLmGoxpW0DdLhx9ijhbQLFmUtLiOFtAfCzkArVKW0Cbkd8FP19bQCykAeRUpVtAXkE7IjjUW0CpKXisNMBbQIoln+SuhFtAPaw9WyV9W0AJITwQ9P1bQMMrXzIUOVxAOfJhCLxPXEBxMhkNtDtcQFTlTyOFwFxApdrrR6UyXUD/OFSu1y9dQBzsCOWxQV1AuuksAg1/XUAnsQwpcIBdQNceQ2BupF1AhG1aEF/CXUDpc5OrcBVeQMB3OF4wEF5AqgFAydN2XkDPBa6dL11eQHdE6QDnel5AJM8y7uOYXkDuU03Ul05eQEDCOxnb+V1APo95xwg+XkDmNyLN5j9eQHu1hXplRl5AtNRPWfk3XkDknBr3XWFeQDU72gquf15A5mtPoTANXkBWseOtJA5eQOPv6iQnMV5A7BVnvn1JXkCDgxhpwYFeQDlJiCKj615AuuJWncHuXkAGiB2xLdJeQKX3xiXx715AxBKAG2TLXkCpuZvX+9JeQDD2Qzexc15A/Oe3c1UAXkASc/33zqldQI34DleOeF1AFSUVlob+XEAHqP3JfwldQDJ9NLlpMl1A+ZueYof6XED8+PSqXfxcQFTO7b8et1xAOkEIQnraXECe5sZ1nAVdQM7Bz2uaPF1AQKkVmEopXUDA45Y+sz9dQLWdpX6gYl1AmKvwwMNBXUCfY5sSdRpdQInCjZF7d11AsT5B1NVyXUC0WWPQCMldQIuQdj5/211AZTB3NYntXUC6P8Cvl+xdQPNuuYZV4F1AZ+CB7xV6XUBwdjaP3ShdQOrahxReP11A6hvKukaLXUBNuBtq/ORdQL+ngkawul1AVC7TdOSyXUCXCtmmv/ddQDv6Lh4gI15ADIeTaXiiXkB6laBWu7xeQCZSeiW+NV5AIFBIGDvHXUCgm6yaDZZdQIaInkhtDF5Aaz+fS/JmXkDgdPtvI25eQGXE7sfmEF5Adm9FfVztXUAJ83N1LgBeQBpyOqi9OF5APLTx4ERZXkAwyY0wB6teQPRcKYvai15AGJ9a9RGuXkDnH8acSOJeQLvv5aaeG19Ae+nM89hmX0D/XAyKNJ5fQMS6b00E719A2j7VwPDeX0BB7AwDOsJfQPsoFXobkF9Az3NkCpAmX0DJuLBdxIxfQJPNyM9qY19AqWrmxx6IX0Ab8qiriHhfQH8HgArqlF9A6mlAxe93X0CXFXqL18ZfQCgsM6ul5F9A8t+Ed0HmX0CMspn0mopfQMYZaO2ZQF9ATVEr91tiX0DEUrUeBJBfQAoolm7T3l9AoEkQ7sIAYEBInD+gmzlgQN6rt9IuU2BABmfgu8hVYEDqvgyajU5gQF/F3QHZPWBAu2HqAioaYECDCJfYFxNgQBT63bGHGmBAuUQOWYYTYECn/ZCdlBZgQJkI3Brl/19Ah8u5AHE6X0BL2V0BexFfQJuOX/2nNF9ANBWx28I5X0Aoboeg5yFfQBXmfSIkLF9Aj2q35HPuXkBXM7V7mcVeQGkTEi7Rd15Au0nv0Lh4XkBiTXXeep1eQE1hT5c8iF5AoCX/zJi2XkDazMwPPfJeQA/rv53g6l5A22BSNmodXkC0G6HiVTheQDgsdNprml5A+80/+p2cXkA69QNmJxVfQDLV6kBDNl9AkhWABbFBX0ApsLsQ5aZeQOgVJ2qYjl5AKJ7B7I7FXkAYOpaLRWZeQDHwxhkdRV5AwGYjU8ePXkDwSoaZeE1eQKY8bQOiXl5AY2yCf13yXUB7y5M/egBeQFrF98R1rl1AU6Gd7bGwXUCbqkjv1bVdQF2TEMgMtF1AN+snbrdJXUDWlDbCe51dQH7Mk1/eAF5AST03ThuoXUDgdxhZDG9dQHofkoWVw11A+U8CwHJSXUByM44bEIddQAgq1RzcH11AXE6lUEAfXUDHKm50VANdQGAQ1OlshFxAdBE6qb5KXEDKoWtdnEJcQEFf5z5HhVxAeZemd1+JXECoSMyyPCtcQBud37ri9FtARfPy41cYXEBXoZd03ZtcQDojGC6jxlxAUrLWT5ROXEC2Uk7MR99cQG2kfmrU81xAQA4IDjXKXEDUynKA+aBcQPgj2ziZsFxAU2JEXBlzXECpgGk2wq9cQGxNCpOXqlxAWvNl47h9XEA5jimzYnJcQKjEk1r4DFxAtqhEvnBlXEDo/KBzsZ1cQLIyNePh41xAkQcgJf0lXEAlnCxcFk1cQPxth441r1xAYB/Sxzo3XUBmIkw+IohdQAqqQfjl1F1ArMrTaO6sXUD1+CswDVpdQNJUv9y0HV1A6Vvw8hZ6XUDVn1yUFHNdQH7MINa31F1AEakJioVwXkAkut3kcoVeQNLXRL9S8F5AsNuXhHsLX0CtRL8v2T9fQAemu5qpLV9ATtbgHzH+XkCR/UHEvGFeQFXpjy/ewV1AsFUHL8I2XkDGrgctmkBeQBhvLkScH15A4r9nCmQWXkCDNpE62hdeQLmnKtVuMF5AiKodkoCIXkC+v+72uQJfQCvgiXYyRF9AtkfDWNcsX0Dz1H/sfMNeQBCvhkBzXF5A7//CntJbXkAgtjSc009eQKJoFQhN8V1AyyFMErocXkD+sts5i7pdQOTPAFJmyF1ADbo7hSXIXUAK8EtdyCJeQE0+I+h4/11A6h5g60EVXkDKwcUXYpBeQHo64x6jnF5ATyqu9P5FXkC+RhfwUnteQKn/WbXxw15AsVHBr4+/XkBkmQmFBr9eQNGRUufoeF5AgC+qTEC/XkCB15mo3uNeQJJfjA5WFF9Ah8bUwbPZXkDsFX+BmbdeQKRgJ1Bh0V5ADfLcJV+7XkASljz5vp9eQBwL+AePgV5A/WjcuSSIXkBZ7g/HYr5eQAo8lOI+315A+UZTEHvlXkBqA5DPbVNfQDfiSmvlbV9A9pqchgU7X0BJpRAkrxJfQFd7MwEMC19AIw+ahhToXkD2c8L1jvZeQDM0MOtRSV9AATwm7GePX0DeCLfdUqlfQDGfx5hU8V9Az6OolWC3X0C/CbRDkN1fQDt9/dQ7yl9A6UapphSqX0A5MXJ3ngFgQIbtI9xl619AnBB9ArWNX0DF0lqrCwtgQHqHRANUFmBAgRzObjMLYEAwphmdtg9gQHNb+5CSSmBAOryf2nJGYEBFrcq6YzpgQPiRyF+2ZWBAryiSwa5/YECGbqAb9SFgQCjMsmIEEGBA2DP0FJ0KYECrSY4YzStgQLbeWdo0KWBAZ3OeG48YYEAdZnbMtyBgQGfYP57oFGBAj9pR8mEVYEBsjKlfAEBgQH1zsPCNVWBAG6r5bN2AYEBhxQh3n3hgQKizY1bGVGBAcK3zL2krYEBYpVKPZx9gQCzcLWcMzF9A/hVvmkdoX0C7tbjWq6JfQLY3p0xMm19A9lI8gCaLX0BH61sMZG1fQMVm1MqdXV9A9+T6eK/aX0DxfTfFkA1gQKCQWbobHWBAra76mqcGYEC9QmiqczhgQE0DGUTTUmBAGfyY9HoRYEDvEgtjWRFgQD4o3wqH+19AISbsrgj6X0A+n4TdEyNgQHJARzkAHGBA3UQFefosYECDhy7T3zRgQL4CFeIDUWBAuSz01MlAYEAikXpJ9StgQHOHE62mGGBAWGpiG3pZYECvsHBH8kpgQJyML4WbF2BAzS1WtlgCYEClhgOGRuNfQHqkN11T419ABOwWEUgYYEC/moTATzJgQIgABlaraWBA7zojDr6VYECwL5K2c0ZgQBpHCCBHWGBAcTuh0qzBYED1RPKpPc9gQIwu38Ph2mBAFO8QiiHfYEAt5kgW5NNgQPZotzvU4GBA49CVLYDsYECcqJHyhttgQPI+QkHt0mBAcstvXLPrYEBpE5TOn/1gQBD4B2xyJGFA9+cCOv0ZYUCK7ZhekTBhQM50bQfgY2FAV8yFgEBuYUDgC8v6LUlhQEJX2e8xO2FAFTp1A2tRYUBeXF6AgClhQA+YO6VUM2FAlLIWdJ0uYUCOh3TMcz5hQAMCdO2rG2FAQm3qa2IzYUBp6tB1a09hQOxiIQCfTWFA6zkyr513YUDWYFVlHGlhQH3k/9glcmFAExh1okWLYUANfy3NKGdhQG9+TidHWmFA/EEAD8tWYUAJov2MR09hQHoxRRjWWmFAJkHPRM1ZYUCC8G7amJdhQAF8bhnfn2FAvcCZZaawYUClp4yNq7RhQErG9gUtnGFAKtuLnwKQYUDA5E9cGUhhQMPtb+l1T2FA0KAs2F5zYUDZxcCwc5RhQCj01BkpoWFAPoYcQ5mhYUCIDa1kILBhQKW+ue7BsmFA5Q93677lYUD7kTJFbtlhQGg4xJvo42FAkRLZO9PUYUCw5x+kogxiQHxmeN0z2WFAWnnP+F7cYUDhnEJkEfphQMAggc7O92FAA5cQPbPNYUBBsoxJk/thQFP7i24fIWJA4eMMc0YlYkDQgy7BjAJiQAWC9k6FCmJAPqX1rTwCYkAWI9z+CMlhQBfxUZ6VzWFAUSCxvfvJYUAKXjgmJNJhQClpOre13WFAR2oAp820YUAat0pm7qdhQCAQ4uXYdGFAwhBJVOGKYUBKZhZe+alhQEyfJvdi5GFA+oCnGqPRYUDmsVO0bshhQDqsWLIw2mFAWvamlPvFYUAem8SbVp1hQNjCGH/Cl2FA5IVws8JtYUAUmpQSYIlhQJbj33napWFA7KpvX8qDYUC3NU/cUJZhQLELiaMkjWFAjvlmRXSpYUAUUIjMgZZhQDUP/6dzl2FAjriMO6t5YUDJb9cmU4ZhQDCSJnVZiWFAeopTPCF1YUDNv6X2JJRhQAKKGoO+m2FAh5YvkOiLYUCk3+RGdGdhQAsJwO/3TWFAXGHpz/ZRYUA++rX8ZA5hQPWFb2k/CWFAl1FiANkhYUBLkVLQDSNhQMJShCBeMWFA1de5grw3YUBAQi8fS0thQDYAFLbWb2FAinDmVOtkYUCoE/zdxlVhQD/F3ixBjWFANNpRuDmGYUA9c1kYisphQML/ZRX222FA7RsqvqLiYUBk9UfoMtphQMFwIzXg/2FALrIEFn0FYkCCn4pew/lhQASfMF/CBWJAbAt4RrbeYUBvVlg+zuJhQFm5AITZxGFA4fvsrCOvYUCKRY+laoVhQLnb9PG1bWFAtY98LlcwYUCqvVTHfwNhQLXxoxBM9WBAeY57xWX3YEAQfnT4kA1hQNN7DWB9BWFAbqAW7wbzYEAglNM5E/lgQKsnq10hv2BAvJdbc8K+YEDPJmKa57ZgQDdUnx9Ev2BAAzAPSoXbYEDlB34X/LZgQEzRCcrG7mBAzKLwi0XOYECu76A99bBgQIP84/Jw6GBA4OP4T33FYECQxUpO0NhgQFdlDe/t02BAmAiLlDPnYEAQQZ7QVQxhQOYYzyURLWFAOgf8/sVLYUDSgvLc6lRhQI1xNwAwiWFAFsG0x9qCYUActZNXq2NhQJKDx7d5amFArHJ84AFzYUAxTdSIhVZhQE2L69oyV2FAMpyZxQV5YUBZPhWTZZNhQP1kapIDjWFAeGmZol6IYUBqK4IjaYNhQDAoNFSNX2FAj/evbnGBYUCcImSDpVlhQAsy1is+Z2FASvIVPUJMYUDhVyENIlRhQAIlwNumQGFA1fD1hORGYUDeNfV/6ihhQPHBUrSEG2FA45zEWLwGYUB+kPmkJvFgQOmv9Dx58WBA3Hy09E74YECLjTCIpzFhQFE5+DSzCWFAx8YpGkoeYUBfAg3qTQFhQPA8UZJoKWFANXYSYC8QYUAY81AVUxZhQBpzG/Id8WBAZoKFK9rfYEBy+juoc+9gQFOvhsh0/WBAFo3Z8qoRYUASit4IsglhQNo2ACql62BARw5cl/z+YEBbVrReoRthQMcmTlS7JmFAD8LNpYUYYUBwKRo/ijNhQK9+ne3jZ2FAbP2n+CYoYUClxVS+IlVhQI/A138NkWFA6JNdOSfKYUDJgPrmya1hQFuLN75q0mFA7mWW7gTkYUB/ERuZlsZhQNvtCd8ME2JAcUCB65AaYkCr9x/RBhFiQHSrL3HPN2JAWt6PF4U8YkDoy6SAHFhiQMpWaG8WOGJAQZo0CcEJYkAuASqLN8VhQLLews3NmWFAo/VCkmJ1YUBFvoR0dY5hQCp940Cat2FAp5lG1DihYUBoWfcLN7phQELanUr15WFA3NA9uuEQYkCy+Yzpli9iQBJiEp6N+GFAvPcoPivbYUCgYB+cOgJiQAB36Jb4/mFAKEwrMZgkYkDSWANngjxiQDurLo3eG2JAsME9beoqYkDQaGGqvBxiQIvRLs84G2JAR9zCc6b2YUDmyWps2yJiQMLQLDewPGJAeOXZ01oZYkAuywChje5hQOBvg4ph9GFAPDVtfZrPYUAOgdAqzchhQA5gueCz4GFAVva7kUTBYUB84WHnSZVhQAGV+EowlGFAp0lyAmOqYUBwM7ACr6NhQBEenTcvg2FAP/JZ/LxXYUDwYeWGsA5hQCttfle6H2FAeD+mMFE/YUDzOnJ4ti5hQFLI5YwaOWFA/8rRNMhKYUBIX1TH/B9hQKGOyFFVR2FAHtnLh19BYUAQTNBgGydhQAUW1LGwFWFAFLy+2XYZYUAV9PUwiPpgQMbCP1dIEWFAaTM7lM1BYUAQVu1TUS1hQPKVHi3SC2FAiHfqo93KYEC99T7NMZhgQByiGAGfdWBA2y5axZtQYECwcEj8/BlgQFG+vRbjJGBAKy7r3ogLYEBx5HyF8s9fQG2XH8T/jF9A4pI8vVTkX0B1ZA6B9iNgQAEvIu44PGBAmZSvBvg/YEDVuM1jWDJgQFNzCVSKMWBAZ5cxs3xlYEBV5HgFhkZgQDQMiQzjLmBAtLLZdIwDYEAd1f5mrtNfQFGhHdRniV9AH13niOTWX0C5fSiAE/BfQBBkOxPe2V9AfkPrWhYJYEBGK/1HHqRfQIYzS/2zh19ADwYkZPQSX0BVKEdHpSdfQLzJT2RiG19AQzY/LKxFX0Ap4NE4j/VeQPRSFPO9al9AUD9RurHrXkBTDeZQiQ5fQM6VEV1gLl9A59StTSEaX0DPFJ2FecNeQByKEOGQcl5AbrTv+pCsXkDSZTgjA7FeQPwRACHU6V5AUPtc9PlTXkA5dg7ooiFeQN5oseavQV5ASBjSapDMXUAx86Ihm1ldQMg5IDbcHl1A9geB16dUXUBhTKoKCxNdQOqB/xzy3FxAeLBDOY65XEDr7VE25EtdQK5penveZF1AuiC3UNScXUD9i+0CrB1dQKn2Z6yWIF1ApwuQyTyDXUBCBOK/4n9dQCPvclCbPl1A+IOx7+0xXUCgN+S2eUhdQGoZwKYFVl1APWiGcEK1XECvX2Rxz75cQBSrsHL69VxAypn2aIkcXUBHKyBmMExdQFcgKUKjbF1AIaBoaaEXXUBk20rVsoxdQIsvv1r6ql1AHYvkNgldXUCd0qy46j9dQCvEBexFU11AIurFYn1JXUCvd1crmhVdQB7XtcA2dl1ASdQVDQ+AXUABwn3IYH5dQLcJ6RDSw11AWzyJaSHhXUDkZWQ4X05dQErjdEjf91xAgAHYUduyXECvBXVHz1NcQJZPCBlXQVxAeyHtCMbHW0BinJDRiftbQAV9CVpQI1xAqjpQWlxoXEBLZxKmZElcQBgaqn7B3VtAicsulbgUXEBghS3KWmJcQE1cQdBP+lxAVMQWYEjXXEB28jVA2t5cQAG+WbOQHF1ATAJGwk29XEC/xcQG3pBcQP4UO3d/1FxAPG1niea+XECrmxaw1fBcQKhQgXIpyFxAQo6Ah/HMXECzxNnC7ZlcQEkGgzXibVxAMwl2CaNIXEBCzwKanlVcQN9LFfTk5FtAR3/ZykpvXEDitbMyqIBcQCgZ7Np3clxAsq6VuQvwW0CWZexv2PpbQKtkGv06KVxAvnOGSNVZXEBIRP7cTVFcQKQqMOKjElxASyLIzKcwXEAHoohSFwhcQBx5/rWui1xAB4Uu8b2eXEC2TI/VRZ9cQERlPUorhVxA9eQCBKLzW0ADj9vOHkBcQGaQWyUl3ltAuhUGY8jkW0DrprB+LedbQGAm5871B1xAQGDwX/9lXEAvBO8C4F1cQAjkfSdgT1xAz+fjnmmpXEBHFApQJP9cQCb246QVDV1AICXsJgoaXUAnLjVMzQddQBZdY7ZXlFxA/uFjfcSTXEBedk5OOYBcQN3Ii4cMGV1AbSo/WRhAXUC8JScR1ZFdQG0QjbL7cl1ABHWta64IXUACgwNHRR9dQJeBpQL6B11AdCXlLGHdXEDeqcz37KNcQPU5qN//iVxADYs6ZUK0XEBHnHmKUMlcQNxM1SQY2VxAFcCTR9p7XEBsmGVyX5BcQJ0EsN+yplxAGUiFrIxTXEDhH9eKOl9cQDF3wntiKlxA1bmYk72VXEAokmtj2cVcQGTAIL1YtVxAoP5Ll1e+XEBSCVhwdYBcQEa88cd03FxAuQzkuezaXEAEVLCsOhhdQGVAus/z1lxAv5bjCDWiXEAXCytSOnxcQH+ZyCUL5FxAIy6eGxDxXEA0gD7ZlgpdQLzKMTlCT11Ajc/FCEFwXUDJ9Mnd5aZdQJ7rjJ7xe11ATI6lZ2GwXUBytTnhXMhdQFBsB8X6iV1A0j3LHh2RXUDN8U48ocFdQDUZPNWOQ11AXPCcs2NAXUCXHSp+dgZdQJCKlmEKJ11AbMA3AJzhXED+FFRt6pRcQLMsA0xOPVxAJJ5UH7bdW0B75XA2/eFbQDQM4kmyIVxA3W6N7QlhXEAe044nNz1cQFBArXpGU1xAq8GeeyM3XEANJmKu/BpcQL3amhf3P1xAutpRvF7vW0AseTShF4NbQIJxf83wuFtAWKFivWZjW0A0Tds+yRZbQCWYgkdMA1tAfHh9uUnNWkA4IJMh09haQFnmZTZ/yVpAy1hTR1YNW0AUPA+sF1dbQKKkgtWiZFtAPzSP2mCgW0AiCjUhp7NbQCShN920hFtADlVo+HHnW0DlI5kO2ZlbQH7V2asiy1tARUkZI+lEXEACw47wsFRcQN0gdiU77FtAL5oDnGkLXEAhsWKLpZxcQCPJlSIHMl1A28wvo10UXUB4qDavsRRdQPCwbF7mH11Accz9+R31XEB3YvUNGQddQJL85fp5OV1AGh5SFIiLXEAQUq7s/7dcQAaUg8mLclxARtl9LRsDXEBgTH+JdulbQM01bVfPxVtAYAhlRk+qW0DIjuhymrxbQCJlCtq/g1tA1OmnsmXzW0CKgX2iukNbQAIm02RIIVtA01Wr8K5HW0Apu2z7pYJbQMJ0KdkSdltAz11fRC5qW0A0W3l1ZxBcQNpZ5kwlw1tAkGM2Xn6DW0ASArJs+B9bQIk6HAbUD1tArUYkJ24TW0C7phiiEflaQDMeKZZhqVpAYbggbpL7WkAIOHUrPkNbQHJp87aFPFtAuNASUiITW0AnVMs2KUJbQO/rj08rGVtAFhtrAlFxW0ApLJ1ei5NbQFhKv6w8DFtAWcnVhEpAW0C5GqcYy/ZaQLdxuSCpA1tAjqlDS8TRW0BCbjDuJQ1cQIC0BJpY4FtAdHhF9yuQW0DJqdyX05tbQLMORXT1L1xAPpjZUnpjXEBlNPCJi2JcQN0Je9O3k1xAtPqichuRXECWLKrSfZxcQBXHTp5vlFxACIRei3YFXUArzma6SgFdQDPQWuhq0VxAb1Ssf2u+XEC9TRZEcQNdQEntMQB/JV1ASUWScyYjXUDRk5H4vdRcQKs8QjZh3VxAC+OzaLvcXEA89khWZIZcQJ9Lep0GZlxAuTKrJdxPXEDZ9n1LcmpcQNyRg0w7NVxAIxqghFOIXEAbZFF2+GVcQK9eNhJTJFxAFFOG8zsFXEBuOM44H1hcQCPSvgBaMlxAN+Xxuj3gXEA7Jqi7D/hcQOeFL64nslxA9aTNr8aXXEDOLthHaftcQI0rNhJD01xAcW/2M8f8XECiEMUTa6RcQDLId7Srw1xARJ+OxnyiXECbeYHWd/xcQAhYf8JJXV1AauZfJ9zMXEAunyvVaMRcQD4z7B+1mlxAmlwSKja8XECG6qcRD15cQBAuZ/WxSlxAuEnVZZEYXEAayVXEqDRcQEaD1zg3T1xAMp5tdNN+XECa3rRgopBcQGCSxa2cnVxAIZZM/zd3XEBgZXjhnwhcQITLU4IZPFxANOtTevh4XEDdIg7KMo5cQLk1r5zjnFxAbZTwF5rUXEArKzoLPFVcQKG93ah+a1xAYZAyx00sXEAAxYS2909cQNO00Sk5dlxAnP0ae8PQXEC/WWZsfBtdQByCZyWaUl1AyNYFQG+TXUArvOmuPKhdQN+Dx7JwjV1ArcB8bG+TXUAluAM7pLldQI3ZW4JauF1ANHdrOdb0XUCb2Gasn3ZeQGR2+AfTW15A1iO6v3N6XkBFiyz1ZJdeQEHUa63atV5A2ykcS14bX0BIpErRoRNfQDlKWA7WAF9AnpIhPdXwXkD/RoxGq89eQC+BNHuxB19AlSGSr6fxXkBUUPst/xZfQD8ZJtJ//F5ADgQgxPbKXkAy52UGsG9eQOGlRktJNV5AnkxldsHuXUDZV57NUAZeQEf6cgEWFl5AhxS1jLwjXkA/FaH6sjBeQP23fg7/jV5Ae4Ds611TXkBSGlRB8lBeQJLUCvHzrV5A01bo+5rGXkAlbMT2stVeQET5dHmyy15ANirlAlmuXkBYu5XkPodeQA+6VdFePF5ASOsVftwFXkAITOvBy8FdQHtwlkdQ011AYKiROxocXkBRS92aNS9eQA098DvVO15ATVhPxIshXkCgvTRXHWJeQDjN3w8tiV5AlgfLG3tAXkC/WyxoUOxdQCb8E2Zc611A/JavemPrXUDwqaCFG8JdQJndtQKAqV1A0Hacug2NXUCGR+n2zWFdQBe6vcOlt11AMP5BorF/XUBMZFWNzD1dQLNpuBtSTl1AyJC/NGlAXUBMRYsiQuhcQDyxVDCzwVxApESqK2b6XEBNihv3wM1cQFODPcbVulxAD2kkLasaXUBvGAtzXABdQIz0yG17Ml1A6bEr0hwQXUBFMidX5iNdQNsHw6d5Ol1Ag8qJm2lpXUDSZSMMMGhdQFDavCOHcl1AtxEM9/skXUBE5iSYcwJdQBH9xmeBO11AUM9Z0QYyXUCr9jZja0ZdQPXc+Tq+gl1AXj9rEpZ+XUDLf8c2wWtdQEy6wM1UZF1AiCuT+3wNXUCRtwGJ5OJcQEVYSRBhmlxAHXQIawLwXEDq4nwKjBBdQC2Lvn5U/VxAVokUPloyXUAJ1ZPx7hFdQEljqC+L5lxA3MZPCbbLXEDaMrdZFGNcQLm5yC8ej1xA3KmsMq9OXEBJlE9KK3VcQEK4g7n7J1xAmgHrWWjlW0B4gr/W6zBcQOn9VPvblVxA9IPVZ3eTXEDi5cJgE3pcQBT101cZWFxAId4qoJVPXEAetDcyzERcQMOrkyFevlxAVuy1GPmmXEBhy7KdM2JcQNk06bLs+1tAktnlBxpeW0Ar0snGfmlbQOAvofe4SFtATIXKqrhWW0CqaNIxvmFbQJZt/XaYCVtAqJpWuNrtWkAuFo4EdD1bQMAYPcDP5FpAcfVy/9grW0CPCboXaolbQJMaxRH2fVtAxWqXM5GNW0DAAYVWxItbQA/q00VYoltAwaKT3HmQW0CMQYjW4pxbQCJ00SgYxltAkRpWIXLWW0D8/4aywTJcQFYbk9hHQFxAeWF7vUltXEANM7y8Hr1cQPTkbKTAxlxAjB+UouDwXEDvMb3amARdQMOjVOiCvlxAeDVfsDWeXEBYYYRf99lcQG5BCNdH7lxAYjY5j0JPXUCWTSYUxe5cQGGgVKUq71xAUB8s/vL0XECrUov3iYVcQOP6B2heWlxAc3rIRKNiXEDSSdudqIVcQPl9v4eFkVxAywHpq8y0XEAdQS8m/IFcQOvcZWPGOlxAKHJoAu+hXEDBUQVxpadcQNBY2XFj6FxAOwdQrfQ1XUBGah85VOhcQGhP45G551xAms7ivREXXUBJtQOX62ZdQG6B6tBUE11Am5iqAPxKXUDfG7aaNxxdQLk6zAm4/VxAPlK16dXqXEANWgU6qcdcQDWKFj7zjVxAbCIlHmyEXECAFKsVoGBcQFLqAchZC1xA3Krdk6vYW0BDw1DU0DZcQNOWwcjNJ1xA4S0J7GE8XEBc48JG6hVcQMrbiD9LR1xA2nMyN3ZVXEDyv0vwr5ZcQFIWGZMNRFxAbToa0rQpXEDaOSpRLVVcQNuVFsRBJlxAuF2WSbIfXED84kGhJjtcQODS1m7VMlxA4rvfEMtCXEBFAXNqKGlcQOVfughS21xA0HGKJLjzXEDAgERmfzRdQInxIEwwTl1AY0ESNb8PXUB9JAOJNslcQJS2M4lUdVxAHtgNg9DUXECMkN/rvW5cQLz/8LjeOlxALbOim8iJXEDCDW4qPqdcQKwUXJhsGF1AiWuiUxoIXUAaSh7nnildQDgFCUAm6FxAfkgfz/EBXUCINTUoF7xcQLux4Kb2dVxAn9g3RXttXEASw719BRlcQIPfge7PlFtAlfNKB8NIW0AAGCKgDd1bQBh5reKikltA/i3+9AiLW0AWS0oQ5ZRbQFb1YiERU1tA9fmyKDdsW0CR8DzMiCNbQG8vPl69F1tA/33bidc6W0DC4g20pzdbQCUEFRg2EFxAS7eD2h49XEBP+Ly7PahcQI/I4oOBR1xAqLvubebOW0D3eEbht5BbQDn8R4vJdVtAg1D6ekUMW0B8x39DyMBaQID7ait351pAYGtHNaq+WkA8207RnKNaQCAbJjVlqlpAIh4PFmSAWkBR1vvylGhaQEl5sPSjVlpAsBcJO5UwWkAHhnKeZ1FaQI7rCCMgLlpANkAqKrUdWkDIux/jie5ZQMl4movV/llA5kVLBg7RWUBVFpqrHaBZQIOpbMt0ClpAYlDEFyTMWUAB5n/LEmNaQP0T8x+jdFpAymG8vslAWkCMYBOu/ZJaQIP2u2Xf1FpAB4LGOY/0WkB9iEmO9DxbQJnwEvMlwlpAL2sndEyPWkAaI3b34uJZQMJ5ICuTNlpA70xscE7FWkBwpf+yeONaQA+El3xs41pAInxSW+v3WkBZiwnI8xZbQDZrgEtcQFtA6CgmUXasW0AGFimeR3hbQI1W/udcfFtAv2kkzrKNW0Ce9sAfYdNbQC5GGDhpO1xAmmCENEapXEA3lDZQXKpcQCXJ9wUvZVxACeUvNXDaXEC8os/YkahcQMmpkm1LiFxABgZGiT5ZXECkGyHca8dcQC1Td7BMylxAmMBYZkjcXEAPVRAJzbFcQMbZ0dwlkVxAH40BewhMXEBN7pWRUalcQNhwP1KH3VxAn10aARThXECj2M7BuqFcQDXi84qajVxAas2Iuhg6XEAkjgVPslNcQJ+KNWGzMVxAHLu15AgVXEAzwY4xYPdbQL3YQ/TE9ltAWbesyB5DXED8FHLuRctbQLab6Yqg1VtAMhZYBMIZXECt76XOmsFbQBXLC6UZeltA5tfXhxBkW0AHC9j5mCVbQEpaFzoR31pAJoV75PDHWkDp4fHQjYZbQPQe8IpYUFtA5koIbME2W0AHECUODR5bQMV4Utj4T1tAhzHBLK9OW0DZzMhxaX9bQGAa0ry0EVtAcI0QCV4DW0AjwpJjRPVaQJWvrczq6lpAXxcVgiPSWkBzT+qWXIlaQKih9TbqclpAw1euFBo8WkBX4c31XDNaQJAQLmsqC1pApkpYOXoTWkAkQnipGyhaQLekXldwClpAnH844MDzWUDsCNeiV4dZQL54b2Sj/1lAqlvdC/zfWUCiEQGqyK1ZQLC4hAvCxFlAq99L/ctrWUDOsecQBR5ZQMuMvFc5lVlAGjZtt5bMWUC4jXGIzL5ZQKGhl3XcK1pAfflnERj5WUA/ep+Kkh9aQE+2HHlA1lpA0gQ6IqJAW0BB5ZUN0T5bQKgGDD04A1tAILvRWtpOW0DmlAV2ui1bQB9sXNfxUFtAl9KF+ZxSW0CwYHraOeJbQMzry7QkQFxAc06Ju3qeXEBA11nMJcJcQDx0Dh3VOV1AURO534JYXUD94q3qL7FdQHc6Lgx+0F1A/s/B34KoXUAyaw8aicxdQBVtii2jrl1A8UojZVSFXUCmlw6YYk1dQJlSxGzjql1A8Pe2bpu1XUC5FCQSDX1dQM78uaBEal1AA6cqUApUXUDaaDcPopxdQIBVqKd+pF1AVm4E8OnDXUAKY6GqTNtdQMQobDUsAV5A9tdJwi7FXUBPljUgm55dQMAFjaY3s11A5gHtui2bXUCAWucvqqldQP9OerK8k11A8zJJrmWcXUAVXWSLcRdeQLBPzJe/yV1AbFKcIEt+XUBODDcoPUNdQAVbOrcgMF1A8zlf7wsdXUA/jri8aTldQH5BAhz7gF1ANAQ03LGIXUCPHB/w8kNdQFDs0Pl+bl1A6vqJzX2fXUCbDrc9EtldQNCG+nLFy11AK7wM4pHfXUD08d7FM1ReQEPNzOJA315AqGpx7/EPX0AO0iRkektfQKWZvH9CE19AYBBnNzkkX0B2OymOzDZfQA0bKKOETl9AUnPFnhr8XkB/4sS0le5eQN6RmhB6Ol9A95J/aa1XX0CxTEp29kRfQBm1R7LqO19AG27CKV30XkCepdKZ481eQOv06wkOAF9ADEpENcQzX0AuEtNj29ZeQE+MVLaok15Ap2BEPm7SXkC54sflNzZfQMEQt3H5JV9AmipCX2dIX0D1NBpjZ9dfQKs4FVOJlF9APgTmXxKXX0BA2aVS9YtfQOcD0auSoV9AUc/9bEZwX0AF8bsWC5hfQGHq6xbDo19A6W71CUyAX0BhFynKE91eQILhn5OJoV5A7/fQs4ZkXkDuaCyLZ0JeQI63L7REGF5Azn0hOnU4XkAqEKH4UwFeQHv/1k0JCV5A2Iy7BAcbXkAgdO6tq0peQI6OFxStVV5AMLIfmE4qXkD3lpX/GhheQMhZNA2X9F1AS/jf2rPtXUDzRJ3oT9FdQNvIPTgg4V1AO1KDwm0JXkAp+WZebsVdQNHLja6Aml1Ai0eDgLJiXUCMQkdFuzpdQK1Oxo//L11AwiyY7/ZxXUDoJgrYw8pdQBQy80A8y11Av9x3aZXwXUDhSKHHBBZeQMaOMoJd8V1AHxXgXGnkXUBTKAQoGcJdQACGWZrCSl1ApIgjv/q4XUC/BKVR9dBdQDRGmVj3I11A6raGhsRlXUB38NS30AxdQLTS3t3NNF1A9vmqvCHuXEAg8Zc+L1pdQHVRs0Hne11AbvAyeOxjXUBSG06mrRJdQN1Qm/0/B11AqCt9n7kPXUBrJubBieVcQHEibxP3JF1AXrLuu4z3XEDZ5XfyDg1dQGkU9ccp9FxABjHz/VhnXUCNDCFedmFdQK27etl0KF1Ap0Edu9lYXUClcRgF1kJdQFNW48CKAl1AIsPEzKWMXECEHfVDB/NcQAJoODqJm1xAc1YoDQxBXEAf5Mp0EWFcQDh0PCOdClxAWXyEgq0lXEBZEBrylQZcQHefSuXDK1xAGq7P4ZFiXEAaZhmYOidcQNnfXWgL4VtAR2Ti/w43XEDQSENVgdVbQGtkvy2h1VtAN/KFa0AWXEBi5Gtq9XNcQDHgm43AI1xAHzRAzco1XEBQBQX+oHZcQF0keUYHXVxANrq5+NhbXEClwm1SmlhcQPFQgc8wZVxApCRSYhs0XEAy/395in9cQP7lvtOzn1xAESP9ObT1XECCR9w5FP9cQKQv9VDzxVxAL56J5WQlXUDgcWIYriBdQHaqUVinll1AXxTNCqtmXUC1CahcqmldQBJEbuNhUV1A37UqfgVIXUA0MZVFvDZdQFkrQIdpIF1AtkjSqwhaXUBhlDmwG2xdQCK+WMG7F15ABCqbkKEXXkDzq+zOlCleQBeQ8GBT3F1APGFH4MqqXUAMt78sIEReQJkTWINXcl5AWusEL/RjXkA9b+YWLV5eQNj/f/zUGV5A9vvnzfw8XkA8BKn/ifheQIObiZIYnl5AVSCss1vZXkBCt6CyHYdeQJp4mMuXg15AQZwGR6hEXkDNUY0kqUpeQFCUhH5cnF5AWIF2ShO9XkAmEOGo3LZeQAhm2+PF0F5AU0O3b5saX0Ds8csKgH5fQFLsgIayoV9A8CcperCFX0CsK1AC5mRfQJaC7E28zF9AK+yHtV35X0DFXBrEhgJgQAXvWhS9sF9Aun76+ezsX0BACoRWOdNfQC0QGd056F9AIp/cyM/5X0AXVVJOq+JfQPIctNoRR2BAhS2RXKkiYEBWXpvNOtZfQJKn75g/nV9AGlchudCnX0AcHsZNzY9fQFZy2egIhl9AZpRrnwOIX0AZc+46m5ZfQNUM+Vno9F9Aguc3A5P4X0BZseqg3alfQPcEVSsXul9A3gJ27R/OX0DpUTu6AwNgQPK3P8UXI2BA2evsYM8LYEDbg2WkWUFgQJK//xZAPGBAqb2BiUAVYEBg/+11+vRfQJjxxKECAGBACEJnptgsYECg9OgzXFRgQENMSIZfS2BA70E5iMMxYEDG/b/ppEpgQK95shLJMGBAXUXKgl8OYEBbuERCcU5gQKy6bvNOJmBApf3SLILoX0B7aCZhtg5gQL5tcDVQJGBA/Dpb1hRPYEDaJ87VN2VgQEanNUl5gWBA/iIFU0WCYECqXWz/QqFgQO5bRLeAl2BAr8EpRmSTYECXsHmzUGdgQN6iib2UOmBA4yNEM8VTYEAp1WVbxGNgQIID3fMSaGBAJY/qjp2WYEDQv80ZDrRgQOkbHHXgsmBAOlbomGmoYEDtTZNyebpgQMXuG7hrsmBAZvb4pvWwYEB3VSYBEqxgQMYPeoNv1mBAkXEYy8S3YEDviLqHL7VgQPGvRFFMl2BAhZWKuNHEYECaNFKBsotgQHuJ36ARuGBAJph/9ByhYEBOADtXYHFgQGRZBswbN2BAe4Ti/rc5YECepczhcipgQKQplw6rFmBA8mL5SS4hYEBsdJcEYCFgQAkEDq7TQ2BAoBx7zCgTYEAAD2bPIQxgQFAnRrVU219A6jjnX2zLX0C3pSOW9SBgQMwtegkq/19A2Km+S833X0CFIUIs9qtfQONxU5Y1m19AHLCQ8adVX0DY7O3WI+BfQNA1v0Wc+19AjV9vyWwlYEDdMaAvZElgQCMowc3je2BA8j/BGIp0YEA4hkbGFJVgQNbi1+DslmBAbhOUg3abYEBKJjHAXoFgQDK9xlUshWBAp+aFwatcYECIERkMG1pgQLjOWWxxiGBAEA+YGcydYEDZTZPVOXBgQDloXz8GVWBAPp6DOieIYEBuym5igIpgQOUShjoxlmBA82qojS+hYEAfIaCVd59gQBIG1lngn2BAnIpQeiVSYED2T56N/09gQElPsGXZcGBA+bn++gJsYEDsUdg3sYNgQHLlVUDge2BAeTn+6qpjYEBMqc6Fb2pgQJpF296YOmBAF6te/+tfYECpcxXmTRpgQPKzUxWM/19ATRF4UyUpYEA9XyQYwWlgQPaP4lJxkWBAx4vM4GFkYEDgS83UNnVgQO/eeiCpkGBAaxtL2dabYEAa2Op3R5ZgQHIqwF0b02BA+wY+AhQNYUB1oTEcCRNhQD1+E3AdFmFArnkCBlcTYUAqdmCI9RxhQBmVEulHIGFA1LQJL2MdYUDD/uI0TNxgQMYUz4mwz2BAKwIvJMrSYEBaFMKQtQJhQJjqU2HQHmFAJPEHGX4VYUC03Ph4cBJhQLge6qFEBWFAGDFqtnTVYEAwTh2T3/ZgQDdkeRZL+GBAAKDHVCMHYUBrXPMHJCFhQFlbY81kEGFAFFKSSUXYYECV65PBKtVgQJJTpSRpu2BAEq52gMi9YEBnALMuaeVgQDp+HI+LxWBAerOouW7PYEBJIlnlj8NgQHRGIz/9w2BAI4bFDGHOYEAZEVGAOuFgQGLY2nEl+GBApmrMgQDoYECFig2dlxFhQD2FNlM/4GBABey6q57TYED45THxIsxgQE0E4ytSnmBAGBaTpPigYEByY9Rev6xgQK2j8K07r2BAcqrjomBtYEBI8koN9FZgQKD12m/dY2BAKy6mN9ptYECVa5ETwVhgQJoR9Mr3KmBAiRozW0MzYECFfyOQSSxgQCS97TClKWBArAhHqL8OYEBgORX6uRlgQBKKYWJ/D2BAWkmQExAkYEAo1W8QYDVgQKmuw8OaL2BApBuWO3A/YECZl1TS1zpgQD9t8b7iH2BASqsSt14gYEC/wYYBbOtfQHyy3cX23F9Am9II2E5hX0DVuVMU50JfQKAjt3exM19A7seXntFCX0Bhkhl/80pfQEJHfmWyUV9AITseqAWpX0AJKOoqWopfQBEo03tkS19ACOhRiAFYX0BV8CBVoVNfQEdcqDertl5A2t33+ss1X0AkqVvUw15fQFE+ommFMF9A/1ugszFlX0CI5TQXpUZfQF+FzS2aUV9AiAff+cVMX0D8CmOOVZJfQIY+7iCJml9AodC9+G/IX0APzAeAqPpfQL46Q7MnAmBAgkb+KU79X0AIBN6KXgZgQGELsVVhj19A2yHOZsHGX0DfThfKUwZgQDCdOKwuMWBATUx57pZtYECIGpb1qZZgQIXSzwWFr2BAM+ePQ/2hYEAw+UqXTudgQKb+wAQ76GBAdQjoN+jUYEB5QjjJctlgQMf9ady2yGBAS6DpKJmQYECL3xexVnRgQCLyMMiQM2BARjBiwThVYEDX5pl+sDJgQJjpa+k1SmBA9KLW2aJWYECn7hwXRE5gQMTUCc6hdmBABo4ABbJ2YEDFJrA8GmhgQBby2q8ydWBA9ryGyPByYEA8nShYrTRgQDfL0J+rHWBAQB8lG/ZoYEAC3Awdui5gQANXJ25lGWBAtAhwSHM4YECypzMXDWVgQMBtwQ+jd2BAfHtFNJtsYEDiRcKx36tgQG2PKL2P3GBAMcK61sT8YEC9m9j+h/9gQEy7XcwqD2FADYP05HIQYUDFeHat0zhhQH4/y7jaH2FAWj6WSNkYYUAZEmEcVw9hQNTmKyEgC2FA3FlIm4lyYUC2Dhd8Y4JhQKlX7imTfGFAfiI4IIlwYUCcQDnnJWphQHGo1MqofmFA2AAnITGiYUCDWzseBmVhQLAKv/tHjWFAI54Sef6RYUCgxhiYcHBhQM715dB2h2FAEi9NRr2EYUD05+4fFpphQBQ2v9Qui2FA6F6ppT16YUAxyj2NRG9hQGXmRaK4eWFAbXLNBeZrYUC2Ah8oMy9hQAdLpwIodWFAWnsq+HSjYUDjWD8q055hQAO2WbfSo2FA5I1h4XS8YUCdRZodH79hQM3hmpkruWFAa4jISCLqYUDZuqe1A9thQMW7z2sHrWFAkGA3L83WYUByXNR7zcxhQFILMkxgv2FAeOa5tly7YUB2EK2QdNphQMzXnzBK2mFAa/bTKznxYUCSkshdqUNiQGqC66qYL2JAzF8bbDIVYkBLvmSCwQJiQI50Mzp8HGJAy03EficsYkAYPKjFo0RiQNL36z2SFmJAx7F4jJwEYkBd5I6knwBiQGzto+6692FAzV1D6K7+YUBEHkGvndVhQHVt+ej17GFAiy0NPpbGYUAkgHYadLVhQGxKJWRzpWFAt6Dclo/MYUCHlgXjyMlhQFjLWPOb/2FAcLc7ezscYkDjgCIrYg9iQLfFQHYWLmJAPfiK2kYuYkDwCI9WLwZiQJFXFVRU9WFAQfK2YLkgYkCpE0MfmBNiQBW4Pd5+IGJARMVXczQUYkD2pxqvlu5hQOuB4apzGWJANZVMHj09YkCzn3AdlBBiQIdGDzTpCWJAP5b6fr39YUCJZR7GjQ1iQBl7JVujA2JAUxo8/XINYkDU4JhUaBJiQJeC1+ia8mFAzrU9/McgYkCyfbNFpnFiQOVwuofyeWJAEce6QyiIYkATxD4KvKhiQLYGrPrkmGJACp5hrPKDYkBwqKfpQYFiQJUOymuIcmJAX76ruldJYkAKtciDf2FiQLz+gy7QgWJABsBmCRFaYkDmqazUaYRiQALbhh2hpmJAy7SFzEyaYkC048AZwohiQChxnncNwWJASRrLbU7VYkCNiEyj+KZiQN7iRj5dq2JAOEUvED7PYkA83qNtSP5iQHxsvBpNIWNAwRGA0ysWY0AOGTtTNABjQEBq/j7P4WJA7+3FDLwUY0CZ0nY/w/xiQN1+DyGaM2NAV5TWvHYxY0CT2SUOrEJjQL6VRWzlR2NAdvEft8Y8Y0BUsF9xtVpjQCjkzvztkGNAv8PsK0ySY0B14vDli35jQEcjyF8NiGNAfYhTlfCxY0CdUOGJbs1jQKaNjn9m7WNAWc2fXbDyY0CcyIbN5OZjQGofF7Wx12NAaHXammnfY0AoQNuW7t9jQPtYDnNh7GNAgEYqoRTyY0ASqhGMNglkQFYKG7K85mNAKa46LSLEY0DihseO+7pjQDvZHpqXmGNAeD2ZFr+IY0BkWQV6faBjQPmhipPkpWNAEm4hzTimY0BmcpvPLJxjQEdy4OAWtGNA4UBGfz6UY0AvPT2Ie3JjQPmVlolWQmNAI22jyn1/Y0Ack689LRpjQD/6UMFqOmNAT/sL46kkY0CDhNHs+BFjQDwEmTkDWWNAzv3xer6BY0AV3dwH37ZjQNbBnM4qi2NAawD4RE6AY0BosBVe4ZhjQC2j/q7UhGNA3/wYiKDOY0CZdGJmxdtjQCQcLx+n2GNA7FlIpov0Y0BJwUSRPNhjQO1a4FQOzWNA7LGmdJ3RY0BOS7okm+FjQEXcKBVD/mNAziQdGkHUY0DFTNUXVPpjQBUQ2oZs2WNAwR85oUyNY0Anj+WkVXhjQKdn0zvRcmNAQH3RJ3+jY0CI/U1rh5VjQCTVUN3OqGNAdzxtrr+4Y0A94v7uM8pjQHn7HX4r6GNAaeFVzk+nY0DxYKAGbpZjQDewS5DUW2NAxdTiOSZaY0Do6cqkQC9jQKxJVCDrFmNAWvjlEL0TY0CFkT77nCVjQEqsAR1YNWNAGqzISsgfY0DtIbxU6stiQJcYfLgHz2JA/A/QaWXnYkDOmXtx8QNjQE8xu5wn52JA2/wKmHwyY0CBxv6Wji5jQHA+trjXNWNAjGueNfAVY0ByTdqEneViQICysBbh5mJAL/xLtaPtYkCorWJtVu9iQBeGxeKyIWNAHp1052hPY0CCyiI2BFljQCWjvftaXmNA6tsbDilsY0CVwlssjm9jQIMGJYGTE2NAwyBohLgsY0Am140gwUNjQIRtstRPaWNAzkqQt3ZxY0Be8y+oU4ljQOmOV55wO2NAzkhdefktY0CYc8Ms/BZjQFn18QpvQWNAvejhne48Y0AolUgD4BBjQIVNrkgm72JAfkaRSN/LYkBsO4KVv+1iQPU65EVD5WJA5piknpW5YkBPh268TpJiQHeM+k8BlWJA1VYf7H+QYkCHg7ONUotiQLKIn3eJo2JA0/hbalWsYkBm8Y536cNiQAm+7xN3nWJAKo6OvSSrYkA5wuXAILBiQIS7UFiKrGJAWRAVzejtYkB8c5fL2M1iQPLheETwB2NA39G38A36YkDjpvsIPMxiQHTqD07mqGJAq3z0bYfAYkCONrad3dRiQJGhZAy0uGJAsa7/63TGYkDVaCh8zWFiQHyd416QUGJAMOOW8bN1YkCi15/QzqtiQLS9XzaRZmJAldq+cfWAYkDHb3k7H4RiQNpc7uB6bWJA214wmTl1YkD1ZCzM34tiQFYDJzHpZGJAjdhC37twYkBJNz0M5UNiQALg5bHxUWJAJn1xxR9SYkA87oXjfVpiQAuq3KNzL2JAgIv4MM1lYkDJUyNvY1BiQKTWeJi0QWJAt9JOKFcgYkArUz6q6RxiQJzechHMLmJAZtR1Ft0QYkD8+CClFjViQIPQp5GzBmJA/bOIJpxKYkA7yns6hRViQIksKh1sAGJAnaX1d/UUYkCJCjuVURJiQCuHM8A5LWJAfqjb4f9AYkDRdcIyjJNiQBWyPm97fGJAn1tQ5W5tYkBUoFoBs3ZiQGWvMACJf2JAREZ9mZZ+YkBckpuuglZiQPpP/XLoEmJANX5HWkn/YUAJXGrophFiQHUx3IhGBWJAck2sdhfxYUC+/wbNVR1iQMpybzSsCmJANSSlc3nRYUD3mrlV4d1hQEZQEorS5GFACGCplcvdYUBott2mDs5hQOFkzPA0y2FAKCDZjMTfYUByH3W65+ZhQE+STS11zGFAO/jpq3kLYkCZUfnBlfxhQNBsmi4j4GFAfl5PT6TcYUDCUCOE7OFhQGJ4GZFY42FAk1pTTT72YUDgC9unpfphQD2M6MxX6WFAb/QEMgjqYUAB4TCcOf5hQE7hQ+HB8WFALIjwJUAXYkCeVenpbDViQFZsEL3BL2JAqpbGnQwsYkDYxcryglJiQAe8eAEFTWJAHoMjlaZXYkBolAi40odiQHbwjc+hSmJAQypmWqZMYkBLJQ8fRxhiQDu/U7iLCGJAqrqYzSAdYkD1a4jNPfZhQKcBrP+21GFAZY4UK2irYUC7G7gD9eFhQJDZBklauGFA8IEv81q3YUBuCeUtLdZhQF9nmbfa1mFAC3GaQzbIYUD0eBspQdZhQKUWZ6MvBWJA9qIxhJYNYkD3PnslQhJiQGpAkQ2pFWJAAqh+ZSUQYkCE8YO9JxRiQJcNwRz6SGJAWpJS/VZaYkCWE9da2jZiQOAQ25wpPGJA/Tb1XukbYkDSCTg8Mv5hQJRkoZKR2mFAcl3ROmXPYUCOxHnH+I5hQMRaXncbkmFAmqhFbqDIYUCflQ7G+r1hQD5po2K4r2FAbPn7q51+YUDuzsALD0NhQIisRbaldmFAlqcPnYZfYUBhDX0IBEBhQFfWWFEhPmFACLqpt2UnYUAy5hK1hylhQDlTuUJLRmFA0OLFSWsZYUDC7BxMChJhQBkW3/MlNGFAr4kN17lXYUC1RMRFq3lhQACykNDvYWFAlH2INoliYUB7PjRdtIFhQKCWESe8cWFAcdtag8N0YUArGfWPHWZhQJ5/Ac2gZWFA05jjSFeDYUAZdOnQ9IJhQBpPt8lVpmFANc/6FLnMYUBN+pFyRMxhQFK+wGpkt2FAJils5UV1YUASOw/XlE1hQOrXa4L0dGFAp/GyxsyEYUCacEMc93RhQHJ+T37ud2FA66Fjb3KJYUCXcsVKyZhhQHEf9CaCi2FAW7sTwf1xYUBRYuRW441hQCvPYDb6fWFAcKazj8hvYUCNeLhaAUlhQBVGgkGDL2FA1grnx1smYUCLislmcxBhQFVAAiKjNGFAmwyL1aYcYUCCAVhWoPVgQFM/yq/q0GBA7zH85TAJYUBy9X5lDgNhQMDjELs7F2FAr1wZZ1UOYUDjIkR1CilhQP9s7ePWaGFACqfEndJZYUAzTAmfoHdhQB9RhPUKZWFAVe11ViNlYUDt7TQDKGNhQAjsmhomomFAa6CI7J6zYUAZx4F0HLFhQBaIDa+A72FAJ3oRMkgaYkBdXeY9bx5iQG5Ccjfm4mFAdusmKtUkYkD4uFyy4x5iQApVfgY+OmJAs32TyXB+YkAgWRqMsG5iQNctaR7OZmJAwbrnlpJlYkBrHgRIy5JiQEicbGKXq2JA+lvUNxu2YkCZ24HPkcRiQLYiNrI7oWJAOqk32lOMYkBzomBbopJiQNqDN81FqWJA8UG/asKTYkB3XMbnuW1iQEQCBZMDlWJA+vofxneoYkCQk0TSY5RiQIi0NTB5smJA1ds2Ocq5YkAhGuMKedJiQEwLNoEaGmNAELNMRQULY0BEKwmcPQNjQJwA7AsevGJAAFMM+O/tYkBaiZ2ykqliQKxgVV3QsWJAf+8rV4FcYkAizgitw4tiQNj8XC5su2JAUujN8y58YkB5jPQztmtiQKOninTWUWJAAGm/dq1nYkDvRg2946FiQNgahm0mqGJAVwCWYH55YkAMWxqNU3ViQMvm5csCX2JAvtaKv9hTYkCFjXU+8HJiQGiqgX+emWJAbpzLx3GoYkD01Bq+2LliQM4iL6GvkWJAWe8/R7DxYkB8mgmJpPpiQKTyfSCHzmJAivq7bhqiYkBsq9prhWJiQEITJUfhdmJAReGCMEAyYkCot4TBuDJiQAg0v9mQFmJA+9NCUEEPYkCs+nc74/phQMZrUhNl6GFA7VBJjfzeYUA8HpJ7fPBhQBp0GMwm5GFAGUY1gYTwYUCyhe7nW+thQGIm++Pn3WFALLlyjqvOYUCSh/+7Qu5hQD44LyZsFmJA3MYgFJTbYUAJUOus1NZhQHz74kSLqGFA91lJTLSnYUCYlEcl98ZhQHtcY2Nt3mFAM//hwA74YUDQFH9ncc1hQB1lvLNdlmFAACDbUid6YUDClQYZEZFhQK1prelinmFAwgWXCBqqYUAMEoE5wK1hQKVJK8OlrmFASGwzgv99YUAnE/XEXExhQDkoHHhTYGFAtAEZ5j9aYUBVyN7/OS5hQJC0JUcsLGFAZki3tTweYUAHqDtPcgBhQLFdp6bsB2FAciIBTDcxYUAFz1GfxgphQKmKz+NaMmFA7oqBOWY6YUA+YWuLGlFhQIBH2tmHTGFAlW2YoFQ9YUASOs8fLTRhQA6N6AgHMWFAeAA7bXQuYUDu1cEXeDZhQHRJNRYHPmFAP8BnnwViYUD+AyeXAmBhQDP9qnCTQWFAZGtN0JwMYUDTqwy8g9hgQBLp3XeA9WBAK8YPAHDSYECB5SBgi+hgQKRoy0eBBmFAK9X7M7wbYUDx2UX9eDdhQLSaHCGpXGFA/gegYKddYUCJAuiUCyZhQFthcTrlImFA9ScIbvFQYUDe7C4KeF5hQChque7vYWFAkJ7ktRRzYUD6UAYIboVhQHIyoUSuW2FA0Bigml0wYUDGKYXzHVthQMfTu/PtQGFAswMNTs0lYUB7W4CW2ydhQHoKqDk9GGFA0SvSIjIrYUB83BCrKB1hQOVP+VwGJWFA8N5PKlkqYUDjlwZESkVhQPzeJgwnQWFAxXmMRjtlYUAWQNWGbD5hQBhpNLuHIGFAtSUqjhQkYUCiD/vHggZhQHwocN/QFmFAgv78F9cRYUD+Owd7m/xgQI6Vbu8G+GBAMiaIuEq/YECLA4FtosxgQJAQ1j8K8WBAE/x/C+i5YEDGVJRBcpJgQL4Ra1vAj2BA+muMXdZmYEBLT5PHB2NgQO9gwXIdLGBAQ8+uKWolYEB9vWBbYQRgQFGWJVUdNmBA7ka886BAYEBrCTXeFWNgQJKrBmgHYGBAALduKuSiYEDGXCWLzp9gQMMDlxnLomBA7ng2kZ+NYEBnj9dWq31gQLPrQzklb2BAebuBAYOwYEC0XhG2iZFgQIu4TH97kmBALIA43AyrYEBI7OomFLlgQEBggfczymBAQZFKqnl4YEBruDDZwn1gQOUr5PXsfWBAkdvC7cFqYEACbRzjBHNgQA4Fep9efGBA3lNNpYKWYECoVLSQiN5gQOy1ARk+02BAuqI6QpvBYEBDFL1yW7ZgQHPG4LhDlGBAlEh+S7nSYECa7SCFU+1gQCiQA4JS5GBAJrQ7pZOIYEBjrIgrwpdgQNJWcSVts2BATkr9vdm7YEDQYrSjIaZgQLG281BP2GBAo0JfUXn4YECwwh0MfB1hQGAhtnjFKmFAj8TPMZsPYUBRCFl12BVhQFQlklp6AmFAhrOlFJMlYUCOLrRVWRFhQIWqBy9CCWFAx2/fCwjrYED4HDpSVvpgQOHFKbH442BAbxItl52xYEBC9C0JaqNgQMA1VQHRuWBAKKdTaXisYEDR3ECYGNBgQLxuZZbZ9GBAzsYZglLPYED1hzsqYcpgQCy62Se62WBADtJs0Zi/YEAF1kUYPPJgQHSo8fZr9GBAS6voujYKYUA4gZJ/LBRhQH1kVW1KKWFAHMh3lNg2YUCDJRAPQTphQB6Uq20tSGFAmOo66NF0YUBdaUI5oIdhQO05aua+mGFAdX0NtLXDYUBR4qyYJZJhQDeQB8OsnmFA6yzAB5nQYUDyxWs70/thQAMQHZfAE2JAJlXT/5sbYkC5HqfJXxFiQKXOljffUmJA0W2iisY6YkBtIy/CJBFiQOQLaEuu3GFA4EL/Ba3bYUAfs2C6cthhQD6oOyUgAmJAWyohz8sPYkAwgMSJue5hQKQHlwuZEmJA8S45JkMSYkD4+p6pCd1hQPm/o6ey1WFAqTOR0zfpYUDi7L1C6fphQOQXOthfH2JAtCA+xHn0YUD5fe5bPidiQEQJpmqrIWJApMym7QD4YUDqIhOXwitiQPXIFnzHLGJAVNejEwYxYkBJwXi8i15iQBpeEhS1e2JAti0pIQuWYkCXh2uPj21iQN17i2dsY2JAogaweVhKYkAbp27tiEFiQDeRJYWDX2JAjOgUzpV9YkCmKHPPDHdiQMRDmI5lQ2JA4h/yPlsqYkA/mX1U+99hQOqg+KUbxWFAoGS/+/6mYUB3AmiBp4lhQHKRzrKqqGFA59Im0PK8YUD7nnNEZsdhQG2pFwCGuGFAU6aiaoLsYUCRntfgxxdiQN9486aN42FAWQOLsuTyYUD2GP2TXdFhQEld1LfJ6GFAhzWrbQXuYUDUyw045O5hQAgWu+cDzmFAz0Cb7mS5YUADjtHB+N1hQJtmzNEZ+GFA6AoJpD32YUCeLaGwmwViQISKlm1942FAKkQVW/HNYUATq5lZZcJhQOzUHPg+4GFA/+e7LwDwYUC34nEU2uBhQMm4tb1l6WFA3iHhUjrjYUCiqyKSBfBhQNKgBk9v6mFA9mL3rsTHYUAV5UCOl8FhQCDhKwoxtWFAkFczASaWYUAnhwpEHZlhQAcSKhMypmFAn+9xnQ2FYUCLPGPZ/aRhQG1cc+ifhmFALxkDFiWhYUB2XXbsbIBhQGXr2b1EN2FALt4qZM4/YUAxxGL2R0ZhQEKQHllmG2FASQ0jLGIcYUB6YEl/vCJhQBzc7Mw8OWFAAflCVLRiYUAOG1pPwk9hQLM6jr+hT2FAV545jFZ2YUDqjONVYFZhQIhA2yTNXmFAnWpPxVE8YUD3pW2wEDNhQI21cF8BKGFAfAxyTQdSYUDh7xuq9WlhQFJTw6nEcmFAlrcg7SiHYUDyqzEA8G1hQKx0QZGoTmFAzmdarnx1YUA8yTbWrWNhQJvNbPowh2FAqTnBd0F4YUBNbmAqCGZhQG4y3bQrVWFA1PrS+8GDYUAlltqgkIlhQIEZqP0oamFAiUzMAF0zYUBbRrBxO/NgQMoxiBm83mBAWWf02uz4YEA+nbeHE99gQKPQUifM82BAk8Pd1yQEYUCGShC+FwFhQKAYVDJ85mBAYymcCjHXYEBYT39VK+xgQIF8Z+lF3mBA+k4emPGbYEDRH5yUuIdgQHaoff6UhGBAgqrm45SCYEAW2em1a2tgQEeUbk2RdWBAaOy85AimYEBGz+/4yZdgQAT1bctWjWBAFM4PACKFYEAndLPhRlJgQEchdgK4b2BAMXbVQiZ7YED2TPRV5o9gQIAzzlbnbGBASNyGqTBJYEC0X7xLGAJgQN5CNeWwF2BA79S8z+sWYEAA+5/oqSdgQHD9o7JgHWBAy1iB5Pw6YEDfd28Hj0lgQBnrTuD8eGBADk8XnvlyYEA4T7+R4EZgQBrL2tCJImBAM40UZ9dTYEBXgRoCI35gQKMMzTADU2BAZsxfI9NSYEAJlaAs4DBgQFHPDau8IGBA9x2LsdgtYEC8acn7Vi5gQPPYKfWSQWBAzvMwbNBXYEDVSBMsCyRgQEeELLQHFmBAMxK5LEMLYEClt2/KOidgQN6riyuSAmBA73z6F9kSYECgUKpNEyRgQPKxVoMNC2BA2CvOBAv1X0Drl7OLsM1fQOqnaWVV219ARz50jDoSYEDIy6pAY7hfQD04KbF2n19AUYe0QEPUX0ApfnvV9M5fQI9LC1IFll9AFF/7LHmVX0CNyi9nJlRfQPuVC1NqVF9ATnEiTMsQX0D9dHTJlBdfQP0DHkzJL19Azqp9CgJaX0BA4KemYHhfQJ7Ejq+QXF9AluYEMKv3XkCa1f4fBkVfQA2yfHz/S19An9CQM6GNX0BHdQoLi2dfQIKlE+7cU19ACPWXZbahX0Ajz98MVJhfQANWm4bFtF9AMv//UjVEX0BvLNeT4IZfQLCbAWb+fV9A4tz1P/ueX0CX7VP2tv1fQIR/kYupol9AtGXo4p5KX0BBFIbEpEJfQEX2DtpaOV9AVcIDd5JnX0DuuWwt1qNfQCXkvhr42F9AEtEKUn0IYEDkhWgrCLpfQAyyLUPB519A8SSaKLcGYEAeWcxnaiJgQModEFbjvl9AyHN3Wl6MX0B+E00bjS5fQL6QqU08s15ABs2PeYuQXkAm8OqhJ2ReQCpcYyLxc15A4uzabRQXXkAN+1gpLcRdQPcmbReUd11AvndinNkGXUBl42jbdc5cQPNNj6MV31xAGftntYHvXEA4RjOwXjNdQHKyFRkmtF1AxXNxIfWgXUCRFikIa71dQPJ550YTD15AO/gVFmpUXkAlGRmIgKxeQDX2BWeHh15AnDcVwTc7XkDlPWitd1VeQAebTPeTX15AGueDL4lMXkCqGkgJ9WNeQBIxYGQzS15AsR+K3DoQXkD8qm/P5mReQJS5XGpCOF5Auab5vpSYXkD1OoePMTBeQLtt5S6Fcl1AAgHj+YTBXUDQhghV07FdQGcogeIdml1AVojep7tmXUDTbhyjvjhdQMV9JfQ6LV1A+phH1rt+XUDqkAW+ybVdQPagPPKsC15AGKromObhXUCoeVqx7OJdQByoTPFoyF1ANA1lIL68XUBpkBRCLNddQGU/zPX9+l1Ax+YmmAU5XkA0I6xoMxFeQKGjCyfACl5A8NW/yPinXUB/L0o0UOZdQENaO9ZiE15Au8ksNvipXUBu7su3s8ddQMl9aAeWGV5AuoCr56o0XkCpWcQge9tdQNFuQx04BV5AQ4ywj8QYXkCnR+VuubJdQI3j/zOe811A39nUQ2+nXUCtzPyA19VdQHMYUn1fz11A7o7/rSP0XUBSYgDybBVeQM+o1AFESl5A2b6ounD7XUBh/2YpI0NeQDj/nq/uR15AJVDSLul/XkBuTULedVxeQM2hu1Iv311AEn5isY9XXUDliASrcWpdQAUZfPjqF11Ah2v4kOohXUC7nJ3cajtdQALL2uef71xAyUhhlF3NXEDAmsfe+vlcQIos9GQK/1xAoZ8x8ME7XUDxyL6V3QhdQHgHiVk2PV1AdTNYgFl8XUAvBXeYT0NdQJ0Ebob8aV1AL4FkQSSVXUBnpMvNhKJdQGm8v4LunV1AQip1vfcwXUAChwMQch5dQDwoshzLR11A+fEehZ+vXUCTsYh7HcBdQEYHek5A711AVnO5cZPeXUBQfyUTL+ZdQO6JTUejOV5AnbzxN7z9XUBi6WsT2EleQLhna7vYQF5AqiVyGPFpXkBhbFrT6LJeQDEq509j815AerPR70yKXkB6oWFiwrBeQDVphSMSr15AxwqKaQ8gXkBt2Vcihg9eQHhR423qKV5As5wduLEWXkDaRCsp+kdeQA2xf8+OjF5Al3bWo65uXkCU5GT46IxeQLGYUUJUhl5AuTXyX42jXkDiI7KN/BxeQCgv3xegkF5AveUbJB+yXkARKghPWLdeQNSBHHD6fl5ARrHvc1GfXkBng0C7xOdeQHW6cgRvHF9AieYD9yE+X0B1xP3CJj1fQNCnpv1wO19A4xJ+9UrFXkAArF+N8qBeQN1gnyo58V5AyoZ32cEBX0D3kQae9tJeQElZOgAxuV5AbufiKcXuXkDz8WVGR+FeQOtPLqTwtV5ATvplcn+pXkAF8BTvMa9eQAlxVvt8xl5Avodq3GIdX0BxJaRbftdeQLIRkJEDG19AIC4EKbXRXkDIuDo4NwdfQKg1TBhf+l5APk9kUr/TXkCF+Mylu9leQO3xXbhusF5AnqJM+MSaXkBCyhKlTaJeQNqFGUmFjF5AeVOeDk17XkCGJbJak09eQAgLHifcYV5AfmOi2OlWXkBEIKUISGheQGjzKO8Ah15AaZNyHbntXkApqj9AIAJfQLa4mzru3V5ANQfdG47nXkCUxPHkE1RfQLbE9BeWal9AdJQu5qXYX0ChWJGCHQ5gQAyN+2hQ6l9A3dsBfYsAYEBhbNtxS/ZfQAQcM88TmV9Afop7i1maX0DFsj4N/oVfQKUSjXHuGF9At8qWeR0fX0AyEJBIwPxeQPNOxwct4F5AeXzchJ+vXkCc/mPYU5ReQE8F862OXF5AJA/nhSgkXkAUl7KxtCZeQGjbj97QdF5Aek7zLFcgXkBkcT+mW8JdQEmgYW78sV1AELeeZeqcXUAiqLsKD7ldQJ8WhJ5JCl5AYtMZpqHKXUCFHQ2suYldQLnZ32aFml1AonripCalXUBGz57pPxFeQNw3OIg5jF1Ak7S2IvyKXUAkwOigV4ZdQOBUQ0lchV1AM708n8AiXUAnHQBIenldQOqhua1VCF1AU8aTwlIHXUDGD6egIyhdQM+vBGlnKV1AF91zjKZtXUBZMe38ES5dQPWAe+mKSV1AZL/Xv5awXUAdf+C9UdFdQKa2ZIk5sl1AfKLhLsGRXUAJrz3/OrRdQJReT4aZZ11Aub2PZXJuXUBr7AUf99FdQBuQuPc+s11A028C6BSqXUDgJmgyx3FdQGGtjRfwp11AcCtYAciAXUBQNzuFXKldQHXJQtvulV1AslXJtC7KXUCo6LWmVgheQHEWbQphvF5AjO1iUX+0XkCr9WTJjkRfQN3KCessZl9AQl594ZA5X0CFaL1u+nBfQEGGgJ82gl9Abwt4kgiKX0BdUjVl5kBfQKfwgeRRDF9AiaCkT3cQX0AYrx/xEUxfQKZdbWykQl9AbUM5YeLoXkABM/9/A/JeQCQH0Doe815A8vuQZhAUX0B1iG1NwuteQNUrOR4C/15AfLL0H60EX0Duz2T++DVfQHG7etP+Gl9ARpZn5cbNXkCxhJauVOVeQLxyFl6pzV5AQbO1juu7XkCJ3WapwfBeQD0uCHqRWV9AQyHjgkGyX0AeCCNipqZfQBC1sSr2n19AR/Rdhs3FX0AhWjRS0+RfQB0RPA5bHmBAIHt3HdlDYEAAfB3xWEZgQP94B1vwU2BAZpDPwlBhYEAjrqJUgW9gQMECWR77jmBAJDdd5opRYEAfKjcaI0hgQAY7R2mnaGBAEdh68zpkYEBD54VMZTJgQCLqLmAc1V9AS7Sqv37aX0B+/gGvZL9fQC42L8wWal9ALCAqzAhBX0AgQnHz7lZfQLbn9KX9t19A0s7TG4u1X0AyHyZlVqpfQLXJS2wfv19A9X6XRG2zX0DZs5cL4IdfQB4/Kq37hF9AxSLmvPiBX0B/03dN4mpfQAXVNF55gV9ANE2V0/xuX0Bvp8ixrIRfQFBUuv/ZyF9A2+XyPEALYEAHaErBTuFfQA1fl1I3D2BAUEe/S/0wYEAf21uRnh9gQHdd1S/yBGBADHc6cF2kX0DgADlYHO9fQFw2C/qRHWBARhq4ICkQYEBeMNGtcixgQJSkBBR4EWBANzOI6CD9X0BVHxruT+9fQA/Cbre7RGBACUlSmUJNYECUMZnlVmJgQGmiHoVvWmBAssRNmBwmYEC1jl6nFwlgQBEiJGicwl9A9P11z35zX0BrDQKueZdfQKuLYsiLol9AajzyaaifX0DEDs6OLHFfQEG+7iZv6F9Ag/HDfkGBX0D6fDwv2MxfQAfoov1jr19AZchFS3ySX0ATD/zZPvFfQFf26PB+JGBA848QEQIuYEA10YbS5yRgQMeLvThBSGBAMbQDLRlLYEC0xugZnihgQJutGtL9ZmBAk59OEIVoYEDP/wLxmWdgQENj/0LKUGBAS+Kk2N6CYEBfm44XYqBgQLdJmkrCpGBAfj6ufCnCYEC+SPGCOeZgQKNXGdYvAWFABSvNuk8TYUARRYLA0SRhQHkudLybFWFAAi5qEnEdYUDS7wezoyNhQCmxfQUPKmFAgLpjm6cmYUBVtf8azCJhQM4neonrFmFALaff37gLYUA5+KpWZdpgQKiP6I/ozGBAa4oDuKz+YEAhICxdOB1hQJ4RX6uPH2FAg2UjPvESYUC9obeBlARhQFO4Hkvw+GBAL1gpcHkCYUDGTw+9rBBhQGuHvCqX12BA32Ub0Jm6YECBhMPhP9dgQHRiWje+vGBAZHtAyfmjYEAVtsfQIWRgQIxZHFEFW2BAXm96gwFxYEAa+ptPN4JgQEbp7ky0ZWBAUr8sdGpqYEDijOmuH3xgQPY1zfOKb2BAi9QyZpIvYEAy0OIAMSdgQB9/8rsCQ2BA2//eRNs0YEAgUgykuBVgQFDIAUo94V9AQuKLe/QCYEBs9qe6KepfQMZO45udImBA1AR3tWAJYEAShMkYEh9gQNaNUh+K0V9ATGNhfZUQYEDNF4BQGSdgQEAhQjuCYGBAapUhAhhpYEC5Fg+4qm9gQJKRdMEkTGBAVLHYCGYSYEBVR0akJRtgQHUdCAxaFmBAx7NNfH8IYED3Vbg58ANgQHb4oQ/SVGBAiz9dE+xeYEAMgZWRNX5gQBVo1xBNi2BABhr8tmigYEABZ3aPFdZgQL3+/Wi/62BAK0a5fcoOYUB7G2+Qyx1hQBOPMls+PWFAses3nlkZYUDG/eu+JA9hQA8cA9n/2GBA2ILRtj3IYECu+p1X5f5gQNirmwhh/WBAusT9u2kcYUCXzYAALCNhQNR2BwPv62BAKBVwcjLSYED92DTn0cFgQB3cFbjv12BAhT3/JynIYEAz6Gf/1uJgQIT8rEQ1ymBAOC59R4aIYEB6peqQN8lgQJDWF3Vg62BAiExBR1IqYUB3heUJtOZgQGvG7xSW3GBAQhMdnlvoYEDgh0mqfvJgQBURPJM652BAk7413ooOYUCAIHgMXu5gQEWt3p6t9GBAKyjy8/jlYEDpoGgeUetgQMQaLWYO/GBAT2KbruIJYUDtvhQdaBhhQNKVb36aCWFAujjRdjEmYUB4yVf4XChhQDKOjfthNmFAZrkSCIAzYUBJL2bEfxthQNCUJuND0WBAnKP3dAefYEDfwFA9rqBgQI13j7x1d2BA8PyHuDpHYED0BRYvwTRgQDWwbPttCmBA8i1oWk59X0D/RkdTGUNfQMbEYul4Ol9AvmQ1PAVFX0BoXkt5thNfQFM66FhFpF9AWteFemMuX0DV99qGDC5fQDyhv3qeG19A8qx3wIL6XkBNy61xD6xeQFc/uSFYbF5AKN/4L4aHXkB8XWd1sWheQNxeivEh8F1AKgJMElUhXkDnJCE/9SxeQPvV1R20w11AGoSSRGi+XUBMZCyoV3xdQKaeshK3OV1AOvlgAvSVXUCOXLWxVI1dQCfyGDaUdV1AvYRvyxF3XUCnt4HSAk9dQLNLhm0ool1AIVUUEtSYXUCf3M73ceBdQPapZB483V1A/Uvqor/FXUBRncFtQi5eQKWg8tzjMV5AiG7b3Rp9XkBPpF4WnOxdQGxDHlhbJ15Agm1F6NJPXkAUx5/7J85eQBk1skqOG19ATdMqR4DHXkASEG2zQcJeQFzCJUPQDV9A1rqyyQroXkBcGdzwDidfQDP7Tw3yw15Axnl/BN00X0DZSmtszYBfQJL8QrNb7l5AcommWfKrXkBmCdto+9ZeQMXB/XW5115AlMzKxsTNXkCTHplh8xpfQInsB8a+M19AR3bMVGEPX0CUA2xRHbNeQFRHqHHlj15AsenaTRiYXkBde5tf2p1eQKEtpp/0el5AEWaYjUxJXkAzAyDtDUNeQNUKZs9X/l1AhnxEdBPzXUAY1K0/BSNeQLsVfIZP6V1Au3OUE6EQXkC0dlZSWM1dQMoIy0NMLF5AjxqFuJu8XUDGE5ogK2teQOvbaX4Pdl5AilEoQdy6XkBoX2BsTN9eQB6iCC+cEF9AkFOr5+smX0CAZ0L+afpeQEzCarqM3F5AxVIvbn5vXkB22857yp1eQFWMplPEqF5A1YbHP6twXkBOQUk1a3VeQOJoFAqHll5Ad6Qyc2ScXkBvljBBz+9eQExuOjYcd15ANEWnWzooXkBHklxEoEVeQOXBCzOIR15AT1cnOHdyXkC0NRINqBVeQCiYFgAbQl5AKz9rjAfgXUCKJRS7HsNdQF2LKb3E/11ANvDTmGNgXkBEvqVqUjteQBlSRZtjNV5AKFQyzScnXkD9V9k8E0xeQMVG0ddmel5AaR9++QNmXkDsRZGyXKdeQC5fcVF/El9A3PzGea0xX0CjlDpRHwlfQKOsgr8iy15AVqIYqQAGX0CHggIJKupeQGd2KvxRE19AVJ4ib1jzXkChleSj2GZfQDS9OpXCXF9AMVCPnNwdX0Cwo0ZktnZfQJ87KXj5519Aj/MuiDsQYEDxfEUp7vFfQA9ncZlwDGBAUNDwE6geYEBP2a4TwyRgQHtP+qdIE2BAwIb1s7PVX0BwYjXQuv1fQO0pzh8fzV9ATs3kztsvYEAz8NgpKkZgQJ82TDdiP2BABSMr8lpXYED9iRZyKRtgQKlxYbvGPWBAjUNFGUtdYECr+CSpuGJgQDHt2v1BgGBAgSHc2qh9YEBPbawhR7FgQIqaVmX2omBAkH9vcdDEYEA/lpDQb6tgQAh2SMsAumBAXL3SVmjqYEBy1xEHVhphQKBNd4NX7GBAk8ywktXwYECESvgtyrNgQE3HCZ3KkGBABMEYKFubYEDT4kKMZrhgQJWdfn7fvWBAJcZoyAesYEDHacEyXtNgQNBzhfcVvmBAT2f2EjuiYEBzD5BMI8pgQC7cKPno82BAtwgzMFPYYEA6Lu2rXdFgQFSsxqsSvGBAE4n9TbSRYEB2JZK9TYFgQEMk6aEFdWBAhbMCD+JrYEDLreHHN0xgQPEzdcu7U2BA/myjwAh9YEBotiHJcJRgQK1m79SXp2BAJJ2FrrucYECBF12cTbpgQF029iu4y2BACNxazITNYEAG6K8VBLZgQFWtWTyXt2BAMFE4JHHeYEB128mN88tgQGDMKWDu2GBA8aqCqE3DYEC4sH+T/spgQK7cCmhkh2BAuWlAJG2MYECtm8KsNHJgQMlza6kERWBAY/ioS1hBYEAapbvIHshfQEma+xANyV9ASSkgQ6L5X0CQ/lytcgVgQAAbgO9iB2BA6p4bp52lX0A6AEX1SA1gQJIdqjc8PGBAkalCM/gzYEAkfGDypzhgQDYaJWlEFmBA09Ahy2JSYECNolW2dVNgQMlN3Mk3VWBAp3vwDUmeYEC8xsQ0sqhgQOBf1WzFuWBAX+4rIEGvYECA5+NyXcZgQG7aZ878FGFAn+fxGnMrYUAiESFkVUFhQC3vSqjNLGFA4gZxhVv1YEB0p7+lStlgQCIciy5+o2BAEizXCSvLYEB2kNs0WOJgQFgyyO0/+GBAqdwWkBEUYUA2ubJWyP1gQMaoNv4t3mBAJni1563JYED9HxHIR6ZgQDSZXVQvemBA0ZX3YgA1YEAQ6B0zLx9gQPqBqoTOLWBARkj8QAcfYEDkzvu36BxgQC1tk1z68F9ABNB5uRSzX0BcRapvzWRfQKZnf7yri15AdYU5IMiFXkBgrbMB+7NeQO8G2Lk4kF5ANrji4jfkXkCnpnsntf9eQAHrCMgALF9ATMnQ4CorX0A402j3qvteQKFlSQ0UjF5AHG4mcaNPXkAmfSWu1AdeQPbVjNiE+11AjEIgH5ouXkAuDX87cgVeQN/cnw7iIl5APlzvBnTwXUAHS2uDmLldQHHDLmynN11ATgnExwgGXUAMIU1tR1ZdQGQ4QNi7AF1AGyd/pTJDXUAgjYQAT3hdQI/JEjHSfV1AmkDYCouOXUAYLqjVzD9dQBzPIehxQF1ANtdyKHsKXUB0F3pcoZZcQJwg4yj5nFxARmW2B5+nXEBv0cJV565cQGnIC4iuWVxAfh0Uoh9UXECzDsSKSMNcQPcj5IuXI11AmLAGOfaoXEA8EJ+m9LZcQHjQA2BvdlxAEkQm4xJ7XEDv5rZV2uZcQJxyr90mz1xAUZ99SYTUXECQugdADRVdQB3SRkxBHl1AkBSMuMZdXUCqKZ4fLHRdQLgL2KgWXl1ACH2r9eaEXUB/ltN09ZJdQHZ9pg+OWV1ATm3qgxVOXUDyfhvzrr9dQJeBty2Lwl1AjhMaefSrXUBnM4AU3cNdQEQoaTRNVl1AQQLDDRqhXUBRE37fp/5dQNY7DZreAl5AKSBwNdSxXUCb1VIM0iZdQIVqL207AF1ANCapVqVOXUAS6Z4RAopdQO8ekzxsLF1AOXRAWZBSXUBvJiwi1EZdQNtgwKIlhl1AYYf3mHuBXUCVpzqYmz1dQOWJB11iH11AsFQEDwZxXUA8K3LwcTVdQEcOkrbNN11ADvzrOEc2XUBlyQ1w1FtdQEdvIXJVcl1A851VbhqIXUAeHA5X5U5dQIQvFhmdZV1A1tWa+3poXUCFfRoI7zNdQIOVZJJ731xAj0Pr9ZyDXEAeu0n7EsZcQIwbbHD75FxAJS+9hqnbXEA99VlY34VcQFW8SX2aSlxAld13bYYrXEDE/6IqXjZcQBGrebPXQFxAhv57m8ymXEArlCEyrb1cQA3BgQLinFxAJiXoHfJ4XEBIUR+8WW9cQBxeVX7lbFxANw4d5UPRXECO4dBmP8BcQCjCaQ7EmVxA9sZNKaqNXECzGnbH2IRcQKoXrTeP01xAS8+hheoNXUBqbcvTu7JcQOKmUW3q7VxA7WJAQUy+XEAbGc6AxxJdQC5xxcJPJ11AJ+Gr04UGXUA3/tOr3XJcQMWx9jZNI1xA/JXEEVYgXED4yxoDq3dcQFLdL3o7mFxAEU8Rr1CKXEBII4QNIVtcQB1JPEWjwFxALvPCBXEHXUCKqEa67TRdQGY0/N4pMl1APgk5JP20XUBcj+7tJc9dQKPdr36RgV1AiwRDxNnNXUCKoYUf0sxdQJfkIH2O0V1APCmtQmEBXkC/yR9zXaVdQEY+olbYnF1A6gdMP3yWXUBnnOWwE4pdQLcrJ9YpP11AhHuK6uJlXUA2jbBWZYhdQJg8CtARYF1AbrMU7USFXUC75cZ47H1dQM7fFx2rF11AXRGfG4kDXUANPncW/ZhcQIKpZpu6/lxAVijaM80CXUDyh/g/xxtdQK+S/lz4G11AvENJ3YpLXUDw9tLi2HldQD4AfIZJrF1AgFqZCIKqXUDdvXaeocpdQM2H4+h29V1AjY/ne+B/XkDlGYzEy4ReQEPU/mlY615AzkZGcBMKX0A6wrkq/uxeQKrhaNdw5l5ACFd+4dmjXkD+6Ku4PbdeQJmKAiQuX15Aoumf8+DkXUBJmp54Ha9dQJvmsH63kF1AxKgUxXi2XUAaGVGRK8hdQD9F+VGt6l1AgVnsM7yeXUBWyHSSHAVdQKcH15ngvVxAiYObIKytXEAwi8GlZJdcQL3VS8fpdFxAIjQfdSC6XEDLhx0YtudcQHcI//Nk61xAE1g5xf0oXUCErrwVYk9dQELUMsvsnV1AWmwUlqF1XUDhPcMKPXtdQNyyk3rN4l1AWC+6DDP8XUBMh9W46TheQBS7eORUDl5Am2U0o7PHXUDatEetDfJdQCPavX1cQl5A1Ky7wLCCXkATHsI/HdxeQBta4EqszV5ALW5wX2TfXkB7bShjIwFfQPnbvrkpUV9APfY8aEouX0Adh+tK4cNeQJp26pnrIV9AdPVQyJUqX0D+sqvrhk1fQP7ouGw1Vl9A1ZVGD4Z1X0D/r73lnmZfQFvfVFpaxV9AOznCkdCbX0AC2lfgeu9fQDzZLJItRGBA1cxNRUwUYEC6nnhPoyJgQGagyv7eGGBAWyEr+O5BYECEtjm64DVgQAi3dUxnLWBAXveYrwMsYEAqjO0yKwpgQDxbNS04AmBAIfAjcXZ/X0B+2W/dgnFfQLckldMZdF9Ak3hBZUkSX0AxCK4SkxtfQDXbaNob115Abnk5B+v6XkDAWpwpkfFeQNgDMw24BF9AbAAMRGcYX0C95SCAVNZeQAh6tiLDbl9AsUdf+DN4X0ByZAdUbJpfQM7undVXjF9Ai4ucr8k+X0CYgs4Kj6VfQJaRZASb1V9A7oOqfgXAX0CXVwPCkHdfQE0dXyw7519AbpdcSeuxX0DuxlVjVDhgQHEaTFE17l9A+q+CLRQVYEAuf86diA5gQOIcOIeYH2BALU/yb5Y2YEBPZal5029gQH5VLPlCemBAGzeGArWGYEDMIf8L44JgQPQmGQGhtGBAp5lfd+OpYEDqW26qL8FgQF3TNHT86GBAU5wUY4DxYEDrPlY11vxgQFDBHLW16mBAYD8uov3iYEAMBKgoXgdhQHYHqCNl4mBAM3CKX0wEYUD164BOFtVgQFc3ZHMDpmBAD1GO/USvYEDfs0/QJMRgQJcbBbsGqWBAWMdQrDWrYEDkRmA0dLlgQMZo4ydqnWBAxz0t10h7YEBupM9E94pgQKZk5froimBAE+0b2dBtYEDaciEUnYFgQMJ5aZxlh2BAodQUDHW8YEC75Wy3XLlgQJ6ziLnkdWBA1de2IcVxYEBpGgZqZYtgQNdQs2lDp2BAcIu0D4qjYEC8qaYO3bRgQHmbs+u8kWBAi7Kt6AyLYEDZTPvleZ9gQERfV6zWv2BA9t81Ts3JYEAG7boAH/xgQGVLiVQxDWFAd8HZieohYUA/kGloXjxhQL3PgLe9I2FAFiqg419SYUD8UXIeBaVhQHTIAdl2xWFAXA2WG3izYUCetEeZPqdhQBfZj+5qrGFAi9flWkOKYUD/tKpFjmRhQHTPcvYiimFAc/u/BkOKYUDBbarLVLNhQOmU5dnkxGFA83CPhudVYUAmI7zppFZhQKISNGsna2FAxjiwmDV7YUBlSQpjMcFhQGsrNkTus2FAsHXZ4kHBYUCv+F8UxdhhQCCx11ib4WFAbDBcd2C5YUCJJ8a8awFiQHtysmaKwGFAeIw9Xq6+YUB6/mOrmO9hQJGusW+c2WFA4ls1C4TCYUDsgHyduLRhQItA/1nhsGFA/pgdHs29YUCklVZd291hQNXAaWdA3WFAExxh+jbFYUC+MZo6V41hQLaTD7/ajGFAzzG6EliUYUBHcVd3lrJhQDX7aYViqmFAat4iuM+eYUCYBGwga5JhQHXvaVzpq2FATbKcQhSvYUDt94PLO4phQODfdLTRimFAskaqWSZ0YUAlFrI8NZZhQPXDD7bmdGFAIXHFUr2HYUC5RaavH59hQJzl1htceGFAhqbNpsltYUCjyYcGp5lhQFBKm6K1q2FA2OOu8XKtYUAtmX5h631hQIvyJ8z/ZmFAQVFoeOJvYUCvfyh64mVhQMlIq7ZUlWFA0Vv1IFaZYUDc0YdLlnthQCE4lzMWdGFAvu7B7ohNYUCWkoWdc01hQNjRdWEyaGFASeTcCDRqYUCCn391tlVhQAYzpPc7SWFAibqky2AqYUCVYv+F9h9hQJrYSi9VXGFAow3UT45ZYUBJXtxPcWBhQDXohN5GKGFAs0iExuhNYUB9o3lHWEZhQIbdjmxSSmFAiayDyWZGYUCQC6cl/lVhQHWLwH/kdmFADh0/nI9TYUDXxJoLA4lhQE4ca820amFAvEp10K1yYUCEpvhN7rhhQKbbDq2Qo2FAdCbMvj6zYUCIyEKw2bphQITz6GGYkmFA1ZKjBQewYUDjc713DL9hQPIHzGCn02FAiyhO9EHGYUBj/1DO691hQEIMBuVeCmJAm/XI6+r4YUBlWKU3aP9hQF7slPCI4GFA3T29h5L9YUAZEp5K9xZiQK4aJmyAEGJAGU33KxX/YUBmRjzgKSBiQGGrlHdqH2JAij/5reEOYkDzBDhxLgdiQJ5kAqeSHmJAM6FJk98GYkDGRNalKOthQEnpAcYX9mFAE3n54c0TYkCx7dSBEPphQENbiRRl92FA/1npQWX/YUApO2e07dRhQJIeM5NZ0GFALnTVBrH1YUA7HQSTGvthQJu/suyBEGJAQgJ0zW/+YUCe8onLOfthQPC0H0QmBGJAuiVC8UHmYUAqkWxvGs9hQG3Z7oOiyWFAmF07tLPVYUCebK2w5sNhQIFYyQft/GFAOPiGBlX5YUD0wUbXU/ZhQP0bzAJSumFAmKsjzyTaYUDUUWGIqchhQD/9Wam7BWJAuRxxOs/rYUA6HUKZdN9hQAn36PBZAGJAgS5pe27lYUBuEpO7sxBiQJyHmHzGEGJA9nlKwZgdYkAYSRr7FVBiQMrmYHCDK2JAUz2opTxpYkD5/JlQj5ViQFwbgKmHj2JAtOLRC85hYkCsyqDciFNiQKWfGvribWJAsimQnokxYkBF5QEPR3FiQK9GOuGccmJAj5uqCKCMYkAxanmxEoliQF2VUIY9i2JAYPpBdByRYkD+Mzr7JpNiQHQQzuHgjWJAsxNn6qa0YkAIPHiWRMNiQGOevS+X3mJA5s+YyCrGYkBlsLwXQ75iQKGpTw1domJA1wyuNJCQYkDPASQgQ49iQFBjBxsBgWJAlWyHa+uOYkDeFaaVubBiQDWQx3gyrmJAXDfb1sq9YkCXq0j9OeJiQIfgLrVUFGNAVx7+Ek7SYkAOrrYynwZjQDhDDnfzFGNAMTGH/45YY0AQ+vUsBW5jQJAq3k4Sa2NAhe0TtMejY0AvrD3xeLtjQLMNBNaAw2NA9V0fEf65Y0BN99Cy1+tjQHLIAMHL6GNAtYShI9H8Y0Dh8vWbodBjQKA98BXOrWNAthCh4dn1Y0ChWNdIWglkQGBUXHoKOmRA0qMkHAFMZEAlrw8H7HBkQIRxWjC3a2RA/kxXB59TZECMXms4oVdkQA39nMcdM2RApbK7sU4rZEADEQB1lkxkQMJ73ZQ5PWRAD5F79EFUZEB7vsUmcz9kQGlsl3jxJmRASX7o52f0Y0DSITD28v5jQBS5gQ5+82NAb648cbH8Y0BCv1T9cQVkQBqE7xCZEmRAz+vzgI8VZECvnu+lL0RkQIYUALGtbGRADfOQsU2YZEBOjcAASJ1kQFk8xIhMnGRAcdENdXByZEDO6dYZNF1kQEUAdHU5J2RANBnUWm8nZEAs4F/u7fFjQG+5AFHv9WNA/lfojm/bY0DiqIhobcFjQNXeN+sNwGNANoADXqOmY0C6UIsP/L1jQDbfFv/ew2NAkEaIfu3qY0DpttXmmvtjQGPIeyf6/WNAlgPCNzLkY0Dj4zsNHq5jQHzJ206vtWNAOHoIPvWhY0DLbcYDIuFjQAuu8cJTz2NApFG1jxGnY0CYoRuuvo1jQGqHVj5YjWNAs65WuP6HY0C7mG+TbopjQILDqz1KtGNAJqHnFHKHY0CksffAhaFjQIMelRVb12NADwo90ubjY0Cq2tvGltpjQB7NnkZl1WNAqfvdPbq/Y0Ab0AJ31OJjQD0BAFdfuGNAsj/nu+WIY0Al7jrgGmVjQDQLkf+XVGNAl19UM3ZBY0B3B4KO1kVjQIkNZ9+aX2NA+rjLxhtjY0C0V/WtGT5jQEFh2A4SMWNABw+IjfIlY0C6/UANDf5iQFsxW0D22GJAXu0wIj7lYkDZ5sOQzQVjQAB705+7MGNANXB5DKNBY0CSoRhntENjQBDdlDh3SWNAsQRV+tZbY0AYmJ1JflljQNS858rBEGNARknK0vUoY0AtcO68ZSVjQL8vC2mkNmNAuM6DFtseY0Anom0nQixjQFimC6yyNWNAC38Ro71yY0Bl21a2cGJjQCYv6qvRhWNAr+atRv5ZY0Dw8SWaWCRjQFv6g7oIBGNAqDTeo/AGY0DvVfxZ8hljQLytWGe2WWNAiAVSmJKiY0D05wBFl61jQH4DsUA6iWNAF0Dy1XWMY0BFdFPx+pxjQJekuTGoVmNATPS1mtAqY0DabyjTwytjQMvrxCHIPmNAktGFnXLhYkCNVCfapOpiQC/gFezc8GJAsDFAAsTPYkBd/bMsAAVjQNCia2gLJGNA4qTkW989Y0CSjbjtYv5iQBBjKh6gymJA7fHDooDxYkAbpdelJhNjQH00PX9PO2NAD3bze+P/YkB4pq8rNjJjQNn0ccHuEmNAsovt5jf6YkDjN9qt3RJjQIeHHXzw8GJAq6dBsNL6YkBERUhCH8tiQC+JfOqs1WJA3LqiBnjHYkAIm5C4G/FiQB4FabS5HWNAybP06Y4nY0BVNUS/TSBjQMm1XmBET2NADGH12W1pY0AH06Ut7VtjQKXivkK2X2NAldIIbmhUY0BHyIEa4kRjQE4ngLKcNGNAR12gD805Y0B8sxf7BlBjQMR6MTJEXmNA3GR80NBXY0Dt4fpA7qFjQAGvkiLyeWNA4AL8gbSZY0D92YilHIRjQC7d84WUk2NAsPnA4DavY0CIu7yfCdhjQBUl+Kqy62NAqU9bSPTFY0DLea7IhNdjQMQg2y1UoWNAzkCEEmysY0D8ISxJN5tjQPhtTFETQWNALF3DgdEaY0A/07IxAxxjQPORqOKWBmNAifrs2MTkYkBXWOY1ac1iQO0AImXawGJAmhwhmxq5YkCTttfnwrViQPIy42QRrmJA2PzaOam6YkCxLZv7co5iQPg0rdMqhGJAuXow5ASdYkDmx/WkEmZiQE2IFngjX2JAtR1pVX8sYkBZN0M+wSNiQDHtYqDqMWJAy3NbwpRTYkCoVUJudGliQHpYe2kma2JAylv5it5iYkDFRxCpqVNiQCrqwpMpV2JAlqcNFn1JYkBGsCCteUpiQAYyxlqIW2JA7Mfl3BhKYkDMTCWy0XRiQDr+o4kyPmJAqnelVE/7YUB5Uz+DVehhQDMwx6CVAWJANGXGrqwPYkAbrF9vxvVhQN6uVUR27GFA6CSdZ98RYkAGDRk04f1hQJXKnmOwCWJAHg/fp/f8YUDsk9A8O/VhQHzcAB9aCWJAhvmaynwFYkBEp9LonP5hQHfiHx7SK2JA/oT9/iUzYkCm5UgubENiQBDuKCfHVGJAioF9i79aYkCQze/6vEliQNZEUYvUbGJADSKhLmVYYkD/SvkYhxliQPVqVfH0I2JALdim/1oyYkDd3l8Bq1liQJDjxEemJmJAahheOUNfYkB7whsnB3xiQO4HRwa1j2JAqAwgXsuNYkDnMOmZC1xiQLz/Gop5gWJADLbcxpWUYkCcZn6lDrtiQHPiZf/zl2JAgqDsW+yEYkDg+aNBJ41iQAVuC4TGk2JAhlVx0LSYYkAwXd5+3oxiQEUfFpcUimJAHkhH5gx8YkDf6hfMskFiQHaGSFWPVGJAp5ujih1eYkCJxqYEl3diQPOwqvfTT2JAB4A9UuJLYkDLaNb1qzFiQM1xGrzKGmJAS7wHsLT0YUC9fjQ90dFhQNZCYmyR22FASgRe+nAiYkC0UzgaB0diQHG2B9OxOGJAozWWfwUwYkDqNjqwlzJiQO36iF2FXGJAdBsKLO9aYkBhiR44PVdiQLKmtjxgfmJAYk/hhu01YkAzjFRJBkRiQJUFCkPQS2JAoq6K8xNIYkCAhn0aNkhiQL0Uk+d6RGJAGRC94jk8YkCU0maknEBiQOJsN6WicGJAqwhy32VWYkDf8z+2/mhiQA5CnETfkGJA4AUU7OVDYkDiiYwfOxRiQJjXDfaO82FANlmtljnTYUC4UpID0NVhQMkSzUrKzWFAZnFtT13CYUDZxpJj37NhQGVRkZ/m12FA0gunw8X0YUACI+HXQQRiQD9ckdADCWJABb3mQsQpYkAlkCeOTC9iQKrPAnO+EmJA33w2Ncu2YUAUuojC+rVhQFamzZamwWFABQEdeI3tYUDDGuFHt8dhQDgUpycrqmFAOnZiGxLZYUAvrDapWtRhQBshK0Bdv2FA91SfZ8zPYUCCU/qVrNJhQNzRIJ2o/GFAAHBfxDXoYUCbDSC4ueJhQP82Ly2x/2FAstuj+i4WYkBTTaPsHjJiQOnrEOCFiGJAtFQSRmd1YkDy/M+zVYViQJ3JEcXMrmJAejJURxO4YkAUMzWOgpxiQNNTmcFpj2JANmEXMjiJYkCvrlW24U1iQPSCFdMnH2JAaBTfMdQmYkDJDiFZwiZiQKMEKkO7NWJAADgHMgMGYkCRgRXwoc5hQAsJpLUex2FAFQzw/vvFYUBRPopSKLthQLSucvKQj2FA77zSCpNyYUAtNCUbu3BhQNmbqHU8bmFAy8WdgF1nYUC1TayeTm1hQLAQ0AilgWFAxPNWLi6EYUCD4L4Gi5phQNWk3BKJxWFAkm++swaGYUAYCEd/w5JhQCouYCJnlGFAjEPVXH+1YUD/9LoCU7thQKJ1CGqpomFATPS/ug+iYUDSqZUyF7hhQDfSHJ/tgmFAlryQQZVsYUBksUaInGdhQB65UY5cT2FAUarsAtceYUASTxVn+SRhQHsmsW0CG2FAd8Gn4RssYUDKr+0KhCJhQI7rP2RfLmFAf+0ygi8oYUD88cfQGTVhQHvAfCQhDGFAQDJX2yUIYUBoKYeisP1gQE16bAv3F2FAGhpfwk0EYUAQJ8qoCvdgQPPyBxsgX2FA2aep3ghxYUDZf1Rf2E1hQEEgWcTGR2FAgVESzAJXYUAU5xmucVZhQHIubedvmmFA2R7r0SWEYUCUaWsJQKZhQKLtAnCUiWFALAoLqIyMYUBsL9gqXVZhQPh9uwQTXWFAMW3kDOpVYUA4KfjQa2thQP+Y+lwcY2FAEGqQ+HZnYUDOqSqn+21hQPeO1ay0PWFAjF09kv8xYUDr/DzYhzFhQPvpOualNWFAFACWVIElYUA7ge/AAh1hQKmBmaiBFmFAdhBhyGETYUB0m6jiOU5hQOXIpXNUL2FARnK1mtg2YUCOz/3yiSJhQD23cVYSO2FAJODWy0JdYUBiXY10mGphQKBdnsYGW2FAT762ppB4YUDhTkPGMYBhQG92XuDYpWFAChx0yr6ZYUBOp5lLdpthQPrnnK3xxWFAPqV3uCLdYUBM1mrtGc1hQGtf23uarWFAj92Fj4iRYUC0Gv4Qf4thQNv7kTSttmFAyIlrCOHXYUD4WzvM785hQHgxWYIy/WFAXPGwMGsfYkBa7OswVCtiQLRGvNYNS2JASUgQxZZiYkAEbf7XiktiQJasdbKFS2JAEr8BtD9IYkBbWXXilGFiQNNRVPdETGJARJzuDBpTYkDefz0301piQBpu19+RGmJAA+pjjghBYkC9p9CK5FtiQFisEWoaXWJASQ/VCc9WYkAcHajY+jtiQOjXJ9gdLGJAiA84CwU1YkBzL8mfYTRiQFdufLqUSmJATY2R5WZfYkBfMsRZxm9iQDJ21LQQd2JAYRyRUUFxYkABDleCzC9iQCVEZiYiLmJAL/a1SkAwYkCbQMAdXiFiQMI929WHCGJAaPONcHsGYkCIl9bLWDJiQDjHN6w2/2FA+2gILz7lYUBpPEAXFv1hQJStaLwJ7GFAqiyYQJHbYUCN8j3smc9hQFuud34JwmFAh7YP8F6xYUCJMsle1LxhQC8oQLcrymFAC7aeBIjWYUB0qBX6Zf1hQCsGhX/G72FA+HSw3fiqYUA8WMtRSZ5hQIC/1vFhomFAF0KVbfOWYUAP9BQsnLJhQNaEr6p+w2FAWFcQ5OF+YUCt+ROgiE1hQBYrUf4iUWFAIhVXFFVPYUBO2bR1kQ9hQJMOSF++JWFAXAka+lk2YUAhAjSwxQxhQO21x105C2FAlCYIzAZFYUBHEgcSUEJhQJYSsbJwQGFAm6tzIg04YUDo2mZ08k9hQA+z2waJTWFAaNieKFeGYUAQ7L0nOYVhQIvGjBnzmGFAUrsllVedYUB2YK51h5JhQFT/zFXDqWFApWAckFfNYUCA9vas0sBhQOPyddZ/mmFAAZiJ8n+XYUDiJKcvr8hhQIAJYBJzp2FAR7GPdJmUYUCbHpw9+WthQIDTOpMOWWFA9XMD3IdgYUCVYzWo6GNhQExe3Y1lNmFActt3hMBmYUBLTsyTJTZhQMuEZlsAJGFAu+aD0icTYUDu+DQHyEthQM5B1+wPOGFAnHv7VRtPYUCPZ31a+TdhQC4h3tvqM2FAtKjwYt8oYUBX5542V1BhQNBuhyOfYmFAjX7JlE9RYUBEQoU1bXthQL8MW8/MTmFAnB99mLd8YUC/p54IRGRhQO9yWLP8aGFAtiFPuqGNYUC2KOuKWr5hQKuolU3An2FAMbxfDa6VYUBgYitjQ4thQI9vGFTkmmFA6ehGehxcYUCOYgzW3E9hQPCj0zRHIGFAu10kDez2YEBL0ULYMudgQHFH+g6BH2FAS8FjRfUoYUDcNPjhB/pgQOQimyEWGWFAhpNLwkzxYED11Wno1/lgQGqyj2X91WBA6h3lRSrjYECnvaCDvcRgQDCkIbtx2WBAcBVWeKCkYEAduDLEvpRgQPetMVOod2BApIOpM+mcYEDc8OpP6YdgQOyPNk1rm2BAAPNTsDF5YEB+oZOMh1NgQP1fcqCFXGBA2qo9Upx9YEDh8is4zXBgQB3R+d/KUGBAGu1ivQ9WYED+AREGQFVgQLoVxYsoRmBAP622POc1YEBNKDyFLDFgQEa4Jzh/S2BAAK6txYtdYECIw+eHzGxgQP1/Dgc7H2BAqj7AY3wwYEAZFVfBlhFgQJ2GhyZFGWBATEdjv79DYEDOWCbqFYJgQO3O0jPuZWBA3DceBrOCYEAei48y+5FgQKVzkuo9fGBASh9qsx+AYEA9Hs6Nh4FgQIbrl0sIcGBAdRPwacOAYED2caq9iJ5gQKg5xlSD1GBA6ICT/N3ZYEAyUTXD9/VgQFyalco1vWBAaczxlKL4YED0AZfVYehgQFjsX2OI72BAkD+vAEfxYEBo4dclMg1hQOoOxVFT9mBAuHABeXr5YEAaOiHXwN1gQJMIL/6J5GBAe4ZPverxYEDWC1U/Z9dgQBJ4lFog9mBAdaCQ4233YEA+/iw6q9hgQEZiHCCD0mBAw/9JalvRYEBXtxJJMvNgQCZFJsLS+2BAjB950ZQQYUApbxO6gxxhQGncffmz/2BACXCbjGfxYECqv1VF8s9gQJQr0gTc3GBAba5fMunEYEBL5u62D9ZgQO9j1Fqz2WBAKvT2rpPRYEAgKqZNPadgQH+pxr+DkmBAO8aVCHyPYEAn65dch5VgQLKFXy8IwmBAjSbaUZz8YEBpTmOEQg5hQGuatJvFLmFAR9CeS/tPYUCKBgoUpFBhQFCwlcrRfGFAVulgX2abYUBIMswY5XphQGM4r1vCnmFAaOe6FVfBYUBDDld4JIphQJvqUYcZfmFAwM/mRRVJYUDJ79fSTB5hQCYPZypPKWFAP9/1zr8iYUAnWZtK+z9hQJ/L+aaBHmFA1566u3M1YUASjrlEHiBhQJ7A6irtQGFA1MEcTDpvYUD2RO2oM3JhQE7GspieV2FAVcxh984VYUD7Bb+mYhVhQGHz+lirJGFANTSbN5rwYEBXSr20M/5gQLCvogoZDGFAqm8t9LsLYUBOM+yAsQdhQIQNltNmIGFAdnNKpHkeYUDkbwR4BOJgQFlElKfgCmFAOvxickoRYUD3k/1KTBJhQC2sNNLDHWFARJj8j8AvYUDaOX1KHUlhQOZILIWbhWFAwsEVWGxMYUBSpcFIAnRhQMYqVKOThmFANZF1RIFzYUBKt296umNhQImto80aQWFApzLU1+NhYUAoP+OM4ohhQByxAwYPjWFA5fEFRyB6YUD/aScnx3hhQMWonrwSh2FAhdVVTjtxYUCwg3l2q3NhQNZTPZI3gGFAFNwBKqGVYUBBV/65paxhQFwaysLLv2FAx1xLAs3uYUBKi8fD1uZhQGAtT2sG+2FAR08bt2QpYkCUcaQItC5iQM9ABxEoC2JAxk5spJo3YkAumo2/b3ZiQDnwDguHf2JAH7nU6Mq3YkCsS21pqp9iQOWU5rDyumJAV/BzGy2uYkCWTfMyGqtiQF6CeNmSn2JAKTLNVyOeYkAqk3ZCBpZiQOPErAuWnmJAtPXw6l2oYkAT7OOPgoJiQCNwzkJSYGJABTXkowtRYkCHRD9Ux1FiQL6vDo+rXWJA7cYdD4A0YkCh4v0fWEFiQP5V6O8BL2JArnEsSetwYkAY2DlwNl9iQNLyc91NXWJAL8hw27N8YkCQjtMvcndiQDmELgBtjGJA+eIXAvWBYkCnebuTapxiQCPFU7lZoGJAIN7HShTIYkAn64mgGP1iQPvBH1fI9mJALSfFkbTMYkC1GukcYs5iQKhftQtYxWJAQRaPa/LDYkASwCcaUP5iQK7aUMCb7GJAXIQoxAMxY0AKNWDCQAxjQEOPgluF6WJAn1twQvriYkAmGiYzXPJiQJ8GLHlH4mJAmxq38CbZYkDsEgaXxOZiQJUgsw1o62JAAXqzmya9YkCmQJcRGN5iQAPwVrmg1WJAYFCByQnlYkBFBeeRue1iQCR7GG3l1GJA9GUzGwXHYkAhqJ149cBiQObKIOYBiGJASvc+EWNfYkDfp85H1S9iQET4e1fFHmJAd+8AbIbwYUCmPh4J589hQEyQS+5CsWFAzxLdj3qeYUB+EUszu75hQKfQczUOz2FA4ZTVomvKYUDW+SuQsthhQNVmW37QBWJAR5o2JfcxYkCaTWzZ0U5iQMl8t8MDT2JAa5L7HZ48YkDz3jsdphZiQBPGMOlAG2JATCp+NnxKYkBQeWXbtlBiQNQnjln2XWJAoA2IV7SCYkBUcWoe2kBiQBUyRPL1aWJAkTQAAmt+YkAJmtZVuVliQAbFb9T4bGJA44no7wQkYkCdPIbqmANiQBedm9I6DWJADvMclJz6YUAbzW0HIxBiQKUzLKfYBGJAEoazsPUnYkDVGUn34TZiQFaz368CcWJAeGW6+Ud0YkAHaNMlCGtiQGXe0Tu4X2JAByRTscBQYkBpZ50/zGViQAYFIVWFgmJAyt10yiKzYkAQBI5qfbxiQCT3Z/gG72JAOdqFxgSfYkCaoq7k5ZNiQIpfrdOmc2JAoyqQpt2KYkCCME64AHpiQJjIarCnZGJAhKaa3AlXYkB33rUMiUViQKIyvFVgYWJARtpmoByCYkCUKKmZg3diQKLKIdougWJAO98Ss6u0YkD6QmDuL9diQMAe9cOV72JAqDzcwSoTY0AgvcQx6xZjQCFHu7rkBmNAe6EDHIMuY0A2mTYeQhVjQPRGhLs2Q2NA6NJwM2BcY0DWH+iAli5jQMXMCRtpQ2NAUaO81of5YkADcTFfowVjQHLmDdE4K2NAl8aLDIU7Y0BqimTtTUhjQCtNWLdccGNAJnNV9/JjY0D4+x6crkNjQD6/0tB6EmNABOxswF/zYkAn2+t5l9piQByTv19s/WJAxV7eoLf7YkAWjamxN/tiQL7jOBHT4GJABpmp4136YkDiMOymIwljQP2xBiCZsmJAsxFgelP6YkBSkvxiBgFjQM+/EPJH92JANJSP82LRYkAhUJeFmvtiQB4C8cVquGJAR+B547vUYkCWof2oU59iQI0SVTeSkGJABd/0FvBnYkCDa97rdn9iQKd4uexXjGJAgZ2buOmFYkBnwibvQHhiQLwomDzPamJAnnYORxNDYkAxcLMt6h9iQFq20aFNyGFAG5Gw2Fa/YUBUclrl3sdhQOgwGLk5q2FA4MHllafjYUDRUWERwdBhQFd5rJkj4mFAvnFyc53vYUBbL+9VpLphQJvGgrk+pmFAIXdxuAe3YUD9eg+DVp9hQJ+Rmz5SiWFAlTmIorR9YUALfwgZiZRhQGmtkkVRnmFAnX8V9T+sYUA2inC3g/FhQOXIg1zV+2FA/QbIwPEuYkDc6Lq/PzFiQGqV1saJM2JA93uN5XgaYkAtV9snttNhQMJHWLTM0WFAqiBxeFmrYUAsnifODqlhQLNuoRdPgmFAdvXBYrpnYUDOlqY9LX9hQDDEgVYEdmFA6/RbLMmHYUDX9GVmxoBhQAycbULpmGFAa4SNKBmnYUAF7rzrkphhQKhp7BdZuWFANdR6i+fPYUBEJM+Az9phQFnJrPI1/GFANvsr7pzTYUCO3sMC1clhQL3MGBwIrWFAkLAn1elpYUCEHS/dDGJhQGdUlsDMPmFAENZvxl1gYUA3B+7w64lhQHi7RDcdnmFAkaImt5KQYUDleSJSjXhhQIFr8qCVVGFAPtyRmRSkYUC3LzhI8q5hQD6a9ozpmWFAOMpwspCFYUD/2ASjyIJhQDnM6D8hsGFAGSo2rzRkYUCMtojo71BhQJXX4m0YimFAyzvnrvS+YUBwuhkcWPZhQCVwbzxUUGJAxDecB981YkAz4pBrPUZiQMcKLUEhJGJAd3Ea9gj2YUDdooQFgdlhQJK1URo9z2FA0QHueySsYUAkrG3GXYxhQJFcVX+JbWFAAiGe6pdiYUDiKjAkmQVhQDVOZjwKFWFA1SCRZqooYUBYCn7e5BlhQLggCCJl3GBAca7kkWLtYEBEWP/qrx9hQJN0xr6wKGFA+vLJqS41YUDX59xi0w1hQNwqavPF+2BA0QrARKMLYUDfgdTnke1gQGxxJn+67WBA408JgpbvYEDoczyQ789gQP/MS4u1wWBAYotZZ9e3YEDSz9lwnIdgQDitL7S9hWBA5ZEYlK5oYEAsSPQDj09gQKERdg+5SWBANIpjBzh9YECVJiAvh59gQCh9mkNvoWBAnV7qBZd7YED2Nndjm5tgQCKwYYcypWBA18LAJsKUYECHSdlC88JgQNZuSCSpt2BAv87wgOD0YECFveS9/ulgQH4kD7TByGBAbJLlVZOzYEAuEgzbb65gQP8Nz0sMdWBAa4/4oxiFYEB0G6Z1BLlgQAlQPfNPw2BA+RGMCYCpYECThUH1F89gQD4QFH++mGBAdJY3kR/EYEDu0KuKw5dgQOtWzFMJt2BA+0NzXdebYEAq3z5jLYFgQLYFNc+Gb2BAHktf9mBvYECAzGhUrk1gQJK3XHjKAGBAVNrbC4zQX0BD+KdFIa5fQMUYTO31AmBArnSkEy5KYEDlLUJWSitgQAtI9DUZPmBAIrn4AVhPYEBVzm/ktFJgQPTXeiZIQ2BAZEN4RBhLYECrzC+ROjtgQMJm6asJSWBAbxXoNfU+YECNTckWqXxgQIGcTPQzdmBAQhhJfvF1YED5bJW4sYhgQHDFCZ+BtWBATB7uZcGrYEB7jj9jH3JgQHuLjupjTmBAoPKLwCCHYEAgO8wK8pVgQGdjmGQOgmBA/Z01FYeBYECcxPKoyHtgQPA+DO8Yg2BA4m+QSeSOYEA4RD8iC4dgQNAiwDxwxmBAE5x7eNqgYEAuk0coj7dgQPrD2h3d6mBA5dGY2FwFYUCPPU3xwfBgQJ0BTzIDD2FAxLV6X3cYYUAWGVMBbDRhQK7+OMl1ImFAXkBZOutKYUBOygr8blZhQAaNb2F+Z2FAS0tuMoNuYUAJK3rnVkRhQEx6mcewV2FAh7AvRMiHYUAbPb6RW5BhQOb5b2HSpWFAo0OjlHq7YUBJvgckG6dhQK6+/Xtsn2FAb+RTSHjCYUCj8Bn2B3phQMPWTqRXcWFAZQp0UBZXYUCSppqdE1BhQNOjD0K0dGFATLJqv9VbYUBLkMQiMkthQNDz1AznWWFAG/e7ialcYUD5o5y5b19hQBy4WVJoI2FATVIEy01DYUDucP6J5zthQAE7lynqVWFAqXntLy1KYUB2efLfGXJhQEkK2F0aXGFAO6vZNFtJYUAuKQSzpz9hQCan504qTGFA9tykFEIZYUAaabAzmRJhQKwg6BbKHWFAkMzCKN9JYUAHS+jsoCthQPh0nx/3MmFA9SjbiyscYUBYbvrUqi1hQE5Yu22dS2FAX2ov2JAFYUBnkn3sPv9gQJJXA/AsKmFAAt3vXSxQYUDOHkoLQFxhQATliqdaM2FAIU48yrwqYUAVzEK5KihhQJ0uZAYDGGFAE6BARe3rYEDNu1uqBtNgQBgMEPqh9WBAI/lvpi8TYUB1QAvhYQhhQFAiTsEt8mBAJ2ot2WzgYEC3pkHPeBJhQGWJbL14KWFAlX7UZ0YPYUAc0G2LagVhQLVBi5IPI2FAuAb1/SgcYUArngV4NRthQPDjXp3fCmFApliPLY8yYUAf3pGTEChhQJv+yR7Q8WBAHDilg+HlYEBkEqrWAflgQN5vhjOq9mBAUYupIfvdYEAVgvY9IsBgQGwSey2/oGBA8JrlyuK9YEDsv7X8A6ZgQEOegpnjvmBA7dKbb4HIYEA3jLlpe/BgQOLigvPpy2BA3vyyWGK4YED27G1PcNNgQG9j8dkxnWBAJUR8KtqIYEA7PhOMFXdgQFN9RgSqXGBADOjZDpZCYEDrooQhsVlgQPJfw9c8L2BAaJ7BHCwOYEDmOCE0lSRgQGLOErYCJmBAg13w1cU+YECAAtjIlilgQG146UM2ZWBAyCeDUvF2YEBhLFpGHJFgQARP6CyNi2BA83RxU5WDYEB4tR3Wf1FgQEy5SPbgf2BAQKfM5VViYEBm1o/p8UdgQAKjzyhUSmBAwSUMCF8MYEBz+NlHrA9gQGOgZybcBmBA9Zrig+weYECwFJ3NISxgQHwT6EiEIGBAHIEM8wMTYEBJ/4RBGjlgQHXmAdyMVGBAc6Z5im5rYEA6JQkp2z9gQAIXrIs8LWBAeZtdEYO0X0AFUQUBt05fQOkp6wkqiV9AZbsvlkh7X0BK9nRf4z5fQNHgeyhr6l5A1h9jh+THXkDXoTRSsNReQElHqTKjM19AXsOwaIWKX0Du7Py1wHdfQJaRi8hCcV9AsC6ytXZFX0DN30txeYpfQNZg610Ecl9AwfamvQSKX0Ce8pSYwX5fQPG9cUcMPV9A1c/2AuJLX0BhmFY1YUhfQI37jpkQPV9ACXV2ltxjX0AsOl+phsVfQI2DjUEcIGBAkMaHC7BAYEBJ49c56jJgQJ+1WtjmaGBAX2k2OviSYEDsHQfrnZlgQE196Oeem2BAZ41NZ1uLYEBhoe6Xq2xgQAtraNJwkWBAa3jcMqClYED0+NW2kZ1gQCiHcI+3hGBABROEvNmHYEAq+vEY0F5gQFhPUkGLS2BAUhjWjVoaYEDDN5psHNFfQBhbvYMQh19A9vVhAcQ1X0A2UDbyd7lfQLa9lir4rl9ATdMqG7sdX0B5iWztxfleQFoEb/na815ATit1KZPfXkAPLqLTp89eQBPs58VAGV9Ahj2oniU0X0DIMw0klVtfQGgjhIAxdl9AiqFUpLqWX0CwgJqMIzVfQCsOZqDne19AdpPVkpiIX0D4p5TMAzxfQNkx31ReTV9ANUA6XKbrXkAwSYEff7ZeQKI+0htJhV5AVzTMtAazXkBJ3zCLbqZeQL+lCBHXZl5ARob4z4hhXkDOJLYJy6peQFJXREJtml5A55l3SSk/XkAOltwNWU5eQEmiOj3LLF5AcD8vAo44XkCM0cvDxixeQG6AQAf56F1APJuQbiTvXUC5u/C5IwpeQOx93vkeRF5AmkjDQpdfXkClt1SulAdeQETdiS+Vbl5AeuTAXpiwXkBYwT7if9xeQBZMiyfu0l5ABUlXGQCqXkBA3UxP31JeQMO8stENPV5AxKo1EHipXkDcFMawerpeQJlHMIWPcF5AaHsqfly1XkCxvPWk7lpeQCFYDDlpP15A5i6S/yY0XkDnR0yVdHReQPFMy4luW15A6B4J4RQ+XkA2NGHa51deQNMZnZfmzF1ANMBjr9rEXUCSmPzZIS9eQN57Q82J6F1A2nkQqjLnXUArKp7NZvZdQMRKVJ5/rl1AwpyjjO10XUBvXqdNx09dQIPmyCiTLl1AZRhswegdXUDftea98eRcQPaEeOMsvFxAd40FgUrvXEDyqcNuSWhdQGYJx7LbF11AoxTbRggxXUAlDB5hsTJdQH52C1ECJF1AKyVMe0HAXECDuc7FZZJcQEeUEQypslxAVhKkZrFLXEDIYV1V9ktcQPuQ/QI7clxAJLom0eF5XEAZIgputmdcQBjewi/qAFxAMBWPJpcKXECKbUU9QctcQNxfGgNou1xAZyRjOALkXEBMDnm+L2RdQFGvPHMA9F1AlJgvAYSjXUC3eEjacLxdQKPccXmaYF1Aa2OzR219XUAoCZa55UJdQGl1edgLTF1A28lquRYjXUCvdBboFA9dQFSfMlL+AF1AExffo8wCXUDF100DuExdQLtTQgRk9lxA9naKbuT/XEClKoOkOS9dQDD6OCdRCV1AzORw88E6XUAktdpkrltdQNg0WhcM9FxAIJBF+IPHXED54aJWYUddQBCbOPqOYl1AXQoAhJVKXUAnpl1s4zNdQMHBC6fOW11Ab224EzdGXUDJEau9yIddQB5SwrOIqF1ABb6Zg49WXUC3G62TEz1dQKlh2QeYMl1Am8VejglTXUDlf1A+wyVdQG/cnka5NF1AF0vnESKdXUDl4nCYmXZdQHlx3+3sS11AB3hmrbCOXUARMp7BxqFdQPR5E1vJe11A8EyC+XtHXUCpH2WjOM5dQGLFw11j/11Awm57H3HrXUB9S11/zqddQIVj1onLqF1AVnM4B2RgXUAlCDi4avRcQEUh43x8eF1AZzW/+4FUXUCB6zszOwFdQHWRQ8ctE11AFwzGrNbnXEASEr/hqMVcQA/ld2R3iFxAWweBtGxbXEAVM+qpaE5cQNmdZPYwkVxAzyq14ruFXEB4uVOWU3FcQGVilgjxlVxAAj4ilMumXEAFTVt7NK9cQLVhMxpNAV1AjTKk2qz7XECeJF1qzBtdQIijmv56Nl1A+7yE9zB4XEC/T5gY0XhcQBNAOR+QmVxAikLpVV/mXEDSK+Am2eZcQB/Vl/gDslxAlcD16jKBXEChP9Qpnt9cQMR0UjdJ51xAYMnBK1cyXUDj3EKIWnRdQMpaoGMBqV1AB8xorhrBXUDPaRVqTA1eQK2ZIS9p1l1Axyrnqbp6XUAKgvnZ3KpdQFTcfpOD4V1AwZJ3c7rMXUBCAnPTBmNeQM6x4JE2sV5AndgxG9mIXkC98zzglxheQHYl978Y4l1AC5ehAyT/XUCZjbvRgB1eQKPvGL3dXV5AAmp4xDxIXkBhwvoowlleQBAiEVjc511ASJntZE8dXkB0QAxDqq9eQKplLrLBdF5ABBLDzsSaXkDyNJNnlV9eQIKv+tNAaF5Aq12oT7egXkDKTy/E1W9eQPoU4PilEV5A+R/EYCuWXUCyE8Rr3/ldQDYfSla3JV5A7czJCjk7XkB03jnoP69eQNixoleBfV5Az6CjPhyAXkBm0HHumpZeQI0x2mR9Zl5AcTb4Ef2HXkA7T7t7yIVeQK3ijWP2oV5ABIP4Y9cUXkCXJKeL2bNdQPo+cVEXgl1A7R+Lz88tXUB97Xy3dQddQJ4eG/gaMV1ANri/hO/RXUBwfv9cVNVdQLQW/WHI8V1AO8qIvC1sXUBefeRy3HtdQDyN4QFuZl1Abl/7jR/kXUBNsVUHjvRdQKbS3u+P111A+4zeqdWWXUBr0auKJPtdQMdfA+unSl5AaiY5r7fSXUD+nvPGMNRdQI+o8PxD711Ag+oJ5orqXUB/A4bsMgFeQCR+WiGJNV5AFFdMZNOEXkDq9h2y+oleQLnTbgc7VV5A8lIPJuiCXkD7BGvDLpxeQHKB4oLUqF5AlZ45t2FtXkCt6gzu7sVeQGCJ4EE4EF9A9Z4D0ajbX0C0WV7C2wVgQN8P2Rk/AWBAeeroeugjYEDItq5GtQJgQGlH2QN3yl9AdXDh42fGX0D2rlk++sNfQMgq313/DWBAAWxwv/sCYEB4Y97b3B5gQPqFP9sAIWBAUWnlVk8UYEDAEKFRn/xfQMSrvdTb0l9AFfl6VR8WYEDmkE2n3ilgQMGxUpe2L2BAJQjDHGg+YEBw4J2wTlhgQG7sJSwfOWBAnRbFIVxKYEBFTj9PIEdgQL37tmq8IGBAEZ8wHU0lYEAQCX7ctUNgQC7jl++/Q2BAWFI63GNXYEB6UqcuEmRgQNbV6SfbRmBAcjgxuI4VYEBxZIJ4o95fQDuYgeVahV9AmcQq/D9DX0Ct4UTLEAZfQNQtEDynel5A/1QMprjAXkBXMSwIYLJeQMiAWl3Nc15ASr0GTdQAXkC/xJOt0LRdQFrjUQQerl1Ado8eXIknXUB2/Hh7oKpcQAxzHlwaS11AkrKwp7QRXUDEv9DHVBldQJZU484bN11AcC7mOFLQXEBd0CNzrKhcQIN6649CyVxAmjRh7ho2XUBqUhmnrmxdQDYmR1/vfl1AxtdHCbeAXUBIwa0af7BdQFidBwJ7Hl1A5O+24wxbXUCuqARP+6ZdQJIPvnei311A19A+LaCNXUDAPUXo8N9dQLRniqqWOF1AjfPjO5P1XEBUJxDThvdcQEJOPUMZvFxAF+LbDml4XEAY9APMuTRcQOysNvvYFVxAvOB8Qo5PXEATQATyRBNcQF1qaRa7F1xA8MpVTb0cXEAqrreMDT1cQMK3NAA7H1xAY1S8fm7hW0CJPX3o36NbQNx4EoDyPltAGvh4X2P3WkA0AAoLbh5bQB6VQC4QtVtAblpP8d4qXEADKsccyptcQJzvn8UXNVxABfwfTFy6W0C1AcBf4NlbQDGAMZfMmltAlUIBObreW0BVdbl/OdNbQL5bNYiNTVxAXlB7QhfOXEDmdpBsBkhdQB1SPfG7VV1ApGj12eZPXUDufxfz8GxdQBy51CAv111AvuhYN4aqXUCtGRnH3IFdQEMkv8dkoV1ApfrWF3AEXkBmdTJofftdQIyAcPs7EV5AB6HpgPtQXkAh4R8mJzleQHILbieEEV5ABgdxOrcLXkDdXlfs4lleQK8vuLWEfl5AdH1OnSdLXkCLOBRU9cpeQIp8i/0y5V5A0yZwW/7pXkDLN8mMYvdeQC4ppgWK3F5AKzf04J/hXkDf3HOXzcJeQGIamvJ1xV5AH586ZYHoXkCFFKRvwYdeQA/JF+f8tF5ADTs2Ed0wXkAXVxX00IteQDSOPwW9al5Auy9K9l0QXkBFdtxOzINeQDFSf2wGs15Ajjnsj0iCXkAebp1bjkZeQJkyQ4CmFF5AXHYZAZ0FXkCHB6s83GFeQEz6rTQ/VV5AMx+q12dkXkAQDxR2dTFeQN94IEERz11AuEE5gK8BXkAlzbr0CH1eQIUfWEu3S15AAzELZGgsXkCFYMIl90leQEoGeLQ8cV5Addr75M1sXkDGl4gCJDZeQPpQfflCHV5A44pergtMXkBNpKBbjzteQBuvF1gCNV5AE/Voun0QXkAfnjrgctBdQDdDmqNg8l1AYWPxEy0rXkAoUbhLPfRdQBf44PF7sV1AtTtiRFNnXUC3iMJhsYJdQN9q4QZSh11AbzyZqVGuXUAGp3qK+mZdQE5vNsXhcV1AJOCiBs42XUCsENSr63ZdQKly+0AvvF1AtWHmyYLYXUDXOXKiqSNeQKuvCWwkx11AbIo8u32zXUDAhVNC1hpeQNmgNnjJTF5AlQAnRiFfXkByJ1fEYLxeQL/HUvPCvF5A1wPiMGahXkBSCrDhQsZeQC3jAY0am15AViGN8mw8XkBK91TN7qBeQLrjXnsDkl5AgA8G8/HJXkCqKyLs2KteQEi+iJRnVV5A4BN0q8l2XkA4TP6wqzJeQPYO9UpEgF5AqM9tpxc5XkDY1+OXf3peQKXhbFNXLF5A15OReEDxXUD3RWq/zrhdQMKWGU2qlV1AqaklaLkoXUB8Prc9lgxdQJtn+su0ZV1AkDasmn6vXUAj8rcMr/NdQHWB9hGWP15AZ2PF8CaNXkBadlwmLapeQPYKY4qxGl9AJ5jJIF1iX0AJr58H9ltfQFlScTRdkV9AD+Ap4/5XX0BxNeNghvpeQEClZznBtF5AIj723rtxXkA7J3D5wtVeQIqMGgnW5l5AXpWw+x8bX0DpAVMLmsReQO5qrbp5il5AQQivPbMVX0ABZSjr2uheQHyAiH+bcl5AS0fUrXr0XkBIuNKj1xZfQOGaOUWZZ19AXL+4n1StX0Dn9HfJoKRfQA/Hlir4b19Axqq2FBFfX0BYV9U/+a5fQPrP+3X7sV9AFzZ1OAz1X0DGY/AaE9hfQEustOUcCmBAACwIFj8PYEAbNnxIpwpgQI2/fTeI0l9AvNa/S/3pX0ARX5zd3TVgQNMNNZsgV2BAXBSNATlrYEBVCRBzRnZgQJ8K8GiEfmBAn4SsQ7SZYEAMSXiX82dgQOoB3pzzb2BAdoJLJ+h9YECx0RfdFHhgQGKZuYxMNWBAHyTfsdVRYEBjoTYqMj9gQKNUYuabcmBAc+vQbWFGYEBvSz9ImCVgQGnjeuLoK2BAleBrC80nYECZzzJO4hJgQOn+cDyvKWBAtQILZEM5YEC7AOLy0CFgQKUMqI1sP2BAc5ZZk3wiYED2yscMTR5gQM8Wt/7HNWBA7rTlJelZYEB0381BKUNgQEo80SmQQ2BABPafzmQ8YEAWWCbQyDNgQISfZD3TNWBA0FB9koRPYECSdLCgVEtgQJzELZ8Mf2BAjvgJz+SBYEC1Hwp0uW1gQOtVGUdJgmBACpJiQmZzYEDKN4VzvXVgQIjCkyOeiGBASZjA9kdnYEDSN83s/3pgQLvc4FoNiWBAmv3iqp6nYECgy52L6uBgQA4IpnOj5GBAXTvxp4/QYEBrcUYzhNtgQI3Kpvr/uGBAmVnY6ye0YEB1iWjDmLVgQNg6weauo2BACRAvOiqfYECEjcgWCW5gQOTiR35sVGBANgd+yNMtYEAYkk76AyxgQB14/g+3PGBAMO48yQlKYECa91liV0xgQEGV7oQ5N2BATgt978Y6YEAu5lp4G0lgQFVSHeiwWmBAwHCcuuCAYEBbSjzL73NgQOEDos+WRWBATD2Cv0JTYEAE5TONAIFgQHrOT13YeGBAtyaTtqJ8YECF/5+TlehgQE9EjDKRxWBAW7QKYInLYEBD7wwe9RxhQJqEQHWtKWFA0pda7MJDYUBGJvbSMElhQL5XG8ssV2FAOhNOj+8nYUCSsEbybC1hQMF5FutJL2FAqfEEZTUUYUBd4n9TngphQMKFgRBzJmFAY1j3JY36YED74T6POxJhQD1STNEh3mBA/EIN8D/WYECVfOGh8N5gQKrhZhXO7GBAk7IG1RPjYEATo19AtdhgQMHmCI+lFGFAlEdF36sTYUDLxNs75xJhQNKjQGPpJWFABgTzPj8gYUBBBgHY6W5hQMY2wgLVjGFAX+uGG6+XYUAGhaWnSWVhQLik0LVygmFAKhVIkHqUYUAscHrsG7hhQHg+Otm88mFA3ca9VpDNYUBCZoOWe7phQHquaONDsWFA8lWhZmDhYUBelZEhhPJhQC7kIWuW5WFAPj5rMM4AYkBAmdiyJBpiQNG516r+NGJADqzf8IM/YkBcZhbjEAZiQFwLYnJA/GFASu0eyT4pYkAa8GFcAUJiQFLakoe+OmJAIZXu8xVQYkCfuCMYrHBiQMs68RovfWJAq4+cbahoYkB+ULSIoFdiQNpV0dxlRWJA5N0tXbg3YkBi/FhU3yxiQNgBZGbxRWJAe27NBrITYkDF5VHl1QViQHjqSMbICGJAVdoOQP4LYkC/Qcs4f+VhQKMDbE5eKmJAXMhOKEaMYkAKPOtiMntiQKX+Z44AW2JAmo1iDTRPYkDlmpzGMmxiQNbtNOB4ZmJAGUhBemKHYkBGEsmnvGtiQCAsB84OeWJAnLbnEE+QYkAoI9DQdqliQJJCcZ8Kx2JAoxAMQKkSY0ASBkeo3fpiQO51iKBZx2JAmhYzART5YkD3kor8FwpjQAryM1iNCGNA5hD4nMToYkD5aIFE0AVjQDf3gv3psmJAQmXtGYLYYkDfxlCJ9AtjQOVMnyxa7mJAsQxjQPm7YkAD6E5sp7xiQJX6x44MzGJAxIdb2qHMYkA89bGqJMBiQA0pWMh42mJA+FBd/FQMY0C2ElJenRZjQDO9FwN0bGNAgEs4S+uAY0ArgSvAQaZjQLazze3Vl2NAMDV42/qoY0DoRQH/wqdjQFAcKcY8uWNAfn596oHYY0BlHOgvwrBjQHWXasbth2NA1mB324GgY0ApK4i71aJjQLZ45SF5vGNAmW9LhrTEY0BCJ1233IFjQDOGaLrGN2NAyO/fK3ohY0CAomLXzuJiQB3n2F695WJA6cne5q7+YkBXvv/KOgRjQMtXRWCqJ2NAqO0VCugYY0A1ulZL+SRjQLO2YbneMWNAGKFi2qkpY0DPFw0yCytjQO3p7N4mI2NAqjCNR4UsY0BuMDzv2RZjQBamLHrUFGNAPxO2P2k2Y0BfKZDSQFJjQJ/j57D4WGNAAwXzKwNmY0CWeMwvx0tjQHuI0cRVO2NAzNJyEfsmY0BbcKBpsh9jQIuAJHw2B2NA8OQOnDUbY0AiW0g9oSRjQA09ubmuEWNAxYrgrJoJY0BIpXVvmf1iQOnPc8rI72JA/rNXbdzWYkCRlqD+17piQPsmqFA9pGJAI6em28azYkDFBCSa9IViQCvHmDwDjmJAlxFi+XepYkBzgviYHr5iQJnHQOEMtmJAqmTXclCcYkBF0SiZ6K5iQNSeQ/VyqmJAK+zgs6R3YkBJ31xXSlhiQP3Xih3EUmJASPM1OA9ZYkCp2su9Gh1iQIYdVDrwCWJAHGuspkdAYkBYeazLzGViQEtvty0DimJAKDhOLMGWYkDzq6AU4qliQKfAlppKi2JA8jQb7SxwYkD7vWtO6IdiQNYs1LkYT2JA6iMl2sd1YkAyVLfTeaNiQDoMeHvCY2JAGQ22suBPYkALhoWCG0NiQLwTofI7VmJAKfVZllptYkBlGe5AY1xiQAbYpsEbTmJAr7vnKWB1YkCSHTwsVtNiQAEjb4mJ6WJAhCWXUAceY0A7hEKz9VNjQJsKGOyjMGNAggwwR1AgY0A4P4wCJxZjQLewPxg2E2NAYhXwVzZPY0BFRPp2t0JjQFbJAmVTFWNAgToZ9EZKY0BQh+vScnxjQPF4+smOe2NAxGatE5SVY0CETVHfxZNjQJIitThpKWNAOSrlIakPY0D7mPIrXChjQC6UiIEAEGNAdMmapQwzY0CvPhw3zvViQC3qsY24IWNAws9NosVAY0D/VDcjpzxjQFgCcD3SU2NA0ZtogIZxY0B8oGJk/VxjQH6IkcDGEGNA9PXJB9IRY0AJoQ4nn0ljQCjo/g/Ja2NAzMsY3EJqY0DA6QF2r3VjQDzLNccRXmNAL/o1jvZGY0CvKqNItE5jQAHchWCsNmNA71VDJwI1Y0B/mtXH4hdjQOKTJx3SV2NAIJL8W2dbY0A0e9EXRnpjQONRWIeEyWNAVmcF4X7BY0AJwqgeUNFjQIVQ5KBCvmNAcvydPGWZY0DZhC6KZa1jQK1/r0KZtWNAN9582juUY0Aik/eo38tjQCqk3rk+02NAzsxwvGWvY0BTM7/W5pljQEVoS1d7ZGNA/Sdun6VYY0CJUYwsNldjQPaWkS5HWmNA6R1mNTBSY0DQH0Bv/YJjQHYk2VF5dmNAH6eH/dp3Y0DFRKsYcWljQJKBUQe9XGNAPMYQM4pJY0ApJr9vgURjQEOXJZ8jTmNAaHyOrQ1/Y0C0tKLqqYpjQB9uhT12g2NAtLe5LbiFY0AY5znXmbZjQGcG+KuAgmNAiPnVCXNbY0AHrvXu7YxjQLMNdcQlimNAHRvgFcl/Y0AV+j1vMJhjQOoSLmoymmNArI/N+rixY0DOqna2f8ljQMGhRxtnu2NAfBhyICW/Y0CGpbAPC6pjQKVYl5obh2NAZPaYO6qPY0BGPIJTJFZjQABIPDbYUGNAP+e+yRtdY0BYIMd/UWJjQGGNSibMXGNAet1vYZBwY0Cv3JjXjIBjQGXlRJ5EdGNAoWz++Kh4Y0CsQ0VYJ2NjQJ35SVN+WWNA2XIaRhtYY0D9GVxEyEpjQCdgXSxxJmNA0/9uDKQNY0DwoITcYgNjQAmainelDGNAsa5YKU0JY0BNnaYJAeNiQESRsMK08WJAcLBfE0LGYkAOVCxW08BiQA8wOMhQX2JACv1PXh1wYkDAno6uK3NiQK8M1cEcRWJA3s/Vewd2YkD7cgK2x5hiQH6m7xCCmmJAPBR8CcRUYkA2EW9fonpiQGnzzCzoSmJAt/2Emf55YkDAt7nFZIpiQDTQ5B4opGJACG2YAF2LYkCl+kHUuc5iQFvSge9PsWJArsgAihDTYkAxKx7cebhiQEoS8eRVvGJAzN9hFd61YkBw1oJgAbdiQLpyFG4fqmJA5WIZ/El1YkDuyz/qqnViQNvUyd99nGJA49IuKluZYkAOBUHwWc9iQDELM8H95mJANbEFEljuYkA5VzUZcs9iQMJG6opX6WJAroIGwKnuYkDilTtQZd1iQPPYkUJqoGJA5sDo5NCTYkCVDjeGTZhiQAi/r62ffGJAMHO8N2pqYkD66reXIKViQP0EV3gJ3mJA1MXRRkv9YkB58Rn1uhFjQAgawuK6N2NAiH9kgigPY0BmMhpuXgZjQCA6MzdcBmNAMzk3+vTmYkD9PUDDyQNjQJY7dEZ2+mJAiD6OWIamYkDdiWzN5Y9iQKxojhLwkWJA44rOnuajYkAAdPoTUapiQCL2zQqwq2JAaUWEIaNxYkBkVdaCKWFiQPg+6WXjXGJABM8+Q8uMYkCi3ISyVqZiQJO0QXUnp2JATyI0xiiYYkDk5FhZ+b5iQD1azVz2zmJAMCJv1zqmYkDoS5PhWMFiQHmnatRBn2JAw/Tk7EafYkAUZTRnRIRiQFn3C6ChcmJAZxar8niJYkBB+WcBsmJiQMz+2zdnSmJA10tfm3VKYkBIr9sEtGtiQLjIC9cqhWJA+5RJyvaFYkBW1EBk8mtiQIsWAyPweWJAWVeC5COqYkC41CvRrb1iQEfDEPGnwWJApTRVjCHmYkDWAcTXyeNiQNLalNdO42JAmAjZlsLhYkBMJmz29hVjQExtslNpH2NARo6iGsEgY0CXgEhMW/RiQDs9aH8oEGNAferFvg0bY0DjVdd8xUVjQKDsNWR+ZWNAk0GbyW1LY0BhnAhXukpjQHdOOqdJGWNArbDR1GsaY0AuqrYLDeJiQKppaUOWxGJAz+rW28jcYkBy4NgfDfViQLXxNG1A6GJApGz5oT7uYkDwPYwFCdZiQExDJO+Sz2JA5b04NietYkBWd+2RJ+xiQMaKW1Mlx2JASbdQwJ/PYkCrfT3aObFiQDzOpapM7GJA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 6\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"Ql84JLLo3L9OuQ+BQzDQP6D7dwUI5PU/mDXRFyzSwD9CIg2Kgcz2vy9rW0SeMuS/phP92dUlCsC9GNYn03UQwJ8h4CW8ehHArmaylICiFsAZvU7j/AQdwPXW5EIQxh7AUmqz7aT2GcBaYkXV9AkbwALtFQY3DxnAdi3IXMKnHMCot5M28VEbwD6FM7+kkiHAtLNWMHdRIcC2X4MStG0iwLMZAgQiUyPAVottArk2JsA3GH2F4GYjwLUc9RPVQiPASbka478rI8C22eE/sukjwGEMuaGB6STAAmlmoz2wJsBMRC1fjYslwN/dwIRlkybAHuwCTKZEJMC6W//JgfknwAGnCBkwZCnAyx1mGwpGKcDA6cNrMD4qwNjWE89RoCfAEgmjzCUBK8B5BVvIWjcrwLT2oAY9jSvAanYvJUTaK8Drs39MRL0owLrNfpB9tCjA9dtTAqyXKcAQlBTaT40owBPZFkOJWirA04uCwFL2KsCjDiG5vtErwLm/6q3fcinA9obIMSsfK8BqYfzd0KUqwOGLb6kn/ynA7jagM4zOJsBXXzs+94klwJf9JXdwPybAS3QS4QtDKMC32sdoc1ArwD7MnNy++izA9+hHRleyLcCQlXjQKc4swGU2GymyoC3ARLdxyORjLMBa8FFIfw4twOgLuItRvC3AFJ86BdBRKsBDawbXbG8rwLN/SH/EdSvAsIcwT7HaKsAjD4elhvsnwMBqFpBqESjAE7KFLL42JcBlXTF1ypgmwPZqJ0IosCPAo5gIGo1aJcBc8vVG/2cnwGH7vZ7HgSXAn2t5ZyUnJ8DpXAU9vi8nwEXdWCypRinA/NAuQP56KcDgdXPc8gErwD6z+rmpPyzANnSGlbafK8B62TU8HCguwN+PTOxktC3A1oxMa7K0LsA5Kfrl+2YxwFtWYCbB9jHAZhZPtDB2McBQ5hTqQUExwOQCAY/OIy/ANB91V7UDMMCXk4ZUJUEwwBGkhNB48zDAuLQSKSS8MMBG9EMvtMEuwBfjX+z5CC/AbCs8n2N6L8C+Qq1NuiYwwG7N1QL4qjHAppa6Uc5HM8AINlKuiSs0wL5Z2GOUpjLA1/PVRXf2McCPxAhz2cQwwNuPHBaZgjPAWm291d9OM8DPp7Ko5zgywJSTDZUs4jLA2mWycQC4MsAcxQ4xhhUzwNxQGeOmTjPAQNJrmfn+MsARcG6C1+8ywDDsTe7AcTHAHpnIuJdIMcC3R7a/W2IywJRUR+m7rDPAw5B3WsW1M8Bxkn8VIBYzwJynfOxESDPAmOJGX/5oNMBaGxWwGqY3wPmEkVYEhzjAfd/3ZJaVOMDOgvubTOM3wGEUPj3yeTfAzmbWpEJlOMBTyoOaWAo4wHIX+aZH0TjAcIX63aCrOsBO5rzXY8c4wExPI0Ur0DnAGDGpvRZmOcDSLMZK7nc5wJ5eC9R3XzvAo6rYZNWqPMCvgMjm7Kw8wJTEnLJe+jzAFNxpFa95PMB34wHQw0s8wGJ/12I44z3Aihi0dV7BP8AEToi1SoY9wLeqSoBDLz3AFs8AcO2uPcA7i8OxhMM9wPBbJAmyDT7AjoJDxIcRQMDMtFrfENI/wFt7Ii3TXz/AJq6+WNyqPsCzxhD2fMQ+wGJdSUakND7AjnrciongPcBzHTamdU09wFpGAKQQMjvA4QQGaZ3GO8BTbN1bqCE7wDKH7aoMxzrA7IaTabfWOsAVe4TK5+g6wHUeJZG/CTrA2X6ObG2xOcBbAq/ZSEc5wF4gbe3qwTjAAqW8I8T2N8A7Ws/HP/g4wI8hAHdbOznAESdPky3JOMDkv/uw9/w5wMSMeu27TznACZ7nEnTxOMDxK89gx+U6wKTKoy30PzvAvN6s/oiHPMBD3xq01Ik9wCHFPSIyZj7AY00FChCFPcD0NQYd4dg+wP9qiXk3AT/AKLxzCs1gPcC/KyImEq0+wMxDRzlXqj/AJIMvj4wsQMCYITz/FrI/wA3E1PjnxT7AcZ8NJWuJPsC1ydwVmvo9wN9rujk7AD3APFEXp5WMPcBUMmImjgI9wM5bke+Q5zzAp8603JbTPMB8cBcXcZw9wOu1aLUueT3A7C01OUljPsDmc2U3jlU8wKE84fGjljzAT0B6oIiGPcDFFqDYqhw/wBiO7NEzTT/A2bmYN9c9QMBe5VSjUHNAwNjN2+iF00DAMMxuufx8QMAkREgjHEVBwBgx8nvQ0kHABrNrJtKVQsD++75FddJBwG4QSQSJRkHA3RF3UsTOQcDg6g4yG6lBwK/yXlEorUHA3TqFSBWYQMAdf2+sYz5AwIpizsef7T/AdrM+fnBFQMDCWQYZqw1BwMa2QlQkwkDATjmi1sVzQcA188DAjhdBwPwEAF54MkHATYMtL9EmQcAyICKyxoxAwOnY879h1UDA85LzZ6pxQMCHE8a/B1tAwIimsYR+Q0DAJUqFKy0fQMCc9bp6fY0/wFO6x4AO/T/Ax2yHG9w5P8C/HzZjmwZAwO1WqqDEFkDAFuF1rFY8QMBxIE/sf5RAwLgIWGyvrEDAUW5ARqBwQMATuCN1x7A/wLp4C5Uvu0DA+dFQOVbOQMCqjzDYW5VAwCUvcTh/1T7ApgWNgs+kPcBAYnKEU7I8wFb4OXU+cDvA6Td45gjAPMAa83pYNuA9wOfy83E7xT7AeynZ52gBP8DBQYXMol8/wPUFHA4gmz7Ao7yTUllaP8BSJMNvMn8/wJ5e6GjQUkDAoEvYiHOfQMDhrJFj8JVAwC5n07KFYkDALOMOoWU/QcCm8TTksoxBwBIvep2Pj0HAqqGHi7p+QcARcXoCfGxBwOVlUYm1IkHAcCd6/j+/QcC+7liLomlCwL1B6Sv3ZUPAEI+i5tsXQ8CsOfSC30tCwBGXubSFgUPA3vne6OEhRMAkxITizqNEwMzMs/OgoETArZYev+iiRcDyaUp4If5FwNMJw5s490XA/DVfYa90RcB3+RGa8NtFwOXm5x9oN0XAqvGIuewSRcAq0w/09kpFwH8a6totzEXAdxjEkMpeRcCaZF80p+dFwArfewfMHEbAKfzNBcJDRsAyiprQb/BGwHqt90FoPUjAr34DYkZQSMB5IjGBOT5IwKGopHXRH0nAaQvUzi74ScDnEL3ppINJwFAwQEERr0nAA+cvXVyKSMCj7s9Qz0xJwOgC0TjuOUnAWnB0T0MrScC9eDih9vtHwGIgRdERb0fA0EO2jSiRR8AbVZSJny1HwC2eV+rpcUfAC3hwKIWWR8DMvrR7FmlHwK13jOqGIkjAEOn9WCvDR8CyQFfOIytIwHjWizxSOkjAZaJvMYPLSMBhicNWWDVJwDeeo0HR6EjAgiobk+fsSMBpCfIPlKBJwAPiSI9uAknATTm9SSXqSMBo/+E9PdRIwOchBJ4bs0jApkcDBVKcSMBM4jLgS9xHwJ/IjgvZOUfAkSCXjwfDRsDSNK/WDINGwC6NRhkl/kbAIXn17RBkR8BjJyAbMp9GwAI+q/UvzUbAkMmlHGv3RsCVxuodrw1HwIOcG/peikfAIOLLBwPcR8C5uOIwdXFHwJA5g0VrZkfA+yi9wmrRRsCJGlSQDeNGwNM+0+dA3UXARNwj1funRsCFooGwtY1GwENiMdVeBUbA9PJSJcF0RcCuXY8MSulFwG09xuFmc0XAFpNy8fOiRcAZdFwVfjtFwAkvirEaE0bAFCgrIyKQRcAy6e3YWCRFwAQPZ+1bw0TA/92YRGJCRMAb1X5ufaREwD5PglzD/EPAeU+ZPVAMRMBF5y1rXdxEwGQq5Y7EpETAZMWLMhmsRMCMnQY3yR5EwLgF1BGO/UPANyfA27EvRMAPvsYAuV9EwGKjrLtWkUTALItYkd0VRcD5ha/PMv5EwPv09gHSJkXA2fD8XwlQRcCkCcxbrKdEwKYJ7ued0UTAzVwrEcR/RMC/d6Jbe1JDwInBEaL9+UPADUVKer7DRMDmhTbiRClEwGfcTy42JkXAucJA5TNtRsB5GKwG4bpGwEfd8PwLt0bAMw07UlH8RsCvXTCRlBdGwAeWM1Y3a0XAKq7kOcoKRsAbIWmT3xZFwOi9rQLRlUTAxEjp8ukBRcC4XPOCK+REwPqh39CrN0TAZtFk3ecORMDAiuKqbi9EwFCuPpY5gUPAVIfcv+sJQ8DRiVKNPeRDwKCwV1x3DkXAQtR8OKPxRMCTFzhsbOtFwKtawh71DkbAUzhePwpBRsAkhJeBFpxFwPvGNgVVOUXAjbqyGmy5RMBd0XUYY6tDwBUckoWtQkTA8aBY6dbeQ8AOhhyLRfZEwLvA0NkMCkXAjIj2RVHCRMB1GhzaQbVEwNEXoXe2hkTAz76JUW+rRMA/MsrDMOJDwEfxspG1BUTAD6FHhdwCQ8C1p8+0Sw9DwJyThNoRcEPAfbuziJHiQsAr+Jk5kcVCwEz2WaOkCkPASK3FtaHAQsDn0XFasFRDwG2KS0Hi4kLA8HKrrgp3Q8BnudSeDplDwGNfeZFbJUTA6v4TMxX/RMDvqMMkuJ9EwFX5UdsZsUTAMqRadfJlRcCCLKDtu5BEwPEVzP622UTAVPU9ZdZ8RcC+pXvx7KJEwPALRkqMDkXA/5+v8gqQRMCoGeDh6oxDwO8AHYfJh0PAF2xmezzaQ8AG2EdEbulDwFMzrXJFGETAMHQvpTViQ8DbxZQJ711EwBcFYDt8BETA6THpdo8lRMBOm6Z+yLtDwNjrbqOGzUPAp+OxKB0URMA4KawfSzpEwGbqh3SNvkTAkBavFH0KRMCLd7IflElEwDLThpLKlUPAltIW4ExKQ8AKOnzipIJDwMfjMmpLx0LA2uVM1TA0Q8CdPIQpM2JDwMjZMdXxakPA2FSFNm4VQ8B3mcPsBOxCwO/WnC3C60LAFYOoDN/1QcCoX9FoyFlBwN8BNxxJYUHAGIXdtgaMQcBQueoPQuNAwCrTbWumw0DAD0ejvupoQMC4VWG7kLxAwKJNwc690kDAoH/qBLSvQMBYtRXtXV4/wC1c0F1+MUDAJeY1WX8eQMDCNKZZqog/wOxYdzUgD0DAn4cEzP4UP8Dapkmbqco/wI8ssNyvvT/AZVvoJBZNQMBNNViN2z1AwIhQ10ZNN0HAhUIvY1ubQMARQE1RwVJBwHcM3i6IhEHAKJ+FSjOzQMBRl3c+thFBwCfnAYWmFkHACyziJ51UQcAV23EMv45BwGK+bEgjCEHAEhOkJYYqQcB8pJRFDThBwIhd3TPpCEHA6bjXO1zlQMAUk2EtPf0/wBF5i/SlWUDASzbHDLWfQMCr7M+2ozFAwO4z4KJx5z/A/xOZHLhEQMCBaJrGtdU+wI0doR5mBT7A0SMB++SMPcCduFCTybs9wGxCNMgwYD7ApPbjjlNePsB1dYAolAc9wIYLNea0pz3ALip0ZB+UO8DsdZuRcZE9wOxv8ca0oD/AgwsyYn8GQMCBa8D884pAwDU7aqJ/9T7Aj60KM7SjPsAoUOUpPMA/wIz+wJklOEDAw1M7I0TrP8C/loZVeJk/wNgpg9z2bD/A2AHMJRViP8BqLpxKOvxAwOnkT1UqRkDAe6ucp1PxPcAjK2mGjqg9wLZDf2wwIz3A8bbAtgb2PMCr3GDsdHo8wDDcouz/dz3A6bIW8jlzPsCIOGGTFbk9wHMqi0FA8D7AtZ4+l3MeQMBBzaxBhx5BwID3SgtGYEHAkY4VMXp4QcBq41SHQ75AwE4k9ZY6iEDAfXnVmO+ZP8DFp7Lbqx0/wDWq4qLtJD7Ajm6Z05X5O8D72evSNy48wGlNEkeagDvAlS3Yf2EQO8A/3fPzZ5g9wP5NpTN64j7A8/frGzyiPcDJyAoRVAk9wGa9Z1HlzDvAUlICDiPFOsBJLG5v9/M5wBrU/LETajjAXnFwklylN8CvgN/vIyE3wLVngSZIVzjAeJgy/6HwN8CmTqbsO2U2wHuu1SjF0zbAsCgATTjKNsATpMNrDoI2wOZ/JfOFKjfAqOF1fjP5N8BXHt+kVt82wGx1ZAOQwTfA70kXBBkMN8AxlCVXILY3wJP/2VxrWTjAOQkzqYz3NsBWu275m2E3wMBm4V/USzbAruzDW+IDN8Cur0hpB444wCxqtZuuNznASY/ESF5IOMBpAwej89Y2wEAuqz2CtTfAjjG7unX9OMBHzEZcm6Y4wC2opddyRjnAp0BIlPlsOMAO8BFrCzE3wJdAdOhWmDfAA0apCHhxN8DzVtpPstw3wJWyM0OPuTjAKRfQ92ZKOcDGIFPNYd43wNHtgWGV/DfA3QENo5I4OMC+vbCFy443wOWsv1EqAjjARXdZqvL6OMDkyPWLAY82wFMBZ6NoAzfAcyHh2OOWNsBO9lpq65Q2wJJTzpctOjXAZtfAZ/idNcDa+nREp+M2wHzC75N/9jjAnJzpiNyLOsDhGTHu6nU6wMWsNG3ICjrAWkJCjR09OsAsKavtu5Y5wMsaI0WTDDnA7mh+9StuOcACoAmky3s6wIhOHm515jnAWlqvhRTHOsDeJBfdd/M7wMG68WdUYTrA6dCiuD6QOcAHlU5vUkI7wNE61aHNLD3AXLuISSzaPcC/dc/IVJY7wJrgElx30zrA1AGgHKKRO8CMFJnfaf48wNLJb+0I7TvAu7RXfeIGO8D+R/xmghg6wFHk9jTj8jjA6Mm8VpOAOcBDMi4f2UA6wGu6pWPDsjrAWShjlBypOMAS0VfNTrY4wPT4Q/yDJTjA6jgZPn0rOMDmFeZqYlM4wEQ7nOZJ3jfAOcRiQGjNOMAm+Oy3HCA5wGI9ux1wdTrAsn4//bEaO8CjLVs88tQ8wNeV48FzLTrAlezuoN8dOcBunzWOL4M5wJfGhTtswznATR42IlQUOsBR9D5e8Wg6wBoG787JVDnAw01K+C6+OcA5K2usjqA5wJS0f2N79DnADtYobY6NO8BesLmqPTw8wIe9Oz9gTDvAe+L6vTvZOsCsh4S7dXg6wPrFf/5e1zjAx+6t20zjN8Aa1VJReJc3wGbbH8GFTjXAwBRLWAoaOMA1TvMwobs4wAJxHtdDMjrAHSkbBwoEOsA6J1NYQ2o6wK6qtF3OIzzAL4BRM0agO8C5Fj/I9DU8wH54+PTnMDvA78sp/1LYOMASq8o74fw6wMqjNwi2jDrArhrbaL6DOcAvJGNbTEk5wN7eH5RRXjjA/vx51NKFOMDPcxIntUM6wCWGaWlSzDrA3jejm4PaO8AwIptqoO44wF+7b1OyyjrAvdzUL20QPcD9UP84Hoc8wDnwF66qADvAAIPOxcmXPMBCmeVu5t88wGbD9DO2JD3Ax8mILH2hPcBg6TN+xM4+wILuKCz/rD/AmW7TSdwwQMA6cPCGpmJAwImJ/aAzFkDA5QBIBU26PsDUkLzUdHU+wN06vHopaD/AzJ+SY2tqQMAtryDKb8FAwGODgL2okEDAHG2FSt29QMBsR6R2b9I/wPxqQBg5wT3AjCQHDT3FPMCEuxbMABU9wCXrrt9rlD3AZxH8N1s6PsBiANK8my0+wIzSs2zQyzzAQCTV9/RtPMBoNM7kywE9wDvTNAh2Yz3AThsXLdgtPsCBTKCnHQdAwCvGbnCSoz/AFfkfyEOHPsAW2oPkXJ4+wG4Jpd2DsDzA3+o6oLGLPMCkNNKrlfI7wH38Elbmqj7AdDrPIIwkP8DsruZ/GqA+wEPwdqUIbD3AcxFwk4ueOsBEapUcaMQ7wPqq0ajyCz3A+IU+vl5oPMAihpcBvSw8wOeuU6wRxTzAU1PsAZqJPcDzQSXr0j08wPN/htTqwjzAQPqYXJMgO8A+BvP/KOY5wFoNZLnquzrAf0K3j1JmOcBUyHfrW5k6wPmoQ6tWVTnAJrH36ZORO8B11+o5zj87wLbHna3fLzvADlWD9rRKO8AbY0k85Fc7wFDy9m6VRz3A/2KQ9Gv0PsBooV3jBqQ+wPg5mzVjKj/AjYvyZr1kPsACUPX/yN0+wF0+BcufRT3AEzyUEeNGPsCOhD5+BTY+wHfu3IXJ3z7AJ1Jj1AmeQMAL0viif11AwBO4HFX1GUDABZXrApQ9QMD0H1dFA0tAwIPGsNAOD0DAMWIFh58GQMCFaMiwF7U+wCWtFmoNYj7Ag4V7WPblPcCCXlq3voU/wH6ISHIB6EDAKJt0LtIUQcAV+o9AJTVBwJXRlMkk9UDAZ9NoekP0QcC8W5yCs4ZBwHcgHgjT9UHAdw3csy1KQcAsxv7XlkJBwCXvHne+9T/Aj7nwu1wAQMBt+727XgZAwIm7n9u7YEDAPz7UZQdBPsDygfh+PaE/wL770V5mOkDAxoPAoY4vQMAWwnBoKjA/wAkHm9ZqTD/A1fAF1V8OQMC1FvpQMtw/wLdfHOyfvD/ApIjWGIGqQMB/TbwJ3A9BwBmi6MiFhEHAHkdWPdw1QsC6UFJXeFNBwGoyx4HjGUHAHCJ3xHMaQcAbbsu7jBtBwMcPpRWsqEHALV7BxHvvQcBHufpOvXFCwGbb7Py+Y0LAUz3GXpptQsAR5StX2BBCwDNt7ggryUHAEYacnWTbQcDaKymABhVBwCDBbyAh5UHAs9wpTE/ZQcDI9qaXZBZBwHZGH0mlskHAe/6NacEhQsDFKuzxGslCwF+d6LUNvkLAY+IVHfDyQsDAMqNrF9lCwCOqtEbro0LAW76nh8UoQcARQHEVpiRCwIqcPSiFyULAiCpWQ83xQcAHx3YavhNBwAu16eibNkHAiU7VoPysQMCPI8EMV1E/wAQ5eWoykT3AV6FCOmAuPsCI+N+GLtQ+wDvcgw+hSz/A5lRmvrXkPcCVAL04nbA+wKh0EiBlGD/AayW4+DDLP8DQUYkoHu8/wORshMHOhUDArF/FHGAsQcCNZqrh8VVBwMbPEvxfv0HAChIUnbn4QsAw0Uo8JG1CwNX5yPa+wUHAphORpXwwQsBlqwc4+ZBBwGs6whiqjUHAyKaPq9llQcCQCeFbQpFBwI6Sw+wrekLAKT5Yw3VJQsC0E+2IFSVDwCsa6cKO3kLANRSVCOBRQ8DEoiJ+JehCwM/BftpOUULA2QBe817lQcDSiYBqtB9CwA5zx6kHz0HAfqrIMqBuQsANk48xrh9DwNLdvoRdZUPAqUuEcC1gQsC7qsUjx0VCwIbdJPb6XEHA3NPV2QKYQMD1XuXzAElAwM3Seiu9bEDA8a+JD6cxPsCEc4FAvgE9wL474bvBOT3A6UZpK2K9P8DawtYaR1tAwLwoo0MLA0DA4rx/7V+jQMDAx+AmDw1AwEP98z3oIUDAqVlM5LS2PsBn6R24JBA/wAdfHCxlmD/ABPVyopJPP8CU5YclMvk+wPPWo4oyBj7A4C/4gJwdPsDcK9Z+k7k9wBa8jsoUPT3AkJ6OV3TrPcBSq3JKf7o7wFYV/K8jKjvA3BymHP17OsC7649hfEE6wGLYfRY71TrApXlPJOc7OcB99xCpU7c5wIuruheLYjnAm5MVodrBN8A84D4CpiE4wEsRAqwDHDfAx5nQxCCYN8CrjBYvUsY4wOtVVpkuETnAfYHxRw3dN8DCHL/bBzg4wLFY9/0PADnA88il6zkHOsAGx3Qrd5k5wIVGwAJw0TrAd96UytNPPMC3MHDFDDQ+wHh2BYjDFz3AHKCLzqe6PsDl4du9DApAwAmJ2BcnrD/AgUMuwrVNQMBVVjDY6uxAwKFFf7TszkDA2YJgVookQMAYM3SRyaZAwPwqw4BeskDAht5SGy5SQMCE+ZO5EQs/wMCEBBIXaD7AmNFgUi9QPsD32t1Notg+wDyEGajCvz/ABFE0l1n3P8CwXaAhFXI/wKD/QNpeAz/ApkzfZTDrQMC0i5MLH5NAwLhKVyY7wUDALPyJ94yWQMAbY08BD6FBwKlhH2rUgEDAqKEpKKiXQMAM1wb9ZaRAwHJVx7mYDkHAMmacaIEbQcCH5xv2SmBBwOCryFZbUkHASkK86d/RQMD0CHz0Cz9BwIoeVVsLwEDASAI4cjeLP8BZziTVMzw/wAvK8pWzdz3A3MJtnO02PsBanW8A7oI8wMV3RXZ2PDzAy8U6PzLeO8DPlc39GYM7wMbn9uzAYTvAtfFVX207PMBXVgo7orI9wE8JZqpHlz7AGL61eKGoQMBymiGK38dBwNQOJQB/VUHAxPW4C7+9QMBlhNvKqsFAwDDJgT+KbkDA84Q89YnKQMA3uM8gnYlAwGXmLEQMb0DAq7Mys9n6PcDSNykcwBU9wAJYVETo8TvA8v/mWBnQOsAPFaZTmaY7wI7BSfjV2DrA7LhOY4/APMBtTYfmW7U7wKj/0toaMTrAstgtn5R5O8B+TJuevSU8wKVIILOnhzzAYpklcE2yOsCBcSYs6uk5wHhAgeaRlTjA78iHyF0sOcAbh9KSc8Q5wBBm1IyIVTvAGts0mMyqPMBJaSgiOp08wJxMs0UHZTvAlS9cAGrHOsA7/Ua+vUo6wLMgnwhdETrAePM9+mDoO8BAWUN1Zjc7wLoq1lBfkDrAQxn+eRUJO8AaK422FCY7wLJOKHvMwzrANpVMorsVOsDkM8bLry07wAiWzulV4DvAG6ylRvjBO8BhHb2ku006wLFfa+K3HjrACj9X3i72OMDcpp3M1+U4wGYOzCi5CTrA9kNw/zwROsCxoDFLb286wCUV8TX55jrAbTG6FrikO8Cnd9r0x9U5wBCHHRmgBjnADAe+suRzOMDRTk3+3X46wMz8wHP5zzrADm+GhTsbOcAu5CTpz5Q5wMUEBrxBojjA77SUEFQoOcCu5GpDjU06wCS0C6UJGDrAjXKwIHnhOMD0kXs2XkY3wGCLUt4x0jjAEq0KT2KNOcC05SX6O7Q5wC3Ler0WEjrAvmzkCh5DOMBJpH39H6Y4wLfX57YbEzjA3Hn/KkYXN8D25gpmdX03wCiQ2z9leDfANBdlmNM1OcD2oMkc0a05wKBPnGKcajnA95WdScY2OMDI7/hRJp04wAbT/kclxzfAfFUJYCJjOMABYXNS/jQ2wDt9jq1VNTjAlW31fHz8NsA+4L/RR6c2wFYO1g/e0TfAPg1GwpYKOcDKERoo/lM5wPZkQBOzhjjAAQchQ0hrOMD9ULmYIpw3wGEAkT+aITjABBPWG2v9NsBuoQbymSc3wJAhzMqPszXAM78sUXtZNcDIg2WEjhA0wD4fWpLvhDLAgSjDMTELMsBwuy5CPkozwJSYmlZcYDTAK6vTQMnONMD1dDxCcpM2wPT2wBeoYzXAHCT7IUtENMBf6KcJiaQzwMLEOWNXgzTA4LoZoVaeNcBiTxpx/nI2wP/iSuRvpzXAJ7X/28IWNsDsRiv7qYE2wOCKK0ZCFTbA7AcXkCCUNcB/ig7s6C01wKjqGkAsjjbAfjKOIvLYNsBApO5Zhdo3wG0xtHAqfzjA8gGXFaDuOMB9Ey7U5eY4wNYy0F2jFzrA+jzEEXPnOcAblrh3ZDk7wD8bsNR0VjzAvjXpExbsPMCnPnOIgd07wMQfNpjkQj3ASY6ABH18PMC8spZjkjc8wPs24b3Egz3AZY3E1vKzPsD2Yfj/UAJAwFBYHzok8z/AQjTQU3IOQMAgRSuNiPc+wAcHy/xmIEDALe2i/TKtQMDYRWaXJlZAwHTxycC7Fj/Auy7/XHQiP8AnJKb8GKY+wAC8Nf6yuD/ATn8Cit5MQMDNN0mJ8FE/wBB3snDpRj7Awfh/ggFFPsCv9D8cPOU9wHOABaOmOT3Axm3CoPrzPsAQ0URIaVw/wAY4dCGcGj7ARQuZnUsMPcDEiPMxNug8wHXHOvq00zvA2SyMmn2tO8AmN9aLrGQ7wFqZENx6KD3AOohvXRxCPMAG0jmW8k88wNY84d2P0zvARclFF+N/PMAzFMFgJBE9wFsZCg7iljvAfIGw6+ZKO8AkVk5IQf46wBDVdbsZUjvAqzwe2zhsO8BtYLDcGvE7wGJH/Zrg/TrAuk1WAYKkOsCTSxjo85Q8wHfY5G+fmz3AGY5LqmYtP8AjHGhRjtI+wChzmZPQVkDA+IUkgufHP8BC9NU538c/wNazc0H44z/Azo8bYyg7P8CF2nxeXOY/wC1DySB6kD/AisenNtTJPsBcXJ/FC5Q9wIWjTIntlz7AuF/p+WCTPsAIhAcJOvw9wN0Qs9BauT7ABGJBXuVqPcDxlRU0JkE+wMHpn1wc1D7AWs3Bj9OqP8BYHGAxBS1AwBbafLLdcj/AKrUfVmk6QMA0H6o/G9o+wIGqGx7LtD7Aet1A+LC3PsCCMbp+AaE+wIEgcZKLdD3AN2N6NSVMPsCpPH/eoes+wKWzWjJGmj7AU+P8tuZAP8C8S0/5trk/wIPSkir0pUDA0QqjoXFMQMBe7laONfw/wCzmNgOThz/A5BF85TtpQMAjscMVKGs/wKmOsk7KSD/AGb7JsTsSQMALWT4usQBAwJa2fA1Srj7A0fFK3RgzP8CRLW0BzI8+wACcNRA7RT7AzDYU579IPMAmI/hKcsY7wDl0KJcSuD3AIF1pNJP4P8A+Wf/rAFU/wLGZIHiyOz/Ap9DxLLxHP8AkXEpXKpw/wIK4nnqn+D/AUYtqO8Y0P8DGI6T0xyJAwGC6rqPqMEHAA1dBOD2hQcCKo0MbDBNCwFpcL9enYULAIxtxUiCmQsC+KNTzVIdCwBATlDOIc0LAEjy61Z8pQsDS7T6I5+9CwGzCmLPu70HAGFtcMS3SQcBrBFs0pCVBwIuiQ5PU6UHAn6rIBaOhQcD4RdESuYxCwF0zGM2iNELAzoJY4H1IQsCk4SuAWZ5CwMywZEZdcULAAzIfGi4iQsB1Gpaeu45CwF0dTq4Xl0LAAmkujed7QsAWVvW3SINBwHhnslei6UHAOC6ldQ2mQcCE/ZbODzZCwEycrtI3hULAXAwXelTDQcB0HKqfVopBwCZQg9kil0HA8/wmHg+9QsDbt3W+zSJCwP5DYmpVRkLA8u30e74UQ8BI6vL00elCwH30p6o1HkPAzCH05tQTQ8Drn0mVvC1DwENn+xTax0PADjUb2PxMQ8C0cHwDaztCwBUSE4FvZULAP/pK6zW5QcAcV8wSLVZBwNR62Ieov0DAf3erW0fpQMB1RusK7thAwMxAiwd9MUHAfUxYlVTMQMCPYMhG70ZAwOhaz9WYH0DAAdYU52TgPsAxyqFcgtI/wHMn/uHLfz/AGSOEjwj1PsChi7m2aJI+wC1NEnpLPD7Apyy1RjMoPsA5th5x5gE9wDtywR4/gDzAK4J+hJ+rPcDOQ53b6uU+wLBWu/4KQD/AYOwpne2xP8C21+s/vbFAwMCv9WeGq0DA0adcmRorQMDAi54rejpAwN229aituj/AAzQLRDM2QMDThkQiFLg/wI6lX3hdKz/AMWyKgudnPsBr7VjB/Qc/wN5isBustz/Ayd00Px8dQMCv6Kz5kV1AwI0WRZlN/z/ALz3vSaWKQMB4TkCMqGlAwIViB5OmbEDAtMpsPlmwQMCOcV2TxZdAwG72P0yBHUDAMSNhQS06QMCd6Jgu344/wCLusXRUzT/AICHGPY5NQMCQzBIoEFc+wCqTjfR+zzvAtWiUdBG4OsBjaIAf3e46wBsssvjsdjrAy6FN3p8LO8DGvWNZEB87wKuYApvXxDrAomIRi/3wOcDit2R8pdo6wKxpIE+1EjzAn26T7qqwO8DOZdxpZ186wNWHUjVu3TnASz40aSrhOcBxDCSNHpc5wNilQEUhNTvAJy3YgOiVOsDweAcuJlI5wKHPtgcVnDnAfOUodKlmO8C583o///E8wFDLaBuskD7AQiWDeBmqPsD+HMT0AUs/wDI2RUpAPD/A4//y+7vfP8DnNJKWcTM/wI98TLzhJz/A+yghcwMIQMAiOm3agvg9wIVtgKC24T3ARM6m2UTtPcBLoWfNMwQ+wIsl8Bh03zzAU73CRPkUPMC3tdTpI9U6wE1niSOYmDrAJmcA0MtdO8CJJsO0mPA5wI5kkbnRXTnAaLZklSCQOMCBL+BwR584wP+UqYiPmzjAzsPTuEStOcDocTfhWu46wFMnfLo3mDrA42Ye41HAOsDAF6gxZn06wEJcFDKk+jvAW82OeYTFPMBiypt8coI7wBrYA4JNUTvAvuhCKUj6O8BKPzb3oDc6wORP1R8asDrAw1N1AZS7OcCnEjcjHGM5wMIlq5S/cTjAAkdMXcTROMCscs5J8NQ5wI8g1E3hBjnA4yXxSQjwOMCCR6+Ocis7wP8mW0qdkDzAS6zxeG3zO8AUOfzrRkg7wDSIWum5lTjAmTM2pW+FOcB1Zze+aYs6wGgSurivgjrAksuDfB5sO8BxtWmfd2Y7wNKKwDza9DrApWpepGGWOsD+VjAQMcQ6wGTCANvXHTrAhkB8VNktO8DynpwZyuE6wIRiAbpaOTvA9r5aSepBO8DqeUUxf+E9wOW6q6Vgez3AfDT3vkvmO8BEhk73MHU8wDiil/XykjzAEdWmknfhPMBxGRlUxUw8wB75hrokNDvA2HYdLPCFO8CKXBKvjX05wAB+zcgfIzjAsTlt8vVUN8BNZwDzZaE4wBw+x9L0DznAcddrhGIfOcAHpDYKQ0o5wMTJiD+BXDfAMmWcEodzN8CQILNqJmA3wLSI6M4f7zbADZeyY49VOMDpoLGRznQ3wA0b+Fj00DbANcrhdH+PN8Dns546TYA3wAZIKtk0GjXAB17RxW3gMsATPIFQafoywC2lJ54wNzPAXflqfi+aMsAeAjeHhYAzwN8K3y+0WjLA25nN2yuYMsAnuxxUsU8ywNxOd+uOsjDA7LVW33WhMMCSU2QSdSkwwE4+vhJTNjDAfFtcBcBlMsCsUhGKRoYxwH97Pj8wCDDAYE6Gb9fYLcAUnAyvm/MuwA5/CLLjky3AIKYaSOggLsDPgc9NoWowwPQ1PLxlpzDArx609KAqMcALhxSsa3ovwKwr93kz6S3At5np9Uk6LcBioBaMTTMtwGgFZzNFuC/AVdX91AU2LMAANAmOPi4twCSbiaM0Ui7A6NrryDTsLcC4CMb9txotwCslk3piCSzAnlxc8BwqLcBuwNxRoVIxwKtX7WtVoTHAaCwxlTZuMMCnAcUrYiMwwIw+MzPctjDA8P+SODK1McCNM0WHV/4ywGMZKL9nfTLAIIOzJWu/McAErzMAt4AwwMGlkJY+0jHAlYWJgsW5MsB+1Xqfi7wywNpFmX45PjPAhbznhkfXNMC52fIQLfI0wBm6/Ql3RjTAKNLCHgEiMsDUeGcHwJYywJTZHfv4CzPAa2P/lYvBMsCOfT6wyFQzwJzPCmYUNzPAUjCrCUmwNMD6cnt/xfozwDY/6Qn29jTAIfGh9mqNNsB+kSeK4Mo1wLSEgGVQsDXAHU4n2PrMNcBNHPrGDWk3wOQgKdH/nDbAGAsFA2GkNcACZbgD6qU1wFVY91bK5jXALILVwIIfNcCuIcVcowE2wEh3QaKsZjTAvc/Hs8V1NMB3LsBLszs1wL+IL0wcbjbAlpBK6DmcNsA2ksTNdZQ1wOPh97Qb0DPAAZzT12LfMsA0NTR/n48ywIDPjsuerzHAFVJDey9RMsCO0T7g/5MxwL3teP5UvzLAQfJquGFcMMAXlNUjHogswDQWspYGpCzAl+ssKnhFK8Bzz3nrGw8qwAnRRHL+lyzAT/gIjdI9LsBCYTj2jUcvwKPBVEmQjSzAhsykbdYmKsDoUZq2gvYswM0ek9kpBirAXGV85AwhJ8C3vgtikqMlwPKJMzl/kibAFw8ndsTsJcBlbaQH5bAnwNdPmgoFMSfA1rpZfgwoJsCcOvg+6k0hwN4a9/7CzCLABJYx2E+uJcCoI0rdyYMlwK1lNqU0ACXAZjeucBkEJsDBydLEspomwDXrgAy79STAXuDf3nqlJMDylUHafLMkwDB6MHQVriLAba/SzhPXIMBqkXoVCJIgwObvaV3Vrx/AAC3z1jKOIMCfAhB5ctEhwOK4tlPiSiPAILkg5Q3+IsA34lQeTC0jwF06Vjlw8iTA7fpAdSQdKcDevda5hzEowFq4EmkVLijABBZSCAWWJ8BLNYcjwf0mwFXTXKeuOyfA+YcKz3BwJ8CkKvcI5q4nwCfjthOFwyTAlfTYzpKoIsDsDHNvg4wlwB4TemmSMSXA6SY9aMJiIsBNL9vIabMhwEzlFalKWiPAvCPXlNv0JMBtRNOv25IpwMGLqxkuAirAYHOvtPE/KcAnY2V+Ap4qwEvhMoc+iyfAz8hOuaU6KMCWDuvZO9wmwKzQtcdeUCnAsfuXr1rgJ8CyFimKnMYmwDjMtx08riPASVATeKR3JMDZN0y/hdUlwOwmHeReiSXAsg1ZUO/pIsCpXtComHEjwKj2T+BWhyLAvpS71dhwJMBmbKC/e1UlwEk9JYZkAiTAX6fOwnXaIsAVY6pxxcckwFONHn9+eSXASrRpdN3nJ8DuG0+zcz8owJqC2zro/CbAfZMcD9SRJsBch3SLsfImwClmJhsspynAOiN2EgA1JsCCn1nmJ/klwJORfqvuHyXAHliYjZhRI8CAa3NysSUiwOYinnsBsiHA0cl+zVX4JMBAL4xl3KsnwKvobYZW4ijAkN8bsd9RJsC9MkNwj10nwMvs0mbobSXAVzXXtnYOJcCUlkiAx/0jwOvzhX6gISXAerLmcMqcJ8BDnT5HwS8nwCP6rg+6eyfAGiOxYuQjJ8CluXjG9bwowFX+b0U9KynAspXA//lQKcCb3MKKDtsrwLCyRnYujyvApUg5VEX1LMAFkdhxzOIswO/PTyeuES7AQPtRWIngLcAO528Uj1YswC632nDvNjHAR9rEMeHZMcDX1ElKxk8ywBTDlaLkfDTAYYfi/otINMBa0Hpll6wywD5qGJcshjPAJFQXaxCINMCOJP88nfY0wJt0x7GvzzPA/GdT2kRPNMCb5qi38Ac2wIyWU/LqbTXAC0JaZPFtNMCiNsFfpaAzwNMzroYFgDLAxEBZWeKFM8BwVh4tRoEzwPwPIydZcjLAov66ByqQMcDI1o+sYHgswDlipWPbbizAo23zV1m2LMABQMIzj9QqwLJMPQq3CC7A0nd9KK+BMMDbbJI10VQwwHaNiMEdLDHA1uNWzXiOMcDmVmNQB3gywAdIQz4xLjPAbzRw893bMsDLEoj4NS8ywF29R3xd8zHAZhg2r6XVMMD+kLPxvo4xwM1cicnQfDDAM3cX9GoPMsCPHnaqy1AwwN5NcMDpxjHANYnqVtDEMcAQl6aPb24xwKpqeoRiOTDAyT6lXU21McDqbK8WTjcxwMwuwjm9jjDA/R+oGydxMMBecd8oGtYxwMYqxuUAqzHA5XVS43r+MMDcKzZhdUUwwL3fUWxsezDAixgSfG0oMMCzzyvF/CowwMwDcm8Dpy/AsAKKzvhxLsCAd6CyIpsswIAaWAqo6y3Ab7Arpve0LMAkOgWOA/ItwHcsVAajDS7AcYDgcLTfLMBdgkkESOAtwIhodrreYS7AqsZLIv0bLcBCOKV0hDIswH6h1CX4ZCzA4ZaD7th8KsCJJkVWyaEtwAZXYkLKxSrAaW9S8w6cKsA9fD73nXkqwIdSizncyCjAlqWeRBtsKsBRYyIeFn0nwMIHjDtylSbAz/NR+yrPJcCIBkzbPLAmwOxem79PuSvAIoN8mEQuK8CeLkx2pbQmwBv8Xk4QOijA1gA+gjAQKsAOwNYx+N8owCs68IKDJifAW7xZWzXUJsDZVbmJ8UwnwCZZ/1GhdyXAKrTLeE05KcAxGpsTXPkmwKsYD5jYQibAKIxdMyBbJsCFdgF0jnAmwAbUb1+9cibAgS4l2xP4JMDdleSr4ksjwBIr9u5wASXA3CiXxbGMKcBhNY9t79spwGWa5/iCQybAtgyLNNtrJ8BSqcdGl1AlwMW7oYbcRyjA0Hp5aly6JsB48bz9wQcnwOzBHr9mkSLA6zgdt1zqHsBEyvwgI1MhwD9JyyWGfhfACNXR1FOrFsBOcaNHtOodwLQ+vS/eLCDABTDaF5uBHsCgNqW6XTkZwBhMggghCxTAqraNdqG1EcDPS0ufMm0SwMjh4UY32xvARxc1Nn+pHcCatwQ0cUAdwC3TLkwLNiDAWMIWzUr4H8AZ7Kwa3uIiwP8AuApEOyLA/fRg+j0aH8C/DX5ck9shwC/DHX8gKSDAW0/fZQg8HMDrPBQboQYgwEUw3vTUNCLAJDMhx/NsI8D+Ns62TM8jwMXtDPcdXyPABiSnidReJsC3vAoVzPkmwPI8TG2z+CXA4o/ATQGgJsD0FL7c7UkiwHUd8lrq1yLAKhzBrNIgI8AEX3g2desmwG7TXpLKsynAi6Umq7vPLMDfyGY8NiYqwHGKcDXJdCjApc0q76TfJsCcgQgzZ4ElwOPqbdI8USbAeWbtFyRIJsDuCaaD24glwAQCEaoA5ifA4Jf+srycKMDV8lrlHMIpwO9c7orS4CbAFAN3PDTzKsC7PVpcqf0pwKYAg2LKbybArOLaN4xEIMBMUAf9LNMfwD/GqYuC4yPAtckgiumGI8A23438Qy4mwI42l/wuZifAqtdL3iSMJcDesbSlZIElwPRyxS6iQSfAgGJU3Xw9KMBapGAXqpAowCDatjKEqCjAkyxd2NiWJsDzxl95BiopwORzERBFnyvAWowW0c6FL8DdUmHyKbQwwJXsGBofKTDA+Yz8zHNbL8AxqmC1HLIvwD/P7pESAC/A4Awr+wx3K8COtL5hlGgswEk3FUQeWy7AJLcz0PE2MMBCaCXBXaIswPqpVa9XbyrAK7XLVDNhKsCefQ5J65wowIV733guXiXAgBhRrW1oKMBohYySzgwqwJ9BHSQISCvAIaS3jqFbKcBpCZLpl98qwADvwSgjAS7AfuQ8yllSL8AVy5oozR4twEFAlQx+ECrA6jjknEPOKsC6DKMTO3cqwKED2BD3hi3AqxPj4b7vLcBbJ8ICKIUqwPe6R3hF1CrAu6e2aEPFKsACA0d4iH4owIZkaeCPVinAwhpLf5A3KMCQDAElmlQowCVFnBegnijA4GUaKSVWKcBWjln3oHYrwEEbMZhvxSbAJA7L80nNJcAR6vuHfwwnwEqZP4YyuybA3MZPIQkYJ8Cq+XzrD1AmwMXTNhynxSXAY8FUI0cHKMAJnB2ntVIqwAzJ+5ahnirAutIhaeh8KsCrX0CPKhEpwDIFz7Tn2CjAEtvk6gAhLsAanahtXIItwAgAircU8i3Amn9OgFVpKsA/IWDBvnQowGP5PwRYnibA7VKq7v5bK8AQn4S3qhMrwPjmNlo8NinAi/EP50cfKsAYtSOE2N0pwJvrICIfoSbAF6nnRpfnKcCcSY/nEfUlwEjOFMfhpijAve2uDKWoJMDNL3WabTQmwE5aL/DwrSXAXjRHdJyeJcBYgvkPGGMmwARF9ClwbibAJ533rxr5I8BdaC05wcMkwK/dUatmPCXAJpkvQUoSI8AJJ2bUw6UkwLYmYV8pUCLAAyHJQqILJMAFbciZuI8iwBqIxV85tSTArXQdbWADJsDK5EYMF0gnwGTalipxIyjAkEcWzQY1J8CkEtYp0D4lwPchEa2AcSTAszzv8/58IcBV8EtUo+AjwF4P7PyN3yHAXMxQo08/IsA8BZVkcfgiwPsnRokmjSXA0MyujKogJ8D6z+vpilkmwNHeEktDUSXAIuWllm2BJsAtwxDLTLMowC26FMXDDCnAS9wY+a9KKcDvWHe5Wu8owBxXKgxEbijAxyxawkdFKMABvt/+swEmwF2hp2YzryTA5dxEY0WIKMAdOAp7YLoowGSlNei6ryjAO0THAihkK8Au2f3HR+opwF398WV6tSzAeFZg/PTULMCr87bmoQMvwFOeR0OUZC/AFUSbQwraMMC56Xq0kiwswGtJg9gaQyrA/ObQQFt3KMCkYGkHMgIowEpkYBp9gSXAIiELaKzAKMBwFEO9LKgpwFY5s/kIbCnAnPlqwI6JKsCjol5fNxstwMm8ZVrb4ivAomMJrSQaLsCgOWkmYzcuwNrxRFF+pS3AKHgFSs9ULcB+h2C8BwctwIqRdyxzeS7AW7MKoJ16LcA9LyP70P0twCMsa67UXS7AMwW2NbVlLMDecISOEYgpwPBEKAqNwyfAE1xqSU6RKMDlp6MXSiIpwOnPKmbTninAL3TMW+ktJMAmhliNR08mwMQ1wmWElijAqGI4OpgbI8AIbSY292AhwMmF0PHw6x3AphG1+wUhHMBN8VyezjshwIiEN7cTDSHANulpqFS3IMAeY3sM6I0bwDn0r64MoiDAPNhf7ByMI8AdMLvxb4YiwOc0LctFFyTAQHBB4MPBJcDg5AfuI1olwAZ0SUK6gyTAOZA0a6bOJsCBQp4JGswjwHbAqUKjSCXABXccaiaIJsDFC18jQc8kwAc8zogvoyTAZaC7ytMyI8D++shd6+0hwIh6ZEwLOiTASkfWmxcTIMAxf/jyunQhwMp/3t+d6x7AT6G9U0B+HMBx7C4GqyogwJ3B3v0OTBfA5Sg8jnX4FMCIwRgsMUgRwDfTjlH+6wnAYXd3ou7tBcBEeGBVhobxvxAmUZZhvPK/RFOCiLXW6z+wdjf3QD/nPwCa2tBb+fE/3rWp+I3Y/T8FmoA0XbIHQM7noLvN6hBAOgkkGZEoFkAtR87J/QQYQEmP0YZhwRxA9upoZhx7GEDsnSvGYMIUQLsIfK2hAxFAP2PIhCggFkCAG7iX4loXQIbGtv3uhxFA5I8qZEDGDECFOtS9u4AEQFSmjsSrKg5AxbJ3kssVDEDqhcZQ1gMIQIJHWFkFOQBA5B1TWETh6T9UPvM3uR/ivxdn1ThjDtu/V8sj0Dj06b9gipfhlMvzv3Zfje0iN+q/FDx0RSsI1b/7LV90TiX1P/RTkBV23/4/O0OtpjjO/D90bCdDxBLfP1xZEbUqVtG/+DsOJtySub/7h3DR4Ynuv8AtQJ63YP2/Ph6Hb5l+/7+rDgJBQrUIwExrwDB1tAvAoUeG4ulxBsAnh5SPwCwNwBPfiZRDdRHAXC4t6Zt2BMDck+yTeEkHwK/1mEHwcA7An8GpXoaVEMAwz4/LyEMOwF5t4wBA4ALAQsfayf8MB8BGlb16ApPuv9UecDAr4ALAKzrBCYwEC8AwGh6KRr4HwOrfDXYTdQrAhPut2JXDBMDyf2J1vvUCwBXqfnk24ATApg8ACZac/L/2Hhk+JR0EwK8jiPYSmwPAdDpDNgXV+r9EaFJlYrHhvwBvWiEhW5+/SjjDvfIM6j9QewdgrlDvP1qFVrF5ZOw/ZAdN5lox4T/E3FmgSbwCQNBvTKM9hPs/mom5RRuiEUCx6KBJWTYDQBkwEWIT7AVAulxygU2YB0ACRmLv0tIAQBB9v+xbnP4/UOkU9RXOBUDOjkjBDKH9P3I8FavifOA/EDv7JEZg/z86yPAeU8X1P/VFAAqsce8/gNfQPuVQ/z9e3x0vvr0AQCqbUvhneAxAVIG9HadFAEB9fL1zq+H+P0jM60K3md8/Dt/lsOIp0L+QlgYo4ib0v4AMME4074U/7Qn9S74Wxb+yohDuMc73v1UpLA4vzuO/blFklVZP/L/osJQu2FT1v9xciOXdsee/w/82KHSW0b/FD/+LV/3zP6Hu3Nni0/s/iAZH7nXFyT8LY2sg4SXCP2PcpiT84uo/k+BgM7Bd6T/9Zm0THebjv9ElNqoE3uQ/FCFwCZvW+j/E5xpPd3n1P1x8lMe01di/BM91lqt5AcDqpIqfRWoJwLBxumzSChLA1a1T3brrGcDhAs31bHMYwDkKrD28gBvAvVGpbOgBG8DfBo/A+kAXwKFNVhqyjBjAcKdPxSDAH8DUgP1uFMkhwCutIAIq2SPA/qSMkV1XIcCK7B2KOM0dwBKvCWcInyHAtnVxs1zDI8Aeonfm8VIlwA7MT0UNjyXAPD+UVy2rJMCa+Vl4ssYlwDokMls6dyXASRCozL22JMBoRKNQSdAkwHRdHgAJNibAtUjBG0wRKMAcF5KJdKIpwASFQQaMMyrAwlx670D3KMBrfOFSjLsowEzBx/8AnybAjAX23GHSJMCUb05dBYcjwGzGFHRS1iDANMPZSEr9HsDQp18fWfYWwAiPI32PeBXAob3LVyKMFcAPWvnQgRQZwAouti58XhLAze+iUhlCEMA3Ulzyds0NwAFbSrwCfxDAwb0hOvWVEcBwgias+YkRwJ7Xew76EBPATErolB86E8BMEoeDjh8QwNwvnhFergDA1u7qcp+LCcDgG7QtfbLlvyCK77Tcl/E/oA+cCZeasT8IM8Fnvyv8PxvgWY/BVv4/ENdHljwO3z+V9uYPe3X2P1gzcQnanMM/YS85V6wV/r9MZ+d0BkIIwK4SB/Cz6AvAyLQVzjVQDMDgOhw4ZoD0v/JPVnRUOvK/r/QAeYQRAsCesGyNGnv8vwo/1kjv4+m/Bh4rb0U7/b+7aOY1Mu76v+N1t7an9wDAkYmr7htE+L9uCYj5MroFwJxOKKGvVhbAwO6+tcpnE8AFrBp33fsTwPUgCq1d4xHA8r61OHjaCsC4lKdT6+cMwAF0T+bJ9QjAgyO7bQvrBMD+5RiOBpAFwKmtowBeoAHACw8ofqLU978WegC4J773vzMPPI4DUQLA5JHZcCwgBcAusC4MHvT5v2Bde5tdPNk/jsN2Su0mwT8q0maR5CQCwIzRAruD8wfA/idDk0dNDsAruPQRtP0QwKUb26ZvLQ7A6ysBJGK9FMBmtBkA49AWwG96l/g3XhfAHfaa61wGG8CN5T3BtkMWwD2jIVPpCRLAkglgPBpvD8DGaZhsNR8VwGckVqwMhxjAXVUtspnVGMBtcrDY2JgVwC78xcYSOhzAzaXrwCRcHsCF/y0o1CMfwOi2nexB8x/AO4k7MQygIcD9W8blMnYfwN8wZNXy2hzAO7dhzZLdHcC6/y5XjcUcwLmFUUqtGhzAl4EohEfMHcC8ngJrP1UhwGoc5/T/fCPAbxVxS80bIMCacbRBuVghwJ6MRjxOdSTAoEBl6p0OKcA1njUvfh4nwKBIhbOTKSPAFn6Vy1tbJMBiierEGq0jwEyZyDX2tyfAH9zrS8yXKMB3WZ8tQi8owMh3ZiLqCCTAgjvnPDr3IsBcXnZxYA8iwMrsXXvyFCHADEZPIwt0GcBOuyeAXBEbwMZg/Ul45BzA1Ffp1+q3IcCitYJl32ofwHizeHr1vh3AAJ2aErx1IMCSIk7+DVkhwK+Zni60iCDAAEOwo7a0IcC7LNNSnf8jwDZC75jy8CDAAXjje3dWJMDCn0y0RjgiwF9pzJTbiSHAQZXXTbc+HcALpWvKm34gwGAsgYNXciHAdFf9mbZ4HcAfFZaCpXkewFlmPFiQyxrAfYwYDl8zFcAvhWMl0pMawGLjypDNshfAYJqkSyg2FcBm/rRhZxkXwDQ+ksGj7RnAYRr2RnBjGsC9rERv9uEZwCP2V37jtBrA52YrMO7PFsBr7NOhNBIXwF9Jg2a32xfAmimiQUBxFcD4aJQX9g8XwNNI1M8KjRrAHfdC6vM/HsCTFKbqZmsfwBiVZOXl2RbAsaT4d8AgEsDBy4FradMRwGsbOUdmRxXAsDpDUAQGFcCqy0QauCQTwFoIBGZjCA3Apj6g32+KD8AzJ0iuGcALwHvzqJvvVQfADW59HpKiDMDUGXUzGJEMwC/I2r5v9BHAqoDnXljlD8BeOOJBQusUwDfP+I/KXRTAK9MrWQkMEsCQhFOKPkoXwGuanaoQfxXAISiHx17iFcBxpK2VRcYawADOWcSl3hTAsFY2RyY3D8DSt4U1iZ0LwN0Ei3yiZAbA5kiKC6XXBMBIKpMxMnQKwB1KM2kw3QvAjPNYRUS2BcDgadEWIZAJwO2La+XcbQrAJ9Blkmj8EcCtnEUmNwEZwBOknlebLBfAMVMRiAD4GMDV7UEwzcQUwK7RvHpxJR/AkPAOOsVPI8AE//bJoT4jwANYihVvBCTAcTN7so90I8Czm+Pz21EnwI5/vNrTcyXAidoJPYu8I8CdHSzjD9MkwIwZlGqPDCLA+nW6R04yIMASQok9SjEfwBA4w+nJkB3AMDUleDnrIMAZ6k+a5cogwMqBZwmyJxzAPk7HgDJrF8C+oxEJQGIdwKLCk71VLx/AWUbRXyFMIMD0QyrTPmImwNBjmDtD5SXAU6PTZzPMJsA/TfZkx/kmwGBfNZh5NCLAuAZ9VTBWI8DxCZe0fEEkwL3QzG92TiPAnMXNrlh8JMAjbOEIq+wlwMMIpht1HSfA2nLCUYq0JsCYP30UF1gowClejQsiZyrA1Hnjnl52KsDOXeQ63H8mwNL4ZYGw/yXAThqUlTMdI8A5qUae3N4hwFUrHO1GqyLA8Je3i6TvJcDswm2TOowmwAuQG+XEwSXALHU5y6ymIsCvfW13zMUiwKWoWijyLiHALMiB+3nrIsBQ8hSns5YjwI5riKpLZSPAmCYrq1g6KMCFhmyOwGwpwBDBDSzs6izASV2CzjCBLMBq5AnW7bgpwAxVJpCTPSrAxN2fRICTJcCLEQmeX6wiwIiYw70KPCbAHKmM1G/iJsAkKUCyQMwiwOGAT8grLiLA1i3i3dCMIMDCxhpjNsgdwFOUNEgAtR/AJRoB5leqIcCh++OgftcdwFcAUHHk2B7AzH9HG8BfHcBKnD6K7eEXwPJBAQLfMBnAdtyvpcxXHMAsbJeanWoYwCfngRLN8RHAQouF0BWrC8A6aN6eAB8EwGBgtIgd8P6/nThpmPdz9L+nRJHiXIX0v7HZOD2FjeC/2VV0sPWB378yX1D6DTvHvyjb3X5+p+k/vvdn8BAR+z8LBC6O6tsEQFNBb39+5QlAjb7dDKU2DkDlzj3THDMUQIyohV7YBApAZONa3PYjEECVmb5sl6UTQHth0VlLkhtAvchSMBg8H0BWA07dFwAhQJ016xEQbyRA7Ka6UT9wI0CkF7wnUn4jQAhMG0xtCCdAEMshILDAJ0DY6cp72igjQMvV0hroGyJAv0HU4FOGIUDES/+XcFwgQC5EKvtJXh5A9KQKzzUFIUDAwuVVcq4jQAorlZow2CdAMqTEuzq4J0ANzaJgDF8kQOXefVSWiiVA9yJJ6KBxJkCTqOc6ma0oQNgqdVUXUydAw2xxVSdVJkCN6WTjkocoQBzwOgJ9mCdAMymRRjeQKED3Ek++NkQoQME4o2d2jihAfZ0mseoaKED1+nkYNNcqQMrFecOgditAeqJqziXkKUCEtD7fnBMsQKSarpsELzBAwXVEQHV8MUAk0yP3960yQAHsRn1G8TBA4Oe1GMcwNED2R4+Gvdo0QNp2S5L5HjRA02Ux+9STNkD/WF8PedEzQAYQLHRuyjNAzfhU6Br9M0Cw2foMT+wzQDMQzvQATzRA/vG+H194NUD47V1BeiU2QKa4SaSPbjRAsBU38lqCNUAlKATEki80QKbthnlMYzRAzBthA68rM0DSLV5PiyoyQIbxV5suWjFAyiSnI6lMM0B25L1js5oyQCMXAtXqjTFA0GQBuYldMEBpzrn55hAxQFt6RVhRyjJAYvGSDLX9M0Ci7vVoLgYzQGFT25bPxzFAiPZLzIm/MEDvixBtpKUuQLQjxgZvNC9A7ZuaZ5nWLEBnlTL9e4grQK80qvHmAShAlOwoUH4oKEAzAduwJXAlQD4XalYjbCpAela8qqS3KkD1AoSKK3woQJft/WXJvipA5kBOc8BMKEAtK9PChPwoQO7FEIAa0ChA+HkdndjxJ0BI79+AtSArQOcY+wle8CdAEf8oSa/8KkAZdNMx3CgsQK4K1c5xhClAXToyH+KiKUBI7XZoSkwtQGQOfmGQbi5Aw8BwWeqVLEDaG4TwYpcoQMbZTO9OridAKGrUz+0fKkCwXdsDNkonQKEa43/vFydAkfUXvy7IKEDIxSaJAFcqQJW1TEQ3MidAtr02yLe8J0BekI6zStYoQK58dCsx5iZA3IphYrHaJUD8MVPCwz4mQBJzHhULEClAgkFWgnoMKEB6qTts9rEoQAPd9Z4KjiZAyjLRxP9wJkBQZCFleakkQNuKyyErpiRAvd2R0k64JUD6ZkmUOEopQEZ3c+q4ACxAgM/qrhirK0Ab4/T2CgsuQJouEW413C1AOoo67kLRMEDi38/zIuYxQACVDoTaBTFAsbZDctOKMkAnqo0OHd8zQHgn42EpGTRAttYxue87M0Df5ZQCsHE0QMpQqOacazVApPyy4gJvNUAeiT/zQ9g1QBWkoabHEDVAxYbjd2mIM0BWe4kYFIYzQAh1nssDITRAcIzumJRHNEA8jkcU9l00QHSqva6b6zJApT/+oPvFMkDtkjVTkyQzQPzZZhdrMzJAmnqm8GavMUCrasRBSlMxQO2o8o8TEDJAYphT2dtHNECIF9L7UvMzQCiags1EwDNAK6JBDrbuM0DFAjYkl10yQLErZ4RvyjJAp7teiUhmM0DMeEZ42FI0QCu+ZFVqozNAZAN91YlIM0DwrpxGrr4zQOfLw8j5ujNAs9qzJB6tMkDcC7fPrpYzQFrMn9ajjTNAcoCxhGsMNEDisqAlWHAzQBNr+UpnXzRAthnch65WNEBFl7daW3QzQEbpoyDtFzRA9MutM4eLNEBmOM69kSU0QPCBr2cj7TNAy8ymh2aBM0Dj6Hr7JPgyQCC2e/AA0zJAgeQt1wQdMkBMMcyeEVwxQAt0zdSPxDBA8bGvKiWkMUBHhkZXAvwwQEnZbF1nETFAVPd3sg09L0BEo/EGN50wQBP/qb+eiDBAiUDJHTPdMEC2gHbLIvkuQPy2bNR1XS9AC4pX9l+CL0DMiD5GyTEsQHAMsy++sCxAapcFeVTIKkA+8ERuYz0pQIVrFMLAyChA5guxipNxKUDSb9dgcpYrQGpRMoMSfS1A2x1uvbRbLEDyvCh1DXcpQC3+VHnpdCpAOUV7ktP9K0C1lgZqmFEsQHAIm2GopSlAr0NkH4zSKkBsgW2JK+osQIlQi4AihSlAM1s+8JN2K0C5Q4V4+5YsQGGfkr1b8CpAWz6q+lgALUC/MA/MnYAtQBuvCqrQwi5Aw+R8nXgXLUANL5oTbb4vQLULIvaCjC5ANXBu1rbELUA9OBG2gUwtQK4o0krXpytASCcO03lsLEBOid2xszEpQE0IAAcg5SdAVGraPHYmKUAl7XD50KgqQFR3ii+3Hi1AOFxjr9HWKkBtf3AAS4oqQHeSJ+bjxStAbr+z7F04LEDrnRRPKK4rQLGJ77WvACpA12XA93ueK0C825T9EDksQOWxZMDywSpAi2Pi1h+8KUB50A9DmTEpQB29W/3HfydA5dux2gByJkDjtbu0bwAjQLZ4zj81jSJAWfqR5aMlJEAUP4ex3zknQDnSaUV4TydA0ldSa7WZJkACUwjZIV0nQLknEy8CgihAfaSa3a+VJkBBg9d2iY8nQIfbd5RgzSRA+qyiEfTbI0AZK9B+EOsmQJlUPBBxVSdA1ulKL7d/J0BMYTVq6gYoQC0HI/7JbydATWPmMgtZKEAkJ9zU6yolQNyLfjpnwCVAtEJY3XNaJkAhwQVAuk8lQAAfg4yZ/yZAq7HnbSY4J0DyO+khN0wpQDLfD2+VuSZAntmHphlxJkCw+tFPDDYlQEjH6IeLDSdAr5m2DyJNKkAWREXRkHsoQEgh+i1OkS5A+lyd6WKCLUAXdljfzHEuQP6c59yOoCtA+P/zyKxRLEC9VY61qx8xQNJfWPh9DDFAHvqJMsKXMUDdST7v4OMxQPEQUFnEWTNA467zLd8NNUCQe8nr7zM1QKZ8QhYP/DZAp1+bBNcNOEBg3IWZzPc4QO1NH4pi3DlAKtNqDlgbOUDrjsZc5Gw4QGotPZATFDlAJCetVSO6OUDAKSdkMQE6QFJMx6sRgTtA5ThNfnsbPEAQWg7dDJI8QInAa5dkqjpAJlAYgd9TOkCagtPhuj06QB8AVX4YlDlAai+nDo3GOEDcjOlmX+03QCB1OSMs5zhA4NrPH4KBOUAktF3NCwc5QDLOYJxoBTlA9shPztDQOEAGE7X1xZA6QB50FNG20zdAfK9HU8EoOEDdm10fLqA2QIlQ/lFx1zZAu+ICBj6kOEBleogWx204QOfGqPe7ajhAIDp5/wtDN0ADbQ1CyZ82QL3oJbcCyDVA1YkycyhRNkDTW5VS70k3QLnay0GYlzZAnwdlh2dJNUCnmN/uUMo1QCck5WutKzZABE8ZLaN/NkBmihUJIZU1QDLOvynRbTZAWIkKyET8NEDCB0egf+4zQPG6xoyJoTNA1W5pVMPLM0DVtKtiyRkzQF82qTCtezJAE/kH/rXWM0BM3RcXmJgzQBr+I+7vPTRAPl8xd3gdNEC18xYC+PU0QGKiAt97vDJAbbTwicL/MUALiL6y2fQwQL9hzeY6YjFAQbTxHwEcMUAaCHCtzp0uQALIgCfZbS9A2GtvNnvaL0BOIb5rFzIwQFLmj+jBny1A9bvxgcxEL0AawxRZDKEwQE/s5D0TTi9Axm6vl/VHLkAiG/vm8jgsQBUy7g/n1i5An64quaCiLEA0DgYdQtMrQPoIUHpEyS5AmZxzBWtqLkD+Nyw9/lktQPxI6cxRFStAvMP9BMUgLUCv5nFs1J8uQOZgys9dXS1ARJrFTKIlKEDuZgos+CQnQE2mecgNpClAQWT6H/ZqKkD/Z8iII34qQLznqbyPpStAdovA9UX3KUCvysfX73YrQLVG+F2aIS9AFf2Q23fOLEAmQDSybr0sQAPtznmTgSlAYYe9ak0/K0AW8lDdMDsoQIpzQ20moydAU+/v8+ZaJ0D4Spjj3kksQGjNmj6hkipAL6J4elYyL0CavP7w908xQDS2pSeyEzJAtLaUX7y2MkDAgaNxAlsyQIegHyWnHTJARuCvJQVqMkACyGOFJp0xQPViv1XQXDJAgQIF39K0M0ChePGGCb4zQKuyvsrC6zNAMgF+T9JDM0BkjyxuG2MzQEFzUtCTFDJAQ1QSU7YGMkDOrNq/WDMyQIUfVFbnAzFAu3DpCrIWMkCEPR104YEwQNg6Dutu+zFA9NOCwPG7MEAUdYrQq/MsQF3BN3hw+S1AITukKqHPLUDhBH7sq94tQEiUKOA9ASxAOqRtSQZxLEAEoOZQGXUtQIbXhFl2JzBAcfCpl2KQLUC5lXIMy+YoQE1edxNlRyZAFKg6+NAqJkB1hN9QXxIlQFOxO3FFQCZArKScPiHOLEAd3PTqhAcpQGKjxowkXitAbXWtt/79MEB22iy92WAxQBe9zVtatTJAUPbIqiC3M0AD2bNH8AAzQBflUr904TJAPTCagMNeNECpJmo0wAo1QLv4Vffw/TJAwO54Rti6M0D0/Iat2MM0QFvaJENKMzRA+PIf0SAmM0BXQ8Zahhk3QD6fPq7/gzZAWDLzHbWjNkDAw7pH89Y1QA6/0GMpeDVA9/DmeR3RNUAzxrtDIQM2QDQ2xldP3TVAMlDJVP13NkCxZawsBmE3QN5e7hfk4jdALYGfFzyrN0AWec+88582QAsR2kbEmzRA/DC4idQoNkAaGF/jGRA4QLVWqwnpEjlAfQMw3ZdiOkBgfP/kDH84QH5XV7hFXDdAoPDUNbXgOUD/kpjRzNk3QFppcLb3QjdAEw7ysIaQOED5WmsFpAU5QLkgJektDTlAGavv/AWhOEBuIUt7oa44QK3zMu91mTlAg6QR8OKnO0BpyPjkY2E6QHq/GYJP1ztAQs5kdf4WPUChN94QFfI9QK+BfP/DKTxAFRp0qGEnPUBUiqWJHy09QAvi7knL2z1AbfL0H9LBPUAOj+wwAds8QMpziAiCjDxA0E7YLG+NPEBQ5wKEvJE9QGIsO9RlHjxAyz3KkHJnPUDvx1F9ayw9QPE4/gIDcjxAjuwVPEDsPEBzAIZlZuI8QOoo5iVaET1A+gIQrcbmPUAF+AjJd9I9QEXqC8152TxAYV76KQbePUChf+bHJVM/QJ3j4Phv20BA6sGlg6i+QUAdE+KoXdZCQKJk0fhPvENAYom/tBvVQ0A79qzVBwxEQHKtBshHp0RASxYGUUpBRECbu5t2rw5EQKkLbXHygURA5JsS06MwREDQJXUvW+VDQJb0tkuhbUNAJ+YTUaX6Q0Aqk7ttmeZDQBercQpfk0NAG1f2e04JRED2dMjnYoFEQG7X4kpomERAthAdr3CYREAm2NO95gdFQCpyK4BuUEVA8ZlLFcMLRUBNkePwx61EQCZEv0piBEZA/vkjT86XRkCSGUCEBYxHQJDyqjYvAkhAs8sS6x1sR0CucWIrwtpGQAiwOdWRz0ZAMWb7IvJpR0DYVuqYH7xGQJrQqYX4UEdAvuKmQvRFSEBR5DaPpVVIQP/niYxzk0hAiB1Dk1HLSECdds0D/1VIQHiF8j1GhUhApdtxcpYDSUBPHdnU+6ZJQDmY6YfrtklAXLPebCJCSUC5GwWHlHtIQL+ZxiilzEhAPhxWgn5BSEAIip/mkP9HQBcndrCGekdAbzdotDKlRkCZd7yFpHpGQK7QD0s72UZAuVoUmiRGSEAzL9VnTNhHQJOl4UTNxEdA4VMzG8zoR0CmYgtPsE9HQLSZTAutZ0dA1/exqFf4RkA5iYuRQSVHQHjhPoOnHUdAxsRJs5jfRkAWX06e53lHQNhJ3XRnZUdARAo5Mz36R0BmKA4zxCpIQLmQUmmAWEdA5YXKRY5+R0AGKQscPJhIQFST31HRsEdALvVSRD4fSEBijFbuXNpHQPQ84eGud0dA+9+KCs0FR0Dp/E5A9RVGQJsoXmsWT0VAlRezDWEbRUDetSmsSmhFQNtFdyxJ1UVAmBbCgiL1REDWLS1a2fpEQI5O7mXQ30RAzwH2INnVREBTDlUCFzJFQKgz3hUxhkRAPgtx/8m3Q0BN8G5wi4ZDQKywnoynh0NAWS4WlHL1Q0ApV/2HIzhEQD6dsV/AXERAHam547/uQ0CgUX6U541EQKbse2IWS0RAQDvTutWeRED5kPcxaa5EQDA7eHoF/kRAv64Y+tnKREAPT27X9u1DQLi6W444GkRAyGISmTJ5Q0Ayd60b4RtDQCHl5L+mjUJACxqZ+2ijQkBaMxGumJtCQChRMxAookFAWb4R4KsgQkChl1oiT0BBQFn6AZY4MkFABf1Rt67aQUATizkaaSlCQGzCSAMLnkFAmTOfKdHjQUBVNHdqHTZCQG0F0UfiuEJAajDkq5gKQkBzE4ty119CQJ+VlYulS0JAxESIUqjWQUB1fobRjP5BQKFbqMcct0JAryQnCswGQ0AiTL7oVQhCQA6kvj+BkEJAzousxoZlQ0D6+3yEZ5xCQAsyAbkEiEJADZUAJWd6QkDFw3UPi7dCQDky+fRbeUJAjuKVBtiNQUAwIGn7DXxBQGbr1lmzJUFA+N/vSAmHQUApOgiWzcJAQCqVeDUCKUBARZX/PlvNPUCntT/643c9QH4q8b6I0DxA7+dYD/xxPUA2MLUMEzs9QOoElK24eT1A/2dv2w9MPUATLEffrMw8QGTVmbMyljxA31BPs/UQPUCJitLtM30+QHEzKnEH7j1AST8y0y20PUBOX50K6NI9QHwyrofQLD5AaG31bA3jPUCQlbAj+2g8QHm9R3qNRz1A1o2km0coPUA1fsilgEk8QOT6zLMEIjxAOAi0f8sdPEBKv4nmd349QOCseX+8qDxA9JPYOF31O0DGUTQn7WI+QJkfAwuHpz9ARcjcJCt0QEAMJHzMBbhAQO5HYuDu6kBAjaKmUt4yQUBjud6gkjVBQIllJj3bjUBAO7YFBeyjPkD5qMr0R10+QLP6TbeYnD1AKp0VGDN8PkD0NXaCn+89QBQ/MYnkRj5Albdu3KO+PUCCQWnkl0A9QCrh6IKvdz1AVOrcu+kaPUA38cato0U8QP23/sYSyztArwSucXI/OkD7UR2DTyw6QFSbtPc0qDlAauaBgWiYOEAYlRTU5aQ4QALwGNnA6ThAqX2h/84SOUAc13fak0w4QEsWykhawDZAA1B5LbosN0BQrL2BI/c2QFQfTGYDpTZAjaPDbVtTM0BOr+TXLdgyQJnhfmsU3DFA23Ri5D6INEDAQmhKC1I1QDx0X4AbwTVADS5AcArBNUD3/yjqSW42QCzad04E5TZARubVhnDYOEDe5dwYgQo6QLeaGHp5iDpAr3BStHCcO0D/SDqbJBM8QAggeQ7OMTtAlKTCDCvzOUBwipj3VRk6QFztzMlrlDpAZQSBeDKlOkCogHDQpeM4QAZQaKoJGTlAOUw9aR24OUA7wqGVuPU3QL/NBU5l1zdAGwyDzn5dOkBsPlrFQiw6QGhpqV+h3jpAA5ZnxhMzO0DSeUBKjnc8QA3frSI6YjtAIWsxIVBLPkAagstlmpk9QKQRluvB0DxAAJ1SemtePUD48g49SB5AQEH7VVRp7z9Az3ElgT1QQEChryL3sbk/QGGbOvkm1z1A6axOe+a7PkDQJ/IjtPc/QIeyy5y/nj5AfULgmcJOP0DemVa+muM+QGpUWLC6Mz1AQq0s673hPECw8yiYEWQ+QOdjtaYjXT5AhpGBPJE/P0CyoDSfvqI+QCzJuZkNwT1AafEcaAAkPUD5zBuI6zI7QBiVqg1SKTpA350wDaT4OkBIAR8/b8g6QBz4aXJnIzxAAAJoFq3vO0Bf/mdWR688QNpYy8tNMj1AeMUHownBPEA9aAfB5vI7QDNNW4PZtTxASqjPHKiKPEB1/n91lWY6QJEvzarvrTxAhRUbjXzuPUBJejGP6Fk9QMhS60uYiz5AgEgrtX7tPkCCOFLowfQ+QB1il/45RUBAS+FePn8IQUCuliMi7aJAQEWZAyYHnT9A/4tti0HUP0ArBTS84hE9QHyh25h4sjxAZMfJiHAePEA/LvAGJ586QE/p2wFIjzxASXaAipwxPEAcNsDZFf88QNAt6VJkcT1AiDSsYAeYO0DOy0lQC7c6QAzoG6x5KztAziqK2BvvOkCEE7FYl9k7QA6LBWcvpT1AnmvqhVBxPUBjR6xr/4o7QIqu/ij8KztAnDjQsJ8uOkA86fmhmp48QJIt6v/54T1A/gaTHhPRPUDG5o9ZiWk9QPF5JjhZ0z5AnXYdtzMUPUBoQ9VuAHE+QGSthn9FST9A9z1mlzjkP0BBRuhVM2JAQHMgz3MifkBAkqm8DJZ8QED8pvFypY5AQPT66Zg/z0BATYx6kCWgQEABqKiO9HpAQP2RgAgbj0BABHlmf5rOQEDT8MqmR99AQD/ffKAooEFA/XAmHSV0QUCah65J+Q9CQBJ5vSisR0JAx80/FxPpQkAexMwv5Z9DQMOvp8NKwURA/cvBZUnUREB+lU0koHtEQJSSaqLll0RAVwIU3sVFRECoeVc0fg1EQE6du41fKERAfhKVy5ORQ0DNinN3wEBEQJ9bSR0Eh0RAtZjwJhlcQ0AGcCvmKEFDQAE/cwhCz0NAOa4//n8xREDIViVWIH9EQAG02qceB0VA2jMdG0ABRUC3Nt78FSNEQPeciB7xZENAGoQ3jEaYREBr7pUeYsdEQFhB88/sXkRAJ2yrkK2rREAVtQ2pO3tEQCfjgLs/30NAgdItDmB4Q0DQy8rvymRDQFYpUc3SkkJAwGUeO8kHQkBeL4OhdKZBQC1/f3rNpEFAReKHcY15QkB7+wY9H75CQJyyqgURJ0NAwanJRw9MQ0BZqZG3U9FCQO7/iej5EkNA/ODJWcjhQkD5WxdI6tpCQMIENYyTgUJAwXaqGb9jQkDx0LSB7eNCQKYUNK1bJkJAOUq39YQEQkAksHzpzFFCQIOZ5955/0FAWfzKUn+4QUBDlvb8N5xBQPacQK+1zUFA9ubOtQlCQUDrrOjeMi1BQDcIN/Gzh0BAAu4UPqh3P0DjzmsOh/A+QDw8p0giSEBAcgVYIgw3QEB+009cMvU/QN7wdTAsJkBAZ5x2oIkWPkD7WWZXAd0/QMZmajvI8UBANJQiopeOQUDBOaP+HYZAQJ/5TmBV+0BAhE+/cqmoQUBlqk7C7x1CQBl7G1yUSUJAm64xyqPJQkDaXvuJtTlCQLVFp3CS+kBA2rj6OahjQUA0GiduhfZBQAFBQwJ3LEFAF8f59jPlQEAAJNpiBOVAQNjnGksPjEBApKzgzSzMQEBzykgNpfBAQOOdS2ZUQkFAfJoAe1XiQECMxbQHov1AQNAKikzOS0FAWBZVsSt5QUCUVXsGk6xCQP66l+7pmkJAqN8mGQIlQ0BMrQe4hhJCQNRXbjmPsUJAsLrikQOwQkDfb/WE+uxCQGAnZoLpxkJAgLjVmiTUQkDScPwBqeRCQNknE0NRtkJALaoZvk5ZQ0DZd8KIlbNDQJDsDMX/nUNAWeLNwTbvQ0CppRcRknFDQNwErigfMERAY71+y810REDvK49PyBxFQORNdYp9TUVAcLLTQexSRUBqMcG44bZEQMDseuZY+0RAxtkYveuqRECGji+FRz5EQIZK65tmEURAePsZcQoDQ0CgojHFZixDQI37tryMsENALV7CUvEgQ0CtXfpJqXtCQNVDT7AEVEJACdogg9TrQUDUm3UaPOxBQDGBRAcuQkJAHzRYVJeqQkAL+wH9wElDQDX5UWJxCUNAlTDVphISQ0D4OAK0H8BCQB6MciSDzEJA3XFuBNrLQkBTlPiY5WpCQDaqD2qCNENAGQJAveMTRECDiFH3ovhDQAU4Pyd9c0NA8+bCR3P9QkALqNCetQ9DQCtyGPZ6gkNARU5hPzYQREC7xiX4/kJEQJi66EbRVURABsCjjq1lRECOV5t6vMREQO7nXF2qn0RAg/xxvSfsREDpj9+FhsJEQPaCaDbJq0RArJ/UAvlWREB1QjytGF9EQOremQoOOURAcETmwYQNREAKs8PuYTBFQHOQimJhlERAMKhkTK0lREBunGXJ+HNEQFLKvWMvZ0RAmmc1gCMDREC3LehdSRVFQMlWAbBtYkVAE/J7Uf9LRUDVZXMUm99EQPSxHDiWNEVAmcBUwo7BRUBdMo+ZGOdFQHfcd4vIFUZA33O7DHptRkCRlP/cYI9GQHtv6zSU0EZAvFdrrlmdR0Ahl18MJYFIQFjo1JQEkUhAF1ojlEwYSECwHbO9JctIQBeNKplX4EhAj+RxlpqQSEDxjbmLVMRHQAoErrc9okhAx5wKcasJSEAU4j8zf6RHQFuIE3dy1kdAArK/gmKASEAoekSJPXNIQK0vssKFhUhAEDCjjxkrSEBH1cDO7NZIQLLuOM+jpUhALcsDyUcaSUDaYAP9YzhJQJfpmyjqHklA0JrzcBfhSED+OITzRnZIQH8lm23unkhAGBhf3/Z5SEANZ7R6pKBIQClC/iDbqkhApIlmB/L8SEDaEgkxrgdJQPgPAK2LD0pAC8qqx/GSSUCUiz1w4IxJQBxktTR83khAEZpN9b7nSEBO+fQBTFJIQHFwKy0TFUlAsOsfdnKbSEBfHHxO1IxIQKxGwI3DFklAt3ufvsNHSUDOY27bRgxJQBwpCcnQAElAyfmXzQBWSUDQ81mz6eRIQEZEEoj9pklAnYjQrQV9SUDwRpxf0YpJQHGpE8awiklAdRCSe/NZSUCnNzWYfUxJQPQVqrAp5UlAH8UneEw9SUDvkihYMBpKQAZMdYmMhkpAOhNabCy6SkCoq2+0DBNLQMauexBG8ktAKlXIHLRaTEAdG0FfPw1MQCObDlPM3EtA03b+LUZkS0BFiDDdaEhLQNgaG1Kbo0pA6bTuUKweS0CfQyUd/GRLQKyrbaBJrktAlR9cobCFTECx8XDQFxhMQNfFiYPI60tAZfsCiIGeS0DddWANgVZMQOmlUbInL0xA5cwQDTjHTEBA+XiSTZNMQLIb/qj7h0xAzKLCRGYSTUAHhdtOCS1NQG7qnHH+r0xAEdzOgE2uS0ALtzEhfxRLQLj+yd/TOktAOm8o29ucSkD6knqK8ShKQLuqygsZm0pA0g1YMzI8SkBEAQeGYOlJQIlnCdz8hUlAW69keStYSUDHDc19/95JQGAgWEgrg0lApQbQ+tNlSUAFN6REt9FJQAwSomCG7ElAMk3ZMh/SSUDuL+AYUqxJQNcFF0gwA0pASt9IN7pBSkCqu0zwZNpJQNfmaN/tu0lA1wyft309SUBmANBQJbNIQB0OUftxIUhAoA+x+Hv3R0Dtgt6WJJlIQPKhe1FSzkdArtKvHZcFR0DIh8e6q2FHQAi/FiGvR0dAR+vAITiLRkDzW84yakpGQGFbt53qgkZAZiMIRu8fR0DesDV90e9GQID7B3AEZEdAOhQguE+pR0AiqZWVcKxHQBNMcCZOVEdAvqKN3dKZR0B3wbwoQB5HQGsc9K5ug0dAFuQ3FcbIR0DOTw3ixN1HQMJsxoEe20dABj2BOf2DR0CA5jCwAEdHQG1UuRTVrUdAV8bw7akhR0AP1DIxpvZHQFww21+KB0hAzEeJgAVRR0B9LSergodGQAMia6DAqUZASqgYOMwiRkAszhQLtgxFQFMMqSUcakVAKj9rW/UkRUDHD5BHJthFQH3Y0Sq8TEVAOVitWJ/JREDTpdpBMJVEQAc+frdGIEVAxzWPRWgxRUCzaG8BUONEQLXk97QrYkRAnx9dnkThQ0DUXMkd8X9EQEvtQY4z9ERAGOSoqUyzREDRFt45oIBEQFmyBogccURAUtik9hPWRECi6eW5v6RFQPtUKf0w9URAErgsflkLRUDvS8GnX4BFQKqunCf3TEVA6q0xouxHRUDaaISPbElFQCuDeB79iUVA8A3fpbqGRUCD6K27JepEQGdp4VkrOERA5MGu9P2KREAQfiQVLG5EQBahAjatGURA2jpR6FPSQkBy+j5SsZ1CQLHF/d9kf0JAxjIMs+vSQUAPFHrqW3JCQKs3UQdp8UJAC4+pEKiNQkBgnCy80QJCQPc61myLkUFAyZgxhNGtQEAaL8IYh55AQJpRGju11UBAvekQh1l4QUAlW2d9iKtBQFcZqQq440FA8NqmtisNQkCgCr/evRlCQDU6BCqcS0JA6c9XwyKbQkBbmJ5dls1CQPfFxXuZ2UJAEA0Am0xKQ0CiftS+KGNCQP/yYmdt20FA7X+cb8+FQkAnvm34cTJCQD4DQQ+5c0JA3Jp93CQnQkAkUOu8GgJBQPjyEP58g0FAIE8oJ8aMQUCkm4+a5jJCQE6RxCmB/EJAqzGcjtyhQkBcMCxyBktCQK8VWSMrk0JAJW5z6BOZQkAxhX9WfNtCQHB7tCd6dkJAhE20tRMoQ0CQI9qfgRlCQF+Q/lOG7kFAxUs8PdQrQkBedfGxvZNBQJunoGC7i0FAr2pKPiLMQUAv9/jTeRZCQDDWDHReZkJAIkifX6jZQUAJDUEUTIlBQNCkm8i+80FA+/ga/ZM2QkAcH6pwnB9CQE2KMcEWfEJAIj4Ex+l7QkCYZJPx9+FCQHyf81LPxENARjyOm82SREB2mTFsPb1EQFDDBjsMtERAccA8ZWi7REA9Ct1EtwpFQH18hUBqiURAJ1MacXPKREBwtXT8weFEQMTfDCcp20RAwbG84OfEREAC9Pl5MzBFQJLoEfiyk0RAP0LBn4LZREAoybI9FjRFQI8kI8i7hERAdQglOT1oREB1QOpxPCBEQDBOZnWHRURApcf7fvb3Q0D0iXSYF49DQHX9IrKlVENANegVFVfSQ0DinCZnvsFEQEfVQpGrHkVAMO83h+6SRUDuO1OQ7CRHQFDmVJaFkEdAduNOvwzwSECx6WzzSX5IQOj8B1x9C0hA9pIAMEygSEBqMZ5Y5IpHQIxK2qWov0dAMrOA51QfR0CMmOX7nVhHQE0kAFyHD0dAKFmMFQr+RkB7i1w/15NHQKFmeOP+QUdA/GwO/7F8R0C/kndegZ1HQEGSo34XOUhAvnS9LRRJSEBP5aDBvAVIQBsdRdQBfUdABGs+2H3NR0AVNFoJbcFHQMrvpXq4+kdAzA4H37cUSECIjpdMNr1IQJ3cdsjo8khAn1vQStB6SEASE+i8fphIQAJBHtw4gkhAl4h1lajWSED1reNWzuRIQBZ2mM7blUlAGYUso1kZSUD0pNgJNRtJQKBpsc/WEUhAzmd/GXbnR0AJSx7LVNJHQIl/0nWfkEdA1FU+inKbR0AxD5PyaElHQGOq8734zEdA8+X4U5cJSEDGA4Gxf6ZHQFPXnj6tWEdAOwkX+QPXR0AN+ZwXmEhHQCEdQV06D0dACgPqVBb+R0Dt5FvsyGVIQOyEYTJMgkhAZ8TN8/ZTSUAdzIhvQT9KQHm7ghFqV0pAYkCLM+2sSkAqOXXJgFlKQHmL0CW6j0pAwFJgiXkeS0CtaV5ZVbBKQPk9D/lky0pAnbPveApxS0DoTwNIURxMQAm08PGBwExAPYPqXQucTEBtDeq82OdMQCYkpxs/Kk1Al8E0d6bETECuBUBTe09MQBEgATfTlkxAY47tZZTeS0A9x1QPAIVMQAkiC71UX0xANCZ9dMGYTEBlMmO2hUtNQPu/9dio5E1A6nJL5QY8TUDeWPBjhmRNQFDoZ2nJ/UtAmyX9gh5mTEBX1SBRCPtLQKEr4nX+mExAEqrLUZ01S0DbLGJakRhLQIxKumCcA0tAFDdK9IlgSkD2uVXOvHBKQAnf//Ht00pA9Ab4xijqSkBI0C5hgXFLQFnnuDTd7EpA/LVWKlUmS0C1uTx5VqdKQGdhQRtdEUtAD55dK1CzS0Aqb6C2LpNLQOM2j6csdUtA32k+SMt3S0DHR6U025tLQAc+mA3CcUxAah7j7kViTEB4mO9gQO5LQNolRIqgTEtAXaTnjgiyS0C64on0eZJLQLcP+HvBX0tA/5v5SFe0S0DxIYWD+0xLQJPbgtWk9UtARQOXl1wOS0ABdW6tbphKQJeLMGUixklATrY//NavSUB4nZ9fc9VIQF1GItYUJElAz/ZPVdV9SUCmO3WRJ3FJQOsa/HtjhklABVUrPAKgSUCLWNfYFD5KQOadJktKDEpAJI5cJZyFSUAhvSo5ojtKQIB+/NqSCUtARywLcxFJS0BTTCtY2dBLQBtwe1EIXkxAK34wwVlyTEDNEPIidGpMQLWgExdWOkxArQ1gHlWETEC5LRE3rCVNQNsrBqlClk1ApulthdWxTUCHlc4ZR6NNQITpa5iRfU5AL6eXq85KTkDtVZe+dDZOQPsuTNuk3U1Amdi0+OOVTkDVSvOBZmZOQMyq8to58k5AYQ4imQU+TkDH1YCX7y5OQIIk1HSxx05AwJeW9VVOTkARD4IGmP1OQNXx2ZxJxk9AZjLbqMHrT0D1z4ePRyFQQIh8mL4gelBAOMxjje9tUEAGm5+yR3NQQMKYM7FxnFBA3Fx9ckH4UEDrisv8LCxRQELFdFCkY1FAwP/vbn6/UUCKKdTFGtRRQBMWOyEExVFAARUKpLaiUUAvOR+0bBdSQP2xm5iMB1JA0nxo2a0hUkDNP/leOJVSQHMBgFMtr1JAD5kmbJciUkA1slbV3GJSQKO+xrSyi1JA1JAKScYVU0C1gF6jd29TQJMNAysJlFNAiLTplTr+UkDfJosC7iJTQJeGDPBnAlNA2kP09S3lUkD5gfUhtBRTQE2A26wu71JA2lDjO2b2UkBtSDRBQcdSQIyTBI1ir1JAUbiP7jroUkCYMUs4JOpSQH51W4OoB1NA77UBUIP2UkA6ac8AwadSQCeVdtgrzVJAeSDzzwggU0BXOenYqCtTQOpHJU0h/1JAD07NP7YgU0C8yl27ri9TQOxJQAP/QlNA3Y3WyzNEU0DPUBg41nJTQDB9NM/gvFNAd5Ry3XABVEBtY4kQ8EhUQI2aUGbEJFRADADyXgs3VEBWDj/ybGlUQGOAMktqdFRA0u3dI45bVEAXNGi9talUQJKCh+wHQVRAHrbW6iorVEA8sCs0AO5TQPnARlnCjVNA+mnPTXW4U0BTFFMh2rFTQElLd7jPyVNAqSBNkGmaU0CLHfs81YVTQKqYdvA9dlNAytfmOhBFU0CjUavQvI1TQFfK6aaX4FNAOv/AZ2z6U0Cb7hN3+ENUQNbzbFv8DlRAQMB/QCv2U0DIkNOH1uVTQBfH5IJi7VNAy1rt1lzuU0DAYijtjitUQO3ZwHAnslRA1zea0rRrVEB+1IuHUCpUQJfPUep1KlRAp0ucf6s6VEBaYUW+PlBUQMjyGNIpFVRAehcrYWG9U0CWbMZMYq5TQCGcCp3r8FNA9BsBjkmqU0AQarSLi0hUQCqFvOqdQlRAxH9tAhweVEBQk/iZu6NUQFf5TQJtuFRAlWTuAGAGVUA7yGqv+WhVQD5cEuFRTVVAaV10CvszVUCm7lQLp/1UQBrqj4CH/FRAZ1iX9MvzVEApfrtMMJNUQHBSLWH1nlRAxON3Gg6hVEAQt3u0YGxUQLLp61gss1RAM61E8AKAVEBdRNmbk9pUQGrpH4xv7VRA9ZvQbKVqVEAgwy8RdR9UQKYgBgnG9lNA9znuenEpVEAbeuKXoWBUQNW+Al9/dFRA6ika2UMSVEC7IuBSTcJTQAysy+AMLVRAefcFNVxLVEB1n0DNmT1UQLaB9VXZxFRAqyjUzUSXVECliW77qj1VQOIFVjIvO1VA0elZkQj+VEAC6yXYGtJUQJvFzGdF5FRAy1N31fNsVUCgq6IrMDBVQBuzniJ9elVA8qvVcVZqVUBJwnt77O1UQEm2CWaV11RAE7joWTmpVEAbUmpqhoVUQFLGYu8DZlRABSbu+gGLVEBk80IuU6JUQBJRslU081RAciETEdpgVUA4bV5rmJpVQMNGw0IFQVVAoxdckZvaVEB/JumGeOtUQLjgpn8ga1VA7nZlz6x7VUCC44Sw6GtVQOfZ2lQMHFVAFDS+1dYMVUA6SeDA7w1VQOkS+5MizlRAIgyYkkP5VEB0ftmv8FBVQAzOmxVbJFVAWNIUcbPZVED+EHHqgv9UQCyadSTUZFVA/LIyyE6kVUBEHgzhGx9WQIDoyQQtHFZAtvnArG9fVkAjM1DIOZZWQNBChJnMp1ZAaiyfd84LV0D2rgUQr01XQLzHTgWeN1dAjbWDuENxV0Cv1cixw1VXQFFSiU1wCldASz/imIAhV0DiaAVJW/FWQL/qfTba7lZASosweXklV0BGrRXD9SFXQKSXkBE1L1dA1dEGRV7UV0BcKi9EQ9JXQKTRVXyHBlhAcubaEd3hV0Bhsas+YdtXQDooL3b2CFhAu4KgozCKV0DHqBofOsRXQIUfBw3c2ldAU5T++9+wV0A2Mws2osFXQApHrDYYkldAfE4JjJOKV0CaAMzw411XQMiN7bkTDVdAN+B7Ws/qVkBOTMPxWcFWQLozXE7WZVZA8oWLn/vyVUCEXlWew7NVQAx7OFVY1lVAtuFAseH0VUD9sXklFvxVQF7FTFVp2VVA+SuXhVK/VUApV4wKABpWQEfrlvhqLFZAdj2xZB5CVkCVZVetP/lVQMvdrId61lVAJLGeVXLOVUB2fBKvwlhVQKDTFZNDxVVASGCtYk7NVUAJjqd8k/hVQHiat8CA8VVA624YWtA1VkCA9TfCww5WQFU8r9wwz1VAjshW+RfmVUCJiu7pbqtVQJZx2emQvlVA36zS6ccYVkBjHiv1nEhWQD7sXD/NX1ZA826pbWpsVkBpAqmHICtWQKS5sfJIXVZAO52N8Rx8VkDjysGHWs9WQCMvpuqDsFZAnN74QpbCVkBXLvoM+KpWQC9R1GGdR1ZAbsN0/t2cVkA8dDYN+MBWQGwHyv4Cn1ZAGzIkHPiiVkBOt0ir3PxVQPbsjNtCIFZAZlaP5XFzVkAwFNAveCtWQFfYUn1yRFZAkk+WYVeEVkDUbF1CeIdWQHP3HeCV7lZAloSaXR+HVkBKupovQ8lWQJdRdGX4qVZAiw3wT/GDVkDG2ouYgTtWQKA+pP8Rd1ZAikkS5llZVkCcI6erXudWQJzY++JB2lZAWnfKMWcLV0C12EuUbHxWQM03QKncpVZAj6S4NcTsVkDpTl5+29hWQPDPvYp7rlZArbsZy9SJVkDSDO8Y04RWQKvk/7XccFZAm15O8g3RVkDi/AeELM1WQDBlJXs1u1ZAcJ3f7UPDVkCzTJitavpWQPqMWEYAm1ZA+v2lr2lRVkCYhAx2SxVWQNsMWtgL9VVALi3pQjxKVkAqxpRafkRWQAap9AG7W1ZAuI3spc9nVkDy3VE1AYhWQBxMeOo8hVZAWswlcaUsVkBUvLpRwjNWQGNUjLQ5f1ZA8bPx1FEfVkD61LZqduFVQIj1LQh7CVZA29wpumUIVkDpWRh2nBVWQByn/m0tqFVAHwApyoDBVUD84n39o0VVQH6OsgEMYlVARLs6r2p/VUCXOGXOENJVQG6WQx7BN1ZAyMgtdZ1LVkCDRwpkCYJWQA9MbM5jVVZAqZs1ruw2VkCJKifaXVVWQFkWbTZDXlZAWl1kKW2ZVkAC/7go/8tWQIbyP1rGf1ZATVPqsDqhVkDfOX1PQ3hWQO+fav+rRVZAAmoFIYwkVkCi2TX6OBZWQPJjRHSx4VVAqoEl5CESVkDYvus0j0JWQMVvMrETZFZAWkIBL25UVkAwFLmHzgtWQI8R1/3n01VAROLXbNaGVUC+FaQQi31VQIcQqpF1aVVAcp5F5qTdVUDf1ez2BQNWQHJHqkUGjFVAYAsFbHfWVUDfSwxWp9VVQIrB8qoyyFVA/cOCUs29VUA0xzjVGcZVQJ5/H+j9iVZAd9pAD/eLVkC9jbwp4jNWQHfjhMf06lVAaWQxU8LSVUDhXXP7gZ9VQJLrTDtTbFVA+rIiEiEPVUBFEDrnKzdVQOQ7j4hbOlVArzh5bd0mVUCTX8ubCApVQN9DxvjHZVRAmfYtErHEVEAmI+QfgOlUQNnD05hE4lRAq3RPcXM7VEDrUiRyvD5UQOMHU3emKVRACVXae5dzVEB7BrlLY3pUQPQtGqLbgVRAUjtIiG6bVEC2Gm/NsJZUQNG6NufJflRAgYFCt1AfVECsEVyGUWBUQBiNOI4jfFRAKD4AGkmxVEAeeBKteFJVQKgeh99oEFVAnAfQjSTaVEApwRr2YShVQEoypZ9v9FRAsuwd4Xk7VUDtfqtTMBpVQI/IjvL3fFVANDn1kDboVUCt/FOtXqFVQGzPWXW/+lVATS1B4XkPVkCJxw/rZqtVQPlNnLl4rFVAe+tN/Kz2VUBs6R53GfFVQFkZbyqno1VAgNxpOzEwVUAsgBqcq01VQAxmTFlDJ1VACUF56tT8VED8BmJfBBVVQOe2Ax/aElVA+L8QG/cYVUC6YTpMjUtVQGk30rVej1VAIug24ausVUBIfrBkHVpVQKB9o2AZMFVAcqLdvTJnVUCw0qde1GZVQC4O7QhlNlVAnIAUZGFwVUCa8rFsto1VQP1YE0G4b1VAzDWzjqWMVUALlRvM6CpVQGoDENfVWlVATYKRijfyVED5DzOvmOtUQFPKluBh11RA+lUQkNt9VEADxbl4X7FUQJQBMWwJn1RAnj/ibZqYVEBWw3elWLtUQGc6QbOIXVRAj1wL0lIjVECFmuR4+hxUQNhUIpj8UFRAukZ4dJcfVEBkpZNEuupTQFtMQfiEmFNA+s6xg60ZVECvM+8RqTVUQMh6lYP/C1RAfPhrWkkPVEAWEBn7WjpUQKFsEP4qElRAxWXFfyVMVEAafiPmDBJUQF9fKBiSyVNAy/F+fRrfU0BYyKCozKZTQN38FmQGf1NACycxzS9JU0CJhoqH3klTQMAroFasQFNAUghMQHYcU0DrpJ9mIv1SQM+iCkuJ/VJADx+P5gceU0A6/WYZsilTQA5T97sw71JASkWHuEi6UkCP5KtlLsBSQOAWY+1DtVJAO9JkdNGZUkCDLStA/RxTQJTuTEMDGlNAft//8AdPUkBb4uvPdE5SQGLzvVs2JVJAsSqfG2pQUkAKYrPKgitSQDQN04BvMFJA4sn6H3WGUkABA027pOpSQGcGZXX/j1NA/4inECkiU0CiEltIgk9TQKY5FuB9MVNARCM5aSTuUkCb+GW9mxBTQFEtBKdSClNAB62wMIb6UkCbj51JPC5TQCvtCcFdAlNAia1tGrBhU0DPDo8R235TQLO+10V5UFNAKlCQ0ljYUkBXq01sCqtSQFeKTrzrq1JAZDjqDpnBUkCwKKmLbnRSQE7JmGcE9VFAFS4cNZftUUC0nxRXXepRQG6EEEwK3FFAZ0YKRUQbUkCU87Fno0NSQPoeVI9xbFJA3S7iedVJUkDtUjbHavhSQNSvpmfa0lJA5cc75uGuUkAQpzPtxtZSQH+9/8DkP1NAGs18hJn1UkAM7pUyqNNSQOAefqIy2VJA2a4WXWsTU0CG+uIgPzhTQF0o7wZNXFNA9FJ7+lwGU0Cwk24edw5TQNUgTQ7wB1NAAmSd1nQmU0B8g3p269tSQEMU26hv9lJAY9HxqCsmU0DDKt7PqC5TQLoANA5+I1NA6OnmkCBgU0Bqy6siBlRTQHnKessdlVNAKWfaH/7AU0Bb8PLitM5TQOtuz6l2VFNAFUvrJwpSU0CctxBJFt5SQBWnjDKok1JAtBH2aD/bUkDPbCBcDGhTQKk7FXSuW1NABEncm3tnU0Bg5Br8jTdTQG53vLnLllNANprhZV2jU0CfSM3ervhTQNM3nC1IRlRAGa3794GqVEDlJGZyH6pUQGsxKsgIeVRASfT2h8IqVECI1ac5e+JTQDco+c8fFlRAzvyqB0KvU0Dli3rqI6hTQPXjr7aj51NAmwc/nL6vU0CSJ7cSD3pTQBzFq17QTVNAAdyoj6kOU0AOoNtQ6idTQMvOofJjylJAYXxImzV+UkC5/6dMUmlSQK9XwWO3f1JAnqUcomqJUkCGtKIECIVSQFpgS1i0flJAGNnbV4fCUkCxMq6s8thSQIGg7exL5VJA5gzJGGWhUkC3vjx123NSQIDGwReiUVJAv3l7u9VtUkAD1Nm316hSQJ20CpCEaFJAFIiP9VmMUkCuLFmi0ttSQC8j6IeHmFJAwDXunrPRUkDfgKbLozVTQJJDDBQ0bFNABGBSnQttU0A97VuxFc5SQKh+5iCeiVJA3vkTvc1fUkDdCTTpLjFSQDcyYl2wFlJAXCwnFQIfUkCVbHNXq0NSQASIXQqvrFFARlOm4QmBUUAhbqlRhZFRQICMmt+uq1FAWyH5SFMCUkD7ppwh7/NRQArGnDSF6VFAPiBZxuYWUkC2y7OgfMBRQFZqKdv1E1JAbtuwcrYqUkCYHYLidNxRQED4EPB0v1FAnsTZ2pYDUkAuoDaBRkhSQBDCc8ns8VFAvr7YOM0JUkA1/+m6k/RRQA99Vxd4zFFAtdGtjZPmUUBSxLRvPbNRQDuHmKa2l1FAjBt1wTy1UUAowsl9QoFRQAzXHriuvlFAfwKPaqRbUUCxbDGRR85QQNGfIiqEkVBAyNjkfZ5CUEBcxhzYKKVQQP/9OMm2wFBAXm42rUDfUEBfohquwtFQQF0vmBDtu1BAfTN2T/llUECMosEReyxQQMcCo03SElBA7CiRH1Z+T0A3d3FyJPlPQIL7Md05N09A7F3+zZIrT0ATkf8LenJOQOV240xufU5AtOJ94cLCTUCaOeFZ2KdNQJRlmfOk301A5V0vHJYETkAWkydbV2pNQKSMyfSDqE1AkoDORIMpTkAdO7rUm8FOQJvfE760Y09A4iw/UkviTkCrb3wp+8ZPQLPbF+4LClBA92Av/L8FUEAIf7AGFftOQI4NA11X8U5AXO/ljcmOTkCBjfPhSx5PQA/g8YwSVE5A9p6G2FwHTkArxUW5rx9OQME+v3mLjk5A+EwU5EtVTkDTW9B8uhFOQMTt4zCYx01Aaz2kHi1JTkB158XTo5dOQILFP5ySek5Ap7YTMk6lTkDJi/Q5dl5PQKpVL/Xm+E5ATUhESMLATkCFjGiYODxPQFgTJ2LE+k9ABe0ikPUEUEC/I4nnMfNPQMy8BDjWF1BAhVwcF9EDUEDOStHXXQJPQPhf+Pz+uk5AWkpzSfTBTkDHnJ52vTZOQOzZOKE+WE5Ate42xENLTkARAxWDaCpOQCaGvRbYHU5A99gwgjHuTUC00sGx+jlOQBzQ6zXM6E5A5pGlbGbmTkBUBEGy+qVOQFEti8U0ok9Au+j311P5TkD9h+m2QBFPQCWTjWHqfk5AGUKFezmuTkB+QZGqhK5OQHvhDupTYU5AQvQMQcmsTkDaviLVZlNOQPSjwNeZNU5A0Po4woVvTUDtA6E/KCZNQBxPCgJtHE1AtVdxq4NBTUACnNo9uU1NQG4r3mUl6U1Aa13OAABkTUD/xv0g/45NQPbBw9lOs01APc3yVXCHTUCP11KzpVpNQJMJrfa29ExAyAp7si+rTEDkXnVnJclMQIHIp5ybv0xASid/p4VvTUCAovpIwOJNQPUQHpERdE1AaX6qzH5wTUD/W8VmSptNQHscxHsBaU5AruhwiTPuTUBF+ABySW9OQKFDrpZzo05ASF+8ZNvLTkAZGMQl4ClPQHkiFWeKQU5AR9Qw433pTkA4dk9CfRFPQPsIVrMQoE5AYJuA2AFrT0BwIKaueWhPQHDHgyW5DU9ALwz3hLiuTkCWJLTyphJOQCQaYM4RNk5AJB1e9gdTT0C/pe5j7edPQO+xImTW+k9Avd44mDQxUECLPcR7eS1QQJn5zMbzKVBAe0Pi0a8kUEDjV2JSBJhQQBMYEg7ahVBAba7iLcPxUEAf1OJCnbVQQHkePKDF6FBAt6suzvpgUUBUQZbO+XhRQPaOV173R1FAzHy+h0hoUUDj2oPW511RQAPrJZfAh1FAxysDgX5mUUD72Ypdv2NRQAxrUgmz+lBAxp77xthIUUCMOYH9FzBRQIGwSuSNPlFARuQJWFoKUUCT9LuY4EVRQIQKPFTiElFA/nLyGHwzUUDzSMDqNTdRQGAOMXefQlFAHpsHHtIqUUDsnwKeylBRQCqOY9jiY1FAjLP+/vhpUUDTab0dFpFRQKu22fopXFFAKK3rX/x/UUD6Q7BDHodRQPze4yy9klFAIARykWM/UUA7ryaULVVRQBeF7xA5TVFAkpbgZF92UUBHUiLsSU5RQF4gjJdcFFFAzoRIlCYcUUCvYC1fDEJRQDEpbAMelVFA7Umtg06PUUB9HMrkILZRQG0SzCW//FFA4K49FT1JUUCr2RJ4qgpRQETf8K/+G1FAVo6IvtgVUUC/gHoCMShRQMZKRR0J81BAWdz/phHSUEAVschA9qNQQG0Y9Gs7vVBA3LJgdEMCUUDuCEgOxn5QQL9NjtyMTlBA59gcQjsKUEDBgD8UalRQQHzprzsOPFBAUYXmXoNCUED+10hdbEhQQPs+Z+9yA1BAe+8fgWaQT0CGJtTzBhFQQFSuiALFU1BAsX3aqdM8UEARrhy7py1QQP10+lrvKlBA99ZsSncvUEAMlWvma1BQQNyPIuAOLlBAa3X9wVHPT0Bn4VQsdSRQQPQniFXWXVBAd5ChMZ+aUEBsxWsDh4NQQAyGcaN/YFBAabbzLqqfUECreJBLAo9QQB/lV/CFZ1BAAguUchLNUEDxpD3WcDNRQBkFUJxhIlFAiDFYE+PFUEBRk4KDy7JQQBb/o4NRZFBAFGUutTEgUEAs/KF93nhQQJdzgbNUWlBA4wsHNGAuUEAB0OMm1kBQQFWiyQo+1FBAWp9FZnliUEAoOqeNOx5QQF6+CasXHVBAXzF6dABhUEBmSdBiVJhQQL1MTCrWclBAj7DcIOgsUECoaaQ0Wb1PQGPf96w2ZU9Amm0qmRmgT0Bt39yz/g5QQCTwllS2TVBANzLcs36XUEC9plwxkUxQQESHi+IDo09AlIjsISHxT0AsFv9u2iZQQCh9O2++pU9A0qxCjxwHUEAPBLYnZrVQQLh2DRu3WFBAIK9iFM+UUEAX9j1B/8pQQP9n94n3mFBA0RQYw3bcUECEABEmxM9QQD9f2wfwu1BAxw/LaZqcUEDnhZ5OciVQQPRa4W6kd1BAwUBAzbt0UEDkWdX81ztQQJPoFQZmg1BAGVZnL5ydUECPpS/Bk4VQQLhYYG16j1BAk8X7u8dxUEBT1z7KaeZQQBPo77NEr1BAQgBXvY6FUEANFbVTUadQQOC9LjEYglBAbyU5LniqUECM6lLMBi5QQLQ+9LriN1BADvdabOkPUECTtk4tmq9PQL0eEQCi705AzaNXSP0oT0DpRtmm6/ZOQIScw0xJC09A2YGXYBwmT0AmJMb0k01PQA0WmWoSP05AgINNi2LOTUDIjviI2j5NQCSHRW5oxkxAIpEGx9dnTUB5qUEvzlpNQL9+AAi3c01AD/o2cVCMTUB6juGUIWBNQJkG/5B7GE5Ak7H6ZPV9TUA5WOClmbdMQEiQfRELOkxAs3LD2AFBTEB7E0MEBn1LQPgGfTWcHktAzKWwgGfgS0CvrAmF4shLQJcOKgAbLExAuro8MXJuTEBthGZgnGNMQICGoZkMVkxA8bQYBtHBTEDPWMamADRMQOxOV8uEuUtAXcEoRLO4S0B5OFjsWLVLQIdRbMmcbEtA5Pw/aZYWS0BrHy4m05FMQD3odIUzB0xAaBrsLE53S0DTMuhaM01MQBJ2LIkF6UtAnM/8lFCoS0Ce0LZGhuRKQMMlpEk68EpAQTfVxA7ySkDXsXBa5c1JQLeauMsuvElAyjVhPUcfSkB1ejHd0RZJQMLOrss++UhAycfd2gBdSUCclkLBAStKQCmstKUlMEpAsH7iMf7LSUAGiiDFuTdKQLQNqBPT3EpAYBHGiYsbSkDuENcc0CdLQOXx87NbAEtAajRi7LUZTEDVYv/l2wVNQLg6QDChWE1AuNCG7YpmTkBtM+bL7q9OQKFEpdA2KU1ABHjmr++CTUBo3WKX9KVNQGuzt6L9Pk1ATJ5zgGaTTUAZoiqaV6tNQCRQPHjlJU5AVTygRB4nTkDkAYz8aPJOQHIORGVZFE9A3iU3TJv7TkCfo5wiyQBPQEbr/Kph705AdblP0lb4TUDIigRBS+JNQGkzDhaFPE1AE+YlKppeTEBJfURTwdJMQEXm7Hq8ykxA2OV2LWQ7TUBcjtvZ8ZxMQGYAtjmTyUxA0WT5xA2MTEDwg0wVRJ1MQDOa9uHEVUxAob/NlslmTEAZsGacR6pLQDmBL9AdfktAeReR0mhyS0CyKiiBJpNLQF32toKP6ktA5Cdd0Hq6S0Ar9VlXT2pLQBkJPj9WWUtANv1WHCDGSkCpxCc/vTFKQAPDa24cjUpAy1HGETICS0DJOj93TI1KQN1w7ggPS0pAsmitROKPSkAHGJbt489KQKgHZknKtkpAQAc9e0CoSkDnJpw3TLBKQLH4sveTU0xA/5ttOngcS0ABOpCGV7dKQMbZt4Iix0pAgIGHMkPYSUBTw1Ez0MZJQFpAxKp3/klAKLj1ufa7SUBtxZ4yEaVKQHfc915ec0pAZgNDGGnjSUCMlPFk5I1JQHO1rVm0OkpA9yN5NGHCSkDIlaGjUShLQHKOUnakIEtADTJzkTVIS0BnBSyhsshKQIJlPb5zdEpAtqRtYKwGSkAbNxgXXjVKQNj1IxEVpEpA4A0sfuRPSkDRMcYxG2ZKQDs3rsRrskpAeaFwy7J4SkA+NdiMEY5KQMQWe380KUpABF2BgvmSSEBc5hIqqXtHQHUdzUjxL0dAgCudrCzsRkAZXZBoGEJGQMUyGwDKoUVAVIvnNctKRkDWygh8xVVFQCp1jFLSCkZASkXWCXhfRkAw3CCOt1pFQGu2OkSj6kRAFWjPWsvkQ0DD61NwED9EQHaWXre6f0RAU+15DCNVRUBmusSX+4tEQMgDa5xpHURAmS7RysrCQ0D2/GtxUuZCQLE3VJzSd0NA0ulMRSXwQkAajaZQnDJDQG6v3UaKBENA5Tv1WdPlQ0CyAFRRKuhDQF4cfokjCURAL6oRSn15REAU/ykjDdxEQKQkOKSQrkNAU/qaPqAiQ0ClYhbPIXNCQKzYH5r4zkFACWh1dE2YQUDQmyGtlJJBQHYGInyf+kBAKWsjPf/6QEBei2zP3cNAQB5AEYKwsEBALz1vM+5zQUBAYsFkPOdAQBGaiL3edUBAV2VRgGO4QEDd0zVYCpNAQKYU/KcHNUFAaEndZpvWQUBmCYIA995BQCsxjz+h9EFA7oDMOM/gQUA9SV5nQ4xCQLxPvllsVEJAy+KVzSWCQkDD9nk9XdBCQA23C64Nl0JAYYyofaphQkD3Z5qeKFBCQDXD/4M8OEJA5x2SSCu1QkA6ZEN6uyVDQGtWI65U7kJAYFiss2PsQkBBovGVkuhCQBRSyqVehENA5dBbP/FKQ0DTH0Le7fhCQOTXl4eLwEJA6fMnpCOXQkA8WHqwjflBQJ8+Vj05m0FA9mqB7IAKQkAte4b/yH9BQKmvaG038EFAua48EERqQkDTpD8V0IxCQJUW/iHa8kFAzVF9jiTMQUCOybE4ng1CQOTThAgwHkNADHIMzjiSQkCUnGb4qL9CQJ+fbalFV0JAWVQxlSnLQkD1UiW1MAxDQLhL9OfZfENACMfXwo7wQ0DfMbm2wY1DQDBC4uGLZkNARZ9PTRB6Q0Curvb5MyNDQCP7O5ha60JA3Eye+AsaQ0BP+K2uKMVDQIvozmr9dENAvCBRU9doQkAIJJK0kUNDQL+J6jnwZkNA3YWJQJr/Q0CmHuouvqtDQPl0nmQxakNAJ3tbAKnZQ0CNdAg+abJEQOJJVjZcC0RASjQcad9UREBqG02LJtJEQN8VwH3tVkVAO0+IEpwwRUBtukZJDl9EQOTLhvE9xURA5O2XW37GQ0AcYhghctZDQFNs54bV6kJAEN6AqQlmQkCiFr9pF1hCQDfe+WUGmEFADyf/quOOQUAkUfDVl91BQPYDqMZeckJA0LsGlTLQQkDKiOdNKU1DQCNbeh6NcURAtSBXAyRHRECMfiyqYDtEQN5nyDPioERAvGMw8eUoRECN6a2ldF1EQAHotggsrkRA7UnPMM2qREDomiGa8UxEQD5phYvqxUNAPuUtNSNmRED4KUmnoN5DQPwa3yCq5kNAmLAgrvs8RED2W5j7Sp5EQHLNEf6VWERA/D+1ABTiQ0CcX28OOHZDQK/4taHOLUNA+MW51Tt2Q0C+eXNjA8lDQFukQbAaDERAcXCv+8pFQ0C7UPpltnJCQISegsVv8UFAHBmD0F/YQUDBf1PSExRCQGk4490ytUFAM1HEnKYmQUANz5mbB3tBQGVxWDNhXEFARYXMEZgnQUCvO3RF1ztCQPeEaO/1MkJAyUQgbv7YQUArljQId4hBQFatFp+PWUFA6vN3RyJtQUBUXp1/UZtAQEm865cDa0BAa68sfwZ7QEDE5I/xNpdAQDIWbk5pMEBAd1YlA0OCQEDYbCb3ECRBQDmbY+j4VEFAL9vA435VQUBNGrZYHlBCQJ2e/gjdTUJArwq3Qfa/QkDFRwhV7B9CQNxrZWqc4kFA/c4rawySQUDVCIoL8hVCQNN8bEdODUJANd3nGeVlQkBDKHk2XndCQBTGo+4KIENARxf9b+aRQkDZXFrm5gZCQAs3EPFFJEJArYO4KszHQUAoguGtyX5BQFP4uq47YEFA01BWdV08QUCjj+Iq80lBQMW2jIsIkEFAIAXQTvc8QUCGrQiLsP1BQDCoGvg6IkJA0OfT/ReRQUAhNSHrDNpAQAewp7jeskFAwxW4DQkEQkCl1nH1MIxCQH3GmkgqD0JAIGBuZragQUBwdqvXNg9BQHaeLrciskFA7sdpOZJTQkA6NsjCAS5BQCZznr4o/EFAjyMvxmgxQkAFOjbNydlCQF91DkkXj0JAPG0vjiftQUAd75W4mqJCQHc0qdGTzkJAfgznpC9CQ0Dh9440aMBCQFEUfnCSb0JAsyhT2Ue1QkBQySjbHdlCQA7TBPY5tUJAPr94VbGaQkCSzucvtVBEQCKKv28NnURAQYTSlPURREDVPNFavdVDQOpZF+ZVXENAmFPgXAvDQ0CeGZ+yOMJDQP08jg79IkRAgzsHHUHoQ0BdFPbZTiREQL6d8efDsERAiiqOQiPTREAIoIOCd+VEQLkoRNbfbUNAJbrvR2pIQ0Bco8BihYxDQISORAz8pUNAia05dr9FQkDnEF+h85VBQMoWBVRvSEFAEc++z/G6QEB33JpD115BQAiLC7gkZkFAMiPMtWCrQUBE5xUCDtNBQP/DaZ51VkFAS0T+moWpQEBwdyuhM8ZAQNntJg53CUFAUO5Vd4vsQEDs7vonsuBBQHH6ohBOLEJAjY587A2GQkCEiXWLmAlDQGVRLvYrHUNAbS2xQMKVQ0BWToaTFddDQHfrl9v6bENA7SJd+O2iQ0C6cVzriLlDQGgenQxjwUNAuXFhrxMnREDL6PYH281DQNK8S90V40NA/3Zh01pFREBhCRwqN5tEQJn5jhihwUNAxAjZZ+fRQkBhHKmiruhCQGQufeCu9kJAlRoVNHaIQ0AZK2TMd1VDQAkWM+g9C0RA+aIlB1v9Q0AWd1orztlDQCTXmOo7NERAipItdw0qRECYScVLLWtEQLdtaneeC0VAvBo30bNdREDH+zggE7xEQP3xvXND00RACH/IMRVuRUAAgvaX88FFQB75zbbZrEVAJiod2qlARkDpHMjw1VpGQAKX1kJypEZAv3BrpbRIR0DpKFeBiXtHQLEVDjLu00dASdxgd81zSEDvQkqSOspIQM5LTbY4VUlAzoCjngE4SUCuZHlE3+ZIQJrZZqU5XElANQLgWQbSSUAUw0GWe55JQEkTPfy3P0lAbitN3sNGSUA+M+tWKDVJQJVKUfqciUlAWfSTjQahSUDLZuAakstKQNxF7H4KKUpA0p7MbuSkSkDSGKGNLWRKQLeToLIm+0lALQwLjX7gSUA8jPUnjSpKQNi4gmxwsElAO3+Hm2h1SkC7BtIKDf1JQPQf/WKK5ElAn9D27Cu5SkB2qSbOUx1KQPpmFZmb4khAI8ygMHl7SkDgFKq3vKlJQIjWDjjdz0lA5isq2yrMSUA9aXv5ZnhJQLSnShT0bklAtOkXSsOwSUB5CAd2IPJJQF6JxtRUCEpAhZoUdNVnSUBUH1T3qNpIQLk2xko86khAQ5GpCD4xSUDninscjYtJQDjx6/Cal0hAl0+iw9fWSEArXsJtTg5JQObT9+QQyEhA8L05GI9LSECmj2j9wlZJQNw1uwd3K0lAsDgzrt80SUA1wjsE9OFJQHK2E+Krl0lA9YPG4RgaSkCzjkqiGqVJQBoF9uwkwElA8BrljdJ7SUDZhKTFbdpJQKhyqdE8IElAGcZV2WVZSUAh/pnKcmRJQK9iY6LGcUlA/dy5kALpSEBfkQbK9ZZIQHR5M12VF0lAfXrsjvCFSECJUlAtFR5JQCJYHJmHD0pATYoDqZ6KSkCt2mur8uBJQHLyGGtWOUpA72xss1TMSUCeGe+pPoVKQAR9cCVv0klA6Ia8DyHlSUBwV8YrBAdKQNdVgTRW00lAt56UEo6fSkBO2A35cZpKQBT0jPX+5klAiHkeDqujSkA0GGa/sENKQHGG2PtYVUlAgqcteZMOSkBj1Cp47FpKQPGqzf7q5UpAhwsUFoyDS0DZC2rFCehKQDGq+COiIktAdDRU49vFSkDnk8YBrpFKQBXyLN98zUpA9ae3C9HxSkD0fd4P391KQOcejug7ukpA0B5kkbaXSkD8qSo8/Q5LQKhGQaQUakpAlpAHkf4cSkDbsZPNlPZKQLgOn58iPktA5kBmIu0XS0Dv93ZOxBJLQN2zAx1OtkpAH2dpzfTPSkCRjf6G7n9LQHojVyfD20tAKZZpVeEjTEDX0s8/5zZMQPdop0TOPUxAXeCvWMFfTEBnZN755ntLQPt4EisTEUxABFdGnljDTEBIzF6LRt9MQBEdxf9CQ01A0aD22fklTUBbN+rfh0FNQNhI1MerpExAH5fKrfPeTEA/kEUQW3pMQJmvuNImCU1Azv34lgQjTUB/l/H5NDFMQG5dRZgJ30tAeHruQEE6TEBN6WCEyCFNQKtbzjQEd0xAkfSsBGthTECAYhPXNB9NQHhUW6ZD7UxADkPxhbrHTECRR27NpiNMQBygrV8byktANHu2pxikS0Dgl5OH7rBLQHsrMg1xcEpAVnCS0e9SSkC7s8lQXRtKQPviVj2psUpAc+6pPRORSkBvCsElbrFKQC+JwhOO+0pArVNK9jpHS0DQJa5xYcBLQLclx3t88kpAob3w/sHLSkAZCi+RrhZLQPFFMzPC6UpAnkDpU21MSkB35zy2yvpJQM3Z/tY1V0pANsxLtPzuSkCLxOfhm7JLQM5Ol37LiktA4NkQ+JoYS0Be+4cHz+NKQHpcjxzxrEpAGQHYbSYmS0Cks5WsJlNLQA7oqVSVpUtA/JqWHsRDTEA/wQUUXPxMQM6mmoOTc01A18hlXGZPTUCz0EsCukdOQNm/KibWP05A8Lj41T4xTkATJSFyxXdOQDJYx4O9vk1ARqLCoNzITUAtjFKiGpJNQGwHsiKXAk1Aa7gzU6kHTkAbH6rRL6ROQDfabyBGkU5Agt/ZROxhTkDOsl/hL7xOQMpseLeNvk5Ac9BhHBF+TkDLcEN3n0tOQCW/0YuSA05A6PWIGconTkAHqcsgIklOQBv2+o3W1k1AOQf5o8jFTUAgP+aFExtOQOgzHjZj201Apcv6LhkYTUCr7nHhQ5FNQBG4MC6KXk1ArYodYdRsTUASmrsMi3pNQLfo7GpqG05AdYrBH6rFTUCi/skCBB9NQLGypsoee01A1b4fllYPTUD9O48zwxBNQEpGpHRbwk1AAdlHzf0HTkCoOkdWRbFNQO2K33bZ1U1AnoDfQpgHTUBBNFqkUOdLQHKFUh3vv0tAAAyHwakeTED7MXYTPJdLQIbEB9cvqEtAvGhXAbluS0AY2LYSwX5LQMrhxD/i5UpAylf4RIbaSkCrreUVafxJQNbJ3okjdUpAavlqr9/QSkCw2hi7SrxKQCEpGR+Rc0pAziiolKrESkAmUwuY5dxKQEi4mPlRPUpAdpBeWa5pSkD8G8qw5YZLQPhL7XpM90tAasaPOjlCTEAKEHSrp8NMQJ7sIQ/GmExApwoq+dngTECvQjjZQNBMQJcEwDeCu0xAwCyJEQoKTEDW3CiMJoZMQJE3WXFMg0xATH+WFGPdS0C3ewBr3YRMQMEPVh/8XExAYPRfQoorTEDLv3CEH9hMQLJMFtcvqExAH+3azS/nTEDaUelD7J1MQEa6vUgqH0xANSGod0S8S0AJqaM02OVLQIcnzIwzRExA3e2AfFYGTECS5lohu+NLQIGDsTs3+0tA2WwAHKRyS0BR/hCtvppLQBVTLFNrVExAMqIrVBOQTEAARRV6iKlMQH/l3/jmX0xA5eXJOi0eTEAKzE1XEfZLQM9QpSMA2ktAwSnarGD3S0Cx+SNsp0JMQEQkcYp8nUxAmbWAgQexTEDRjCspskxNQCge9T0pQE1AZ1cu2AmJTkBgyfDvPdFOQK/fnsj6Qk9AojnwcPY4TUA1CNkj8p5NQElMAPMoq01AwfX+mqeDTUBaryGuOaVNQBzlgtCxBk5Adh76NQztTkDIMlU0KOZOQFxdV0MPHk9AFi87BV1kT0BuHNWue4tPQIfT2sdllk9AiWWshUhCUEDjURWmy0lQQD0HFf1l+k9A77weDpZYT0DnS4X8BmNOQHIQw/lKwE1AA3w4v8MlTkCIF5LbeNZOQEfq3wig501AXE+Z4YSwTkBtTEGcDOpOQE1PBLnWUU5AYh9TlkclTkCxMN0sMpxNQJtFVO1JTE1Adt8ugPS+TEAvYG9o7iFMQJQqf16+CExABQdr1QzoS0Bkkq0HQqdMQIEUJ+TwnExAWybjsLtwTED6yR0/1AFMQONo0OYTu0tA7t9gn8XUS0Dcdjqyf1VLQAvbkux6QUtAYjoyknuOSkAaQGOcyJ9LQB3cqN/wdkxAyok08WkVTEA2pVoAHPFLQDPS9lAOdEtACe33EhODTECD5aY66StMQJcz79pc3UtARHbNMmPZSkB+7Rm2eNhKQOikjlwPEktAx6KuDMplS0D4uk/rkMlKQATeLFkLp0pAPnSwuLqVSkBIx9dzxwhLQOA9MqfS+0pAKSPuWMbYS0BAcJvkm6xLQMWW3QJz+EtA/Yd33dy0TED7x3C9YINNQE1f5whhQU5AvLNTtXeKTUDvmIJ+FnNNQHEWeBFLDE1A+3IR1TemTECWJaDr+dVMQPbwaZi9Bk1Af+i2MeElTUCMy53BUVRNQCDqZCJbAU1AWBC9iYpJTUApVJGMEdlMQB39MzMzXU1ALkuKSOtfTUCJD1DuGZJNQG6nFbLnpU1A4wUXt58bTkBHZG/yxv1NQFO0RaMC5E1ABzPI3hXoTUAIevIV1PtNQArT7MF2R05Au23Wk0SuTUB7J8/9yxVOQGkuaNgkXE5AAl6KmBMpTkCLBT2PnzxNQCPg+QlFHk1A0zligv93TUD8rcZ9nudMQIQNpdDzL01AF17hAftSTUBceYE/T1NNQC4cxzyKdk5A30WVNsrPTkAvGcbtMZ1OQMzcMIz+wU1A0H+5KwvoTUCNG0WzLMRNQDKLN7UT0k1Ae9etxfCfTUDRUXXPkhxNQNIx6YgjF01Avxa3JrKhTUDJdKEUvPhNQMdy9OqKKk5ARiHDH8S7TkAC4zyymv1OQIRgbsB0705A3u0D8KOmTUCxT2W8ARJOQMOEo9s41k5A/MnE0ku1TkCyZuPJz4VOQHcxpdco9k1A8z0VZi2gTUCIkRFEyNVNQALcP44oi05ACAX2xivoTkBFKPC10j1OQHXSLoaqEE9AHxvQbMswT0D568lC/Y9PQEQQJNxld09A8Cn4zQJLT0B70YLWk3JPQJh0HjM54U5AvPKqhWcMT0DZDR4MrZdPQDVsXhZm+E9AvhKIdJtzUEDuklja44xQQFTKHVff2lBAVR8r5G8HUUAhX8wXtQFRQKKel17MQlFA477L3broUEAWyBT5vxtRQO/Tu/y64lBASI87pXDYUEBbfRKfyZpQQFwUukS55VBA9XpP/NDpUECB86vyyslQQNQekwUuzVBAyBxYPOXUUEBpqFnTWbNQQCXWByuV21BALsF+uuaqUEA5qIORBrNQQBMxl5cSMlBAhianKsTXT0CO9ZdDSNxOQOgBL9myt05AgaUf+Yp8TkC4AWqcH3VOQHMqyP2LhE1A7WaQMx8vTUDEsUq/cGBNQExRTvKaBE1AWDJpk7JaTUASv8EO7YVMQH5medCSwEtAc9gw6IjTS0C16TGmV3NMQGbwDTrHzktA8wrJFYMIS0BB6e4Cw2dMQEMSJIapZkxA/iYcWNWQTUDDmNDqMftNQGHap7RbQUxAoGxQiZpyTUAeNZqyc85MQO7gBe76BU1AbIUe87qoTEA0eDIJyJtMQAkxo4RTOU1AogCwY/y1TEDptAU5oMhMQJizFpRHBE1AuhLqDQa6TUBYqTuNoadNQMSMhFybO01Aoe1hgLJ9TEBy/KgMY8tMQD56qUbh+UxAEBbbhuTdTECqN9yH01FNQNNMXKELW01AJ42zlWb/TEAwi5kTOOZNQBAXQpWe6k1AIpt/R0GrTkDmOB6QPn5PQNwkz6rBE09ADcGRd68hT0C+wD1z5ttPQFdwZ4d6TVBAnDwXLlsaUEBGSSFt70xQQIa4+ZfsR1BA0jU/JaFTUEA3WqYrTVxQQNPrGw6/bFBAUhyePG8bUEDlAy94jCFQQBHfqYaIGlBAYuU+NUBsUECB+oioJV1QQF+nXKn3YVBAKDEfeso/UEB2cpJcqh5QQDcoCAGrik9A0x+honYUT0AttuAQ06NPQC4A/iscAFBAxLXhGntSUECf4wMEMktQQA0pEDDdr1BARpJZ+9G8UEC9o/Ahbe9QQNsA4g5pMlFAS/2pktQPUUCGfbrGWOpQQOIxsWBAtVBAcnwjpNXYUEAQQ6SkFuJQQOJbdMDKpVBAgqPFCBCwUECOeSJz3jVQQKhyb329JFBABlCxMcwLUEByxH7tmM9PQAs0N+peU09AkGIbFboGT0AdssmJIFhPQF1kEhKstE5ACzOBICO6TkAEJfdtCz1OQJiwKxQUkk5AzHF5HhaMTkBb364LlzNPQCmt7cFG2E5A3MSss5+/TkD7ZKLSu1hPQK6JZKjbvU9Az+k9yufXT0DfM07AkItPQGissOXYVk9AkTzjg4pfT0D5BTKUo+pPQMwQIMWJLlBAoshS1woqUEDiW6uGkqNQQKDvWDIQ31BA9hBq59fXUECLmUyzOrJQQJJlPZ3S0FBApV/lIbO6UEDwDOmvT+BQQNjfjM7qSVFA5lOlNY5SUUBcXPGVIElRQBO0/2QPvVFAms9SpaKiUUCWpdOHBexRQLzQKjrpN1JApEq/Hqf4UUBRlYQEixtSQGA/Nx0FA1JAYueNrcn0UUAOpS0y+RpSQB1utR8x51FACySipAbEUUCCuqoBpK1RQC/dIGSDsVFANDtcTlmtUUBqa0RSnepRQMmt2U1oflFAOmt9Wb2dUUAVzXmZy8hRQPKkPbYg8FFAsfOgdfTuUUDl0OqOJ8NRQPczB05mvFFAtKxn3dB1UUB0Ovp3o4tRQFctM99wmFFA4x2l/4NnUUCRBD0hai5RQLk6pUyTJVFA/MGgCR2pUUBOtSz41thRQNXC73XcMVJAZ22DDRIiUkB4E/NECC1SQJjgrYhLIFJApxvWFuPdUUDY7YTBPGpRQAXOBiRmNFFAzTWolxUMUUCN2ta70ytRQM+z2BWPClFAe4wRcS/WUEDn3b3gNIRQQAzq4WH+3FBAyeZp6IYFUUCltnaE6gFRQGFCFOPaaVFAUdI5lZJdUUB+Oh7lbrVRQF1162rduFFAwQZbXG0BUkCHwA4xawRSQAYOrJ3vCFJAaXxLMG8bUkAZ54jQlQhSQJrt/Yw5tFFAXg9jb2XBUUAZ07AgHu1RQKv8+4Msb1JA+06qj2pnUkDGz6bDD61SQBg8NbuZe1JAg4T8fSOxUkC1PS/uJLVSQCfUBGPDZ1JAFDohKb1wUkDdE5PuBEpSQLeXgeChKlJAFt8AioDzUUBjYZSbLlxSQOB7/CXBLVJATlXu+YRDUkBujfhJDjVSQA39Yn57gFJA/FKrl3InUkDxrKbNW+tRQOYeboSJ/1FATb1ifh4DUkDFYrL3HdJRQP5QDvjrPVJA6jwqEaI4UkDokklSKzJSQGRd03NrR1JAB7tpDJnhUUBXnXEIjdhRQJxXNOAutFFAHe8ArvcxUkBNaPDaJFJSQC0drREdJ1JAS5ehvp38UUD/+2UIUbpRQA97cS+FQVFApgypDTEGUUCpJGFyAOFQQNyTiLIsqlBArLjkYQT/UEAWE2kiOONQQNyAmfKG1lBAqwWQqPm8UEC6b3l+xv1QQJzhzP+5pVBAktcLJCavUEAU7HrMA3ZQQO9nemtTIlBAZsUqDQN7UECZK29IFixQQM772I54aVBA1BuWv6NHUEDOxJUVjKVQQCRJIXNFcFBAlJ/YcRVjUEDzKy1xD4xQQBwwYHZgzlBA6gFS9tDtUEDoqiLWprhQQDvxgjJdqVBAppISgzpsUED6eg1KhMJQQG55ZhSM+VBAjscFHX4qUUDKjG/tPDNRQKCm+tExElFA4qAUaYhcUUDLBTuubJhRQHGnJgQZ31FAX29kOnknUkCeOmN+MlVSQG0S6YSRclJA+nU5juUDUkBHT1XJYFJRQEKj+aatO1FAqKAEvTYbUUD6LWGdkIRRQM9Hf52IE1FAUoPgIo3CUEDvkthcPilRQFUQJ7IRdFFAWvLV7XZ1UUADZfzhUm9RQEtVGvkLfFFA+ohb6eUxUUCRFlgYQ2lRQE+DuzulmFFA/jPaYOnvUUDKH0tva9xRQNsShl1Iw1FA/wAMn+0aUkD2VAETEw5SQJmabtIpfFJASHv/VcZnUkDhSMbMPj1SQJSCMP4hblJADAmWH6M1UkDEtYwcclBSQGAJ1y04W1JAxR9LBxSJUkC3zvkAHZBSQOG3GeN3x1JAUndJvGThUkAcxODkmapSQLJR7TtNblJABIdUhoFGUkBBjiV/hDpSQK8O7XsAvlJAEVOrAFfUUkBooWm5JeZSQLJ3A0evolJAgBy9FQftUkADRy4YQelSQGrRYsi9xFJAyxZivCaXUkCelElix2FSQC9fKaXdHFJAfqVNiZiuUkBhq09sKHBSQFKqH9XbxlJAAhI4lH/7UkAdk4O89iRTQFl61Zp9ElNAqwmKSlncUkAFniB5bPBSQMTEmQD8y1JAAh9R4d+6UkCkysY1LE5SQIuggUwkY1JACrCHmbY2UkAjtDF/PVFSQMt8k7KisVJAXPe7/7SWUkB7woHvArhSQDiw40RLtFJAS03Jk9roUkBN0txbc9hSQJeaxfvCAlNAq19tO8T6UkBjHVa1lJpSQL0hrkBob1JAdtsS/CM8UkC/koBLbXFSQMWquxifn1JA1ILY1ERhUkD56lWMxmpSQEP9VnDbVVJAPQ79dHJHUkDpFWT6FbRRQHOyWzGz9VFANzirku38UUA/9y5KTgFSQBmU4fKtlFFA5HAPl4T5UUBJe1bGuyFSQN1qx+C4GlJASzuliz0yUkBFjVuz4CdSQLTWQAV9PFJAFUubz6DzUUCwUHB4v7BRQGuIgK+SH1JAkdipV/0UUkCb5hkcU+ZRQFWWuAhRKlJAlWMTlYu9UUCcBoZGv+JRQJnI8xOAnVFACUiCbcM3UUD0SPvUgZhRQP8TD98Jw1FAGiy9LNQQUkDfB3J2+GBSQFrS9WjnNlJAQ7xf2FZQUkAPE/tqLRhSQPrb8KMc1lFAPOWDFvpeUkC2inYjFcVSQM1xPCM+5FJATdki9OTMUkCEY7kYF6tSQK6jzF6oxFJA5V7FqYa/UkBQrQGMCW5SQGyHuPRno1JAdBMWAtWpUkDmzJoD/blSQA+HXad7RlJAnViwZJeaUkBnAa1Fe0ZSQH8zhHjo/VFA1Lto/tAdUkAQfrRM6apSQHXGfY6KtVJAn14/j7KyUkDR5KAUyupSQKyLhoN+uVJACMgWSUPDUkD+cVbqoAZTQJPXxQ0MDVNA+dzsxpmFU0BRIbvE9btTQEnPKrEC/lNArARlAvP0U0DJKenk/CBUQCk6/WMVQ1RAXMU4I2gMVEC1Ek99vdpTQKwYrBHwOFRAexWeou8CVEAR/i3Ho1RUQHBUEdF1QVRAVohHowc4VECf30KU2xJUQCTJ6S86E1RANCvJkt49VEBgjqXCWU9UQIMdwfF/6lNAhIoHJrLPU0Bb88vomJJTQPKd0Pd2gFNAtQOqPK58U0DDhZD2oqlTQFgb4++NglNAqMQhsZY0U0C0E1ukiw1TQD3DM/+Va1NAMSj6KahXU0AJnrBnMCtTQDw8YcigLFNAnsnYaj1NU0C00RG6qDhTQC3CCRlX3FJAaJu8UDrMUkD261xKJf1SQLESv08R2lJA5mmfWN6IUkBz6rGLdfpSQBdOB6Vuk1NAhkv7oXKsU0BMz7bg96BTQBDqZZ/ie1NAt+ugA7LMU0AMzNCuYcBTQP2p5yBBzlNA0B5/FjbaU0AQNDv9QxNUQE3W46vvt1NA7z8uVy5GVECeOrmZhzJUQNmrA4VHBVRAOQa3HY6fU0BaGZ6rxElTQKMXVh+yC1NAVOEyLRvMUkCsRay/y8hSQGHsV8f2zlJAZNxydHffUkCfXnzUVWJSQE3PaoNg9VFA9U8uSMveUUDmHoeoZtdRQL7oSM9p8lFAQbkEat38UUBqjtO0XbpRQPrHoVDkqFFARHKi+sGSUUCPrMEUb25RQKQHKRT+VlFALH25lIZwUUCVdrIlmDBRQHD0Sjf8g1FAff3Ja7OIUUAtjrX+uGlRQCG+h39rfFFALS7/CveeUUAis+wa3lNRQHtJrSosT1FACWvTSVEyUUB1JXJPx0VRQFx3vpD2jFFAmFxKjj05UUBbnHpyHCtRQNppvMMi9lBAhUnuM3R1UUDMTeFUTYxRQHlx9lb+pVFA9W0LQ6waUkBuJ1JTb0NSQCiNnrc7eFJAue/1aEiJUkDrjB9JbVdSQHjwfrmNnlJAXrhKB5rbUkBiE3QAqSNTQM2lQuzmpFNAoyYTpYM+U0DdwS9+HTBTQIvOQTrZOFNArDJXvTLKU0AsoIG2bNFTQK1RSmLa/FNAgiqDWpSrU0BOv/UPifJTQEBvs/+++FNAjEqlfDmjU0BWRYLwWt5TQAdU6Om7YFRAstSFFdMzVEBAWla7WDFUQFPVYwawXlRAiSDijucbVEAEfLRjLzRUQAyz0p+tLVRAZMCzYghZVEBOot45lblUQKQXmzzzj1RAkp9bFkh3VEDiUyAdphNUQKdG2rO6BFRAcQ1EdWoaVED2iPYSmDFUQD3bOXIr2VNAONflk9VRVEAvXVlUQCVUQH8w+diXOFRA5sns+0oFVEAKy/NLfkdUQEKSmGi7HlRAPKVydY2FVEBImEB6CGtUQLOZ7YOHplRAAmKy6N5jVEDGnVG8HS5UQJFpMsZR61NAGouftoMxVEBNSzQQNnhUQIcw0xVrfFRArNju70/TVECZcKZxw8xUQA3Oy/WcllRAPVA8lnajVEDjkyW0WldUQNOpWgHjrVRAyJMAbiaWVECXn4GZQ05UQIjxu4x6Z1RAh3VPadfDVEC2vRBzkKxUQC2poAf201RA4OUmxHLWVEAacdUs9udUQF/2+JECxFRAdGopywMxVUDja2ogIvZUQDyJZiz/vlRA60ac3PwEVUCTFl1QOnNVQEOhMIZlZ1VAoM61bpznVUDtaffBWZ5VQMi/AIVwu1VAmeDON7XwVUD1gyzCsjhWQNzpesHyKlZALVPO3AWdVkAOtzN/MOhWQC6zWB2H+lZAGsluJUzTVkDkfdJGqJJWQJ5CsDLHQFZAbaNWaUJlVkB46Y7V8k5WQImqw7CznFZAm8ZCp1/YVkCH1YltWgVXQBbejA69S1dAMca9hLOuVkDb5avyDK9WQDGSbiSFylZAqXeS7dbTVkDq3i6yhRRXQLToUCUp11ZAszAJAVnxVkCecM5BKnFWQMw5eEAcMlZAlrdicWspVkCiCM7gvjpWQNT5VKhS61VABw5chimFVkCLq6zKNoVWQBebeVsY7VZAikgtWGCuVkCgK9hYcpVWQD2o7jlfU1ZA0QS3TclnVkD+9aB2M6RWQJRiEQKnnFZAuw3mh7+GVkBKpXWPV3xWQIGKMGJOvFZA50B31dZ0VkASykMOSF5WQB8tH4wZN1ZAEfKa+GKGVkB0NxZLao9WQKzI6EM5t1ZA1VBmEu2QVkApQ4CX4plWQNH9y3GitlZAmlk2iIq7VkC/qVXgAslWQID5w8OMhlZAL7DLk6aaVkCVh5YoN1hWQM2+hJzddVZAYxzxCXCbVkCNat4ctdRWQI9FtRuwt1ZAnYXX2aaVVkApR5UUxNFWQBWwALUu9lZAJc9GJuJlV0BB4OPjQGVXQK7GJBcYlldARFk5nny1V0CBEZ+q+YtXQA3t8u/QJ1dAMFgmFQEEV0BCVRXCRS1XQD7iTWyC91ZAoF1EqHd3V0AtXKv8Ih5XQNTq4v0UrldAarqc3i+wV0BNZ/KqYLRXQHgtSkVjcFdAQ8KTH/JrV0DB6Z/UMgZYQNzXDf7h2ldAct4Hi82OV0DS1en5jp1XQKEpAaCZpVdA3fvWKx+kV0DoVILjawRYQKF+5bLo9VdA79Jzod8LWEBAd2SKzwhYQDyU7cCz7VdAOQOhLE4QWECYXG5KkeNXQFqcjYuX1ldAmaKSq96LV0AE2LhlpZ9XQF+ZHhfaUldA3wLf+EqcVkC/BQV7jihXQNM4CG6iOldAKa8/iBQzV0DMXEtLOZZXQBJyf0cEpFdARxrgWkXoV0BEDi0prxJYQABYRgj1OlhApw8kE55GWEC/lnENtApYQPfGnTKz6VdA61iEQSnkV0DVfm42dgdYQBTFWUc+tVdADlInAxHHV0BZfrjodKlXQMRGurGvzldA4fPlyOsnWEAZVzzVmDNYQE7jQT22+1dAFSZHYLFBV0BIF3TD3DdXQNouj08PHFdA+uvkU4TiVkBDRt0Z/mJXQPonqmRyhVdAk79XkivXV0B9AhI8j+ZXQP46+XIRN1hAwSKhreXcV0B5rq5UevxXQM3roOVcWVhAhAp7iPvtV0DOGHzq5NZXQDIDO/wW/ldAizVZ55mqV0BaE6hScq1XQGpW1n+dwldAAzgiuhPVV0AsvnuBpX5XQLJFRRNOgFdA7gQ60TXtV0AmLAC368JXQJpSyTFf4ldAOnyC5BJCWEAOxn3rKWVYQLaN+6pKd1hATO0hV4tpWEBVGiUyqTtYQITnC4r2hFhA1r/JLF9aWEBoXi9cK/1XQGWy1Xw6PVhAZefiC6aAWEBKAvFCObFYQPes/63RmVhAhkFa7E+IWEAqhKSO+N1YQO3xSP4B9lhAFVlFKuz3WEAm/Ir/vdxYQJUbj52JD1lAKsVXCUEqWUDek09540BZQDED+7wv41hAZFbrj7P8WECU7pgFSrxYQP2LOnSNOllA5giPHDhpWUDAD1YMJ7tZQFOL6AVpwFlALzB0ZoPEWUDuE1lFOdBZQJwFQoLfNVpA1yvYVQNqWkA2ts5uL1VaQN74JAoFH1pAp8xoWAJ6WkAcW4poo6laQEXUBa4j1lpAPdUwAJ+uWkATvvqVwqhaQC+hTqJVzVpAlwY4uGyuWkAIDlJo6MZaQOgN4KwtlVpAciaR00eKWkAIb7Uhb8NaQGsUM7fXnFpAr9cDsufDWkD6cNmZlAJbQOjK1NcXPltApn5LMyKvW0D3z+5sgTtbQGOcJvtLdFtAYnsZpLYCW0DaXBv5HAJbQGQgA05PylpAa7pI25lGW0C12H6wUo9bQLK4dxRGt1tADHik7owlXECu6ysdahdcQHeGs5YUAFxAXhhKUVfgW0AzhWzcSkZcQCtXc5iiXFxAOynvrN1nXEA5WaZewhZcQFoc4rMYH1xAZ5joLq8yXEArOFBsMvJbQJ8gknwJl1tA57tKYqdcW0C3vAtK7y5bQKURDuAHmFtAuZRGcptFW0AS2xmDygRbQDARsSYj21pAglU1s1jcWkAXPfpK57paQFmCOCtSylpA02Eo/j64WkBmGzrsAEdaQLTrPSvBLlpAgld9Zw5KWkDRlsbrTZdaQF57C9cWVlpAyDErz3TNWUAnI0UdhEpZQD2a08vMhFlAuQCUgSN5WUCd5AIo0n1ZQEpjYjEisFlAQkpsoV7yWUDUh5NVm/FZQKF6UPNGeFpAvvFHj197WkBhzQRqmRhaQHCB19ggBFpAPUXBlba3WUCkGSBpWttZQBrXshW+x1lA554TR98eWkDqHiFtgPZZQCT6dQU/5VlAKqnZL5rzWUCjjj8VHShaQMpqRy1oPVpA/5iOw5RsWkAIMKIJXihaQML9QF2bJVpAkPalmiLhWUDHyop5qNBZQNGVvRci91lAKS47UkQCWkDoLf7/dQFaQI+9q8KJullA0AhxAmvUWUAjBxv6mf5ZQKDK6Jr33llA7v9iS7t2WUBDTT7eM/ZZQHkgin7g4VlAn76hdIMHWkBzA1LqYL5ZQAWIUxzg+1lAnLOQ/Nf6WUDp6PRKqcpZQA59wg+MDlpAd9OEQOr+WUAtIi7MysFZQEM30FqwJFpAWSGVP7m+WUBI/ExMh65ZQDQmT7OzjFlAvYxHKhulWUDCPuKoWudZQJxwcCHEsFlAg9rx1UrbWUDaQj1LFlRZQD9sxJUHzVlAJK05kOYfWkCAEzAeIPBZQBNXm+KT41lAUKNUD8qXWUAM9IHRxQxaQMwE6QQwNlpAEmZfU/I1WkBLVigA8BRaQNoSFYl7GFpA2W+M5sIDWkBfAVI79/JZQMwp9KteAlpAjOcaKkpDWkDl+vpYXFBaQK1esUIaulpAlRpD5zAUWkAiwmOrq+ZZQPOdi9QsxFlAznI+5TF2WUBiC8IdzJRZQEkTBkw1PllAuJ1bOl9sWUA9A+13Eh1ZQPpxEXEAYllAs3e+E2BCWUD5iLYlyStZQH5AMshrD1lA3wD9vuc0WUDFns9ZsxFZQA3hTBRKD1lA5CBkfeLFWECFsVS7eHlYQPZIvobFOVhA2TL/7alDWED2rbTg64hYQCPWK2tQ7VdA3gZtLfjCV0BBj6UmSfxXQBZ74rnI9ldAYRJv5NvkV0AN2L2PzOBXQBka7/r4mldAPf/7D6MCWEDK5wxry1xYQNAiXvrVrFhA/VkvD7yLWEBExyb9yoFYQCPpqwutglhAFOhmWxtmWEASdRrc60xYQFXJOQ+Ce1hARnmtz9x7WECrz5pMlKxYQKT4VvGlZFhADSwek2RYWEBhiF1fODRYQNAuAN7yN1hAjQJkyYtuWEAqYAh2PERYQNQgHw/9WFhAbuu4221vWECi5Iy29u5XQA5jOR5kv1dAjdNNgiJKWECgClK0kl1YQJFNiisiiVhAJTeAO/aMWECueHfHukpYQNrWhnmG51dASwj38FbfV0CWSCzBZPFXQIx7r9okDVhABxZHKvg6WEBqExuxLIBYQFONjIskhVhAMXxx4GCPWEDlpffT0ZhYQODozI3p8VdAYM4saAiJWED+aGklVjNYQHcN5RibOlhAJLHzAOxNWEB7oaE4XQpYQDpR/wS3/1dAxWfHyd3+V0D3omdSrRxYQEskPXZIP1hALrkzbq5wWEC0o8ub9lhYQEcmB3vNKllAX+/F5405WUAmX8fBzxdZQGNmrBjSyVhA2KtahOnYWEAYNH0xtx1ZQHcIuPTqUllAYstyEApNWUDP0cgvBcdYQB0pPBQsU1hAZorFq52nWEDroYZTz6NYQFcUBAq6xVhAxshur4TNWEBKG7T87J9YQCuVTQC3L1lAG7AfrdI9WUA8LngfgExZQDhlNR7weVlA7jc0+2qeWUAGog1xs0RZQBAQPsv4JFpAo8jWohoyWkAcsg8me+xZQOOpei+CB1pAqaXx9IkJWkA1qHGbPdhZQBOQ2KDn21lACro+CK8fWkAQnH9dhQFaQGsbZR9L9FlA2i0itEQHWkA2VwgWBtJZQFGlxBMDwFlAem7sB+q3WUCq17jjXMxZQIFRS4117FlAk48xD4zYWUBmG5erdpVaQL8fnikVkVpA7otCPYyEWkB70dIGqn9aQDcau22311pAUqZk6PXjWkD1ywbxU9JaQERT3rjzBVtA8YYyw8oeW0BfP0TF6kJbQOXys0A9IVtAx+EwUFL+WkByutOaUtpaQMcsL071zFpAlY02sODcWkDMssrMwglbQAiQlktuMltAvSHUneb6WkA4mGQQyy1bQBH0+CwlDltAh3qVprG8WkB2Zx5Oq7haQEuK2KA+4VpAJ5uz8xtaWkC9o1M4afpZQJyXr4wpAlpA+VbcfxfGWUDyaIU9fR5aQO8Tlt6QPlpA3DmAJ8NIWkB0eYXGXZZaQC+i96MjYlpAan/wx9x/WkAfcpOVHDxaQHtBqY+T1VlAzUe2E1XDWUBRNFo5CI1ZQJaQmE31sVlAT9JpG3POWUCQk2Hb7gBaQC2YAxUU11lAweBTJ9UwWkACmNDuH0daQNyaCMYnd1pADgBqkH5UWkBXgv9oX0BaQOtwyZrX4llA2VPKAkJEWkCi6wksxMRZQKFA0yt3CVpA9Y8Vuw4rWkD/I2pSAr1ZQKGYL+kDWllApYSam9+UWUCdb4Soy/RYQEkX4Cq56FhAYl5AnzbsWEA1LvqmDqBYQDDnZLhMV1hAaMGPvkFdWEAzs5BxIIRYQHiFNyvj2ldAmS/kNV/xV0CO4adMDyVYQF11MWTqeFhA7HvKrTWMWEAg4URd+sVYQOi2L8MgulhANRkcuoHFWEAFUl37O1pYQDWI8P6bSFhAv0h4uKpVWECxVqHqxj5YQBb5tLl9J1hAGxkwh4oeWEDOCwQaMDhYQGDq8a+eP1hAu45ii7DjV0CchHTZ2PVXQJPyYNpzv1dA7ut1UudNV0A94InsYI5XQG5iAsCMzVdAuH/Zs/XRV0DvIKoXYZNXQJ4Y682jp1dA/G5WUW9tV0Dz2qt7qEZXQOrgEdUtfFdAssBZmfUlV0BDfT15Z7NWQESPWNfS2FZApVUf4AD0VkC/c+/4SO9WQJFCx2LU51ZAm/o84lZRVkBxzLDXKmdWQKZbja8OvFZACBZbtTnYVkDWaG9iCZVWQDWFCehsk1ZAR+pogasnVkD6s13YnlZWQA2GB6mUXlZAkAjJsMnpVUCEpL0ZZ2JWQHP+jBSK8FVAGw/yBqxbVkD2W6xb52lWQCdzV71jklZAdmlatzykVkB2rOLLfuRWQNfG+ytCEFdAHxkBkp4QV0ABtsn9wDBXQFW+irLjKVdAEuCZGRRXV0CPxwbcpilXQN7+8j2TvlZAPYnhtqziVkBPzjAUZs5WQCxQ7r+EGFdAvFmhrnthV0BPquJ9mpNXQCRu4DBYxVdAqSqUDRGMV0AAgpPBPctXQF0mmMXYsldADlR1wyfwV0DcoMzmKo1XQDa8PDxObVdA/FkOK/XEV0BvxgJu/sRXQAytJr4+Q1dAiZ4rOGBeV0BNWdzNWmlXQMKnXxmOkldA2KABJM0jV0DeGI9C11BXQKyiV5Mw51dA8z+ciJjAV0Bq+iNK30tYQGOsmI2EWFhAUeYIX9RRWEABBhQKrmJYQKYmbhYLK1hAtfK9O+dJWEDAbrs/aIBYQEMaPbMeX1hALps35a4JWEDmUgjeEFhXQGrceqHpAldAzgQDkqZoV0DHqGAQOyFXQFcIprLX91ZAwwF79MQ4V0BGpT7RUSlXQCIDNky4PFdAAMP6KojNV0DxmgHdUgBYQLbU98KkAlhAOmkt01AIWEBZj/tpRSVYQE2u2MGAMVhA2M6/K+wbWEBbRo7sGUBYQPHaTfXA6FdAGDbf6scMWECPcmhatAtYQBQgo74GIVhAKKFCUOFJWEBHcu94YptYQGj08M1HrVhA/S8IC5GNWEBDOTobUnZYQGtptNOlZlhAQeBh5WyYWEAHx+J4eVpYQMeJtSR2flhA1/3KgB7AWECO7+isfw9YQKmEvon+T1hAU1UtGa8kWECMgGUHGDtYQKrKICi+UFhA0KtGAKE8WEAHgd+RdlpYQF79YMEqK1hANePqgUu0V0D2ibI1KqBXQOseRFsgl1dAu2btw5qFV0BaKbbVVTVXQL/daKeQMldAMwjfIE4OV0AqWpZcEcVWQJEj8Ad/zlZAwhoTH4PMVkCmY7UUHd5WQHeM/lBMg1ZAogFJgdzGVkBy2+4l8ABXQLSl3UWn5lZAaC5ItatgV0Bae+7z3GRXQNBzW9pMUFdA/Jqk84LEV0Dto8Rvu6pXQKpWskgf8ldAcZO5CXrZV0BTrFCxggNYQHNo1scoBVhAEMupfzH6V0ATpvx2/hFYQAlKVmtmnVdAap4KZiWnV0BH7wTMa5JXQIBSUv9DZFdA+kQ9t5fFV0D76gl5HthXQCb0vAlISFhA8sw6u08lWEDVG2iYQzdYQKEJKY+TM1hAkqyoPi4LWEDIB4sn3B5YQGV+1VmA91dAo3/VyeMKWEBu6bi3/vBXQP+A8Usa2VdA6U9JG1iiV0CW5lyFlKJXQMWva8K1hVdAofpFf4Q0V0Cm8CZEPVVXQOLh/B93F1dA/vey87ZcV0Dq4yMgIddXQCadi5rW41dANPKUP5jzV0CNUJYu21dXQIknQy1xTldAsd58VE/wVkDPy0oxgGdXQBGEFEfuQVdApQ1Am+1ZV0DjsbhSlVNXQFMVMmnGJldABISVOgGlVkBNdTzX13dWQHifCe1bv1ZA4AENDpsSV0DRF/u4EXBXQMYQ7flafldA/Lx7SpafV0CjvTaBNdtXQFxGOr2kA1hAhayEIi65V0DHb7Os9wNYQG36PIdVoldAcVbLPpteV0BasXT+lBxXQMmVUWtJTVdA4IOclsyjV0AQoefwuZhXQNbbl6juRldAXLHZoEv4VkBHAsU9VRNXQBZQfNlm01ZAnivGA/DOVkBj90gymHdWQM2rmzvIFlZAPFQ+ovWKVUDBs2XFd9tVQPFQBOjLF1ZAfatTuX7ZVUDzmoxdnLpVQCjvuCj041VAVkRZwxsxVkBQbOBxUPVVQIv/gFEgN1ZAoVnS8/sXVkD1e0aRwqlVQNpp+QbNplVAJjBUMNTMVUCWi6N5Rb5VQKWtBjYgB1ZA3zxYUSTyVUDPT7E7MTNWQLa+vZwE1VZA2CKStwrNVkDVLjTsfSFWQN/J3KV6MFZAOWgCUvc5VkBrhuAvok5WQPna7aazGFZA8iQkqUNKVkAJIgKSieVVQFv+1m5UQVZA8xEOJFYRVkCaYbtaz+1VQGAYq4e5jFVAer+cdxJ+VUAhKAJGzY5VQHBKzZVDpFVAx40GEg1oVUBGwdEOKklVQDK4W/Nl5FRAJu2P+DbWVEDVw+KrS6JUQGnjpOSFslRAeVy52/asVEBAfcoyX9lUQMTgy6vj3lRAOrFS5fISVUBdd1RUxPhUQOl5w7iLOVVAqafOgawBVUDR1vgaXQ1VQLmrdtadGVVAsqTKNP4VVUDu7gz6VsNUQBaOZYdLQ1RAV/DOxGwjVEBcrGyEdjNUQMJjH7Gcn1NAnSfsuo/aU0B2X/yTT8NTQL9afDRnw1NARq5vTt+1U0Cmxo+zFIxTQPo6aKC/plNAY0AKlMECVEDtV+vgNelTQL/ZjcmMOFNA0CxBytD6UkAxXB7arQRTQLWfB3TdyFJA1i87YC3wUkDuomMihNpSQGnX9kD721JAKB5JPgHnUkAeWd2wa/FSQGW+SOWT21JAwsSXPTwbU0Ag/cVGGedSQMvj5V1QAVNAaPm69RRQU0AaQhYRTFhTQE8SNa68ylNAePkrghGBU0C9rMBsI4RTQArwDaAQXFNAXz35VJ0XU0DklIdGmd1SQPslLKig71JAoJXvnthDU0CALOscL4lTQBwNrDwDplNAI1RLbZJDU0Bre17832ZTQO/4k6jf6VNAqKARQLoXVEA9IPbB29hTQLpJbOJGFlRA8aU8ps74U0AVvwGt8+xTQG0fZZjD61NAkGFOeV0uVECgYZA39zlUQBoTd+MQIVRAsrPqt6OMVEA6Uq2DTNRUQOzsyFCp6FRAirhBGCAuVUBPS5/2GRJWQMxiX3qAV1ZAZbkzaJoLVkAPt7+dbiBWQMcO/VRl+FVA1d/8ImpXVkCwCuxyM1ZWQJ5CsAzhE1ZABkI/LIRkVkCc6DoxfLlWQIXGsDMZsVZAWPLURhT/VkAVP4Jeiw5XQOeDMf6G6FZA6/W7K4YfV0DGJ3U/7chWQAJ+KKy+olZAabg4R+5eVkDgyCBoi5xWQFmXsKLsHVZA84JoSSX+VUBnGrOQUc5VQDRmxyoC01VAx63jEQr6VUB9REvLXNRVQPTL5+okAFZAJlc1KHObVUCRCxnXl6dVQKYeTP0Jl1VA4xOlYMACVkA1/bjBFx5WQPbe81DPFFZAZEoBCpyVVUDaeZsgxYhVQPinvYj0elVA03X6f/2EVUCBFm50p8FVQL66F6ZGd1VAdVxuPZ4TVUAmR1y9kEVVQBdQwsAjyFVAANe1hR36VUDVGv9QaiJWQAnhy5hwXlZAtVSG11/BVkAeG5LUirRWQHOm+czsAFdAhgIK1hoAV0ABBUnfspdXQBpks8YHY1dAEpMSegBmV0CYohfEOT9XQN6VcmP+zlZAFXfcX4uqVkC1b12nWqVWQPB7aSutlVZAws6O6NErVkA30ijgBwhWQDqDHMY4f1ZACX9X5tKKVkCLT+pHClhXQF6rjB7Se1dAbHFATwBKV0ClN+Uuo0RXQBJFdDlVKVdAI+bR50lhV0BbT3qJ/7NXQLBBq4bx5ldAwCk7MIfWV0BEZEXpyLFXQC78CMO4zFdA96fxWED9V0DAKhqwCPxXQEMGLoXwuldAAMv+8VCEV0ChKlJOSTVXQBHpTa33B1dADPqwrxpIV0Bj2T+obS5XQOULZHyKgFdAvnZdzWegV0DxphDtuX1XQHMOR1RsZFdAdoVuPaGBV0CYWSZMi2NXQN2TP0RIxldAn72Yj3LxV0AYjjhOS0VYQEtoKNfbVFhAIx2CXYAAWECpEjUR9nRYQKsdeQe+TVhAvs5BBMJQWEAygV7PTkBYQD98/4YU7lhAE+MPFTPiWEDIp6cb0BpZQNBvlyV7DVlAj3eM51n8WEC+JjWZp9RYQJ6MiNDupVhAWpNPhuSyWECpK4rFAutYQC5BkTMA3FhA+1vjAginWEC6iJ/ypJ5YQFXZps7MQ1hAUOg3a/hAWEBavsTJmvtXQKCBJyoVGVhAjr8Y2ygRWEBuqVaJNtNXQLbL9uR+vVdAU0EU1BurV0Buvh/u5DlYQDVNN9EKDVhARSeqBRjyV0AaC59RvHpYQP9bWsrszFhA7dF52tvVWEDqAFD+FBhZQOIL4Lx8/VhAdQ0Cd1IFWUDuV/7CAP9YQFS1aVKBGllAU4L/sC4gWUD4tZPSUEdZQCUGG/zxDFlAfJvaf50dWUBJheLV1UZZQAMvEaIxEVlAaZRN2hTAWEADs0IbMdRYQGgeyc+Yy1hADy6I13E+WEBgccSHaSlYQMypm9y2c1hA45tHYEmTWEBawpYNH8tYQI/eCIaD8lhAAX383Q9kWUDv3QGgtJJZQFMEkKAVn1lAjhPKU4SYWUDwVir5sYtZQPVkwFAv/1hAmBMgj0IIWUALdl/1XqxYQBsYOo/Rx1hACnYMyJQ3WUAJf2lv/HZZQKaE5Y3EW1lAh5O5cWftWUDfhmttxEFaQPnWixBcE1pA6n7xWVuuWUAMLFMcNV1ZQKXGizg5d1lA0cTKXaV5WUDgAgdMSI9ZQNG83ViVXllA44rK0STwWEBbeNbejchYQBgxOH38+lhA82U9bEoPWUAnaoovd/VYQATn9XctuVhAGYLWr2cfWUDKefMkTgdZQBcP5rym7VhAcmnpaa1kWUDLxvqoDoRZQLUiv8PhfVlAULEX+IbmWUDuETkdg9NZQPtEp6STU1pAaFYDreU/WkCEkp7mFUFaQDj3XAQ3o1pAmHjYj7KrWkCVIKCQBMVaQEqpkUBPwFpAgNUfhFaSWkDOuAz8pa5aQKMXtlEx+VpAwgJMD3NCW0C3wnBSfw5bQNHxD6quFltAKz5RkaWxWkCyHFy7In1aQAPU1VWmwVpAaCyTR3irWkB3/xHEvO5aQJjvddTv6FpASalj1E0WW0ACDBLlMtdaQNGgSDgBx1pA2njUn/vWWkA1bep9quNaQDZCyXxLkVpAU2A6CHXHWkAJhBANjaBaQOvbyllfNVpAw59oN8UKWkCv3x0ue79ZQE16GiM/SllAC+yPZF39WEA8FKGE/zZZQKE+0nWLzlhA/aA2ynSfWEAxBuHa0x1ZQAEOjtcSillAjxCiWwBkWUBdNNXqMYVZQCijchpElllAqnnki4oyWUBJdIGD5xFZQL4sU45KPllAGW2LCt6kWUAyPMzGqHhZQHAxi8JusllAMdYAWGrLWUBSL958RfRZQFJcuSOCtFlAf+UoBfG2WUDjpDh8mUZZQKcQm6RpAllAr4HJOKkeWUAaViHjYy9ZQNNv7tUEP1lAz4oHYz1BWUCsWtYLEQtZQCdYvrk7YllAFY5h6xPRWECm6rNAprBYQKVIt9/HSFhASQFbR5gPWUCvIMxGWspYQFRs6w6G61hAnqLmzibPWEAIdEUwu8FYQP0oodkY7lhALAyOSZRoWEDqEfSK8ORXQDwELTwcH1hAzo9J3K/8V0B4ojRrthRYQAHFJzebJVhADxIqIufOV0BUYayV7vBXQGan2wSXzFdA7pSlLYK0V0AmngmP04JXQAOHRgVYjVdAudIALJOmV0C0yVrPGTBXQARmZ7h+LFdAYyogJ/l1V0DC0CPfjndXQJ/y9bHxdVdAOiKADgSSV0AVhi/LAFhXQM3YyF2RKVhAWcWbAKhzWECOLNThW3hYQCxZUVtoR1hANqHWPi99WEDNv77SMMRXQMWj3a1zTFhAHMY/NkYAWEB6ZXYf8NpXQPZIL3y8JlhAHaopam3zV0CD1ua1UKdXQNSDZvoL2VdA+ZDVSDzdV0DG9srtLjRYQAl5SVdDiVhAXOhpONJ3WED03PeU4q9YQK8+kM28jFhA3sDsCBorWEDxyVjqH9xXQEI9VYrRhldANkc925idV0CJlfkF/ktXQPNKltphVldA3jdV+yoTV0C4yY4p5HNXQLAlMKmlfFdA9l0ZuvpdV0CrVdjc/WVXQHfbKpNtk1dANDHuuzKcV0DJbT9XWYtXQCA8y6PThVdAmyKtZ9K8V0BLQ15wS/NXQNYg1mBX0VdApIFAj1AsWEDomj2B3nNYQN2GWQomo1hAaNVvaufnWEAg3YS1+5hYQGyKCToXqVhAx3EY3Q3KWEDNW+fgGQNZQKroe1Cwk1hAZ1u/qUXMWECVUPYNVLhYQEEHmUM3olhAwTYvIz0vWEDztIxnLjdYQAXF+RFvmVhA3wgWbR+KWEAMmm1UuZFYQB+TNR0cmlhA+jZqq9QIWUDCMQ+duD5ZQOPz5unxsFhAgSS9z+J2WEBJD78a7KxYQPUSq/XBgVhAHMDgs1w5WEDSymlWKANYQKX4A7Z301dABC0ccLvQV0Afo2dy7KxXQOcg6+MZF1hA//bTkZ0zWED6RrOBDmFYQIQC/3OWI1hAuTchGDQRWEAKjc4gkB5YQNBmQLKSBFhAUvabHXS6V0D7u5EnnIBXQAY5n6z9aFdA7R1fpY6qV0Ckn/E/nj1XQDXjnJmnUldAGB72e3R6V0BSgZiKI79XQEACf3xj/ldAqHVXPmLvV0CfEZ8gaAVYQPiUkN6V9VdADjDiveIzWEDVomIcFdFYQDChh6csBFlALbRyhNjyWEDxkrUWMhRZQIY9AGqS81hAh4tjST7iWECGy+1DMo1YQN7UZA1RfVhA3p2iKDJ9WEB/IcfrNkhYQO6D2s1lLlhABpDAznMXWEBv9kG0Ik5YQNuar7VH3FhAugnAgBtPWUDStqV8OPJYQLIb/fisvlhAWZzo4SveWEDRuomVZthYQGxpZ3MkL1lADssMnBFYWUBcWOHFdRVZQB5rOfWCBllAxrJ/sVBXWUAmkjyodudZQGDzHsAQ5llAOA08/xX3WUBSxnTGOipaQCXeM/62h1pAQtuxGoGfWkBik6fMG6JaQEXGkIbUjFpAvSnTzTtfWkBT+VLaVLhaQH4DRycU01pAnYTPFrgPW0B0YMBeNA1bQJzehesmwVpAASo7womcWkAXMDcKXwlaQI4hfoJ4MlpA/Sb/bgS3WkB+2XneQ6haQN9Q2bObplpAj9vlyfp7WkBcvJDrU09aQJn6gY3YP1pAjmHO7Ql8WkDlmld9u5ZaQM4H7yFD11pA5cyRwWybWkAQ8cSYgDlbQDGjrkLfnFtA5vHx4sTsW0BVlMU/ySVcQI/g651fW1xA5QG1tz5PXECbI5xlJo9cQAtTCg0HSlxAoVU5dS8hXECkTrmLaChcQC3LexglKVxAzIyGTLjaW0AOOc9zUvVbQF3vrauzA1xAEhZxQE7DW0BArtyCj6RbQAoMkz6wfltANT/0NXigW0Aakmr1CdxbQKSnN6mGEVxAIGmqMCeSXEDuK2R1xnVcQAQCk+2Js1xAGsGBmpCEXEBT8iOsXAxdQKG/ZFQuWV1AEslvtMWOXUDa6Rputo5dQLmfyC2Oil1ATThcV43RXUB00vvq8wBeQLv38LlqEl5AVikBOMj8XUAX29HBcENeQFlywi2IWl5AA9XTjIVYXkCLUa5n5E9eQJcA1pfo8l1Aox8pBl8QXkCIh///RJpdQLuxdrQugF1AHdpwpSbsXUD5QRL0JFBeQPEfAxqijV5A6Ausd1ZyXkARgOA8qZleQM/1DE+BzF5AOsJLfFRpXkDEgHLC7MBeQCoxRt9H0l5ACrBvQzAhX0DbWLIByilfQDMIDUAmaF9AiaXhgRmfX0BITSZg36JfQOnckAG8el9As9oUo0hcX0CccDtkZVlfQBCDy5YCYV9AADseygIhX0AOkCr7yMleQEbi8jfsnF5AP9g46VmiXkCNZc9vDQNfQJEGSVVbPl9AIXXk8pIjX0DQ1i++XZdfQFniJDOQol9AQ58CWaIFYEDd+a7dnvhfQFKHjNKc5l9A20X6KyAFYECHtxxckjJgQPSP20Y0RGBAFEhF9ZQEYEADfkWYlRZgQCKFhLwyNmBAgCt0UTxkYEDm3nRKfapgQBkNHcMVg2BAD1x7pGOGYEARsxI/3LFgQFsg6apz32BAO49DMZb3YEDTpsPtlw1hQAT8Ngdy4GBAkufwzxT3YEDHx0fEBvtgQBQA/c6SsGBAgyCwnoWKYEB7gbd62L1gQBuW003D5mBAFCm6oBTaYECXSUp5qhJhQBrmJpPU+WBA3SaMbsL9YEDZtxsoUeNgQDqAqmyY72BAMTfQCOTdYEC6UyZLrdBgQDF4Gw20tGBAAbilkZbaYEDlJ3Y/XtNgQPZesWno52BAT2bzb+fiYEBPqG6QsRphQJigJ4VoAmFANQchpoX/YEAGlo7cOddgQOn42VYv32BAW64tEdb3YED2wCbzJf9gQPbkLhha72BAHEDTarmwYECnViaPMKlgQNAHVlgrv2BAwuXgELyjYED6y4dcL5lgQJsMpQ5xsWBAbhuoXiu/YEBhntmWYMJgQMdBZagbnGBABGj03G6iYEDVFe3BEqhgQA/WoZl83GBAS7HbzC/0YEB8/TfE6BZhQLhpBX5rRGFAOz/Nku5CYUCRub96TDthQKIMrfEQR2FAQSaKYIkwYUDfDwA/F3xhQG/6hUVtcmFAwqLZZ52AYUC1BgLtOothQFyyvb6chGFAw+urMTx2YUBw36gwcG5hQCmr5pqXbWFAx8I87yRZYUDHT4wSo2phQI283elVSmFASbZVUGBfYUCo6wOtE0ZhQAxmMPfdPWFAipsVUrtSYUCgWnQOKDJhQHkCVqa2UWFADs7ydVlYYUB6hpXoQDhhQG2UmgclTmFAfuKcjuAvYUC7HJf7sSdhQJgCkKK4PWFAubVxhGhYYUAJNzuf+nlhQEyJTZr4f2FACsThSTNrYUDtxbecBH9hQFxyGG82hmFAJMV20u5vYUBRfiIGk29hQK5iIDPbVWFATRGx6vV5YUCmvbT8K2NhQFib/R9MPmFAQPZR9xRdYUDqXhQtd5dhQOJS6JSoUmFAPR6xdzU+YUD4na2w7UJhQNwQTWIRQ2FAg+6334NoYUB0IcBRcDBhQFBy3r5qX2FAaS95MRdvYUB4OvNWG5VhQNP65miXkGFAtV0eurWqYUAbAAlu96dhQECJEWUkiGFAIkh7Uz27YUAu4WJ6abNhQGQu/WCnymFAwv0fTV9vYUClQC9YimphQPElcTIARmFAJVW0eJxCYUAXiHZzBCFhQLxWIcExKGFA0ogQUTFJYUDmRbrEtaJhQNcO9caBvGFA+114auieYUBKwlaG5s5hQCUcE8S15WFAK+GklJPEYUAfsU5jyNZhQLMcZPE3mmFArK/YwKKRYUDwPpKbypJhQKzkoWTghWFAmsLuDpewYUAYwtge8qVhQASKs1Cbm2FAXGHV05a4YUCbTA6lUKphQBuKE1uKwmFA5HVw2ojQYUCwrry8GJZhQIrm/qDNmmFAlTrggX2dYUBu5m+D+YlhQO3hIs0/nGFAOUExLgx2YUChLjJoNZhhQHmVHwGwtWFAuNVfhuHUYUD10eoxQr9hQFNnId4NmGFABS0X0gmqYUD5hkeQjWlhQGbt248wQWFAcLod5LRJYUBpR+o/4DJhQI61aa3eOGFA+EkMde0nYUBkU+T34h5hQBYeN03wLWFACSwm/8okYUCuRwyJh09hQBG3B8J9PmFAQnKuMIQMYUBLM9gI+hNhQA4ylMqgSGFAS8GoctxxYUD92UMVxZFhQA1ddV1kq2FASUB/T9auYUB6LgW+RqxhQMBEuXeRz2FABJ+jhWzIYUAVHbuzuO1hQLbLnyLmE2JA4cOJg6MrYkBrAE7rOU1iQB75zcEmOWJAmfoXCEFwYkDJtkPh2pViQKfXzlgvjGJAy9TgWDenYkAWfO8c9+liQJc2BPMJ7GJALE2VZzw1Y0D1ZhU4OBZjQKsqeFnvG2NAFv+LI2kRY0BhjvkkqwhjQM1EUOPP+WJAgMValFHzYkDesQzDu+5iQCFozdfK92JAxZSFxwVAY0D864LokBdjQMY3TZwY8WJAMCBF9ZX2YkA5hCH1KtJiQDi9UeUSzWJAhTCVuDKGYkADZjT34q5iQIz50vURr2JAcrGpvvmlYkBV7BT8PcNiQJZgi63DmWJA6wwS/X2iYkCPTHfHsZxiQB7ZWqXTcGJAobZDNztSYkBLc6NT9G1iQC64P24nTmJAGuCK6UJoYkD8eTvr5WViQI3toqV5OGJAdcjs19sjYkBja4ww3zJiQKhHjVp5NWJAosfI+XgcYkA9qjS+ujRiQOxaQ7rsfGJAQpEV1DSPYkAUnVCHt8FiQP6BZrFkjmJAuLGXrXquYkDXT4iyF9RiQHKX7yUWy2JAnoQDQNa5YkDhTMplNLxiQK2Rrwe8rGJAoLRXE33GYkDQdARUuYxiQOuP2gDjm2JAaK3QjpuqYkBEE4pkzpViQGJ/WlQWp2JAT32Z2OqbYkAfR5KHcKFiQDdDBu0AjWJAY+UttsSjYkAPt1iB0cJiQPmqc07g12JAo7xHuv/jYkD785tOIxNjQEXo46r2A2NAB8FoIy1BY0ABd4Miwk5jQLqkV9RoQ2NAjrHvHu9CY0ASottmTlZjQHju/kFlemNAk0thtQaHY0A0Hd2RTZVjQOYTJImyn2NAuH8YAITHY0AoWR6hZL1jQFS7boSsuWNAEjO74q6xY0B1rA+YhrNjQHM5tsMiz2NAKfygQ3H5Y0CNFsBAEv5jQIDCP3IZG2RAf9qsoR8TZECtOHjyPU5kQEVP7xR2bGRAqhzivQ6FZEDomxs55aVkQKIXDhWeh2RAQ9lJpq6hZEB5bYoRA7NkQJwoZPR0tWRA0Ipa0nSbZEBz3TnlL4BkQNGiJS+3dWRAXQVGaVqIZECfQljoyK1kQP/0yGyb4GRAXHFuhAnwZECWs8buISZlQBHBhvceXWVAXKxCiCCLZUAsM6KmpZRlQO1j3OXYi2VAhw59iz5nZUCCe7uMCVxlQKjNTfnzYWVApOTX3PxOZUD/j/s8xSdlQL8Zf6dJA2VADlIjbLjQZECgKpZojpVkQLHCZvf1Y2RAGGRISolWZECGfRZr9GZkQMT4VBkXWGRAI1P2gQE6ZED2Yzi7UTNkQBHpvFV+GWRADDlTCf0tZEAwsFq58DFkQDLXYvIcAWRAVTgAHJU9ZEDLyvmeHRpkQHUAJrvr+WNAYiC6ocgDZECGeKEct/5jQLJAPCOd52NAlZzixYLyY0AkTNORsxdkQDadqf59FWRA5petS7gdZEAuH1QwsfdjQARK6GEeJmRAhN/a2puIZECdj5GirZ1kQPNxoXzelmRApzRAW26HZEDJNjaVA4JkQAIltrkckmRAA9fi/49eZEBHwJ7EuS1kQEk+RgGxa2RAbHG86bhHZECyNuNcaWdkQFEf151Ac2RAn+nbGeJaZEB0xEfUwTpkQNC4FD5+W2RAg/gaTNsfZECSCXtYmCJkQOUbuwBuTmRAf9nA23k7ZEBwFA5eDTpkQP/EBRkBWmRALY3Dn8FXZEDmOSMhsIFkQMJZOZtQrmRAj039Rqm9ZEAktGDicJ1kQELYmvjEqmRAqLz6o1lxZEBXESe2NYVkQEKSJ9DktGRAZBv+fPalZEBxI+IHG5VkQMi5z4ppmmRAfGKTzwd6ZEBpqQoxYFpkQE6jqyUHbmRASxaiylt3ZEAC+24xbZxkQO+G7d8zlGRA+2ljyn6SZEBmWwgG68VkQOxeRAC8oWRAj+/Y1PuSZECk9vs/i69kQOfMl9DL0mRAlO+i0zIAZUCZkGn/vQRlQDbk7VPGB2VAv+LtSaAMZUAFMXP04QZlQItTcB4xAGVAkk8mEsgeZUDDN1mn19RkQJVDTjkRsWRAbH5yyCi9ZEAITCU0z+NkQLov+ZtICGVAtzOwopvxZEByYKM1g/lkQAcWAM/35mRAp46UwlrwZEBvS0oA+/VkQDPp279wH2VA5R4BO7ozZUBJJw+RUxllQLrZhEhoZmVAhY1xHow/ZUAvKGl+P1RlQEcAKFnDZWVAjBweH22KZUBxJD+UU6ZlQFEHjqTowWVAv73az6a5ZUBvvd21Z9ZlQGimxATO3WVAAgOt9vPkZUDpsO53GgRmQCTfg15vCWZAiL/5xCLjZUDXFKAitP1lQKRb7zPz0WVAfkDF6brqZUAIfbhzIOxlQMYA96zk9mVAH6Y0CqLGZUAZMon4UNFlQNVcXiTH+2VAZ9OrgALzZUCFADQwGxJmQGd+lkb6M2ZA7j6cGtIOZkAFFKF4ITZmQHHEp9DwVGZAiqMM7A1XZkDjU2G2mFZmQDRUren9U2ZADBL0yLh/ZkAl7QiH0opmQHb7lHsIXmZAsmZtWYk+ZkCTRAgJtXJmQBTnB9jmWGZAxlkTrc5qZkCe8Rh7iYVmQFHBE4IDi2ZAQjViX+mcZkDbyV3ToJ5mQMjImmCiV2ZA+CR3DyGDZkB+Xv5dgJRmQLjaJ4emkGZAqWVYYIV1ZkBdG4/M9aZmQFs5OOIVl2ZAodyBJ6pqZkAVBogAoIRmQFY+jJceq2ZA60HyUnnjZkCNDFRGWMpmQGzrUw2W2GZAdjJxnUTqZkAp9Odm0+ZmQG/Ubde76WZAC1C/BCCnZkCheV5XBVFmQHeCLVtVgWZA5q44Dp9wZkCvR4/Zi2NmQGiiVBWAUmZAfTOrQtRMZkBUgvWVaEBmQBHtVb4EIGZAnPQxYS0YZkDpx4YVpudlQPduvWzdkmVAIOnZiG2GZUAiSdoIj3NlQJm8blEYTGVAct5oUAhIZUBhnn4xIVRlQAiURUUSVGVA///5F10uZUBp+CIJ9j9lQG3Z7UTzg2VA8wnt4UmJZUCf1xVdDbFlQEh6C3Pbl2VAcWeLIm9+ZUB+WVwn02BlQDzPx2CbTWVA9JmHaBRSZUBAzYSkyTRlQIlaoCRXIWVAv88PC+HpZEA+oSQlXelkQAHuDTJ8ImVA4A2FmdwwZUBIBRb+lS1lQL8G6AHAIGVACwuR8pH4ZEA8BFCcWBllQB+LMJW+H2VAwIMoB6gHZUDA1sAu4hdlQA8BYQ/sI2VAwdLMJ8MtZUBuQdj/xytlQAXFEoUeZmVAFd/PbUdyZUC5xDPhV5RlQP6o3WCzuWVA0VU3aWvdZUAljC55TLllQGjqq+vTpmVATJ+Onr+gZUDZywfh4u5lQFANvjhL22VAGj/FHxTkZUAue9ciXMNlQO6+lgFP6mVAFa4Zxj3/ZUCGo4xYk/NlQJ1/nMEF6WVA2zLpuMDdZUAdLhAFUKllQPORgD9trmVAbkeckGSYZUC/80DNuK9lQKepMqJtsWVAx/Yt8jrPZUCJkAwyDNFlQNO9kUgq4WVAYUgQJK7UZUBnrj6bxdZlQFUs/zrR52VASNkXbLD3ZUDsQRJjRfNlQHmS9sUSHWZALvhEhnUaZkDBCcAGtkRmQPnE89NEY2ZAHKTzMelrZkDjhp785GZmQHVzuA4cjWZAiQt6d4tbZkBAZ4MqJxlmQNoh5qxhXGZAkbdB7EMyZkBsES/H+j1mQEoRoWSpYGZA3UcYWgxfZkCtOhtYSbpmQACYksG/oWZAx7sOUkC5ZkAZm/HW8MJmQGxVQpd72mZAsNnvmbUTZ0D9VxqJwhVnQB2D/UFl+WZAgLD6FcP1ZkDO8M8LDwhnQJyVWQH/1mZAMqWguzLhZkDnzzWsYNZmQLjRKB/4r2ZAx06gk8flZkCsrS3bRfVmQBda+X0KNGdAuAWNggpRZ0AFPtTjX2RnQCnFZJtUdmdA6NNgoSVxZ0CkXMcdJ5dnQG7NYMLMVWdALr9nxddjZ0CbOFdbdFtnQG/qY5zEOmdAk4YP1CxLZ0AehcBgRl5nQALdqxf3gmdAb338IhBHZ0Bwy0JLS1NnQJN2RIieSGdAMpn0FEE5Z0DsPxT4oFxnQJ9ot6tnaWdA3tEoQLBYZ0B+yPvb5j1nQKBsdZo0OmdAVEgTMT5FZ0CWnTJAXmhnQE50QMW1VmdA19yRujZRZ0DdlkPh+GJnQNSGR/8kYGdAzfOH1khuZ0DI+uDvGphnQDd21QKE42dA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 7\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"J9o/Oej88D+kmzIktjHfPwxLcmWKKsE/JtCr+X0o97+l3xDYiB8AwADwXJxeAEI/YyZcjI9OtT9Qk8MjBlT2P7s8VEuYRQVAOD6UgLml/D+42s3z3jbov9ri8+mcUOU/GstPc8cQ7L8oFSsZbovEv1KEwX9kDt+/LD1c/CHx3L9QattS0uziv3y90UepIQLAOH8CBVCj/L8mRN0S8vT7vw1nvjq7PQnArGm/EUHxDMBPMnbZAmsIwEtmeyc8HAbAH59n8OZq8r+g+BXO55jxv83u8pZszwbATw6Jm38gCsCdRpmB3PsKwP60wW0Z7QLA4xY8+lTs8786I5SnKewEwMp4z7Ve6ArAFEoMbIKwD8Ci+NE4EbwGwGwe91UyQA7AbfdE/dSREMDaTDvzTCsNwBiSOTU4hgHAnw+jy8Pd/L8+cPq+sToHwMEIk46uMAnA6Eyqw+Q/2L+OAp/4fhLpvxqtgyPaHdO/pQ3gEcfiwL9R36p9rY3EP4ZYqe15+Ok/SCdeyqpFxT86/fJx9KnbP/lwL3SlGtk/Xh88CXQq/j/MfEOPKBf3P3mlsjTELOQ/hpYleUO3xT/zngdAodXSv/8AuJ7sEdu/oCo+QhLcmj+Y3HN0ob/kv2R91CWGr+k/bkAKltff3T/4Y//17p36P93paWwXhfo/EFgwh6/18D8JIE7RGHToPwOhRNLZcew/r7DB9qax+D+A+5O2I6UAQPhtZqIcq+u/NcTM5rmyC8AJdMh0zp8JwH6zs7xCGQfAN/bGND4RC8CLIKxc99YKwBwTIxtn8BDAFjePvZkIE8AGZKjIw8MMwHiewq+Ssw7AyKIoNIgIEMBPOjet338GwJf8BsPk8wnAxT5HlJSbE8D9u//KnVoVwC2FfDZOFhTArjx20tQqEsCqemEfdMcJwPJyPxGAthDAqrGxLb6SEMAorZApnEoUwNeC2WfD/hPA78IoR2SsCcDrSwiEUjYQwGSeKnaBwwnAy4pzOr7uBsBgoAIwi6D6v4rDUdgAQAvAppsemLG7DMASKQ5ucOwVwEYNbGKZmxPApjf+GfrUEsA2+NzImJQVwPpsglGbvhbAh8adsutuGcD0OuCn0vkbwIU8DO2k7hbAZIvm58K/GsDtHOiwZLogwJ7dfAUmGCLAhWfB0KxvJMDEqhCWX9ckwCsK2TMR1iTAKHX+PZMUI8DtxMrVaLkkwER+1VnlFSLA/1NMoM/YIsDzG8HKiosjwCueKUiihCHAWULd5/CPIsAIJeLQncQgwFe3SqCjRR7AYmQMbm6lHsA9bYbvlosewIl3a8NX7x7AgA6WK0h/H8B0Y8OGPnQjwFooSx+mGSHAjeYtpTQdGsCrZJ5ZKAUUwIW1f1UaKBXARotvoBHQGMBk5x7M+1chwOIdsgcpvhzAje1enzKjGsBN5MVOXIcVwA3qA4LKZhLAxUN+YYceFMCWBlw/ndASwAqNNYvpehHArjwZvkCkEcBk1t3SUBoVwLe2MAuxsRTAhUP0JGO3GcBGj36t12wdwEtDAj5HPh7AUF3ylN84F8CuvdAqCJkZwFZYlUTJHx7AWOo/wNhQIMCmzLRsoPghwGoDw45p/yHA6Ar4S5VGIsD2qiqaDEsjwDrA1EXSkiPAQwZAoi5TJMAUSoYlrwwmwI7DpezKRybAdxkqeTCQJMA8hHgmO8gkwHbhvGA0mijAIed+new6KcAG+XZSjv4pwNjFqIXS3inAoacMMeWtKsCmNJCwxWktwDBmJ3SBRy/AHMUedIoYLcDTUsvFeW8swC4wkJGL4irAyID/Bu6YK8Cn6yjVuwEtwIeoWD2ziSnAnveN6yV2JsCZ7PCxCIwlwDBGifbxLyfAa+ae9hKjJsB2XaEIQLEjwM0uzykFUSTAVa+TAPOvIMCHdOfLeuYgwIj+t1NxdSLA9Ng3JN6TI8D96ga/qeAlwGl3kCC+4iLAKB/W9s/uHsBOlDBQ1mQcwCzk0oMxMhvAfR2Wuqc9GsA0QNzNfKAXwKey7auJwBTA4aXgoZBQFMB7406io9oMwDtBOWAU8RDAzUDeJwZWEsCPXNX43T4DwA7IwFqIT/S/WzP/bw2S679gPUP88Ce5v85pYeXVCte/vNoUZaJH8z9qfE/9LcP8P87NzOMBiPw/C9c7etJG+j+emb/bffXwPxAeoJcP68g//ygvEy6P9D80K51NWqHUv33mm0D5IOC/ZTOUy32A57+8sV6weFfwPxWqV9QDoQFAU/cibCZo/T/gBALUoR71PxQpGIQuTwhAGll+v6Wm/D+2mY3Wb+v7P4Do2vundZ0/8epT13UdyT8Eqe+bTeLRvx4hhoB5+PO/cc2jBezi+r9luwWDrbrmv6U3F8dtGey/ifzH6LklB8CuMuZfBnHzv2hqS9GiP8G/9F/sFBdUAMBO33pzp2kGwNImViy8FAHAV8j6LyOIAsCHAKXHogIJwKoXQdnMHQbAtsXkd+1gD8ArePbX72oTwAoG3FtLiRPAwVFacx3LE8A5hlb/WL0SwDwEEmTUnhDAYmOpnNpGEsAhdlL52NMQwKF2UTHh+hDAKPjoZqNYA8BuBfOolWEGwF8Llh4MqwHA/lgdBW+AA8Cf3o8EOUEAwMgM6Pl/9ALAhh4jN31mC8AXuZqRGFQJwD4H+rKdigDAKDEwZ0rNCsALJEkGEk8FwHdSaB9Y5AvAlIe3N4yuFcBm+9ZM/nsewA1IdtoBPxzAwtuXX8cKGMD720T7ZWoVwDhzj4g3XxnAQfyrVKFfGsBfM8DV2DodwFkUiiHahRrAOhqQW9SIGsC7ncdQWqkfwJuYquWqBiHAFg8rfUk6JcAyZMmr2REjwMLZ9UFhJSTARHrwLy3MJsDVs97WBxsnwH68qYKRbSvAssAHtDcfJ8D2yBKXOTUowHNiLap29irAgmOqVkzbLcDiEzm5Ab0wwOBGjOzOmTLATEnXL0uXMcA1qFq8u8gvwPpJyVPgPC/AXVuSrH5kMMA+Aj06m/sxwHgyyZ3xOjPAfVmJgm41MsDgBekP214ywBckKdN0yjPA7yI0H3fnM8C8ZQSRYoQ0wKmh+YKNHjXAYK+Ggc3JNcDoFYnVzcczwHgBjuTdOTPALuWr6UvMNcBwUydYOCo1wA6ZBG5X7jXAQoqVZZwxN8BGuDXa1nM3wCh2Eaw3jTfASe2WU35EOcC+6om92gU5wL7c7gibwDrASojS54HbOsDIuuVI7Tk6wDHSfDNV3TrAuNo7KDGYO8BFwbApd8I5wI+xeRbJGjvAta9C8IVXOsBvdspOI/c6wLqeQeY+mjvADOMTM1E/O8BPJWM3c/Q8wKanqS4Q/TzAshZPZqTXOsAIReug/yo5wKwlrT0r0DjA78rHybBSOMDkkyqTtu44wGAG31rdkjrAzoF7ceEHO8C4yp7sQyc8wLx7+pz/LjzAmAtNrr7XPMDS02ADLzs+wFzuYtAL0T3A8LrYVOe+PcBkHYHlPxg+wFjRUaAzsT7Amh+wnn6NPcBcc6CWzkY+wJfx+qEpyz3AlYTRVoGNPcBMzSULYXc9wP+QJE04az3AbfRrq68mPcAPifbPeUE8wLVTg13apDzACsX4sKdDPMC/Pp8pBbw8wJvY6B7iqTzAaqEkv1IAPcBnDOYBJ/k9wBYT12ez6T7A/Q+1IXeXP8CnUzliqiRAwCdursPUAT/Apq7nL6rJPsAkVvJTVRk+wL5Kq2vCGD/A/XrRzQ7nP8D/kmB7fnk+wK13o5bRoz7AxAzj3mPrP8DCW8uBjlpAwEqsQo0Ae0HAy33kyWkfQsAs/XO/01VCwPH0m1nha0LAOx1K89ThQsBpt38+ejVDwGoGYEtrfEPAZsEeLeX6Q8CdwBtjLQNDwIULGnD8I0PAaZUI888HQ8Bca+1UR0lDwERjnIfgFUTAVC2Lb5QwRcDueURHvyFFwGuCMGYUg0XApN9TklDxRcBOytg4HntFwKDqFH/awkXAByQfpTaERcCI03uL5bZEwHU0LqbPbETA2P1AEj/zRMDn3qaNsZxEwOqm+pL5OUTAQ4XiRRMPRMBa/JAIdA9EwCGLKpZ/dUPACTem/j8lQ8CoEI9UwopCwO2C8lR6KULAA0ZyRS+/QcCThaNgsOdBwHTmw4ONM0HAfPUMH12+QcAq73JARelBwIbAMB4uZkHAl512YlalQcAlcFujh8FBwIbxJseXK0LAtiSDaVV3QsBO/unBJsxCwAisplKUSkLAh87yaa3PQsByo0so6wtDwOet6cIsWUPAkIipUqOMQ8C9jgLXrXdDwOWowXVfJ0LAM7DcZLcTQsBtRcEUgnRBwP3SA2+/cUDAckKCp1JEQMB8Dt2XV7NAwMyLBp19IEDAbvJP1zmVPsAYY9xUnKw/wB04Lf3Fzj/A52WdGkbBPsDjV3kRV24/wJsGk+ZzLEDAGzt53AsYQMB6P2S4wbo+wO2aUVpTJj7Ar6tn/Q5qQMBs0SZ0R+xAwP2kxeoW+z/Ai0J0p8ZMP8Ccg+mlMdI+wATu29DTWD/AZ/KeZ85KP8Ap/LJ0mKo/wAZYzBXLpz7AVZkde2qEPcDkfiYSGbE+wBUd7ROCTj3AUc1NoWQPPsBGxZODMHo9wMRNKgkSPD7AKzpK4gkmPsClQuAgAog+wAeFt226sD/Aow1MFeWaPsC3EeTlXVs9wJwfEzKcST/AlHKi11glQMDvPkgsIX8/wCT3oBTxDEDA8xtijK+APsCAfthhEQQ/wC0kcJiqFj7AKYktJjjVPMBA4pO3Jw09wHzaJPKpgj7AdCjbM3okPsBe44zgTEI+wBUeKnKqtD/A5FZ8LF7cP8B+y/FdU1w+wBQ+UBPgPD/AQwabrvRcP8DgkXv9+Hg/wJ1ZytMxSD7A0g49oqacPMAd2mSvn3I9wCOdQQxl2j3Aka0tHRwTPsCvzJkurZ8/wL45dIO3s0DA3L9ccxyQQMBy+LKtX19AwMR19Pd4f0DAIncn/oBIQMBLYJtsq3hAwD6PhxY/6kDA1GLL+OdLQcCcwObUeLNAwETSx9XynEDAap9p9cMdQcBrc0mFJpBBwM0e9YxXfUHAzhlpv+d9QcDi2POrcSFCwNvS5xetPULAn8Ls1B0YQ8COUkTDbHNCwA4feES+BkPAnBDd8CtNQ8DOBtWzqQ5DwHOHhvT0hkLARG096VLDQcB+w7E/97RBwHvxKj/18kHA8xOulXuxQcCvEJSh0H5CwL6Y+35OP0LA9r+Rq6RKQsBapH4dXnxBwDz/p5IR4EDA0MUefx+2QMBJbmDewHlAwIJ+yXaIFj/Aju8Y7g4XQMDn0XZ765s/wGDOHKPNUEDAEBdw04ggQMALcqXP5ppAwNRktnmFckHAdLhneNroQcBV/aMEczVCwGqGafXP5ELAQH1U+19oQ8A8/3B++rdDwP8hwYCjjUPAndlg3fEoQ8D/8Pv6k7tDwFfe9mzN7ULAjIhvXWgtQ8ASvI5sYu9DwLrd8lRlrEPAPdsf+isyRMCYRkozG2hDwHBENA5StkPAyCykC9jXQ8DInETA731DwF8wYT7gBEPAnsIXSDEbQ8BJeZosvrZCwHn6HJr7uULA8FhTtrGkQsBoHH0qmW5CwNe1AghS2kLAMgaXR1sOQ8BLsLzK62tBwHRGNPK970DA1On3NBxoQMB6DBb9/W1AwOFTsO3BBT/AfzjPt2FbQMBw1KZZs9BAwCehQ/5yukDAn1TKPKuwQMAOQ5Pq/s0/wNV0rsspQUDAVK9JvVw+QMCzsJ5kYR9AwLEewo+w+kDAlFrLX3KDQcAAETg9N+ZAwBBgvYoiOUDAHh36YxSAQMBHcdAKjRFAwGA3oFF8S0DAj8L6EtB0QcC3yv+Czq9BwJlZY9MoE0LA/eKtODykQMAErZgEIGBBwKs0JUHBV0DAlJHvoxxBQMBjLdbWRhdAwHt5RjQPFUDAYvC7/wrrP8CTPovSRt1AwA0dBUKpKkHAutMInPCyQMCvaQx/aRFAwA7Qb6wzMD/AMjZ49eUAQMBmPa4Q2AdAwH+glQakyz/ArwsWxqP3PcCF/eJjcgU+wNPMuFaR9j3ALQmEkNwwPcAHCKsuN9k8wMEfdeuz9DzAK2/3SjBPPcBC08e6zps9wOp5VBTaxDvAxp05Gtg3PcBRYjAlB78+wHPQrG2UQUDA/d4Fb9laQMAA8zYAf6JAwGTOOj+5wUDA80cLhCdXQcAq5p7+pJFBwHenVep6GkHAg5o3nmohQcC7AD3bQO1AwEf/ZyKoKUHACsvVM66TQcBfiCk2cYpAwAHoaDDEhEDAlht5N/pGQMC2Ck958VJBwOfMkYym0UDAQioy/y0RQMDAjfSYfHpAwIePjtASuEDA7gM/dBssQcCz4bMEnxRBwJ/nBOkJT0HAVYnNM280QcBUSlMClZpBwLJQjtakCkHAitdJOpNdQcDiGgC3KYxBwB0Rwo05UUHAqH4p9JUfQMALouFb60JAwHNFz0mXdkDA+Wk/9Pt/P8DASdIFRk0+wG8mMLI4Rz7AnezQr/dvP8AD//21vP4+wGiTjb7weT3ASNS8Zr58PcBlmRAtJRE8wJ9hrjW2rTrA/d4IQpCPO8DLUVxP/k07wCsNPtChXTvAyl2pR4MOO8A36qOX+e46wLI6c+meMTvA4kpUz6NQPMDyneLFTTE9wAEMLYr2tz3A6V3s5tufPMDgiSp2dPo7wFxzKBup4TzAf7NTpXTqO8A/2IX2+Es7wDBPVhU4rD3Aa0WHB+8iPsDGgAOr6Yo8wKHFd36elDvA+SDMx7o8PMBEw2lNZkU9wO30dfhMTz3A4k1FQqxEPsDq3bpX04o9wJDL5xQ6BT/AbR0wboF+PsCC4WsFpLk+wPv836g2nT3AlPGw+rwGO8B/aHJnKzc7wCg5sX75Jz3AtQucaeTiPsDvuZyvTaw+wHkRbW4+nz/ARi4U45p3QMArnvmKNmFAwENwTwQO2UDAZ02kfZ6TQMBcByNiGMs+wMR2R32a9j3AocVBUBRMP8DfTafg9iE/wP7zfqUV/zzA5iMb99i1PMDbtK3+tF88wF9OnPsovTrAIrqAhrd+OsCyplX/u1g6wM/OFMT+EjrAoJStVfzfOsCikZfA9xE5wKlqYwOqoTrAKAd3FCtZOsDgysXYtc46wE1GcCnxkjvAmIh1nKNwOsBXJ4aIWls7wFHneu1LszrAQB90TH+EPMCtNGsruLY7wPtlY6RUQDvA6L18IIzBOsBkNEBcwQk6wFhdwQN8wTnApH2Rrfi3OcA8FwxXERI5wAOl9fGFLDnAD862Zic+N8BunHyy++Y3wHrzxV7mMTnAN+BPyNszOcAEtWLgo7k5wEHMPLuE9zjARQY3mAO7OMASwjSfsWc3wDeRl5GIbjbAM87bKAckN8DrUgbm2SY2wLyjHaiQmzXAVUyGMUFoN8D87znzIwE2wE6FSOKxfTXAyo+DQgYxN8AVp4GjKi04wMzFO5akFzjAVYck4neKOMBF7rQLd/A4wAyGBJU+FTnAJeUofqIkOcAlyvSNYE05wABV1vP9DjnAApOydCYiN8BU6mACd402wB/WVEgRfTbAw8MJ31OWN8Az5KjgPs82wMNyPOKn6TXA088en1aXNsBiBNbpXfE2wHxS/zDKmzXA7qSjtEWCNMCsqMXYgDwzwO1b7bYorjHA/R7hzbQAMsD8IWGkmGEywKRRze3T0zPAqFSGYTL2MsBQIbBxSC8zwNuD9LcmjTPAD3hcOrfxM8BzNd2fXYozwIf41iJVJTTAgh/PTKpONsAE8zINEwU3wMnTPP/eLjfAeY0fwdNWN8AxpdfcBz84wKqRJI5laDfAE3STi7xzNsCj3gGiknM1wJHgfBZ6ijXApuQuHtPPNMBVE73h5IY0wGAhR/4YKjfA+5RLueYqOMAgmeACu185wLCgrv570znAVC6XenTHOMDVRZU7E7w5wNcepQfQrTrA/P/e3ZpzOsDc8/5gedc7wIp3k6E1BDzAtniml2W/OcBeYhX5HxE4wIAL0IzLwjbAFi9UcrYNNsCy1+uwy5E1wPRcEKzFmTXAO7tUdP5yNcDoJJOCDCc0wKQzP8HPEzPA0OV77EOxMsCMsZ1UiGYxwNhdxDa3my7ACMhv0g5DLsB53OoxxHkuwLgAvu2//ivAZci3d/6qLMCejIFYw4QrwGagInp+4i/Al/6gwK+FLsAFz74Q9+UswEgnVQWcYyzAzI9xDHGSK8AcXuzbQUAtwLJVgIi06i/AgYQqjCYyL8AOkk9Bx7YtwD+/Nik1OC7Ah4+9evjfL8C/e9Vyyh4wwB3O+Dp9JzDAht0tOTcZL8DziKahWr8xwLJPrL+RzDHA9eFh0ma9MsAsWiQuC9gzwAibtoQjpzLAp1W4/8xGMsColTZcvmMxwDRko6saQTHArsfcb0fQMcCP8oevSTIywJltj4guozHA/Lp1YjfNMcB9oRQ9dd4wwHNT/Q47cTHACxvkCJ1dMcCJ3wyE0koywLDyU5knWTLAMkCZ/lsrNMCrVbnP0aYzwOLpCJs5FTXAtatahyqoN8DIU0vJKVM2wP6SbzUtYTjA6oWnvRjCNsB84hoYenI2wIqs4M6X5zfAey2uBEmJN8AgHGw1jko3wE7QlQSEYDXAaY2TX3OHNMAsRioNlhczwDBWGixxpTTAEZMag2GYNcB7b4ukXls1wJK9g4NnyjTASl3sED5TNcDH28WXWGg0wNaGp8L+LzbAQOVT30TSNcDwOtE/OY82wAK/khZKrzfAqNXNN+17N8CxnofbjNI4wIRixxkmVjnA+oxMeJ0oOsBrlr35HRY6wBykJB9s+DnANLbJ9yFcOsAIwxgTLas6wIesuCKaMTvA/V9c8wyxPMCjL8bwWxg9wOsazbHMDj7AijlwkzvtPcD03HdPGyw9wEG82UBO8z3AbpFpLdFrP8AaOHSYWxdAwFvsajtcB0DACzXqLKR/P8DSUHPFcIc+wGJF37EUmT3Ajp+rbeb6PMBi+abMfh09wHEDLMZI8jzAbVsnNy97PcCmwkPtKCM+wGr0YY7taz3AaZdPcl+YPcBQjKbcpVk9wLsL7/2CPjzAYK2gFJIYPcBdZwiSx649wBzmMxYyBj7A/Zo/uNc9PsCIeqejYUg/wE+xAQEmrD/AFQysOaTWP8C2+D//jwlAwHP9kVNjLz/Avrvaw06+P8DT5ryJeSE/wH2E9Mdpcz/Av6i4QVpeP8BRgAC8niZAwE3UodCa6z/Arn+8l9w0PsBC+pBQ4Po9wB22PdgViz3A0hf/3VZ8PMBC/DzPwwg6wKrlkYTzQTrAlb9lQ0ufOcDhLMegdOM5wJYsYx/CrjrAG0H6MkOLOsBGPYqJERs7wHmM+I1RETvAW5MTl7DkOsCp67lAMYA7wFWsjLkPkDvAKG9orKp+O8AUpJdBcBM6wJRxPkdcljnAyNU/DfVrOcCtSng4PW06wHFSmy0u7jnAL6nV5+bCO8DeQ4sgg/w7wB3G5zt2ozzAZ3HUCCLSPMB45nY9SUc8wOwJaqxnET3A38h9pmS6PcDjsW8SOVU8wC3Ornyc8zzA2vE6H52BO8CIhlzlnzo9wLkeeD9oAzvAip+SVHmMPMA6f6+8bFg9wLFeiLoupTvAwJ4gV1XWPMB1Z6iAlmI7wBj9lkr6EjzA5QU6Bn9VPcCFUlJAIb09wDGXTleykz3AA5h9wgPxPsC8PG1KI6E/wNwEX/AA2T/AK5RJKACwP8CpigKxPE8/wJowMOQqckDAwIYewrPUQMDXV69qprlAwKoWMDxaYkDADeLWGSSbQMBqwJw01xpBwHHheVXlREHA8gdy1TxvQcCZoY8MrdZAwIc2oYBN+EDAP6TEg8VcQcBji5m/47ZBwEtWf9OTykHAxmx1MWoyQsBYgxAE3YVCwHpPFwixz0HApF/6d/c7QsAknUQkoG1CwJz+4HJkvELAVU+CS175QsDtMrH+MeNCwAxpUlsDRELAxq/NfwetQ8CA8FiZmaxDwA+DmAh0dETATSs2TNbWRMANTktErmdEwPwaxWnjS0TAs7sJiGeJRMDGYym7/4FEwKpTB4RntkTAStk9u3shRMDswWpHz6FDwHoFYRkB8kPAWTRqkSo+Q8DdiGknV45CwAgdRDmvMEPAyBJYtXZbQ8Dxn6w/q6ZDwFt1P4uH+0PAI3h+hOU5RMCpd7yzqM9EwK19rQHHS0XAIAxujOiTRcDG0Lcc6AxFwJNakl8GdUXAfNp5V1CoRcBARh6oNYRFwE45S+nSE0bAUIQBEkzrRcB1yhGJ7bJFwNT/62/Z8EXA7rTf+U93RcBxelwhzWNFwPXtkx8DNEbAz+G+XmbXRsD/dEGk+sNGwPkzUHX9DEfAxCYfgmHxR8BI9WMxFmBIwJL5f4cAHEfA+IASk6WmR8AcBTz9e0dIwJB2uQyDm0fAcLuriKaXR8BEUHTdFKdIwMmzo7Id4kjAJdmikZoSScDizWVnNYFJwBm8Zx1j10nA2YGsAwG9SMC4nu+zqG5JwBCRSCMprEjA/W9Rv1PqSMBXSQwMDuFIwGXmcSq0kUjAsMKvN94KScDtWdPYrKxJwBEbZRumtknA4uq97+ZWSsAd75Jr7eVJwHYdm7wCQUrAnG+Rx5p2SsBbeEAqk89KwLgm7TveyUnA5jv9IerXScCyP+f3wyVKwB2RVJgLB0rAyDHVC/bQScAyNgndsLlKwIegB99q3ErAeD7VIVKHSsD5oWm7E+dKwO0670LuqErAlwqA2cddS8Dbbg+qExhMwBCUklW1SEzAs9zAI/m7TMDAOsB7PmBNwM10UcMeCE3AZQ3A0tx8TcDoISqPaHdNwGJfT/wpe03At2BLI0b+TMD58f/96F9MwF7kAA3o30zAlSz/CxOKTMDUKAkStg1MwKtOH3qnYUzA8Aara7HxTMCrpDY0DJxMwBDNV9nXQ03ABuq5pf+STcAR3bgU8kFOwP7Tc3zcSk3A3lPq3T0cTsBX6yQtWDtOwL+P2QUfOE7A/i1U7ChmTsDLcsA0go5OwCiXzED+c0/AABwQercxUMAyntk9XxlQwIhHhljcyk/AHOKYHSsJUMAZSYNKJD1QwELE3SP0FlDAwk7KpQfTT8DZ0i6KwEZQwFW60zhGVlDADxYUY3hdUMBAGR+dzUxQwD7Cubuj10/AQUwU4ajnTsBlRi2QVU1PwHoD8ekqr0/ATBMxt3hxT8AH9HXOXtJPwNTRYMIvm0/AOVcNnZIhUMC9DAwmEUdQwMLrEzHJAVDAHx7fbX6LUMCXYdQmws1QwJs7eiwkhFDA/osWwTcTUMACuIuYTY5PwBuoS00VNE/AI5N7lFqeT8C+tw7FWaVPwFh3MBeO8E7AnXPsajs2TsA9hmH4oDFOwBCwqiAU1k3AFHF7Okp8TcB54057SqlMwHWYP/rtX0zAxD5JXHokS8AACh49qLNLwJkuUj81lkvACSHtGn0SS8C+1HRjXsxKwBq3FuzmLUvAH+8g069XTMD1itYrLt9MwC+QD+GrB03Asz6yyRfpTMB9I/goS1tNwMV0nZzYhU3AxpTeajNpT8B1TmhFsE9QwB8yiq/eCVDAq1v5zUoaUMAhOYt0XF1QwDbR0q50blDA+QFXvFKyUMAytHk1K5tQwJur3QXkNlDA7hlXLZvnT8DfMZ/CDBFQwBXTFuxdIVDAoDJAjXdVUMDUVFnKSW9QwEe0gcFoulDAb3JOlBgWUcDrD9VTNBdRwIhOWTMgMFHAdIYAx5dbUcCPMVE2AY5RwKtUvmJSrVHAvYsZn2icUcDi+GuJPHRRwAl4Erpoz1HAojaP/L/pUcCljWiYKJxRwMoBkZl0hlHAWEb6FbPYUcAdVSIcbwNSwPiS4bLg8lHAPMWBQW41UsDXghwQUEJSwJNj6so9nFLAmbrMZa0AU8DBKnmkB/RSwGrJJjzRyFLAx3rvsPqEUsBC8SpDvd9SwBUrTbUJxVLA27i1UDfhUsBOQqImBuNSwJ3NTMhgcFLAGp+PBhEkUsBD0QamsEdSwGu2dr+rhFLAJeBbeGZnUsDlPfYz31lSwMZ5SQD2OVLAQWaJK1u1UcA1uIwJTJhRwJpJXuFxjlHAwk3fqrHQUcDDbZndeXZRwMhpNkzfcVHAIdJtgUxZUcCLBaPPbp1QwKnB19t2tFDAFG5YVPPGUMCaHl/KlOtQwKrxNWOkTVHASM+69V4NUcDi/5Io4pNQwN+cbDUPhlDAWyzVHhqeUMBI99xNUeRQwPf2A9EVsFDA4ADhay4HUcDDlD/H3wpRwJ7q5PmdDVHA0BRF2Pr2UMC/oZfNhYBRwN0oKV6PeVHArfFx/oeVUcB8EfM7FmxRwJSy498ZJlHAFo54UUFWUcC2GajEXWxRwOYwgB9WkFHAizkQEK+pUcCajOmL3PJRwMsmx+Jo1VHAXYo1pTv0UcBk7dDc5OZRwAiiW2J1mVHAc5mZodqCUcB+fP34wHpRwM1pQB2Vp1HAhVLX6diPUcA8JMA2j6NRwCcL3IpYLlHAKdYdA3oJUcAW1AG6zfRQwIiMe5drxFDAq1b3fBj8UMBgmDXPFUpRwGhwe99E9VDAbnI/qQ3ZUMA/7w+MTVxRwDETSwJreFHAUW1bqXl+UcCzIDVyquRRwDbTfCjhnFHAj69V2d18UcBXr57y+mZRwDYNcezmRFHA3McpmyPPUMCEjpUJYu1QwOp41kVHp1DAuFCiJKatUMAuDrd0YXlQwHY7WuhwcVDAsIiPw1h2UMAaAo222B5QwBDa7tLnCFDAay8Imx0xUMBffw7zc7lQwD/ksilKslDA6m8dF31/UMBP3GMBm9BQwGkyJDZSxVDAtLLTzen4UMCUnD0iqB1RwDbJQAK3NFHAJCJQiVYQUcB2NxgweQlRwDyeoUmd8lDAeOML5xTXUMDk9NudK7NQwH1crLoRi1DAR9xOBb7GUMCgLSx0hadQwGFjzHYfglDAnHlxdFfkT8DXmcnCRfhPwMwx4qbdOE/AXmQAHxb/T8DGVbJwSThQwGc9EhnJWFDAQicbM6h7UMAPq3pI0Y1QwOIVKEVhYlDAVwu6LmibUMCm8vsw+TNQwBBdru7GmFDA+bIzegC5UMD9m4eSjZdQwB8/x6sQSVDAtw7GJjcTUMBm3FMrWVtQwETRujk+SVDAwMaIzVAgUMCdX2BbufhPwA03LAjAxE/ApGuZFIglUMDxcJVrLjRQwAGUtWRyPFDArXerAB4dUMBma0yUPzpQwPaBbJBhelDADGt5+882UMAyG6U/eE5QwIyp/TaYKFDA8FA1woYJUMBq/+NPDsxPwCHSKJkWS1DAIn+BnktIUMCuOWcVVT1QwArFWeZ4JlDAJSqC1xNOUMAdVD101ixQwHPKUSSQU1DA00R1ztkEUMBAFZzeQhBQwLDKbVdFElDAPwUwa01WUMCJgzCU2oNQwEeknk1AoVDACCp/f9p0UMCSRuxuq/JQwImWa+3OvFDAKoCtojl/UMBeMW/LsWJQwLHvlr+jMlDATsLbA/YdUMA/lgQtXpxPwH6R/0VGClDA5FY0kg+/T8DlMiOtA2hPwF37Byio3U/AOIgQHY3OT8AKtrfrRKtPwMIe4umt507AoRaiT4iBTsARjYwjPLVNwCLfNzJIdk7AFwq2G3noTsDxFOTZ9oZPwHzMPrgWI1DAe257WOYsUMANkOrfvWlQwJrFwRUpdlDAJBNIXeWjUMB/vC3Q+utQwOxzKS18BlHAs63/U7BrUcAi+eZWr2JRwMay8CLH8FHAZOdKKsuLUcDmgp4GpVhRwLaosrdepFHAWPNyZYOqUcC9Lv9tzKBRwNu56KvZi1HAqXOu/mlbUcBTPQnPxTZRwL1beum/glDAoj5z8JJzUMBX9nhmVHBQwCUsSGbpClDAGnQ8A1aTT8AAKGqZjwJQwOu5IGuu1E/ARhUzM4WQT8BkwrGgBQRQwDW33LjuQlDAHno3Xn8TUMBY6Ca7+xVQwAjPJdMsxk/AVP/5QFUZT8Dzav7eGAZPwE/ydMNHuE7AlkcqUn4QT8CUAOnGJLNOwGTzOasMdE7ARFMtuP4jTsCgMxlT/FBOwJURlfKOsE7AxiOWnT/FT8CFiTU+RiJQwPLqDUGFG1DAkpC4T5mnT8DMfvs5dQBQwGIyVw+zK1DAseOoB8L3T8BSrs1XT/xPwD2w4shEu0/ACYsF5yeGT8DRvHmdesRPwFvLKaeVzU7AyrGhhEkAT8CsKXD8X6lPwO/ISIEz+k/AhO1NTFOoT8BjfDL5uqBOwMoIYKya7U7Aw8AQFEjWTsDsQlALc4BPwJFAfAUXlU/Av1+G4h4UUMBeGAEYhmFQwE5sOktUz1DApNZeQwLsUMChByEdDwZRwOnIF4umFFHAhJ4p2uvqUMBE6vPCC0lRwKQ1RckfHVHA3Ayqtv3nUMARgue3NINRwPQz6c3gVVHANg1ZRkFoUcAOO+I6lWVRwEVZToNNW1HAJj5Drmk4UcC4sOxoWXRRwPojlw9/o1HAJCyGMeBdUcDuGU4eTzNRwG464q16+lDANIlgVfErUcDFn4Qo0NRQwMm9Rbyef1DApkjwg3FpUMA5VmiJlHlQwFMiqM6nZlDAL8AyUYuiUMCYcEA9Y4RQwCmCoTvobVDA1JigT42ZUMCkqpHokVxQwNh9/7uusVDA6ekf8pSbUMBKqBrujAtRwM6XmXirTFHA+YEmp8prUcD9Y4Bv+yJRwAf3prqsc1HA7AxSf3OSUcADFu6j3LVRwPb6oBge0VHAN/XT9JbxUcCfof4IAfBRwOqHQ5x2PFLAgu+lku0LUsDXnPalpvdRwHDuWrOvAFLANapxnQEWUsBDC3UShBRSwDhV+i+96VHAe2fclk4BUsCoRprvR81RwMB6bQ+F4FHAR87JkXh8UsCLO2Thr2lSwNTVHwp7TlLAmmnG19VxUsA09ORc0YtSwHrDckDjoVLArkklWycfUsCqi7IjPjpSwFXEt5Jd6VHAZPPibyrVUcCSI0pFmzhSwKoa0QuRIlLA7wKgKCMbUsA19hKYNgJSwFwMS4IKl1HA2wV0N3zKUcC+hN+rysVRwESFyxKOlFHA4V3NsaGZUcBiWpgCx7ZRwLd+xRogp1HAs3VGkNvqUcAoAtD5ZElSwAaqWf+XUlLArFjLtVYtUsAsi6QxsudRwCk49aIT9FHAlAJ05qCMUcDGLgU+dN1RwJiQMl6rwlHAue9ZJvOWUcAvqYpVN5RRwFZNiROmZ1HAiqkDYynGUcBdCN2xSMZRwI3zUYAmElLAtoybTOHBUcCqCJwSmIhRwFhM10SESlHAmWk5SGczUcAclCantV5RwKZquHvwKVHAL0xMN7JWUcDa/QQpBBdRwATpV2YvK1HA1yBYRTd8UcAq0yLGo5FRwKygb6qqfFHA/9bOhKsbUcD/0YNEgidRwG9Om2DetlHAHbykCpOjUcAL96nJNNJRwDq+318vxlHALbH1cMZNUcBaoRCYxk5RwK6Kf62psFHAret2AEsAUsAd5IX3mK5RwCFwN7vX8VHAzskAgprQUcD+GeC+1B1SwLUhyTfs5VHAWw0cwaqlUcDqKPNN/UVSwJutrP+SyVHA89yqj6MlUsCFjZzyJD1SwGI+O2wo+1HAtV+BwgLEUcCx0MAzlitSwGuAXWU7ClLA+6q/FZ2+UcDqRoucJ3NRwLAvh17F2FHAYOuM/CDgUcAgfM9ZCd9RwH4BiZ2A0lHAtMIr95bZUcAXzTbnNEVSwNjRFJSecVLApToBIM1kUsCsEajTo11SwDCCVNeMdVLAkbURevRpUsChCeDiVQ1TwMje2ihmBlPA476w3PoGU8CU6i/pFNFSwM0108sXU1LAGOAb9PFTUsCwHpH96zRSwD/eDGXVClLA1G3NE1NHUsDYsa5Dt35SwKvQszucTlLAkMof8R50UsB3KFr5g4JSwDO3lbEYlVLAmrD23QFGUsBlDV60qVdSwLY4qwSEnlLAfHaldHWXUsB8w2t9hdFSwCSJaAvQkFLAK/ryblrPUsC+MJPhzspSwNbL/Uqf+lLAaOI2lkItU8CkXw7FJ2tTwLY6RbovPlPAjX6oaaJuU8DoxgRG25lTwEfPrMOiclPAgJE/vYBiU8CPxJxPmNpSwKrUq7RcSlLAZNeOrjx9UsCH+gJLc2JSwD0C+txrpVLA2tQ7nzK1UsA0+l9/L+ZSwByp5umn1VLAuMQuIdH9UsA+GKIQQ/5SwDQ2LMk4QVPA5n3NsuyrU8BWXdK4pSZUwFXqPRFGZ1TADCkly33MVMCzOpjY8s9UwEYK6cohvFTAYyyUTfOuVMBfJAMeGW9UwIWABHfKV1TANmGMuooyVMD9U0G/iQtUwDtw6N1xxFPACYxTzGNjU8BmTZzLDl5TwMiWKY6yoFPA34UCPAlRU8DyiStAXYlTwDfkBnUXZlPAHIODEcL2UsD8vZ5jrR5TwOYUkk/z01LAurGs2IADU8CdcuqvVaZTwBC+YiW3s1PAFihVf7eTU8DPzIIdastTwHP7ZRmJ3VPAwrC7bJ4lVMC0ZKeM7ApUwBCD28KME1TAYOQ0iUkRVMCKaUGboR9UwAZg5tjTTFTA7vc+MHrOVMBKSJNkTrdUwDWvFo8/oVTAVMnAOyfDVMAtbYqRAelUwANRy0KmylTAAhHdraP/VMCmUGk8C/JUwISGK4ov41TAEbjbm+D9VMBikiAqCwhVwCXI9aCKdFXA2LvGw+1XVcDrzmsWwzNVwMEi9QFI+lTA6fhCymXKVMDW18jIZZ5UwGnhhIwPlFTA8Gq3nrdSVMBavBkXKgdUwNSf+RnS6FPAHFYyJ3DKU8By6HHnqTdUwHXEmkSyK1TAVQoVlPD4U8BSZPraWD1UwLa1SW/W5lPAYJMp3LY3VMB9ovDcLtBUwD00Uj4m/lTAattZxftHVcCtIxVuOnFVwBmzRp5INlXA0OfP0FbzVMCX2g+qeZlUwF4YWDL+h1TAJLLvcY2zVMBLQHq6x69UwMGSyR4DQlTABqEXt7KMVMDtPdK3PXJUwKIfB+PqpFTAQ/CKKm2nVMAa9M8QztNUwJosVUBBA1XAYBt1Gc/DVMCKNTASCXdUwDvQPIZJflTAnzx3VPlpVMDF87VFFJVUwF1qD2rqolTA5At2FaL/VMAVU9eXsZxUwLa/eu8snVTAhQ6wBCh1VMABUOy7qHRUwNX36/ORclTAm4xV1cb6U8BT4IEuIe5TwCY6jNZbolPA6FY6zbyMU8Damz/tJQpUwNiZfIFB2VPA7lfLpnSxU8Dn1AAXnZ9TwNlC/EikjlPAAzv8DoHlU8CGyKbXEelTwGQ8jHOT+1PAYzJ0n3kHVMCQbqVDvwRUwBqRcPVX+FPAwXGfjSnJU8C/Cp5fgXBTwNIPDmILWVPAn0Pzx3EZU8ApKyXisgNTwIEnY9OFPVPAPggUL19vU8Ay/xX1CjlTwDCiTor7H1PAB9O20dlTU8CAh9bzOWdTwE3VlvezdVPAOjDDRc2pU8CNS1rleWdTwFVplxR2O1PAmfh4NWZFU8AsjPDxdyFTwDI67FQPEFPAivV1yp5JU8CY8OCENDtTwBHtLm9RbVPAPKsgfLKDU8CMvywSa3hTwGYodMH3D1TAJHD54UT0U8Cm9uaKEB9UwEqyb4qF/lPAtni5RpAxVMAxtHazg+hTwPWXkl/9FlTA61yDvLRzVMAjTCL4SrBUwEZX1Rcma1TAemx/iHinVMC1f7eTCpBUwNi0DVKyh1TAZsTe1iiSVMCnFkcTt+dUwOb3qq7lJ1XAQmlQ/076VMBG4dqSDrNUwLbxiE52wFTAakkzBCX9VMDbWaCUitxUwJJsiPOJ8FTAoCew55/6VMDfvhes5v9UwBX6O0z0/lTAJB2r5n6WVMAgHPfVdHFUwPH5MGM8d1TAIT3XnXsdVMAeHUkmjyBUwKGEYgfM2FPAGvQz7LzPU8AbneFBzvxTwDfmlsZwUlTAgYo1HW3wU8CVmjAW/cBTwGoHmDhQZFPAXuyulPV9U8BZiHEoqntTwLoKwX8oMVPASFSeeVlhU8BfF8BN7m5TwHCFkctBXlPAIQ+SyAlVU8Bp9pFGVlRTwPy6920IRFPAGAvxPNq5UsBYyvJ/TKNSwOnaQM/uWFLAhemFk7NXUsAVw5yWjutRwF3n3+L1SVLA5Yy8A+wyUsB0Fz/s7ZBSwM7fYa2EqlLAzPAmrou6UsDZkUasdYhSwAiqfgJ9bVLAlrG0M1RFUsB8R6NJ+/dRwI9Rfo+msFHAFY0CojTQUcD8aDQLiZtRwCrJLaE6A1LAJ++pXoaVUcAQwMr6lH9RwPqEEAiWQFHAPLbOz5J9UcDMwZrg7klRwAvTKZy0Q1HABDeWmqY0UcCcQauXdXtRwNAhMfFf/FDACY3qWyMWUcAplLWo0UZRwEZaJRDWGlHAPKiFXKQuUcAPRclp62dRwKHjvGg3RFHAROcCq4pJUcBgyIpwrF9RwEyCIOZpOFHATF7ISt4TUcB+XxhjAQpRwGnzpxZxClHA3wfHQ/PIUMAMAN+TiSVRwHn5bQ8jGlHAVoTYXuvrUMAxXGrRp3dQwNmJB9TOiVDAKtdRWX2yUMD3CbfsUL5QwIkQM6c8LVHAOnGOPjsmUcBgBH7gC6lRwMBQgqZokVHAg0UmFKG+UcByDROi3qtRwOSmG9wfllHAJKr9dYRnUcBxMMjdWltRwB+PiBkkNlHAGelFeyAWUcAOXB2eDL9QwB+40Anu3lDARxMXkTLVUMD+w4ctqbFQwCNt35TDulDA2VeDef+6UMCvhnz1xr5QwAxIWvbBnlDApivCoHx1UMCMp8cmDIVQwL+f0paIAVHAOezJU3G4UMBohfzID95QwIflh+AndlDAu5hvttLNUMDFUEBf7oZQwGOEjqqPh1DASHqWV1hyUMAMlR8OaNZPwFZIgDV6fk/AjsEvcnc3T8CNyatOttZOwO7dgKGXyk7AepoHV7UKT8Ctp2N4VpROwE5MyBKar07AM0qT1TElT8DZZIspKsZPwLsHR1e6v0/AYPFc+63tT8DeGM8rANtPwDobQ2iuEVDA4y+HS81ST8B1p70uWo1OwNEWn+Ba0U7AU9ND/bkHTsAVBmo83VhNwLJUHw+dWU3AUex8KRuZTsB41/Y54mNOwDEm34lKZk7AWNbUXapKTsCv90VZKoBOwJEbL3BwS07Auzj+a9t8TsAm0riayX5OwGLgZ0rHTE/Ayp5smbYfT8AD2rr+g6FOwKNN5Gq7Kk/AbsqirE+MT8DSNYhRP5xPwEDd5Wz7KU/AMiDikj6RTsC9pMrWZF1PwK1xHtoNFk/AXU1nKOoJT8AmkkkW9QxPwBqvwiTkjE7AFECcyWfWTsAEajJ5NEZOwHJh6yqd903Ab0/HMe0KTsBORlLurGRNwGNrMzu4mE3As097iOghTcDfBggeQhhMwFJZzIJu0UvAHYkpAzcoTMCy5LE1AblLwEEjdm0wxkvAR0Wy11WeS8DucL3SYJlLwG39VEeCeEvAhJgzyz4ITMC4LJvCZfRLwMEquAvVj0vA9CahykH7TMBprWjqLCtOwLvQ/xpyRU3AYYMHmxJDTcA2TkTrJsZMwMUe/pNBQU3AS1NEnTrXTMARelJ6gfxLwDi8tAbc5kzAMwSe8MYuTcCQvwr44fNMwECoUFqf5kzApjCxp1F6TMBxZNY3XEZMwGwRbyKZbkzAmW2Gdx6BTMCTmqVUZEJMwDshhg69uEvASkEUfvEqS8AclAfC3BxMwOnbYaB9TkzAyclIgYDsTMCjXHYYr3JNwMSi0+Wtlk3AZJi8cM9pTcDCSCFL7IpNwPF9Oof3hE3AHZ3ZHghoTsCcHCVTw2BOwAVG730e1E3AcoWE1weQTcBWA3mDOF9NwCoobalFIU7APkoPeJ8tTsCAJe40iVVOwKDj6rNDOU3Axqyy0iDITMA4RCWz72hMwF+5i4o3g0vAc76GgjqYS8CfLma6ITFLwCr2BTRotErAuw3LdXy2SsDBab43rmpKwEoik+oneEnAT1yHUrv/ScBwelj3CIpJwM+OTV1FLknAjIYuAx4aScBNszYItNdJwEp3ufoJAUrA6nlZSMMdSsCuZhDWLytIwJ3B2uyMSUjASPvzglszSMAoumrBVbhHwFjHceal90fAxio4k8GHR8BPvuLRrIdHwAN0Myj2zUfAmX4bVbkjSMCGdFHFgo9HwHcf5he0P0jAQCIOXgOpSMDJTQhlu79HwMGMTFRRykbA4CkCOpmoRsDxFR7FYPNFwLSOpYuoXkbAcPSmDDC8RcCcSOxfqldFwD7PoLWt/0XAWiHY9dq8RsDiEmBNkNtGwGYur/EGGUfAnJ4sY7rGRsA9zHwb4NlGwCsPFNfH2kbABAZ6+FmiRsCbs0jvVX1GwLKsLeHedkbAMSYdlEb9RcBa8MPzMzhGwF3gh7JNhUbAXUchN/TdRcBVyFVx7IFFwMX4QbEJNkXAWuVYn8YHRcCSwio4dINFwHrT1pWIJkbAtewb8zoARsBjWW4sSadGwFGOAny/E0fAuqwKxHtOR8AhI2S5wrxGwGTS75XXdkfA1d9u8/cYR8BNzsnbe2pHwE5sObR/D0fAMp0orfpyR8Ap6QwuBJ1GwO9eQkQZ7EfAoCTFbC0GSMC06WUCx+xHwFftxNRtGUjAWNHLp0nmSMBHW+hco95IwON6JwnNjknAZrNkZm8qSsBwoIcbAX1JwCCJimvo6UnAQg11puthScC43aWGOoNJwLdR6w8/CEnAsp6QSDW/SMCrlMtFIw1JwDEHktcdg0jAXIlAupAOScA3dqST6w9IwLZ0jHgXTkfAwECg0yp2R8COgd77yQNIwP5dQ+Q/VUfAlRE6V9fSR8By+5FCFs9HwBIPcGTvuEfAZtX5uaEAR8DWfsmSs/xGwA/DXb9Up0fA3O1Umyw3R8DJSyHH+jVHwF9VngZeLUjAqFTCmikKR8CXipnt6M5GwPE9KppvnEfAuKZ14S6lRsAiXmwU+KJGwEZTExyapkbAaYxKIoAPRsDBO1EfLpVGwJgv+DZcQkbA0Fot8pxARcDalIXa2axFwHbAm2vmZEXABEJbznfWRMDVopvMJT9FwI5H6dLXOETANTD/a8ObQ8DHi27WsgFDwD1LpUA5AEPAXPDpIKVGQ8ABRUlDkFFEwHNQHARhEkTATqDj4clfQ8ADYo/uxZ1CwO0BT2SmrULAettROpXDQsB7BhEX2mxCwJcrMsu1gkLATVpTe7EeQ8D6VpiSY7VCwBDXsiBh20LAu0X7sVlfQsDPsj+S6atCwNN6SPUs3EHAwXsR8R4eQsC5Ax7TtRNCwOcZxz9viULA0fdxuUtwQsD5LSsCJOpCwFeUVPkEG0PAB1jw0wgEQ8D7KY5xi4FCwMqNroyY/0HAZnN+X3mkQcD7PfumZZpBwLrzWnis3kDAoFbWmFR+QMAZKOTdeUlBwPbQMrd+JULA7m/A+FC9Q8DhICilMJpCwBayNADqDEPA5/nfE5yGQsD5TCfMB4JCwG4QjiBEZkLA+ed/LVVGQsC6kgDL+UBCwMdmLxmsw0HA8WOK/BBAQcA+NmCux7ZBwEEeQ2aIlkLAX/ldRn15QcBoWEHUhWZBwClsNV3HnEHA4ZyPys58QcDE6lMuO/9BwG4i6A64hkHATYywE3WtQcDivPhJ7KZAwBF71auEzUDA/VsUacgbQMBQZLbSZpA/wM5bpdy+JEDAARxduumOPsDsSHvEpkJAwFRtVtUjJz/Amn+GBantPsC0tudCH9w+wMSl6ZrnyT3ALJ+16psuPsAKrNjWGRM9wFVd4ayVSjzA3eCkKdbnPMDDUxlZ3/U8wJbIsyGdRD7A1cxTpGh0P8AnzrdzRP47wMQfCbIRKjzAZ2Ib5DPHO8AbvOiOQ8Q7wJ90NMXgOjzAbvQaZMd6PMB/RwJlXMU8wEupoaxn8D3A4Twhu37/PMD/MfWw/SM8wEJ7oSs/UjvABSeh040WOsBumAt3tXw5wDrcY7EB6znAmzdx2cDmOcCa6xvGGkM5wCFAKt1pUTjAwqxPzUCbOcBRtsvXUUw4wG7KYxs/AznANB52BKXwOMDHgdMDyjc3wEcETU+LPDfAEYFaNEi9OMDKbIRVjHA5wDtDU48x6DbAhgZYznSdOMAgWPbJnpg5wNViVfBBizjASkTBEaJVOMAYVxPnM8A3wKLiY1LZRjbAKiztvXaWNsAZxqUBceM3wHp2m/lTmzfAlAjbJbFBOMDCgr4Shd42wLtCVF6nXDfAl2mlCU+ENsCUJR2Vkzk1wNdvnBYA5TXANf2j3ADRNsB2D2hX1241wIfIQEW41TTAhOYFAjvzNcCIvV0BCbE1wJvsGzdmjzXA8/N7Ag/MNcASj4c1Bp83wNe3H//5PzjAWGKZHBhxOcBWLEQrodA5wMgwwVtPDjnAUnCByl4tOMDUasx3o0o4wLLRFl01iTfA/IfdlTkzOMBV9HD8tNU4wO4LUoS7EznA0z6xjyqSOsAxiV2L/WU7wOrdioI4IzrAOkCTouB2OcCzY0wyqHo6wAr1KNvYYTrAs9uiUfeXOcD+kZylWJI5wOQnAVbUTTrApxk/N1H4OcAihpSkuvQ5wEOu/uzrtjrALbwrse0TPMBbY/B/EQc7wKedTn1WrDrAkEoZnQSaOsCd9Q7ILTc7wLzykAJYbDrA/mFh6+aMOsD+j2zs9fw4wJo9MU3pEDfAWSt3hHZqNsCIn9PVL5c2wFZdxgLzBzfAfMZ0aHOeNcBBBAImYIk2wHh7wt+GmzTAZdIbF8EXNMAvm2A5KQo1wJmNTA9vGDTA1ULBDP+XMsD5zOdxADgzwJscstNirjPAX5RonMj/NcDGYJhEw5w2wHjzZhQC1DbAPNXA6JlNNsA4PqYtCSg3wJsPFrzZwzfA5iSfE/TZN8ASu78OpcE4wPHOlFpCijnATm2PZ2DPOMDBi18N54Q6wA5XHzFNczvA/9s+z1LVPMDA+VAHtzg7wDhbr30UaDvAck/EANmTO8CRAPVFSSw8wPFoRMs7MzzA5O4VBWXEO8Cm1/9V0bg6wIaBh9RVUDvApZZpL6D4OsDCPyC/b2c6wIbQ5ZkxlTrA1hRr1l+jPMCa79XVnKo8wIVdQw7MozvAl6mDftOvOsCX54oEr8I4wGPn3p4NPDnAz411EJpqOMC9fXn36bI3wLSG/CL85zjAH1VJmWpIOcCuLAxJ/z03wNpy/CIEwTbAGBrW+os9NcDMiQcwA9Q1wL3Xp4kxUjXAXYSJdPz7NcBAaYpm32k0wPY/oUmYTDTAglvNZ+7GNMDOlnkLSRU2wPqANZ4EujfAyM4yMkx6N8AdSPJ07qs2wKDpOYlTVDfADQpVjP02N8BnWwDc/k42wP/n5D4z2TfAWegSK93tOMCcrxwJFQI5wKicwCgKoDnA4PF87mbqOcBs1vuYyvw5wFmj3zQpPjvAiEIG63eFO8BKVAmSA0A8wA5pncDvUjzA/jPFpa/hO8BM8T0Re6Y9wBY7f+319j7AoFlsy5kCQMDa2XPQYmE/wPaB26UHGz/AYismouPFPsCVzWDBKWs9wA0WLIkWHD/AzHT92mQnPsBh4Y8X4JI9wA4XBYVrtTzAt8uWw4cBPsBFU2ULioA+wBVcaX9LlTzAF5NPPgF2PMBaFabR/ZI7wBfTRLTo/TvAt7gd5HKRPMCPaPulC9c9wK5SXuLkBT/AKdfBeX5IQMAEJZFAvyxAwIUhH0CoUD/ALq/Ah5lqQMDGRxkGFMFAwDvL4Z3odEDA01hgiS5AP8BvkaYIw7A+wByRRtldRj3A6EXW1nkKPcAb/e/Nlek7wH4IfTqjyjvAIi6Bw4K0OsCMf6nCmSc8wJSuXw2HPz3AzbXUxkYLPsD9SW7b4a49wH23F/xBPj3A1O57bLNEP8D86+7n1d0/wME6aUx3KD/AhvoekN8rQMBSQX0rnrdAwCOpbz94IEHAJGfKNTQOQcB8kkjiHMVBwD7VAdmWKkLA87x+NMLQQcCnFF9EgPZBwDFUZp/6Z0LATOZl2TkEQ8Cn5Wlc7h9DwIOE4b3ioUPAQiaqACgtRMDF5RENW+NEwOn9GmAJGEXAzrARpzr0Q8AIELJzLBtDwDHPiUhh20LAq21NFXHdQsBzE8sffT9DwKo8cWE9R0PAq0PudaG7Q8CifnCb/ORDwA0m1ons1kPAP7CZNGOrQ8AjUx6Oi1dDwAR54esKKEPAIpYcHBE4Q8BsVM0p5slDwGEw8PeaBkTA58TaH1ONQ8AzWhzxAARDwJsnvDYaiELAlTfwT8DEQcDOJ0BoVOJBwLqHBRHBiEHATdEJboccQsBISLLyRg9CwFstpIDsiELAvv7KuR84Q8BG44IFiLRCwIvqn4j5mELAxi5UjnR7Q8A8WFXBxjBDwKw9P6/2jUPA53R+mX/hQ8DSiijIGVREwNiB3hAyBUTAYnFaHTWSQ8AkZW9n0G9DwGs6QSutiUPAi0sW1cnPQsAUzzwu9b5CwP/s02uNZULAzvQozRxpQcAjNBBtwIhBwEi11EhB+UHAOLMlsub7QcDqLYPkkwJCwIFryGOzukHAvBnD6NQmQsDCJe2IwYNCwIknyr195ELAe95BpoRoQsA+GbxJiohBwLekxiEJ9EDALqhaJuxOQsC9fcvom1tCwPIgOfQGN0LANV+O0rR5QcA5gJcn5WFAwEH6+miCR0DAocNa3WCRQMADxY2jev4/wMW9qtxTd0DAr47B+Nx+QMBifJkruh5AwCrut51vuEDAMlFL3ZVJP8AS1frOD/E/wFzqfPq9pD/Afs7iVZpLQMBFBRcIB5w/wJDsun9K3D/AYoOOkoPqPcDB9u8CR8o7wLlA+nZYZDrAcxSO/tXeO8BqEmF5cVY8wIr/aHEQEzzA2NQRzR4OO8DtI5lMR206wKU+zQabbjnArg7pKxCxOsBR5lvU+n07wCZvy1lQ3zzA++Qovm4NPsBKQOo9CVg+wFmO79dSjj7AkCT2N7oKQMACOPB6xzpAwIXtdhdX1T/A9LPH7+GwPsB94ObwSy8/wGyiVlo5H0DA3ZyVVvURP8BCKzTXRYY/wPgef/SGRkDAfbKyb93EQMCiYG9RPudAwLpKwYIseEDAHClTSi0lQcCiN5K8G21AwJo2snrzdUHA/ZYZS+grQcCbHjeOXMRBwDeD//zcHUHABu2Q28e7QcCSLZpcPJpBwAVEEQP3eEHA4/NfRA9SQcDYDKAZGr1BwAI5Q8KY8UDAdBlwkUCPQMBesdi7mcxAwI35OtVVN0HAKYIN6lfyQMB7uNDa6StCwPDPHcoobULA8QJW5efIQsC97KpZwlpCwC9wjr6bWkHA4tE4bLi2QMDYymOdIHFBwDJAfd9Z50DASoGxBUzdQMB5PYEEpXpBwETr2UgiYEHA/4kzgz3LQMCSXQXqwU1BwGWdNVzYA0HAZU1+mZsxQcBU2wv9v5JBwAgslhIu40HATw8ZtHQfQsCEpIoB+UFCwGC5dk8aL0LAX59PWePYQsAQG+L5OsJBwO1sqaIwmEHAt7zCXZgDQsDt3/Alc1BCwGzfHuBp4ULAsgA0B9bxQsCmrd4SqYtDwEIdda5t6kLA+d/B44GMQsA4MUOyyZRCwA2rRb+V0EHAl+AaSgSvQcDvXT4mItBAwFDlo82k70DAg8Ww3ULsQMBGlv3m11xAwIu+hWMqREDAJqpIz0dhQMBzrFbetcZAwFoGdcqefUHA3LgeqhvBQMDFU0fOuZ4/wPMovha0Tz/A6EpQLgbIPsDq8F56IQw/wJ1iihv68D7A9vJg9n8IQMAFSUEKPltAwIX6GV9zjj/APAP2e4GQP8AOwhNkwfQ9wNlA0n5Qwj/AKDVHbKXJP8ASkXaF48U+wJRLUOEvBz3AXpfO8J8JPcBMfG+GgBM9wFs4H6FJuj3AthX/wcXVPcCJennJp+w9wDWVzYi7AT/A7I5oLErOPsCApSFqM74/wORgynHiHD/AGtL04aOXP8B+TZopqAc/wBmetlwnrD/A8MHmDn99P8BtJVReQq1AwGPIA8WkJkDAO1eUyhO8P8DKsqELC/Q/wDydSdCxJkDAUgcHv3h8P8Cr4ZFrbCs/wJhnVljMRT3ArP20ZZqjPcD499hq4wU+wN3EXBwVoj3ARyhwqYjLPsCgEKVf2cJAwBs1/lm2NkHA5o5mQj+ZQcCpUfUbFPlBwDima3xMokLA6L6xXdVRQsANk8YxUFdCwAWd3v/yRkLAKFlKJoZGQsDriEbKMehBwKiRkvbNw0HAMbSlho+dQcDWvoxbXclBwHT9dzbumEHADQH7QupiQsAca3dQQMFBwCBLvJYVF0LAs+tNF1v7QcAu73DB7s5BwCmtucJ+bULAOhmQRX0ZQsCQ97RUDj1BwDzr+6DipEDAaDnhVfykQMDeXxm+qU5AwC9SHmUwY0DAly/6hVWPP8BSLpzaviRAwJgGnornNUDAwJdpstWLQMDilClgNapAwAjBjHQVRUDAhFON75PYQMDTR6pg2e9AwERq+U6oSEDAndSW8L18P8Ao+554k74/wH9tGixD0UDA9asLTfWuQMCJV3pswpc/wP5bIZ2gKEDAVUFCJNLPQMB/2FZbax0/wEzu2T+Ivj7AomMcBi9zPsCMitu8mO8+wHDKoYlPDj/ABZKsKi3kP8DNAZ/QvA5AwBXULg6Y7T/A51HRDnjwPsAe8/PLTow/wJ/LszQnOz/ATF+4MezRP8CdEh6dZIk+wG6yVNwFkT7AhlNfojCJPsA95NymqXo+wBkF4IPeKT/AW72uN+gFQMDv4cHLhLI+wGL1H4Uhzj3AnKEjwj34PsAobLPiD1k9wFLWwChbdj3Ad1DIuNkqPcAwGU5ECVw9wLs+Qc8qMTzAC69Q8qkuO8Au6FgpNSA9wN/RmMi8Gz3AGNls82i8PcB7A9tfmDo9wOmZaxTYjDzAcAnT490CPMAYfD/XiF06wNycpIlNTjzAT+HXIqMRPMC6F0r9MR87wG1ok5FI6zrAuZ4BRsJTO8BHLOgqRYE7wD8c/btIrDvAJLJg+m9sO8AG9byLSrE7wDqyYejWBj3A7v5UWDPoPMBp+9K4I/o6wHSUW1rrNj3Ac0q55oxaPsAyPL9wz1I+wPXfzY7KHj7ATza7HPR7PsD1V1Rw19s/wOr+1zriVUDAJ41l0SdAQcCJx9RFOMVAwA57vcB7zUDApwYrd4qqQMAMI8v5zNNAwOnA2VRFLUHAngYlRVmrQcCusiBrp9NBwHq5YZpUIkLAnHXk/NsWQsB1mioKczNBwAFFLgN2EkHA0coPQFeuQcCn7DjxEwZCwF+YzyME8ELAt1P+88NUQ8AaV5uxSztDwDKX2jcOR0PA8bWAkg38QsDYL37DovxDwLBWFb6SKkTAtyJYG2z1Q8CMboKWs5ZDwO4W7IHgsUTAxsiapR1ARcD86cAVQqNFwMKwKxIyXkXAuRsNLQvXRcA23zs3/uhFwD6kszBjc0bAe/qUFQ/ERsCsA1EOSd5FwBmSrLqGx0bA2Mn/MSSZRsDArKuJ2CVHwMnVP7ntEkfATNmH1jkIR8Cz0ZDdT8lGwAMc22YVaUfAURXf4dVZR8AoyYxNhvhHwBMFeZ5wNkjARyx/xAchSMAnW9B+hRVIwHgLcIYBmEfAZAGbHon2RsBlFe+cbvhGwCmJvWLcDEfAgdevp75jR8C4qCEAuxJHwK5Ews3uZ0fA5mftHAGoR8DGMLZsTG5HwGjFEYPXrUfAiFkW7e8uR8Dtf6hpR5dGwGDfUhXpokXAx2nuNRJDRcDWZJb+a3FEwPVqkay350PAkOgKokEuRMBkViWGEwNFwC37oAHzfkXAOOdzwirqRcA8Gn2bbiJGwHg5P4DcwkbAnLbF6ABvRsDW1fNcIM9FwBz7eKl5lkbA7nneV/GdRsBDnjMwtBBHwIcdwtlt9UbASYINLoc3SMCI9fxCMRRIwCMlmmpvCkjAQdGjkmlASMDQARJlxTdIwLcdezTS5UfAlwCRwT2BR8DomJ4z4VZHwFvKnjQ4Y0fA/KNufcFISMB807BVGNhIwGr4NMZ8nUjAsv5EoxMdScAccHqUnf1JwL8sfiqUEUrAojCwbhbRScC2K6iPMJxJwDzL0yyHyEnAns1iBraOScCe9aO8XwRKwHHpUg0+W0rABXl7oelnScC79CbKoLlIwLpQbPN8LEnAW8Q1qDqDScCxhaA6AChJwDU4oulbqEjA4S1ifjggSMC6hWBMP+tHwJMFjbFBAkjA7+l8uEf0R8AviIaW8CBIwERIqrlB20jAZRPZmXlHScBY0K1iftZJwMNckAtr8EnAjYiGuOQCSsB1UEnWPUdKwFstdVl6IkrAffGEA9r+ScBL2E9FOJVJwAAeFC+d/EnADkaM2duhScBjtbmyMBNKwLk8iB/TM0rAlSb04ilwSsAsc2QVbilKwMRetc336knA/lR2ZIJMSsC4n2SBbDZLwAoNgDwbT0vA0qK7pWiFS8AftEeXKtJLwFRrV/ZMuEzA5sDWzqzDTMBZg/7Pq35MwP6qVjWHNEzA6bYTPQ5ETMBtC71byTBLwHlwRI5MAkvA1IxuG7pFS8BSWKH9qihLwCeJKLmWS0vANpOG018NTMBkhUatq/FMwKku/L4Y1kzAEGtjV3MXTcACXJ0q6oBMwGnywHdMVUzA9HsU+rjoTMC3t3atKxpNwCbj0u2mB03Ai/XnQBOKTcDP0J8/WlJNwEJsDJaqOE3A/WcLF+dcTcD7CuWnVCtOwPzNhYott03AksgtGfVJTcAfQJaLP05NwPSjOS1+nk3A0F68/cSgTcC4q6kObvhMwIYwMunjsk3AqC0T0Ld4TcBPHmz6FDpNwNKLqblHKU3AECjJWw70S8Ci7SPrAl1MwPWle74Tw0zAO8kUvdG2TMAXS0Ks95NMwPBHc+LNA03ACpTu8eUQTMD3BuBrKWVMwLa9158XNUzAaBbAPEcRTMAJ4v/22cxLwFEC/TWKK0vA8n00jv6LS8AOzI0YknZLwP0HAtFuzUvAsF0Stg0FS8A8u96rKJFKwDlqEInQGUvAtlk+gVw/S8DFDeJLzPZKwLY5hEGVy0rAIgQkQ+e+SsDQEqiZ/NZKwGEdC/SXrkrAAXt2F7+QSsCbgLIqL/hJwBbq1534CUvAIwG4/YKOS8CLsUg6FxJLwEXPG7Y0JUvA4ZFlg5mMSsAMF7Zu6flKwFkltETIxErA6NWy1VvcSsAdoXdeY6xKwMtlQZl7JErAHKW52OBKSsD94Jo73BBLwJ7KPxljwErAkADMLVdgS8CtfqmVeo5LwDDN/LZ8S0vAXCeyXsh/S8ChM3oYxV1LwA6WxNFBzErAEUKW4BkmSsB/113rY/NIwJA14wkt+0jAhHzf8fbYScAOyy1MpiRKwMDMbvZT60rAtgt72V20S8DvXhruog1MwKFawt3A0UvA3F8Nd0mVS8DF8mfUyjNLwJ06waW20ErANv/SJux2SsC2AFgbaYtKwDII9aJJw0rAqihGDsXgSsB7nuLpQrNKwJvmsEVWKkvAF2vMTHqvS8CxtBqL41VKwPf41ai7zUnA1yOoHao0SsAiyCYgThpKwNMAEEpC5krAvF2BGH3USsD8gdtIGVpKwAlQujp3fUrAsRczrN/+SsCw9lHgXwxKwHmMmpPODkrAFqqsUtDmScA/WZNgzyVKwFYjb4+q+EnAvPTOWbSwSsCWT1XtOoVKwD5i0uDpHErA43nrIUCaScClExArTktKwLvb5Fa9ckrAFxLAhBfTSsDXkV4Tx+xKwByeMsmXf0rAqoqNzEahScAklFLog+ZJwOA8wq2GpEnAW7tEg2hhScC/6BFkaMFJwDQvQOClVUnAHZZS99XNScChJc6asJpKwBolPn71rUrArVsW9fl9SsDonPEM+jxKwKtYNzOgZUrAYcGzxfs8SsBYRqkQDLlKwHuSojlS4UrA8mitrtzFSsCawSLcNSRLwGSG1hwAt0vAKc+IY8DUS8AJyz7q0IlLwMRuo6wSw0vA1gVopEYSS8A0LDj4CjNLwDSgWAsxi0vAEVby0OJ7S8CInDCcu1VMwPhiNv0XgEzAmo0Ka/vxTcBhNl7aRCFOwK5KNETDTE7AZDkNZUYSTsD4ye6pb61NwByvwWLY2U3AF2BXQ4n7TcDKampnKzZNwH27onT23k3Ajnl29A4fTcAIyr3a5PRMwE+VmpDO8kvA382uX4a6S8D/qSFVBadLwHK0p61gykvAdxvk7dGwS8AhZEpOlfBKwADXZwafbEvAFqWQo2MMS8DB0urOGpZLwEAZqx38xkvA42CyrlzwSsB/7kKiHstKwER4DP8s3UrAk4ACkoS2SsAkJRcA3B5LwAMqSuE6bkrAQFLLOOa2ScAJhqPqzD1JwEd0LbLQMUnAxgPaxv+tScAzhbhsk1JKwN04gmFTiErAF9/1FzjmSsAscSRpmv1KwE5j721gv0rA7/CGsh4PSsBbkOPTLSZKwBlT6jUctknA7UFMQCpPScD85YiXoVhJwJWRizITgUnAmj3+40aBScAU7bkrwXVJwPxcpCwmvknAwggrwwERScB83HqnZj9IwOe+jTWKEEjAH6sO8coLSMCI+dKfmRNIwAbZkEtjW0fACqEROcxXR8CEIM1TFBNIwG+HTB1Z/EjAHkAPZBXiSMCshGV5vB9JwNKUhrOMYEnAfJifBKv9SMC4++Fta4VIwGRT8tVdEkjAZbIB2mx9SMBfHBH6Ci1IwCYgq+rTrEfA5ltS2HA/SMCg9qmvtuNHwE+s5dArN0fAZ+p8sU38RsBafbNmYRtHwFUvCE2owkbA2iuK3BYrRsCay3NAhWdHwPBhK2XTgkfAKtQGb3kwSMDAujXEUQ1IwDKRndiLO0fA0i9QgX3XR8A1/eG7b95HwLXlv9tLsUfAwcqq0kMzSMBfuUtn3DNJwLaa/94F1knAIVmmIsVMSsD5jxsQIY1KwI01YBMBoErAOejOIAshS8B6UFA6cfxKwEP0LnG0dEvAtJZBvpz2SsBYP+JrsSFLwKmtFn16BkvAYpUXGvEPS8BfVL5Pc/dKwKhu21dMiUrAzbLYPd/LSsDj5fS8yIZKwOC4VA5iy0rAyqK2rbExS8BeRpNmyOBKwIycFIU3Y0vAXlbyhZbLS8D4Iw5vTyVNwOQSIdT/rE3ArTe3HBWGTcBbSvCWbJNNwEUnKR59/UzA2VF84xuiTMAWLS9H1Y5MwPJShhnSr0zAHDYjAld6TMDT3+eBPqVMwEgtb2gtbkzAO01KaYNQTMA3GI82N99MwPrYzrgCe03AbCYNWQckTcDGQUZicwtNwIkVevNCDE7AJiCoIgwpTsCKYkk0vslOwKTGEWQH6U3A+V0rVHCdTcCmpSoswsNNwDQSTMwZK03ARF8qjGxrTcAszsnc3aNMwI7QxDqS70zAqNHDC+I8TcB0dDN6UQJOwO9yPSDsgU7AEJvOlW1WTsCqVM5f5rNOwElWAhYalk7AvciYUMC2TsBcMsBrSJpOwCUila6DZk/Ah1eVBTqzT8BAat2YjhNQwD/Pv52PYVDAYyNBiWjDUMBQVrjfg0ZQwCu2wgugJlDAHoUuS8wRUMCWmPnoE7pPwMh0aDH4+E/AxnnEhSMQUMDQzrguJbBPwPtJWjRLNU/AyRdiIri8TsARVx3wd3hOwPeSeUSQSU/A04yWaraqT8C+WfzKoUFQwAYNlqpWRFDAJ9DRKN9WUMDZCxwfqxRQwCnbLqUxOlDASzwtrNbvT8AwnGxOb25QwO5RaHn0e1DAU9xQNQLFUMDz/aeIoT1RwBV4JS4b11DA2Ji7c292UMA0wQK2RB9QwBuxzsTxRU/AJlSDFferT8C6YQ6k6Z1OwMr8aSJiR07A017fziZlTsCh3x4CVutOwEg57CyHaU/AmQQehgdqT8CICKD3MwxPwBgtY5qy+U7AL9PJ/xwfT8Dy29lrzj1OwEGxky7ztU7Adx/5p+I+T8DnXZ1MAI5PwIZeRGlnGk/A/RS2b6FTTsArXVbKreVNwKzNtMdFVE3AZUgH2ALwTcAZFlTpnlxNwC7xpfIgQE3A0py+zNRrTcDrGrbDiBJOwGF7W/Wlj07AKjTemENET8Dwp51MJi1PwJh+/KiqWE/A0u31E1TmTsBJQFNjc/ZOwN/NKdSXZE/AlzYRqolvT8BI/DeEOEdPwObaQ8WLwE/ALVFRMhQ2UMDrk1GgDRJQwAR8p6CXQFDA3ODpkbtmUMA7W6XuHK9QwL6/asQcYVDAGKgixcQdUMBz5VBLeWZQwE5AVldMW1DA//30L2SzUMDPFlBfJYJQwJue0k/Ks1DA3y/pmOMGUcBHtvMO1iVRwJRdL/YSylDAoZrS/DrRUMB6imcz1OhQwF35IZbGmVDAmv0LipF0UMDTD5K0NfNPwH7tuhByWFDAhiZ3cf+sUMAqz/MYb+xQwO0U+qmM61DAeWo2vCQRUcA0dYCCP21RwIj/yy16yVHAUEyX3ue7UcBlOIKgoeNRwFvgupF+e1HAGAWez852UcC8wOYqda9RwMIekdSQ21HAZlcXgwl5UcDVmhRir55RwEAVnfxJwlHAhVyi4AX2UcDiDR2fWhNSwNlgQ0Lgv1HAVvt3Wsr8UcBusooK/R1SwP4tMc5RZ1LALCaAo05mUsBDOCIgS5hSwMr4oyp121LAeROCtFYVU8AZ3JV9bs9SwHOfdnmYFVPAljjvV6EaU8Dox+m4YmRTwKfpq3P8elPAYhJUI099U8AXvCjJloZTwIpL+2Ti01PAi++s7xHhU8DGnHH96qNTwMmzUidXj1PAIT/mQjv1U8Bizm6vXYxTwNsAx4tU01PAgoAhLuhFU8CL+xwiSlZTwOS9YfeyYFPAK5FB1AyLU8B2ri5Jfd1TwCZCiBKb8FPAoxekW+a/U8DYa2VAzTVTwL8GpKn72VLAwbvDxIWqUsDHcEZRZXZSwCOy1F6KLFLAfV1UIc4hUsBdds4dZHZSwAbGcOetjFLADTExYgF1UsBIni/ewm9SwL5oEyhDY1LARsAInrp8UsBJq8ULsVZSwPC6Q1leYFLAHcS2LOJjUsDwIkY7yklSwPYPiKCvaFLAu5yqEYCiUsD4LxNKJoFSwLnQKH7gb1LAafuPX9hIUsCxSVZkc7RSwIbGAc6DxVLA1WHKH8nKUsDBQBHcik9TwHXSAkvcPFPAljZ50bVIU8DxE8/j3OBSwAx3yYK59FLAuxfCWPctU8BaJlZ0XRRTwGMTvA5grVLA9N0rtayhUsDQxDq1/tBSwOihkdDT/VLAq58RSW0uU8CSE6OtsExTwFlMDaENHFPAHERTU/+EU8CbYNxiRgpTwPGSh+GhIVPAhybANW0SU8Ay2O8eo1JTwM157ds8a1PAXtCyvaK9U8ASOQQFIqRTwLlAlhyw1FPA4YQGJmnuU8DERSiToRdUwNinoympPVTAAhUTlJuHVMAsffCjjK9UwEo6VX6MvVTAx+E7EXynVMCDB2lFmJRUwERc/atI1lTA/opj7+67VMCAfnK5zchUwE/rbyx1olTAa1u9w126VMDXyh+vo8dUwN7vXPWIzVTAGoYxB9ACVcDS3y1rBgdVwGS2FweCnlTALAP4vUKKVMBcb/JVcxFVwEGeqiumVVXAvQQ7dfV8VcCkq/MvYCFVwNv2pRKsdFXAjHYyhhZaVcD3Az3s+0BVwBMY5+ZCiVXAgFBGNgSUVcCbJMqQJPNVwALV4kkm11XAzYqY6i0XVsDYxHal62VWwNMRdJSzsVbAB3d5KGeCVsDROsPwjipWwOK+R7714FXAZtxw8Yu8VcATyLKUCFJVwB6p99GkPlXA3B4fQ/JNVcALTLc/fC5VwHsFTjgJjVXABeQsXpLLVcDoEdGwAJZVwAOg4bgtnFXAly3glrTqVMCVeC1ivcZUwLkcLdV1V1TAoTCjviqfVMBjLC0U5JRUwN5XBYJWjVTALNoT8FbNVMAkHncQleVUwKwc2hro5lTAk7vZp5YAVcB7d3w/H91UwNCsmDcy/lTA8ShbbZD5VMC+bk1RketUwIl4duWX1lTARVPvfe/tVMCEc0v0guNUwD+notWvwFTAEbXNrkUXVcB2hWIC6eRUwN4UKk3Ma1TAx8BiSh6CVMBZLXmrRehTwO2DU/jljlPAcBEAEKqVU8DKkuFsWrFTwPLmWDnYEVTAiOUUCLcjVMCky7dkfflTwJQ28Lb8+FPAitspzUSlU8BKga5CwXFTwKz2f4v1r1PADJum5SIbVMCuxvr4skhUwAlx6sdw61PADRqpdL7aU8BtSfqoIjlUwIUbZan2KFTAaKjYMlcpVMBdlnoL915UwC7VSGH6QFTAtzW7w09WVMAdpXx5YxpUwKZT9KQIA1TAOz7iH6M7VMD3yM/Y/RJUwFKXcf4NSlTAJRMtJUXAVMBnwkRPdKtUwBWioHDM6lTASn89H658VcCXa0JmFqRVwHXpCyIexFXAoGOrhi/AVcAEJ4rZHWlVwCZZz4P/ZFXAO0drykveVMDvwniez+5UwD7XGSLLF1XAvBS61BxOVcAnlGdpeSVVwAxlQC1U/lTAsGgNauRKVcA4ghw0yCBVwHnPqQwnSlXAqLGcDyFmVcDzx15j1JdVwOJTIhYTulXAhwCm+szbVcDjLzQ2FtJVwMw8dkSdX1XABh0N8uckVcAKEcHGeb9UwDdur4QislTAdK+B1dadVMDJjlFuEJVUwEoB1DfouFTAiKiJPkbHVMBEwCvfwX1UwFbTld7ZtlTAaV0d1GgQVcCzCtqex2hVwC5qI2KqelXAAu0CY9haVcCmkUWY5BNVwPculNezHVXA8ekbMQkwVcCDP7e4ugdVwCYCVbrWgFXAVCdgARbaVcDiai4zdPNVwJbTNdOaKVbAP1/IIItOVsAIPEeRRPNVwPLkZuEV5VXAQHF1bW53VsD7aFJ3OGpWwCLHgcctSVbAWt1pWPNEVsCjDFX2UP1VwECuWh8UPVbA7UBLjiwxVsDUdFeMYYJWwLEusEJSj1bAoHTg3dGLVsDLpMdlinpWwP4OU36Cn1bAgnDkRbSFVsBOhJTzl5dWwA7/fSkPgFbAzKwlyX3AVsDbgXD7apxWwEORs9jNr1bA2lvxUDvOVsCw6zr8FQ1XwE1Fd0tKPFfA5aGHUPURV8Dw52ilGPNWwNhGhxNJpVbAXt4dzV/uVsCLCo17Xa5WwHCnWtjuu1bAkmmb9zSqVsA7pfndvvNVwEs2GmlJD1bAnZ0GMPYjVsD5dBQfXmFWwPrTs7zwElfAr0TwqI//VsCe3+2OAelWwDgRy15A8lbAsJF7Jdo8V8AvI78spQJXwCltdt94PVfAm/o5vhVBV8DjcQv/5WFXwFTJ/700X1fAKvTFTVl1V8BqvpzkDWxXwIlrrg/jfFfAwDqzrxp9V8CP6GGIyqRXwBiegejuOVfAiADEqeovV8DCUsa0zVdXwGtWrCfWWlfAqYM3i1QyV8DujaITOlRXwE50lmQU3lbAIw1Wbr/8VsBGzBySTtdWwB3BFf8HDVfAZn3wKTkYV8CXBHriHh5XwB+M0neAKFfAmLEjNu4lV8BhAvTZpA5XwDKWH2olvFbATrK6jW+xVsDvjYG8qPVWwMDUbxUDxVbAdn/oWX/nVsCgtKjhZZ5WwDpZiJXYalbAMqgbBVw7VsAxjvMU+zxWwEM2UgZCdVbAQh3v+f4hVsAjX6fF9JZWwAJuj7B0dlbAdcfa4aq2VsBD3ojO/NpWwDZ4ZHoIx1bAsScO37q3VsDhyUNywq1WwFEZ77hfjlbA4jGziCqjVsDXsna2o7BWwKC+Tn4ZBFfAaeJEC24gV8Ao071RxMhWwG18u8I+m1bAyiALNoyJVsDPFzROO2tWwKPghGEfnVbAfMKLr9bvVsBuFyOW32xXwI2lXJAdzlfArXypaEnsV8BKXIQNpstXwIb7lYhCmVfAbVWTZph0V8C05FP3h3RXwD0yLkk+GFfAV4EgVDqRVsCMoZxWyWpWwD2D2N6tMlbA6oilZDfpVcAZMd1SwURWwOQVW+SWI1bAzzY2ZxjTVcDr1l5+f/BVwNDfMBPUvlXAOAV+Em/XVcBNsLAEp9xVwODyb82WIFbAw1atlr0kVsBEG/LqmuJVwHn3r0ZX21XAgil9WztkVsDgjRHR31pWwOM63ZZMk1bANyutvWsTV8ClJxRiPA5XwDJYMgbc1VbAUEyr1m2ZVsDg2FFS6S1WwIPevpjQNlbAhMOmWWMeVsB7xvIQxwRWwPXea0+yxFXAKGi2JZ2VVcAV87sWulVVwMhQW2fKZVXAzAuuRy2GVcArjcsuXrdVwGoVUMoWylXAM2SQQM5WVcCefCobKY9VwGNL7uy4OFXA5Ye27Xv3VMCXYGfXtXNUwBjLUY41DlXAe3xukZQVVcCOS8ks3fhUwNlNZOtgAFXAWKtZMnmIVMC0syHFCFtUwH5pWKWvAVTA66cc8vL6U8BC8REk2RRUwGJ30hMRMVTAncaRhWrVU8AMWHBU4ldTwOxhfnsbxVPASxxtvtjLU8A22SXHepZTwPn/IIxcpFPAAeojK4jSU8DVOCs6v6VTwFzoxxD1XFPAJyJ2kaM6U8CvogoGvOZSwJdiAsTxblLAiPmbC3L5UcCmAqiVOR9SwE9VASxMElLAsH4GZi+hUcCbC8cAlYdRwGlvWXoVtFHAvtcrU9uAUcAKu6OukjpRwErlFc6wd1HAOKl9uf6uUcC6lxIHedJRwMJsoUwFg1HAGxpo1oHlUcCZNkdRR0RSwCAghKMQ71HAaHDFu1LsUcAc/vapzzFSwLEXMHgxU1LAxxnjX+RRUsASNeWIOzVSwNyS+Y6PB1LAeM10huQQUsBTNCxywepRwD95KH7k4lHA09DL+LBlUcBUMySKfy1RwMxGsP3UbVHAdxE0ix1qUcC3xhh7SilRwIpzgX7bxlDAbl8P+sAtUcAHqV+k5/dQwIltJSJnzVDAEAF8GFiGUMB8JZsD0ixRwCsEywWyAVHA/TgLlpmTUMDMjddmhnJQwD8T0lRCFFDAphP+R/pQUMCIZtx8kGNQwFDC934wZVDAJ9YlnZxbUMDm0PQumRtQwBxbhFuq90/AgaJ/dIUvUMA0SBvTbbNQwGVKDVwX7lDAnyiLvKShUMD/4dD/oTZQwEVjR4t5pE/As7+f6nINUMCYGI5VBzlPwP2UdGf2KU/Al+c2C7FDT8CZQD0aWWJPwJWW21CRkE/ApInJwMJoT8CA1JJ4VpxOwI1MdI3pgk7AFQyTh5r8TsDg+ivpiRBPwA4LujayY07ArGeElmEYTsC39f8zPy5OwDYfpfhkyk3A6Gz4ictATsDUd8w7zz5OwPQpYOOTiU7A0w4QIk3mTsCvp8X7AYlOwMiTuuJz7U7AW0fI5hipTsC1vh4G8ONOwKhOIMdgoE7ANOfcVsazTsAS+Vr7j2JOwFFwsX6DHk7AwpUTW3B4TsAJZkjurF9OwIs5qhUUE07A1FFI9josTsBJViGVBrlOwAMHx049Qk/Ao4xkL0QPUMDpLByS0SVQwFEnl3quxU/AVnmNxP+WT8AGFpqMGupPwDNbe2lSgFDA8hc+/L30UMDBw+Yg3fpQwITBurtSGFHAM2qZg9brUMDMKDN/JS9RwFphEEcY4lDA6DRWBDx+UMCyNhOIl15QwIeA+ollVFDAEpusXWFHUMDUPbvi/xlQwDh11EJFIVDAr8K09RIwUMCuT4emfRNQwCmN3qz+l1DAvkxtIjK7UMAh6/HIud9QwJQPs1Vb41DAogfMjtRQUcDieMx0X3xRwNPuhO2/p1HApDHu9YZeUcDhJ1XeAhtRwNvKpmbCeFHAoImdKb20UcB9BW6NWbVRwDmP/Gt/slHA1GrNtsGTUcCO8A3JsmFRwCfoxQJZUFHA+209B4xlUcD2LvkZwadRwB4KpInul1HAkifi0taDUcC+bXgvP71RwDb/9gJ//lHAMOw5uelHUsBmu3oC5vdRwBVQAFUR61HAXa2NoBC+UcDD24VHynNRwN9nRZZqnFHAf65KosC7UcBPHgOtrPNRwJVqdoCFOFLAEI1BoF3eUcCFEOmHHzBSwARs0Pa2L1LAnzmJbwaEUsBCKr6BwypSwNuYpx1Y4lHAGkRdtt6aUcBpRxg6eU1RwB9w/BywpFHA2RuHMrUAUcB938wIy/lQwFsz24UOOlHARNOAbO6PUcCgBT7caeZRwMsZWTDYqFHACV6P/rbVUcBa0kFOv89RwKcv++Lw01HAnK/VElmOUcC+DgrYmapRwOwCOouvyVHAp1IP87vyUcBYjWHEdDZSwEb3WC2uo1LAF4+f/nDEUsBgSPWJZGxSwKFSg/D2VlLAxMHLR9p8UsBXlr5u8BhSwKZlwACIlVHAbs0tGEbzUcC0z99qYcRRwJBr/mWjElLAiq1XqwPVUcBvfjT5ptVRwESyG1qIzVHAZRpCkhKPUcDvRlaM9n5RwMMnOCSUrlHAtRjGh8oRUcCx890Ynf5QwApxAnOu5VDAZ2BcPXQ4UcAfN9sfXjpRwCL4HQBTXFHAknzOGGMeUcCqq0sPNuJQwG6U0q6bG1DA8OEf1petUMCN46XVLnJQwKkIxMX2fVDAe1W8M7dEUMCpenVsRAtQwCiOU+SB1U/A+93pdvXrTsBkdVXBjC5OwLnn3HF2rE7AsGYFaMVQTsB5/wc8TcVOwJtHkeLbHU/AeuVv34PDTsAJdZ3UgCpPwP9CQFQdZk/AlY9oOb+dTsDSc+1/fsZOwJxiBb5ox07AL4XKNZZOT8D/2Xg/8ltPwAvBaeXawk/A/0u0vyQ3UMDDko1GXPlPwH8xvRrw3k/AvElG8tV7T8APoNB+ttxOwBmVcfOdjE7A8IY/AZLxTsAkGrOKZdpOwOYBd+Rl007AW4/h3KTdT8CA8RFnafBPwDF6sYIDuk/AhnU6k5IuUMAzdLTxmGhQwLmOjG1Tu1DA0+acBC/6UMBSfINRKIBRwLJgI7CHk1HA7PK0uoFlUcDo63WQBgJRwMKOzmILG1HAlCNOv7U1UcDsFfGXYWpRwFmmhSdotFHAAUnwWyF/UcC7/CpRY+dRwGPsoSZa4FHATXXik1WFUcC2u3ap4aZRwHr4LKxmqlHAS+vNclIeUsBSbio+kWlSwGcW1laBKlLAANnPbmhaUsDbwATV+TNSwLvfEIFN0lHARFonhOiGUcCjbow9lzhRwMjs9aQQOlHA15KPbMB1UcDk8/Zi3RNRwIG3W4WPTlHAodQxiGYiUcBsZkJcTPlQwK3Q/mQkj1DATUDxuG6iUMCKp8oT0MRQwMTCxp0PF1HAhifmqy/PUcCuaV7bxOdRwLpoKVNpXVLAS7+9OLtaUsAPlZzKshFSwIp7KP7Fp1HAkLnxRoNNUcB4fQtHepxRwDAC9nQKaVHAjyA/c2TeUcD0aev/jB1SwByXxZk9bVHA0JOHgkNmUcAZ4DcVnXtRwN3vM1j1cFHAVTSQINzRUcAM8tCaIvRRwG9hjFOtD1LAAYpL9/AcUsB4W3HZrRtSwKP/9QquxlHAgYJ8hNbyUcC/ieqkOTdSwArBTcGKHVLAJWJQ1+rhUcBsmzdFY81RwKiBuGvmwFHA5EiIkpENUsDkOSZ1//9RwEpgV8cQvVHA1jS1GMOjUcAVYQ+CxXVRwOTBG3xh1FHAq2gIv9qwUcD3bxoYLshRwOvteUhA2lHA+jXmoFjSUcBh8zJ29OdRwCOUbrFuNVLADhuZzUMCUsD3Dfnt5fxRwPUAnfC9LVLAZjWYdi03UsA23hsikxFSwDblVHEa/FHAoeqq1QItUsADlK0MWzVSwPqZDsX9HFLArGqcv4hZUsDekLTfkYBSwBuhheW2hVLAgBQFrb4qUsAL21u3aBhSwHZsvPfEHlLAbbvtoDa1UcDzDuoc1QBSwBPSdldhxFHAMoJ0DrBuUcAhRw5Ya/FQwHTyQIWrxFDA59VrN7qJUMB0J9YWRZ1QwM+cM4unkVDAWP3vBt5uUMC+8wnBj1JQwGGyfDnNhlDA3XlB0f+eUMDcqHDPvPVQwCdfWYonOVHAXkhvLsBVUcAxr4wPA4hRwEHDBRGgZ1HAIjnWB+ouUcBNeg7EVQhRwNhZqMxRNlHAkPYlut1FUcBcPykwLnRRwDAI4MET5FDAnkfpLiLBUMC4JIdLyKNQwGFIkJscVFDAEgoym4ZKUMA/8FPXYyhQwFNSrXyOsFDAum8zgz68UMBUodIlvX9QwPpcckJYsVDA8uZCbezQUMB1cE5WxOdQwBYE6Bq/wFDAhm5G4C9SUMCSkV9gz25QwBjrhw0ebVDADSqQNOOXUMDGEhwmO4FQwAPbkcWF6VDAbatXvlLbUMB2dRcm/sRQwFgR+Of3iVDA0/F1v3WeUMBgzFg1VnpQwHZpeNBPmFDAF/2rlB7bUMD+21H+O6BQwIaGnKe3wFDARXOr54aqUMBasnYF/05QwMkmfs8wQFDAFbHWN6pnUMBWuEYxqYFQwEEOjQVagVDAe4R6AhorUMD79ywzqz5QwPJM1FLAW1DAQhOS79xyUMBrvFCZtI5QwDheBJorTFDA/nMdFmDPT8COaFbIkdpPwO9MgB+cPU/AHPrJW1A/T8DDVLcwxb5PwI5MqzQ5Fk/AUg+4vCAsT8APJZBr7jNPwJiZkjeTOU/AjBgbtZKxTsASPoo/fcBOwIfE7MUeGE7A7DaTCeCwTsBZcfeKAZ1OwCdX6gFE4U7Aa4TgDbTiTsAM5O7/CCpPwMXg9XdK9E7A7vxEXmltT8C1sYmOmG1PwB6GWyUF9U7AjQy5xNp9T8CagPUsALRPwEsxxWFBUU/ADwEjsLkCUMDQ+3QhHjFQwDHe6C1uBlDApprRl13YT8ADrZmkZGBQwOO1X9Dmj1DAbq5jyolfUMBvA/tYqAZQwEdqtxuj7E/A3Zh6klwLUMC/Nh6va1pQwHk28t1diVDAYyVuChApUMA2t82K45NPwK3CMPmQLFDA8yBdCVxkUMDZ/SdNgj5QwKCWH1NxqVDAPIO7czXRUMBE+mQkXQZRwE1t/af9a1HAOqCsdjGCUcDWNlZvNEJRwBF4VXmB7lDAipFrj5TZUMBbhtT/hrlQwFefkr6g7lDAOqs32w74UMBW/C3gnQ1RwDYlHtga9FDALLOyES3QUMB19/JYAetQwGQAsGkAjFDAJaQlb2V9UMCJkm1fQW5QwF6JjBCduFDAc9OAilMRUcCds+irLi9RwGj0rQPQ8FDA1ijBnijEUMCF32Dd8wZRwK3Y6cVt0VDAYsuugNTnUMDVqFzQTwJRwN5S/Fppm1DAe0EEV6DmUMBk4NOSKKhQwGNGWHPGjlDA3shhbVmFUMDaM08t1HxQwMp/g0EilVDAu9lNunXzUMBTTqzw+PdQwOmBvjmtBlHAgegkiYB7UcDJrwWmkGpRwFcGZ7fkPlHAL/WHn8tIUcDWhWxJmw1RwMzXH6P611DASS1Ixyz6UMBQ0m8Y/thQwPIGUlpRd1DAxZr01jcRUMCKdI0UHw9QwNKgKEwJU0/ANfUvNge3T8B19zJe2H5PwBjqM1g9vk/Aa9R0CNXCTsAZETD+hUVOwDvBbfIVXU/AdD+S759FT8CnpyjjxA5PwAbWWSTSw07Aeop0LXnITsCEIINHohZPwDFjYiteeU/AkPRwZmmWT8AGT0ZxYuROwDwKPCZM+07Af8Gv8ZsuTsA/nweiZRBOwJFuwQwtAU7APWmH5KUwTsA+HYbLbyVOwN+ierMi2U3A0Z9Rhm7tTcBAcU4oMkBOwF82XsIa2k3A3UMVu/1uTsC8SrG7NM9NwLu6CBoLv03AiNn7bWcsTsByw1DowIRNwAGzeP/hrE3A0h8QGemDTcB8UfR/gFhNwEsLabp4ak7AwegMmSgZTsCKo9hY3EdNwANJ92moAU3ABv79Ae7vTMCgb9RHK4VMwBsYiqSesEzAer/C+t9XTMCsBYtUh1hMwMOfpT/gcEzAt7vvwYC9TMCBksqYfgNMwECvxCCTvEvAnhXhkZodS8DB9JPitDhLwFp94JJ88ErAA81m0OCaSsDKDRlHvJZKwA9QEFEqd0rAPY7Jwa67SsAhrZfboZtKwL2QgoGzHkrAoLFPmrMISsB3MHFBWfVJwGtZiT8r20nAYqZtmI5iSsBLOu6z/ilKwObTtX71OErAspaFZbfOScCQnzEKSaVJwJRSOaygzEjAgqZ23nk6ScDVYkAAoNxIwKmGPlTGsEjABM9IzCyqScAjZjb2gG1JwAfAm7fvJUnAjHRH02TxSMBYKjEuO+ZJwJq9b3SMUUrAUuThgBaOScCySS7/xhdKwEr9ztjE9krA8JCGpEGrSsB2JZvXnb1KwHihKFwTpkrA2I7s+QNNSsBZaFE3RCpKwOnYdT/ogkrAMFyW/Q8ES8BimqpNsHhKwPDiMIZCyEvARCfIcAc6S8CZvtfeJmxLwJ+vbM+nHkvA/LuroBjqS8BdlguuZItKwE8Krrsd+0rAJlnck35uScBKDGahbBpKwPbxziFEP0rADwhOxaFhSsCIjXrDiWdKwOzOOxLqKErAbqiVhtcmScBi42vI2WZIwOBVU/hhv0jAM31BPluZSMBMN4zgLrBIwCOzRq5uZ0nA79hpdDERScDuLnh4DURJwCufu4KyHknAIqXYdUwHScCbbZwjpqpIwKwuqQetaUnAJnQEuWpRSsBoph2Te6NJwJ5dGBXAEUrAuqDYHvzLSsAXEHDAb8FKwBdDxN14dUvA5XPhiozpSsDomib26DpLwP68HhTLdkvAOk8IonslSsB5MI5dnK1KwMk8Jx16FUvAlrNM7ZlNS8C7H66fKgBLwN8vwwyGOEvA7rFySvibS8C6C57dVy9LwH0SH75cEkvAOdGBBdkLS8DZgEvvtG1LwItj1zhHcEvAJqQVK36WS8D6XhIf5MJLwENtFX+7I0vA/c7qNa0zS8DcksYBgNRLwH2OCsRSmkvApAb1z2AYS8B1fLxvzHlLwKC3b1/qWUvAxj5bFmy1S8B1vXll+65KwAM83/rWH0rAShVUaml3SsDCz4GGvQtKwMb9k61yt0rA89s8ThU1S8DGogrU51BLwPCTEnGEiEvAjSHPaSdhS8DlISbxT7ZKwDXzg0quRUvAvH286fn6SsCXiIQMMtxKwAM7CiFrjkrArlyiiBxJSsAZMbr4uUpKwGZ0JSw3rknA/B5HWUKAScDLJbQMJgNKwNHzhD5vT0rAl6JJSnGBSsDgE+u6IpNKwM+5CcKmnUrAnE7MifEXSsCwuLPVUjhKwNN2jxB6SErAEQzsx4z7ScBrGD5bwLJKwP6o+IxBMErAunaJHt1hScCx6rmil/dJwPPweb2OzkrAAcGG4rFCSsBHhrfq6BdKwGhaHaVM6UnABgiduFh2SsB0P638c9dJwG/hPk9sL0rAnr73nQXXSsCULIbVrd9KwFhrzwURzErAhH6AnC8mSsDwoW6PrbxKwMM8BNYLjErAaSW/xkPlScDp1dxV7zhKwK3z7fr1h0rASRgQUQz4ScBCSfAibG9JwOBBghGB9EnAbL4IvFEiScCOei+L0oVJwAm/7s405UnA8NNKBudaScBbG/agUztJwFCo8/xjR0nAx/gPWXEaSMC7MtmRaDtIwD+aNfqNmUfAJp0KtUR6R8BgZWsLz7BHwNkjlZKpQkfAlSY6IXQ6R8Cimjq75stGwNkrvQyJfUfAHd+XGgIfR8D7eTSw9DRHwNeCpPZD+kbAutRV6sCFRsA+r6nBe65GwF/DzlpajEbACnIVKUtaR8DZzns4mDdHwOxlCy98DUfA3uuwaR2vR8CUjKAQpq5HwHYYjD0bEUjAJcDYMZQ6SMD65gzOI1ZIwOWfL9gfp0fAgxWVTZ06R8DYrX9pDZlGwJwgA8SeFkbAil/jW+TqRcAnIcdU2NVGwFY2nEl68kXAUTzrZ3w/RcCrObEdZJFFwJa+VVD0PEXA2bSbjdP+RMBIo6l0629FwLWjqto+hUbALLZKNo0JR8Ca13aHvzNHwCGJ+KTxnEfA6X6cxsU7SMAZc+N549pHwLaaXy1isUfA9N8DovRNR8Bi8kQBSf1GwEIl90mzLUbAMYtflmSJRsDU96o3dpRGwGuRs6j2X0bA/A+mO95DRsAwO4tXj15GwFk0QMsaUkbAXd2LStZbRsAWQsH6fQhGwGjUReu8JEbAq+QPFh3zRcDzeT2kG9lFwOHvpmqE40XA9QX1y+qTRsCMlbTOKadGwDwowJajxEXAvJY7uZQoRcCyXWo5PpJFwFel9n0zkkXAViRJmI2sRcBWEr5pN+JFwOEjvWvAA0bAoC8Vmyl7RcCY2Xg/lrBEwGjyNWu2LkTAB1Bq/dBaRMCTfLJPyT5FwEwLySoch0TA5SrnpxEdRcDhGGryOc9EwFy1mKhSD0XAgVhLjlGURcAYcp2Tqt5EwKGAllImDkXADvfEqt76RMCKxMMhyJ9EwLc7F0qePkXAlvOXcSdvRcDItik2eD1GwGww4iYPg0bAGlRKEoy5RsCB4mdP1HJHwKjwMWwnZkfAkh5OwhVFR8Afupw+vM9HwI0SrFWA0kjALW/rypMzScBUmSaUD8dJwPYff4STIkrAaJnfHug+SsBMRfe6wuxJwFkG3TCItErAN8q+cqQmS8BoCxbD9OZLwDsUKBmQRkzAX0SkipWfTMD7FCUIdrpMwCLaobgs9EzAMUMbYNcvTcDYk3dv4ClOwOQwPJpeEk7ApVG9h6oqTsAiPuOQRPNMwB8tsX4780zAzV5YojTjTMDDsSwoQCdNwPl/2/JXyU3AK5RJVoPWTcCtTeEWgsdOwIEgnlBGtk7A3UapyM+yTsCYr894HyNPwIKCr8oDFE/AUSL+vfhTT8Bf/TGiIupOwPsMKrZrlE7AZlI3WW9QTsDzzkD3ODFOwL7fPwycgk7ArQR56Fd5TsCrXfX5ytNOwPouuua09E7AI2FwFIqtTsDzVonY5SpPwGwB6XavHFDALPn4o/keUMBfuaxFKyRQwDqpgYbNalDACCA8q1RHUMACSeTvvIdQwHRL8uVuulDA8lhY5+IiUcDsTdjZwuVQwLcIK5rsB1HAviQFOaqkUMCB2/j1Kv9PwHPbFTUgSk/Avh4wXvvtTsAbWKNgtKpOwJ3YFVU9b07AnaxOaHT5TcDmY8qXakhNwFzIh+BV2kzAvkEEKKOITcD8+kJg8KtMwBCaZOlyNEzAmapS8dupTMDjEgs2+xxNwHwQ19T4gkzAU4t3HQu2TMDyNDUKvpNNwBYvf94fe03Avh8Mcxz9TMCs/Md8wLpMwCRcU4ZmqUzAwGaVhnzaTMD6LSf5oOhMwMnP4bxc5UzAeJJHJWdPTcBBMN09fLRMwMfffHI6fkzA355HNKqoTMBA2fIsn2pLwJdccIlg3krACHcSAMwdSsBZcwF14GpJwJ+FgPIq4EjAZR3UUajHSMBABTjqsTNJwPczcIXMUknA6YZZoWS6ScB+s9fQQ3NKwBqNvaWhDErAAKbuya4dSsDDBv8V39lJwPk7OU1q0knAg5R+HCTWScCyWh3glP5JwKmNUJO6lUrAa9bAhoJvSsCb8jNhgdpKwHQgyHzObErAqydBHMt/SsA09YB+yPVKwKgmL5en8UrAlAMNm+PoSsDvXJNrUvZKwEuUQyX5ukvAzVkmnYtdS8C7DuaEhNNLwBc8BlOngkvAU3ZJcPf7SsAp8qa067BKwJ2ve3ROZkvAcaRIMdx3S8CxqHdLmYFLwPhYdMpgu0vAn/fj7X+2TMDSzKMtZ61MwHZy7YGR9kvA5HqT8kG9S8A0WZVVdTpLwP67Tlfw1krApHFqC1mMSsBwq8IQfbZKwK5FMvTFvkrAmIUEp3VbS8B1nfw04MlLwMqVi+0dPEzA3B4FWU4cTMDRQ5flGOdMwJQ8J05WNU3AssvYoE/0TMA4POZ4CJFMwAdzXesYGE3AHxw2NSm4TMAXabsZuBBNwFN+iwIX4UzAM+7DEJqRTcAP4PPk731NwHSO93khHE3ATkIWU7zwTcDYFI09lUFNwKcmmww1Fk3AW+THC+HDTMBkWN8F4RBMwNRQ1qpDV0zAl3Mif1OTTMC9MNFhEqJMwLiEmOM01EzAR2Sct89CTcCc7taQh01NwD2H8C4pRUzA5dju938ZTMDD6FQdjudLwPxwJOiSlkzAVg6+mIFFTcAqyusMLVlOwFyDoXYs3k7AR9zyFGxKT8CegLESfD5PwFnEZxmEiE/Aj3O7I5XZTsCmYXJLoSlPwMaEKWVNlE7A0VRHf5UnTsABt5zV3jtOwFKo0K+CME7Arz4XGIxpTsCcg8q2Z6pOwNu7iLk8T07AutlzU87gTcBldaGB27lNwCWNf6Qid03AKxFaz9+cTcCjyCeuF0FOwNaN+DcEc07AbBqwCPuITsAquKyYRp5NwM+CVlVT403Ar0BdUCh9TcCH/mjtIG9NwNJAw6HQc03AgWw8KfqcTcD2QWUrTJRNwJ+Eh7SNq03Aj/bpdu3QTcD6wq6LUyROwJwhafwGz03A/svduT82TsBDFzgUUlpOwE4HsoTGPU7AfbMCYhydTcAYc8NCsJdNwFUl5iXtiU7AO+8pOqwYT8Azl+iO5jNPwDiHRcC3jU/A5zieX+OWT8AZX6JEhJtPwLl4D0ihr07ASuB4y5N7TsAKWxaAxctNwDPvhiTKXU7AEwsZ8n8DTsBl0dbxKaJNwOQMAYeRk07AEMTco5abTcAal+O6yIVNwEoIujZrik3AVIDEDf00TsCMVEpJ4/5NwPBA3H9h/E3AFd4oUkrpTcBi2nWD5ZBNwPFCj1wsU03AbvEX5zK1TMAoK43BYP9MwI5rbi//lEzAMSWeDPvvTMCt+H6B2wtMwHTINu+O1EzAq20e7plpTMD0uDE9e4xMwC8H5VePp0vA6HPzqVSzS8DU35/a9ZFLwFXl+NQ5i0zAOWR8FQGITMA1trq1GP9MwJrhQ0iqpUzA58M6wkeZTcB5lDPHVrdNwOnSAs7mbU7AxRTlMMrQTsAD1jyk4hlPwND2UvpLQ0/A1ku6TJweT8D5m0127JdPwMwd4fN+G0/A3qyQPF5JT8Cfr4An54xPwIxA3JyDak/Asu7YbCA3T8A0WOKHhKBPwJkWcsf4BlDAVliREiikT8AQtoWsHUpQwGF7+mHBGlDADvwgLyLlT8CVJ3jKtBRQwAuCDAVzCVDAMFXmzgPwTsAIJY6vo/BOwHLDGY75+E3Adnb5nTzqTcCXfTMnzolNwGXTTNU8X03A3VjNlO/5TMCG4UsTrS1NwGsKJzzYtkzAxgGnTCeYTMBM/+9LJtpLwI3UG4CN8ErA1WrfpBE8S8CQw0MAj0tLwEN5ns77mEvAeXmRu91ETMBuuAORLv9MwGRvTtP9jkzAFEMP2i/ES8B/0SJiZT1LwAqWdD8KY0vALZgRm0PMS8CqpAKEwTJLwA8r9Swo5ErAs5X0bmkaS8AdfATpEkRKwOozV/5gFUrAzLYayGylSsBj3BfYnKVLwPgAt8Msg0rABBmhq5TMSsC8Eh9EjbVLwIGHdbWMmkvA2wXRaYz5S8DbTwQgWi9MwDPwgkRBhUzABHplTZpETMCmpxiws+ZMwKhb4ZDlGk3ALVEQpkevTMAYoUjoUKBNwN1/SuotgE3A29rPbW6WTcByat3vj9VNwJESyxSWd07AViQdpn21TsBL3T0uHvBNwCv6RmWNM07Anx1NMwtqTsCCgE0JGkxOwGLBWGMZpE7AoLmIxB2WTsCHWnM0uWVPwLPof3tEEk/AD/1NLbtlT8BVXUOZrA9QwEgQnNzG90/A6oBXoKLZT8C47vmZOLhPwGMMgW2z+0/AD5tIDHFFUMA9yVLXa7hQwMuzBt7lb1DApGf09pm1UMB7GJr5TolQwECf3XqeT1DAQUE7cekJUMCcFoguisVPwAjOkIrVfE/ACcOT1ZKITsA41+L76MdOwOHjsNgjI0/AH2AJi3K6TsBLwsT9r7JOwB2r5altg07AaMmH70l5TsA1VGQfUl9OwLUbBysGDE7AkM3qysuETcDcNw6rhS9OwLEOBPzpz07AoirkDjaRT8Bc2fWJoYVPwJAlxN7Vok/Ae+W47EcGUMD98HpS2QtQwAT64N3oGVDAZIpG/9qIUMBgoBJAl6VQwCbjh05SalDAAKgIharHUMCC9TvjOMtQwFbXxGgeZ1DA5JyCaEtmUMBfrbtkBkxQwMXfjizTm1DA14jT6brvT8DvBaLTCIBQwCDWcl/f3lDAFj51ARXUUMAzmPxVlZNQwNjGc0OcpVDAR4vpEYqtUMALYieHXapQwNx1WZsnYFDAh7iEk/pkUMBLzy/i3k5QwPwVOwsvwVDAW63k72v0UMAl2pVIb9JQwP8BTUs3xVDAiMt+ELyZUMCzR9b6EGtQwNLBV82OUVDAPcFdJKwNUMDvmeTtMg1QwF6Jl3oUS0/ArDxh3UYcT8CuMYNz3UNNwHb8/E3g8kzAzsMXUbCBTMBcSfGvEmBMwKkCjMte+UzA1rHkG0E9TcBdKPPUXOxMwMcditfHo0zAlnvvTWRVTcBh9LbTbxpOwOSq0l62HE7A7LG9I7hfTcAUSU+AkrRMwOr869f0NEzASFXzXOIES8A7W1qH5MlKwEGBgsYpqErAOnaUKs7XSsDYNDIOosdKwI62DQV/U0vAvjzICxMVTMAh5XnojtVLwD74nxsP7UvADkqwpzUGTMDz6gjuXHtLwMV+rwx77UvATejQOKgAS8AoHG6NJoJKwL7tokBftUvAl9Wz8oJITMDycTG4AVlNwMamYDt4uU3AWQYItrFuTcBtB6nDfMtNwOWZgrxer03ATIzLyGw8TsD+vtTf37lOwNo++klix07AAbaizLkaT8AfuyXxT3NOwEQf1OB+qk7AO/26xcmETsCTb9JjW6tOwFSb6Svj607A0Gr7sAt5T8DFf5gw+URPwDUgWsj6kE/A7RGK5JLzT8CkUCPIdt9PwFmFBYLGLVDAQ8ue5iqBUMD6TMSKvQNQwKNWvi3eyE7AGjKJZfj8TcCeoRlJWsJNwN8BMIP5SE7AJ8vd86DBTcD3TENRSkBOwC9X9ohJs07Axu7mOqzFTsAOxKCv4RJOwC56rUWPEE7A1iVorGJeTcA6zcmzGoZNwEou52kiZU3AgvUW+a4cTcCsC8Vq04BMwB+N7RPmR03AlYz4eB1iTcCdgFAfFP5NwGhjP5zvdU7A92mlyNItT8BzGCKgj7NPwFSHipnY2U/ASG7nOIfFT8A6CprZtJ9PwMhsxL6m90/Aiuv14pocUMD7jRWoNy1QwHeXUo/3+U/Ajs+VbcFNT8C5pCmjww9PwLgIYIo5hk7A/8rYTp99TsD4cMsUi2dOwNYlU7GDKk/AjjKgXFoAT8DN6isWBgZQwKjosjI1WlDAhPDqmLl2UMAr+zgJLTFQwGsiLMinblDA/pqm/IWLUMCt08piKolQwHR9GF/0z1DAJ9QnLPa5UMAMQVBLR6hQwDp+YVGfFFDAP6gKO68hUMCqKoiykVJQwNMzvm1kOlDAeMgJ7PM2UMDlGlMoM5FQwNW9Le76yVDAahV3Xv2ZUMB6FBjFlGhQwJdH/HyHD1DAIeUxk3MgUMDh0/w3C2hQwGZdoB++I1DANmKN9D4pUMA3xhqXoDpQwGgEsko8MVDAl6bLonREUMDhSad8fm1PwK+hhhrhS07Airi5ZQOSTcCCSbfBHx5MwJPXYQL5NEzAHF5MFw+MTMBRGm/P1O5LwN9SP5BADUzANkTQq3P6S8Do+59E4rdLwJNvOMUgBUzAY77grm7yS8AP2cPvMzlLwFZbT66RW0rAhxismYlXS8DnN7dK+dBKwBhbqzEcQkrA4VyZ7jfQSsB4aFTDo9BKwF+b2bn5NErAFGcIUJgiScDd3Z7P5BBJwFC5oa9kS0nAOqqM8V63SMCbxKZ015ZJwI0IJkjZLkrAMyUIGZPsSsAWu1fvtNZKwLUUyh/Mo0rAWpmkaT7ASsBxIc0GB6lKwKgbFzrXq0vAvAykb/81TMAxkTYmtXJMwByLIfBJp0vANdeqvFtwS8A7zy2FAWlLwAE/bwJqI0vAmzeKQ3c4S8Apl3N8nKpKwLlnCbglzErAwS8Gg+XYSsA4xIemvedKwN1+gt1FOEvAGZVTi4fqS8A4dQ9bRV1LwM8/HNFwsUvASn3efVJMS8A3ED/riQ1LwKMcvCqrIUvA5ShK7UOYS8DuX21nIppKwP4jOgqCOkvA2RvCljtdS8BMsiyGVV1LwEJ0uDl4DEzAzT69J9itTMBxkSmzEFtNwBMdRLrV9EzAJgKzdvB9TcDpYy5PTbVNwBZtkerHQE7ACPW8HCfxTcApO9eujbdOwKAwelvLFE/AUU7+JqoQT8C7UbfyIpxOwHXHoDWg6k7AFded3a8kT8DqBYteqH1OwDCHePTDa0/AnbRi0WlyT8DSws2ByTVQwA024oVRIlDAMbQicl8+UMBQ85JdKmVQwMg50Yp+xVDAH25JQ+rQUMDyFJDBce9QwCIzdiyBjlDA1uq3l/jxT8BUNwEQGntPwPYR1tvaqE/AEKUUphTDTsDlhRQfr05OwK5L4chp6U3ANBUe+mAcTsBv5Ru+ULZNwKA0MTWg/0zADFHp6sA1TcBNPcAhmeNNwHM3zL+GWU7AZp8nNGZyTsCzrrDysdhOwJOAEkOuO07AYCfxtFZGTcCP1JN8vOJNwM30mXzydk7ALRwWNfvHTcB75Qs3AgVPwJ6QzJ3vPE/ACaH86GsIUMCZtYDk5fNOwCd+3b/Bw07A/sKfcgl1TsCWUr2nVhVPwC6xFhbxGU7AHgEivOJCTsB/aNaXkZZOwIVSTXVUPU7A+FnxWW0ET8CJVoO1WhtPwPDszxIh+E/A7ebubi/uT8DdcB2boiZQwHCRBZiQCFDASI12CPEmUMCiM/VV6kxQwKcFzGnoLVDAJH+4CaChT8C7KDNFfCNQwPMOCOS0CVDAdERw0EMlUMAnh60PWkdQwOVSKtMff1DAkclX3PlPUMB2CAqZSqZQwFAtmQm0XVDAIY+k6zFJUMBELGkuuRlQwAfa03hjGVDAc1UuU2hRUMCgEdBVtixQwAm52BhrgFDAir6kfJP8T8BcXSm2t/9PwJZISTTJmE/AbfiRNdL5TsArcFBRNqpPwA0ZmDxcE1DAWAHiYJxSUMDEXrH72aRQwCbsR41NV1DAPhxauRxzUMCHleCpVndQwAIoVcDTp1DA2+tGbMWRUMCsmVVKz7ZQwB20fld+p1DAnbct2mmNUMB2W+xhwLhQwFpFhNXKyFDA3sOmZScDUcCsJZc3mltRwOpKmKTHZlHA+nBVQdY+UcDZKM/X0D9RwAI/pP1EhFHAaQIbtpZsUcCzg+zbZGdRwL4DauhIYFHAyN1dF7brUMDCpFNbY8pQwDCd+ReREFHAOHZ5lDDYUMAzKwOKZLBQwEAqc4xPnlDA6MNWFfvnUMA27v/9OxRRwLdBI5SKMlHASs+3qytkUcCDqRkDNSpRwCDevgO0RVHALyA5iPdbUcB5/v8efAZRwNn6HXarKFHANfvUdFSJUMDGEnx8TvZQwK8Arbj5HlHAfGax5eX9UMB0bfcCPsBQwBPcyYB0R1HABvTs/Ak/UcDzgIJL8C1RwNKzBcpuZVHAP9Xr62dCUcC1kdUnopZRwK5Ij8H9eFHAtpDpsrNHUcBpY9QQJA5RwEAIowJnuFDA/cyoia2KUMA0s6EkEHlQwPK/s/j3x1DAnhiNnB5dUMCNeeCd+Y5QwNw3D4ty7U/AP5jJlr24T8CcgOmIPBxQwE1Yc0fpNlDAtNOyayptUMBTz5m68SJQwANFRt4TCFDA0L/2V4eYT8ARtPkMhAtPwNlHb7FX8k7AzBhq2lGbTsBmbNokrL9NwMOdlvxdvk3A407AJflDTsDwOzwLg+ROwGNt4jqWik/AlR0L2JXqT8AZl7ffqDhQwOUgF8uJX1DA+iV+m3GIUMDvQNPOI35QwFAuaouiTVDA7BvNtkF0UMCAdLnD9Y1QwA82KBDMqVDAvIxG6bKdUMCYEBzqelhQwBZ4odyDflDA9llQb3UQUMA37jTBwyFQwDlpPj8x5U/A3n4DLFnJT8AxWG3oTWpQwIHunKkoSVDAGixwoRapT8BUPDASsKhPwCylzQTPHFDA9D/Z53VSUMA58LfV4EZQwPRxLWHYHlDAF0tTebMyUMCooN5D/0ZQwBqQOaCqSlDAETYDXb55UMDjyYmpgldQwPpwYfRqO1DAGqgKB6NmUMA79pzm94FQwE/uhB1USFDA8KaXyWkeUMAJDi2CzCdQwJ3EkhtQCVDAXiC+bUBZT8DSd5dDEc5PwLiAd+v15E7AX06caU7sTcCQmebzA3VNwPHFsXRNJU7AI6rCTZbGTcAXupe6QEZNwHxx3b+/SU3Alc8LY77OTcCOZQ9Gvq9MwMGdao4sWkzA+1ICoS31S8D2g/xo94hMwLFhobrmi0zAoFm3a8VgTMAN4458BlNMwID9tKH4mEzAid1O33MfTcAD52z2vM5MwKekXDa4q0zAgy5VEceeTMD53fRrlLlMwBUpNntQeEvAY7OCpSQIS8BxOcF/A9VLwBEoL9aPkUvAlpB7f3i8S8BA6myaUptMwOJTTpeldEzA3FQWDZ7rS8AgzNZi545MwHXbiTa8NE3AztoixjHzTcAJZT1Iv89NwBG3Q6Ec6U3AnTxFmdFhTsBZX9tL9kxOwCLv52PWcU3A3fZPOf1fTcBg++FCr+9MwHtNWENRIE3AJBsQK1ybTcDniyC3xrxOwHwokhNvuU7AeQ2f7BFCT8BbVVAMUFtPwPWNFCiQ8k3AzsNJmVbdTcBdXwNFPPtNwPhH3kNVek3AgQqXmvleTsBC8ANTXjJNwCrH/3eRe0zAnPqSwaxETMBN0lxaW7xLwITHTEoiJEvA4TJmz1bySsC3cnMlHCBLwKrs3cpz3EnAhYE2K5/9ScDghvmT23RKwK76bViHOUrAFFur/cc/SsDlFUMFtLRKwFpjELd3mEnAlPoLWdcISsCiymczTTVJwKyqEd6jOUnAJ08BsW3aSMCuLkBw+ZFIwEJztRGEQUjA8JkTGgwLSMCaaeSoA2tHwG7RNIwKFEjA5aBYDEcwSMD/PV3jciJJwIcSV+NTUUnA5GK1ASGKScBMOyNecRNKwEB6BUugLErAys/20CPuSsD/wdA1CvZKwDdMBDCSV0vASHhvn66bS8B9kaF8b/JKwGlVy1psH0vApt2QNU9fSsDgtseF+5pKwCfS2PCY00rAoUn8AYLuScBZtetyh2FKwELDG7eN6EnA+yQC6GA1SsDmPnDaWVxKwNBnmyd+GUrAcg50h3/QScCRT2EQHUtJwIpps9J7f0nANxFv/KkPSsAlAHJa3zRKwM14hiSSE0vAE8O0J55OS8CB5kuD8sJLwDUmMLiPsUzAtfa8otKXTMAP+0TzEbVMwHPmx5tJwk3ADvR45aCpTcD2L4O5EhRNwOoeb+UTgE3AwSQsb0AbTsBKdA8WMhZOwNYR22IrbU3A60g84ineTMBjdQYwPExMwMSTE19P7EvAxi5FEDL9S8D1/RnPsUZMwBDur7IubEzAgurIK2bwS8A0mdeqaaBLwPpcJakOvEzAHG8SbevzTcBzC7PFJjhOwH+apg7R3E7AGAD8oqziTsB4QrBbRWBOwCXF0dOjHU/AAUq8naMsT8DUbP4gsI5PwFffdRPWd0/A/l+dayUcUMDqrB8rXi9QwMCfe1H1O1DAZ+PI0xJhUMDFy3Cva75QwIvuSN3dEFHA2X6HWTH0UMDnEWPtyplQwIfteSs+1FDA+XYP3kkYUcDNv3S77dxQwFFiCtWJUVHAwV9ybmdYUcDz/jwN9WtRwJ0/I3hdfVHANf3jC1ZRUcBqi9cq9U1RwCMuF3bUg1HAnyy9ci5KUcBgHFBPHF9RwKboemXIT1HAptzXXtVkUcD2v+oOlx9RwJWTGFJNylDAOu0kO0mhUMBYfFC2aRJRwHnxXFXj+VDA3gXWbPjPUMDLyRi1OOJQwFT7dWRfD1HA3/f1nu9dUcDJwjaofXFRwGGSr/biZ1HA3JhU71W0UcALYG8LRNlRwBYjVzfJp1HA7sWITgnmUcDPHJsjawRSwHiK29StClLACbmjFtneUcBJGQsJYhJSwOjiso9UMFLAA56pUhQcUsCdQ1XJvmxSwNagZEH/3FHA4WdxWMPbUcD6iZJ2eONRwHiyuoOWj1HAoPI8X48+UcDQzQcxOHZRwHRh2FZknFHA5t3s/omOUcCd0kmtguRRwBm2en0dU1HAiVcrOoBUUcCENCpj9SdRwNTr9fQJYlHAQ2a98aTzUMAoBDFglphQwIWa4PGj8VDA0Yp92i7ZUMA9RhLxQbVQwHrGDbzgxVDAwweYcKizUMDbujz5QKpQwHzKpUOH4VDAONGKcwG6UMDyJPZUvpRQwO9YYMfQnlDAPF+dOYUFUcDNsGGqI2dRwL0N2BLnqlHA8mYcTI7OUcDMlyIz3MNRwJivGE5tj1HA4SYoISpuUcCjLbWp3sNRwF+Z0TCCwVHAlt/oQIHXUcBMcEhcGpZRwB/OB3sslVHAXwo4gmn4UcCc62orirZRwCCuzu06ylHA9gtXc9HlUcCjxU0huhdSwDtjDsxCIVLAJxH/gDyxUcD+eig40YtRwB+mx29KhlHAjtPQxBLoUMB3GYIiJd5QwDPkrVXB+FDAQrpFouDNUMA/PHRvOm5QwEwUmTL+qU/Au7BN12KKT8BkTWb5H1JQwBeYM1qaX1DAnnqUGPw5UMBUdk3daBtQwORPAd0wbk/AlBV8H7w1T8DW9ydvdhRPwJ4TJQ8uUFDApmUGRHlDUMBJ8qBJQDpQwAnLuz60fFDAOt/1t2X9T8D0bsIePSRQwHZPxN1QMlDAiCLOpGQ7UMAEt13HdQpQwImmuErKRFDAZK/HbF1+UMBxvu2vl5lQwAIYNdGskFDARcD1JJ7uUMCQaXqqLy5RwBslhoiSalHAq8kri0pvUcAYg1WML1dRwHuEmdoXh1HALZJNDwweUsA8LtbaDDpSwONOWbkxV1LA4Dejr90cUsCZluoGEYFSwJTd5UsJF1PATHwKVGdIU8ApHcmRkWFTwJhB1VF7UVPACB7eHn1DU8DEq7wUuSBTwHyUChMsMVPAop3SjpAUU8A2wvnczxJTwKzfuKEMHFPARcmyQW0uU8BBjvzVYLBTwGNXZifSOlPA0d2tcNksU8Akb/J+SllTwKKqc8Orh1PAuZHsV7anU8D1xe+2zHZTwEXsXwYOslPAzqzKuyjDU8CuJQL7F3xTwCES+fWIr1PA3lN1A3niU8BNW+PvaqhTwJ4QxBPy11PAMyBGaMMEVMAnAvbr6TdUwIi557RRDFTAFhtT3XZuVMCyh6ACJ3BUwG6kcqjwU1TA1NbmlGwmVMCjG3B9nlpUwNPrFtIOKFTAyJTcUipJVMBqXBFvTi5UwA5c9xQOcFTAvzoMMyZkVMAr8vmhK0pUwPrLI1pznlTAOmusysyKVMAxk7J14VVUwOsUIfkohFTAxI1vBp5aVMAE1K7IbhVUwLSg8C8+8FPArYms+8AlVMCCpXglIPpTwBVGIP6mm1PAyF1YEIyLU8BUHvDF3uxTwNK6wNy/7lPAm2BGdN7+U8A4FMopwZFTwGFeWd+LgVPAgZKZTVleU8BI7nfZ8z5TwBMOvCjDS1PAly4aVSyKU8B7Od8Nu+VTwNy94JVAqlPAFesTPiWoU8ASzZKdzp1TwPT4trFRiFPAHMyiaLqRU8Chpv6gDI1TwGDhqL1EQ1PAmUayDzdqU8CMb8+yNsJTwAwZdkRWhVPAPm45s81EU8AnvGyfBEpTwAYhRrY9YlPAQ7oWbihvU8Br0L2zi6JTwP+WI/pcx1PAwSGMH4nDU8CE7uoK+ulTwAPCdoIS8lPAkrLlvhT3U8AQOtoRheFTwIGHfy3/v1PAf6cZyuPpU8BYF8zwVdVTwIjVOeq+wFPA7eqqO4EFVMAaW7cE2ORTwN+C+wg7ClTA/6Z+TPHqU8CuUS4npZ9TwHQQRBSVgVPAYpbPEWOKU8AnYmtvVP1TwKZNuow0DVTAmuS2i3OzU8AbJ2TJ2XVTwGscUXfemVPASu/1eV1tU8C5fGuoxDlTwBYozBpODlPA+P3bi8w2U8AD/QU9XGVTwEXZswk0Q1PATHrg29wvU8DScLVPZ2hTwDItVf6YEFPA9oC0GrU0U8ChvY1mT1NTwL6lqhRqllPAkBBs3Ph+U8BYXqO5++lTwBRMYncd6lPAY8wcCnbIU8DdRXNJJ0BTwJb3LJ2AM1PAILthd7ooU8D6YN+uSthSwIB+Fv/7sFLAZ7bDmayJUsBUIDeRVytSwEDj+ErBElLA0cjDL+oDUsDLu1jp4VxSwI+PRgxehlLALRfPylOMUsDrNHLqq1xSwKMK/7hKEVLAmvU2yowUUsBHIlUmuhNSwDb2rb4XqVHACvy6QqWPUcClUKQ6HGlRwIiTSVukWVHAnYseTWxAUcCnZFbG9tJQwKLVGYM0RVHA1PwXtJnIUMD5eMQjAAxRwE0CAcU7hFHAfQUKATCYUcCWsJOX3JhRwFEn9J1HoFHA2GuK4zNRUcDnBGQaXWhRwMD20TaBp1HAXuVbK8LFUcBUpmXC1OJRwEonVJbRn1HAQ9IiluW2UMAk7zz2yupQwFjB1qe9CVHAcWOa6jLzUMB4MVykYk9RwJXlaZsyYFHAn9eocA14UcBorgTZe2FRwGZ5IOi5gVHAy4ZbFs1/UcAmya8+X5lRwOqOfCKt0FHA6TyQfxqCUcBCzRt2VZxRwLG05vinuVHA/+ugYNbZUcDuJCHi4BRSwCmZ7fHGeVHAjFd0p5izUcDSCiLstr9RwDR/fXS03lHAN41Tv/kEUsAh2XqddrBRwCG9/L6OvVHAcO54jOfBUcBrioHgj/xRwCftkkqYiVHAj5ZzuQmqUcA0MThYTZlRwAoA0zbhXVHA7HoF9AqXUcBiM0UI1d9RwA2NTqjwf1HAXC0fuuloUcCjZyVKW3BRwIK4OKb8SFHAZmT/YUWDUcBurXq+ImlRwCbMrfqlQFHAbmwKoRVAUcCM3l62MvlQwEe7c9o/jFDA1XAvln77UMAwSGoMDDtRwAOvrBTWMVHA7m2Za1PcUMDpjQRdSARRwMddnSUr8FDAR73fuUIAUcBjkjL2l9xQwHePw9cG11DAa8TknuEcUcCFsmGw00ZRwIjZQwGJZFHASk2eCFdbUcA15QLRb1FRwE/AdMFFdFHAWAz9F9w0UcDLj4GTUCRRwL4dkgVt+1DAeZf8+dv8UMClqMSXXAhRwBHrlhFOPFHA41r7O4VJUcD6a54QWVZRwJzxrmP45FHAW4jOps6UUcDdV6140PFRwDzNsiZlyFHAL5+o8uC9UcBJ0fnOLWNSwFL7LaMjMFLAlmB3ZfBnUsAL13RgQOdSwL367LAc+VLAXki03nUVU8DweaM2JGJTwFV8jHSlElPA+c0CrsakUsB+KLyIwABTwDErPGxGdVLAzU/mvWTDUsBykQNrm6RSwKG2dbfuoFLA9GokhzfnUsBbL8FUKiFTwLSuZ9gHQ1PAy2ehQ50eU8Auan4qoctSwI5xLDxDLlPAhFkfzMuhU8Cv0rsEeVVTwMIBrkoSfVPAGlw40c5VU8D4PyKyu9RTwC92GResl1PAfyRd1/+UU8DkQCBQcaxTwLwJMa0rlVPAfJlpzgShU8BrX0Fd7zlTwK6LaZVkI1PA+M2JzH8mU8CkBhHEAg1TwGB3wkjq5FLAoHnaMgHAUsCvoB+k3Y1SwMP/wMyz11LAKNXUe/m7UsABzdZmXWJSwMyJkkhuK1LAS9qTKyyzUcAkY9AFFdJRwH0IxONY+VHAwHl/+TszUsA+m0evSO9RwGwaavp/tFHAVkqaFROuUcCY9cGqsppRwCUBbssPkVHA6kZM7u3gUcBTsk90w95RwO7wkbcMzlHAtWq89LHTUcD6rytItDhSwEboVSdDCVLAm1Mwf6VVUsByvMAG55ZSwLZ6ieeU7FLA0fWZAn7oUsAU0c+BEmRTwEsUdNTrXFPAf5H44I9wU8BOSjbIlLhTwGPPX0FTpVPAoVOcR2H2U8B4pTs3hN1TwPvX5lfyClTACyx9MKXFU8Br9pjSEppTwBhQezKShFPAJL6gs87CU8CBAoxm4aNTwFCMOwz8WlPAW2E6vgMcU8DuD9a9chJTwJLqGSi+CFPA3f8FhcjqUsAweRBwGiBTwEGlXf3Q5lLABRy49DZ7UsCeHoSO+rFSwAVzpgcy31LAz+XGCyzyUsCAOw2zUfhSwIhS9/z/DFPAiTDsOvAhU8BbgnXP1L5SwKpp/U67jlLAeHJeEXmEUsBX+sudO1hSwGyozFvWv1LAmfrNUofDUsDooi5a8sNSwExAubZep1LAzrehJ3GRUsC5CndssMpSwFmHMbJp21LAY+b8d4fuUsAz3cRChwFTwGz1gTQWG1PAItbvaEltU8BBXPLGTn5TwIlLQlzwOVPAZX7lhG0YU8DEFElpKY5SwKjD/hrKCVLAleHvXgHNUcBAKHKLiL5RwMFKbig4bFHA9t/ed2vJUcBTtaeh+FFRwHUmCE9CXVHA5lGtOqxkUcCNRZIhU0BRwB9Oz0yMo1DAy4gTXTDLUMCEWnHXdbtQwHha+XuWgVDAIx+MLHI2UMDi5Z9CwZ1PwI1n14w3/U/AlQ8QUgjAT8C5Wg2unNxPwNq3/H9tcU/Axd16ffCUTsDZiMJqmFhOwISTSFJhWU7AyQLJNU8nTsCEwUaMMvRNwCCMi8t3IE7A3raGFTFXTsCl4pPTihxPwDRzai2WHE/Ab98/6v4OT8Dy7lXVXwRPwFjNE4Vv7U7A+kI5OKSCT8D3NaaDiwpQwA6AIU2tAFDAS6JgdocIUMCgR2Epsw5QwFEl0WZUxk/AZCZKgpQCUMC/LVfCG/1PwPlBV3/CHFDAnyG8Y+eYT8BpIWJci/9PwOE4ibVjLFDAKhGvJ4AvUMBQw3gAUyZQwN4XqKrhFlDAqWAxpEYuUMDhh4cp3RVQwKC7YWfgtU/A5XAO6UVxT8Aey7/VZGRPwOLdOqriwk/Aq7tzcupPUMDeSfEO5SNQwHFVMbpOKFDAbvkSEPYiUMAk/66FTQBQwFbr/TvPN1DAcbbLMiUVUMBmP8Cb/BVQwAiMwVg0YE/AQR+gQwAhT8B+frq9dQVPwCypqYjvrE7AV8amv6Y/TsD/lutgtqBNwHb4pI6tck3AJBsLmyjJTMBkIPHToj9MwJBACOcmYkzAZYhCRjbwS8AyXz8zGo9MwFt8ORj6JU3Ar9BMfvbSTcAqihzuilpNwEQfsndfIE3AI2Kp0I8tTMAJ4DVeKR5MwLunFSd2ekzAeczDze4eTMB2f+aE0bJMwCsYTy8Li0zA1AaDvNK9S8AJU7jzM2lLwBUNiXbReEvAbOZhOCWISsCrvnoHrMlKwILDuBolV0rADnt1nHHTSsB4efij+lZKwPNVBe40/0rAlrVEdZfNS8AE82pyNXBLwPpyFBK1H0vAK0Sj1wLnSsCsdnauZe1KwCAGbWjpukvA1S5miR8WS8AK8aZk88VKwH8IKo6jjUrALYxWHR80S8CmN9Y3Ox1LwNwsLiAeNkvAAwCNlCyxS8BybjkpfUpLwF1CJ372tErA4BaXDc9fSsCdMoOvRWZKwAdnDhrtrkrAlHwe6MttSsCaqHGRV3NLwEDRA0HZnEvAqNszXcZ4SsBWy7/SAXpLwHtoqEIAGEzA2M5uV0inTMB1Zdm41QhNwOeCGuvSXE3AYAuo5bRNTsD9pnI2YZpNwOQBm75M703AYKmiYk7oTcDEVHS11mZOwIOruvJ5lk7AGcS4fOeZTsAAG+V+tjlOwAmL8Q+PZU7ARfBwnGHJTsCHtzX26LJNwMnVUuZmu03AYpp8voAhTcBEP+tXeYtNwGoztLlBVE3ADi2MWnkATcAzou4EXStMwFUm2PUzHkzAYQ0t1xOwTMAb1c0xWcpLwDYFXnQcdEvAFopu13qhS8A2as8KShFMwEyFb8m69UvAjJ0rT0soTMA32VE5lXZLwOhc4z4G7kvAC/P/dfGnTMD9RUraIW1LwK2MfbjqAEzA939qEThaTMCYovxAlFRLwPGNfNtdRUvA68Iq0PY+SsBzTdJEsXJKwEBdnGXZEEvA4DdT+SCJS8CGwTiJO5NLwHjQ91+oz0vAwh6/6+inS8D7Xe7YZ5NMwPWS1bd000zAlxCn6f48TMD+jVfV8PVLwOQljjHmIUzA4FVUTYvuS8AMQGrN5p5LwBQbsCcpNkvAPU7GNDLOS8AFqAzp9mhMwHWE/TVrXUzAzQfs1ygzTMDCSooyuu5LwN/KO+/160vAfQYEZFaDS8D8jwjIF0NLwDdUUlSbuUvApyEiYllSS8AtTMvZqotLwGoq1FXKG0zArY9knTnQS8AHAsvY/xNMwM9qXbewUkzAWy+c10V2TMBAfVKmZDNNwBc3WkxuC03A/tld5kLQTcCkqt2O1ehOwDsL7e+Q807AUf0pZVkPT8A+dH502K9OwKhJ4a5SKE/Az7PNizlTT8CzFO5Md9dPwDGXplqYAVDATowX7l/uT8CjG4zqr+pPwFUjQWhj9U/A/tQDi1JLUMBkDrhmxxNQwFNkCntwAlDAESfKsrMXUMDJnHC7ht5PwHYVheqlX07A9wsmw2ZlTcA2dfvv0aVNwC68V0nooE3AwsUT5i0BTsBkrR8YFvlMwLIguJihxEzAazvdqgTZTMCrj13IJrpNwI8uAPOfGU3AEEeUYSYaTcCHlcw+aL5NwLXsDr60iE7ACkEzIqSqTsB32+6oU/FOwDO6xUno2k7Ap0wotMWzT8B1BOl/TJlPwMvDQKCN/k/AnBy0mCkXT8CKSj5CWY9OwPnaLZfT507AnMm1fDN4TsDyOD2OBG9PwBWTMf6HNU/AtV/3NEycT8CzsPxkgxBQwDC7A/m29k/AlZF70grXT8DHZn9zH8lPwKxb5jOtZlDAl+6D5TuVUMACc4OiKJlQwJDTOO/nA1HAUFbkMfJjUMCD8LtvWIFQwMa0SdkDz1DASZYu4B6wUMAwFEni1HhQwFIqPHaNXlDAM7eoMI9AUMCJkiO7+1lQwKRzX0OwLFDAvBYLA1sgUMBcyhEuPxxQwNxaFEpeqlDABm+OAjbXUMBJiqebB/NQwPS1RVbg7lDAjMxdaOb7UMCggfnz2bRQwH2FruUW61DAngDS2MSxUMDRR8IM5r1QwO4nEcXbb1HATCkQYGkhUcBDNCoOttdQwA5R2GTV8FDAonADD4bUUMDBuNKBAqlQwCXBmJkndFDAU7IURdU3UMCeRBjVOoBPwNoiRzFajE7A9QUzKnmMTsBPdgV7bUBOwIkmXBucoE7AUIgkXOe9TsBbtkhcSeNOwOvF8GPGqE7AOpo/BprQT8Al00PprWlPwIJgx4SMhk7AIBKTnkGOT8AuhvxrcaRPwEf4AkmM0E7A9M/1qImxTsDGQTH0tRVOwAIGRQGfvE3A7H3R8FkfTsAJhK1GXGlOwGtowxvjyU3AM2CpWPABTcBoNjbl1jBNwD0lJURAsk3AKLppFW7MTcBJl+h2G+ZNwCyaKSApUU3AVqOBilRETcBAjqW/PVJNwClyXnvyWk3A4VymgEMcTcBMk7QfspBMwNWu81GaykzAzxQGRofoTMC0nP91uAhNwEJFfd0xWk3As5dAyNlGTcD4R83qfh9NwHzLaj4CW03A4iPymRWwTcBbtiG468JNwJjKsM8oj03ANQuSPS5iTcCNNWNfzhZNwL6LgYsq3UzAQ0p0wuxMTcAX2o6evXNNwNZidevhdU3AMNFSOgakTcBW5fe7IIFNwNLwCamfmU3AEEQkM8KfTcD/2PXkrvtMwOyJauW+EE3A+kQOi1MaTcBxxZ4mkFpNwBc8sEFTIU3A2H3S2fpnTcConTMiZ75NwBXJFvEwiU3AkUUOiBZLTsB9cmfRMBlOwAJhKvTZKE7AKnxIVlfxTsCRE0Oz649OwMZM8JShElDADCCNu7QGUMA+yCLSQkxQwEYRyrsrRVDAZzo164tuUMAFkT2e1jxQwOY24/rjMlDAHvNbfa5xUMAvkIZU6C9QwEHlsi6FVlDAt/QkHTdyUMCRpz3RikZQwHYltRH8LlDAVoFRRJT4T8AWA48kLlxPwHko5HiQZU/AjAbu7wY9T8AbcMWL8jpPwH6tWS95XE7AVs9esoujTsBFinoHTBVOwI++7KxYUE3AmPcJ8ejqTcDXfS46GjZNwBzmyRz2nUzAvrcDnacITMAkMOajjzdMwEV+qsTed0zASWujayY+TMCbolMZxXZLwF7/NZCgw0rA92GkXoGDSsBQXmtKp2VJwAX/X1ii8EnAko4h64j7SsCdAI4eH4RKwILbbnk390nA+OhPMSOxScDbxh6tVf9KwL7HRGXI2ErAw1L1HWsMS8A1QPWPmh9LwDEh0UXD0EvAapuBFxzaSsCJ0ke2ksdJwIws3lE3nkjAxlX45UkdSMCu8mag1qhHwBk1B4dGtkfA1e4TIWxbR8B6VXezYA1HwEXJ8ehWK0fAOcqZDf9BR8AnKscjVNxGwPvZiflyt0fAJeWmaVEnR8CIk2zr7EBHwGrydmre80bADKQsrMBRR8Afw4teq/NGwDbLVOYj8UbAwKWU14S+R8BGq3NQnNhHwIfNV7ocDkjAfxXvzXlgSMCsxddb1QNJwDzk/eEmoUnAws+UK0GXSsCaWLo0aMdKwP51t5fF0UrAswArr8UrSsDNr8bMncVJwGoJhQKTQ0rAMI/covcuSsBo9Y3SdSJKwOFZ2ZnOpUnA/f7s6CQLSsDgqj/4JUZKwOWVaABplkrA3dF+i+P+SsAfHq+TpJJKwE5D2C1Qh0rAm9a5JeAdSsCDFZi2X1dKwAHmqU5li0rA2yqlJL3MSsAemq7txJxLwBYm0HWBeEvATooUHmhUS8DGZdYD34hMwB/5+f4pH03A60PosOvsTMCctVEZGNRMwAMwBqAkNUzA2NVjm95HTMA6cLYBrQBNwNF6gtJsd03AcmJZYhfcTMAeXbxn4w1NwKFbOOeGFU3AYj3WXVMJTcCUvmCLos5MwM5RqPMphEzA0LX+CRk7TcChe30k2X9NwObSx1w52UzAOxzip/14TMC7YAu0z5ZMwEYjLh5G4UzAEE+MW0uhTMCixTq0anNMwGs2ZoD+JUzAX3XyXMKGTMDwcUT2yLhMwJLSWZMxg0zAwLGy4oZWTMCXrpBdMrtMwI0xbrNH80vAZr5S2udMS8BZfKPMkd5KwJoHeGGuakvAbv/UVBMQS8Dyhbn3o7JKwHSIdhaspUrABAt5gP3rSsCALf44Y0RLwIPB3MF5ikrASEXouJ6dSsCkSH+rd+1KwMG0AgQnnUvAhyn1cSgDTMBdU3Co0RVMwGSCre/k/kvAYK5W+3WeS8BXq83L1fpKwHy4hel1EUrA7vudzd4HS8AH79VH3cRKwCar76oR9UrAgiOlrHwfSsCoil9R1kVJwK0xY0b/JEnAJhUD0mZESMAUOBoDtcFHwOC+pS9oG0fApqYO3lekR8Bso+TnuclHwJNcWG2t+kfAva1tY/tUSMC1ZDhDa+ZIwJzl17b/7UjAS+ygmzp1ScC2AYpy9+1JwO9bX2xTc0rAoZNElF+LSsD1x7T9LNJKwMyLCz0b50rAyltIhEXLScD6fqFYUy5JwPCt3oRtg0nAoZIYRASoScDRlF/eVH9JwGo6dSUWfkjAHEQhepAqScA75AMmPmBJwJypGa3vQ0nAp5xC0MLBSMCcyrM6a55IwHQTcrxD6kjAAL1uyr6zScA7sXK4DWdJwAFamzPMWEnA8vTEHj7nScC+Q8+z77JIwFsgP9C0LEjALFvu3YroR8BZvza1uMNHwC3ymm5lT0fAI5tE/LeFR8Bc2l2NGwJHwD658pQw0EfAnOv2RMHaR8CwJvsGPb1HwHUIoCRHtEbAyRWvrx3ERsDAyOzXYoFGwMG09PZSZUfAKGHXy320R8Cnv/10CzRIwAuPWXOtSUjA4LRGM8E8SMD/qJRyWyxIwF/VSC/EBUjA2CCws63WR8D0uHuY0pdHwNhFXUDC+EbA/xvueB63R8AY11KzP0VHwIfxs83iCkfAcwXjm1oiR8AwBrHzQHpHwHOJ0poh9EbAvJtJNcMDR8AQFQ2RlX9GwJrenAtw0EXA1NvToeNLRsDodSY3J2pGwNUGy0/E5kXAR5JkCjzFRcCNN+BiPSVHwEYRpxg8PUfAX/dShhHJRsBZ0VtOJdFGwIBD3qPZSkbA48dsM2OrRcAYg0thjcZFwEagTK4a7kXAEdr0F0ZjRsBuYDhRl/RFwME2lgBeLkXAjSmEsh9kRsCgAPcJGgtGwCzQmOkRG0bAM9oO+gGsRsC9eGvs/AhGwE+ocgpJrkbAR9OKntnhRsAC7MHQMO1GwIRJ4Qwng0bA18rhCHz4RsD45T5LIkZHwBHclOqOU0fAjDLVa7J5R8CwSlEgFNhHwNKjsmR0ZUfA1dCZgSZ5SMCa+WGU8NRIwIQ4K+r2EUnABm12cK9fSMChPfTqypdIwEKF7gmaCEnAXIha00AxSsCLsq65jehKwFjRx3L/KkvAR50o/Gu1ScCM2+tO7HVKwIKVe3BC80rA1IQblrYoS8B6OdKT6dxKwCLq2BxofEvA71mg/mZWS8CJMV82JQBLwOguMJzI8UrA1C3/5bLwSsCsQn65uipLwMPMcr0kH0vA1aFahYViS8At5L2xKz5LwCStFWECy0rAtFXydsfASsAmMhlLzjFKwKysXKTRtknAah48EDjfScBaIRN+aRlJwOo+Gga6TknAoh13qBFbScB5N19PAdVJwH89PEh+xErAtWJd+UYwS8D6s/XY5tBLwAyBk8edVEvAJKbfi8BqSsD0cuB3RbFKwNftyhIpdUrAAkS3n1FSScB+eWjSbm5JwKT7rYjXLUnAGMuqU4DjSMCHvLNO8elHwG6XTIOpukjA5vMXEn5ESMC7fYblaBVIwA1fHwv62kjAiE7UiXvgSMDwHRj2We1HwKHbLLdyQEfAVtd4foRcR8Du/FbiSkhIwNeysA7dv0fAdsskCdPLSMAodQFxsh5JwKBHSU7GXEnAbfulS/n6ScDhOYQqP0BJwIsls++RTUnAdPGBltovSsBmjua2aR1KwNVRdtpfEUrAYta5HHAwSsBgGvDkf8FJwNUX5QeloEnAQ7vWecA7ScBVlXLiAFBJwN9EeSenLUnANIX8ZEfvScAmadckIyJKwGCHdAy6LErAvmJxkVxvScAI+HMsVFhJwCldxexMp0nApxS/VHmmScCOQ4cik4hKwDnZHITaNUvA8idNAe0IS8AbmEYDYWhLwNzchnA2qErA6MV1H7iYSsCw2WjrvVpKwF7xzm/NQUnAInIymn40SMBo2jwPQcpHwBpbngN1K0jAws7gUugeSMCJdMmz2jZIwLypVjjAxUjA5qM6N3VVSMD5HbpFr5JIwKjCH6v5ikjAM4Chw7p2SMCyg+oygblIwPZW4Mswr0jAyJ2v5qJuSMCbW2R8GCFJwJnj3GJnh0nAlQKvNC9OScAmnM9RC29JwDOvnq6vaknABS1N1HtASMAJgewSBH9IwIapNIFFYkjA5trLCTETSMBEj/quY6RHwAlve7dNbEfAHHkGZHh8RsAtSTTVuyhGwPjsF2mdLkbAZeYFtE+eRsAc5xa/fiFGwMmjZSzJGkbAaQNP0L3wRcC+5eOWr6hFwEvrCyy9B0bA2aagIx+tRsBTsvpO7dRGwD27UB5reUfAdLKl1fjLR8B7MzFPeExIwEc3DQr9TUnAeAdCatHBScCd+NXptmVJwLnWKZRGm0nAP578vvuQScAEAlgtirVJwDCepk9BXUrAPiWwFOrBSsBxNYMOXwtKwK+bqlb7/UnA7g70TYUISsBP69+ruKtKwHqGhDsCWkvAsWx/71JsS8A0vq/WpH1LwLEuE4R9x0zAN7tc47atTMCocw4ZWvNLwBdAPIKTZ0zAEX8kaAblTMAwfgdZJa5MwDswxfDLXU3AgYOjBQNdTcC9cN2RZ3dNwPIyeYhXUU3AKDAdcQUSTcCw50CHzcJMwC54cAphQUzAri6nUZLUS8DffwVavAhMwF99wWQivEvA+Okz+AZ/S8AuU5VE205LwEW0dvoQ30rAX1imyDsES8BCEqnaHzhKwK84m4bOE0rAOX8qfFnDScC32fpvKr1JwDVVnZLSO0nAEwqKfdSSSMDL+9k1ogZJwL6tqQk390nAL0+LD7C5ScCzHu/dFpZJwCMpvVkRAkrAuyr+BSFnScCvjRUW8xZJwOUBXqwEWUjAMZQhN/qqR8CFxYF7GOhGwO0x363qcUfAdi7JA+jxR8CDwuv4y6ZHwIUzyngLu0bAJ2WVZhGORsBjvVFHmIRGwKqEE0Zht0bAx2sA1MPsRsDNRab3lJVGwGFmRGdd40XAoDrCtFFGRcCVLmvb5yNGwOzaH1BQJUbA8ReHPP6ARsDuKDxFpfBFwK+62T+kwkXAsEml47SBRsBbmS1PbstGwIuKN6ydiEfAnfKtJL0fSMCmhgIEjj9IwAZ6DdOB/0fAitbQ3ZGSR8C/FHuPhtZHwLYz5CY6o0jAti7q9O1dSMC04pVb91VJwL4tA+CqSknANRJcyk6sSMCfyNmo9rdIwNxl8ZQ7J0nAlzQuHJB9ScCNGxvvWB5JwClNZX8acUjAbOz3lPpwSMD/IcWZm7JHwPT61o7YHUnAylh5SaDsScACsHXre8JJwJimtSiDOUrALYssacHIScCTetnRk5VJwPQTg65qS0nAm+NvUW5BScCLC7skvfBIwCaBDW6YAEnALPk4gbwMScDhtR+3fu5IwEYkm5FrZknAFqOZN1zsScDz+53n9RdKwIP/a2GncEnAWWUPPWDESMAtZDXG0hlJwIkNkUzJX0nAr9zFQDkxScBcQqOiCuFIwIxK4mgKGknAxyBVsiYUScCAPYOs/mpJwA6T+mKWEknAWXaqVM4kScAHYKFvw79JwPd68eEIaUrANzFH/JujSsDNVi5BFoBKwITDVG5JIUvAo671UsYnS8DAUNFaF4ZLwLgYAUGObUzA5Rac54wjTMBH9ZY3IAdNwMlNGshIFU3ATDZfuCFhTcDjDKiVr1VNwDlwcd5pK03A+u/kzd3eTMDxCDiqjupMwF3TlKQxxkvAMdHsOqiuTMC5BWqCu2tMwKptAhAHu0zAn1ivUVYwTcAyb50qItFNwOkmnbzWrE7AgI8O8NuFTsBanuiTVBVOwJ099IhdHU7A4kjlwG43TsCNoQ4kVbxNwKenwbt5bE3Avk1/Gh2PTcDxIYZmZ6xOwIBTUhMAvU/ARSNJUwO9TsCj2rE7Mo9PwKORNn/Mkk/AhGOTcNYSUMACjgI+k1BQwIlh7kNjNlDA5qVPyxwdUMBAQA7zj0xQwJhfgI2880/Aj4eA8UXLT8CzXY2gTNdOwLb3pcjh607ABaKGoPvZTsCr022YwixPwOUTrJE2IE/Aj/UnxzmyT8As/Sh3yvNOwBSIPlZCUk/Aez1n6hKZT8D4wi0v9lRPwJaQYInq3k/AXxySm1ycT8B1w9CWl5JPwI0uEZXS507AxLXPqgItTsB7Iuhi91dPwEjsyBInPU7AFMtPxHDQTcC/AtFtQ0FOwOIghI1XP03A6Vxoef6nTcD9eswtgH5OwCNzTP77Pk7A/AhWMOK8TcA5DFY1KTlOwLUHE2e3VE7Al2Zu9/xLTsDPpux7JDhOwFNQDkDtS03ALlnnfADVTcDQgfGGNQdPwAszLvABiU/A+mEQd8gnT8AyeX8MW4BPwCdbJmHOqU/A1xiOz02qTsDaPXO/FwRPwJ8E/iGxSE/AWaVTEWJ1TsCsWCkPyXhOwGs4XbcpTE7Aa6/fqSMOTsAFyjogn75NwIDtr/iGN03Ae6ykiDRZTcA/bSQ9HcFNwG52roN86U3AyT5C+7XqTcDlIJJGxHhOwBzdfgKxs0/AAk1VvJsFUMAQpzQwaLtPwLqHhy2lH1DAi4lfLSaCUMC1uy0jPwlRwAPIYQBbYlHAq0ZvUQRMUcB60IZGUvJQwEvGRyVlslDAFmaRBdycUMAv+U2KOaFQwKFA80Oyg1DAFHKBLpZ2UMC/VsNx/L1QwPzmWaJviVDAjUxsFnXHUMD/NHZbV91QwDXc76a8lFDAj4DMdxPRUMDTp6/KB+JQwCvoHFt7sVDAVq/aVSZrUMCs0aoXZVBQwMDdHuePRlDA12E9mXGQUMA7kNWu6qdQwG+zcGazM1DASP3Zz27vT8CzcAbIT6JQwFACZ8vsEFHApjGISiAEUcBysF2JfVdRwCfCPDqeOFHAa4NjoE0zUcB7ah42RPpQwEgvwIKi5FDAYtl/dp7eUMByl72v73RQwHjmWFhUYlDA+Tjo32orUMADpECBxt1PwDIFtsUFck/AKkUbw+jBT8AgV6pWJv1PwBvtJJ6x/E/AuDGMHJr8T8AVa8YVowBQwMCIqgmveVDAjvvRxewBUMCO2KJEAPdPwJUQfGL+KlDACXLyk2zxTsDPdfsHUSZQwLscp7HpcFDADuyxCoJOUMB9YqxpvztQwFADUSMX21DAg09J0RXHUMCWqqUQmzVRwFwuXz4wRVHAzIXU/PMKUcDhLsHuPvpQwC5rxo/2QFHABqFzO3s8UcA2AL8ErHhRwKY0ryt2j1HA9s+p94CbUcBMqDkxf3JRwDF6y3KqmFHABmSxSenCUcCgdOWR0SBSwD3vO+ljFFLAbHbOZv8cUsDZXtqRkQlSwA+fd72k9FHAK63Z6fXsUcBgQ8wz1lhSwCFeBwf9WlLASguwRNXwUsBY3rf3J9hSwKNrQeQO+lLAenhtijNSU8CYwlyCdSJTwFkgF+laWVPAzJpX8vFGU8Ba4ajDbBhTwC/oe45aw1LA0Jsf3+o/UsBpgSud8wNSwISnBwdaI1LAktv7kuIBUsBrxl6Q1LRRwB+2qmAoulHAgi+0gpW3UcDGvJUKL6lRwKvnmDn8i1HAkS9jaYx2UcAXWnaqz3NRwKLQymatjlHA6cnlUvlNUcD3vDtMSjVRwKHh2iJ6GVHAbxyaP/YMUcA43OUtQuBQwEtOi4H5q1DA2UD+KgGpUMCSyrUcJ4tQwKJzcAxJP1DAKRST2Z0uUMAJHjTixUlQwJzkwoe5N1DANkLoo4IuUMA8MGf8FD5QwD3Eb3mjLlDA6b1lpTweUMAXOppjah5QwDrUNmELtU/AXC19qXNET8AkWXP+U/1PwAWqIg7vT1DAWTe7D8bmT8DWgloLQytQwPdNR5IVBVDAbWvJ5R0mUMAbjO/NHuxPwHN+oNM4VU/AI9m0iCB9TsC4xG6IzmBOwOVUM41T1k7Aq8u/IYfhTsA/c9h1IslOwIkzXHu5BE/At0xUoUk3T8B+1NrTAjxOwOmKJdIF707AB3TwEfA6T8Cp/Wp2yAJPwJb2OTIh/07AoaE845hSTsBh/SfkH0JOwCZH4e4wBE7AC7v1VbYYTcAlV3MoX8ZMwG+mq8aEIUzAA6bOe+8LTMArtTt3KslLwMPINaULK0vAxHSVtUfBSsAdLR7uQ6FKwCDc9A+JvErA6sED9o6FSsDILVyiGRZLwOw5oNwb2EvAlOe1xrv4S8CYdicft6BLwI6kEuy6s0rARvcudiGXSsAgQe8D1cNJwFNrYJZZXEnAeCxzXRqtSMByHLm149FIwGLjLV5Dc0jADxKgn9PpR8C+GirC3GdHwLQy0z9Q+UfAyU60brQrSMAUwNZFKAFJwI6kO7QVZknAAP/1ryhDScCS2+njmQVKwPfOBxn32EnAQCYHh/CoSsDLSGQJJ51KwOYCbHoYX0rATXOxgEoUS8D6XSy/3rRJwGSSvrvGpUnA5MylVlKdScDUXgV1/nRKwD3Po05wHkrAvV7idoFrS8BAFBXzv0lMwMBJSPEV1UzAkky5iXTGTcBvzzwmvg5OwF9B8a5Z9U3A4cJY+sKITcBkh9PQOItNwN8p3gMynUzAgxzaBhyDTMCRLlKpYXtNwIC728rdx03AyoVH2lKhTcA67HyZyZdOwDThUgMRd07A0sUF3DoZT8C4ZiPQ3A5PwOs8d5kuXU/AbDTQTfCpTsCPE6S1i65NwHLka4Oq1EzAgx5MRc4MTMCLD0j/s2xMwAEKDdjRY0zAHfuUj4Y2TMBlGUq/2eRLwCiWJSbttUvAgEQ8Jkx4S8C4IRwbNRZLwM0P7QvFq0rA3ACE3AZOSsBiywi2N7JJwIJmgvNrmEnAE7Xm3AlQSsDzAkDEgQRKwLjub9Wb2UnAfnjelH4cSsAojSqsTPRJwOs9CyAuYUnASMJzZAs1SsDEndSys8dKwJauUZWuFUvAWSCjSoTeSsDOoMVKcSRKwAK7yb4vxUnAiEosua6zScAfUBamGWZKwJMFH/fK0ErAqrV7pQv4SsDhIGZCXJJKwKp2VGDq4UrAo3YP1ABxSsAZ7T2il01KwIOH15VuMUrA/B0AJw70ScCx/dHhlIZKwK7vVU65dErA4xrghpA7S8CVV6I/dehKwANr/RD/J0vAf1iIkNrXSsAW30pJJZ1KwMnEZwLHPEvAFijcZNT9SsBqAW9dNT1LwIdRHG8GDEvANs2oCV0DS8AEBlcBIjNLwC+uRJleA0vANcr731tTSsDcbO+EEFFLwFS+h6MhK0vA/L+XvaBES8CUhFr9PhdLwECKEGjxrkvAblCiftw6TMAT0yYzGfJMwIcbqs2fi03A3NTXK6UuTcBn0zmsMTlNwEMKGhHzR03AZUl1dXEYTcBPkM9YRHpMwOksseQOQUzA0GXxrt6/TMAR28aIWR5NwDg7EEPtO03A7dQq1ZKGTcBmpnnA7W5NwHZf77T/sE3AcAQPY9H5TMB/EWqHDspNwFyYAxwtxk3AtP1aURW4TMCEwREx+xJNwA9IQ5eCc03Azan06Cv5TMA9qAikoRtNwCGTYFSQO03A82lzIwT7TMBpSDdT4aZMwCOAg5oE1UzAhMVPfCgYTcBngYApGzRNwPq5nNx140zAdi6SrfxmTMAalikNo1xNwEMsWiAieE3AtPaO8CKXTsAoPFQDkmdPwJwhWdaft0/AzmPxxFwMUMDZQ+aChtdPwBOf9W4XHlDAQP5kjMIwUMBwMVnnHcpPwCP61lrON1DAyNKLg7jqT8BQVr8bGSRQwMvIByQPI1DANOl1FKuuUMDjW1v93oZQwDDRwyVPSlDA8Q1wVwwUUMA+FQyg8x5QwPIbXZaqHlDAWinoNq56UMBTLV/U22VQwDTVpPsKHFDAe8SqoYtBUMBKXMlLpalPwKYRbC1ReE/AvCtaqpv1TsCdgWq+jO9PwEbqmvYd8k/A+PHoCGwAUMCvtUiGeTtQwHEX3bXNTVDAS6aJaXdqUMBBNRGD4ydQwK8ENKejVlDAwO5cWfRXUMAleCSQKC9QwGZ0/XMkTVDAarEhieSGUMCD+/l/d4FQwPIxkitAKFDABpyTp0zRT8DsdQk+94BPwGrWMNlZDVDAp0w9jftYUMBugYPgez5QwMYf0o75KlDAScAu78dIUMCGXGDQoFVQwG47PvPyoFDAFV+N6SCIUMBktJ8I/rNQwI4JV97/DVHAy5gH4C4kUcDitOovZyRRwFCKjEPlJVHAtjIA0QrXUMBUyUFnUgpRwBm+rcGCtVDA+8DTatOSUMBMHfLMvdFQwMLcXYCI8lDAJD6GBjU1UcB6uJTW9EVRwN91sKxbMFHAk1pF47MLUcA/TZ5/UylRwOtmOG4iGFHA0ovQZTQqUcDaw8ul49ZQwGqWNNis9FDALYdqfyzZUMDufx3RloFQwM/zVvREB1HAaELGegnlUMCL2ul3zg1RwOD69IbX/1DAbxniXUjNUMAvSDkGHalQwNl1PC8ECFHA7GZmbPZDUcATz92uc4dRwMoeLC2INlHAFWkABobGUMCHMBXFTz5QwLdKZYAfkVDATfZqtsbBUMAf33tqjnVQwBFLdjG1ElDATS3clBHDT8CCz3bDiw5QwCD8+usmHlDAGZg0YcwEUMCXVZNGJ6tPwLTblMV1FVDAku4DbD2TUMChgIQ6GhJRwM3vug8iAlHAbc+qz58dUcCGbn2ewsZQwBBUCGy1olDAC/wsMskAUcA1P39ytc5QwEXGQhbv+1DAQ9FaGI3EUMAPFww//pRQwMJWRNfSVlDAAau8DJTbUMCWP3I7BfVQwNyxS2OqQFHAz5x8VuBFUcCXZwQgWFdRwJUoz0ygqFHAY1x7jbp3UcBgqD222m9RwOYbftkjqlHAEy6rQi18UcAjkdRLWLFRwK7YvY/Y5FHAkBcBU0PjUcBIJQMVnhBSwP5nip8n/1HADFvVMm8HUsBlOd6AcvdRwFQ7sATgCVLA1hcgP9ggUsALE4sYZh9SwP+T1BEy71HARB93H14OUsARuXVD/7ZRwHwD2n/7FlLAA+hcvnd2UsD1gX6gl1lSwFwZrerMUlLA/K/OqLDKUsAGGtaQePVSwFSBeKCQ+lLAOUFKLQ3QUsDtTIdUjAZTwIFwLmCn4FLA8TMkKmk5U8CLeBs/Mc5SwCU0J1IDjVLA34FSkbWkUsCG2zbh67xSwKOg6AiKtVLAyiFyFZvvUsDalCNJkSxTwADVTf82ZlPAOfCb7jFTU8Bty+l7DChTwBtqugsM4VLA53s5Uj/bUsDSqTPHgtdSwIIeGNvoyVLA1KpkIWOBUsAhU6Dnu+JRwI50TpApFFLAv7U27+D4UcDuiTkKHaVRwIytgBSbdVHAdF3q3bdtUcDbgpGuhXlRwHE6C16d9FHAupeFKw1LUsDdhAo6+29SwMeis5gnd1LAZG7y87+4UsB2EawGhKxSwO7u8G64dFLAHlCugVluUsAGvWKBN6dSwMvJcXWUAVPAss02X6o1U8BLjToWKQtTwBtjvQAzXVPAaMUaUvhDU8Bbx5q59RlTwIAUJRD8v1LAf8aRbFqfUsDEh/WktHpSwC67ukmdjlLASZOdxj/JUcAS13fR7qZRwP2XtiwOIlHA4EFs2VQRUcBjPTJ5dlhRwOOQwHEbGlHALvXUfvMRUcAjFQ0sjAtRwJzQuCMuCFHAlHGT9O6bUMCWpGfYxSBRwOtxw4q6SVHAugJgLKc1UcDFM4jDsVlRwKh69KUb51DAFIY34rwgUcBvw0B/Ej9RwNgGwFsuKlHABLyW5/YFUcA/ZTQ1r7NQwGigCgzC3VDAmS9UP3u6UMAb8Qt5lChRwOoJ12VfJVHA5Xj7zxhBUcCtOmY/2ANRwKxWKzRQq1DALwc/I8nGUMCif7obB55QwJvFwbbgslDA9nNhGqWMUMDzb5hs/j1QwA4tYV0Fb1DARSY21xVJUMBiTRVYqnFQwLwwkLhnU1DAzLa+UXleUMAc9WlVMyZQwN+PuJCzD1DAcjEdC79KUMCjCxb1wEtQwAEs+sr4Z1DAFUaSP/e3T8D2yoF+HQdPwBn4HWO3O07AasANWDoPTsAeZwKdJzZOwH1MZ9qqNE7AfE55VVlFTcA7adCfqABNwBS5hgtYB03AChIzwpb7TMByIuRK/thMwBl70RvpAU3ADW/tsPILTcBsDmhcEGRMwBmjZrH0oUzA2FMBce+pTMAbvE9tVBtNwJ21VP15C07AgNxhPu9yTsAmvgmPqElPwPuAIOlcqk/AwMj2PyW4T8DJ5pONXQFQwBuR8wspIFDAywLUWnxvT8CNDPIRLtNPwMHvM14Kek/AJY9QDvOXT8BYl3fzOwZQwOAbC6E080/AqtaiFfuOT8DKEwzyMJFPwKw74bypp0/Aq/t3OcuWT8BAjBOaAt1PwIwnUoynbVDAdvk0/nvEUMADRI22QrdQwP0i/R6ZdlDAivvWABTlUMBZerA5KshQwCzKLQErk1DAs5OaQ69TUMDcIJFowV9QwLKqwdh0YVDAUwyLmlooUMC20O/AfgVQwCme3BCKu0/AfArplRg4T8BVeVJWI3hOwG4dO9I6hk7AcVee1xzJTsCCQh2JzTdOwBpnKwYlqU7A3G6n0eJ2TcDKiR0Wo2lNwDZBJXJxMU3AQJqZn3RZTMCfv2Z4Dz1MwEOu8YvWVUzAlxPSMwU2TMAqENnRYulLwCHZB6aSvEzAIOAVWIK1TMDhlhzivWVMwDYtCs7L5kvA87Q0qprjTMBbY0KiLwlNwMPwMgEPak3ATsoH4JBvTcAvz1cDLiNOwDZ5XO0sb07AiXJYRwB8T8D4vlKi9zJPwMpIDTkRbU/ArI5d2/3QT8C+c+aZFBRQwHsm4q8GKVDAWjKC1hwOUMAsoo+Df4NQwKyeN+gP1FDAn/Tyj8bPUMCReVw1mbFQwAdNS6pY+lDAXujn5NlfUcChvvGgFq1RwFVAs0nknFHAD322tjK9UcDbem9SmyNRwNouOLRnE1HAdPRjRuNlUcCfehQezltRwI/UBmsbH1HAIzwVjjHvUMBo0pfmMANRwJBWl+OwCFHARBWcuUwvUcDVnZThjgNRwIAXaOi59FDA5PeyUKe0UMAbIShuXPVQwLJJMJGf9FDAHI8fQB56UMChZ+MhWJdQwOKY8bQLw1DAV2BeOWPsUMArX7A0oBxRwBNpvvnv8VDAqsrHmJL6UMAPa5d5pYNRwIFzrLcZblHAWE9pKiNPUcDfsXoWfTNRwHtG+azqRVHAmbiZszpoUcA8Pcj7uTxRwJngg1vXTlHAQpe4LVc5UcDaboaZBlFRwMwqfDgxmFHAx/03JGGlUcCk66IAf1JRwEcCZI8F+FHADiefeNfmUcA4NiP2yhVSwFW1JR9yiVHAoKySc3TIUcB5rbZO2ctRwBiI4ZCqtVHAxwQcpXDhUcAeE94LXutRwGclXTyfWVLAgyhXw3adUsCKvGSnf1hSwEXqCRz9zFHA84YVB+q4UcAlu48ZJMdRwDnlCEc/wVHALgCgy8HUUMC5I/QeEB5RwPu7/Qbaf1HA2pCcEMBJUcDdqQuohCVRwMcu/J+78FDAUveYPCoEUcCQT/69fNNQwBmRaQkDylDAZ6kD/tHNUMDm7r1RW2RQwEw8kB0Zk1DAL0S1eCstUMBQOu4vIUBPwCGqk/ID0E7A5p/+LpcjT8A6GHY1OOtOwJLbcEy88U7A9O1U8OC8TsDB5UgW58ZOwAEXdXugQ0/AVKC8292OTsA3qfBF5d9OwEZ/6qlzA0/A176wIgvvTsC+uPfsHBFPwLbZ0KIspU/A0fJJQhuzT8DG8HnOFoVPwF1CKYrRz0/ALT74O0S4T8AjGFJ3L7FPwOSXPKtVkE/AnBY+zBVPT8CVfRjrKvpOwHaKvpGBcE7AuLwM+FP6TsBerN6vHrpOwB6JCe0njk7AfrU/BKbbTcB57MAjh9ZNwBH/QSMPoE3AeGOMxVl7TcAoHJuAuMtNwKYhDtVbLE7ADDW2r48tTsDtuUevn5JNwB9vSfx2yE3Aq/ZAZ2hdTcD7lyMlmKlNwFpIFggk8k3AJMeOC6eyTsDBdcifK79OwLJ/sZWhcU/As8FxSu43T8CCtCBC6fpOwMoXpXBCrE/AJ1vY5hFeTsB23QUzgYBOwCkXynzo+U3AoXtJdrkzTcDuoUoLkthMwBJbGzGuxEzA44GLhMrBTMCOBTXdzIxNwJlBbA2EbEzAhL8OusgrTMDlFkluaOJMwFQCmBv8f0zAZ5WTvA3PTMDM34JZ7BhNwE0qx/+4lE3A1S9OMEOdTMDZx6IzGWBMwK94Qa2/qkzAet753091TMABv5Uis+1LwPD/9Qt4mEvAXoYysjyrS8DWxi66cupKwEXILVYY70rADrsHZC3xSsDRDor0olJLwG1pwnzDhkvAJHcr7tEoTMC0xYM7JztMwDD3N2QsvUvAac83xW54S8BdCDaskhFLwPgeM5B79knAgISOAm1TSsC3l7R49PRJwNEphIB5LUrAI0voCwAyScAIo0/fTklJwCD/9ZujGUnAu3HEc1/3ScABsKUsZe5JwGpJUCq6N0rA3CxDETRYSsDVws6Gc1BKwD+K1p+qbkrAYxYISQrcScCpl9zwDlNKwH+Rit+ay0nA7AI9uF+wScCOXQNrPPRJwKDVJuqtekrAvYgzhRZeSsAQkyS83ZZKwLaPcBSJrErAoYtvAY+8SsDAcYI5s5tKwPW/+JNXkErAFP1RCfdnSsDFrBxtERRKwGERmD9+qEnA2fnCn8f8SMB+Ml+OWexIwOpXYdnkIkrAPmdQIB2iScAJEkTjakZKwLQKfdsYJ0vACLNOFKikS8Bfk/wGBP9KwPkZrlxtnkrAFaDht2//ScC5hzCHajVKwCztpt9KdkrAXJiinoDyScCaVLGtvj5KwG13eNT2EErAtIYhvQ/5SMDpoVm19HxJwLejeXbVwkjAEo6A75V1SMBjRsT2RFRIwNzhN4s650fA4J7KAg9BSMBCpjo23vpIwDmjQ6HueUnA+evHnPGKScBFWyQVTPpKwIDEn0m4y0vAz0MzIQsyTMCB/BarsexMwMeGS2q+p0zAFpLykmavTcDVVJjEJQBOwEy2xTDLck7ArMmHDlLbTcC1KVqiQmpOwMsoumtvqU7ASJe8+zbfTsCJcGvy2YFOwPyn4Dpw8E7AW43agyLDTcDGJwt18kdNwDUWKQ5iRE3AvkEOxmneTMBkbQl2W6RMwIoi4hJePk3AZZES8FXGTMCuYGKWuRVNwAzcsTS1ME3ANjf7LrTaTMAlCT+27plMwK4uMVzM2kzAge34V8juTMBiBzoeV41MwC3V4C9gs0zAFUTs9JNxTMCGD4gLsvtLwGpS8XAIJUzA6xE/hKr4S8Co0X+QsTZMwB58E5dLIkzAbMfOyLRZTMDT9prveJRMwHAuQ1oYuUvAL6IewXG7S8Ae884tSqFLwH5rZFNwuEvAAbIcCzDpS8As3lEUL2dMwMXVFwGSrUvAGl7sjrf/S8BI7Qa7YepKwB3SIUkqmErAtA8Talx9SsBwow3N3/NKwLSI8rvy4UrAbXkBnbYBS8BibPw4T11LwH58qI9xY0vA8nE8BAtrTMAKxW1zkxBMwEjp+xag3UzAGMevCC4DTcCZR7FCIhFNwGBRgKxMkE3A06dGYurcTMBNqJPMaEFMwIYqQ2s1F0vALEt4kRsCS8C2RtSO0EhLwOgOOCuZOkvA/RXJpZSdS8BvRyRsI9JLwKU7erX9dUvAABFlV9D7SsCnP4UFUzVLwJskYgftmkvAlscI42dkTMBo7JBkjONMwJOcgY6v703AH+PX2E6lTcCrvIsNnoJNwNVkil6dQ03Ap51/1cOkTMCuNKdENzFMwMCF6Wpk+kvABmE7F0OdTMA9c6lPEO5LwD9+MFAteUvAaMx1uOWpS8BKuUi0x2NLwJhpMTR3z0rAVHrlEaXZSsB6COGWkNRKwKqIb3RIkErAlTn6q3BBSsCC0jvjAQFLwEEkaRRfp0rAFj+3GgNBSsCeO6V+2BNKwDrR/ATjfUnAzkunJ20rScAtqltoEAJKwDLb8ihG6UrAHRRtIioySsAwOxehaypLwDe51PxcwErALPZPHbHJS8Clx2831lxMwMwdeJwLLkzAdseRS5t1S8BtUj18711LwPj+y3k650vAo8jGHMu5S8Dcf5NgL/ZLwP54z7MxLEzA32EZQYPmS8CW2KfSxP1LwELH96pUsEzAeqtoRz11TcCa+Cve715NwHZF4hmtikzAhQLeTXgNTcAKrrEDBAdNwEKNF0P7dE3AfDsu9/mCTcBgVFw2O+xMwMjQHjHiNE3A0g+8I9lmTcCPy3kMEl9NwLx2H2ZvG03Ao3Bj8+XpTMCOhj2p8ipMwGmHiuN9W0vA0txYZWFMSsCWpRzf8MVKwMGvkjm6ZEvA5uqMgayDSsDxH9GZAMVJwPuEk+ao/knAtaAmopfQScBaR33MVeJIwNKath+siEjAIg82k/E4SMDcQrz5RMxHwCR/nWLHG0jAO79juJtJSMBWKMbZIf5HwDelXyddREjAYePETPSlR8DudnzEczZHwKvVJPg6NUfAOT0ea2s4R8BlviGeTglHwOmB0g16PkbAI++qqANMRcA1KeeD6tdEwGbnQ84hwUTABoUJYMGRRMA7mFH+vlZEwFNGOpYZcUTAkBPZUjDeRMAKDZZJ1g9FwL44cmwgN0XAtKsgmEwtRcClFjCPAxBFwNEfOW1mvUTA/D2fzfVhRMD6QQEHC7NDwD9AIPqT6UPAiFi1HFvjQ8CThthlJ9lDwJz1g7CWFEPAj/fJSvj3QsAD1QDnXwhDwC9E80rvaELA0GbSCGdqQcDjlfSlvJFAwIU588g42j/AgSY06Fy4PsB1N0eCSVk/wPtFRXg2nz3AW21Q5pkJPsA5w2uvXi0+wEevEibrCj/AoPEMj95gPcDRN/bj9yY+wDF4Ub3frD3AQhRqlbIcPcDiJmC4Au09wH7e3c5WiDzAzg3uVD0lPcCz+1BRbYE9wNEBjMb4CD3A90o/Vfu8PMDlzE4wKHA8wB9J/qg4zjrAXJiaFUNmO8AqX9D6lOI6wHwKxon0FDvAHvkrNs65OcAjYMVm6805wEX5unW1qTrA0qyV9u2/OsCeGQ/UCIY5wNA31/YxqzjAoo4u4rSyOcC9kGewENs4wG7+lXPCsznAdCK9gCdqOMCicycJeIk4wDqNyE/E2jnAZ7ETyTF0OcDaDmPNBNM3wHmkCGqlYzfAKyTdPIiVN8BnIzZKSzc4wAWQpAlp5jnAq2ao3OeqOcBDdFrizo42wLE1JqgBaTbAEbdCMyinNsBXnxOmO+Q3wIb12INWIjjAFNNjhL1TN8CKrIYZ9TE2wJ+mrY1RdTXASRhptmh4NMDooC570lc0wHr/IB7gETbAFs5d7yTRNsCDI2z64Xs3wDhv+MWGijbA/wO3HhrmNsBXyZ5ikwc4wFpGg0iGQDnAywPZBc+VOsCewcjFYjI6wK5FFI0hXjrASXlDW/Q3OcDMS0JV6Yc5wN2H9ypF7DjAM48DVtyEOsAQqFoBTYM7wBx3JJVPAzrALxmNhPBsN8BdnhvBEno3wFD5Nk+amTfAcIiIrBt6NsB4RvGv/IA1wKu9QhumQzXA2R3JS9GpNcDQPmv2Zb81wOnvaVnSnTXAiDtjAUXuM8DYH2C/GpY0wLHo3CT74zPAKPDdSPf4M8CiYuVN3v0zwCJUw+BWcjTAA+xTmckXNsDaKCDSjGg1wP504e9o2jTAsislSqs7NMDDX0DML8IzwA/ZCA3yhzPAHuFsOzCoMsDajfT7qDIywGV8SpARBDLAN3CxkNk1MsAVpSFoJvUywLWyFMjI5zPA9SBcKCCjM8CODU84pC00wBG99wkXUjPAv8otssrpMcDm6et9d20ywGF706rTxzLAf41adtarM8DeP72weaAzwNJRdCD03zPA0Jn0iyt2MsDdvWzjcHQywBoo2OQJZzLAPs/0lMcWMsA2VdknqY0wwAPNJyY2+i7AaWoSninALcDTvlbz72YrwGLeevY++yrAFW8ss34oKsAh515LrKwpwBHT4bBUgibAQpOCu1uRJsBY2qShSeMjwLgFIfj/9SDAxdJ+9BhPH8BO2f9fWO0fwOwKI6+/ryDAMBk4elDSH8DWob5UGX8fwOj01Kd4miLAmYCHrcv5I8CuzTSTzOoiwF35HO7RVSXA7OeFolWxKMCoL2DozaQlwF2CNvPmISjAw6/w0HeeKMA4pogyP4gowIg1+1XY0ijAE+iPC13RJsCyWrZgbjwkwGQ3H6DOxyTAUD53AgYeK8AWl5GHxiIuwCYT4Eg31C3APlt+4ZP6LMCRwrjIEBkswBiP5X9lDivAXHHHlPXyKcDw7+vAo4cswNZ6mrpsOSzAUtT5W7HCLMCvOLJTkmItwGNGeE3ytTDALzuTM8hpL8CmZZZICUowwIzuuGM0mC/Atd1JX/P6LsAc45Q/hp8uwGKqHzeZWSnA8Cbaf4e/JsDJK1aYhYQnwDwLLc7uMinA7F0Q4cg2K8A03ZBWulMrwJwQW2u21SrA26JGXbhILsCyHDrGT1kwwGtrnyCodTDA0FxW15KEMMDql/5It/QwwL0w++M9TjLA80tzp0AFM8CS22jv+1UxwIH56FSNsS/Afd/C/e7lMMBUUWYSL4IvwLHAXU5spjDA0YTj3juwMcBhta3MPBMxwNfGhhZ5VjLAp6tPco0aMsC4GKqzDEAywM4Ogru5GTLAJpKY8Wx6McA9KD7x76MywKtnotWBYDHAtBkOPz14M8CKDgtyTJIzwK2BS5FP9DLA9ftKijzmM8Cma68bgBAywEard4tP6DDA1+ukqamvMMDPGncxkrkvwJ7M1NVBki7ASjWO5XXNLcDUShHBBnkrwN11vMuvVi3AJXKVlfODLcCU62l1a1QuwEogszZxaS3AuQRK/9erMMDg+YaR9vcuwB0b23HAnC/AMatrmT8tL8BNoETJPVsvwJr3HTAlSy/ANwAOIBKaMcDmKBwsZVszwKnRA5CiTzLA1YxS14jNMsDncWw4+0A0wGTbcA0EITTAuvImtddGNMCKj016o2s0wGW+TcpDLTXAjcUZo4kmNcByLwTuYW0zwDLYOScpKzPAzg0tIhsyM8Dg5VlvwQQywOqCTCDT+zHAIHVjyXM+MsCC6ktVYUszwMDU7QOsqDHAo60GzovfMsCi9BCN3NIywB9GxoXOODTAsf9zFv3cNcAbsQxXywQ1wCSUn7SYfTTAXDNJf936NsAB/WXHRNs1wLxSZmvPdDXA86GqX29MNMCRsrWHPu4ywEaW1fC4kzLAjJqd0h2aMMDN7neqmawxwDS/kfOP5jHAW8aChoEuMMB2k6LuvpsxwNh8piGanzDAtXqUXFoSMMDMtt43I3IvwHpfxG9L2y/ANoyQD/2PLsAkEZX1toMswC0leYnYvCnAsnZhUnRdKMDK+c67Y1cnwA1JiSJ1WifA72AgkXZVJcCfj8A2zZAmwAfcxkCcBybAnHQN5aRcJ8AZcHaY0W0lwMry3uauSSXA2kg5H/EGJsCqB5XbqGYmwFcZh4HhNiXAn4kyLXExI8COSToKFUUhwIr/pdP23B3AFZXA91kqIMCyZ3gHUEEhwCZwBJgzaSDAUfcVVDIaIcD+SzQI7iIiwLFJd2qbiCLALKw52uZrIsA9pgc0MagiwM8s4QLGTR7AClY/fIuhFsCmE2/QEogSwEuFJiJJfBPAnKjqP1WrFcBOnR6Kof8ZwER9p+viExfAWyJNZ1K2GsCK7QjcyRsdwEfvxKSHFSLArjNnvwi6HcBhwrNnRJQWwJhY5Jk8RhXAl2P5oKeoF8BCpBgo3sITwL9hdjAxehbAXS1oSLJaHcAchOGatFEcwHrTVo+d8hzAoAGTnpUXGsDYUqgfEyccwDQib6yCohzAw14YrmCQGcBbdri7ycMewDKp3aXVOSLAoq0rHSz1IMBFurji8k8iwN7gu+vn3h/At5pk8SqWH8CEWMMMAYcXwLrsVxOXGRrA3tdB2YGhGsC3U1RJ70MYwGgNSTj6TB3Aqb1ughLqF8CdNDa4ka0XwGYqnxkTuxjAcemomXbaGMAJ2/iU+GMXwJW4sXvaURfA+vSchsSoGcB058UKty8dwHtVrpiqaRzALK2wOuxMF8BiZQuKadcVwDWA1QgOLhbAEEws116UF8CPY0pbgJYTwL/R1iInGhjAbbNhayrVF8DMZQeMbhcawHmG5VtbmBTAZSe8MhkpGsCwsrUAzdkgwO/CGgf4DSPAHleiEXcSJcBuN2y86SMmwL1seY2woyfAmuUuXKAmKcByVj/gk1YnwLIKdh1+4ibAQ4hUlS5cIsCYwcu2upEjwI7MANJl/CDA8C7Q5+ukHcB8R9j3ZNwfwDWshTmIjhzAWOpdp5pkGcAqeE7wlnwawGpx/iAAcB7AH+15C5lPIMC0Jo3daaQbwP6t64jV1R/AXUQSLoNQHMAOwoJpCMcdwJtmTtuG8hvA4oxyv+0jHcANrCXTnHQfwPlxG3I0bRzAZ8p/q7MQIMDwS4PyC/wdwJAZU1qFmxnA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 8\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"dVr5e/k+2j8DqJAJcyXrP05ZztRoQda/VKiYo3hD3b/Kih/HZoTqv3aNsnOSUuE/ZshejwLg8L/K+f6owgD4v5dMi/LQovy/MP6tf91mDsBjs1LF2TYIwFOWzfUz7Py/HE1L2j+b/r/Qlwr1S0T2v29w6YzQd/O/+CLWsyyl478y+7a4U/javzaQD2NzEwLA1+c8EQQFC8DE8VfuCSkQwHbcfIq0RBLALEdhjF6pGcDwluwkmuYUwGS1WZaXFBfANrp02+anEsBSy84YgtkMwMY2GeQoTRHA/MO48RSuA8CW1bJge7QKwEyIQeNeVhTAm3RQ+/CYFsDrDQu7LZgSwOz6Izg5UxXAIYegPJbbEcCtcjmgD4oSwNh/DbjtjAjAnptQPGEpBcCdmn61xicQwBJ4mXf5QwPAxl6DHtbr5r+o1/+a9Bm0P4a0pIXXE/M/xIHokigcDUClXQY8MrIPQJ0TC9+i6g5AdaO1Yc5nEUAcjji7C70IQGg99pViOfA/JL7hIpBr5D/+JK6yvKrdPzCFeVveN9y/evbDXSwF1b8+Y+gxDvj0v6ClIl1ScaG/uFTtIQ6K2D+gBXCX/Q+Svx92vtnRo+u/TItSpXxm+7/QbY75Ppe9PyorWXPlLNI/pxzYAc7z5D90cHzIj8L/P6AAXuUbV8O/CmglEAgqy79nK9C4lp/4v1YJ4i9Ja+U/+nGDacsX4r/a2CSJUUnQP6h6EW34/r2/R7D6ZW3f3L8fvMBAqg3cv1MGwENQzwHAs51lHU3d97+ADWNyWlz2v3y+xS3VHPa/EMdo6K0VzL/ZfAcwKfH6v1/zWQ5zg/u/8MeCr1LgAsB0dFPaRfX/vxDTtU6SHc4/q53gwEIY+z98g3tvjv/7P5A9RJJk+wpALq1j246VCEAX/8rxLkIEQAS77lzys/4/iCH9m96S8z8wSktEcETsP8ZDVezuIvE/pBFVvGFg9D8n7VyNBQ/xPyjqsGWN2fQ/DvMH6V/78T9074nasET1P4Yf1rzj4wJAzEAoWgVNBkA2WOUbETsTQGnrXPA+QhZA1Kk2J5bvE0B26C/fA5wZQNTpmU6QDxtArl8EbhydG0BZlw347QQdQFMMj3sMoBpANURZqi4mHEDcOCKd9DQVQIcr0fIFNBlAklnJfbGbF0DebL5iq0ggQMIMRoyBvCBAgENphfQzI0C5Pk+CQaQhQHLxosrxTSBA2Mv8prVGGUCHFy+wzMkfQLOqMBeZ/x9AThA5GF8HIkB20SWDHHUiQFaFevsL8CFAgcjVt9rqI0BQ61vVSLAkQPQnluUm5yJAck/khwYAI0D75ovWH0ElQAe1O50v7SZAC6DJptJ6KEDuZtT3Zi8nQE54W587LCZApmtHcC94JUC8lq5WJYAlQK0Ie66dLCVASl9uIERPI0CrqoV+DL8iQLU4PMZE4CNAVxY3ncHUIEAfW2PJm4MhQBxhlQpl3B5AFHFn1gu1IECouJOzEzggQDR2wvU+ISJAWctONnn/IkBuzXgE8c8jQDgzLrs/+iVATAKMoYwhIkARTrGQ2lEjQE18ne3KUSFAansJ4IMxG0Cs+ZmwIzIgQPOXpToKxx9ArNEtIWk9IEDzprMVkZkgQEIL7s+YSiJAhe6U+s8pHUDnqRr3ybwbQIt8pOI+QRtAXmcQ54sZIEDJ2fgbzk0gQJBGW1mFBCFAG00zKjPyIUC/KzWSd84kQP3k7V4N/yJA8Cze2rhwIUB+DWv5NWEjQOHunnXVPChASj3G2bwRJUDznuiCIVglQI0Ws9lrwCdAv3bVrsG0KEDnMXMjWz8lQNsObWnTryRAW6DNLEThJ0DFbpaT2MgnQG4eE6E/IyRAVjP/+vGVIUC9ZV8+BsQhQO+qc0fBKSFA4S4xQRgGIUCSjeSSPMEgQFjkX5rLgCFA9ufzz14VIUAm8n4nprQgQC7HnY1ncCVAKirjCUh9JUCK6Ts9Hs4kQFzNE9N59yVAkpj8pDX4IUAG3xJqLNQfQHhEA6o0DB1AcXzU2HNpHECBzSfCn34aQBCMVSctDSJAcMkCSn5gIUCKZvJqSdogQLE9QLFSHSFAVBaBACJ+IkAzeg1JM1UkQFajALT/pCJA9cu7/mfUIEBukQ/ZobgiQNf8dylavCNAvw5gP0fhIkBPKMFN5+0jQOqwLEQtlR9Az9saYTTPHUBhUAVdh3gZQNuyMs1iYR5AKzYysK0jIUCXAhFTmC4iQHw4vOV0lyJAXuMuiqd7I0BcAqEDTwMgQNKE7jPW7SFAP4/D5CLDJkCw7KSER7gnQGmpRSJnhidAkERcs8aZJkDXgI4/t/spQKSCgeL5bihAQ1vwcjZTJkASU2YrU4YlQDzGWhKJyR1Axf55O/7JGUDverjOibUdQPYqvhu4jhpAtPe27NcfF0BdADAYV6cRQAcdOK86CBFA9wYwTnuFEkAQqPXdmnkSQDI7Ky0iZwZAGftgDKeBEEBEtGZRHEvkP/YmPt/PNPk/VuUekt0S9z+jGd2sq+3jPxjHfNoRCMi/hsGyw7Xu7r+0FTergyHzv8BzCyxnB74/FiUeCiq10r/+5wd3GbLwP8CycOJ126W/lNy2mo1w1z9Olk7t/ofeP3RsSv3eAvM/CDmSsHWs+j9UcjOtiLrzP2xXUXwv4eo/qFkNL1HL7j9XBm7xne4DQChYAc6aegNADVyCn6yZ9T9VzjtaUizxP1ZM+XG0e/U/q6EBZSh/5T8kfSvlP+/4P4pAa/RXpu8/oOLHyQIXqD+udFXow5bxPwzvqE4TA/E/pr8vULma2D/QaL0/SIDlP7pIA0oet/g/KYAz2qhL8j+iBuhTxp73P3jSgVRk8uG/xQ/qQCpF57+5VRkc8TAAwJtaWifYfxDA3dbsfIZkF8Ad+ZIHdNoTwJyHP1YIDg/AvAnpEdSLC8Do6NfLHqQIwMSEjCKWFgzAKNWz7E2zCsBDhpMctU8IwBDB8veXJQ3A6HSo+qFfEMDAT0MAFFgRwAzGKkPJLwXA6EBslk1e5b/viFWxknv0v+bhG+4Zm++/gs/KyPUk+L9VzRNosuj+vw+e8KJkkQjArOlXmQ9nBMA5MUykUrL+v7IINWHXDgDA0h8F+aS997/kU+5JuVTsv3lSR50D8PC/TGSWqVlu27+G9S5GG4PyvyQEgsEFWO8/K2BV5Uvq5T8o48Oknr6xvwyAIAJC2tI/ZrfogEHI5j+w7nkCPLSkv47pi3SBjse//XT11KY09L8ex/ef7DAAwDZSjUf4Zf2/JJZ6Sy5r5L8idDHMZ73gP4chwMn5Cfa/Tmue+WnE97/rABK1lLwEwL/PbjBdXgDAiBIG12380L8144JKFJbxP7XFVBeiIf8/Us69dU8j4D/Ukma7xbHIP7VnQQcD5wJAUMqkHUba47/oI9tGPgncPyr+wLHX2PA/3mtuVtAX8T+0rPkr9PLSv5AbqcQZHJQ/tzkZHzLux79kK946/R3vP2Oorb5T1AJA2F03H9RqAUAABGIQVRv7Pyg3thlOFwNAxlf78rEm/D/MqkGg4X0LQJ3Da2rELAhA1OuRSVl4BUD7Yg0JXZQDQDE27j0pNf8/o8yUsz2a9j/87QE1Gov6P/o6cdMfzwJAnQBUMyrmBEDsQZnu2rMCQM44PyDHmf8/AOHDcALYpj9dl+1E6GTuP44/h2j5FwlAPkj0pcgmDEAzFgQHnPYRQEgka0/NYBNAPoBlkxKwF0AsScndtywVQPD+xlD61RtAgLQ0qetKG0B4K7lv/f4eQHCWtfGK6yJAsdKIyAA6JkCLXa8QLnclQOj5X+wL9iZAr7Sd+w8EJ0AsnwjkLJMkQH48HZ6iqiRAO/suPCAEIkA0ySMYwdghQPedKELb1h5Ao66sPhpPHkDwZal3eIUYQDt377JWhBtAndPu6zTwHEDixFPbPRUaQIzBUbEEbxtAkBMIXEIEHEDjmUm9unsZQIksnN2uNRpAaje9DWIXHkD9HqO1KWwhQMDim1ZmTiFArpXWy+ckH0Bj8or4kzYeQNesKxPcQx1AXiMVbP1pHkCHYTFX2iggQCvt6HdLdx1ARoYJpdZVHUDuKjaRn+8fQPsWgPh3uiFAERlIXYLRIkCLizwJ2XojQJXiKT3psyNACN9nMbBxJUCA8ucTK2AoQHUx304eYiZAq5sDI5AIJkAYOPGB7qQmQA8EOi4VHyNAJ+ULcAmmIUDwNAX48b0fQGEJ4W5S4SFAkUpSwwv3IkAd5ktYs9QgQAWSYx/VrBtAeSBOzTBEF0A98bd2fgIVQP2p3XUUHBVAyC3PtUK5FUAcSkaGSmkTQDiuaCZg0xVAnMW+Htf4FUBb7UjAgh4XQMqeMltRGhVAG4rY5RVNGUCTj2TEQ6gbQIrhl9+JORxALFsfQP0HHkABbBcHmX8eQO3qVWXVzR1AHOmfkejxH0Dm14XshqUdQG6L2UCzQx9A/Kh3lP8MI0A8ePy+nCUkQIAGaNCBVCNA0Hgj1hFzHkChuyvTfhgfQFFTnYMIDSFAUPJcfsJQHkDqXgAUUI8bQAR57K/j6RtAIohrEiNHGkDaSrvys80aQCSFtlH4Dh9AyuWnaAh4HkDtIS5srvYZQJJN4A7a8xNAYM5lrO+kGEBwfIgBFVoeQF7LZcv1OhtAq0ac+OmyHkB+y9gj5zghQClAVwKP/RlA/KWw9yb5HUBLjhnN/WQgQFDTjcD9/SFAefUhJ9ZbI0DfQ/OKYHMlQJK2wvPIhSVAK9Bk8qTeIED8ECAhs0IYQFx9Ny4lGBdACXHHdIVDFkBYy1s4KXcVQCvWqEn0FyBA/uIKvbZZIUDD0JU08ZEcQPs5HHaOfRpAMed/K6hfHECbQkK1GF0gQLIgpjN19yBAsmthcMw5JEBSSZ9+v9giQMl68HEC0SNAE7lqJ8cwJkCPpPWYC1EoQP3OxRobwSxAgiqGLL+OKkAkpcspfpotQH/317K2Ny1AXvkXKZJNKUB0qKOCmN4oQAMB8bGcuilALgfUfDBUJkAXVsx/cWAoQHL/GIu73SNAJKQUJ4U7J0CuLuJTD94lQLZxUPonlihAjzPoOeyNK0D4ZEmXj5AtQMiR6exxtC1A15PIQTZELEAPdP9YKmosQErOG7G/ii1AydG/ebf6LEBrRc4hDWUsQOCkFfy5XihAMcbrvIJ9KUBfXaUemm0oQN4KHUKS+ipAzUQnVCA7KEB3ZjUnZFkqQFX5wZjEQipAkcWduKvUK0A9RefWy54pQBsPnrIw/ChAQcmN/wOrKEBE1O2gnbEoQHDgE0hDPidAE6a9+rcwJ0CIcR8YPIMnQCKEG6fq3CpASmTVClsUK0AmliDHd6QrQOhJH8UK9ytAg8xg0WOvKkDAEBKF4XYmQIUJ87fDiSRAbPbqbJpbJkDRHqveEaQkQIv0+0R9WyVA/8MDUawMIkBd1RF3t7whQCOs8ieRlR5Aoxhms7hMH0DUxP/LbW0gQAXim3JWkSFAYg2foGdJI0AppQPQ3aAiQFAtBHNAGSFAzKB/X6n1H0DcGfMuxlIhQGKOsqA26SBAX+7pFCY0IEDasTSK6r4VQFDXYNWUIBdArOLwhZWiEEB+Uh2Ou3YSQDdRE1OkzhVAwkYuB4koE0AXZvk423kZQKJTeUrQIhlAY+p4Wu3KFEDzaMXBHDMUQLQnF5YpvRhAQWWKaJeoF0BT68GiT3UWQKrIaGF/eBFAEQ1rA+UVEUB7G88C3hUQQDN9/a0DHg9A2JwXTNMeDECOtq2G1NsFQN4amA++HBRA3Yasq1wIFkDcd6E6/bIVQBuNUC+b9xNA4cPIoY2gEUB6mjz+ngcYQNyGwxDxwBtAjXd2iKjLIEA8Xe0b32AeQHoVLP420h9A2o2dxr6nIkCARR8+twwiQGxaAjY8QCBAPbePSguNIEDKP8FU5TsiQBGEncGC7CFAoCJP58fYJUDdcNwJgGUmQOpk2123PiJA3IYiBfX/I0AcbV0tkdgoQHJW8lGTISpA3BdA9qBlLUC8PVhmch8wQH7y4cPA0TFArXmCTSBLMUB0IyQMy8EwQGgLZ6oVoTBAoeU+TgJuMUCTRBsM5qwxQPVHiPTAaTBAPrJ969/KLkDYef0wjx4vQG232BGsMy5AxTMNgorJLEA0FMcH6I8wQEmTCenyEjFAlY0TZC/nL0CLQdsAfbEtQDCtyHdDfC1AZB2U10sgLkD2LZOxb+ouQKEgKpOHti5AonfXfKy7LkAyHGm5EUQrQNZgn3aaHSpAeHNtNbX3KEAN9XdpbAYqQFHqkBIhCylASMqSlzwsKkBKgKQO98AqQNWA4uBu6idARzk+NOVpJ0BJKUQ+jb0nQBl0PwfCUSVATSF++XIxJUDTuAeYwW4jQPdZvzaIOiNAYMnDjELqIUDUyfm7o/wiQB/sBrJ6chxAkdKL4x3qHkA+i6zS9ZgZQDfrHfFnJh5AnCSpDx/0IEAWwAiMpgEjQHE0ucdw0SVAdMdHmJPVIkDeP1TdeHglQKTAswa/QiVAut/UJSySJ0DVvYi7yOIqQAbJZqrqMi5AP/1MR+R+LEDktCi5Sh8tQJxx69MYLStAXtPhDuppKkB2B3a2EWYqQIc2j8VvQCxA+Jg24r8PKkCZx0XYNwQoQJ/Jp5OSgipAJzhhcWn6JkBrI1mnGT8oQBUD8EoLCCZALQwtPsXYJUAqoazqhsIjQAuKnHtaNyRATsMahTMbJUD+weHgCYokQDimE+DWJCNATFxFA0e4IkCUxQC0EzAlQHOTfgihDiVAJm+FTGXaJUCUcqlcQhIlQGZz0qip2yRAOdwkKsXPJEAkAeHLQsciQIEbGoePWCJAIpJUAzSqIECflpkc0aAjQO/HYK8wcCZA+V4uzX/GIkCtRi5IKuQgQIRebZITjiNAWaTTQDvpI0DCGg/C03AnQNIVxdRzmipAW/FyoAJIKEBfJSOmdnIoQItMAZ5ROCZAy18YMlQ6JkB01+zHomwoQNGBD4vaYiZADmBALEg3KkCY7hCiKowoQGmhzFNMWiZAY+h8TIoEKkBlG9Rq6hMnQL01DmnvGCVAGax5QGefJkC4kiCitu4lQFR7Ir3YLCVAVPv4yEB/IkA4PO7N5VMhQD+smaiOkCFAM6pKHZc5IkDqmLGeq74kQFpjiTTkgCVAwcdwUATJJkCY1MYZ1BcnQDdx5KlwcSNABu93K48XJUDCruGRS/AkQDVY5TDheCJAu58fTJeWIUC5MEzF3QUhQEQwlmPouBtAjoesVAqLG0Ag/Bx7VOEXQEJQUGoNPiBAlNJWFt0JIUDz9fGSpVEkQJKSrK4u+yNAOoYXcKaYI0B+PyUcgu0hQHiKrdASmB9AEMkKIKDBH0CjfqsPj98cQNChuwGeThxA3ROxuk57HEBE5vT7xGMcQBzVdvvIJBtAlsOHtwH3HUDgad+d0+4ZQAnBwonoGhtACqaojTwgHED1yVwWuYceQDjSBDe3PR9AsT7ibW1YHkBPdCEN6jIaQKT7txFGyhxAdoDQAQd6HUAyax4Jzb4ZQOSOIfNn2htA1yL9LLIqG0DHbvqMsVkbQMYRgcv7jRhAIigz4JyiG0AyuEJEBhoYQLZQMj6C/BVAqUA6Ww3lG0AtShSJzwQgQAAGLuCD1x5AhLgSKEu3G0A0kL9LGhwXQFZS34r4PRhAwPRWmZXoGkB6rzY4HUogQNadTSOzQSBABen86ns9IUDIOt4CrvMeQCZupwrvxhtAqS6sZKsMGkDNFMDkW04bQNQ5+0L07RhAsOX2DINeHEBqZRu1NVEcQAcx71/7Vh9Asm0g5jzxEkC1e77EtVUTQLqqJtjOdBNAz9CMI+4vFECCC15ik4MYQAXwdWm5ZhVA5PRiy9lIE0Azs5iALq4VQJ/kkHvc6Q1Al4+UdYzND0Bus2JWWewNQPjoUyu3WQ1AX8PVVmS+FUBD3Gz+hs4ZQEyUjwtDxx5AgKfMOfupH0AfTiMdJUQgQO96TYd8HiFApKngJuRVGECjYufb7+kZQOHf0RyURxpAE4HTAn9lGEAUKjhlQyoXQB/zF80nxhNAz6zKwGtgEEBOY1zBb2IXQO6EqL60WRRArc0H+k4NE0DiRIzzskQTQIHpdqbq7wJA4lplAbV0BUCDnXPdrLMJQNuDeZCMNw9A83rJ9Od8CEDdyX00+hQBQJBxJ8xx0uk/TIEl8VKw+T/gM+ahpsTUPxjTHbmpL/Q/StIAntXr7z89xh7W7jLtP/i53bWKf+A/3i93+AHY5T9pxR8dqS/YPwSbGBU57u8/ytlymnVO7z88iJLeoa0KQD7lSaqSHwpA2NwJ1tvpC0B8TMKDjRISQGlDYhHUPhRASIWeR+1yEkAj7XtG6uYYQBKzo4lxnRpA9xZkNKq2HUAZyKJnJrogQGfH4+ZoPiNARE78Ik27IkAVNjSoX98mQDJpNCNzxSVAX+E+LaSyJUAqF70H9mkkQLVJ9cl9iCJA9GgHPPMcIEBQ5vV6ihIfQGzSmu+nLxtAHZjHhUTUEkDouW1axRQSQHBI6d1wfBRA284CvQSGF0DoV0zc8UcJQDvkU1ndeQ9AvDoNCVX3E0DiAKWm6Y0WQFihkBx/fxhAhjmhgeBJGkBozL+eWZMfQO8uph0EYiJAmMQZ8MxAIkBdgpspzhklQLQSKKI8bSVAinFx7viXJkAUUArjYDQnQDnrvW7OmyRA9fBGf3MvKUB++JPI74smQCE/fCQj6yJA6y6rb4uRJECNaDhgME0lQLbC6xRAFiVAleixEsu3I0DR52RQqhklQOoAo0jHDSVAkZLHh8b/JEBX2CnNc0gmQDbVclX6cyRASXADQdR4JUDw7RlBtPkoQFgfSknYNyZAGQpat+B0J0AAtJCx8FEnQMd9HZzCVSZA2+nsz0+2IkAWoWdDhBIlQNi88W7WViJASsQiT2VkI0ACvZfVCcYlQHHql9+mpiVAF6d1ligYJ0Dt4hrtnasmQHOPwfvsQyVAhYpNEIvdJEBxIQ43IIEkQD6CjmCDJCNABE9kfJnsJEDLQjXwl08kQIW0fhxyViNAS1aYjpzJJEC/XQmYHRAkQI2z9qXD8CVAGmTQFhy/KEBoh27pMRAkQOKa9LOeCydAScwgxQP9KUDv6QP+c6AqQGTRX61C5ShAyev74027JkDIVncHm5MoQBK1VB3YgShAyz/kbuCjJ0A5IilmD00kQEVZej18iihATiZXHmp6JkBgSuJtgQgiQD2iySow5x9AIw4m8C+1HUC00pSeYiQZQE0XS8LR5RxAwKM7huxnHEBG4Y2XuCAWQNmnIKuFaRJA35p0PY+cE0DBOt5Ry2ETQCL4OxDlmRhAIUeo+O7uF0DsbJbvacYZQHR3TaOB5x1A9u1uWa7uH0A/HIRKKCofQEA/Z90C+SNASUXimuuAJUCHNeicY2AnQNlmFh5MmihAbVtvzuuzKEDe3MvUlKIoQN7xrcOpIClAO+jb0VGyLkCQTJb1kf8wQH+2i0MGIDJA710iUWvBMkC8vcq2J1wzQMx5yU4ENzVACv3ka2uDNECjhURBmcMyQJrX02vEwDNAq9b2IwmANEA9f6y3q0U0QAIP1uPEJzNAVnVQMcmBM0DuaZSQKz40QKBHzjMUdDNAXQAkevvPMkAVAkcnTM0yQEcbBx4pYjNAQZQAEh0RNUDlPxaZxZE1QMPDMG+sgTRAF5mVldDOM0DtIn0uSnkzQFd+G6b97TNAdZehADcwNEAcwvJB0CM0QBZnY3WZUjNAuC5n6wceNEDAiIJD0XQ0QLy3mZ9POTNAvnc2TaNwM0A3qIxzvyMyQPHCt974IDFA5PvyNqrbMUAbRlGPO44zQKVy8OcSYzVAtzhtt+DcNUAMljHzpLYzQNj+PjDhgjNAGCmZrhaHMkBNf3Ai70IyQHVNg53sjzJAddOfGj5JM0DN1EVKCy4zQMZ0LtzA7TJA29MFWygkMEAAG6s/Io0uQP/AV2DSiixA07cUAKTuKkBNx2qWVg0sQFqpaM3IhStAupRHfqctK0DSxLXqt5ArQMF8ubrScClA7bUzAtmVJUAZGpdiHhYjQCdQYi6hfyJAk6bFecPxIkBS/1MUWMQkQNlS3YWkOSRA9otZLt/hIUBBTzwbTG0lQGjkdWE5XCdAW7c7W6O3JkCYyh0V8xkpQA15Q9CGXiZALlZAITqcKkB++BfJTOYtQNK1sxm/Ei1AKMkrDmM7LUBzNr06Y1ArQIyVhwCfEChAdZ6GpPO1JUCIiB8kFNUkQNElizbwZCRARLX6WbOVI0Cus+o11AYlQCDo28Cf0yFAMUmgwnPhIEBfN70ZCUYiQJ8hAeCK2iJA1EVanW5oIUALZfJ3RsMiQPHAcn8lKyNA796P9JmCJEA5aP9AcNIoQOy8PjQDUClA5XWQd9AmKkC/FEka3yUoQJ07BAT4aSpAr9b2jF2bKUBOodMB5y8pQB/LU8iJbilA2MFqLs65KEBTFqnhRdYlQBfWxhPBiiVA/v3JIchcJUAFITAJ1/UiQCYg0BrvqCVAW0J5x+KBJkAUkEi+zhcmQOsaSWsVQiVACbA1Lb1CJUAAf+UbAVUlQNSSRj8GViJA1gvMlpTCIkCTGqKiUT8jQGZBhPrnryNAUypPhHPsJUCYjYkJU/snQFq2UUE8fidA34mfu2/HJEBm69G0IzElQGKwPJ1i3ChACgJ7WBdOJ0CqcCpKC3crQCjObtPRDCpAQDwdbVlILEBuC2vVWRgrQFGGZuXL4ipAgPiD7+GfKUC84Xs/RV8sQP2pl2noLy1AAPZKrlKXLEAKrLHzgbQtQON3iUBJvC5Ak3YLFm1vLkBdaG2B8iUtQElcssgJKi1A4h9OuaPLL0Dti6/TfvswQDh5KCvnqzFAPnK/aT/5MUAmuAvQGw8zQDhhLjUHHzNAvkYXtWSVM0BWZr2oZjkyQKHcB5fuijFA3NNqQ1KBMkDbEWxiWlEyQHx45NlN+TFAPJodwQ1JMkDrKMmf2MQzQO67JBPkSDNAtX1d/7JjNEAe8ZcJsnc0QMUMJ9dobjZA3FX9CONXNkCXMLYEH0k2QNqoHLwq+jVAvVVdQHUZN0AJwRa69380QEXt9pddSzRAPRC8jmTkM0DQLe6Ad1UyQIJxFPqUPDFAwK0gWGyvMUDgEMhSr2AzQNJzgfxHTjRAtaaJsYXmNEAX1Q/8m1o2QEajCQK6MzdAhdPfzeI7N0BJ1gfmLFY1QEMkBH1MTjRApSyRqIHkMkAXnxNlzMMxQDbZWK50kTNARkMX4sA8M0DTZb58kbgzQKIn75pJ4jRAJbTDnWmkMkBNSqOZtzMyQEqM9oYQaDFA1UANm/3wMUCGwcD6cV4vQJ9fhZS3ti9AMhSWgijFLUCQZ3H5g7owQGL41V4f+TFAcjkoNcV+MUCRSZxD6ooxQNn2pA4TdDFABDhlwUs+MUB5oeV0xsQwQM+1P9TSiDFArqnHe9RBMkBrdVipx7szQCkui9wrBDNAXzvB5Vu1M0Dk5obCj3U1QNdbezm7hDRA7dl+uf5xNUB1p3KYo3U1QAy9gTEXJzVAhotbfMx0NUD8+UxcPy81QAzy/D5w9jNAWGcdrIyDNEAi6GwP1x8zQHJ3xYRMRzJAMjc4GTJlM0BtrYcXGDUyQKshOKPmPjJA2X3bbX0rMkBKX6BnF+UxQOxU0yHX+zFA/x8dbY+gM0BLM6LWDLwyQLfKq2OTWjJAqp9dvU8PM0DTaCBjQWc0QDqSdNinkzVAymlUWXHCNkB/N5E0VLk1QIpww6DQzjVAtECaDEj0NEAjIlEGROkzQClGztL+sTNArOkk5cEuNEDO5WG5StsyQGWTjcT5YzFATEBFVdf5MUDh+Rrc9rswQOhPJOJmhyxA8mjx20taLkByfT26BOYuQDw6peM3sjBAxQyzOKYjMkBj20MiuXgyQAm2pvaEMDNAAjytXA5OMkBCdyfyNqcyQIQOEC6tEzNAideQ2KxTMkDUFm6UN5YyQNuBxTwBVTFAT6ckzFlzLkA2UfP7jGAtQLOmK6oPcS5Ayw47LgDULUDohKlDwtotQMxDl0QYWDBAVUrlr2kgMECCkZ7POvovQLt2qwV+xzBAK9ajkKJjMkA4IZ8g8UkvQHvIY+lk7ytA2uwOoCLtK0Dh8ICHCgUrQFcinqZPZCxAApQpK8jtKUCCGLaLNDArQKym8PDDtypASrDrLmCWLkDWGcEICJwsQIvOKz/upytAbD7waODBLUDOFZW6qMssQHyvFedKTitAPUzJX5ZwK0Ds4lBr5aAqQMsaV6G8Oy1AdALJnY+6KkCH+uW3pm4rQNZGRwpqyypA1Qdo4QrjKkCDDo7ToIopQBZd8oA0pClAY6PU+lhBJ0Df+ELI4kcoQCSx/73KQSlAN1J0kvmqKEA5lLthkr0qQHN+6qXhTSlAPYY3pyp0LUAFOD/GqiMuQB11BcN1qSxAQQYxjTrkK0DUuQRa1gEqQN0ApBJicCtA8CBMBWmKLEABWjpU87wtQM2vMXGN3S1AKp5qUlqVL0DHcoEVi/cvQDctGUzTEC5Am2A2ZdNOMEByiYbUE6MwQEPgKnFdNTBAggFw9NCrMEDYHOkg4NsxQHgVTpU4ojJACkkNgnVgMkAeuwrjO4IyQI7AK/V/mjFAilLIiCf9MUDd+aRPHqowQHGNpGWXMDBA12pposGyL0DNkF4aEU0vQKI6OGuCHDBAuNlZZ0zKLUBrjZOVFTEqQKuLap3+XilAAbQeAjCzKkAXcnoANRMpQHOXJzNZWydAyVwm4+gQKECq5oq7Be0mQGb/I3GOoiVAPNhEZiVHJ0AO+LUfiponQCzv6eHRHChAIuv9gMAmJkDpBPwh5K8iQNA3koNp2yJAz07mw5vjIkBVRa1A/6wlQMCNb+kDDSdAp4yifIDJJ0CsXzx2a5skQGV0fiM5WSNAL0MZKXNnJ0AizllGA5UnQE9/CsGT+idASUoSeSTEKEAlxDlbH5UoQNTNe0vvViRA5ly58UDwJkDJJ0ZC/A8nQPYFB59xjyZA46Ff+VOzJEDQTFw6Y7ciQBLeQ/fmlSNABU8RrX/bJECKvvVGNa4lQN4Az87LOyVAWb0Vbm16J0DkIpuT9SYqQLLzAg30aS1AQoHDBFvoK0Dv2c1tYScsQPc32Icv7StAXJpUiOH1LED+WYZE1pAwQKloST54MC9A4Hy/bFJ6LkBRevRiulQvQK6xASQO0i9Aq6bE8E0RMECE+35tTHoxQGZ3+iz4LTJAa2yS6fMZMEBpLoHGD1kvQFOoTvy2ci9A6hHOTOpGMEByp+opPLQwQCJ4YgdxHzJAUgx7LwwhMkCafPRTG18zQIUbozYCcTNAPw3mN72gMkAIZWpQhmsyQMM1iY/8WjNAPeNxqXwRM0ArQjAMAIM0QJpkKFN65DVA5EaAp3EuN0C0E5uxk801QJ5upmZqcjVAofDLCMFmNUDJYEyrdGI1QHbNOWCfKjRA3kMjPdIqNEAE5bZTc3E0QJp55MboRTVA5ZmLqYPbNEC+vvL0vZo1QPzJCnUZ5DRAB9Gc67+FNECm83c9Zr00QIkdrePTHjVAXCWWqf9UNUB4kC0+1oA3QOq9nFNzYThAnlZq1XvKNkA4RUP8pGE2QOEOpubYazZAbl8sGdaKNkBGUcCzp083QMf2c1cenThAH+CZ1O7POUAg7s1YgKQ5QFe382wk9zpAM4nR2BiJOkDeoG0tFhs5QHnGRua4GDlAGYoZ5bvNOEBIhkjI2cg5QDTDy6tHijpA++/nG69uPUA6EQlJvKo9QNLW+6RdxDxADPaqY63vPEBfl8DbSUY8QPas/uHCKjpA6/L9nrfPOEBfYfgq6CA5QN9VgSrC3zhA356Tn1ALOEDfUDAlK145QGbZEi31oTpAF/Rw/uuNOUBtcFcmVgY5QGG9rVrmKzdAAlCSIHf0NkDaZeSZJZM1QGSo7DQfNDVAOKhzKnSCNED58udyuMI0QKvS0FCgXDNAgTFFOey2M0CYwKqiHYA0QOkCQr9SpjRA4F9oInNcM0BiGdQLnJQzQPUwZELHMjVAJrhA3x/NM0AJzhGolIE0QM4XHGWMozNAu1xxQlsFMkB8Pu0+O1gzQAkFNw+ijDJAhCEePQJNM0BPCwEYKVY0QLcHX4edBjRAu8/bqvb+M0C89V/azT4zQFd30P7YwDNAqNSAzmFUMkCYySSCB2owQJCqjAp0mTBAcoAAv3xaMEDPTkvYQVoyQGhdQQ5rLzNAIQd7EjP6MkB6sX57Zb8yQJlDnZn5TTNAYwJNevICNEAF93V4GPcyQITkckgEVjFAGxcCDylcMUAGWanMjhAxQFNh+1B16DBAfY4bWWKfMUAcuvMTv8AwQBwQcESbTTBAFCTq2Z0xMEAXGWQihAkxQMMKUfgxGzFARGx3us7yMEC6gL0cwwQwQC+O+CTcMC9Ay4LWTBVlL0DLLG6wtGAwQEf75KNWdy9A1YeYc2qnLUDtvEjYwQgtQGxZrIEFRzBAq4yQHTsXMED9t94sbCswQL+acn9uljFANyTV/POpMEBnyHgrGYgxQLytOYRw1y9ADX8c/dsBMEDCKSL/C/wwQBv8oED4gjBAbIwH//weMEA/NUqvvTgvQDM1Dr0Ywi1AI0vWRm0NMEC5jelWpYQuQINPFvYfJzBAc8Dg2ieeL0Db8g/yvy8wQIqM8WO62i9A5MtvcnPeLECQcqB6zgAuQLbatylShy1Ai0Wc1VtVMECqWCwgR/svQE9KasHvXTFAxrnC4VKwMkDESXfMg3QxQN9iKy/cjzFA3OL76TuJMkCsCBrDZewxQFuxlg3tMjNAFeaBJQWqNEA5z9h5fn8zQEcdl2KQyDJAt4uGPzPVMkCtIvJNRJ0yQKOIHT0n/jJAr34minDdMUDSiMO2CY4xQAzBRzJlAjFAyfI9oEVrMkD1y0hIMLcwQFlas1ZBpi9ApWzNGjivL0C1peqhMa4sQMMIGMMUcitA7P0SPaT2LkDt7Hjv72ItQGMtm7iPnStALON9V2U8KkAaUSykSZUuQBZWSXDt6S1A9SHpk0uBLkDnNvu8QvEuQPIoVxV9pTBAtKlEPor+MUBQtYMm6OAwQJCA5UcZjS9ASPSYrlI9MED2JO5QgOsvQIm6jZDE8S1AM/fop9oxMUCs7JKwpuYxQOVVQKrtVTJAZV9do2bsMkB5lVWzuhAyQOP5qfTg5jJAMklOFcBDNEB/MmeMFnkyQI+LQvaMoC9AqbeZHh3rLkBoQ/nHkDMvQC3l59VUETBAe3ah+C4HLUC4zT6lNd4rQMNt6Gu9FitAjuiApvtaJkCZduc10GMnQO6sGWueQydArl8TLvYSKEDzPZVkWzknQBF3UsjJ9iVAOWNuWOJgJUAxEqXRPjglQPCc44t6vyNA1o+6dWrvJEDL6Cqon3skQMDDTxtbhCNADs3s4D5FJEA/B2t3fHUjQJi2lg4nqCRAqk4BvPLJJkCXtNBvf5slQFcrRiW3ySZAExRexpPqI0CNlVMnFvIoQFtsQR6xzyZAQw4iWeTbKEBRa0C9tVwqQI4BvjZVdyxA/TVyqpeDMEBIw5SIeHAuQFPh5y0ZfDBAqOMauZlDMECtcf919cYxQG2HpkLsFy5Aph4d8rLEL0AZIlmzNEsrQESK6crCJilAi7iFZfqIJ0CTnl0FpeApQK0z0x7aFidAiaxHIYr8JEAsfNghpcMkQFz2wytUHCRAVtRb8CZwJkC2s4QaHwgnQOwSQ/Tj+SdA5K48QXs+KkDiV4QNCFQrQFErR/5KmCpAt8YxdpyCK0ArR2gylFYsQM17mTmqHCtA/NLsaO20KEDnd+knCIwlQBCGzcXrSyZAHZYH2Py0JEAEInqCwPwjQA+CIbPz+iJAzgI3z976IkA/tB2a1s0hQIe2yNjVZiBA0dNAt8g6IEAkaCbKVs0cQE3CBQm+PxdAr8fVu/1SF0DkRAS+AMoYQLNrN4OGzxVAG8euY88QGEAr4gVdY2QWQDqHby8/DhFAZY8LLPK3FkD26+npRn0QQCfczQpMABdAsuq96JTmEkBKWqpANboVQOSsi8jschlALMb4fVtAGEAvwZ0muY4fQHTmpQLveSFArGN1H3kgGEBCCeKW6N0fQMJ9Kz/PUiFAOLVxCdz7IkDPZKcI770gQDOFWNLknRlAmooouNmLF0AWbNbuJ8kYQFIIIKPrFyBAKyYbY9UMIUCPl0KHduQcQCEcyk9cWxtAKcrfYrn0G0CcOTNIG7kZQDR+FGPgcCBAFUIWZWOHIUDHnPvT0SwkQLmx73Eq7yVA50tCjSvIJ0DMfFGchZomQDDk/LTnECpAJ6CI8U3SKUCDP4TDIhsrQCB7LP6/tyxAytXuJvYuLUBmikkmVpsqQC8In99g2ihA51nnsLZXKUBzhLh4gaQsQNIok1HmbCtA1/fyT2aBK0AKsgO8scAvQP800awHTC9AQrtfXg05L0DlWRxZPDowQHWToGVKIy5AHaBU1DoSMECuv+Yr0SUwQKzTanyeDzBAH5sHJ+9+MEAi76N/5c8uQHQIO96MwS1AV2fp5T7sLkC1MZfjc7IwQHB6hNr4RTBAyyho69UOMEBbVAU1DJMwQL8FGnHFNzFAFCzouz1PMkBccDck5zIzQE1Tm+mdlTNApD3iZEoqM0D9fbmiTiUzQBOTDyRIrjJAq0JqsdsEM0B4pR4BXrczQGne2zd23DNAmaUrSShfNUC4UdkSWhs1QHq1XEdZeTRAw8+nwW3GMkD16kSee9IzQMnzGqVOdTVAKQft/Af1M0CJeWPRz58yQJednMXzvjJAZPFNJKQZM0C0aRwCvRs0QE38HwLTczVAtEOmYFQuNkCZcbHFbck2QPrYIlX3sjVAJe/Hk8nUNUB6ua6Yaw40QILJRXM+qjNA9mth4rGFMUAGCKCM7RQyQKLZBI9NTzNAmFqioDYtM0A4Wknl0rEzQH6ZyiSa4TBAXwHVhfgFLUDB2BrCF6ArQITXGwyKdC1AqWxL4hwwLkCkPWsKJaksQMuxPWjn7SxAVGtnEo1BLkDKaClMwrssQKSb/wV2GClAgcpwWgNoJ0DQTLrpVgsmQPI6ZlU34SVA2Ycj8+UNKEAheZe6bcclQAmol3489CVAE7OUWXZ4KED7muGgPDwnQG4SrVftySVAce2foSvYJkDRY2dhwgQoQJpYO/4+CShAH0CtL4xMJkDS/Spjkt8nQAGYeGA4sCVAHTjluVGnI0BcO80YPlcnQOBpqPCyhidADYRILbkIKEAj4SsiWBopQHjd9nj1dyhAOaqcMY6QK0Azf97dy3kpQNenahJhrihAjSMGLp+GKkBFL0w6ylwuQOjc5NB2ZSlAySRPPgXeKUB3yStlD0knQCTg8wn5aCdAP0uywvVnKUA7vLRoHhApQHZ3EK+mgShAGOc3Oxd7JkCrnLLsLUMnQG5DTDK89ihAz4F8YwXfJ0DwpFSzRwAqQGaLDy3UISpANosJwhC1KEBF2GLCiwonQFcB4QfptidAx5lf+piaKECXkgj8wignQBEYzUk7zidAbT7+zmvvKUCUxCaifykpQBVuheSQtiZA1SYByMAiKUACuOLlycsoQCXgeuIL3CdAXFR3IU8/KkAoXK8shlssQO4NusqidyxAfhvTO3GvLUAz34iOD60sQF6f8mnVKixA7Lv/LakNKkBKBBHCDEotQDwl65x95C1AA5+vjZh8MECjKtzFPGwxQDSpS5LiWTFA04Twk3Q6MUC2YIe7ewIyQMQvpG2IfTJA4Rtx7vxOM0AC9cE52yI0QH2xNUJyxTNAA3LOHYWyNUDXBzvRikU1QGl25bkAgDVAX6ZhMtJFNUBFSGzeaIQ0QKChASwGAjNAqq0TIvtONEBKKuodbJw1QN6NTPTEDzVA9q7ggNlnNUAM93TnubE0QP7sPbXs+jRAtB7xdo+BNkB8NfmDJms2QAml1yQv5zVAqGqq/cIbN0Cs+0zU3eY4QKiniOjhsTlAzz1LhI71OUBLaQTCLGA6QGVAfFr1HjtAxOQBGZz8OkDMfjklsis7QJxRshrGdztAZotIhb2JO0BZDtKoZWA7QPUHcA1YHjtA9L1fK5NsO0De1X4fuSk7QJIU2P/2JjtAhWvtcncyPECAodbHyEI8QGxZXrm29jpAbIjM50qGOkArwUjDCIg5QK5udE3ZfzlA7c03N5VoOkD2Rs6xRaM6QMThLU3zfjtARCOWZ8+sO0BjijS20jM7QLo/5NnFbTtA5hoDarwUO0DkWwHcpXc7QJDwLmZKNzpA4IbaJ6RnOUCoW67XFI45QFAngmbvGTlA93N8QXgGOkBWLSNC68Q5QGpMD0Ne5jlAAwTuLoayOUDQ49Pyyes5QDaR4eZF2jpAnvTQ0I18OUDOHZC7i2Q5QB79PhcuXjlAzO52n1xBOUDT6okExaA5QBdHX46V5jlAmwLC8tlEOUCinlQnjHA4QPW1qvfmiDdAWi7kL+9jNkCofN4Wa5U2QIKRtH3u0TdA9gIKrcxSN0ALOl1Rm3Q3QPIyunUyvThADC0qihmNOEAYvX0oSXg2QFGySUlaJDZATktnU8+9NkAZQ/tLQWQ3QCFyJwFYyDZAoxOPkYq0NkCASggi7Fk2QDm7gypjwDVAwLF8f1yINUCRwtGJKNE2QOWMMV2eVjZAUo/atWZPNkCiZfd2R902QHoy9h2L1ThA2kDPodJuOUD0KDvQn7c5QIGbnmvf2TlAdHtBPhfNOEAd8zfr1145QN1pr645cztABSbgpDKuPEClaLij0G07QOIaL7WWMzlAO8y32QuVOUDtD9VIJaM5QPSqLXPptjlAZ9U2mOOZOkAc2hn0kjY7QC8m+ybT0zlA9koa1G/0OUDIi5HM5EI5QHizs8LBjThAPby+oMSmOEC899NbrQw4QMr7fV/KvjdA7eoeRl5ROEC5B/b6V+Y3QI30YqHZPTZAKAH0eWM3N0CJbdlKWkU5QOG0idFNqjlA+IiwKYETOUAy3R/Ny5s6QDqed+BGLj1AQKNXkQ7KPEAYAu9Rekk7QNhJxwFiLDpAorLSrBJzOkB5OsA1G1c6QCzTxaojgjpAFshH/LgbOUDpdPNn5j85QNO9gGh8SjlA64dyH0qJOEDsT2/xi5E4QA/tKs7uTjlAMnVqwjAlOEAclQbwwDs4QPHIGsRgszZATAxx4Cc0NkD0ZkbFmVw2QO/iZS+sTDdAee150PdfNUA/mT9Y7ko2QDh25ErSaDZA30qB2t7pNUBIOWkdSjA2QAjg241rnTZAunukZjgENkD7daIL1V81QH5/K63+cTZAXrMxb4wZNEDhLAzLHcw0QLVrxKX8UjRA9A7/GJDuNEBqRa/DgDM1QMvvdDzKvDNAvSDHR2XDM0ArXLVwry0zQGk5wWFn8zJAg1Nq/tmlMkA8xHDjVO0yQG/9/DlbATRAW/+SfFAqMUDPjBG1RdkwQCpGOpOTRzBAQkPUxQ8TMUA3eYzGcpUxQPzHzwe6pzFAH0RnCGvcMUB1H0qdDkMyQHQbFJH+/DFAkhmniiAMM0BqEKUTPmozQCBWwE+wJzJAH5BsslFYMUAjKK5HkEYyQJKt54Tn1DRAfLHsFHhdNkAgpw4fXV03QE4OEwqyXDVAcoHo16SNNEBjKiRwIaE0QISfxa8AzTNAZ8lGMb2bNEB3q2vURzs1QAKnQYCjYjdA3d5WO5WcN0Bi9L0Yqfc1QGtGRBlEhTZANAMaJGRrN0Bk37joRhs4QPltOm+swDhASUiDhCwwOUBWPTm7XGc4QHDL0rt5xzdAczWTpXXtN0Aj+CnnU1o5QHKtlpgk1zhAD71UO02POED9ZMMWO5w4QG7RZJCSKThA7Dt/I1sgN0A4SYtN3fU2QAA+ZrvKzDdAYqrkIu4EOEDgOwh79FE4QFEoTxH0VzlAVE9aUwOqOkA3q9i0ksE6QB7RHUCZdjpAH95HANboOkBK3/b3XP04QE5mO/HRADhA8ttfkUBzOED6qeesNGI7QC1XEA9nQjtAWsjahmboOkDjQ0kWWcE6QPUFT2eYQzxAIrHwyKftPEB+y0dHG0A8QMt160lDoT1AukLEGFsrPUAScGq755o+QI6IFPTiRkBAHdGW5+PJQEAMZeJgn2BAQF4E6JoaJkFAcRVLE82aQECHeSPcMQtBQHY834T+PkFA93JR3R1hQUBRPG0pvD5BQG0faVaY1kBATZq3q70GQUA/LABu8qY/QLdcWID/AD9ArZYns3zDPEDWq66gQWk+QNSAp/dCZz5AYhPbmtU8PkDdH08yPP48QM2ByIRoGD5AOBdYIUm8PkA84Me8vPA+QNglTaEnTT5A+9pxOkZOPUAe6rPk9To7QKvklYA4EDxAyMJhsuZ9PEDya1qlgDE+QHsljQpvND1ASiek7qgoPUDXIK7lk4k8QOV+S96UpTxA94vYMLhbPUDvTfxBWv09QOELn5jUoD1ABt4QW1AKQEDXeH2oEMo+QCLxnHC3RT9ArUZmbJ6/QEAoQp8+z35BQKw1YuHL90BAAcQLS+lqQEBSbYYttZdAQPDoc6x6HkBAoJwum/JKP0AUz+K66RZAQDesqOvR0z1A/hPHVY4LPkBp5Xwwctk8QBlswdHkeD5ApvYeEkz1PkAZZPy0uCo/QIXZGTU1M0BA73dNCmzAQEAzkmLfZStBQLQa6As+iUBAXkbd0o7QQEC7Y1i5XfpAQBZa2xKkFUFAADTFinvKQEASOoC1TWVBQJlg5jbxDEJAQPg4Sfy8QkA0xyRnEeRDQBNUA6e3wENADuAxHwq2Q0C6NixOha9DQDeNqFIcOkRAEzZreIh7REDcaCz9GzZEQNe/9nijT0RArMLTW4EvRECFZqolJ0pEQC9wYnz/GkRAakn9CM2xRECKnt3wgbZEQGS4/87gDkVA47ctFq4vRUCVWskRohxGQEM+p0lUFUZAxCqUAQ/kRkDvZMKHtvRGQN0cV0cfTUdA7G6US9l/R0DWkgE2OV9HQPIiwP0sUkdAITAVkq2xRkDaXGpkRMFHQFfzGAqC3kdAhPUbmc9rR0DuJHJzqfhGQInWmj12tkZA9wiN+ZEWRkDWWfwM5LpFQFWb6lfDdUVA3iobuAFhRkDTx8cXb0RGQBujxMssh0dAC0CdsGSyR0CT5k3O2iBIQD3R2wz+m0hA8yzCFnBQSEACK19lTbZIQE9WQN4M9khARwroO7qmSEDD7rxfQllJQO0zSRQIWUlAvH2NlgEHSUDzic8tvfxJQJ03f4hJNUpA39UV6rtmSUBwrokf2INIQLu2TJ2XmEhACcgBEy0hSECGZyiz9B1JQBVMVgqcn0lABThbq8P7SUBDSn4c2FtKQN25OMUpbkpA+jFyBgh8S0Crthakah1MQIAfkWVD20xAHaw+0NpGTECZSHSdSGZMQDt/YKHH/0tAOv2cVidUS0CjVSNuJtFLQBPEQUThfktAzpROqBO7S0DddhB0uZZMQOMCZ6UcCUxAu0ku389CTECa103zKAlNQJlcPU1nh01Ars30ts08TUCKpCHjYEBOQD95daLU7E1AiWIEaMtpTkAjARjlqihOQMWCzPU8bE1A8yb9SK/WTEC7O2NWL2NMQHG+xWLpgUxAMlbvalfqS0CiS1UoVzJLQFKN6v52K0tAtrcbeFlYS0Co3kpyp8dKQOFl7OuDUUpAvS0hI5eFSkDE2KpaCHBKQLEcFiNFr0lAv/c71Op1SED9PqLd+IlHQB4xUiWoAEdA0MBFDOTSRkBT0yzpQTlGQFUebXMxUEVA/EnoDazyREBuHR0+dYZEQCnW7WhqEkRAuquw3nBbRECOcd0Oz9RDQCdZ2U4O5UNAEH3Ft/RcREAa7ZBEWGtDQGgn9xdrV0NAKd/4CgnSQ0BgkBxVKe5DQE3/0F2Bk0RA1BWzezoiREAxxvcrlG1EQOorfAMXf0RAMVo/BnnRQ0D+gnasvBVEQG+yQe+uCUNAfqv5MDJEQkBi1fEPJT5CQF0rE28mPkJAvWJwLYEkQkAHtKmlswZDQNvOGaFzAkNAcCQAPKlTQkBixMjJ7XlCQI5T2bfpI0JAEJkHYSIhQ0Dhl1jFE3RDQI9A6BRFUUNAgjoE/XMWQ0CwJiKo1slDQF2SF+diW0NAGrqijoDoQkACzejwqihDQASmJRWSBUNAerdknOCZQ0C4Mm+uJ+RDQEEdjfPGXUNAFs8pvwehQkAcj73eWORCQA2kksrmXENAN2XwwH6QQkCdRX0DAyhDQHP4QuG140NAodpOUzzDREAOhbmaOc5EQGHXspLXfURA3AcTnB1SRUDM5cBd/YFFQKwXdSZunEZAUqchKEMDR0A+jqg4ka1GQNWnQRecikZAHRg1cL55RkA7PYZyZu5FQNt6GOosdkZAtlWUAxQWRUA/PqTQSFZFQF6p3jCymUVAXEXVgM8DRkDcdAf9c7JFQIS8+3QVzkVADkX2QRDXREDJBf5Tc4lFQJi0GLwazURAqYPKvc1hRUBL8spV+/pEQHz1oaEBckVA1bnJD5xaRUD+YdE8cddEQKNoX5b550RASXQOuZzsREAORDyv3NFEQHjr7XC3OEVAkZDRy7GNRUBfgPYzEMlFQByhEhUCkEVAMkTbpS21RkBcTdjpwc5GQERuRF1DNEZAmxuH4s6XRUC256ebHQ5GQLSx5RYUVEZA3vejUGUgR0BB34QN5KZHQFMIelEN9EdADEasTF69R0DAknwUOFJIQOuF/0hmEElAehDBmwoXSEDr7f1ZVeNHQL72upZOHkhAmuMJURXuR0DZEA3K6LdIQE6fZ73tiEhAYqQ/t3krSUBXIT7upQVJQDkOZqjiwEhA7If1pbIxSUAaa42dznRJQClJIN+waEpAWhnAVR2VSkBNIM02I3hKQN6VG7fc3klAn7i3aXv0SkDrhDwZfulJQJVK/Kh7ZEpAeMba3j/GSkCrYQm2fZhLQCWtIDtb70pAk8H254/tSkA+YvmfrwJKQLCanYdx7ElA1ELlooXVSUD9ERdl2a1KQAqneivdKEpAODZUmwmdSUBmFKeLBFlKQFVkXA8S4klAA3SNIXmOSkA56PL6jjtKQLwkMg07qUpAaXWjOvWWSkAPTcauESpKQCMrmGXj8UlAQRPm8PsiSUB+ZFj7K4RIQM2uKoBTUklA0VpiW5tdSUDnr9rVSxRIQIA4kZ4bYEhA3KvhRdrlSEA7CBTJ2jpJQBqd30MBFkpADELaWecsSkAhIDm60FFKQCvD+lk9mUpA+NqC4spcS0CsUCAqAHlLQP/xemWYoktAf9jqv/dcS0DC7cmNsehKQA7c9cHKEUtAzoRml2AZTEDo0zyoHAhNQIAzqkJWpExAhoawmHOzS0D4lMTYWWZMQPN9ieOtO0xAuVIHD++TS0AbQVXx3UtLQHD7fwLRWExAbcdazR9STED1WnyIZOhMQJfqLibGnU1AKVZDrxtfTkAcu5Ktkn1OQBMqM57CZE9AHsEOpJCfTkBCDPHHmiNOQL6tvZmFc05Arpv8JkH1TUBby/wL2DpOQGBmP0N6GE5AmFpEST1oTUC1lP3Wje5NQPY6KTdGVU1AX+fxbTleTEAmc59fXydMQE6qaHfvg0xAMJt+rTWRTEDJ/yTQ0aBMQHwt2XHhmUxAzjLZxJ70TED46UgPTyxNQCiOtdd8g01AqB6h7XIpTUBFEx4K9odNQIoDm+5t7E1AkPJhYgeYTUAhl6Kj4KdNQGicPvXQDE5ADsDalAA6TkCQ637OreNOQCfXpcyXj05A2NDVDOEIT0CBvJQCPJpPQDIqW97y4U5AYFnCizmnT0C9ZM8nHmlPQD/m4/vs6k5AuRaaFJzaTkA+EspU4rJOQAdAuXfcrU1AZEKOEnagTUAsL9ZlCbxNQPi5HCF5M05ASeaHFVG9TkC8PoFD6i1PQDMMNaB7I09ABFgxH1QnUED6NtdSUXRQQFBdiNIFG1BAVLuSSxX0T0BeefJ99v1PQHcquAhSH09AOcxktrJ8T0DAuwUt1VZPQK4oDHqQ1U9A5720fQ99T0Bfuhe/ibxPQMvh7Q/OR1BAMUbXpSQyUEAzELV+Ex1QQEJHH5GoCVBA+SzKFFQFUECoYvTdpe1PQC3gTWdAmU9AVi2An1wSUEAVyTqFJDRQQC0mHflHF1BAlp9p2oxDT0AcSxD2ZPtOQK04dHdvUk9A8KA7q2Y3UED9+DytH1ZPQDGBFL+yyk9AU94chxiZT0D94RxMaLpPQKQpSHoR4k9AePP0f0QYUEBIBZWd3BdQQJ6akYzQCFBAM+I9QM5QUECz8eGuy5JPQLj6Wg2ucU9AZOWx+14tT0CdwcZRqzpPQLmzNxh3TlBA/WTFA4kqUEBeRkBUzndQQBVlRTnmcFBAjFWdh6PKUECUNNKnkGJQQPDMCvW0G1BA0d3dag5QUEBlT1jtvYZQQP3xPSh7WFBABqXoA0/vUEAM1U8W1idRQKYEC7DhTFFAWcWYfTQcUUDf7T/dGrJQQNpFtYEWwVBAKK4DUZLUUEAVeLl6NfVQQMDg/8Iv3FBAK0MaQ56zUEC0124ko6dQQM295BQ4b1BAZEIN2aWiUEC5zBm+nWhQQIEUA/eQkVBA4H/3vUhsUECxdgDAi1NQQHUECAt4WFBA8yF4CfYCUEBNNNAIQE1QQCbbZUJOT1BAt9Of9C9MUEC6oO0hI4pQQJUZVB9tWFBANvBxniyFUEBDbC+158VQQE9aJqm+AlFAmyc8ud//UEBtZTWVq/pQQCDJ73EkwVBAvNu4NTxRUUDx08NNpI5RQEKZDDizxVFAL12H3NSVUUB2F94ar5ZRQH/pvqq3V1FAi70R9OtEUUBbrb2QfQ5RQBfi6+asOFFAb6IV/xJOUUCyT3B66RtRQIn9GLQTZFFA4o6Xap6JUUChLXdFvq9RQIaC9ABillFArcaStAnuUUD2nehoTwdSQIqmInpkVlJAUaosiuEgUkBv8Qk8Q+BRQFDL2ctoo1FAU9CS4bu0UUDYHneFrwZSQDPqAh4trlJAHoVDIFu1UkAI4fpkjqNSQAjjRppa21JAdkhujJiRU0AqH9llVoNTQILsL9D/k1NA4tzBiSz6U0DCSWypii1UQNc4UL1ZDVRA3sIMBHRCVEB3EM8P0ahUQL4sSHo4dlRAiZG5y7u2VEBHlCWo08JUQJrHoiTX01RAqkNlWlfoVEAjLL/+G8BUQL1R6yb8FFVAc2qxWtroVECz1adnpBNVQIywZ1ufglVAwyBa7JCOVUDWo7y+FkpVQEBTdYIUH1VAFOHeoC+IVECB7/n+VkxUQAelCoIunFRA55O5zraQVEDtZ1SMw39UQHLJBI4ixlRAnK4XDamqVEDZGgKtj4tUQNxs8+riCVVA3zXLlXjDVED4sb4K46RUQBmuEexMNlRAEtuVhExiVED2RkBbA0FUQCEZXRGCblRA5Dlk8FdhVECRoemT1/tTQPxCbhAjEVRAg5+ugfIrVEAo7TgZ5CNUQAKVQBqMH1RAylnxKTm3U0BZmkpCfcVTQEOtgZkLvVNADkVPysP0U0BNC1AxRgpUQHjkbio2flRA48EBO9d5VED0yQ0jnW9UQNducHf2jlRAeXcT2+SoVEBGtMwLU4pUQJa3jqM+ZVRAdVleYJDjVEBLbmJ1lYtUQBx0XiuRNVRAQbAFp5kYVEBAWNmbhvRTQMRTbqw5xVNAnIWprY47VECE1HCo0+NTQJRFHRjVA1RAX3vmiRFuVEDxyut31ExUQPBcVcQRGVRAumWPt6O1U0BGKa3uEopTQIhY+EMDJlNA9QcK6E2ZU0AVkvKHVlVTQNX+CAKeHlNA55q9isNdU0D1VOAShqJTQOgciYMYCVRAdFko3GDsU0A3wEKUvMlTQJZhMhjc/VNAuDPeB7ROU0DmFV3tyx1TQOgbTVEC51JAMDTuUVnIUkAPxPSekXhSQFPzMi+iO1JAYebYbzXwUUBAqFzwyuhRQOOzSCusKVJALeECfY1vUkBBbJJ6BYVSQA2p7rjqSVJApx9Nerv1UUCFqCRWibxRQI7+08C/01FA8c0hX1X3UUANejbxYXRSQGt1fl7hXVJAfNHXqfJEUkB1+TswGWdSQPkwKhvNdVJA3gN37PU5UkAGnVAKdmlSQDa1ureRg1JAsf0valTCUkDpSd8VN91SQPRaoP3G3FJA9SGIyB7GUkCReQrK2cNSQAQYZ6EbsVJAkgA0bMTUUkB6kX5/NKhSQFBIRczcqFJA69z5gdCwUkA9YgJHDZ1SQNUA7srxb1JAyVe0TJCdUkBSo9dwOqFSQG87F94ZY1JAas2wRmjRUkAbBU9qKW1SQIUOSIS5jlJA8dJJHqJFUkBVeNHb8QdSQD5CxyD5WFJAelMKoCxsUkAtZjGsN6tSQLTcd9EFzlJAW38votXXUkC3dGuLPNxSQLTiV24pqFJA4SYGS9dTUkCPAWX8vqtSQFPte27HPlJAi3dnTysGUkCZo3/r0F5SQPk9ivHkaFJAPs/8vP80UkCdoQurVYFSQIkH94huw1JAf3fVZZrqUkBDvKmY2t1SQPmSGi3RqlJAj+Ka4Yi3UkBVDnQ7fH9SQKi3AyoRo1JAP6ew+G1wUkDA7/VdZ0VSQBybnuDOBFJAxJbG9kWfUUAcfm6fr5xRQF48dz7WbFFAzW85iV82UUA8mw6KEyRRQIBoZFKrNVFAJZXviGgqUUBNg+G5bv9QQP0oUll83lBArM4UYsb4UEBxHAaGjxZRQLXidZ5RL1FAabw2vzHHUEAJASB0Xs1QQEa26FW3ylBAwaggNig/UUDZ7IaNWOlQQIIMgOfitlBAy1pqXRTOUEBfXRLB6a1QQJ6O6HHNelBAPPc8g0MxUECYuPGcnDZQQGL+VnvPtk9A7/TztP8QUEAEE3o1DyBQQCaxJUq+j1BAmvuUOyKsUEDpxX0wj8xQQBdIl4nUKVFA8wtBE3PcUEB++XUtwzZRQLboOdMwGFFA8gL13xjBUEA/FjkLwtFQQBaOof6cSlFAwVEspHoGUUDzt+epjMBQQAOqP4zyyFBAbn9ju4nSUEBwoa4zE3xQQBedhrE0hE9APFaTYvJwT0DLWI7JHzJPQFZ38GJOFk9ANeuBcTqgTkCm7CGtg7VOQNPfFyrWqk5Au5C/YyhNTkCmir1BwCNOQDw0n+qcR05AnnC71kI8TkA/Y4afxX5NQF7qy2EVh05AAFfis/GpTkC4uvR+Iw5PQDX2hxADbE9AWyqAow1KT0B3Ld+7zj5PQOaNaTzrXk9AsZ2DbWZkTkAqq3uejLxNQG08CfGNa01AKB0+4Wp5TkBtIlqwTfpNQIxgVmnB0E1AWRCYznuTTUDgkrJ1LKFNQN7h8BHCHk5AuZWQQwbzTkCsbGjyCl1PQL4iQYOsWVBACkG0ds2KUEDLyyXvBF5QQLqHdYtTLlBA5Bnl+YAVUEC+z6NHhk1QQMkdEaV3A1BAYk5mPgg1UEAbmRgrsKpQQJa60qMIwVBAqJWwb8+yUECyCQtePOlQQPTjl6IfxlBAQvHtL26jUEA/wrx92+tQQOvdCNeYrVBAeQ2kfry/UEDs/fl3vfRQQPHnB7NUvVBAagntXJmoUEAPU4FM2LtQQKzcIi6F0lBAhPK2xPKhUED84wbsZ7NQQH5jN22Hh1BA6UdOB9fWUECAOriGM7dQQEl1t88zxFBA6RyAGjrYUEA8Cm43xcNQQK0gFA6kcFBAGp9hvJS5UEA4UBqDErFQQEF22asBCFFAfiHlXS/1UEBd8/ZaEU1RQIjNjI0EG1FAa6+YHea2UEC6LORPkuNQQAR3O0aPEVFA5th5Dzn5UEDHji6lN0BRQOUdnAoidFFAYPOxVXj2UEChfSncpelQQA5GFi8pslBAWue6adCzUEBtER8YLchQQAWnJDH6YFBA5pWY32N8UEBsDGAv5pdQQF/MWoMwilBAWkVOMLfOUECLaofx+SFRQKGUElaAJFFAUot06cG9UEBz7CoAtgpRQLk6ZQkAEFFAQSreiC/2UEDcYgcl3cdQQHqPpkxd9lBA1/7a6/MmUUCgsJe8yExRQAArXqcQ71BAd4CWsmF8UEBFVMD7u8NQQOEt6aodHVFAbzgJQvnQUEDno/ppocNQQKE7Kcx78lBAjRYGcggRUUAzlNqlfjdRQJ3nCsLR8lBAmjEfAYYoUUDJ/XnjXPpQQHAmGQhaC1FAZBGt6Zo2UUC+xPT5qB1RQM4vC0oAN1FA6FrxebVJUUDKMEXii4RRQBNIj4r5lFFANOROB5SvUUBCcQzTsMRRQFDKZLqGwFFAhEB4433OUUCcoM6TbetRQK/gU09b7lFAKPnl/esAUkCpHxCGoFtSQNlaY4vOjlJAx+HSO0MGUkDtsXsaIhBSQMC4GvUStVFA4cDdOmlXUUBnvhLEfblRQO5IlLoI3VFAngf7LLuwUUCSKw4XjMVRQDAFCxgQV1JAHLq0CbUxUkAFZTMu8ulRQCudpkBegFFAR8QeKLO8UUBSYL0WdMpRQMi+QVEXolFAACQCrJq+UUDspt2A/8RRQAhMJsOr31FA5csIFA9HUkASeYLBwlxSQDg2g4bDn1JAu+N1yKW1UkCLl1CwPKdSQE7C0fWctFJApVNA1azjUkBMWnoAc85SQEseJHvoulJAtHVOR4ygUkB427PycKNSQKyJWnjRrlJAn28k0DmSUkCq2yBUWCVSQP2wuSs8rFFAuXUUnmtnUUA0M0q9zXVRQEORoXXzz1FA3/IeDxZWUUBMsKsdMTJRQNhI/oG4e1FAEx1Ik7mTUUBZO0MsPAVSQHM8rN+yvFFAI5Xvb1wLUkA7yP/9bNdRQAqqYZaN+lFAQp5cqmpFUkAmxR7PeIJSQAhIcfclplJABIsoPpxXUkB9uO3AwK9RQFEshi6OjVFAdyudf9UJUUAlaWvbnalQQJWR+opnmlBAUlPdiabPUEDo2xyVFqRQQMJCi+r3alBAikdFzgdbUEAZZd0+UUBQQB7Q5sLDAlBATIgqYjwgUEDbTbSaWQBQQM4SEKZdw09Ax4ksdl1JT0AsmTYgMidPQEAY2ghlok5AjMn3KkKZTkCN5MeFsoxOQCjWoltg8k5Aj1hq8WS2TkAH1clOMGFPQKqrB/C8HE9AY3y/amdyT0BxfjUro6BOQKAMkINL3k1AMLbWJAk8TUCKcDezHElNQCgFrpkXwU1Ai7JJEUE9TkBd5zo/pqNOQB/ZhEcFCU5A1bnnHZwTTkDMksg+x61NQHQwh5GiM05AdgLDnL7yTUAjDkJ8LaVNQJDm00gJWU1AwsdHSmlmTUANgFJhh3dNQJVVHXhz/0xAGfBQKgl6TUDBAY/DsiNOQJHTliSI1k5AJBNiY6K6TkDczcbm2B9OQBjD3fRXLE5A4Q1x+PcATkAW97l2lGlOQDQ2vOPlnk9A0SDcJvERUECseY1fdbFPQCST/7kMQU9Au6U55nkoT0ASy6EqWnZOQKUDvFKrzE5AaeY62HNAT0BYoHfzSMFPQIooxp09bk9Aw59VEA/pTkARc+KmpIhOQGN0TGW/pk5AP+0lsKWbTkDjHTxemfZOQDt3dHEgzE5AtA4yxF1GT0DXQ+U7/AVPQCjYVA1XQE9AKxrmgauLT0AgZf/WWMpPQGMK5EUFPE9AFyDtbtplT0BTvWJ6ifFPQH7L/nKyAVBAyuv4DS02UECmnWtntgpQQFJ5GWiFyE9AJpuENxyVT0BaV+Wf1NJOQDRQVahMMlBAEGrRM1OhT0DSFSb8TplPQEVFw4SQz09AAUgniZxQT0BxjhEvyeNOQDHXoY7+aU5AArait/rVTkCod25dHS9PQLgll/VXik5AnWc/SMzrTkDFAFKpqSJPQFewN3fhaE9Apj3cJzS5T0CMutWPhzFQQCO8+ZZwGVBAkfoI9eVeUEBeGbjM1bBQQMdifuXk9VBAx7C3AFfXUEDm7tsjS+RQQLBTb0YNaVBAxG7TmWl3UEC7X9VolmRQQCI4Re1bolBAiPoqKBmLUECsepyaMphQQK2XD4L46VBAyGHNeakVUUC4ZMV4LfJQQB3kNz2nF1FATrZVTdB0UUBjQYjJc8FRQKkNfpdTJlJArClG8d5aUkCykeKRHV5SQG1DzdUt3VJALTgSeg3VUkDp/68SMLdSQMaR7bx101JABew9/t3RUkDwC6R3bx5TQArZFX5HGVNA2Xa5VRCfU0BdfUjhWktTQLRTgX5Cv1NAsGd1r1AIVEBAb2Q0AQJUQASHgrTEo1NAU1ftELxHVEBvYrJFIyVUQB+BkErr01NAePqO3hsZVEDOceaqfUhUQNGJLNPAYFRAiXt16hJUVEA+IzaYYXBUQLr+i3u3vFRAmoOoPa+bVECqDTr2h6FUQK9zeYrHhFRA3WbItggIVEAypIXjWtRTQPU/EjSVRVNAuPL7Ku39UkBpKrXpNeZSQPVqabwQG1NA56wbVfbvUkAQRS+t0c5SQJQ4ZDGT+1JAyBUWkVxJU0DFrMlD+1FTQCrhw1jTI1NA/XLGpQR0U0BS2S27KKNTQCzXyJ0nLVNA7Dgt8ddJU0Bv4L/+D/9SQHrH9uzA4VJAYRIUJA4KU0BkEwjGoP9SQEzaKsGC/1JAV8Akmc0UU0BWo0tcfPpSQHM13y8kA1NA8T3LX5vwUkDltV3YRrtSQIv+od9RzFJA/euRSGXwUkDbr8U0M/RSQI7u7zZhJlNAKhTRndstU0DElgWhLk5TQFWfL8KgLFNA+F6AJX1HU0BR19C/1eRSQPzEW92t81JAY46b05MRU0BJMPFup21TQPRQyhZgEFNAnL5EZ8bvUkAABJK4sTdTQOAvWzt4hVNApf4+uUsnU0A52vh38VpTQM50sH9vO1NAEGCh81QeU0DcDKNz3yhTQC/rXGBkR1NAhVgXL00uU0BOOATzT9dSQI/FNdX6r1JA3BDvLDaAUkDXFHGyfL5SQFJ430KKvVJAkkL+KTyzUkCxm0LfFm5SQJocF4ndmFJA8wqEzuTNUkDwVqJWBupSQOAhw58EA1NAbYdDQWn6UkBmiE2bwAFTQABZA5zUBFNA9QhCAH41U0CYxzoKQ2RTQE5DseaMQFNATteR+psiU0BMsBw7xTpTQFPAUpWyVlNAazrdi6ZjU0B4tEtcq1pTQIsqewPu71NANiUkyCnvU0A7w1I4mvRTQKfNEXtuv1NAcV3Bz8GDU0BONqgga7BTQMyO1Wawu1NAKDJVbf/SU0A1Wfar1kFUQO9L8GjU91NAgZ/xZyXgU0BmkmGO/y1UQHE+s3oVWFRAllvt071ZVEDQUKIp6kRUQAJBTaIsa1RAmb7ABcWRVEBFqadXU69UQAGRBy+Nj1RAJq9NbKx8VEB50piivEZUQIOxDs60D1RAOZpnM1DvU0BOBEclcO5TQAoCl9rMu1NA2gTskXIoU0D0XiZS9ctSQP2+e780tFJAVdEaxJaqUkAw/Cp5GXhSQC1+GENUBlJAJSpio8r2UUCAxkER+BtSQPwtgtYNCVJAueO2N0YWUkBTueWtOwtSQKwNMvcTPFJASbKajf5HUkDKT29YQgdSQLRJD+j+0lFAxgspy5mwUUDjcm9P3pBRQLGbRabLIFFADE8RC0/RUED73oNoFylRQO1O1w7s6lBA0Eb1pD3MUEAFrYjqut5QQNYEhL9zv1BAkpxW89sIUUAaBSS+fgVRQKC7TYj27VBAX3ReL/4BUUA4mXfukgVRQM0f6so9ZFBAZoqSYlRHUECzCRb9V0tQQA5H8MBmbFBAM4kDaWNSUEA89nXJVHVQQHmxRC+ielBApZvgC5vCUEDRvPGU031QQPIa9iE8LlBAfm3SLGwuUEADYiGgEB9QQEEaP4Qd009A15MYj0KsTkD1/DcuHGZPQAf0CPv3B1BAS1W/qpN8T0DE03M0w0BPQF8gtOpoXk9AW98ARv+KTkC0CWnadwtOQIvSaWSJ8U1AVv5QzQhDTUAWqruuuldOQBA6zfnyxU5A95EmMhP2TkBjNXR4b31OQNwyn2wmPU1A+HaYxe28TEAgcjxY/HpMQIeA/DQIr0xAwjQG54HFS0BAx7dNi49MQGKoLENHgEtAH9ntm0XGS0CgnwIv7vdLQA4y3lG/PUxAbqhZhYIrTEB7AzY+g3RMQA3cPtfQekxAMOBFLzg5TEBsusIUSttLQF/mjR54ZEtAHvG8bTstS0AgJvho1O9LQHjgnVuuYkxArPAUCwYMTECUmdJIutxLQCZ/f6GrwUpADE3iV9iWSkBiipO4gzVKQMZB5FBxo0lAu8fqQz8TSkAi42abBONKQBcL+OxWB0tA9CNXQh03S0DO0gY7vh5LQDHpqzAMkEtA6lIokzNoS0AccIeQ0mpLQGsmdeGst0pAPGXUjb5SSkAw5iONuGhKQF9kP6eVQ0pAvUTwy6aDSUDbcD35gCdJQEbUKvqFB0lA+0Ba0ZsPSUC8l7CWerhIQN25RcSqlUhA4alwduBdSUCZhEhzbD9JQFONDxJvi0hAqIIFDwzkR0C3jGMZCK1HQG4VStQT00dAZPa2jCjXR0CtpMrPjBpHQNgFBs+v9kZAEr7hB0yMRkCgDztLDqZGQD88cfL1BEZAKnLKACxMRkD8zih+HfJFQBaNf240V0VAvXQylLjrRUAHg1CoUWlGQHMOUPgHvUZA6TeQouXvRkBAgPGGFchGQJXDb2w9nEZAYAdNqsYQRkAn7SInXYJFQN8VNCk6SEVAuBjCCYAbRUA5nnl5WOhEQNfIabjY4URALsThvDT7REA6QeuUDbZFQLUtjVj+cEZAiTSr13slRkCBP7sszQ1HQMGT9DS6xUdAKSJ1PAlbR0C3vJir+xhIQO+5l0wRRUhAoDkGXkGRSECME+/D8G9IQG3qj/nbSkhADeXb7i8gSEBDJeotvAJIQEiB+TCx4EhAVtpI5i+qSUCGREWhtHxJQFnW3f0UYUlAX81aEygISUDa5cV2qVJJQI4rHE3pmUhA/ImJK0oFSECqBKYUVthIQMyW5TxzfEpAKmmt6PyjSkDyv9FMVHRKQKWc/Fop+ElA6CnIyEjxSUDVc2/IrUhJQNBrbcXKRElAXa7xFEa3SUD45qOb0clKQMwXrlEEnEtAC8IJDSMETEBTE72Q4PpLQPV0nweX60tA5VaqVG9+TEAvqXmHxiRMQE5ostdkg0xAg2d59HIiTUCMVFlzQjFNQAanJQwLZUxAk0gDyteDTEA+6ITEp5hLQFS8Acrw3UpAZs2rYlcCSkBtMhe7U2hJQCIiui4+uklAmOllC9HySUBQ4jPzxoxJQAExJtdwuElAqRP+J8KISUDT+fRbw/1IQIiowmDusUlAj9sSNpJzSUCxlVs7cvlIQK7NftI0m0hA+4ZZd/RNSEBmMDk6/9JIQD5ZuPtVFElA7U0t8BmgSEAC2/f5pq5IQK0pqycS4UhACrDB4AF/SEBhHxO2P3dIQEMbWKhRKElAQz3m+NPVSUDXDj2lFchJQD09G4Kr2EpAJ9mbBEXNSkBTgFbfbQ1LQAxYZkrWdkpAsF3bPLIgSkAeYfw5Z3JKQITCMUQuOEpADYXxFpOvSUBStsqW8slJQFNiivEEJklADlTXSsx0SEBSAwVnDwdIQHwOpnzTzEZAJvp9/28iR0BQAXzWo8RHQGuqJ2Ael0dAFuZmuPTCR0C0aiXNQFVIQNd0ofpBykhABAo8nyLCSEDwfGb8yC1JQADPunSM/UhACjXYPHNdSUBLRFuoaPhIQMhDFDvEnUlAsrTb7AjhSEAuP9/vO3tHQDlFXiO4b0dABgm+KQQFSEAg8b0ooIJGQEo0HXgSk0ZA8KgGYHNbR0AV/5bnmSlHQD9KQL42BkdAiFHzJkRzRkCwNJHeB/lFQGY9ZL/I/0VAWJBQi46TRkASomzSx+hFQKxFPyUU5kVA8aHEn2shRkCT8sWbfTlHQD9q1WCNlEZAQWlMlaqJRkD5/Wf8O45GQGk3E4GV/0ZAfnqGArZ9RkBAVEDI6lRHQFsLZ8AplEdAE8O8c1uqR0BKh/1M+ptIQC/kWipbOEhAJtlFeLtDSEAIp1XgC0RJQOAXHYcJdEpAPN75vlmySkApIiG9YV1KQFBUGje1jUpAomQURsV/SkCV01mb5eBKQIkj4nvW3EpAVZZMWqAcS0DGWF5+a3xLQKaly6USXUxA7/3s53L6S0Bnkn1w5Z5LQACHI5EDPkxAGtQTgmejTEALk52aMDRMQDQ0V1Q6oktAi3pP5GCqS0C3XiYjkfpLQDHH4Dvvu0tAPh94mekuTECxSg//0IxMQIJxzche/EtAqGcPGlH+SkAg8X70PxFMQFcpVkx0p0tArOTwcOeSS0A9jYoSxBxLQB5VD8G5J0tAM85dOudGS0DorV7IY9pLQAIZ9nar0ktAr7UqFwg5S0Am3up3401LQMA37jexV0tAdaLqlCUKTEAC/mHDSDJNQBbrnDTFQU1Axd8qYA2ITUAlVcR7v0BNQJs/7xyYEU5ApELobh17TkCz6MvEpvtNQN5iqFEyY05AZqK4NmweT0C72Jek6VVOQPNPc6upok1AWA/klxIcTkBWbVGxAw1OQMUqx81k7E1AJydQdtNUTUAKVxbGjCFNQL5c8nutoUxAwkjeTkvCS0CN9sTPMmdLQPQbOTIBxktAorD7hpkjTEC8HySKSt9LQBPN1+lQ9UtAUTEbUh+ZTEAUCuqM7XFMQJIXqIfwV0xAGPFaaGFiTEAS4jrrOBVNQDLPi50CvExAm0QfkxyXTEA2D/rKU8RMQPpCYBHytUxAx6d2aca+TEBgoEqdgxZNQNQSS33D7U1A+NT8efBsTkCdHYz1bkFOQJfRyrmveE5AXW/Yy1MvT0DlhTtj1KxOQLz8rlcvoU5AaVB8PkG5TkCGIjrIRONOQJp/Wm8N9U5A4jTADAxuT0Apti3MJcROQKZcDuhlHU9Aed3NZBKJT0AF/WjWO+FPQKmVw+pX+09AmO6erdMbUEDA+56BSTZQQDR2yDvwA1BA2GZNP6OyT0DVy41FXkFPQLurRs8kcU5A/U7liokITkBg/ZK9vAlOQHIeSmi/PE5ACOZQufigTkBnnFzSYldOQO9n/R9q0U5Aryv1QqNkTkAcVGPAU2lOQJ0zvxniSE1AO8EN57u2TUBhgzSk7oFNQHf/jHB4Yk1Ap2yvnAaITUBoLwH0M9VNQKQ+n0MXy01A5pun45ZiTkDrHi4cUDBOQEYqcnZdvk5AMeNsvg2vT0CVJU/l5sJPQMGzB3JpRVBAJ8DkIMtkUEB1pUmmzChQQGwzCHxAGVBARycIE3QjUECiEc4C5x5QQF9kQjZNS1BAehT7Q2SEUED98njP4bZQQElZf/0TaVBAPLbgthBvUEAcZcD7XZZQQFfqGUsTvVBAAGIqcMKiUEAdhnJb7ydQQNI6UPkBEVBAeXrWWOcRUEDMtNcsxo1QQEvx2kIQn1BA+o5BPHC2UEBniU0hDuFQQM8lkUBbR1FACrGHYumsUUBKB23FcF5RQJVHe3afiFFAr3H4HyhMUUDNXrBCBn1RQBPOWI1YO1FAQQabLv0EUUCEG3ptpAdRQFkBsLCGFVFA9jZPLfSKUUCSCpcOII9RQNJsyX00hFFAVN5YcS29UUBDHZJosvJRQP1dOWG6H1JAymJvjshfUkD31h5Rk8FSQDCLHNXo3FJAu95qS8dqU0C8eWsiBaBTQIQCGY0uB1RAGDK3zQcUVED2L0PNuclTQI+nSNrh0lNA5QvbBOn+U0Aoran+IwNUQLoP+eWol1NAgy8TS962U0BHoDs/B55TQCExlX3+m1NAiXhPmFi3U0AU1Oklu1dTQBj5vz/RkFNANmI99a2gU0CyXTliurBTQLxnYqFvk1NA4NZnpciXU0BY2gSq+RtTQKD0y44Q6VJA3Kxmq5DyUkCgrn07exxTQOrpCw71+FJAM0KiNWA+U0AdbCSjwhNTQNQMvoSmEFNAlBQp+SfDUkDjIMgogrxSQHDije3e5lJAvQw+j06jUkBEgTvrKNxSQLzk2J15+lJAQYXHd+EyU0DrER2WrXRTQN1C8X5xllNAGig4pLUsU0AWkE0FEo9TQBDIdnsOelNAtzbeQ++NU0ANmku3Do1TQLktPZo1WFNAlPKZa/QuU0ABGyIy019TQCuhNBfZ1lNAlVkrNtobVEBSDHn/3x9UQPVNOPwDHVRAXxaBqPytU0DjkNO9Fe1TQGNxA8K+H1RAppqSZnjOU0Aw3aQvC6xTQFDPz9uZaVNAuW+06iN8U0Df9VYMdGFTQFbZG1OUj1NAf0TjySeNU0DOuvthU0VTQFXlBy7khVNAPCJ5YtyYU0A8HROKCaZTQPBy0/iupFNAgDz0ctWOU0C3GawTN4JTQJrBGNUB41NAEevWWFjnU0Cyy2hv3fJTQOY8BnaB6FNAgZs8IvjQU0CydbNshONTQCQP75kc/lNAEvtM13Y8VEA8HtOAtEZUQJytQftWNVRAeIGTOWFQVEC7DT1UGQBUQP9MA0xgclRATcJECM6dVECuymvABnhUQG9Q9SjDdlRAO9zlEU1aVECRxniPp3VUQGccGHl5VVRA5EIUGxkrVECUzakxKfRTQIwZYcid+lNA3GRsnVW/U0DZVOT/poFTQEiks1TRPVNAGLwUtEJ4U0AdtQELXRdUQBRD4oUGBlRAdgfPPM8yVECvgyQD91JUQPy/OdB9BFRAEAYzDEsFVECQv/5iViVUQMHlY9qBVFRADSKw3HQvVEBwTBtNsE1UQMRyZ+S0AlRA53/oDCcaVEDxHRN/LetTQOuqmoutRVRABWybuhEzVECbZSY664hTQLJwdw/Tu1NAOl2bU+GyU0A/GTqd8HhTQMi21XReUlNApOz6n3xAU0DbyHhUFmBTQO5nO5CgPFNAgia4Aj0bU0AC29T77MZSQOFS3nC0cVJA1U4NWy11UkBYr9qzEKtSQNT4Ze4c1FJApFxAqaH2UkCTq7XTca1SQD8QDUu0lFJAIStiPRrGUkA/i9uPULBSQPhsUxAIs1JAkbbuAzOdUkB/jGLZgB9SQCNI9C0xvlFAZGA5TFgOUkCo2NCnFSpSQIxnr0rMD1JAj8x6z1gDUkDfYZKFizlSQAmb3HxTzlJAjDW699UrU0CJ+jMv80tTQJepJ8FppVNA7CivJWTIU0BKU1gZ36dTQJwF9UWl71NAsT2SezHnU0CFrH2qLN9TQBC2Rqv2g1NAuq0RgAiiU0AOqKibWcZTQA5DT16M6VNALMHQkpKgU0ADOTsFBG1TQLjPgcgOtFNALcasV5rdU0CQ0wqj9Z5TQPIQJ2ofqlNAwY3fDxd3U0A7V0h5q4dTQEf5HeA0ZlNA6bvCqBRMU0Bds2+nMX1TQEUzYFO/HlNApUA7vKUlU0CUl6F/attSQPk1V0//K1NAryT+A4cEU0AMtfRO74RSQIB2fQf8sVJA43mdFLXsUkCfm1XRgQFTQK5tShQPW1NA81bHt4xwU0B67y2lBx9TQGgzxVAwNVNAwC3T5L1lU0AP7V2CIkNTQABpMvJaFlNAnz4lo3TDUkD23l/MfiJTQEsIq69vX1NAcT869UhaU0DZ1BblGyhTQHHagRAgdlNAeoWDcahlU0AwgG84S2hTQKrFAzmM81NAtzsIcifpU0Ar8g5nTw9UQHFvrzewK1RAlke51yoaVEAqJ77eixVUQLXOwWgorVNA271kLUO6U0AY/Lzel65TQKjdr5Ul4lNAs32qb9PrU0DXjVaCaNlTQAcLmS9FH1RA50sGjwMfVEAgo4s4C4BUQKvZNGr1TFRA9GtWrwQXVEBHZjiWZ2JUQMbLFcKcJFRA5+Qw1qwMVEDgwmr/g3JUQOY4Q463PlRA4mn2TUrQU0CBviWMBtlTQGRJnkFCyVNA8sQ9ijzgU0D6W4aCC7FTQFu8xr9jmVNAxavi9E13U0BGO+dSw8ZTQAeWB9/Tv1NAycpKVrkIVEAQMMmBEuFTQEwbvI5Z9lNAhDqP4tzQU0CDa7kutTpUQA4V1f9GPVRAIRTUcrbtU0Bo7PfnM6lUQD/jBKuYB1VAv1P2vM4/VUCYwkYxT/ZUQNSiH+7jT1VAJi13gildVUDmxGIH9WFVQFtVsM3H61RA7xS/mw88VUBPl0jMuRlVQAQz/SqWhVVA9FhjxJc9VUDe2V0FQzlVQF0BBAdj51RA8RmoScvCVEBaIeQxgDVUQNuwlgLtalRAd2sH2hGeVEBJULq4dMZUQKrKOltRZ1RAIM2KFaXKVECCvCQTvtZUQIjeBt9m1VRAJ07JR/fUVEDaSZPUX9FUQHDkziLqDFVAyMHo8u8JVUBPeAZlbjZVQJpy4zN5B1VAZbSBboAdVUAnU3oiZptUQPso7dQ4GlRA/ty1krLvU0Dswcls/PlTQCSIV3zKFVRAr0Hx/l8KVEC1Haq6DVdUQHRy766wM1RAL5oJfiUIVEDbXTQMi+VTQHlTXAlMCFRAtF3xXntVVECJgR0CT3NUQMcdk4igRVRAFSLiRiunVEB00XY0G3FUQNS4xyi1YlRAN4kGPDGKVEBibvhyPpRUQGYd7l2juFRA6Uh6rDn+VEB91eqKUPxUQOOAhsSfBlVAcZlXfm6nVECzTaV+VatUQJTc7txPtFRAF/Fm7vEMVUBBeSS9rSNVQDwOTmRGblVAAFJtB+hNVUA0edj2AH1VQFQ64SzWllVAT459NaK/VUC2nn/BrMNVQNyRp4LC7FVAzRCQqkHeVUCmjADlqI9VQOuSKphhHVVA38AwK9f4VEAv6Sl9gdFUQKvULB1EvVRA5TGX+0pZVEA5acJacmpUQFuDa447bFRAYXHv/o5SVEBZwq+KKXJUQKbMjPpOQlRAf2X5dpckVEDDKMzCrZVUQKIj/U0mzFRAqwaXNN7pVEA/ytZtu21UQJlgnJ6wfFRAHe09BvnRVED/sHKjr/NUQMJ+lPidOFVAiHxGe9H3VEC/6OOCecJUQOFaBoRzwFRArPCbkt2mVEDRWHX07npUQC8vJk+GXlRAdjis/H5LVEAO9nDXrihUQNtJQhO0P1RAPbk0zu/EU0A8g9SvmOFTQDG4uq0APlRAH8UEdgItVEAcNRuGYY5UQBg0YqV8xVRAhBSfRLmqVEAdtEs4u8ZUQEVgryutf1RAeSrcEwkaVUC3XJnMDmlVQEt0g8GkRlVAdF2X6/lNVUCaoIaThoxVQOoGl9dtR1VAYYf2BBX7VEBcg6aERw1VQLHgVQY2FVVAdhDIsfNzVUDj1Qf2YU9VQM9sPiGbaVVAQ0POqN6DVUBF/6k8W9VVQIxm//65rVVAX+wuY+eJVUDCc4J2gGNVQC1a+nznWFVA998H7tL0VEBZwWpCEONUQKdPaMf/XFVAfvKpTHmWVUCm05ijdahVQGtpFUnEYVVAYmnEt3KgVUAyIBwcNlpVQO6IvHqmHlVA1Tsjrh8NVUC6dAFxBlpVQJhHw9WPLVVA2NxjETOkVUCkakzE+2VVQPBNobefdFVAXQay0HesVEBcjIeWtKpUQMoiUzqsl1RA/t4/8zR5VEBqycXiy0lUQKpZ7z26YlRA2u2yhL43VEC++84ztwJUQKd44J1X31NAIeOU9zM3VECjiNI4uDNUQAqsqh/uM1RASfe3ZtcMVED9AhInRBhUQAcfbAO5IFRAF0D0Ysv3U0Agmb4FpjBUQKln7w4uLlRAWekeeBRQVEAUZfPcslBUQJhc/wP6EFRAOQ0DG8hbVEDoevTFHAVUQCfkRHW+IVRAxMXkyhF2VECuhY9NyIpUQINn8cozWFRAviVEeZk1VECFAQQ6Am5UQJjLot6wz1RAjjJ7ijp4VEDlxUHNfZlUQAWy7uDsk1RAcwOFuRZFVEDKJUpPZVJUQGNQ9Kpnl1RA5B6fgS3tVEB0zSrJzRNVQAfouzPc3VRA8L3rGocZVUDacQkMH0dVQEGXxm2NHFVACklMHS0gVUCEQM15jedUQDMvT8vdllRAKFIKVNOYVEBO89Q4Sj5UQC4BbA4rElRAkxJLk5cLVEBIs0hEQlRUQJ86676Vn1RAxBD6cHoUVUDi5SLp57BUQDR/xywBflRA6FeaFwdVVEBB1CTvIiBUQC0OjRlG7FNA+i55nMfeU0AVQjKTkzlTQNCJ5dcOTlNA2WtRSqmcU0CRAVJDmk9TQFgKwVJGuFJAvYHseBSsUkD8GTnorbJSQOnTNNQ8h1JAKDhrguu0UkDFZI7eqJFSQHUY+f9S8FJAD72SnB30UkD7QyQ1NudSQIQ2IaLWxVJAe4ExkCO/UkAwqaQaaB1TQEVGlUI68FJAS2H7WjHvUkCSvLVt5ixTQODi9H7N8lJAg9muhyJMUkDqLWPPmTdSQGapz4Q4YVJAJGdXFK+LUkCMYVQkMG5SQBENl/DNm1JAGNE8dnnpUkCCqZfsQ9RSQEJMTxpN51JAfz5brIPQUkBdMcOXhZJSQNm3OTpC61JAMFCivQPSUkCLD5TjtoxSQJOhvx9Yr1JA8pqMJ/2SUkAsFZTp32lSQP/wXIpqu1JAXxoUx4ZXUkAYKInonpJSQItUajfXhlJAB+HEhgBbUkBhRw86WFpSQP5/+xDOa1JAPz/GAiwrUkCK8BJ/1jBSQF3Ik3+/0VJAQ8lDtGbIUkA27OVoH8pSQC9jNWXdOFNAmDigOKBMU0B6CiH49JpTQC5nECdnslNASalXz6abU0Cr9/W89nZTQBtgXVmZglNAFYbbKGvhU0DRXus/VDdUQNYaFZsp7lNAZYRLoQ82VECsCy4i+QNUQIWjdsVn5VNAE8qHJiEVVED457IE/sdTQCbBIE07nVNA+ZB3LyPrU0AYDG/n+KJTQEZT86a8ilNAhIfsbK4+U0BpoOBc6W1TQN1kPV7ABFNAdeCTH0cQU0B8Vs1w6wFTQDl43qN25VJApiSJlgcjU0DS83ElBfJSQGYg8huM8FJA9wtzhVHgUkBVqU6XVKZSQHzlcV91llJA06DjCifuUkDgW0rfvzVSQBtO50h27lFAPl5NkQYhUkCZoAO2CiBSQNlTZYDp2FFAdnwqMVTMUUBoe6mdtKZRQLasLo+le1FAnO6eBXpfUUAd4YttqDlRQDgmd/G5Q1FAO3juk1M2UUBwRUv7GB5RQKXr4KllHFFAfAI2ODgoUUDVZvj5c2ZRQIozTCEJ9lFA9Gw/WS/3UUBuqZexsOJRQO9UhzKKLVJAKywg2gODUkC2vsd336VSQLJP/0QK91JAaey6AbvDUkDgm3h1MsNSQA0gnCct/1JA+IBEAJT3UkC1Z5JRiwhTQPj+Ze1DKFNA06KZrM8YU0CSdvenXthSQCbE0MK2HVNAnPxdJfC9UkCQlFKeGV1SQNaIabXVT1JA6LBv6JAyUkCDSFClU/9RQPvAvLtjHFJAZUzPn8zQUUBy3bvhNtNRQC1fEzL3D1JAmnB3XWILUkCzuhEJp11SQKlHWP1GR1JAMdjfgfyRUkBkc//oD0hSQM6UoMOaZ1JAAcBHjmhMUkALMmcRLXNSQARajNPRl1JALlPCraTEUkAhuA3dgZxSQPkURm2c51JA9gZY7s4hU0CYnCn4bPlSQIT3XJg9+lJAXgKAASL/UkD9eYalLAFTQA/3Td7DNlNA+xJ0GIlwU0B1FJ8qADdTQPxiE5cmF1NAcVVlOaEaU0CXkk/KZyRTQCFcgYPNcVNAIwwaZxVxU0Bda6RREERTQIUIQJNTg1NAzhaQuNVKU0AqUFxc+ulSQGDnBgQm+lJAkmHMBoOfUkDPdQqbXcdSQDQA931julJAMkZN4dflUkD0wvItxyNTQBmZsT0Oz1JATFdvgkgJU0AC2C2YiCpTQAfiTvaQ5VJABDIwmaZCU0C87O3X+25TQLItAeqviFNANrYc0IhFU0DfE1Y/HSdTQA1aO9KFuFJAeoaulde8UkDqVGmx+CxTQLBvcnwgJVNA9XPW6VZDU0AAFqxFkQFTQHmjcf8yQVNA6bqlaNQbU0CbUhYDAvlSQAFNYtsdHVNA9w8o/PURU0BYNRHw3AxTQI0hc3NzJ1NAHtZ3dij7UkCQ1xARRpJSQHjM2B8qilJAOQf5tWJ0UkD5UTKtOnpSQDtg5+RPQFJAiqfZOAUwUkDqCPpGtTVSQM7V+2wPJ1JATYy9EDXyUUBkc7ev3BlSQA1rDP84IVJA39kgZg20UUCJltHSco9RQCZVEJlBYFFAVs7YWZ3qUEC2wY0/SiRRQDrS/teixlBAIUN+Yn93UUAZOnTRRZZRQF/zc0hvZFFARWVM7Su9UUAbBrkkPbdRQILrX0VFoFFA/IIb/nmhUUAUYF+JUmFRQARNzioeB1FAaexGiDbRUEDXzHxJvOVQQMhMPcqPxFBAXV8gjVHJUEAwnwt2i39QQAglkThlDVBApiG7PHYDUECnrbD6lj1QQL2TAv0qRVBAClzljC5iUEDONWHxNU9QQPGbFn6nhlBA+TVDhoqkUECwa6sROD1QQJXFownnu1BAMd0a3izwUEAAod8hbFVRQHDVlCqSW1FAW2jJiVo4UUCKXphx7f5QQADbFXnmzVBAi3eGjyC5UEDnVcEn2IdQQEq7YRw2w1BAMkFZx7izUECOMEUQ1sNQQJ8WL/5H2FBAACIPSwYnUUCM8lbe3eNQQGJpN2Nk3FBASO+HWDYEUUBoS6OdEbhQQJM4qjzirFBAfWd7/t+qUECNGRbj+35QQPM83yTXsVBAjpqhmJbRUEDzYmf9q6RQQAi/Y9ksV1BAojtBfNAfUEAfn1cdT5BQQEP9zfMF/1BAQTyb0hIUUUCZOWJPlh5RQEK+ZlMtAlFAmxgU3qsVUUB8L9KT4vhQQOYeu3MBBVFAoSnQxRkDUUBcuJkg4SxRQD4hr7pMPFFAU3Xbyv55UUBjMHWBHe1QQJ7yrcDFDlFAuu21/Q9eUECCcFHfV6pQQALcTrPrtVBAEf4lPfKNUEA2eOnqaG1QQCEFU5ioJFBAtFjqiTFDUEDk2itQZFxQQIL1RPWPGVBA6r4wvb21T0B5diu/Qx1QQCy08yEA6k9A3zz4NU74T0BwBTccqBNQQOyAP4c6SlBAj8JYvqYwUECPDUQpuSpQQI9tBFAJlE9Abo/lOLTRT0CoJ/WFPx5QQPQdusgqlU9A5uu2eXl/T0DTy88WvRRPQCMLgeBdBE9A1rv30/5rT0AG0akyS0NPQGAjtejJV09Aml18sP7nTUAYp8i+8U5OQPa00oGu1E1AqdZZhL8VTkAq3BL9fH5NQMil0zMXYk1A/S/UPGPJTUA/TXXxJ5FNQBqKWAWXQE1ABnBHrwpqTUAB09uYHydNQEkludLD0ExAr3WSK2iBTEBbpWDso+lLQKhUJgzgKkxALf7ZSTuFS0DF0qxFuMdLQI5RQDhFF0xAMdKV7kkuTEBXBtz95ZFLQIxNnFFXUEtARzF+f4g5S0DeEAS4AiFLQDIjKnwIjktAdKjSpTDhS0BhVQONaS1LQL+yX3XPzUpAvEn4PlVlSkATmA9Uf9FJQB+NPSfD40lAK9FyFZS5SUCSvaxua29JQJi/dIzBXElAE78x9H8xSUDEl14W2oZJQH2mT6LGKklA+7aC8PVXSUDFBcC0GTBJQAMmsbC50EhAQeM7XtHRSEALAcKLcFtJQCrQrM5kREpA2eSMTlVnSkDssEr8BAdLQIGWeLw+jUtAO/Jove0xTEABn9X/qUFMQBSJzyZPmktARr0sBP0TS0AdyjTiVPJKQGV4QgpsykpA1A+x5yK/SkD5hXVyBmRKQOyXLCPyaEpAMu3zd7a1SkDuISjF4QNLQM9jJ54sGUtAxo7zBEEiS0DePAgtsOxKQGYvEsPJBExA+hWJykYcTEBi+4Hj7YFLQA/PP3t5n0tADconqPcGTECFk+M1P+VLQIqJyqJ3NkxAFgIHbQUeTEClLrvHPxRMQI6CAK8BF0xA7puYcyKJS0CdC0jvMwFMQO/rwbQCQEtA2ze+WskPTECzdiPUkbpLQPlGAXyuG0tAU5OV0aQVS0BzGT1LiiBLQHGNZPqbiUpAwk8YTuE2SkASiZakHWdJQG+rKK9F5khA5Ffu5LCXSEAAykrlvMZIQPnaihg+/khAfyqSD/rYSECaY8CG6idJQEo6jLtPAklAV7D8l75/SUCyNTICrm1JQM6ORTadjklAeuCpvaubSUD9xR5Q/PlJQIgQyChu9kpAWx1ph/utSkDuaDVyw5FKQNK4/rTRP0pAkhK6apknSkBmMp5WS15JQD1Z6s/pfElAu1FNB/tSSECfvyg0Q9NHQB1c8PJbg0dA35WiN68wSEBBZQAbh45IQEkGJLLYoEhAbMXjR19xSEA8aDe2Q4dJQGcMKgiIRklApR+WjuxpSEBOd1NF8jFJQPNfaEaFfklAMEMzUV6bSUA/9cZChm9KQAPH+UT8TEpAmAn3RBGpSkA12qrZFqtKQPwMKtNVTEtA7JvMgO1ITED2iL+rGeRLQFgeKQKJxUtAOs/6S5iiS0CIwrTQCN9LQC3QVKq8K0tAEKp8qtAcS0DUh7a0TBFLQLsYGx45MExAw5sXrw7jTEDDNywoyVRMQNKFVLp7dktAo0x1Y1wOS0AUmCbNix9LQElhZx3RHExAEXs7PNkcTEAFPHVbkrVLQOLozPpKIUxA+YEZJe7RTEB3rtyZSQlNQKwaSP+ZHU1AwHCE9N4cTUB4B7/udSROQIxtAu2PkU1AlJv21CIsTkB0EwQHntRNQK4mMnwQ801Aix20hQRvTUBmqwlBmdVMQCYOVEYMAExAr7Vaw5ckTEBaT7rGBMVLQEw4YWTBrUtAEprTd604TEAgVm9byINLQHeIc/NijUtAnrQBC3x6TEBLuyZf9PlMQON5nXMXhkxAiuFvSqNkS0B4hw8s5UhLQOTEKdJaeUpASivikP5ES0AUyUO7TRxLQDxm6FxjB0tA6Un2pixFS0DBNKS6YeBKQB9zWB3JF0tAOlZINiSvS0AIbYvskCNMQMY6vNxsC01AizpBKqyUTUDaQDMXyFVNQN0138IjJk1A5sCxfA9BTUB40USsAANNQGlaLuGOhE5A7R5UJBwsTkDuySyhrMdNQDqa4dCA601AfsY7mlunTkC2Q0Qa3yxPQEoQCc8Wtk1AvAyj7FAKTUCufW4JS+xMQKg2O3aZl0xA4rX/+4XWTEChWrykc+RMQJs1+1mdsExAOp3mB/HjTEDuOOM22WFNQKwnPo9Nv0xAN4DJN/xWTkAtnT88UHBNQFQaOEnbLU1AYfgxpi0OTUBigU0pgphMQNJyKH8cmUxAuchQbwCaTEB4diRyvWRLQAJIkzQ7QUtALfnqCU0+S0Dh3sUq/X5KQGDDvk9+8klArYIIoy0hSUB2im8nPRBJQNYu91hWQklAxbvMgvMISECY/qi73HdHQLb/QXhKNUhAL02pXErkSECmWFEK6pxIQOjbnSYxSklAimcUQACNSEDRDvFH/qJIQApNozkMiEhA+QHG+KCpSECDfMdyqPNHQIDVRNUDe0hAzka8CqW2SEBf2DftzN1IQK2B/5rDjUhADIyMTE6ZSUB5GyyLeHdJQPHR5a/xMklAD/0jxIGRSUCLObm8PfJIQClItDf3GklApo2u03JISUAFqbtV0o5JQEbZ3YpmcElACRpGGlIFSUCyowFI5AVJQEi0y2K0QklAjQPueBRUSUDtHTcCyxhKQDUbN5qB10pAdHKrDkTuSkBabNleIMxKQJE2CEdObUtARsI4huJYS0BREAmuJ79LQAGbc24IMUxAmUWZKCvrS0B01Ky7z2dMQLnHE9pDh0tA2bEVCfUzS0ABiLRZXTtLQFUX+2/q30pAMvgYmbuZSkCyiTZeLRRKQMLutstEGEpAh2NzvQJ7SkCZm1lU+TdKQIo8NupQY0pAT7USZOAcSkBb6VqQIBJKQE9OZQBclElAOPPrc5HISUBRZyY3ma1JQAsCOcBbLUpA7UuDCk20SUAnV0jT0dRIQEQOxxGa2UlAyof11keGSUAM2gL+FGxJQBS+Ium5QEhAFJfb71oNR0BelcnFTOhGQKsimIwEwEdAtVsYsiGER0C1vrOJuX1IQPmw2qL5X0hA+wWb9szlSEC5JAG57U1JQPeKjuEVckpAdoqq7NpMSkC5lt2aNWBJQM19Hc+YJElAjgSc7fe5SEDsJXznvPpIQLQmOH6ez0hAwLQ8xzmPSECRXu3eEjtJQCtcpWh8I0lAJV92M77ASEDbpeDHmJVIQEXTBvysZklA8VO6+co9SUCSOOJcsDdJQF6AlExTokhAaFeXAXt3SUAbNsWhwRBJQN77LnfBM0lAdTiiB5lSSUAxoZrZnmNJQAzd9cmACklAUQ8S2tAXSUCl0EDpu7hJQIORGWByM0pAvtMXE4ISSkA3P4n8rbtJQEXVR2FK9klADNqCoXu/SUC5sElFFoJJQKh8sJfkXElAzV1rarwMSkBaCukOkiRKQHRPd8igfUlAS1mgQH3uSUCtmF5KmhtKQCncE7gE8UlA4iyM58ygSUDYmHjNUItKQAjCQOoln0pAysVSzQQ0S0AQi2fQznxKQIwjitgydElAfVQ2pUYnSkA86uJWSp1KQMXc0qRp70pAt8HYTunrSkA1sxk6FIhLQNyZYvb1hUtARXf9K2LZSkCQdlWSB/NJQCThAuNcmkpARJ24bwt/SkAYTGu7sSpKQAfC0kPmWkpAG2dzBD4BSkCggFr7yqBKQOEeq4ZaMEpAFdwv0BEmSkBCJFMHP35KQJ8hLhMyT0pAJ+gA0kOWSUC7yNjsRcJJQN6/ljH6QUlAVRDktTaXSEB7l0vZP1NIQFuvy8i4GEhA+NKmBCQxR0DbIxwPjCJHQLTmF8yFSkdAdky6agB5R0AJhGQEQ/JHQGzA4/mZW0hAkXq5+Is0SEAJLT9CqUxHQE/pdFsvFkdA2//nLjeIR0Cp9RPD+ZxGQNKl3Hl1OEZAGh91B+hgRkAsGEjOKbpFQHX2x3Px/URAieM8HzzGQ0AhY5lbS6NDQKK9F4nsgENAfNMb8j7cQ0DY0HlUqrxEQGVNXYQGyERAXRbd6ulzREDZ90/mnolEQOmWcBPiS0RAwWgspr/BQ0BA6kp6es5DQM8byZEQeENAA62ma18SQ0A2587OvuZCQMNZ1XhlwkJA7MeQmw3XQUBA0Bh15T5BQOFE2AKqeEBAHay1gQaqQEAYGn+3wA9BQDdzuhy+oUBAguXtObI1P0C5mwHZsS8/QOrmOpMh8D5AoXPWchjxP0ACGeCx8Xw/QLmWdM1C+j9AGURw+vCAP0CmEjnwVwJAQMyUc+7VMkBArZuo8MXUQED35VQIF0VBQFOxSAtUYEJADf+GES6zQkB/ZVxwd2hCQMh4OfCxFUJA6mjSSZIPQkBckqzHdHpBQEK8Z+hT/UBAWjXY9boWQUCNaBBSqvpAQBCqvvBrs0FAWynoFPmaQUCLTgYmc2dAQEJlzXPcKkBApmlMG+zuP0AT2qfsUAVAQGJ4YL55Yz9AiCpDbyHLPUB6xJdMHJk+QNfNkFg7Vj1A+KvobJ+uPUB6VmIE1og/QE8kBM+HpkBAeokMgrpvQUB+JEYsJgtCQNuMWkPfY0FAjPgYiV8hQUCF3YnqMH5BQIPBL9mSLkJAsl6IFEN5QUBfCbSnOU9BQFLSEspDm0FA2zUnOioTQkAVIILd+2xBQMmSQOQkDUFAenG2f2aXQUDizWNCBTRCQHoFzkfkaEFA8DGDY3ciQUB+VPW8cV5BQGhqlgVLeEFAOE7+gNqSQUCLynKAZgNBQPfWlFMxW0FAP2pPtxqsQUC4LXsYVk9BQGURJEI2h0FAl95P1yvAQUDoyM812s1BQLFQCTwjb0FAT8UlNub5QUDva7pJ+cpBQCY4mFb7YUFACmMya3vIQEA/3Bq5vDRBQN75e/QWMEFA5CYtwgQjQUBisV0Zky1BQB+h8CeUJEFAkCt9YjraQEB0LYuYcuJAQORyInOFfUFALgV+i51eQUAHt5EjIWRCQMQBbhi1zEJA38ZRh2ooQ0C1h9tFwplDQMa6nfpJAUNAgnLrhZRDQkDESX9EHiNCQA2rXYq//UBAHeVX6haOQUCew8Z6+yxCQEC8ouaoN0JAE36Kdf8NQkCK6nuBgbNBQAzSjbbUxEFAIH4kdBs1Q0D2/llVTMhDQGMOqrnYr0NAqJ6ogPwiQ0Ad5pe/JytDQCcsMRjwF0NAVzia6lmRQ0D3eJRxV9BDQH3Q8Dc3h0NAlEe8wOXBQkB2u7RSymBCQLeP9obDP0FAdkvQ/9KLQUCnJYg3cjlBQBoIR9sz0kFAOG85BjRcQUDepV4qwi1BQBhuzV4pQ0FAKQBGNAH3QUBCbf3e/dNCQHwmqc7YqUJAqsyhESR0QkC6H7wIFslBQMQtls+M5UFAQTKf4czqQUDny1O1Xf5BQM4BGuSfy0FAP+iHUQ9jQkARa/xSry5CQHjyu/+lwkFARqlLiK2UQUDy3cBzaWhBQBEdkrYookFAJdWWrTTEQUAWyZu4OSxCQB1NhYJDm0JAD+u+gabaQkAkPxaSj2VDQDkfruXITkNAH3KK7XvaQkC6kH+gX8NCQNqax0yutkFADkFQj3gMQkBzPBSIiclCQNWc/1tEnEJA43EfsEScQkBvybfy+M1BQB85p7jug0BAcCibZzuzP0BLviTMsW9AQK1yotMv9j9AYkU9GLrpP0AWAlne4Ns/QKE/wsiVCj5AHCuCIg53PkCRyT9woBM/QHrk3Mk8pz5A9qhrMhAoQED3cBA+yBxAQEclWynDS0BAMV2acqqCPkCCu+NQYsU/QPQPy0Bkb0BAIQ1/3h+1QEDn5Wpup9VAQMfGqOm7FkFA6Ma9buGEQUAHww6sDSdCQKaJkHB6SUJAxzikxVPFQkDS0XJf/jVDQDa0QG7cNENA2QsJrJiDQkDT/sCPJBdCQDyaGxeYfkJAtYPd5K+7QUAEXk9Oh8lBQKXr8OL7A0FAXAfyWKqEQECjtzj+yVtAQMp0Xbwrw0BA2EWCoUbrQEBP7rUeMxxBQPpHgL+1rkBADWwJJ0OHQUBIgSi3rFpBQI552HATbUFAatQRwMvWQEAVSxRqVn9AQHE1V1s9BkBAnzmbz014QED+m2EchQ5AQOV5VqyGjUBAFFMhyNnoP0DhLc87WSc+QAUJy/cqUj5Arm3X54ISPkCh2dpY3B4+QO2AV3S4rj9AVS5uHO0wP0C26yZ84ac9QGWIctykTzxA917IMtf1P0BG3gdJUr5AQPPi6vhQuEBAb+voNcAxQUCbLQndxWZAQPKUEcYEyEBA6n8r68EEQUBFRzQh+oBAQKu82TDCMkBA8BFXDtpUQEA9jtKrIGFAQN4zDhxyyEBAL0XE/DwQQUDcMwvyB4NAQAa5tM6bV0BANkCzKe0dP0C59YeNDeY+QOr02sivTUBAssKUTm5dQUAKvpcwuCJBQMKGSodvnUBA5FPda8dsQEAczXm/zEpBQMcum0SXw0FAY21lnS1lQUCCkGt3mE9BQBApTtpnxEFAG1Ff/J+ZQUBkbLhTdLBBQCGZ/Ucl8EFAtcZxB4EVQkAQ75UVDw9CQMIAGdZgiUJAi13JrAlSQkA/iJzDjjdDQCVusVSPL0NAtDGfF7z2QkCvRTSKO2BDQHUwdURcUkNAuPVeKeI9Q0CpuwKVjrJCQLD+dOi5fkNACvifC7wBQ0BzBVdUH+FCQJGEM3kvIkRAo9Vwm5I1RUDJRbpf3IJEQCetlR0gFkRAB58lMB3gQ0CoNL/2PZdDQLpqS7WiIURAlIALlXaTQ0Dn8CCFVjdEQF14ln2ImkRAkxgEgG5VREAXmDN3d2VEQHBO7W89UkRA3QJwQ5/cQ0AuCAQk2mtDQO4Hr3ypy0NAZMTV/3y6Q0BM4CPOGY9DQA1LOSeEnUNAprj4rZmdQ0BTgSX8FQ1DQAjWPIHcrENAMFo9mkIrQ0CofD83/39DQI4ChMLN1EJA3Y8TkGh+QkBwWl8KqI1CQEAVJKNye0JAdO578y4XQkCqC9eWbFdCQDmkJo97DkNAaeS4p6tGQ0CbatC8BBNDQEwhUvGv0UNAGH0bfA42REBuNNLajaNDQB8P6DqHj0NA+Ak1PV+zQ0CyyUgSPhlEQPwTBh4YmENAhr2vXuDZQ0CvM3Q3GKRDQNOuofdUEENAYkf4S0G6QkD52SsMSmtCQJs5P7F6fkJA2Pn5bixkQkBCgkJ5+fxBQPnuGyGGRUFAZujwgyM2QUDu/s3GUpZBQIZj8ov8ZEFAnZIRyzOPQUD7qoZtrRFCQP+m3Uh6WkJAn5/5Yi9dQkAq+lSeucRCQBn5Jd2p9EFAQpOwamkMQkB+WDWhSHRBQJFsBfXo9EFA7qPxNlAuQUCswgY7qalBQPhsD0GsUkJAddkdwT0XQ0CGSTz8+KJDQHv3q6u9G0RAJTkmZmZoREARoHXJDNlEQEQlwSCc00RAelWrWGAARkBc9ciQvGpGQMIF2+GWxkZAuGdBvVV5RUBXUoP7qnBFQBbAJf0PLEZA+qdjYstpRkC3iyGoE8BGQGJW+9XE9UZARfwSGY7SRkA0nd3QPD1HQOaoRhcqL0dAW7JQUjsFR0BJcM/XgAlHQL4Vj2NWx0dAZLf1DgWeSECLDcGhBLVJQOz4ibnlNElAfc4RYkHESEBJTDZdRLpIQNTqCA2330hABZoFlStWSED+nLnZGX1IQNhXwQSgV0hAbKXperePSEA8B2SCDHxIQGo7Pj5iLUhAJAxuKfZPSEAkMORn0kNJQF2Qqj/CIUlAbc20vU7tSEDcUyyXgo9IQLQh1blICklA/RMhlZjdSECkorPkD+NIQKMnjegLOElAEC7yY03zSUDz8ky1DC5KQLsq4qBNZkpAN0QTTfCaSkAyzZFpDGRLQM4MU8SaL0xAF1LhhN2PTEA9zO2qQr1MQDU5ItVWpUxAtqfr7Pw3TEALQlLd1stMQFs3j544RU1AB3XyNHkuTUAP3+HlylJNQH9GqKb/fk1A9qn/g0FMTUA3Ym2FV7xMQKkZcwjYpUxAZE8k63uBTEBrMqAAMl5MQIBC42vYGUxAbiujixPjTEAVaWUfNCpNQCNvumSBeU1ART1zX7kfTkDHqXsKp0JNQJu1zpfJoUxAeXlUDah7TEAFibaEcKZLQPfwRXboXktAHWKf1BRuS0C9viMMWAFMQEBtSfgKQUxAPG2fo7FuTECu8iRAI+tLQDSc2VTp1UtAnhLwodLeSkCU85tyL+9KQK1Dx0FNfUpAUCDYqlMtS0BLebZ6fehKQNBlyTiUaEpArrG+e3vpSkCWD+mBW8dKQFDwXN0eMkpAvtFIYsh5SUAa9N4WH7xJQJqK6e1eiElAGDfDfTS4SUDCwdOxSXNJQBy/HxfRPklAtcUAhG1iSUAwo1mFYNtIQGrBWeENHEhARkWz6pZsSECWjiKdz1hIQJhcPXGJM0hAHvPTWa/SR0AmCNw6GZpHQJWSjBNa4EdAu/FidjBmR0DW67iaKBdIQNab0QIT/0ZA4nE5T3WpR0AMLWaaHBRHQFZ0IZLj7kZAS4h4+1hrRkCCD4kidNlGQKMge1zAQkdAcnhpJF/dRkBpn3FC+L9GQNBqXP85nEZAWeEU9izxRkCJxcFzNtxHQJ0UyhiBkUhApOvTDgl0SEB7mCOvfwJIQA+jgJE2wkdAE9qlJeVQSEBnNmTLxc5HQCHp40jJfEdA5SJgw3n3RkCRhoBYcC9HQChq/ePF+kZAfVMq0VS7RkC8Iw62++BFQBO+tK4yNEZAN3oynxB0RkDext6bKcxGQEesN6KXlEdAKuskVE90R0DXV2bmgutHQK8v0E/3y0dA6mm8tVDoR0BG1vH0nZJIQOxJu/nldElAnuD0z0DmSUDCXjy6lO9JQFkMYF4mxElAsIn+DVBsSkArDnXWJkxKQOb3CFjd4UpA/sCoB97hSkD5wtosthtMQAq6xoryXkxArGxM02WuTECM94fRoMNLQALs3MkPTUtAL3NzgHjeSkC/NbAJTFdLQOOem8NILktAxO0NtR9OS0BOMiqwSEpLQDnVD8xy2EpArv/9cfu5SkDO1s1n9mhLQJMXRpfnbEtA3LYHOVNtSkAgUigk3xFKQFBsF2X40EpAYc0Db33zSkDi6iJVaS5LQHRd9+c31EtA31LVZhEZTEAPdqxi3X9MQKddMwPYqUxA8/MrzA2sTEAcagi+NtJMQOYTtG7UJ0xA3JY7Igo5TEABaN1owJ1LQKhANqbxBkxAh8U+0aQpS0AKVotOvEpLQMroeepCcEtAAhDfyoA0S0BsxrqdlxRLQKNX1al0yEtAokz8hVR/S0BM3myh981LQKRRb6plrUtAJ11/9CK3S0AypS5aQV9LQLE3v7w12kpAQbKo4o7KSkBOaqgXZyBLQBsnkjXMrEpA+X9/ADAyS0B02yvKFDtLQDQNtIvsgEtAFtsbTobFSkCkpImjOX1KQP3YU0eFRktAyWzKqyBJS0Db4d6d3ZlLQAOxsQeX7UtAIjw4uOZ+S0D+FfVNteZLQBLHkZvlTUxAeTuzTWA9S0DVn0ImuNhKQDJt+q2zbUpAdjWcmKOTSkB0UbWNaGNKQMKMRb8nMEtAIZLqmI5BS0DWl3VCGOdKQP/KaP15YkpAIrS/r1jpSUCNV/zZOvlJQOFen0Hw5klAS231pcmKSUCPvzMS1ZBKQGv0EM+590pANe8TqzroSkAm4iqhdjJKQOF7uWVFjkpAwQ+8DQUITEDI7HpxkUNMQLAfcJ9+lExAuL1XyFVMTEDKBJG7lk9LQOeE96hohEtATN3YckICS0C8wZyRftRKQK8NOQjSakpAs0DHFo+vSUBGYea8FRdKQKZov5Qq60lA1b4XOMN4SkAyFarLm79KQDLbXPpirklA42NDadJASkAemkRve+9KQFndi0QNYkpANJ7mrld6SkDPKDZpUYdKQAlsBxiVZ0pAJIOtAwHqSkDymwbUILVKQGh1FQ5lj0pADRd57i1xS0Buf5FFcONLQLkJCesCg0xAujTtUw1ZTEDFF/xLdeRMQEJ1OcJi4UxA3UP+Qon0S0Bl/oCXM/RLQNJ6S9JfnEtAKq71zMLgS0BDc2n4bONKQJViU42vqUpA7LBayGjYSkC/BDAf0CxLQCTnQtkIaktAuWm6779ZS0Bk7NsWLXdLQGgvxvr+GUtA7yJwcUJQS0AO116W0VRLQEKfGywJp0pAtq89e8P2SUAwv+doglJJQOL75cPpsklAo7sscvcBSkCns0yvYVlKQBq5p3pN7UpAsb+skqqoSkBGWwyoXs1KQJ5O/Z4OcEtAtgzGWjmnSkCim+YjD/RKQAC5rDBUoEpA7BVJxcdqSkDzLq02GsJKQEWlzcBHA0tAfQr2sIpGS0C/Xqj4Ay5LQGa8nsoUOEtANQrE1PvvSkCd2csHB9BKQJwR8XXIGEtA9/5XSiy6S0DygIbvH6RMQL28Wk1zxUxAPeUUCFkRTUCDH+H9QbpMQLTdVOHcr0xAgZDtaq6YTEBj9TRxLjhMQCGdmzEakUtAg8NywmOrS0AWsDGdCalLQI7CN37LOExA82le1D6vS0DUw+Mvo9hLQPIW1j0hkktAAWdjfINETEB1Yi/mY8RLQOW1oO3bGEtAJXJQoNroSkAprL/KXHJKQMvejaziEkpAri1dXRakSUC9YZEVWsNJQJiy8ipk20lAgnRLZb88SkA6lAHLsaxKQKBa5Ws2g0pA+Z31YcAuSkAeG2Sa5d5KQB+XGB+Z/kpA4g14QUGeS0C9AEBIcGBLQCIqX9cuHktAUlVniVpLS0D52oji25FLQMk8tQI990pAnF9BBpGOSkBT4sA3tdpJQJpMMo761ElAUiOQjE3OSUBID5hzN7pJQA/CtaQi+0lAkWcHW6D7SkBr/3hdKcJKQEWRbcM7skpAvGq3bNAFS0D/VVplLihLQKcIeAOXuUtAKdms82uLSkC8KU74E7FKQL9hhU4U8EpAm5jobRTBSkBWRxtdJIRLQJFdfsoKdEtAwzBNNXDASkD3TiMxP1BLQOZsWEz5t0tA8vC3TfBPTECrL/NoGPdMQPtu5/JuJ01AKUXtCDpWTUDWNT2Lia1MQOorIVCtBU1AA++5HNnvS0B3La9eWdBLQGDALuwWt0xAe1AzONMyTUBn+RN0rsJNQNwVGlAStk1AB4XwZrjxTUCE8TvF/jdOQJ1EnEq+wU5AAHWnXdazTkBk5zXwvVZOQIONJwgfxE1AbpBOMduRTkDKfsSC8HJOQCMbLs7GSU5ARoeU+4vUTUDI+rdfOKhNQBw57Gvt1E1ATeQok0x1TkBzk+e6j4FOQDczLH9BV05Ap/3CQeTLTUBAKW6fPSNNQBnVIvEbl01AZ1dgtSIYTkA6Vc3UbotNQCn5M6weQ01AiEhNU+GJTUDly/dnfGtNQDjDMElh1UxAdtL2zg/TS0BhMH8R4ptMQFpgFOTGDUxAiywQpnt7TEA2NrBvCZBMQGhbwvSRfUxA/sWnN5CmTEC1IITccBxNQCxsdPy9Sk1AFJbisXwxTUAEbAmFX6VNQMP15W9myU1A3R3fysg2TkDYvTb7iTtPQEgH8V9lQU9AntGPMecQUEA5h12oHyFQQLF9B+1h+k5AynyCWuyeT0AASewQLwxQQGF7nLW6LFBA2N/s2DhkT0AI3AblLE5PQHRTeNp9BU9AsPgHe77ZT0BvxDy9/ypQQKcO4lOfXFBAMEmXCFDLT0ApR5Aob0hQQDo1kkKwlVBAMPWRQGztUEB9qZlwFwRRQH1m7bGVF1FAuPcwJ/2WUUCJQcyE8CtRQLkqYQg6oVBAyka2wz7BUECc2t66Ds5QQAleTVkOcVBAgy6NjgjGUEAq2O2W561QQGMs4/9PTFBA6QvTtO4DUEAvmS6FVyVQQO7E02j0xk9AD1bEzZjWT0ApLpXDpT9PQA9VYY9xA1BA2LPpJTccUEBYtQsH+ZlPQCCkMF/SDlBA35UJDAZ7UEBaGVtAc2ZQQNW6ZIenV1BAx9GHmXF7UED4Mk9fWthQQHxUsICTYlFABpU47IlBUUDkkCcTjC5RQDV8+e9FzVBAVTxbiejAUEBhS/Y+ysBQQJN/ww6urlBAvuioejanUECJp48Ok2hQQBbmnwrMmVBA8Ro2/WZxUEA2u/K5aZpPQEQj31X+1U9AJ7erFfONT0ChUxfm4LxPQA2BQOeR8k9AafmpSLN6UED1DAfZZGpQQAzz+l+Ri1BAS3Aq+d1HUED3nFofXDtQQN33jU5WAVBAovSw5SDAT0Ddw1NA38tPQOXyfUKmBFBAFVlYtwYaUECOwfS1cHBQQOOGHFpCjFBAvcrehe0TUECLJbhI/PFPQJjVOcZKR1BAQ/7ZMiVbUEBRJxOvcjVQQDaHft+meVBAwa99KvGQUECjNVxbqrBQQEelS4DPWlBAb99ggLhRUEAUAIu7n39QQHsfpXeBmFBA8ZYdo3HvUEDQlKPX4dZQQAM1ork9sVBAcxMGFCXjUEC1Ig5CmwZRQG3TYUX+AFFAk7kKtGSsUEC9pjq8T15QQPo6vjjv41BAboCOpiwlUUCw9Vbon6ZQQPwaZH2/dlBAnhtHp40VUEAS2MFboaRQQCwFKLtUdVBAFVv/kBxUUEASVVDXV3hQQCp9GlDXX1BAkthga4wgUEAbavG8/GBQQO72Q6FckFBAu8BjjDpdUED2OdGZITVQQDdi7PTZaVBArn7UY0oVUEDzbWy7JUdQQAXjAkMjF1BANSGJFT8/UECehW1dNTdPQDg51vlGNE9At1cJfZnpT0A9W96Q1jZPQJg42Y/TOU9AffTXylqlTkCoD86MYjdPQAl48LM2dE9AuT41G0w0T0AF/ODuUe1OQEZBMURBck5AmPvADm7zTUA5Ed7YSCtOQFmUTk2QTE1Aeq4aezF3TUCixdx8mkpNQKyGkFUqRk1A9gsvcFmnTEDLelveb6VMQHb77FHlEk1ArHXS3mOYTUANSg6c7jlNQCnU4TZ+oU1AvweamFvcTUCnR2fRHehMQBCHsLSysExAazA+l5aGTED5j9vbqsZMQDZnbNhPhkxALYxMUujETEAPqT0qM/BNQGV78E7YkkxAT+fJW3MoTUDIMKHoLhZNQJ3mXylookxAi++9YCUNTEAuBq82EX5LQCpZ62ZE10tAmCutz2zsS0B0osMFRbBLQMsqsTm/eUxA93MH3nLRTECaZKuujTRNQOy55wH8vUxAEE1VttHMTUBlsmR7rENNQBHcbvq1a01AFpdny7OPTUDn/8iFcBlOQD3Z7TdVzU5A8kwPwvwxT0CKi2GGa8ZPQFDUFxFe909AmQQvO9fXT0A59k2AjgpQQLUVNDvwiFBAmtQpkd91UEDqfHNlPndQQAuED+O/h1BArTHVLPGVUEA5LO7OgVpQQKzG9NpiilBAJxZ0wRa0UEDM5U5NPwhRQP63bpz0LFFAtU5fn7ojUUCPo4fv1h9RQErZr6xyMlFAuo8okIVCUUD0Gf+mj4JRQJjizclvcFFALv8eqNNeUUD0Xv4ERnFRQGG21rTWHFFA9kaTp+lgUUAvxRctbVlRQLuhqZirqVFAgfv3Uob4UUA9oXOzVSJSQOMCS/LLRVJA8OkadRVCUkD+u8bzfl5SQINbkNzrulJA1Stc083SUkA/o2QuaMBSQPVQNpAm1lJAWGXkUpfPUkC+PNn59V1SQKFydQOuXFJA1S2Ot+tlUkBOkDLGo5BSQG0PJPmnpVJAgdUfqw6oUkBqdJ5zZrdSQMNzn1hT7lJAlVTsSgAbU0CHRwICHolTQG3GJuCExFNAq1QV9I1bVEAqFvL2wI9UQN44vkTgXFRAPFv4k+lQVEBoWkJHhWdUQCoCAZLZ/1NAm1JIOcstVECH+znchUNUQFNJaNNrhlRAtsKqK5kSVUDzaUmtAdNUQD1843p11VRAPB+v/Q47VUCX2gQBaOpUQMtduEsReVRAf+CVRdCgVEDyP5F3XIBUQIsFt5kbf1RApZx8kQbmVEB8GB5YS4VVQHuDAEfOSFVAlqegBMUuVUAWEWIY1C1VQKdeowuKOlVAkrI3/U1qVUBuK8jMHn5VQKtAq6jZMFVA4B1XFfEZVUBTV6fzEihVQNN2K4aJeFVA54igmEVEVUBwEkoZPIRVQIT3iC74eFVAxCcx1KHJVUC69zBrLBxWQKGzNfuTUlZAdqZs4NCsVkDWZFYsvqdWQIL/fqHB21ZAX7LxJgPqVkCzcHJVzM5WQAM+Fyi08VZAaaMq/IgMV0Cuso/tig1XQL3hqQ8M9lZA8IFbeoDoVkCJiolH+8xWQAGZAP6PXlZADOIi5ktuVkCPTo1U2TxWQHslGMZ2JlZATBqeaou2VUCNxztX8c1VQGO8P0Y1AlZApxK5hZ2zVUDvi/tYEEhVQIXoFsyrYFVAz5frxxlbVUC2Z0tqWb1VQKDltwt0xVVArKcBWimWVUBrGEIW1cZVQAARpBe+2lVAPygKxdGtVUBACmhKIRNWQH+dR8FENFZA8jXcrmE/VkDQchJqr3FWQGzeYmKTIVZA+OHOjhj8VUCuwqWihbtVQE31drMORFVAboykiGMpVUCWrAa+V6lUQM2LKWz3GVVAyXHbYqwMVUB/yZ9UCBVVQK5mtcLaE1VA6jaREZLrVEB8ySdEszBVQCzsYD1XIFVAr9CgwiA/VUCttGy0ZgtVQBnu7PPbFFVAZxN0owMLVUA+pvVMs/tUQF9YUZEVOlVALWBRSL8cVUDT6EXuFdBUQPpMAPHMvlRAo74ZpzMtVEDEZ6BNantUQJCYKut9ulRADAcYZJrmVEBufHNnlYxUQI/JZi51alRAvjQ++sTxVEAfVx6S6FlVQHsB3OUrtVVAYZLD3bqYVUDwQwg88ANWQBoJFwCl+VVAI78dtTUxVkCUkuzDZTlWQGp1OjplMlZAZIuCLtpGVkAp38WZKEFWQEJ5YE6kM1ZATK+KYR3hVUBruM+LGz5WQO5B3cWxalZADkl9T4GCVkBY+InmmzhWQKcByq7kMlZA0Q1eZlH7VUDk2xl9W1NWQIfvulI/HlZADaMpC6XWVUATr4w4ySRWQMl8vcsTA1ZA3xeugE1bVkAQL08iUB1WQLEM2rJFEFZApft1aeKdVUBJfHwsfdFVQJ5OFSPdl1VAZk+s4JlYVUBHW2DHzRdVQHzbbml7JVVAfkfPqNDuVEBnx1u9kOFUQGNdKWaSwlRAmtcgEGniVEAXPSYT73hUQOJXLCzDfVRAfi6GkJ6yVEDbEXq6mZ5UQMu3x82D1lRA5v1Byt0vVUAyqWdCuclUQJrfrMIAZ1RAfMwbos4nVECCMHwqgu1TQAGTGF2031NA6Cwu81jVU0A3PK/HqkBUQCmUI55PJFRA6HL+UeYJVED+LuvdBFdUQJCHS1chgVRA2WbcmoNMVEDxkwoGO3ZUQAF2kXIOO1RALCYHLrmDVEBvlieAdPFUQIYlH6MBL1VAp0Edt+r6VECtrZ74q+ZUQCyHi89RXlVASeVSQomZVUBK0e4kAZZVQP0ekLl8HFZA35goGlBDVkCSJ/y3CV1WQKmYkcCgsFZAilHVCCHOVkCmvF4DFsxWQFB3XGoRnVZA4b44PCtSVkC6Jijmf1xWQCgOLrlUhVZAICDkyjudVkCDwpHowLtWQFmYgDyj+1ZAvk9yIzpAV0AxYrZMDQlXQART7qqbcFdAINLSaHshV0AxqAOUOFZXQGciMxheYFdANxNCNdBLV0ByJWy6JiRXQKKsKHo0hFdAusumbONkV0DaNte9259XQJW3FYPm1VdAryxpNJUaWEDX5RYjUvhXQAy4+3yIzldAMPlr4STzVkCyEUkUay9XQJyNlCG7Q1dAbCU8uD5HV0AqZLLN6ktXQOsP1c7OZVdAYExDQxrHV0DyjkNBCaZXQHa2V7AvgFdAeNFQZft5V0CmvTFAgGhXQNfEdzMIV1dAaeDpwJd2V0AmjXeiuXVXQFx+ThLnZFdAQC3RAfutV0AzLGNkMH9XQG81Z6hylFdAIuF7Mk4xV0CTsZb+/1VXQGix4XYNFFdAYh3IMt43V0CXdx4rECBXQAkvh60AKldAH5wrpzUnV0C1V1YLkABXQI6g4CZaBVdAe+bwfbDrVkAcNmA1QnFXQIeqNnRdTFdAycJwVZfoVkC+ZyfnFaNWQANtVIWx5FZARksaF1wQV0DR4CpZBQtXQPzT4S2fQFdAQoXEqstdV0DNqczDdlBXQHxPucCXP1dAZ+bW8l/iVkBr6f890iFXQNlhoFwnVFdAORC6sVhAV0AQTkkLQ0JXQMaeD6Z8UVdAVnFFUUDvVkAgSdhOAw1XQCHNQFDxHVdAiBsUyEbsVkAIVtLL0gRXQIqnF4FFPldA6YUs6afOV0ApMx3fqZhXQMdmtyranldAv90N0zTGV0A5BC2UCSJYQDF48RMpIlhABws6O++NWEBLexEPBnVYQMw4sgZtjVhAhpDCfWChWEAYGJroytZYQC9onOJZ2VhAhZHo0AMEWUAEVQDCbGFZQCYHjQmtZFlA/uRhiR9bWUBxwxxeNABZQPdZE8WbUFlAIKPkHfxpWUDKJ72iin9ZQCsmwXBcjVlApIbBTaEuWUC31sIXTRlZQMVLbqnKu1hAt0cRckePWEABafRoehNYQFcXzUcpL1hAcCZ5OtP3V0CDNNPO21dYQKojZbVoNVhAWbIOYdbKWEAgMvSA1NpYQOcst8ykulhAJyA/KFP2WECaQMowLm5YQDQqdqq7e1hAM78venF6WEA+Op8BmzJYQCDZqdO2MVhAVMF62wY4WEA5YMVFl39YQFFIHNI5u1hA28O0hp3OWEAg+yZE6y9YQHgG8TjzX1hAIfgHMzVJWEB2mluXGhFYQKJV5XEcPVhAdQwKBoJpWEBKAw9X9vlXQDywBQHdDFhAMrAXcIQnWEBUiu4pBv5XQKS1idXRQFhAWNfOJizfV0D01ur1/hJYQHANw1S111dAT9u3vlGSWEAAk7VCesxYQK1iyT/Z0VhAeEwECgEIWUA1QGdalnpZQHv2e7AQjVlAyM50lUmBWUDayj8Q0mBZQDbKtQXiXVlAirvP2M4hWkDznAVNVw5aQMqmoNtYq1lAi/t/gmDIWUCpu2egslZZQLH0OiCBFFlAhOvrtJtMWUCWm8PCxMhYQEnk9D2+qlhAT3KR0YPPWEC0S2gNHMBYQPrXQgoxDVlAHHJHP5XKWECd+qESJhtZQNUgppUJJVlAyCkq98fRWECTMKLqyQVZQARP9gjk0FlA9AHufDTuWUBwDmfE7QlaQOiJBUkM51lAhhSUJarQWUDJlV0y7/dZQIW2KX/qQ1pAV6OdSbHlWUDF/qOr5O9ZQLzJghqDHFpAGjr5YFHJWUDwM55k6e1ZQAQV6NIKtVlAvGmydPkiWUAO5aWLSGlZQGTYw0RKnllAwr/RtQq7WUBx2EUeqoNaQLMfcxq76FpAdXhUFqyzWkD7Yb/CHKFaQNAZjx5Nm1pA8SimgNyiWkD5eMu4tb1aQCIU0Sbx4VpApqj/oGuzWkCqakfYG9laQGcKGZE//FpAuYsXW6b3WkAM4zKACMhaQOiMnctEq1pALFPsM3/7WkCa5/1X7R9bQOIs9/nqFVtAGASV9LzkWkCiKtixNzhbQCXmCCFlKVtAIJm5QXoKW0A90bMinRdbQPdTssf7WltAz9GOuxwpW0CwgeXNwxdbQMvUWc17AFtA5grpi8PrWkBfz3oGL/laQC/6TZzAMFtA6NPXZgZnW0AcjIhL1TZbQJc1f7F7dFtAY4xwhSzSWkAM541yj9haQKn4bvsOi1pAgEdrTpWAWkCekx3wHEZaQBPgXPUITFpAOhTjPalfWkB9P1d3+s5aQPEu+acE/VpAtHNFKsopW0DK03meVuFaQMYplesn+lpAvacOyOoaW0Cs2+ccVSBbQCjFFk1FDFtAu2Ue8mEVW0BzIyB6En1aQOn+wu28XFpAxMvtYQlBWkAiT2h82V1aQGalGtNGjlpAS1H4rb4tWkDF1wt8I1laQJe+hKf/plpAlaTUBGG9WkAJ9gJS6KRaQHvZVsSoG1pA5Gd5XauZWkCREO2fiZ1aQDjpaqtccVpAY6e8EZ+DWkDwapAYUvFaQNEnI1lX7FpAc0xzv9YfW0ByaOjhW/1aQPBuVqhd/1pA6MhPEI4UW0Bd5TOGNxFbQMHrOHLCFVtAOPXpQdwjW0AnyKqco1hbQD+09//ZYVtAtJHJCoXIW0DxpYLp0EtcQMHVuuVNO1xA3YOzzU0lXEDPI/iMCVJcQGnxmbmVJ1xAnpkviKJVXEBRXIfR5ExcQEOSr0g1N1xAso7kfDANXEA2Qgs2vqdbQFKk0Ku9y1tAnzOOdkcOW0BKltwL1UFbQFyjALz+VltAtEKHoZ4eW0C8NkiZufhaQMJGR11hBltAZgBkbBQCW0BpTKJfUJhaQMNUy8lgclpAaLJU2SuyWkAagUG6fphaQAzPJxqUyFpA750qOgqGWkAiI8yN9YVaQLp4VVU0RlpAfjMu3Iw2WkDvKudOOU9aQPmZviF2JVpAkeELvBsNWkDujTYptyZaQJ0Fgpzv8FlAr+5HzPb+WUBNb41yyClaQIgW3987aVpA9wX1qRNkWkCguSabGPpZQKBr8KQK9llA8PHm+OTVWUDQA6aEx5pZQOWeleTSgllAawTLGFEVWUBq+mhaby9ZQOliG71wUllAlsf7BiiVWUBUMwDoEF5ZQPyl3zYIiFlAu58SmiUgWUC6MIW7/W9ZQBcXB71XeFlAcDkMqCaxWUB0hLdRvXNZQHWLROGzx1lAdTd+KI63WUBlnirXMJ1ZQFYlldwowllAn8e9o4rZWUBBN2dSdqJZQDDuBL2r71lAe7ip39W3WUC8lSejf09ZQK3j+LxCY1lA3ubMnGBTWUCgkuur7VNZQBrO2ZQbiVlAxl9Ks4FwWUBhgOw8vnNZQBWqMSSUX1lAxqVkH1IkWUC+ungYXKNZQEz2wXX9wFlAQ/YOzZpSWUDb9v8A4bFZQAZwoqb3hFlAPZ/jV/S/WUC4YsAt6LNZQCVZJbJ7tllAGnC1CmusWUD7NjY4f9hZQBWqJ87a+1lA7cYTYhoeWkCAzO6w5CBaQDIDILmWTFpAvDvIRowAWkA27WaFMG1aQF6LkTrblVpArHobYdXqWkAq7CgR4exaQCcuZv1QA1tA8MN1F8sZW0DiCmzlkDZbQF7W8iUl/lpAxTkvjEkxW0BDBb1Sp3xbQIzUiXG9kFtAZROmMkHAW0D9f7YLlqBbQH0SCHpKkltA4JzU1W3KW0BqI07f1o9bQIeUm4w/zltA0A6+BUPtW0BXmNkdV/JbQAAsF3P6yFtAlBYAjb9rW0BOiVqE2odbQPzMbA8ciVtAXjOMWT+6W0ADVIPK5ZVbQNg6zmAElVtAy9bWPA3TW0Bi3ecRAPVbQCPEG6K0wVtA04jZbtV8W0CZXR0W64tbQKNDxOdZWFtAHrv6kepWW0AdMZjSWCZbQDmHDbghzlpAKcifoKD3WkCvh/0BdmpbQIiifpYGRVtA+ukl1Dd5W0AgIpqDAwtbQLFeu0XSKVtAgaM4dCjKWkDTbmdMFu9aQKuVk1IZBVtAYPC+2ZFKW0AT406R9d1aQC4ZfwEN2FpALUxzfl/dWkDRNIski8daQO7JPmU1hFpAVY0x6VepWkAUJzs0FmJaQDy9c3Owk1pAymqIIbGYWkDhV+Dd42laQBYQlBgUtFpAlKyjbNB2W0DN7cojFSJbQDgwwieklFtAaD84vKjyW0D+CxiEayVcQAEer7P6HVxA4gJTYsbpW0CJYnAD4axbQFMYn57si1tA30yPoE+MW0C5EFRWiv9bQMKIQ3BoXVxABrPDJkWGXEAyAUwe61RcQB1PVogZAVxAjIibAPoyXEAXIXXtHspbQG9vKDaox1tAGIWD31fUW0Abv3cRz3hbQOBS8N51aFtAs2+EBmFmW0CCmWgcomJbQHVeTOq0WVtA+LEA1de5W0CXVi0S+cxbQE8ejb5z11tAj1B6+IHwW0DzgyQb2X9bQMYN3NGXlVtArZVtGqD+WkD/6GMbZLZaQITupcGczVpAGFm4USkgW0BO9vI2XOBaQGLGgEnzO1tAceFH3cf0WkDC9v8f+xhbQCloCiGq6lpAESydVT9FW0BjC/mYTmhbQKGd5sWrj1tACKOFtCDMW0CSdEr9BitcQBVPzC3jVFxAnDzto2EnXEDQD7ta57RbQO3M3BaGt1tAeFvGYBTsW0B/rDf1thVcQMPDMDKd2ltAwVdA7bxhW0D4qKSuOr5bQFtorDvDTVtAwBqeK9tiW0AsXtT6pyZbQFVRfBS7GVtALDfmSUNBW0A6r/jvSZ5bQJRi3/zyoFtA5GsKjMMAW0D9h2Uov3VbQNvLpR6YeltAuvxBxfnzWkDLg3P/UOtaQPN//NHLzlpAF+uyz8eFWkBuq8uVHJFaQPhniOpD5lpAcJWJmiP0WkBtpZmBsB5bQMeMj3lEH1tAV1tGPpguW0CyUr5y8MtbQCSBhrsk01tAPvkCgvrbW0CIWttX5dZbQMMfcctMMVxArY2kP+dqXEDHbFlwCFtcQDakEdx+SFxAdafwVcplXEAdD4XC86ZcQOzxOmyLfFxAZorcjIdhXEDSVLx1QYRcQF/GTcU0mlxAcbpQwsP7XECiSMv5TU9cQCv7U9Bi6VtAOnWB85vqW0AB3ba6ClhbQBRgfmQTPltAam4XM0obW0CAeNZCnI9aQKVFSmvCHFpAR2Vb6Vf5WUBKBxsJsfJZQH/8VnWP4VlAGK4oEJBZWkC6BhxCuGdaQPNjtIMTC1pAKcIPi6q9WkCenbW3PvhZQOc5Zqm7D1pA3pWXwmvhWUAegB8sFXJaQMk7didxZlpAxaqKnmk7WkAkZJTuowxaQMdVVdAwCFpArzFwVqtiWkDlfnwAbStaQNpm7aWwW1pAwXYqfGgWWkCKSQjiJ9VZQIwf84K8i1lAICmFva/RWUBAeUorculZQLBlSvhaxVlAelVoKjkfWkCmZudPZ1ZaQC0hz/MXk1pAl19/Q6u8WkAyw2T8tX9aQInkYBuVt1pAFaIbbYZEW0AeVUoBH5daQC8XDLC2Z1pAkTACLziFWkAafiOHEOVaQDeyUsZ24lpACzhOK0WhWkD1k2hcuMVaQNZwBit5TlpA0K1y/MMOWkBzFOXX7TRaQNUs8dfmJlpA1hbph3nVWkAWNHBeSQ5bQMNWhHY851pAox6bqCDvWkDa/ax5IdJaQJf5eqsp+FpAJ91xYTD3WkBf/xnmLQdbQNb2rAixvlpAqlZ2JntoWkBXdzQpe69aQE9bkeCNlFpAZKGOvYOKWkAY0QV/I0laQBIF9TW54llAx0wCJ7nBWUDl72KPPPRZQOggFaEtz1lAoBEvdSTiWUD1eGwgKzRZQOrN0E/zwlhAG40j0XpnWEBCSDjx9BhYQEjG1Jc5AVhAdRCs7RbpV0CNYgzZCgpYQAIi4fR+v1dAFiYAML9SV0CBpxkedkRXQMPd7MLVgVdAlu/O1lx+V0D4EUnmUbdXQNMZUj4XfldAuaIFRPddV0DXiyoGArpWQCMMAofS91ZAb2EtItF4VkB2FIprdaBWQF6hnexczFZAO2daOabhVkBiqB/EcgdXQCeOublmAFdA8ckH/pYVV0ArkVEkORZXQB4DiKLfyVZAnUxt01HxVkBPO6AWRtpWQNHJwuHJIFdAB49Kga2JV0DuQcNNVBdXQG4R6WjDGVdA+XPTqc9HV0DgqsC6SmtXQIlBDX7PKldAqpnjVQDrVkATYEgbEvZWQFONr1CwIldAiU0jF5roVkCd6ZT/N/RWQP08oT6PwFZANTN/T7nNVkD5RJw3/LFWQMUYh9tRD1dAA/tRqj//VkBv6QUK3S5XQByo4bWKeFdAfEGBQEQzV0CNuCcSI8tWQL3Hsg16pVZAMYlR3wO1VkDyRvBK8btWQBmneniRX1ZAeg0204ZUVkCOHwRaro5WQEhQ+K4elVZABtmPs/8dV0DNcTew2LJWQKztTFw0WVZAZMlCGDLVVUDNp9yFC6pVQEkaM+rp4VVAVfWWXCdKVkAUGkT3nHFWQPKYDFrnS1ZAqMrvYJFUVkBZOthohwJXQEm5kP2o9lZAtyCx+ykdV0DPZq+0uyZXQD9741KiyVZA8tHkclLNVkD9gH2Ci61WQDSnaBugO1ZAWD7qT0YxVkAOGZsPfQNWQIFX6FfuoVVAgFa6TeSZVUDSZl7cMIpVQItFBA/Pd1VAGYBwbUc3VUAVJ54DKvNUQFOIS6+IKlVAd+M1FDF4VUDmeyhnzWxVQBx9SZlt2VVAl8rBKk3iVUDNp+nwXfFVQBy4xO28BFZAjkewcImBVUDjlqi2/z5VQNCxbhjHmVVAEjGKZTagVUDkLtdYE1hVQHG1kIcPg1VAp+5cFqa+VUAwiO+L1qlVQPGx2AYHs1VA3YpxdGLDVUAFa8lyYRFWQEUxWn1t5FVAI2V/5D2+VUAmEVfezE9VQE517Fm/P1VAsdD+vSmBVUAXh/B6e8NVQPiY4VtQ+lVANSdQr0n3VUAVn7djKVFWQDh8WKGdaFZAPnqBC0wOVkDfb6kHBwFWQBa+AE5/51VAjAnxORQYVkCvVVt+NIlWQMVrCDUyiFZAxCLD16anVkANzC7zaXZWQNrU2To211VAMD/t2ZQyVkDBXn7CK+NVQN78WKTZ4lVAa5ihF+4oVkBDMhvRMmFWQJOlrDn4AFdABKG+mW8GV0B1vf8oojNXQNV/f+4901ZAtbq2HFQSV0AGOw61/L5WQDSlY/MhrVZAcx4rIxNtVkAWJ83WM55WQEEZmUVwJ1dAQpo9FbL/VkBPaFmWi/9WQKqFxkVts1ZAwZtlXPAOV0D0jgMHUCRXQISHOJ6eCFdAWaXmeIiJVkDnfmCijLVWQCAOSm68y1ZAajq3oi/3VkB6ONx4R+JWQJxDHOUSv1ZArCScTXqFVkCI/ncv76ZWQD+lwXVkLFdAAjYUH1yhV0DOIWVrcYhXQCTeU1n9I1dA2Sibl+E4V0Bq0Fc5oVFXQGaC97M4DFdAC/APytFJV0C03ZWn9QZXQGdHS/rDOFdAfQHJbYZxV0ALHWZK2JRXQOArPrtyhldAeKnfUDrlV0CyKON59AZYQBmRRbLi2ldAbKF2sgrHV0DqOi6n9khXQD7x991UGldACnRwfovjVkCakt3nl4FXQA4fP9XAYVdAm46ficz+VkBoGqQ0UhtXQNITe1vsP1dAOM8liE4UV0BC8QGIP+RWQJtltsJTm1ZAKzDMIhMhVkCor+rQ5h1WQK0+jY4gIlZAckOedEJmVkBxpwg6YS1WQIjZBiqtWVZAZVWWCf4vVkBFb9T7p3FWQAyrEtaIpVZAGAf2KFllVkAjvXVnu1NWQAW4bcmrXlZAarYcmHSDVkAyIjW4rfhWQG9j6ZpQDFdAmqyOEC4QV0Diw0stR7tWQH6NKfXk8FZADVXW+jEkV0B8ymc8/r9WQBmi8s224FZAuIkVkeZ+VkDa3OAljF9WQOG9q+Xw2FVAjsQTEutoVUAXi0HRaBFVQIfB0PWkwVRAYnixI2l1VEALluIXtzpUQFwT73r+MFRAdzQeeLdWVEAiy3CMj+xUQEas9rarRFVAaskLaKdHVUBV0o81qzVVQN96AV5LR1VArtEkyPjJVUDSc8VUI/NVQBbyki4lSFZAeiJUiZroVUBtm+cmwfZVQHQBaDY4BVZAtW2MqvT2VUBb9hRFDnhVQI4trs8VnFVAbHnvIQZ/VUBhi97vGWBVQFsaU4AwUlVAoIC7V6yhVUA/emqYp7lVQEWUKAYO3lVAIZasE2EnVkDRQ8r6lHdWQOVFmObzQFZAFkzfyXohVkDbWmA63VRWQOlTqafTBlZAOBi9ib8fVkDdBQPPqWpWQJj9hOUZX1ZAKh130lEXVkDzaFAcaUxWQJUO6iWOGlZAFUDFAmBMVkAf7IfiyDxWQGfPalxrbVZADetqqlhbVkD63I2AFW1WQPeHgYP3gVZAjiCEd1RrVkCPpnB+axdWQDeEcs8RKlZAzCNdkd9HVkDS+4H6L3tWQLqdCJ/QYVZAMdwQpONjVkAvBxtF8oxWQENpbNglplZA6AJ0dfrOVkBFwv9MBbZWQChQXq5C+FZAsoDK49AlV0BlwJQzPQ1XQBEtriRIUVdARCRlbhUyV0CoV5f2trJXQNMNQhuGi1dAm3fqa61pV0DVOFMlnH5XQKb3qX4Yw1ZAXUouOX/5VkCx0SROIB5XQF90Ul4K7lZAIsfVA3cKV0BlWUbp/NJWQIF4Tv1guVZAwPDb3UqwVkADa+xGb9BWQHgG194a3VZAudXlXPFTV0AUiNZPBaJXQNcP9o9ZjFdAvTm0y39DV0DaLvPPo1RXQHBiC+wFgldAvQow92o7V0DeVMX9FQpXQO/JhuH2XVdA4icb+cOeV0Dvgm0rO+BXQEpznBbIw1dAdadf3qCcV0CtomxZWhFYQJXUJW1CbVhALUd7lwT2V0ASCp7JNjRYQGcAiPT3FFhAoFgfpGnHV0B2fLK7sgJYQJ4hwAAoDFhAQL++pjcMWEBZRjs2o/hXQEmdRbGQ9VdAVOqqpLuuV0ChUTwh3nlXQBoqqeAPWFdA6/f7PXfKVkCqrpaH9jpXQGyHbpqDZFdAnBoWP5osV0D96caWZdZWQNtiTGOL0VZAqZXKDEkBV0DpBoMdO0NXQO7mSqq1pVdADygK9AVjV0BOaGnuUhNXQMim9wilBVdA8R1crDkjV0BjxsB+r7hWQHYALhskulZAw80ycpeXVkAzBazAZzNWQLBL1RYldlZAj8zOoI5NVkDfarWVXEtWQKcalwUcRVZAQ90OlDKEVkAvh4KQJDdWQBFeDbG63VVAuiuU+hjiVUCemrpvxc5VQBtJoQIUUFVAPKZzys/SVEBHHDE+rs5UQHuvUbAcFVVAl2OzKhrPVECf50S7nEZUQLvpkXBBSVRAKrSvbmMvVECiCsGvoAFUQPty+7ch7VNAqM7a0lCfU0CW1d91JwdUQH6q1y5AV1RAjbWBm2tMVECoDRoiFI1UQOZZry/DylRAYqPrsOygVEDMkvOMDp1UQHSzBsGSblRA9RMTpIhDVEDC8z6Uf6pUQHlB9XWGglRAtlBmZ5nwVECt3s0ApYtUQBT0Ku8guVRA2GSwe7BeVEB+TffsL4lUQGnwejTBr1RAfWVddKLHVEA9e5VN9uVUQACIGsI4sVRAtbp1ZzRUVEBc+wpoQ31UQNeGC3DUkFRAo3Yu3sp3VEANwAc0UU5UQHJCkG5tWlRAfg7pMyBBVED63EB+aS9UQMybEGgK1VNAHeaAyo/kU0D5EDnPj7JTQMkfPH/YelNAmk2SvSJmU0A2smcuKUZTQJ3Ik06aBFNA05h8x04mU0DNjITfyu1SQPSOtvm441JAP2XwdK/5UkA0eSTXIsRSQAyUKEgfh1NATkHS/I5gU0ChmvaUmFdTQIwvNN+SJFNAS5ltshPeUkCFiyHKFulSQMXOYl+TplJA3UGpyYHdUkDPAGNvFC9TQK0lqy2hBFNAVgzs8Q/8UkCUjU8Vp6ZSQPEZXdBUg1JAw8WP3LOfUkC6rmsoEX5SQEnVyh7MW1JAFhj5E7sFUkDQUb/WvqRSQLJuwi3nUVJAqdC2/EPvUUCZz2mzNUdSQJ9GeJB/DlJAQO+ACC5VUkBFbOiWOCpSQBuSuSALVVJAqJXIcoRPUkDNAqJ3YT1SQGoiJzOUc1JAhVLjrca6UkA2veEFO61SQIKlZ9oEvlJA/hGsHQkdU0C8iuEob/tSQJ9AT/cOEFNAF4bhwnbAUkATXm5suO9SQK+F2SS1U1NAjSgA77SeU0C5lbJ/vWRTQFhLwCmHZ1NA/4EtbUSxU0AZ/yztKH1UQJXMv2QJmVRAsnadOv2EVEAIV0zrcSVUQPpfHXKR81NA6fX5/PUdVEBtWP1tuhJUQBZitpl021NAihmQE+P1U0DEu+cseEVTQEm6Kv8xU1NAQ+h8DDO5U0CjRpJVnuxTQDisJGcbZ1RA2aRSOQCAVEDKvvWGImVUQPgdL6onOVRAN+8O0Q0eVEDq2h9jBDNUQMSOwOAkglRASr4b5jMRVEApXBVMFAJUQBTSZzY1DVRA4R1qPMPwU0DvipF0uQdUQOmrrDH4glRAKTTdqs9UVECB/x7OJ1RUQPICK8eehlRAfwCMA1SaVEAF8LQOlHBUQDaxm0pFx1RAb1D/qdjfVEBVwPMKhaVUQEcwYpd1lFRA4yvD68ZlVEAPh78IDJ5UQEw6viY4DVVAu6EfTyDnVEDvaKuohW5UQMQ+6gvioVRAbh+yzK5uVEAa5//T6opUQO6d0LirjlRAvIFQZNVAVEDXfVOW0jBUQIxC0QtA2FNA/rov2DXrU0D8Z8JTceNTQA4FosOQFVRAG6T9tTBIVEAazbum7YJUQBFS3u9gcVRA4GPHj+pHVEAtBQ/s5CtUQHdK1p/c8VNASRB8ljFfVEAxeFIwdVlUQM5bIGlwK1RAkr7cSvmlVED03RdYvH1UQLhH+Qlcm1RAEPy3kehPVECgJ/CoDZZUQOyVlmtMn1RA5yb65cPqVECEK6si6fBUQAiGZebVAlVAsDVmfwX4VED5mhO4FPpUQDIsBIwbHlVAYuWExCahVEAX+R58avtUQAd7okkrClVAt3huWHg9VUDp4eCQBwFVQPr8dtsqHVVA2J7KSjIOVUAYCfvJ/N9UQJioSIQR8FRAecVZCYSYVECEHHfb/d1UQKtH53g051NAP+d9r/XuU0BzdD5aLOlTQD6IaNKG51NApbx9QsKvU0Adn8i1pc1TQD/mRRTCmFNAjIVlL+cQU0AE5QGCkg5TQKh5cbibR1NAU9u9IrdqU0Bm0ho0isBTQNSGrwb6AFRAtekqQXZPVEAW8poyBQVUQPVpgnXZ2lNAHnPHli2jU0CAMKSJta9TQNWKUgz9ZlNAhVrpTnJiU0APaqpGqUdTQBqgEP2gZlNAVDxb6CztU0AB90WY9hZUQBOQgAwGxFNAx+da6vfCU0Cd3Z66MmJTQD3sQ4HBNlNAFBIn5GEFU0BQ5J2e6/JSQCoWMXR/+lJAqwM/cnLFUkA3UVcjVMhSQLP1kDQDVFJAuISKoCOWUkBzD6bz5YdSQJ6b/XDjaVJAao3yFGOuUkA5dPy/8gFTQLszgQ7j7VJADyacDUKfUkA7oVUf7LxSQP7aHEspoFJA1T56EGuCUkBND7Kwl3xSQFa0zgt3jFJAuUX8z8fbUkBHoZw7s4hSQO/TZXRUtVJA23PNxKH2UkDoYtSIT65SQC3j4Wro3FJAnsH/fFYXU0CQ1OJuaERTQN5fU/LXglNAm3g3ztLGU0ASaK6zPftTQHfKg3j0C1RAudGvWLpSVEAU2PMWnU5UQGACm2FpzlRAiPxBr/GGVEBn5YBO2HNUQHnpcZeL/VNAtua/ISeoU0C87ZlqKnVTQE/6Moj/G1RAwR33CAWEVECdRIjojSZUQLan8maoflRANWCUy62EVEBf5qvg+E9UQOSEnJNWVFRAfhyLmCHKU0CihcU9twhUQJ69vdNwE1RAvZozoIYiVED2+U493fJTQORnqIqrtFNAonGB6zIKVECmAKatl7dTQHnt+N4a4FNAv1GFaofqU0CyssxXRV5TQFo9hTbDuVNAPI6oLwDPU0AFaUWRqVxTQJ1y87cE2VNAT+hQhvC9U0BWXi8z1btTQPar0CIP11NAavKUdw4xVEBh1snEnk1UQMI77zFdXFRAW7HEUBpeVEC+ysPIgj5UQEnQgzkYElRA7mNGg/jmU0B/6SYTdflTQN2onM+9wFNAKTzHsOWBU0AxxlK1lghUQMKH09rtGFRAzm9kSlViVEBxwXrZ5Z5UQPFozfAl21RABLlkpVb5VECXwd8T4jlVQMSWts1tPVVACbBNs3NDVUDMYz9JPmhVQDu37rU+LlVAkTJNJPHHVEDJa26ODtBUQJgTWusmgVRA4cieHYVLVEBn883yILxTQK5vfD8RdVNAhHBkRNSoU0AzfCPaXopTQEDJW3mnXlNADOIkpTVPU0AE0auu4FBTQK5VSaMp1lJAJSSYjNm5UkCokdnNM41SQDy4pP8tY1JAxhTvaQXgUUBBetyruRVSQHyw2HjsuFFAMxWOrrzaUUDe8O5xUhhSQMkDWSecQFJANsK5iGFgUkDE+e2v8IdSQNg1FQYdclJAJHMgBXPWUkA1gjPCVN9SQIsCuwkpd1JAWlASu7dkUkAuqLT4BmBSQK0sVhRBdVJA4jyXWrZsUkCs7uU4HQpSQGmuEIsyuFFAEOaGtcWuUUCFfvv2VK1RQFhpFFNcT1JARCN9cQM1UkA6SlCy52dSQIMK1Zem5VJAUN0Wl+FqU0By/GqPh6hTQBVmwXOLvVNAeVCKkQhaVEASHGVNJjZUQCO/ar28XFRA/DeXyWcDVED3K9vpQOZTQMRc/ApnvVNAEewlrTI0VEDdBDOUmVRUQHhW2VJMrlRAUQ+xKq2NVEBsAZK9zRNVQNf4Bdhc1lRAqy1RbgfuVECwbILpa3BUQCdjyaThOFRA1TIpepVEVECQyd0ktQZUQFH+ESe3r1NALHqNP3l7U0AFAAMOjH1TQBNmKwMyX1NAPvNs+l43U0A/QuH/RE1TQBeD8MvgZlNAzXzpKMHwUkBaYW2Z4TJTQJsmU/ZwKFNAj8QTJPQ1U0Ag9/2c5WBTQO3vvyycm1NA4F29KgRzU0A2gpO24o1TQO38nq8ZSFNAxFC142FRU0D7b4xzHapTQPZHFQl6A1NAWz9Y0w4CU0Dhe8QGXyJTQPd6vlYieFNAI3ARxs9xU0CXnuDLSa1TQE956wry5lNACH5Oub9pVEBLPk81eQpVQAtIwtF/ClVAnZQlU68eVUA8HYulztVUQHV5OccZRFVAeHOC11N/VUBK7ilOViNVQMboqmU2sFRAEzvhTZX7VEAb9vs48N9UQFPKQgGP/VRAjjRUuIrEVEARvLDM0INUQPTtDTBcjlRAsjkAPe5rVECOQMxNoWFUQKB7aTgFT1RAdC7nYzBqVEDaJMzR11xUQMjq/mr6GFRAyrBmhd+5U0Dgergek+NTQHQn2heg01NAPuOdRpMoVEC6szvVjdhTQJgpo542wlNA0zGgHwmnU0CRBOd0RzlTQCgO2KcsRVNAQoCoIQ05U0AfEs6oGaRTQNdnsLVhMlNA/e1Twd3FUkBDx0KtLolSQNLm609SmlJAnA7y1MmXUkA1aearADZSQGafDB5K+VFAGpYxqgcwUkBQvh7rUEJSQCw9bpf0QFJA9u+M0dxJUkCJZrPtlFVSQJnDDjtVKVJAaDwYcp12UUB/VAeFWLFRQEfN1m4EClJA7SK2uzbWUUBI9Y7SLhNSQOpt9OA+OVJAQnJqd/OPUkDphTmYGb1SQAnPAzS2k1JALVAO6y1MUkDrOEUfC3hSQCHlkNv371JAeY6EtrMXU0DBYitpXWNTQKSGrAQvIlNAB0deFe8hU0Ad2hMFV2BTQK/gKehcRVNAdgGkiCX/UkDqbU7GCsZSQA4ytKUggFJAYgqYL4yQUkBe7FwjRJBSQEwzNAopslJAuF7v1V6ZUkC1rOyWC5pSQFHlRirNfVJAmEiNeb2BUkCZD1ubZMRSQHFcPCUZxVJAh2+fq2SBUkCuQOeCoqtSQFIt9LrpeFJANKxE1qy1UkBBc/xpvdhSQFVvHXVzv1JAzV3t1cdGUkAs4Qmu6fpRQN/7R0bux1FApUsZaHJoUUALTWdYw71RQIGKaOeOn1FAVphIggnXUUDYbayw4hRSQNnXL1RJ0VFAHDi6iaanUUD0KN8Yn5ZRQM/aQSYdsVFADyCfM55XUUCE1bbESGVRQHct/JtEClFAHsDJrKc7UUClQO6TVx1RQAwKyIh1KlFAOU9i7gCmUUD5Ju2Z/rtRQGR/4Tydx1FAY+EKFNoJUkB4cShFjuJRQLL5loC8/lFAxoZlMVH2UUBCUn2K0JZRQL64NnKek1FAso2KilS4UUDtZfecTvFRQONhnzu0w1FAVNIz1jEFUkDFkH5z1gVSQG0z0mpNIVJA4/ZPg7nAUUCSCQVB7JJRQA/YNpN0RlFAa2HQpL/pUEC0sJTsQttQQDxoduxNB1FA9aDnHYnWUEBxFqmQ+Q9RQKoKcTQ3m1BAovGZNG2PUECMGxiETRxQQBWlsCVaF1BATzKvxkcbUEBaeeR9wi5QQMJp3uarOlBADdcE/5hVUECIWZsyL1lQQG3s3m21oE9AKAILoJnHT0A9UE7KjnxPQNSiP5FvfU9AtNt69jukT0DkioT8YaxPQKL/UpwhjU9Aick5Yz/UTkDrQqeQwUVOQAlwVZGN1U1AkDCYMWdgTUCDOF6USWNMQLy74fARhExAd+kgcu4LTEBWtyVHO3NMQG/PG969KkxABXYVohruS0DSztyExDFMQBqgl1yOu0tAEQzrMtfKS0AyMhhAv41LQKiN3lvDBUxAdkETwNqATEAq1Dqa69RMQHB+w2SAM01ARL98Rb4MTUAAVq/cLZ1NQEKJJYmtX0xAmXiZVXewS0B9t6/xN79LQN+rvORJ6ktAAMCSz41ETECwxZO4aURNQNLFeOpz/0xABIV13+Z1TEAe6/kYxtBMQHBlYCb78ExAc4N1tM0fTUD8nZ6pK2ZNQLfwQwjHhU1A6oUX4rLlTUBgjn7EQI5OQKdIQ3FlVE5AGaJr/o1ST0CwST4l2tpPQGnpQCmcTVBAWDi9eoSIUEAg2b2tlKtQQAUuUkOaPVBAC0/CLHplUECxT8+9kmFQQG+Pn5Izz1BA1F+CqLifUEBeIadhOaxQQGQ7WR3JjlBAdSbE5g9oUED/RGoEBm1QQANnTkKSJlBAGX7ypQFnUEBxLTg3Se9QQE2GzDlF31BAVH6QxjwUUUBh1Sny/tBQQMJj7febsFBA3e59jDa/UEDlKqvSl0RQQKkAG8M8GFBAjpGprLdNUEDnVh/lUfVQQNu/YVG1SFFAA8wnOVp+UUDEh8uRB/pRQD5hrIQ47FFApsGlq8wCUkD5IkjCBvJRQHKaFP4hEFJAHf5H/8ITUkCkqgJDff9RQEnLexuq51FAQGEhxNStUUBPqepPhZJRQOzpt4zQtVFAT5PlEY+qUUDtpJza41xSQA9Xgudmq1JABLD52sISU0CuUslP1dhSQJ9P4R7PFlNAO88xD8gjU0BqQOjUI1NTQOR1Wy/9KVNAdsBSthdGU0BRuzERqSdTQFkY5ZTnbFNAFIGf73SeU0Au1SFmarlTQC11h+syH1RAaYj4Z1UMVECE8bTWsSxUQPXvYJAMOVRAkO5rqZMyVEA/NW5fdKRTQOMyQoERaFNA4UntDNGNU0CQLoj8EbNTQOmuUXfN4lNAIKwn9FvqU0C8yzfbBQJUQEgwGveIN1RAh4cWVH2bVECuWntyyd1UQA3bLyr3x1RA0BDNAAmlVECEFb6WHlpUQPRxdrmJhFRAiWQcJNKiVEB54UYiu/ZUQNhTvoEjp1VAfaFshuUvVkB9MHFlVmBWQIkp+lBeSlZAgkHRE2NMVkC/iuJMdHNWQAFHhZKchVZATDvesuS7VkA3EtfOgtFWQBbfWQ5/4FZAWuUQ2uCsVkBu3g0wWR9WQIA3LJgssVZA8enpjZmDVkBg86qbHlxWQPwwodikF1ZAe1A3PsFJVkADEoALZg1WQOYJ7y8y3lVAYe+lDOdgVUCIaM0l0XVVQJaiUFSbwlVACxs4KJuwVUD4nI7L4fVVQAjJzH/LEFZA9emDoID1VUCkmcYX/QZWQL3v0CgcQlZAKJg6Z/agVkDB4Aj+bO1WQPPgYB60tlZAQDanauRGV0D4QEs6SExXQGGRm3i0RFdAzjXKWXgTV0DTOuCQ7ltXQMmQBneD/lZAoS6HCjFrV0CNTKp8gtBXQEmI/S63e1dAh7yPv7R7V0BoJYg04bRXQHEZNxUXfVdAHNcaz/9LV0DsLVGqHyFXQHJ5uned/lZAB8Q6F8FgV0AUDzR4cqVXQPQZYctFY1dAngosqkaKVkAdgNqJ661WQFYweZ6pWFZAHJu9TMkyVkCLE3QSZzNWQOv63NCXNlZAw2uSgbpkVkA9AHo3B6hWQKKwPJ44hlZAhEfuYL3CVkBnmQDwzJxWQOAkUerujVZAX88rcth1VkAA04khBLlWQByL3R70WFdAVloM8lpNV0APy1l9BPFWQJkYwbBYylZAsq2tQJ+QVkAPnwlyxGVWQFJHuGCew1ZAawuEbAvNVkBy49rfZ5xWQPfxnEas0VZA+GRWJXnwVkCcpnSNGi5XQMBlD6jDTFdAFxa3QvEkV0BpdbkmyR5XQD0QagKYX1dAA8qPjxBaV0BilTcfNKtXQBWFX8+J41dAPtuZtwMbWEBUfuX5jT1YQA3ZVh1cBlhAjChkeWgAWEDjhbxaXxlYQL/bE1okElhA7BZd00ElWEAxs0dK/sdXQCbhgnKBi1dARvMhQ7SSV0Cp/5dMADFXQPYUn1ZSDldAl+hWJl2yVkAiCqGCFXpWQL3ST+Vbo1ZA194XLUqWVkBJeF4IqsNWQHshG/v44FZA0kZvxbnZVkCbsTw6MGBWQKYEBFfMcVZAEHXWkZhxVkDj+edwYSpWQHzlZhY3WlZA8wXD706HVkDtzZJNJfpWQBkN0W/EV1dAhTN43tAvV0AFkNY37LtXQIeO/u7y2FdAf/Q4ELwfWEAdXRrqSzJYQOSXpFq2CVhA35WYbECaV0C2J6V/ib1XQADuAbPwLVhAMyqIYKjgV0C/pwNJQI9XQEUC+N2WVFdAfot2vGSCV0D7U0jej9pXQI0a/58vmldAGRvHQv0tV0BHqfMt2xBXQL73OSHTUVdA90CHQmRhV0AZZSAtUaBXQNaNgFWruVdAo+GJubSRV0AS9zK0SQhYQImIvdm0mFdAuHlEnukhV0Bd8Z+QwaVXQJtfmBvDwFdAd+3jZrH+V0CpZkFQREFYQPijE0/s3FdAT9qbPF6nV0BH//jX0utXQNZbDkPeRlhALUKvntBRWEB/26tIeCZYQH7RM+DWZ1hAkYE/sg+8WEAGHoQpeuhYQHMvmfZVpFhAHa/n/oKwWEB0mwocJqhYQEPVqiy1o1hAEvwhLuFvWEB3NCIzHa9YQJcbbejwUlhAeYR1NqdbWEDPPx8dn8JYQKExjThIXFhAoFxxZD6ZWECeHP95sF5YQEK+dUp/k1hAiXAOl3C7WEDM9R988MFYQFPFVaNAyVhABxiJa7IGWUDA8Zsat09ZQEOB1HuN7VhAuCwyPPLhWEAFrVg1zJpYQIs+ZAcMkVhARr56Oc5gWEBvLTG3/tBYQOvo7anhSVhABOGw6YpHWEBJKYuNO0ZYQPqwqM9HYFhAGL84zLg1WEBaeYllzUVYQLlBVPGdUlhABoHGuIiOWEB7975eD2RYQM9Hq6AeUVhAfz3/MvawWECeKy3JWeJYQNEyclujhFhApDpRRWkQWEDRWlesm5dYQL3nsUP2alhA7/LrEQWzV0DKsakP59FXQLtLdzUTlVdAugSajmmAV0AS+4nTDHlXQGki0hHRkVdAU4I6/2axV0DLjwbU0rZXQNmDUUaRf1dAk63gHmDbV0AgmWBR7+hXQNkAVrovuFdAw4LwdZJRV0DWJaqGnjdXQMn13tLXO1dAkUQ/XxD6V0A5k9uPmzNYQMViakst/VdANFsCr4rGV0CjHuMAW6BXQGc7eONY7FdAqUM9toXUV0CAxc4Q52dXQC4haCS6U1dAPaPuIQxuV0ACTQZChJRXQNzAisS6Y1dA/zGW0i0tV0C7MhD0pOtWQEvzi6j4b1ZAGdWZSeltVkDphLGb25NWQJdfWyd3SVZAwufkcqD7VUANx8pbF0VWQL485092ZVZAW2L26QqbVkDYNJxy/ZBWQG5uySfShFZApOQEy+qrVkDbwyvb5bJWQLvev6ZpqVZAg4AUGoloV0B1JXDt3TVXQLDinpQEf1dAcedXSwEgV0DATjBFRetWQKJCPIIA+VZAY7s01T8aV0C2EYqk/29XQJGu/klff1dA+CyZ1IdZV0CUiPUeMaFXQHGGaJP0YldAb7wXKruGV0ByCnh6Q2lXQOtVJuvPjVdABfMbwSKQV0D355EqLV5XQAW2BSembldAZMYU+GVPV0D96GaW/J1XQECq8qInm1dAgdDie3XUV0B+EUuyAgtYQJF7D+a9OVhARcqK6GgFWEDcvv5tDv9XQE7IR3jEFlhAAiw0shkWWEDtqnDZoiJYQKv1F9MXFFhAlxt2YcvPV0DbfHhwnyBYQNFuBSEJPlhAvj62OLHcV0AGHlOjKgZYQOkQD/ucFlhAfueh8r/vV0ABmlwhWLtXQFiL12qQa1dA8X+lmGR+V0D4V3MsvoZXQFZFWZEjU1dAsb6VvC2bV0DzlkDz73FXQGaCI+siildAfymB8BjlV0Cp8RUPDLdXQACvBek0TldArPb0UOlgV0DlH6UtQ9lWQGo4tHZ/m1ZA7G9YSpNkVkBx2WHmvr5VQJSN5mPCEFZA/h9RQE3uVUAodP2GzstVQIFc/RmmmVVAD3Gvhz28VUAEXVXpRcJVQJ5PnZPzgFVARJXhT4JmVUCTM3JXUbpVQKpkZZrje1VAxW4PZg5ZVUAf6KS/KP5UQAhHmwLjTlVAfCKvmjBFVUBThhTb8m1VQMGXOWe9aFVAStPmAStsVUA8V//zc21VQDq3wKPqblVA+Gj/8EulVUAHobrZ6qhVQMLoV1PVelVA5i2bwyxlVUCsmq/rtjFVQGQvjVPMElVAqv2nRVKGVUAi0SwYp5lVQJHQP2iCyFVAs/j7TQr8VUB5/t1E3c9VQPWxIjZx/VVAmmt+atMJVkALTpTwNMxVQNGyHsFFNFZAXZcrTE8HVkCe+rkF3GlWQK/Di5szrVZAH5RxfumxVkD5ZGXtecVWQDWvidoTpFZAb4kFk8F5VkDHcOY5UOhWQNLBY6D1dFdA3jaMeqjcV0AgmTevJzdYQEzuMaJAsFdAIGV6b2uCV0CG4QUEpVlXQAw4F5l7m1dAdyZkhQVxV0An/WkhPJBXQMyHyWL+tVdAHD8A2IwQWEAQM/Cbl+VXQNNX4I+y8ldA//ykFODHV0AtByNKSolXQO801plnVVdA99C/QN5hV0DuEbZKF4dXQKoYhaLaaVdAcvA0UfzwV0CLHemWdfdXQGHz/0TT+1dAQqOYnLXyV0CxoAiDP/VXQLbiRZ5K91dA+ezAQAy5V0C0k6BU6NNXQHm9zAAJo1dAKuxzjW+IV0C7roteRHpXQLBWkd63IFdA31Q6QTLUVkCje9w5rNdWQNd/NEeyzFZAZ98j7srfVkDv1zbChoxWQAIEk7+o9FZAQTc0gmyqVkBcAi7nxMFWQCKj8uyXnVZATuPO1zA8VkAA+zQkFu1VQBAWGUpItFVAAmTB5n5PVUBPZesdp95UQJ+Nbc8wKVVAy2Gkdk41VUAnHr+O3f5UQBBxd4/mOVVAHYvi60kPVUCLjHCNsgdVQF1q3h8tz1RAccJxm6PzVEA8Oy5PeilVQOL6qDdsBVVA1McqbjtsVUA7XmojBS5VQBp3GmT3BlVAuWplgsX8VEDqw0xSLZZVQNajRlwu1lVALaYOaMRwVUAKKzh1VdRVQCkvy0DwQlZAkNub34YNVkB+aCPuGhdWQCy7xayDDlZABhgwy5nsVUDfJhN4wQxWQBbumr8pxFVA39rHJ67DVUB/oR7Y3nVVQKN6qm3Lp1VAdNqcERiFVUCd1QFomYNVQBCyWXsaJ1ZAfIvHaDKJVkDFGgUJdUtWQDtB4NdF5FZAyDsaAWBNV0DzdJu59g1XQDHjVOCMA1dAGGhbidi9VkD85oyo/41WQOeDMCL6qVZAn+cR1OFsVkAKjmsWTzxWQF99AviRZlZAwMUESeM5VkAGC1WnwT9WQANwDTGUMVZAVlVJG6dJVkB5EyOhZe9VQFFSZ750nlVAkJTYEYuqVUCI6DiGF21VQLtvPIA7YFVAk3OX7mIeVUBrIt0kLupUQBoWNkQKJlVAVpfAJsEHVUCGLj2jUrtVQMyTMapGCVZApCEcGaTIVkA/u/nO37pWQB+B8IAnxlZAJjEjwp9cVkBVOZ+tYI1WQLIAKkNyg1ZAVDF0bTeXVkCoMRRMK51WQMZ06aUY/1ZADU7HUwKwVkCL013KDVNWQH5/fOQIZlZAcAgv5PesVkDx3nsAC2VWQMaCmmNNA1ZAgY7mkCQ8VkDiFO+qYCJWQOqEa9W3G1ZAw0TMrMjTVUBVBVUDgepVQD/UJ/ag3lVAKx4GHNjqVUD9bZSaTxhWQHjagoV6PVZAzZRJI2w5VkAr8BV2FZRWQL4zjMlAbFZAUXPLsyc7VkDROKLm0hpWQDwVEVAEH1ZAtw0tozRqVkAD8acCJZJWQDDvRe2ws1ZAxT6t9sC7VkB61/j0pnxWQGRgRFzBSVZAEVAgLM+2VUBvrf/rVrlVQLtN8h7nBlZAozn1kb7HVUCVRcxW8uRVQC9M4s5d3lVAWV76r0nZVUC+twomO9ZVQCxSzvsqFVZAk0OKd4kYVkAlGDKw+VxWQIrNro4aKFZAvD2opt74VUC0R7qe4DJWQPuQohDXKVZAc5eI9Z2MVkB55RapfmFWQKbSbtMMZlZAwjd8wSpmVkDMJp/BBW1WQAJ1/O6GSVZAqi2RCsoeVkBlokpVLI9WQFbNJBFmjFZADP3mxA28VkC4DK1sCepWQCh5Wjh5/FZArqTtnHJQV0COzGet1xBXQG3q5umCrVZAdPmUqeXzVkAYeFEmA7lWQFsW3jkGlFZAEdxxJ89SVkD3ZUcN3bFWQG3t52lslVZAWou4LdZMVkDO2XY+5FJWQCqFztwXfFZABPVtP3vUVkCZVbtyh/JWQPluxSl0X1ZAirgAkLWPVkDv0XOTGOdWQMpu2FKIKVdAvQRUpU/uVkACNMq3Zv1WQDFo8GNa11ZARysbIVzDVkDxF6fUTMVWQMHbz+8UylZA5CWpc8z4VkB5mdPxtttWQKW1CxONYFdAxsz6c34VV0A2CKqpFjtXQMw+aEOfRFdAaTCifP09V0DNtaQVHHBXQAfMOQ+ItVdAmVxyryukV0DsM2GA0IhXQFzVvDuPDFdAlzq4jNYMV0AbdOm8zi5XQDEPAv4B9VZAhrqUlRyyVkAvoOJrU51WQFMzzwSwTVZAVUQlqQCSVkDGDrQO0FBWQE61Kc82sFZATvbOKq/DVkACwNWjBQ1XQBOUFZV+D1dAbeVDNXOpVkCnkFlOQ6hWQMoxiSUnpVZAzzZpFv72VkBRGhsp4tRWQMlvarhSpVZAd1px7l5uVkB7/xqON6pWQJJ9gswlc1ZAGfb2s6gmVkBJ9BFHc/xVQNQSqp6/N1ZAsdtR7ysFVkAnwOK+IRZWQKnGuRW6W1ZAFrEpLrUXVkCU8JT4gG1WQIfkxRbUKVdA5kvqvREPV0Darigh/X9XQD9xpJ650VdAZhCpEhrCV0C7w/2xib1XQFpTrY1sdFdA5x6h4Jq+V0A5o/s/9GtXQLKRu/2oHVhAo6eSFIfkV0CGEOqPTe1XQNyelRArC1hAtKZBwoL9V0BHGp2ifclXQIZ3phyXpldAOSe4kWTqV0Dn2jXcCupXQLjMF8oUsldAzXKou9SBV0CGGI3RqrdXQLyaXI+Dt1dAKeiHWO6uV0B+nXghHAFYQOrC5oQf/ldAqX8kcbRMWEAmen3NqZ9YQIrEWqfAklhA7ckkM4mKWEDqPVEeaX1YQAddbNmVilhAQLOEeFiGWEDjPyGxHcRYQGyd+sTE51hARopzo7gfWUDyq0t9cjFZQDP5FoVb6FhAi/iqmp/eWEAZ9YuCasVYQOOBfkHrilhAPtMhobnOWEDwSMJ6EctYQEvfoL2rxFhAjBHvUInNWEDknUoqLEJZQNoXNxp1g1lAdA4Wa9L3WUB2pF3phBFaQONacsUKVFpAinc3rxAcWkA8PVP8c/5ZQI5vNALgDlpA0h0aHW3rWUDcXDZdIepZQK+kRtB6I1pAUa9fagACWkAPdcEkW2BaQBqnciYlSFpAE0gesKtqWkBQcYgiL6xaQEoY/uzBHltA1CteifQkW0AAoV8J3o1bQBY2IDGz21tA3i/mmrojXEAxQGdWkGBcQJXdVUzTbFxAkYBswjBUXEAmm5XxukpcQCCViQlriFxAV5vgmz0WXEByDp19m/dbQC3cGFgtIFxA5jxVX1sOXEBQPsyOMaJbQCJFHsnqoVtAHhz3WnHAW0BbiY3hwExcQESPzpPqBVxALN23umEXXECnhUpcUNlbQGdYtPlPeFtAtM+660anW0BStx9RhIRbQAkvvLBAXVtAkQxq0pw/W0BdUMTSskpbQKXqk7tjTFtA4VZBw+OfW0DExwKWUDtbQHTfm13/JltAApnodzA6W0DxiG4wgeBaQAJ2gIPkKVtAI3vp3h/UWkAnRGSk7pBaQBZEZGvC21pA1aHZWFsdW0AmXueTyUhbQAa62+8bgltAKYIIseicW0B0UtJRVTJbQM2RRyldSFtAYq84Xms5W0BmBZetmCFbQFSgOrNABltAkYKQ1uzoWkCEqqjwKN1aQBI694Szz1pAXU2Srn75WkAkv+q1pOtaQIN9BMgW3VpAa79t2+mWWkAr8/GI935aQG158vU+RFpAUX7kKR4YWkDqVIIvHptZQPmY5nIFqVlAqFLa3oiDWUAGvsO8OUlZQP6CtRPuaVlA382jRbNmWUCywDRTPGZZQPWtbCL7a1lAz5YrOYpNWUA4OA+El59ZQLmpJYFUu1lA+VsdStEbWkBNvTPStmlaQCDhL444QlpA0z/f1gjiWUCPvmRknK9ZQOaA9aXZz1lAOBXN9VyfWUA7f26Oqd5ZQJPnOCUo5VlAz8g2U3mxWUA07lvyi4NZQNzbhQSwOllA60+6ki1/WUCZfMjs7r5ZQDS1+PZ/1llAEmzaw1oEWkB0g2NKyfdZQM6Qlu9z61lAKP31H2ExWkCrt2ZbKOlZQHukzkzSo1lAVtVGV95zWUDDmNkiB4tZQIVmSRpGmVlAU+0IAoKkWUAEVaOJrk5ZQGeKeeVqZFlAgFWKe3yQWUBpgPuq/xtZQJKh2gsnCVlA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}],[\"EEG 9\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"I1m1zkbq+b/e/FnWkCXhP0B1nS4aCfC/YCVmrZx/3D9YmBMfF5jWP77SX7I6QOe/UtPoinbO7r+YJlOOnkfiv+kNG1Fd0OK/2qLbXzjj9L+IGx5GTi7TvyCBgA+JEcI/4bvdIVGb9T/DmjZJe9XpPw4LMnYLxNo/wTPZ1o451T+2+4ofLA7uPzCp3+RxBwRADCjYPpi2BkAkMC4Hfa8CQN/48GGlOwxAqrECVe0EDUAjKnFMK2D7PyiUwA4Lgvg/CYvi+7eZ7z9u/g0n/b31PzTQAj5/G9u/xOr29aKH4b+AkkkAkZTwvyu8jiOQ4+y/eJuMoqrb1797OeLer+Pjv8sWMJ0KDu6/1QfIotDV9b8Ol+1Iyubuvza2bilKagDAlPG3iRmjC8DwJAylzhQQwHz9/Whs6hLACW9VAcLAFMC2aU/4cvsNwKyikX+JXA7A+ia9yuPxC8CeLlgzNVkGwG5AwV6nTgHAT6lwsoNaAcDa75jGD5YCwB6f1fL1zQrA3Y7bjdOWDcC5Zu74nscNwOh2sqSuFAzADdEXG5bd+r8M+yJCYn/kvzSq06BUf+i/Pm7Neb9QAMCGm8yKGZUAwNGjgGu3owHAT2X4KpylBsCY//psXtLnv89+DjtigOm/sokS9nN/0z82+qz+QMvpP3nB09hMIAFAxCPbyDdY5D/W4f7oEzDxP2wnKGbBX8g/lgB8ckEn0T+v4nk9fo7uv2CCH4uTpwDA0G3fcoCKBcCjmRKFvPACwDIdZticQAXA+qvEBZrYCcAOtKZf43AGwNnjCTGvmQzAHt/rxYJND8BuzBRBKFQJwBsyWjk0sRDAzvhBZSSUEMAfDjFh0VsTwAQOXgQtShPAz5H6fi4HGsDDjcQ9KjocwOa0fzN5mxrAL4Db5YUdHcBQf30oqTocwGpaV7lgzRzA1bcLjQ3+IsCN53p+0UklwDMbSZs43yTAz3Txa84nJMCkAXQm6QkiwBlFVY0j6hrA9BmI0Q1iGsDn9LNKSeYewHpNGnQtCx7AsTpnQvDFIMAnXnxemr4dwNh27OZm2BjA3BmVwAztF8CR9CRZjMcYwP+ck8XCSRXAexHHXEYhGcBi8bM8lTccwNn/jSZ1fB7Au9/YsbI7IMBPLwkPeaQawLTjQjLtAR3AJFxXucL7H8BBHKabOYkhwOjSF2IQ6yTAqXtI7lGvIsBxXqXqSUkjwNb18AUVKSLAnBHlkMCkI8BS8TUEYochwFO/EEKIVSDAseirNamyIsCZUz4VibcgwK122c4inyLADAPAMgO7JMC5eBSEP+8jwBJ9uMsTuyHAvGYf/FZhH8Al0o34tcscwAqe1KSHtyDAcZ8hL6lHH8CdNYmhjCUjwGfpvrLqFifAUOjh2AHxJ8AeR3XFzt4nwINIkFDDMSfASb+UhA3hJcASa6MmyJwkwNV5FG+YjyXAgE289XK8I8AtUKDQptoiwK6DTuefLyHAn3mlZObDI8DicLRHNMMjwKyTkIz3MCfAnmWs2JmHJMA3hW9tQ5MnwDYqOu8bHSXAHS26GZQ7JsDNGdAUUkknwFp0bek47ibACK+U0WfnJsB0PJaM4qEpwCV4MGd1pinAW4ce+VicKsA+HKIRCMIqwLkdTgXfoyvAwvhEeAeuLMCOSfVjfbwuwCxo89OPsC3AnLwFCBLXLcCCGMghEHgrwAO5rxf4HC3AyjXgJOKfKsB0iSdYnsAnwFi0kcT3minAQE58umhUJ8DOsB0L6vkowMgSe3UmoSvA7ZNdQp6tKMDyiAhSqdkmwI8ejul8SCTAMluXOeBiJMDp3YAwxJUjwPYG/Z5kmSXAZKsNBB0PJsAMHqkHWl4nwM5VCc3r1yfAglRUxsOzKcCoBneUXs4pwB0n2AEP1yjAdaaDC2NZJ8DcO4wkUVIpwH0lVRzl/yjAhzHMrcS4KsC+dOdYgnUqwLneNSSRbinAhjyboH0VKsA6LKiwHpwpwFq/+GmY4CbA1voZnIlzJ8DS4nfS73gkwHVKqrHa3SbAzLa6k8BVJ8A0IlkGxBclwBgUoGrGwyTAED7t5VrKJMAB2QfnfNggwClfD0LjKh/Ad1I0VhDXIcBA8Bb0ajEkwIhqLr9GbSTAanM6NXv+IcA4OzCzT1IiwJgrzpMXvSHAkCIMT4XDIsARkq02sjwhwN6ZvEzPaSHAstRIFjgKJsDhDIy5Nk8mwNT44dqYSSbAt9+chb7AJcDq1KTqaIAiwIY7CrVsVCTAzIvh6Hn9HcAG/BNXS9IfwNDKlsMvqiHAnf8NjCEyIMA6Vy6bFQAiwKZn/SPNJhrAy+hM73ovHsA23zyuAkIUwJ8VPSAloQ7APy1CZHwrBcDWAq47f8X3v1iSHKQVhQ/AdzpQ54jBDsAR0nVXkhMMwGxWVQGEng3AOzgddBs8D8DgdfPIA1sSwOKCmkK6yBXAFP4AlJXpF8BkX91/OY0QwF6LXLYGTRPAkdMpv7NbFcC6o+4oy5sWwIPkk/srHxbAd2l9QL3MF8Cmrrqodb0XwKCeJ2c17x7AIGWgto9THsD3w6GABxEfwMAq+vakLxzAXq27+u9AEMAfenS9WpIRwJzMeeEzMhfApmVdSZfwGcA7PnPjx+YZwID/1kiRBhjA+bGXgpy0FcDLZ0BXRfcRwKRMsifcoQvAzTjK2bvzDMBOxiHJHLIGwMfBA+KOWgfAKZ7UMt6eCsAEoZocq9IAwIcyZZ1dkQLA0EpUZbvSBsCMBJGSZEDxvyrHP+64mdG/dr512X138T+ox325Y0Xxv9O0Fa42Puu/go0v18zg3z8R4CMa227xP2ryQu1kb9E/YMsCoe7itb9HQukGS6fWP5QmFgMTZPE/AGNfxw4dpL+KdhLQuFLMv1iUZ9jdwbw/H9eBcWEbxT8OAgHD4PPQv1Ky3D/y3/I/kEJNqyjj+D9ArXyfU/ihvzFeAqo1zf6/tPnl99nkBsBBqBJJo2b2v6kT2uSiUfe/oLsSTquB8b9ckwjvV+UEwP9TOoIs/gLAyT3FLSEkAcCOjl23+9MBwPCBceGVt+y/kGV17Trkr7/e1/v0XFDJP5ggWG2IV/2/x9+8rTeL/7+AD44awf4HwO7QuR4K+QnANhZ7105uAsCYaY1XyvP8v5+UZFRMG/2/Gc6fYUxPAsC9K/SucGIDwO0RlNAaQALA1hbere+3C8DaMrqd1QIFwDuH19+U5fa/rnqTojBtAMCzTUpUmLUGwJazsBB8FgTAZJdE0Vgu7r9XME4V3kHdv8TI4Wl6mea/Jx4UNRKhAsCIL3uKVzQEwPQ9kRbqexfAqhqRyoq3FcCJTKVOF1kTwNdOKkTbrhXAT4shnVhEGMClj71Q+VEawIAS/fpIqh7AxHBXAhfeGMCTPdE8aRcSwBQYMVrdHxLAvN+UouS5EcBwwCzscfQXwOEc8kZBpxjAxV/ugqVdFsBOZsxZtqkTwLzM9rOUlAvA7tjgNDG8BMA+FzRGrbQBwIzil8uVZwPA6OHvmW3TCMC6QIYYv/IDwBh+M5JWEgHA0uS56UA4DcAYFjEjFuEHwHRi/2hoTQvA3hUH4RpI8r8czdrjaFLQP1Y80LlYDNK/Yq4NIaGh3j/fKIOPFcbovy0DjHVlqfC/asxrNc5w97+NY7asd8n0vzyiNr+UFOM/FhbdQboW/D/E/ghEN1ThP67o04+kLeW/asyzWnQt97/QzSRdiFfqv4YDHgRgtvW/4YN+MA6O/L9AzbGSvyzRv9SxEk2nZ+o/gnc9dSdTC0BydAMHbfsGQLr9f9y4X/Y/qrawD2PC/D/ics78m279P8J3MpM4QfU/qKoS0Nflzz9OV/nfgeLsP6DzusI8050/FBd6Da8+0j9cZxk2f8nZv776m9vCdNA/JrCDnzii4b9wJVH6yzioP33d3IGBgd0/7wKYHIZF2L/I2D8Wt5nuv0yRjHduh+O/4ineT1VQ7L8mgqHh+TDlv7YOvufsevy/H33leCyS9r8ryv5eQdHjv/JT1Oba1f2/l9bSOgG17b+Bc9O40yrhv7SnRM4rsfu/0RFn/EMI/r9HRHYa02MAwG5gAe8f6gXAF2UcNKNnBcDQQe3eNBgKwEHKpzYBkBXAYVSRi30eEcCm8JvYpqACwDb7F98xzBLAlH1qMgmjFMB8juVOLjobwL/4ljeVtB3AJg9hnULuHcAxxg0n27ElwBfeBrsLyyfAUBPHHz8zLMD4W33KzOkswMv5piEgWCnA8PUbsoj1LMA7Yi4yl9ctwPwqVnCpji3AyLkvlxt2LMCqae/kT/wswGnbzUVYgC7AjWTvKxWQL8DnX2FCHk8wwJ8vcD5j7zDAZNi5xhCIL8CF/M/a6hcxwIHyZvSrWzLAHx/uVOHwMMBznCtk30QxwM+ZwrGN2jHABeKjYh6DM8B9NA/b4TgywHXS6LX3yzLAXK1f9SLGM8B1WM0mPeU1wGl+HIvb4zXAcT0Xk2PTNcDMQdQCTq41wD1CrcmC9jXA6OQ7TrmaNsCaQ3AnJuc2wPYvfBRXiTXA2jVhB1vuNcChpBaypaI1wMm+f0aU1zbANeyj1p/NN8DGe1m4IZM2wBY3ienVvTTAKq6Ykba9NMAhX+rUsDo2wOsJLZonljbAKP4RAq0iNsC24JnpdS43wL09gSP16jXAAD5aZX49NsBeg+w8qKM0wFpHRR3dLjPAmAYf/+tgMsDepxHFXpUywFbWREc5OzLALGbHkIuqMsB6NoERRu0ywMQ5I6UJvzPAvbUx85JrM8AGtrS+ivEzwKaczhxAWTLAn9qpXgUmM8CzwdCUW8QzwOtM+M1uvjHABNh8yDefMMC1ULKUYQwywCjs9hHF7DLAaws7EZvAMMBAe878SfUwwGD2vGuW8jDAESrXDJNBMcCj1v+BVLQxwFMwLz6gPTHARHGXb4miMcDiyg9Q2pEywOcSiuzyNjLAY9VDD/W9McB4Qe29IsQzwJRTTIse3zTANIqSrMi9NcD+WShuzn80wIwj0+gwhjHAO5HW75j+MsDLt6KyzHwzwFSfA/tvgDPAnnpuT4b2NMDLsAxlpnc2wHMXJRMqWTbAAZsrRfZTNcDCDx6SIRI0wJdQq3iC/zTA2OHzbhaDNsC4kpMaSZA4wAbGNMGLszfA0l8SWQTWNsDz2fuFZoM2wJ6GNagjXTbAkw/urT9nNsBnteba9OM0wHRzCQVV7DTAa1JKq2RONMAv97UhK7MxwBivrH6xPTLAx8Ak37i/McBbkgWe4Z8ywE+6HSuf/TLApgOW2tbXMsBUTae0HUc1wOF/+M38IjTAvgxJCA2+McDemBRclbEywPBAa5GkxjLAeCVz+zv6McAsKfOe6+EywCAeKcmuLzHAloF3+dBoMcBk2ODKW3kxwLw9+w3RmTDAmyGUuXoHMsA7uSbTLPExwB2izLJNWjPAPdF+6H3vMsCDEDzuvpkzwJ0Quim69jHA9v3fHANAMcAGvyrwNdYywN/x7kvQ1zDAQFdr5I92MMBmp/4kDloxwJOTSb3aKTHA5Mvcz1JkMMDw4DejaZwwwFiAVOqKUDHAEuaAgcTfMMBmbsxbKzUxwGpr/Mbi2zHAjBFQLjj/MMCY5D4OT+UtwKhR6LThAzDAVJefbCQjMcCwS5HcNsQxwFUd+TxYADHA3vTzzweGMMAFPr4P0C4wwNzKSZh/Gy7AnWb+KDZ3L8Cnf6Co6HsxwE2Q2u+lcy/AYuHKQPXtLsCA6oNFNaQtwFt6tXGR2S3AVuZwL1VtMMCP5cVb+tkvwL0WOUat2y/ADgwtBqdDMMAFkX/50dkwwJop9Zr8+zDARLsG61aTMMCkvzqrRcgxwL4mhwlomDHAkBATh3QrMcC1NxjVaPUwwGfJjay94C/A5HebIXdaMMBEhfuBNtkuwJfwgAyO5i7AdU8WaXJdL8AfpvXShS8uwKtq0crMci3A25NFzJx5LcB971mmHycrwL+5z619gCnAx7D+/GCaKsACH/dDV3cnwLr4tPPGQCPA6mP5avt4JcCyZdIs6rMkwL7/P8tP5SbAySroKh8MJ8DAMNXAGkAqwF9WbDB0Ay3Afp6txCZMLMCIyuiHeGgvwAT4J0BoNi/A/ShBrCqrL8DIfQgCoZAwwFDLWzyH/C7AWJjfzNYqMMA5gxl+sxEwwB5ZsKXg6DHAj9e3y3JQMcAN8ndULGExwKjrIuQ5BDDAJOpK1er1LsAppPsG2HcwwI7eZfaQXTHAGmuj1SK7MsBLWWTGCqoxwIxSN0kyejLANwfPZgxAMsCi92QKDmYzwPXu5YfdGTTAobuyHzt6NMDPxI0rehc3wHZkTPKU7zbAR5wqcAQDNsB49BW8MQE0wA3AszSV6TLAzgEi0ey/MsCax2J0Fvk0wE87a2mQnzTAD4N9T2dNNMAxSn/i8981wI/7CQsYfTbAzZXNGfJuNsAwOHoykjE2wKt785GqWjTAsgWr7NqZMsCb9NmpHg8ywCSbq0cufTHAGm7Dr2QzMsA0U7iBLNExwEwdq2F3IDLAUSliQe18McC+N04phQswwKNSYsAjIzHAT/4xR90jMMAFobalo/8wwMdihhcSTDDAIST5rdsJL8Cn1/QUGr0vwKj7an8UMzDADDTX30t+L8DRIVFZgpAvwEbwkkk/aDDApw1501EVMMBV00GzsqAwwKvauTPi5DLA4+bO52ytM8DCvO17FpgywOysae1ntjPAG06z13NCM8CUjbHLkccywIXT9QdRWzLAHpGoArQwMcBCIkfWSAQxwJUJ2v9dtzHApAZp3Cl/McDj1ze6Wu8wwJLFEo3tEDHAV2LoONr1MMB+zQgSR1QuwEq+sCf9OC/AhkEW7/E7MMAf+nZs+AwywN9fwL4BsTHAcnPTD6kjMsAJFvzFbTQzwICI0jaXTDHAkO0P/mrsMcC0ko5WM0kzwDphXwHF6jLApAAmEOFZMsCfrawGvfAywDTBg7dA7DLAPBBYWO3yMsBuTvrusxw0wCFO/5F5UzXA+IRTqV8ONcDzYne6E201wM10W2n2ADTA511qBsMVNcCdCbThrlw2wHiRN8LzzzXAn632RDxlNcD0IN6+W+s1wAeZmHWj3jbA6zkk3scdNsDbC+MkYJc2wPqRK1zeNDbAj7uGX6wGNsBDohTtdN81wA2uTwth+DbAGZlNvYNXNsB2r06rpVo4wLBWP95l5DnA9Zgtu/c/OsBduRaaShM7wI0i68IBPzvAFV5ouvXDPcAnSjRPksg+wDwlTJO3yj/ALZBzU3OOP8Bpi1UGI6pAwKkZbLMTSEHARvdki2wwQcB6UORYDQZAwKxaW/uqFj7AD2RCX7gCP8AjT3W8YLs+wDZY9F7J8z/A8imAHnMZQMAGvWii3fs/wC28r85fDUDAKxJHzIjMP8AC+6nlAzo+wK51gcrxYz7ADuDFLVgQPcCluugwuns8wHr0AQCBejvAezG/PbFkPMAkS9+Ow5U9wAdXtu3c9j3A3/BryAHtO8D41p5MvnU9wH0j3Bx2bj3AAeIb1cTpO8AUMqv1Xq07wGcDa5TWIDzAhvKlYkJ5O8Bi+KMcDEM6wJatCrCX+DnAnDph0xaIOcDFUnHFvd05wPDkNuviTzjAOeKWqM9MN8AeORqP+EY2wO2mlVOL6zXAhUPWLIwhNMB5+Epq2lM1wAkjD2VUazbA55g3mCZhNMAcwkbAR2k1wEqEnZG+CDXAzs7t+sYVNMCshUT1204zwP7i8O7jcjHAQI6qP4BlMMCvCxoknOUwwAwWDpbscjDAa7EKBsNrMsDUtcPzPhkzwCJjLa1AXDXAQ7DCTTzHNcC5ZPfxBbc1wHQ0l8X3fzXAUkFOY75DNcDW8A9EmW0zwLqqGn+TfzLAGukO2o+1MsC6MGy7lG8ywHMnUAZmODLAUZtZbWuqM8CW9W4woJUzwJ9d1vQNATPAeD3K2KrHMsDVop4JGCkxwHYAkqsK5DDAU/cujAPoM8ARC01CwbozwCGxKuK/hTTAAKi3GNetM8BlTJ04HasywPXyHi3DpzPAuWu0s9HHNMC9xkfVe2QywCfSHAC4hTLAkJy1aPImM8B6RoZzNJ4ywO9BKf5DfjHAPLXfGJqiMcB1YtXqz0oxwGLdbFFPLjPAzbOgqBG3M8D6CzSg3d4xwPfRbthvBDHA9GgdTM2jMcB+TLye584xwNF0z8KDADLA73YrCvcqM8BP2YDaLpYywHcHZQ9jKzPADPY69if4M8CHNWYylM4zwDdspvSvGjTAshLn/tV6MsBafjxswcgxwA5jI0ukHjLAu3JKiZ6lMcBU+syghWsxwOlR0NI23zHA8pA2KLRQMcDLWo2qIKMxwH+R/7tBmDLA19zTNKP6M8BhB4yx3WczwKm9X7iV2DLAiQntzcA1M8BVTQERoZMywMHzF/QJcjTAqSUAYh0tNMDSPBuSA1YywI9Set99pTHAGjsgZNkiM8CESAvVUEk0wBlncU6vtzPAnPFpz773M8D0I77ZsAE0wL+zqdCpWDTAXQxxr7nuNMBSsSf7eS4zwHwlp0g97jLAZbLf0ol3M8DN69fZbKAzwIr9m/+CwzLAyMyQl2Y9MsDOs0P4idcxwH2G4q9tnjHAVe59y7WLMsCj/6uOTeYwwEMDIFP12zLAFieG1DTcM8Bp15w7ark0wAASywXBpjLABzeMmQ7LMcD1onCsOhExwISuogYI/TDAX9bT9mLbMMC2uiaW/5MvwGgFQMolHS7A8JqCUp2rL8Cd7dZJGxsvwH1UCKq7CTHAjO95rhZcLsBdDbD7gQwvwM49ijEWIy3ANCB1G1ATLMCxNYC3jjYtwLRW/hYu+i7Ajc+K386AMMD4OqOHkwkxwKpqp1uMHjHAFPTLtweIL8D++o1SetktwJUs5327ECzAZl2C4iQwLMAkLRrwhVorwNuXVuAFzSvAPnKNC13uKsARP3hGEkMrwK7K1wrQ4CjAzmY5urTdJsADAoG5MjclwH7vmPA7QifAjGtTQm6QKMCi8vC0sHYnwECaHOiOBybAxVW3ryPrI8BKjzN5OPchwJSwDYGZkyHAyl8ZYP3aH8AsQBcBpfkhwNfgHkyxUyPAMCc3Uo5SIsBCLPb5Hg4lwPutM5FYgSXAW2Fh7/FXJMB5d81rO84iwIYnNGujEyPANhLBT/xLI8ANlafB9QYmwMVpZPtp3ifAPrvyxSJqJsB23uyxIYslwPbeqJMYjCjAe4jKlZu4J8A6nxE/lPIjwF9UcZrXHSTAmAlqi1EhGsBgdpid3iIcwB4HcGqinB/A2tcteu9eJMCeS5dibpchwAyLjTjwYyHANTMCMMwRJMBUbQjMHS4jwIGe5SvlcSHAGglWGqNeIsCIJFp6Lk0bwIF3Y0QnYBXAqLYx2O3uFsBfTIqqdVsWwHFMpkbIkRXAuB1AYaBAE8AmbnrznjsVwLeuFU2hWBnAWut9uJUiGMAU/KiEwvEcwPFd6i8CKxrAvsnVwu+NHMCawVsooDkewCtPreA7zh7A5ozbpP+xHsAU26quttUdwPS2lxqgqx7A4mTIziKMHMCJEPbpsLkbwFDZTdymehnAFgdFV0QaGsBJgOLXBMcgwOorhmL7FSLAf7/knTOyGcBQVQnyb94VwFrdl+v4iQ3A+NamwF45GMAIPjgzGHQZwJI+efSQtxjAbCy99TgDG8AdGGBykWccwF38w2k5PhrAZFpxLsT1IMDDEdc6xmkiwODeb9EEcR3Ajmo/QWrHGMD/dyjOb+oawKsMTEVqGhzA2PBoAOJVG8DowwZ5OPYgwEvHiQYS2CHATw15jjQoJMBQVc1cj4skwBHgKDXlmyPAQ8vPWX2fIsC1JsZz/TkhwL4x4gX3jyDAWf7P7e7GIMCdvcMzRuEkwIzILk4kgiPAbikLsVa4IsD0pfk6/XkewKfN8M0MQB3ACzpHaITaH8Dah1y5Qt8gwLjzZ3jFoSHAHhEGswRhHsAzApi8FnYgwC/ZJbBKZBzAx7CvkLU+H8BUAyQVxHEhwHMrc+7ezCHA9BjBLAWCIcDm6CvCrW0iwKdoQA8hYibADTU4hkbdJMBrGtkVxLEhwPwXkvhVFyLA/1fwNkZGI8B3vyutpuAlwGWLEcP2XyfABSAmTbyFKMDIFSd7CkgowKtx40rZgijAlGKTKGkZKcCuJgntzJgqwKlPXYVX8yjAGOtpeVXtJ8Ayo00682EjwMcSPspBCSPA70/zsbpnIMDxOJ0FX3sawP+P/HmLeiDAU8a8Vx73H8D64UWF+8cfwOjQy444LCDA2YB5HZ9qIcC4qF8UAf8hwNfDkKrldiTAHkwl9/mCI8D7pACTkGQiwDDu4EMnhSHA8A1EquIWIcDcRsbtpncgwP66c9eoUh3AFFWY3l9pIcAtAWqFOx8fwGJeOj0wXyHAa8/E4/4RIsDqat8xgkwjwPHncFzx4CXALCFIuo3dIsAOxz8zYnYhwAWMnrneISPAns9FTm/nIcDaQAC0vcYjwM025fqvGSPAz8RK63w6JcB2DWWyAawhwJZFe2Wu3iHAYpQwveM1I8CCf8LSCz8dwEqJg17AOB7AlVPjC2SGI8BYajOOQ8QhwABjsfKZ1x/ACGX2WwOsIcBEKl3/ZJIewAM8Q/tKzx7As8afFdjmHMDhuWwjekIbwIv1kGefLyDAaMdwRiCCH8BUasfkvkUewFJqu1AmUyDASVFslsQ0IsDwIdMFTRgkwMocT79HgSbA0ikfgtqwJ8BT75tH1L0nwNuvU/OEMCjAH1HdnPuyKcCxE3gyTBspwCkG95xe5yfAmvt6YI7PJsCBk3hrgeErwCn9GlmsvCvAYQW3gBZRKsC8CHGcpqMpwH6cbL5VZSvA+JiNT3dJKsBJpBNonV8rwN4W38ITyyvAY3bf+qDCLcA0jNM8EoArwBVFneJUJS7ARk28kTlXLsC9DALxByIwwNdSC1XtRjHAx2/U41+RMcCyk+amTxE1wHgpNJ+G+zPAZZdt+gGZMsD+S75tx3IywILPTFRF5DHAEuxHH3/IMcDpn4PU2YY1wOaLU+YuDjXAzp1IHjNFNsAaxuuHXUs3wPmq0ABeJjbA4kkEYOb0NMBWlVUvguw1wJmx0Gsf5zfAa38QoZDvNsAdE3IEyJU2wNLoKzPgKjbAydpOTY79NMAk9l0G6/s3wNNNqVdMizbAX6pfv/nFN8ATqCsnPUo3wMULOb1XnDjAO9/+nbQvOcBqUquK7L46wL6UiVCL/jvASqbgXJSIPcBy74kwyHI9wP4N8cdRRD7AmkCfWm3BPsB6MpOhhYU/wEbXwBAPu0DAFjUbsTJRQMByRn5y8uJAwIZJ27E1RUHAzQ5A6xsjQcBjI/Cq/4VBwB5fVXL1JkHAmQNqUi8cQsDYW1uTFSpCwJN+pxZrekLAYdjrR0g7QsCBeje1LpVCwDExmFhCm0LARfCcsz6fQsB9epiCQiVDwCwhA8atdUPAXv2B2CnBQ8DeTq+xUo5EwCNYSoZ7u0TADk6eMDo5RMByaN5sfl5EwCQB1+Czh0XAPjzDVFVLRsAcP265vQ5HwHbN6hgGu0bAhErF9++ZR8DVIpkOUVRIwAz5Y0HboEjAcmY6SywMScAF99OhR8xIwJhLTcLbZkjAgumvJQCsR8AI5aU5R+pGwCFt5E/+dkfASSAxlICGRsD/8vfrojFHwAwIB8r0M0fAHHs9HPShRsDJ2s2XZuZGwJmejz34VEbAoPPzbG/BRsBd0HNwMjRGwDO4KANdrkbAV62SDcbZRsBNrd8ZuMdGwPk5THs8H0fAtiWNaXmgR8DWT7MQkWhHwDZStB7dMEfAuuy9nBbmRsAGCDkf9WVHwMy5x1WsTEbAMPXbaEPhRcCgBryTDJVFwM7FyO2Xl0XAmPxV8DsqRsADEagUklFGwICFYjnIa0bAan50fDbDRsCjFD3Sdh5HwDLUZrnUo0fAjb+bY0tKR8DF0NZ/odtGwAq8XEkqkkbAJDO72rvBRsBMjzYzwmVFwPAdf7Bm9kTAPi638wyXRcCnupkm1vdFwCX08pFMY0XA3D512YjsRcBUxgOqV3NFwLgSRNYdzUTAf4bg7JwCRcAoA9V8uCNFwOTgUMFJakTATPlaagwoRcCrpFXFI2tFwDQulaPUS0XASeEkEbkDRcDl6Mr7o3xEwM+TOtUBA0XAC7EVD6OqRcCa87OlPC5FwCWsdWsl0UTAC9m0sYD2RMBuLXssDU1FwC0m0p0bMkXARq8njA6DRcAGC8Kvu9ZFwKtGejk1dEbAWTZl8regRsAoNP644PNFwLRNuWyvv0XAaihP4pUXR8ABkck5+dVGwJGSgGGklEbA5L9tOUDjRsCEGMKNrZtGwDdKOy8bc0bAHZnkWi0MRsCgBoTLQUpFwJJYA7/CxETA9muZ5wGyRcCe5bF4gp9GwGzijg/CdEbA/J+iIkMIRsAouQFON/5FwAIna1Ix1kXA7TgUzNWgRcADYLtL4CJGwACUate1vkXArJr70fNwRcAODeh91iJFwDhzRt7vUEXAjIfkk1qkRMAVelLBuAVEwBHTPFFAiUPA7RU3H/rGQ8CfXt6mofNCwAP/1DbUcEPAb+UKq9Z+RMDIVV201ktEwDJ+e1r3K0TAb6xhP34NRMDl0QWxDIpEwE1x4XwR10TAuxsoSg4fRcC5sTQnbEZFwFhwqfMnA0XAHLVMMiJdRMAkQ76kqwdEwKlODu1PSETAxIjHthRiRMA6Jzz3ZipEwJ4vD9rV50PAh2O5oLn+QsDNk7fyzlxDwD0TpLyds0LAsgrapQgjQ8Bxcavl5LBCwGxweS+YVULA2i33eFCqQcBrrAgHZltCwJhWiDqKBUPAX58orcJPQ8ALu+vIrqBCwOAHP34pikLAQvzGlqniQsC3gQESWqJCwOniQkfiykLA69S0fJxiQsDz562+Xb9CwEm6KHobW0LAvBzcSRBGQsChsMHj6blCwMmD8uX0skHALuoJFVXlQcAD0tf0fkNCwDQw77v2X0LARzwl//gOQsBp5q2/3R9BwLYdGwCCOEHACW68tRAwQcBDl3cooUJAwC0m0G6qZUDABvnoL/wJQcCGY2/KGGBBwC9FRML5hUDAj9aIax7uQMDAC8xtkppAwFj4QtEj3UDA3Zcea148P8Ayuydp8Og9wLIwNKnckz3Ak3tS8go1PsBHKHyvwmI+wI36C7v7mj/AAo4p5OpkQMCickMo1jVBwMWtmeZFY0HAOo8bfvipQcCxHlZlqHZAwBVZ4YgsZ0DApso46AwEQcBlcI5UFGRBwIiBWYmfJkHA6MmRRALpQMCaMGkxVLRAwCGbgkZmZkHAhmyRIih/QcD23bStFLFAwJjFZsUDmEDAWqNE0ZY6QMDGI+W9AlVAwMzLrkj76UDAL73ESAYeQcDd5JNAmzpAwCuODLrbQEDAfaSv5PBfQMDaCTsWnlBAwPTnQ6b7nkDAgAU9dDBMQcB6tRAMl5xBwNyW+1nvzkDA3n+/fUdCQcCdM+KNIb5AwOaPWmqZSUDA30OVt776P8Dvij/gFZM/wJoJgnnjrUDAhDfbyRWhQMCH4rAa/5s/wCcnkqTF5z/A9ScAaR/iP8D0OxJ1PsQ+wGRVli54Pj/A6Oph2+yPP8DgIFl+qtY+wF1XPN9aCj/A9ghhixntPcDbVJWX1vc9wKRccYzGCj7AZAXKbvBQPcBWoWyjzl89wFr+NykG6jzA/sTNRcPYPcDpW7Go6Us9wHFXI0GZOz7ALq5teUGRPcAb4FxAtos+wPbhDUxH1D7ATp1tE1rpP8BTsX4RAow/wLQtYkSvEj/Ay1WbfaC1PcDxpDv1s4g8wCGXLGJfhzvARZ5DqAdyPMD3kWE/Omc8wBS4/UcsATvAVHEMNotmOsD/NUsUMsM6wGk0nly7FzrA+CViaaZROsBYo31dwjw6wOwlMvgoGTrA6YLa+Q04OsDaS33RvOI6wOaiPrehGjzAyQU5nqo1PcCfDm0d0bc9wEIRXiFyBD7Ak0P92RSzPMB5GhPDYkw8wDtNVx2IoTnAjP+E+vevOcCktUPgO+Y5wMem8kXT2jnAP2uAb+rMOcBjz02+jF45wBtsEASJXDrA4VseXEz6OMBg2sbgbY44wL0bN7kwwTfAEs9ESjaIOsAGcRKMYq07wJITg2uNUzvALKYZ5C95O8DmfGm9u0M6wMWikqwOLDvA/kPHJeNlOsARhOPs6+o6wJ+e34E00zzAkYrIprNPPcAH1nyaa/M+wBvT5vpaGz/AervkJgk9PsBfp/s+oho/wGuRxh/hyD/Aet3DsZ1oP8AZQq4Umrg/wFffes+g4j3AZfZBo3c4PsD+1+ZsxT0/wPE3mlwsID/AxcGIL2QfQMA5uBX3iEY/wAfbO/MzSz/AlM/N/DxAQMDJ207iHT4/wEZi7Wc9QD7AKs2YQNCFPcArWj0yntc9wCKwT+B/6T3AH+YO3MhbPsCPaKzbGKI/wBunZ4rQe0DA9FD2IVxCQMBpY+DD0X5AwNI/I8Y9PkDAhsaTZzYTQMA9jOV1+mJAwCBN/8MSlD/A7x40Bx0SQMAa7PGIQoBAwCGBBT6bwEDA2/K/gs2yQMA9LrzblEtAwCAD2KPVs0DAcnI82DboP8AjoSd5BUw+wJAs5tUdFz/A7LrmtBcPPsDd06EJvF48wLgAGNCwRjzAYY+bpLW+PcBrMQH/tuI9wC0ENKRfMj7AaPmE9hcgPsD68vIlSkg9wDJikgM/1DzAKJRHZjxiPsCm19KBr+M+wPoYJQHZBkDAN0EWSuuCQMA1Qn04NSJBwEzfDPTHzEDA/PZ9wEl9QMA4Io9x6H1AwJ8La0KKaEDAz6zYqP++QcBxas9V9UBBwMcGf57aTEHAFbcya1sMQcDxI/x4L6BBwDKZDRrsRkHAcahhBRp0QcB2aPBQCU1BwHilNp+S/EDAD7Gj79MDQcC0AWC0ZSBBwPdSdeRB8kDAWBvuSkwDQcAfze+aH8ZAwMrSQW6MB0HAZ8KWrMvpQMA/KfC4VXhAwOLGwCbffkDAbalSXxOMQMCtLrdHpxJAwKCIIwLZP0DAUkxVyTh7QMDlHfImmQJBwJoSXBZHa0HAlkL2X2x2QcDreIe3AFJBwPXoi0ctrUHAopm/o+7jQcAoWiJVDsRBwMt1SQKurkLAkPwINR2qQcDORnvWPEhBwABSGU4WA0HAiM0ju/+CQMBlri4FGX1AwN3O1QEYYEDAqGV1XYaJQMB8uAQ9HdlAwIyNBGYUOUDANl5hemcHQMDSspoB6Sc/wCJ4wkk6ej/AjBGzF7u7PsANW4ZtZJs8wMNG3ne6zjzASH6tgOEOPMAWZCIEDqA5wGjjyW8YVTrAIpmlbhRmOsCeOxsJpZc5wKZZbA+fRDnAPVOpFyTtN8AeYL04u183wJPuBP2pCjbAiV0imTyjNsD5bXJeqFw2wLNtA6iPpzXAHv+J8oT1NcBkGVIET203wJBlNkwoojfAckB+Mq3dNsA99iHZ/zQ1wFOc8pL/OzTAmS3nYk5uNMCsg8CyydA1wIbcJL+gXDXAoAOh13FKN8DuWl129t83wDx1CHomdzjASHCrS1lROsApaGIljxU7wNvdz9xjITzA11+GxDF4PMBAFhEkFvk9wP9krbAGxD7AOlB894CbP8BMk7FWkA4/wLheOD5ulD/AGaxhjJToP8CtTMdLCHU+wDbkr6z7xT7ACUsXmjrtPcAPAOZN/2k+wPrAnGJrvzzAVbFK3iYUO8DgjLuH1+M8wEpPMdbdaDvAiuncuAmjO8D9iLMQRZ06wMASW3ZBbTzA/L/WMEuSPcAy2EeBE1Y9wOzLW+ss0jzA6YkWBQXpOsB+tHQ22Pw4wEMkRlZT6DjArgi7YWjbOcAZ0jf7COA6wEopPa+SDjzA4qIfflvKO8BdTD16u047wE2aJKyAlznAbyYbLpZ7OcBC3UpGQlA4wPg6DXGTZDrAwp3Vg8X1OsD1Ijocq1U7wPtyIEtV+jrA2whDP7qLOsBQy2EGh9Q6wB0zK0TUJjvAARSoAH75OsCtpFir5w88wJsWXCG+ljzAsjU9XcDLPMAT/SVMF+Y6wMobV8DB/jrAwCyyh1JMOsAPs1TrhyM6wCYfo/UaZjnAcHO/Z3nlN8COrsAMNcQ4wEdhYh+pJznAiETldl3EN8Cqzq/MmmI4wGcJE9YShTjAHB5GG8ocOcCozDi1Wnc6wHjjfDxqGDvAWX5IXuH5OsB+eku8M5I6wFamqNo0GzrAHUReVT7dOcAVKjbD7Uw4wFBc0DdOcDjAgzX2bsBhN8Dfb5SZIsA2wBcvnlTp5TfAGvZW3FEPN8BTGat1wTc4wHetuJc23DfAdUAg0YaxN8Dq9fnsBu04wOFPdS61ljfAOdYGRAPkOMC4PfG89Jo6wI0Z9uPq2zvAVZHU3bx3OsBYoPSLWEE7wJhHJPRrHTrAWRoA8B8xO8A+Oxj1vjQ7wFKbEaK2hjvA5x0xd62lOcCvpWfmDTU7wNaMUvLsWjvAfNNgU7rnOcAMeTX89h45wMhxBoc2wDvAx1qT/dl5PMDy1BhGnkU7wMpZiQqRNDvA4jCqNkkFPMDnlpbaX/47wI4IblMXKzrAsG3ekw9BOsC330AW+CE5wIxwKVSD3TfAcDIPWJvNOMBwBXBgp3I5wGyAGbKxQjnAsSyo8H6SOcDYzafqSkY4wGKbOx+enDjAtm0DvfxJOMDpz1hPaeA2wFLmLY7mkDXAlGg+K6ORNsAgSvP0wJU3wJTOhta0KzfAKYUiWFGQNMA7WeEeqVA0wDQoovqYrjPAZXFhtTFtNMCjHnMmFs00wKg6OrDFljPALVTsk2G/MsCMPpcN8CMxwAPn7jMOsTHA/Bodd1H1MsCL6GNPOvExwBs0rNHnVzHAC0WynueDMMA3ghPkX0kuwL2lcwGQiTDAEb2ZIlpOMcC1qYEYpNQvwHyJAlDPqi7AGdyocnCxMcAC31huhNQwwGC9vO7NZC/AtvRO+ksWLsDeM97fx/YvwCA4v1YqrizAVAHJw8hzL8DvS65A5xwuwAYSmfbnKDHA5A7XC09BMcC7IyRHRmYxwKIjUkuqNzDAZ4XH5zcSMcCODIrRKmAxwPMip29uFzHADQ2+qC5YLsArNXyENCcswIpRvWfLVivAK+6uPrOYKsCNA3M2urkswBEG85DrPSzAVeuOhoO/KMD0losJ2IspwIJ8Ur7keCzAya2RaLUAMMDhOD0zzk4wwBYFugfOGjDAosy6GehWMMDWAl/4Nl0xwC+BZoR6szDA87h++o04MsDpD1dLWCYzwN5IhCoEbDPAnLDknXh6MsAsA0o71+g0wCzTozLRYjTA5ZxTd0crNMCIhUJZQhw0wG/hxJxMADXA1GsZnwjiNMB3NFxq9Xg1wMULD2j/rTXAHaA2qkw7NMC3Vrl3U5U2wCY/l1UlCTbAwOpci+PSNcDOYRtp4l02wEuaju74ujPA13Julbo8NcBC6hZ5BlI2wP3Y3gk23DXAfGNHqlrhNMCooW41Nb00wK9UUXqTGzXAPw2mVKMTNcCHL0ESrbU0wNdudC8qRjLALy3pOUM0MsAfKBE8lA0zwB4kmU9kWjLAajAO7QliMsD3GW2NJc8ywFqJUi4apzLA7hdJ7WslMcDrJ5BJAcMvwOgU8R7VRjDARA9iJandLcAncFinwM4swHnWz8ZhyCzASuprd5I+K8CHrwaERpwuwLogGtLT2y3A2X90DkzSLcD82LrSIEMuwJskKvFoxinAO9bUQpJvJ8D2MbHyQAcowNof3UaCfCfAvg47COq8JcBjzE+Uoi4kwClCFeaS3iTA9ZKGsW0oI8DbkNuLXegfwInLomoFhiDAOEGeY045IMD3TdEeq0sfwHY8ussD4iTAs4p/QiJRJcApRv6gRXwkwAQgpnzCuSfAt4ldh/90J8DqZnOY5wwpwLa7lbGG1yrAJnInNQMSKcDBz1zltBUlwErjXa4PNiHAo17Rjl84I8ArOmXhVg8lwB92hr1SVCTArEYhIuJAKcA1C1b0QgYqwBXg/1Y1MSnADwvMA+kRKsDUm9HQJpYpwGwn1/P0eSnAAvIJSfZwKsB7xqT43VcrwMXdwoAlVSjASAYxDdr8LMBukgBUp5grwBmRBHcq2S3A3ljdnT3mLsAvFBl2G6AxwELEupUKJDTACLaLxoJpNMCMUKLvBHs0wKjQm9N0ADTARrik3LuqNcDONkkd3os2wDoCcFgAVTTAgPfTAIIlNMBR5KU0exw1wLJZOuqmCjbA/0Nt+DTlNsC5Ltghu143wJpnBknGOznAEDFqYdbFOcCbLl4Y3xY5wAOQGKxxTTfAlobgXomaN8AUmBcvwqE4wLu450mxezfAk13f//LuN8BCnx4ORtw4wLnTojjm5jjAnILWM06bOMBmjcmyHtI3wB5JrlUf7zfAcLiR+rwaOsA5gUHR/rc4wEB8NQyG1DjAlK1dGHwMOcAWBtVxrPw4wDBB/qUL5jfAavifbICON8ACCmpYT942wIgcAPuSejXA2ffN1Km2NMCtXOu7GEA0wJGqkEsDmjTAEBjS8ggqNcBEeST6J3U3wOXhVS2VNzjA+OgLMMIzOcDw9Z8OeOI4wOZ5s0MugTjArxXjJ7KVOMAVqUeW2kM7wDcZmaV5oTvAv5mA9wFxO8CKZjknrIM6wPNZE/txlTjAZFFYjWO1OMCuDBuXcJ44wAHFwFYL4DnA8jzANuGGN8D1fOy9Gu05wGIlQxUU9jnAOiGuHFjHOMAIfewVJ1A5wJpP5XDcXjnAVSzN+XmJOcBSJkRK3ho5wLmgq/ttajjApSEWtysOOMCFTT3oOvM4wKXxdG0sRDnA+Pcep5ZUOMBPEAABGPc4wDvVwwRQLjnAbMOoatUoOsBAq5hoh1Y6wKKcYOZXTDvAoyYBa+nNOsAlaF921Hg8wFTtrm3q5DvA8JItvE0wOsCfKCh55tc5wOJjrSsdlzvAwQ9OwbCUOsCMEVJZ2Sg5wHi7/k7NTTnAhcI0jqFoOsBzn2kWGDc7wDRhtgXlPTrAfG9/BZpzOsDZ1biRsvA6wHnSSFvtDjzARpsDgk/rOsCtswTS/cI5wL44XZffYTrA9v+UTo7JOcDQKdhdGJI4wMqXEg893jnAV3liCGlaOcBCPV3ddIY3wPjvaFfA8jfAVtT5PiV3N8AznsyryjM4wMfuAr00fTjArMXPByl/OMCV85XssLc5wMy0esRR9DrAasPalQqiOcDQ//7eHpA5wFDToPY0rzvACenNtHXTO8BxoYdIG2Q8wH+BEmAp5zrAnLerdMvrNsDF3GBGwiY3wCc8tWCUjDXAAjeu5UdINsA4EnVN5es1wHVSmeIMNjXAp7p6KCqaNMBTllQRWsEywOpRpKidrTHAEd7qYbs7MsB5uRkwi1gxwH97U9SERTLAf+9hgWDTMMBPPvdXq6owwPH5gBAJfjDA1GPui/PRMMC0ufCoQ7wxwBUgXbveyzLA7X4zNlCjMcBAznfkXYMvwKhnbPUi0zDA0vdd80ewLsCOSqALMdItwIAkfFDzIizAxr6MDJu8LMAWTQYGH5IswCj+SZL1Ai3AOUn3ZN0mL8BUyhHh1tkuwNFfsonuQC7AHCO4Pq4NKsAVr2ZkaGYswDL2B6d85CvAH5763LZtK8CnN7225+kqwIrIlwqcICzAQAZKgpg3K8DoQDqhfPMpwGFHZxC8EirAJmYnGj7vKcDiiDNI9uAqwOZ6qt5WPSnAPGQEzCxHKcCEvWLoSkQpwCARIExvnSzAi4VZzrNZLMCv8ejak84twAGAI5rVFTDAdxPGrW3nL8A75vuSuNAvwH28rynRsS3A1dSJroavJ8B8dXCvn4wqwMRsW3J9DS7AGBrMzwCJKcACRtAfulstwPQR3ys5uy7AHR6AP2SxLcAQJyFcBUorwKP57gF4uSrA+PSs9VQBLMA2Po3Gns8pwEhjd8zmRSrAMcZLpYtRKMApL2MY5VspwGKeZTZSgSnApaNur4hvLcD7qZ1Dkc4swAIyFAYKFS3ATUfa6T4xK8A+oPmc6mgqwBjkJuQjPi3AxgsLg8y0LMBOYbS1u+QpwMk1f6BnbSzATyRQNBQ7KsCcBWgMKmoowG5rsK+KKibADN7D/WOqKcBUmS2NQQwtwLfhhaMkLC7AjmWf+rGzLcBb05FfF4ktwACwqBqlFyvAB42XU7fBKsCYEcm7hEgowAKRk0cL+ibAkZF5COd0JcCQff3JvncnwIbQgsSipCbAUi6BiH4xKMATeufC3v0nwNKT5WBoCCnA9F46OxAiKcAlYZ7AVJEnwMR7yDe8qijASfx04CzKK8CirBbP1FUnwKUmeuwpFibA8OPjs1T4J8Cv5AF1zCYowGX3lorDmSnAEn8o6J6yKcCc0Qt/WncmwPIAmjulHCnA+nciMxlZJcB1pb0JhzckwAGIj2OtDCPAruEkTejZJMB2qplmAN0jwBtKygvvtSbAh4dUWxaoJMDXuooRTsEmwL5gBR8VXCXAR92QZxA4KMDglHqMlconwHLoQunSuibAXTskvJO6KcBpREBqPGsowBEykXPp4CjAH/xPuNAEKcAMAYqSqU0pwLuJjGAK+S7A8ghspkEcLcA9voR3DW4twKPrPknnUi/A4w+jDBznLcAmljmU9psvwMyqwtHjWzHAzdb9lFBNMcDOP1soKRkwwCFR57p7mDDAuiXNpxkaMcAgfYobaZMwwAwaLc+rpTHANgAclv69LsAhu1ceW3suwIhUthqfpi/AvcXBAXOFLsAiNdT2UzgvwOVJHQC4rS3A7zi5yynULcCnsOCXZActwGO6DtTeNjDARIOrdSXRMMDYzX54V3swwNiUnx2hVzDA3VclRsgZMMAKsAg3IrYvwKM04p7Xcy7AL9gPzFqJL8BcwjV/qzYwwOeXOAtsIy/ASMsoQQ++MMAtpP6815wwwEXmZzPj9DDA7cRL4r1RMMB/UDdrnYgwwMAst7QlmjDADRjxbuR7MMD2IqhqHqsxwGiniNFTtjLAC1c/WF2OM8C0TGWTBAYzwHIqyk6SqDPAokX1GVuDM8DN0yAnAdgywCFH77e/FzHAz+1zXAmfMMD4OORBpy4vwLJd1Xon/DDAJH6tMAuuMcDapEJc26UywCF9YVKMyjLAlR+ukiYzM8ClFSX7dwszwKkghwsfpzPA5ZtgWZteMsCQDZXTH4I0wP6WWgG0cjPAG/IRzlV+MsDQ+3DO2jozwD15uC7/wzTAQ4fKoVAnNsDuVYZnk7w2wP4KU8bZoDXAN/1HCn84NMBe17PmE4g0wEP8lymxgTXAd7mnFHoNNcDpg0J7tGk1wLm0vofZqDXAOsLHjhMUNcCBlm1gjC81wIdR6QmY+zTA1fwS0P96NcBwT/8S8HU0wId+aSadHzXA3ZIMYSARNcDkNr+eM7k0wORDeJsYKjTAaxRykvzTNMCNdoC+TiI0wE63iW0bOTTAG6W36EYDNMAgGdi0DRI0wDcrH81NxDLA/jd6hrtfMcB+df88KBMwwAeP0snHFy/AtvHMtfSpLsDfplNmc8AtwGSno8Nh1y7AynB9ubo/LsDtFBjFRtYrwHSDsoLUsCrAT305/k7oK8BK8qDrPkwtwOTdoJixci3AD07NMqoeMcD/qSwBA6UxwDplt8T27DHAWZTcWohLMcBGtjROzAMxwDtZp8n9hC7AlrU/HHwCL8CVMLGXKcIwwD5Cd8Oa6DLAHmTKpM3bM8Dd1AgF20kzwNSbszHmoTTALJWUPxf5McA2/0uTe0YywKxlNgzeYjLAtRIKtaC0MsC4QgVKWdcywNitBB7RmTPA6Ri7VBuxM8DkQeV+EZQzwDqjcAXdEzPA7pOWg0y7M8DgQXs65VwywDIyk0b7cjLAWn+OiibtMcAzwA2L4JkywGYbUIOMWTDA6JiCMszAMcC7N7kx+BgywD5wNfqx8THAw6EMvfEcMsBeyQUz9pEvwHZF8Tp7YjDAFPEbZH2cMMBIhwYuz3MwwEDsui0OQC3Aztz90lnnL8Cgfiu3iMowwAR7xGqN+DHAVgESp3JRNMCDl+4/ibszwEOEVhJ2YDTAV96hxYkgNsBdDu8k/OQ2wLpmUcS0FTjAdXyflpgwOsAxcXLYxX87wHNYbYLsgzzAT3Bp3ERdPMBlF18LTZg8wPpleAQcRTzA5AnD0o3DO8Di4BArhEc8wLvDSRoEvDrA6cLDQTHbOMB05xYI+f83wBWOsPMRaDbAdQ7gC+MYNsABkGay+M82wPaRQ8f+PTbANMwTAMrfNcAPUxxfsG82wHh/3zfGOTXAPUa4nEvMNsAAqDwa0f01wFrO5VTDMjbAWeDmdPYCN8CINxQogOM3wBzYVxVESTbAzOIZZ11BNcBySB5+Rsw1wCu9s26M8DbAciSrjit2OMCxi1FG7bQ5wMWhGVMGszfArQ83UxE2N8BUKtRX7KI2wMjJyirwfzXAEYOtyC/UNcC6OIRqY7o0wOZB+iVJfzPAalMBibl6M8DSXLcNY2w1wEhF6DqnwjTAT69u43Y4NsC2xbEUB9s1wD/H6k2XhDXAIBvMYO/UNcDuUD0pLxE2wLr732Q4ADbA3l7LqWDpNcC1bWjT+ZQ1wKx8SGjEFTTARt79tSaTNcBv21PbZX00wBCiVKThBDTAqPO9sZ3JM8AaNINIDPIywCsU2EtRwDLAPrDl1LVBNMBOi4a/bZEywPKeJQqTQjHASCtczOFfMcDutAuX2UsywDgbSfrSjTLAeb/63NJ0M8BidfwAK3E1wJLXdKZHDzfAAalwfMcONcDlbSzxOIM0wDDBFpGt7jTA6vi3XBlGNsAvS34m/oc2wF41VNk3STXApaeopizvNcD+55wKdeI1wO+4AHej1jTAfi9Z24IHNcDoCx018s40wFBJpptQODXA7MBi1V8RNMBR6op/J7A2wClZ9ysBnjbAdPnmGdwqOMAttY5QLa82wEF/b5ZB7jXAG0NxFIxINsAdGmUzUE81wHOyUPUH9jXAOQeEj2UfNsCAjMIFrLE1wP7xo8c34DXAVohZzqdXNcCW1ahayQ03wEB8RCv2vDfAuJ3FuORUOcCv7YyhXa45wMEy60gXkjnAbbk+QJ5GOsCJToKpTVM4wBT4qmBS1DrAxncYCGYdO8B3F8IWHAo7wBeDhW5bpDzAs9tiFirAPMAqpnswhLc8wPnBpzzt+zvABJTEwj6uO8AeCaQ+k945wJjGAjV92TjAuoobMGxPOMCU29/FiRI4wGdBTuvecTnAQuYqSJUtOMBlnRGTKBk3wB+AKZUAkzXALTlEyPTaNcBB/VUMAd81wBvxMHXA0DbAtDuVyOOdN8DG/4kmDS03wIWTkQ2B7zXAkLnPW7ZsNsAoIIgHqbs1wASVpiRxETjACNzfweDYN8AzRYuTTGM4wLQRF3ponjbAwPTOCzv7NsD64JcRFWY3wKn3BwxRnTfAAp1hd+M0NsB1skDISAU1wMTTW2SRwDXAtQOEpSzENsBeym+BYwg4wCQnmKyLvjjAJlhWxgEsOcBUDf29LgU5wDMaHBitMDfADTOP5rphN8B6fhA/CNQ5wNGw9+lGQznAKooUGjGGO8CC+doFgbk8wDPfixD1qDzASTAcItCPPcBrPg8Sxzg8wGsdjZkg8T3Amux9eVoQP8Ay7qEj09o+wM5S76IxkD7Ah9dyfvQXP8BGIwlYj2I/wGk/MG4A5D/AU0PMsafmP8DeB3A6TTNAwIVdupLL7UDAck92zi/UQMDpzR9Vp6tAwAStPAe0DUHAoBaaGDioQcCGPwxa9g1CwGH56I/MCEPAIJK7r7nfQsDPBEOuZhdDwGp/7GEiBkTAXWv3pkRxRMBGjDP1sANEwLNuLKq0IkPARfswbRNlQ8BpmHcQS71DwNankBzv0kPAjcgmwwDGQ8AaofGunW1DwKeiDoF5yULAsVH2qculQsCcCuMVuHtCwEyjM4o/pELAvnP5H/ykQsCKs77lm0JCwKVMWiEs0EHAa4bfJDedQsDF7jq/IXBCwHBiwwDtJkLA6RVaUZp6QsBNPePhxeFCwEAlpMSfUELADx0uMVSDQcC+9b8An/5BwNzK7iwLPkLAwFbQWyZLQsCR7hi+hdRCwFwO5JuEqULAuDnGtzazQsC6Y6qTICxDwMqAd2uZ50LAvPV7c+oxQ8B3C+qTzvJDwGgmtMnUXEPAosX3i0pcQ8DSINPLlPNCwN6yBDT9D0PAopNkbOBeQsAGv33BOBxCwHdzfVsCMkLAMvOvb6cPQ8BSMGeNEj9DwLRkOLbcPUPAadJuEqKqQsABklW8d6RCwL1mux3o2ELALIsg6Bn9QcAJLa/K4gRCwJW5Ehh/zEHAY4CXlvdIQcD8Ie0Q5RlBwOrgLOyi0EDAVGR5A5yhQMCdnab3NkZAwPUOlxYhOD/Ab5NDUUq3P8BUqdF2dLc+wAlcq2HFHUDAD6F/qA4EQMBXR/5Q2Go/wLJttV4L8D/A27D4E/a7P8CL4Gt5bWs+wJdwxBK+DT/Ae+jCdNtmQMCuUc1tejhAwHsXhbGvUkDAxv7ATiFaPsBEQy6/BtM/wN9lAvkUyD7AkVX+RanQPsBQXZ7/Gfw+wMGsRGREpD/ARpWICe5pP8CRJVukKNVAwMKMahwIJ0DA+7eBeH47P8CvbpfUqHxAwNm96uP1GkDAOeXUshB1QMBZ/S3gZtFAwKDemP453UDAiBlOVlqzQMA49Tf4nDRBwIX+XWSnp0DAT2+3u3JiQMDmBwjnfHhAwKr/dfJZOkDAbehXqogbQMCk07jtLhhAwLgqFiEAdkDAUI5YobihQcCYA0+6elVCwL8dp/j/kULAgRODGoPnQsDxXmh3D0FDwPmG2dE3aUPAqwwFe5HQQsCSmWv5tXhDwJi/AOets0PAt9EgNPosQ8CxVe2J8IlDwJGgY9yGcUPAw93OeT11Q8D/tfypXDhDwJtf0KPOEEPAIKjJjjH5QcB2JW8lTURCwPx1MVd4u0HA+99tUl5VQcDr3/EQ7G5BwD6XQadh+EHAgkCWlOQSQsAi5rfP/Y1BwPbcbbttk0HAHk5QzRdDQcC4qFfA5PJBwJ9M5ynN3kHAIsSvJ59BQsAuxYSlAQRCwOIGkPo0KkLAORejATNBQsDq5NYx1WFCwOVqjkHetkLABQ1vgNXhQsCfi1VMrOFDwBBjFAaewkPA6BK+l9B9Q8Dncv5frd5DwMfl3Qs+hETAvHRxbpV3RMBpyag0uedFwJ/Hp11bikXAbFfq5AJCRcCrk1Qj2d1DwFb6aw2tq0PAkBisabW+Q8A1TnpGkgpEwCblh8vlJ0TAQPS8Ym6xQ8CAuhjpHFNEwCL4hxKFu0TASmePy7WERMAQSo5hpqZDwMxUa7pFekLAuUAEhNVMQsBWuCr/vgdCwFNoqFaRDULAryYdGiLhQcCSugdcBv5AwL4qqD29cz7AtkaRCrQ9PcDMPjDCaVs+wPFQ3tSm/jzAc07G+zcGPcAweyR9JtI9wLR7xx5lCj7ADbibiO6gPsCbrQpGEZ8/wF5SgPEwD0DAfC9K2mmTQMDcAslEyIVAwIV0Rg6RzEDAUPJ31L9RQMAXG2M4DNNAwJMqPgnlgkDA0UbyeGB7QMADC3L5ogpAwNKwVzuzsz7A40Oq6hhhPsC3LtWoxRs/wJMzdyRLyj/ABi60XjBHP8D3aojtqOk9wAvFt0Fo+j/Ag3h02vuAPsBucYXKmD9AwEknfJAGGz/AYN1+CqIYPMDKGb72um87wJ5RneaftjvAZ7OUWLfhO8DMvLgaTIA7wKKP1gP6tzrAaZT6XyK5OsB7bTWe9Q47wIO1tahg2zvAALYHfG7OPMDZUq3uJtk9wPexHGpW9T3AsjdhnAxqPsDtXyts7Hs8wN3tqFKWJj3AX1VlYo4pO8BRRoV79U47wAhp8+OMTDzA/lzaiJsJO8C7L+oP/1I5wHFXK+p3VzrA/3f0nQw0OcDtmYnNUK04wD61v2MlGTfAQBLjYqD7NsDcHCukcWw3wFDuTEHj+jXAjFIhP8+UNsAYMo2laR02wDLd70Y6FDbAjaNhqTEwNsA8oq4nB7Q2wG+98JD7pTfAkWinHAc0OMCJjYr9rC84wI1KZRaa+zTAVKa51FUfNMBFyf9dAX0xwAu1X+KVrDHApJ1bUlmxL8AeKgdOJ78twMoztyNEhC3A+oJVsUO+LMAMUl3U8DkrwOBGF8HXoCzA5AzT6yUqMMAXtgQK0FEuwI5Nb0SvHC/AiRGtKtdVL8Bv3FQN5tIuwKZisAJzBC3AWv65DHwsLsCach5rAzQvwMTs2rmOlCvAk/gxG459LcC+FGh/VI4rwOZW4M/knyrAAg97C5dxK8AZjCvPGccnwHkT3BhS1CnAhP5/nQ5DKMAALbu6MX0qwIbXEE7/MCzAwYWgZKpEKsCwEBGaET4pwOm6Y40rjCnAzby09/mhJ8BPtfbXOLgowKaM8iE9KinApohEpaX7K8DuL37mkngswBmiSVibUy3A6fG1pVy+K8C1nY5ZUDQswMZqzHEbpCrA4y5O6eEsKcBiU7TAu2okwMRZUwXhaiLACmeVF2EZJcCyh4VNBUcnwE5g87kRACrAEkCmZzCXJ8B30d96bLsmwP0DY8VvnibAJJIFyx4cJcCya1oOJwclwO09OrsWoSfA2xIR/wFzKcAI778jHBEmwKqbiPF5vSXAyAuWCR84KsCMaaGG/PAowEnjoQloNybAMJxxCrpvJcDz3Bilwe8mwFD33WFlmiXAGhc8J8KzKcCXvLIK7rIowJRuEyl5yivAnjNzdrQOLcB6KfFwrGwtwKOGTiUlUSzAwWAbvgnFKsBLexZudXwqwIjbLwawSyvA1ssQP+JvKcA5rDachVAqwHd8bp3IHSvAw2XJCkxKKsBf1AxWgVEpwGSD7sSGOiXAUbz78ZmIJsC3TanhC28mwPoFsMh6ByTAHeUDzsbyIMBGpbpqiKQdwO4Zbc3mfx3AxLSAY41NHcCiHIxuR1wewBfyNXg+1RjA6JvjVMZoG8AlIa7ctN4gwPS/4PhfhB3AhH7AD6nqH8DaYgM063khwPw8E9gzLSDAUjk2hJtfI8DhvRc0sDkhwAAYOvmhIyLAqagkGcxpIcDqhBh0KvkewN/k3545EBvAQgwPQrorIsAPMKD9SxEmwFGXc/BKribA9w/qPSqiJ8BYq0GuJqMnwEz9+09nEyrAQnBaMhxfKsDUo0W5WtAqwEInS8YoTifAt7MNmZXeIsAMsct8mLIiwAFwFQhvLiDA4XZskq91IMACPWZG+iscwHlZbgqhNRrAn5EL9OisG8Cv9Uf4KzAXwGBvCX0MrxbAuDn52LawGMAMWsMXP4gawHfzIqR3YyDAxMURRaiJIsD4pGZsyKkjwBWBZ4PEZSHAQVMQPqjcIsDKn7EbFd4iwPV59sftXx/AKoZlE3IKIMBAe6uta3YZwJWrNHotxhnABI4jghn1FsAw+HdDMRMSwHEjMWhJPhDAlwJm8vuVFcCfd2t0GNMVwEa2q+FuqxTAsBVoWkrLHMDNthtwMgIfwH7eablOMiDAmrjFzUCxIsBmsI/dlMImwKaOeV1gVyjAEqNMwgnmKMDM42s56RsnwIRF36XUQCXAIP9JGSAgJMBD9F8KOAYiwHk2XuIfMB/AW8To9rISIcC4hdcvvVwgwOwuivx5nCLAkekGWlrkIcCDkphfdVQiwFBqKmQiaSHArp9fDmzxIcCPh1eogawhwIjE4mu+YyTA0kDv6EdKJMDOvs/rVA8mwFB4t3F4uyTAMMSq+PjWIcAZ4h/AFsAjwBWkDntOZyTAl3nUjlowIMBT/JnFm2YgwLMXQQF/GyLACNgbgh91H8Bm6DimDFkdwBw8J9YfThfA+M47Vch/HMB4o43dPAEgwNm3QWPpmyXArDFw8t2HI8AlsPjBBkkiwBPUCvuQ2iHA4Ic/HlWwJcA1UG2Vu7UkwL3DsNqQwiTAY3EByFFRJ8AzdznB0oklwNczAB0gMibAS1S6QkuaJsBDbCeVCxAkwKlmdgKRYyTAYXkfSEPUJsDLWdqiLSgmwAfzpDo/NSXAnfuGn08QJMBbpkxa3sYlwOWOBPRHIyfAeF/lHZzKJsCguVoJRYUmwJhrmKbi+yXA/uzvxH/ZJcA0RKowrwgowEEwoxeX/ybAQVhUOhEIJsDWwWwinmciwNISVh6AQCTA56poFEjJJcAxHPUEnmkkwLCyQZ2U+yTABZmgfltcI8BOghkmRNgdwPZ/YGGVmRzAzCRCTNvsIsAFZFY2PYYhwDTfv1sxcSLA2VVBRlWKJMBhlS4uI8EkwASqSEK0ZiTA0h0Impb0I8D9st4AMrknwExGkVOsVijA6FPBRn3CK8B4RhAnQDsrwJTgaH3MqSnA2FahV8UsLMCY/Os1bP0uwIjUcRcGzSzA8s0qjqAcLcAhdevUIHUswEk5H7GOuC3AhVJ2QdJqLMCjYzLOj6kpwDr9vK0I7yjAy4Z8R7ucKcD/VCCTxscowLqeJFzt+ybAu7PPBJ53JcAYbsOF1v8mwL3wtBqYnSXA4aYoNHrvIcDaDgS3NC8hwAFmdV400CHAwZNV4VRvI8DAsq4ytfIkwBDDrIZ1tyLALAf2ZmK8IMDKP/U4vEMfwO5Oj7uuIB/AS5kxUo4vHMAx00g6GwoXwOp0qlzJwh/APMA5BmH0IMAVkdyPyyQfwKbrxU4SvxvAlnV8NIjOFsDRtOwSSqYVwDxCUg7epRbAVvlLG+5DFcAGlV/yT+IYwCEqbIgz8BzAV1Jj0vO8H8BhFTle8GQhwP1Fa0xT8BzANJkUEcu7G8BwDbyWI64awFoZN2pAvh3AoCwhCE/dH8BcYFe2XyIewBhCJfkDChzApOdeLbbAI8CbFtvdpL4iwAeYLaiMmx7AuNfUx6mEIcCXpImW0SAgwH8BnX3bVCDAB7NW8Gu4IcDPSMTmIzQfwK1w6cpHih3ABIh+zBc2GsA1rMMzFKwgwOyXtV0BOCDAenopL0ZcIMCkwd4yrGsgwJjbu7NxOxzAjeT0fv9NG8BBw586aDobwNZ0wkPI6BfArkkxGOMLFcAmgS6UG0UQwCm5uBXkfRDAFoAo8szJCsCvNmL/LNIRwDJXDQGM/ATAeS3cknIDD8CoUhBHC78CwGz1Pjub2Pm/pvYsnTHdBcB/teRB+DkGwHSpJyV0+gDAfaC4Y2N9CMAAu4lwsnUQwMg2h/7I2xbAhnL0GuMXGMAdxME/u3QSwKQPi7FuqQ/ABmhwEvNbEcDDviXzwykSwB0VQ4odqBPAHtHOHB/fEMD+dMPhX+EKwIzWQ0ni3xTAds+tomMGEMALVO3CH0YRwHPFY/TE6xHAG3pQQKr5FMC5LVDXdKgUwArBBggPXRPAOJFgsve6D8BmqkojyrISwIo+of9JuhbAGPJ+tzKIEsCatn+qRdQQwNZ9OGQuLBHA6cxG2F9+AsCEnPgoywX0v1COW+6CFsi/rzd/r7k4AMCUFS8LqNAEwNuOqaZqCxDAOiLYwR5xBcCwU1OgeyIRwOxjR2qA/xbA6rSejd0QHMBOvtepvh8gwKttVuZlLSDABSI3xDUOIMBwIxr4NzYfwLuTg4CATh/AURROAx9HH8Ckk3DXjgAgwB6pwRQmByDA6RpJX67VIMC2yac+0BUhwHv0gCtyACLAttWRpaPMJMDYDhs18CsmwJzKGfUK6ifAb7OFcR+VKMBSHfC8ecUswMzfO6AblyvAvxvGcAxiLcDhQlOAnGcvwDcg5/rKhy7A5UIwH00aLcDJpzT80k8wwDAJCUXFGzHAl8Kct8NGMcDZxouFOOMxwITz8iFkszHAUz2e0/bxMMByhP7pV7wxwPqVhDfzCjPA7xaduwo0M8B9I5bmXWozwFygt3z3/zLAcJxXH0pwNMB6K+wy8bU0wA5L6IFZqzHAekfHHVoIMcAqPBxrfg8ywFr3v/Up1jDAvoLo+e2tMMAnKt+LN70wwMt++iVLTTDAbuy1A7cLMMBf8gZCQNcqwKABySw9bi7ArZqL4pxdLMDGwSg40KguwBTe5OIccC7A9jvOoHfpLMBVRxw4wJIrwPZd3WApDi7ApEsHzdTQL8Bj/jatB3UvwJDv9LAf3jDAoCiX5yahMcDB5y2Cg9oxwDs5mPgs/TDAOO6ZvghyMMBI+hS2e/wwwBZAZtDVdDLAHWCpWTWFMcADqvB+buIywHR7ggkyeDLAM0EuC76HM8Dun77qtIY0wFQS5tRy4DLAWGs2AN/yMsAyMykaYQYzwEsadQy/TzHAm7hvIh0xMsBkVlFQLKIxwFjoSd23CDLAFDYYLjtbMcCRp45av4IwwHR1UBu76DHAhEbxVOnQM8DbZu26A8c0wHAgFAmGRzTABPyu8ZpcM8CVeZ7rgpIzwCLQM7ArNjTAXPQeCFYhM8Bl+t18hU0ywLnjMfLPTzHAaKIVm+0AMsB4rNrxXWUzwIUKKteHHzPAZPY5AS+vM8AmnqJ18zY1wIkClGFW2TXArdC9teQXNcCoxc3fKQ8zwJI35D+UPTHAy8mtYftdMsA2KPiSGGwywFROC6yGay/A/2AibTdLLsBJs8eOF8IvwHYK81MawzDAH//kaDgFMcAeUQnUZTMxwBGvZm7vjTHA0qHatXqEMcDNFAQdSg8xwNIqi/j+zTDAXAQwENohMMAj1pwVWBcuwGfEBTMgni/Aw8RI6NyILcCj+YXIHbQrwCBKCaBc6ynApPk4y0opLMCTT9wmAeIuwGK6oBmLny/A84Hjp6DVL8B2sU/8uccxwDwf6BrHKDHAtjq8RfsdM8DO40q9KIgywG3T23y/GDLAPw+hwQqgM8D7/0LdMS40wFSTCHYPAzTAEOWPgb60NMC+nL7NrOQ0wIxQq2J1VDbAa5sWzSPDNMDDotKFvXk1wLM71Dc6LjXARsnk/Bo5NMDPcUeaqM01wGEHAY+majbAcsvFbzJ1NsAKFl1MAdI3wIk6gcqgZTjA/KBLzdRmOMCxl9pScNY5wFYg4J+XdTnAD1Np2UGUOcDAQhdPEes4wI6W+/JdtDvAgy3V8cPxOsANhBEwAZc6wKZ0ppKURjrApguyvV0fOsAjH7X1Ymg7wNNNGWHrnjvAMZCI755lPMCJo9DhDCM9wBBnfmF1BjzA4OrEcFhyPcCjVsJJCws+wFRsvK8+kz3AVpdV8zcHQMB+M38NYCdAwOAbArj6kz/AVLDeceF+PsAIKUq3XxE/wPk7mNU6fD/AXPt7eJn9P8Ct6qBBdNg9wFEXQkOxCj7AwG9vy3bfPMDZG9/sV8Q9wNi5uDR6uDzAAiGjJtZLPcCSHR1sk3E9wL63/Ux9iD3AQothoYDvPMAGgveBiRk9wDvi2KuzfDzAJ+BDqVEgO8CNFaykM907wM2c61XqpTvAXPTIv1hYPcDg+nUi63g9wDgsYDHi1T3AfrcF9WQqPMDgND7L1DY8wCiVsC9AMTrAWCZ9z8IzO8Bq151ZCkk6wO52lOrgNTrA24sMixlvOcDIqfWqEBE4wFzuGI9uczjAVfvgwPFxOsDFzg40ZZQ4wN/SomDu9jjA/yWoDARyOMCC2LVXFaw5wGb5EMu7XDnAJBns5spWOcDNUUxYmxM5wFMoGFkvJzrAyOuvjMR5OcDJfEm1zLk4wFGX0xSaQjjAOXAv7FviN8BjdNnU+zA3wMA0gQtprjfAjWahb46WOMC5uZYJGRE4wD+Qjgqn7DfATo/G3lllOMCvyG6OYqY5wK76TjsJwTjA4tgwt/Y0OcALyvLBi4c4wGohpLtKmjfAKwABgMvsN8Bi9pKUrD83wKxmnAeBbDbAFBb/KR1vNsDSXXQ4cYI4wEqBGK0xjjjAFHcHN7MVOsBng50OaqE5wDox4NOROTnA9v22Vve5N8BLH9Q5VKo3wApCJjM+TjXAtx4nzffsNMCvR26naRQ1wP9CzF3qbjXAV9VqZw97NMCYoSr11LU3wLiDVtclgzbAhm3D/W9uNcD2k8UTxeA0wK6iMuCcWzTAzthNu7sNNMBNGXfnHX80wBrjEvwzoDPAeMnwX4lTM8B6kGHBMUAywK9zLGYU8zLAWEXST+m8M8C9Of+C8S8zwMW8kzgsvDLAXRkkKxASMcBEA9Zg0OgvwOaSKbp2gDDAG7hnCS8GLsDErJhIQrctwJkKRP/hVizA/PMczDWPKsBSfjQg0IcswGCLJpHVVS7At+A4vYG7KcBmK2wP4CwowGpTzk+YhCjAVSDF2SxAKsCcUss2aOsmwInrPQl4NSXApCmW4cwFJMBBH7VsJjAhwOany6T4fCPAJ92MS8EpIcAQnux5G4EgwD3+eQC7uiPAMmZQwLhUJcCUC4AMJWEkwDt1jOOiHCTAEHnacsJiI8DmfxGzED0iwB8avWb6PibAXKdAKpV7JcB28SD0uikmwH2gnA24FSLA0cqlKiHhH8Dasue2s+AawHUpHg0JXxbAS70uTW6GFMD6blCKKSQZwHj/kqi4/hXA7Ejty26RHsDL4dgvgy4bwPN1j5iW3BvAiMrxo594FsDBnuyUibMSwMh0N0VPHg/Awmhgb+CBFcAWXhxFv4EYwLils0tBVRTAAC2q/2zJFsBG5XIkUm0VwKJh/k5aShTANMMLTmJfFMBLmrvhJIkVwOgS+QICchLAvVL5SS57EcDqjmfGLIsTwGDRTVMvnxPAfFPJUfkgFcCVxJ8xAHEZwMX1q3rk4xzA7zNJYLwrHMCDbA3JN3scwNP2EYyAWiDAIdKCMjiCIMCalZ6RJ7AhwMdCZ8apmCDA8mwjf826IcA41+FD/j8jwH3yTtA0JiXAY9Y1e4ymI8Cn9utCZvYiwMd9RJg1xCHA7Q1m+kOlHsCeIqn6XqMgwKLCDSW+rSDAChvf2Yk8IMCd6iKpjv4cwFCGAp8BgBrAAn7x2DbTGsAZi8T3OTAawJH5zUdTXh3A1iosg4yoGsBMN0C9TkIcwEfHx9xuBiDAOY67c/IGIsDKBa9HrkYjwKdmqUdQoCfA/nhy+Lx3JsBYyd4DaYAkwKMVzcZV7iDAclVbTMx3HsCqL7cVy0giwDbdjvlnTCLA5jw0hRMsJsDTU71hg08pwJSIZ1GWwirADd8LcxBwLcC3bjc8QhUuwIjNyfTcYjHAu5orgpwJMsDpml0vv3UywLS0mPUa7THASxhHi14yM8DWYQ13Ed4ywIk1QylHQDPAMGWXGAQtMsDaAL3MLHoxwCNYj3ljZDHAEdCZH+hIMMAlPFeEmOktwADR1L+8IyzAta+Sb2cxK8DgdNhCUU0rwG1zPcy3NS7APbdpgwvvLcAYWFZ3Yt4twPOIdkoiby3AQI3DL6tfLcDBJHRWbo8uwEEmjUEI0S/AerzcrEZfMMA8Wk/TfQAwwIRFoa6PvC/AGMAr0GROLsCXCyBNgkEvwEQ0OJZ8zi7AjDuo78dLL8AReUaGi04wwFo8ozm6vDHAeFUL470YMcC8H1Mck6EvwKmZhHOSFTDAaq5cR3F3MMCPKCGoTkYxwPUxSsQCoS/A1eiMWOj7L8D2ejCmBM8vwBH+wNGGZy3ATQsxMeTHLcC1KRHxTtouwN1PfkzptC3A+S3nB5trMMCC963UcD4xwMMVBDtZJDDAGes0Y0SPLsC4J7LWliAuwCVErobywSnANUtlKlAQKcAsYALD5bcrwFRKvT55DC/AtYm58KGWLsAdvq81PMYvwOM25qBguDDAWpK9CDf5LsB8mTpXeH4xwKoflUbCqjHA7tTmp6mDMsBapRsqVeYywEwIbyT9LjLA7vqORd2YMsCMPYFvRMw0wKuSxagtgzTAfDPPr7eIM8DZYHpWce8zwGi7xnudZzPAqkdMYT2BMsBVIMN3pyQywG/MpJSE9THArLn5K60cM8AJXdsl0Y4zwGpRGNAadTLAT9z/MJASMsDwzWWFi+oxwCd+GUjgyC/A1+Ejfe+TMMBpFh7SH5AywPV19IAxkTLAEri691yyM8BfyOaG1dsywMLoLaJ3xDLAwk75FkHYMcBLMWAv8SMywMFim9wU0zHA/3CGJZpjMcDZ62qBaJ0wwLHtieyXaTDAvAjKe8q1MMDYqFWrUIgwwMEFwLa8/jDAyMUf6wVgMMAqN92ItjwwwLLjKMTs3S/A8VRyw4RaMMDYVO7VfeAtwOyj+RHkfS/Aq3ZBcLP2L8B07jSWIyIvwK4DMysA5y/AtD6eub0mMMAnGeJXwq8xwHq1zQfh2zDAR5QQjeGqMMBzNRGrURwxwAb0fSNyYjDAjIFYc6lLMMBSaxX1pIwwwPtU8eZh4jDAUbyeDrROMsAVwzfmQXMwwOl3yG8jbzHAFO2j2Fp2McBN3rlEbZQxwAx1bh6mXjDAZcG1El/rL8AKVRZgMNAvwMOWYE5G7C/AF36AWi7NL8DGyYvU+XYqwPmcR+fD4SbAHUCZ47h3I8C1U+lCBX4jwJbIG1sEbRvA+sInIMnCHcCfK0XVSCcgwNUE+uCcKSPAgmfDIrHsHMBJD8ItWdAdwKq/JeNpKh3ApnGrpCb8HsC8ZWd7qFwewIfTTbeVYR/AuK61YEw6G8AMcgyy1fAcwIXGoUwchB7AHvYyhANUIcCMlucgK4ghwAUOe3/0AiDAPFO0HvmFGMCaEXNYFj4fwNGWJt5MmRzAmomDgScaGsCOvW22t8oYwKjxgyityxPAHBykXHLQFsDL4zGNDLgZwNBYGbXg2xjApwAeSIoQHcBGrMe85KEewNIPm567BR3AAqCI7MMJHcCVqiemkjEdwO2fC7gNPRXAFKeED01xD8DPzy2ol34NwCyHeTiZKwvAHAWfhWofEMCwmHobGlIQwEBK1RkVdAvA+kWFznbtEsDKDJjiGvgVwPDvyGtPjRXAT6jB5Im9EsA7k63IYfMQwJUKUETGeBPAHmq+O5pcD8CgLLzLIZcFwHsRiSRRIgLAsxJ4pSY89b9fUBiBb2DkvwfL1vFcxPG/jKQisVdsCMDHr9LnPtcJwFGK4KEPbfu/4C+EpfA7xL+ftnjej6fJv3/rFvdq8vm/xEz9r6BqCsDn7mcEXDsSwKLiL8wS4xTAtP4Xe+w1G8Cdifn5AdcXwBaS1A/jORnA0nM6TLXCFsB5VFlLIWsXwNo+dq/cRhTAsOIMg8cfFsBscQyjvUsQwGCB17HVjQXAVFN+gYMuB8AMfM5FJT3zvxAYPZVDsMI/FEpcuvPR4T+Gp+uSoS/sv4mETMfeyva/cjyncbm1CcAaE4+PDxIHwP8JZsHfVwHA+GrkTgU5BMDA071U0wUIwDX3VtHF+hDA9pwhq1toF8BzbgTPb/YZwJy0xqs4QhTADIDQcH1OF8BKqMkxAPEQwHZhnhAGihPArxwfzhBkFMBG7K8v75IawA+Tganxjx3AuIVFsllXIMBejWDrKAIfwGl3gNBsNiDAzzhjRCQfIcBEBZzDed0kwADvtTanTCPAKDQ9gk4uIcBwM5SQP/ciwDL+s/My+iDA/EALQ/agHcCqYXO8BI4gwMP5b0e7NR/AqKh1wMtJIMDed1lPw0shwD18IalvqCPAfkwqGnFXIcAnp10BiYEgwG1M1TdMVCLAgbj89dnpI8ANIJNLxZ8hwAynUDhFLCTANpk3QqlVJMB8Pa3+G8sjwC5kmF/IXiPAxYy+CiHvIcAILAwWzS0iwOWeiOOnlCDAR5p0GuhUIMBAp9k7JZYewExtrAoEdBvAz3wxSfAHIMC28cDnicAiwN/vwoUe7iTA+Cr5NQSIJcDMkfZyeEInwFR+6//+difAnP0LLaWuJMAuo/xEaCkmwPIHmEUGhibAGLxkw7uZJcD0V/sXuOQlwGzxIo9FqijAHF99rgGOKcCV+y9HbdUpwFh7Dn6/aSrAeg3ZXvABLMCItkReRJ4pwMkiKh5AJSrAEeSb69vAKMBXflhgRDonwNHCIFLmmyjA0dNE5AMGKsAblv9DpgwrwHiy84gefS/ApXcnmWqVL8AIXVcTw2cxwEC9Ij2KxTDADeI9EmbBMMDKj9Il6TsxwGSJqV0wiDDArtr86ozIL8DNqxe++a4wwLl5sdrT4jHAbaemi2jdMsCaievGzY4ywC5FLZgiljHAILd8gArTMcCSRGMcnh8zwPAeFOBZdjLAzitJQR9mM8CLrSe77GAzwHfJ5IAe8jLALkyEKMvjMcBEeMUfPu4xwOQwHMKUtzHA4e5H+GYWMMDVm+MHD7ovwAYnepOjeTDAi35uImBBMcCnBprS8aowwOq9Z+DwKTDAhhC6wL1oMMBgp5ClTjoxwGLfDOTbHjDA4UGicSVYLMAzXmm+3LMswHNeCnw9ny7A/9bCVTxZKsCCKbq86FMpwPghQV1LSynAzsiXJY7TJcBswlLZ4UYmwBJ48gdV1iXAK0BBP9EkJsCvmRy4kWcowCnGbbCpMC3AmN+y2kK9KMDeFHgRw58pwAAsRDe5vyjA6TOigMLiKMCid8WiRPMowLhqzlJi7ibAKrY5LpKaJcCTo7uwrAUpwKALPNaL7inAi1GPMp8UK8BsFvfo1UcqwAhhlQV5KizAXuu/9VVnLsAuyOi1voQuwIIQ5xg8ZizAZpQEkU5CKsDEsboHHOwowKmCYwZ+EinAJ8QpSIVOJcAfxO9dqsMkwLbgH0VNfiLAYf7a5VQ0IcCCO97rXnQgwH5jWrdCfx3AImLYxrGjGsAGl8P6KQsZwEYP0FfGrxLAh5jvFx4pEsB/bVOFNrEQwHu+TojcLRHAHf+ABzpSE8BPlmhwbCwAwDxUPy0WtgnAtL/Gy8bHBcBu+quAYi//v4CJ7MifpMO/RnWPUwNMz7/odHjnv1XgvwJau71MKNw/ulFJlqiO5T/eW7MyyEH0P0iAmhrOfeU/h2Wa0Nfg8j/3FCr2MRkAQJQ02vnW+ABApDZvNYsBDkA21UsBG0cSQFTF7Hvs2BlAOL7oNSrSG0DRmN94+cQYQGU8Y1dxJx5AASzdJ/dQH0B0erK940QdQGbsZTyCHSJANyroYhzSIUBa3EUyHQAiQIPZDPGX0yRALA+XezKPJkBk1tCKHoklQGTLg+x7CyZAxwF6MGfVJECxRqWv3mQmQP0ejAsLVCZAhulkgdBZJkByVOKv7vAlQLooahSzKylA6qqx3VyKJkC/b1qQY8clQA7eIswj4CRA4DI9SQ0/JEDNaAu7UlEiQCfTclhP/iJA3CKGi754IkCRYgSA2HUjQGS3UUKsqCVA8DfbLR4zJ0A+WMFRsc0oQATUVugR2SVAVicupa9oJ0Dm5pCEgbsrQCv2B7aBdCpABsRZi6uAKkAtasosvBQqQPsAKgaQ4CtAg+ZAVXUFLED7sICQD8crQL1hHQvWmjBACTmZWzLwL0Ac68YDT2AtQGbc7RTcQCpAbVRcDNWUJ0Dkp37V5JgmQJcboVbToShA61+SXmm3JECGXu/6NBwkQHYOXtO9fyNAGA4sqfX5IkAu0AdfcrAiQImXKs4jdyNAUKJaRfzSJEC77+JrJ8giQKZcetWkUyFAqr/vxYmQIUDk8grK754fQES3XJz2Vh5A1sRbStzPHkDLv6WfbQ4cQAr3lVVmZxpAuoZcW3UKH0AoK0XheAQYQL3s3I06MhpA/qpJb2RyGkBmACbF/xUgQBIzc6+4uyFA6e2h7xSBIEBjNtH/y9kgQPoOoDZmcyJAPbL/OEkFIUBGlr/582ogQEA4BlmnSiBANpOTT1K8IUB7FShz+QMlQE+qBwMOSidA6Dp1HxVeKEAI+nowDd4kQKtIHKFsYChAHGLI74YWKkDiEYxB6ZUpQPIGEGomtCdAZp5vWUk0J0AqJcF4IjYgQAXXtulF3CNAjsUDR7r0JUAw7FjbwyYlQKyi/9EilCZAlyGqQStKJUAFF2wk/7skQNk9177LWiRAAlE21L0KI0CLfXtJbbAkQD8BvaYfYidA8sve88njJECus5BdpXYoQLYah3ck7ChAZBHqB3nXK0Ax7/2DZ3UqQEbsDp+29ChAfqPJGx6QJ0BLap/HQY4oQPO98cYlmCVAt2SuiortJUBhc+qkEGklQG8j0s52lSNA7+UaBn9JJUColt1MyyEkQHBRkOdL1CRAukkjq6lJJUANIgz66GMkQOOH62+63iFAjsKrgtiLIkDp//yZmb4iQD2mUHf1fyNAKNrN+TimJEA3jUXWgxslQGQHp1B/1CZAcv/a8nJ1J0DQdGTfL9MpQPFjn5ii/StASYyiJb2jKkCXUcRyDe4qQDswLzQgPStA9/Iw/qL8KUBSOl9d3D4rQAEVgDFcgytATU2GVdXHKEBegnepaY4qQNtcL5KAoSdApnMv+ftHJUBqQvg4hHwjQJqhGFrjfyRA4vcxi5D7JUAffYFctFIjQLgkHJjEDiRAqIgFR+JaJEBnV7b5sa4nQNq0Ub1YNylAAuLK0PInLEBv1UmZYo0sQDOsqqOCFy1AfNSiQi8gLEDtrsJ0RJkrQKqCd8yEIixALab6qWSQLEBkPSOJf8wsQMRmhFhZqi1AL9azOlDhLkB3UFhdewQsQJDCKSAPQCxAMc751HY9LkD6uYDlHMQuQLXHYYbY1y9AStlQEJS7MUDDdQMbVCgyQOSwbSaWgTNAEJVxoW3xMkDvcgNPnCkzQBIcwghuODJA10UFfXd6MUCvmTA5aDwwQAFQoENt+y9Ad2nRDKS1LkB7Pvjb/gYxQLarXZvbpDFASpHpirNsMkDZXJqk+gsyQPdX790c1DJAzbob8MsZM0A7qe4CNHgzQMTjENIwhTNAhXxkXsx0MkApD68F0PIxQGaZdLzxijJAeCaqaX00M0CEB/QywCg1QAZvOAZZszZA/ZhAGKv1NkCS1wBxggc4QLRuB/Xo6ThAIgB9DZjBN0AhbiYz7xs3QIz/0Fc/YDZATm9vpaV6N0BvygPWl8Q5QAJp9ffy2zlA1gea/8xaO0AepoX6N0E7QCPhgzce1jlAUZ1Jm8isOUAV2LbHXgw5QHprLQjQRThAAwTf6YkEN0BSl3ALHTI3QOYgF40EQTdAyDpbxZANN0CSdmBcXbM2QG2JFXqjEThAqFBPFw4hOEBr8Lzvh8s4QKmY2JsL6zdA5nRo/1uDN0Ain6HVKyY3QHL7gaKmpDZAl5qK7+hcOECAnMd5N5Y4QLfeIeMLBThAlIh7irHdN0Alrcnynwc3QNZbr/uwODhAcjSTNTVpOEBT7Emg8Uw5QCM/DwXR2DlASJgMglVAOkC5aCcDf2Y5QKS/xYEoSjhAIzAE31/IN0CDK9ha+7Y3QF7OR/k+YjdAe/BQrfEtOECuxDXrbgM4QGNUa4VVDzlAUKZudps4OEDcNaU/iAM4QE2TX3JlczdAXDrMALWjNkCS5zyctbw1QEamclZyozRA4NfrlIM0NUDyo/KILFs2QEd7EzM/SDVAQUXirCG0NkAbWY/1Vks2QMuAfbD7YDZAcDqImXmINUDfwKwSdpE0QOOF6V19TDZARDOhdOG5NUD1xe5pgR03QNJW9faE8zZAAeECxIgGN0Drgkf6azw2QPILtq/IrzZAIbruq/dNNkDyA3F9WtQ2QDg7m/9STjZAXwy9RNEuN0Dr6LLCMmw4QF2PC9cBfzdAkE9R/gp5N0Bo/Eesl7s3QHS7aalFHTdAqcLsfJ95N0BxdFjWzLc1QLIuHRjQPTZA6w08dMnmNkCkXn+T+eI2QB71Ff3wMjdAPwFSXHO7N0D0zIiG8xQ4QOj1WhfWMzZAOAdxHlIlNkD2RP5C2DA3QDgFVhGQxzZAe9k+eHHONECnSJYEO1o0QOmU2e5nfzRAUgvFVbfeM0CyA/vqMSozQHyVrl3TjzRAtPanOnexN0AGlI/pY903QAZsu7a09TVAxsU8AgB8N0CrMmocGtU4QI0iLs6cQTlApkykL0F7N0BcoHoMlSg4QPnps2cX6jZAWIT4Lxs7NkBoBjXHa+I1QLEl71u0kzZANgoWXTaANkCMtCq5hJo1QAKDqjKg4DRAicmgdVaDM0CixiLy5SMyQPIhNdDjEjNAFQBpOtpNMkA6hM+A/IwyQJD942V5ljJAx6kIdOocM0CyuF39F0MxQFLkJ5DlHDBAnv/8NPeVMkALEsJOHw0zQM6e4NRZiDJAICRFM021MkAIAXoegYMyQOIJJtzECzRANcu6CrwSNED/wp5pD6wyQF8Is4X53DBAgAlkfmmdMUCtpn5F/J4vQG3wEM01Zy5AS8aZCq1cL0ANIuwncGAwQHyzro0qBjBAlJlqtr8tL0CIvnv8TacwQNblkv5l1C9AiOuZ67vhMUB2zaxqPGQyQLxS4SgurzRAIyWE55gmNECPKwK5nRc0QCWKep0yyTJA2BbGZkssNEA0rIfFG7EzQBQwW4jmIDNACOMoFrIGMkDmW4qjSYQzQGMjC7c5ajRAN4PJxJGsMkCBVOa8rrQyQLohmNLbzDBAPPjVmqBXMEDk7hrbEYwsQFwJF2aEEi5AQPL9kah+LUDJHHDteGMsQN8QY40gpS5AsQHDaFdoLkAI/djri48tQM7FME6r0S5AN+EjWGWNLkA9wN0z9LwrQBBI8ySsLypAGu2mbwJ2KkC6uhrPTr8oQHf/OVnmfyVAXi0P9MM5JUDfWe0W9aMgQL6vtTBkNSJAXWPSlmNdI0DoPX5ywD4iQOxFxsh/iSBA7vN6iDcJHkBsnqtLSA0gQLa4NVkieSBAk7DzdIslIEBUIapXexEgQMT29tDFoCJAMNsTjSz0IkDQBNilvYEiQJZOHYiMOCBAn1Mnmv6TIUCPV6dDANMhQDqho8OjdSBAdJ3YWlj1H0Bw5IXeI+MZQKu7e3w15xRAhDDBmn+qEkD2fIVRD5IaQChDDVcdCiBAthjLhsZXIkBieNEY8TsfQK2jE4yOKh9AQa774/3oIUDnSCjCIAYgQOcAnxA+ByBA3/D4cn1eJUBuoZobbOkhQNTPVnWLyyJAjlYVrnZkI0BLXFl2wVIjQG65fxJkhCFAckyT7TGSH0DnOHNqmrwbQGZ3HQxybxhA6CTvdsLlE0CYGo21+M8WQMeNsUI6chZAnA9bv17eEEAfPJGGyU8TQAp8KV9JiA1Aljgg/Y5yCEBMUbupeM36P5ZbAK+36f0/fW+jY8haAkAueDkIJ+QIQEyF4c+lswRAqB1lLdmhCkAV5T8tsgAHQJ503S4QhPk/al4WnyO54z85VsHMySbmP6Bbi71x568/DPpK52On+j9ForevqMjzP0Zl9kJ/5wRA9q8mlVCI/T9My8akSQLhP8pOB6KGWgNA9scUujgvBUChP5CWtgAXQKb3jkdm7wlA8wzlFpxsDEAqxXhLqZ0SQGfn3vzBxhZACeKwETrcFECGjb9pdZMXQGqg5eRbeBxAwENH7u6eHECBMToOcbMaQFeoovS8JxhA5RGTa4vKGEC9FHn1TYgbQLha1wQ7CyBAGjtEf5UVI0CukfAUAZYhQJ1XhAQMKSJA45bg6ocpIEBZDbCJgSkgQKBO064+ESFAVAFADDI0IUAT1kayIqYkQEXyUFhXxiRAp1NPLnP/J0C7LBFArXYlQFN+4/FB7iZA/6az7L7SJEBiP9Qq+7ElQJHHJU9jSyZA1sbUd0GeIUBVnIGXx5AiQAcHhW9BjCNAIqV7+utKIkC2+hARy0AjQNjbm9X3IyJAOKLt+ETDIkB2Yk4mwuEjQHMd8+XDTCJAgY3FHJ2UIkCY31C6ng0iQM3qXZoFMSFA5v5Qt38TJECsWYji2S0kQH9aqEsUHSJAy7uDM/LaIUBBnA1FhsshQG7H7W008SBA44lhL1tVIUDS56XsReUhQCVEH64ciCNAIKlj9cdIIEBbFjF1s/YgQPV8bliwQR9AwqzexjB3GUDBi3owuj0fQFDbqolRWiFANaEXtcHEHkAZUWa/mBgdQMxdtr8icxZAgEs0cB+sIEBQrwek/aMeQDP6hylLjRxAc9vnmuDUGkCYxpCoevocQEosN/l2GSBAmc8yuHcaI0DYDtHIo4QhQP7POGD15SJAC6ySlazXJUCf0dOFcCwmQJaFJ81tJiZAOW+pqYH0JUChVRJ7BR0nQEbz9/Pn6yVALvp2UOQRKEAD7x0Vkk0lQG7D22NmriRA//oq5aP7JUDWTUr/GwQoQJ6hhE48mipAUBv+Lc92KkA8yGKW+sYlQIMpKrZTmSRA0hNxXGjZIECpXT/tj/ggQNVGC0gaOCFAmt6CaBN/H0DfDkMSmTcgQM5xXEVFISJArC0YhZKHI0At/hjcPFcjQJ9Yl4i2wiRArFNEQqqeJEBcbosnDCwiQBBwngTgbyBA06fSGFleIEDVB2jg9JkfQMd3DgAO4SBAqskPLM8DIkDcNKRKKj0cQC4wQ70AfyBA5no4lVj/G0DSbBciG6ccQB+i5zoRAB9A2l8rTNyxIkAIOEbRrV0lQA6qHLW2jCJAp5sOMYu+IkCICokY7AQjQEL1XfdS1yBAXJjLRGsTIUD9d06oc0MlQAk3UrDXtiNAC0umeljHIEDuFzDm7hskQMhIte7BWiNAhO6ADbIuJkBrjvnA/FokQLRSYGLahCNAIhYeSMwNJ0AxG7u3GzApQENOgXtoxSlABzvIezgMKEBESopIiugnQOqDSATFSCZA8kfSuTZzJkAdwFIRf5snQACJ654j3yZAsF/YsHUyKEAFRbKMxggmQAyR0ELpqyZASW9nw6CJK0Cq2QqQ8B4vQOVwKeWwNC9Al9IN0XtMMUA0uDNBmq4yQB42+mxlsTJAe2GVwwwkMkBcCN3gf+8xQDS8XZwOMTJAjSXiddDwMUAOBHUfNv4xQKew1x6JfTNAusKnxq00NEAd2PKEr3U0QDhkwgU+UDRAgDtoYUExNEDn+k1SOjY0QDouFJgnNTJAf8qBb8HNMECHgZgHBgUyQOLJTDfJ3TJAPBrO8uvTM0ADNdKzRtYxQDI0KqMn+jBAhefN7Ni/MkCZPzGZ6HEyQDLNO1aNrjFAMDsEELoZMUCQ/wRtr+oyQEnE+xRs3jNAy/JYdKz+MUBdPbiSQeIyQPfUWfdqmzNAA5g4AUItM0BZo5U5fX4zQMehz4vPaDNAMPmUoqocM0B70haP7F0yQPGwmRowojJAPaLBCV1/MkDI0qUQZz8yQAOUUL2JRi9AmPJqA7MhMEAiK1R1VaMvQDwAIreygzBAYlhPEYMRMkDw/UHiod4yQE1hlbUJaTNAzS6Q2JfEM0DHjNOImZI0QJMZ3KOSKjRAju+yuEnFM0BNqhY/ouszQEXYj59EujJANtcTaEj7M0CKU69a+v40QKT/FU0IITRA3h49rMcRNkBnUAG0B1wzQJPBYo6FpzJA62aoVnWbMUBmLf5LW04yQKX/yxxP9DFAsucPGyFoMkCjb/slgqczQLIkDcp4hjRA5jg5eDzHM0AZLf24ICI0QCh0tHo0JzRATlDlI7FoNECDx20CKMU1QPjXqiOdlDZA2ug9IED6NkDbgIRZyZQ3QMp1INK47zdApbmsomwpNkDRMFVSjfE3QGS6zW4BXzdAN08AURW4N0AvF7jNhC82QBf0j1pEBjdAMZr/9ITLNkD67ewTHd83QB2rF9XlAzdAfNnVy1UfOED2TETRDls4QCtGERgEvjdAJIjv6zrONUBYpB4oHJA1QPo5RkccCDVAM4VzNHiANUBsllaRfIo1QIpFwZ35izRAo6Y4NrMQNUAm5cauSX82QHDWpz4DCzZAi6sPymI+N0C1qtifiMQ2QO92+5MgnjZARXlhYhh9N0CXLm5xZhU5QKixrV4RfzhAro+WpeiVOEC1uvrA0Cs5QO/c1rIwKTpAnkiJ8lKHOUDwbxqKY3s5QC5HiP2mojdAgyxAYGRBNkBSUFNCF3U1QAV9167jxzRAD3Wdrb16NUDrQfXqeuQ1QDItT9FMDDVA+IEmig7BNECfh+WK5zQzQD2n/HTZ/zNAYQT010nZNEB6efrgvNU0QEP8I5ok7zNA0uKHDffRM0DGcZTmczEzQB3yePXulzNAxQdGIj61MkAUQv9rqiwzQIBetemAoDFAu/Adj/8KMUCvz2eZNMEwQBl6P2SwMDBAe28ZUCpvMEAouEJsbW8yQFGEwcEHQTFAqn0a7bgUL0AJ+tHunVEwQOFC2oQ99TFAFd9xyBMWMUDXU+DcP6oyQCMPwF8bbjNAHeY3Zn7+MkDtgcCn0j8zQECpedSSGDJA2/ljIwSrMkDioGW9X88yQNLSgXBFIjNAEsA+xwqIMkBtSPd+PQwzQMjzzonYgTNAl9qMjXzEMkBo1JB9f/EyQOGed0H9LzNASI+dGigvMkDsjRLQpicyQFICZNNl7TJAU2tdw1FKMkCpzfTVPvAyQCCgaGebyjRAL8DwGKhONUCXqSaZ1qg1QDBkHMvItzRAmeI0x4VWNEBidaLh940zQGanTQLmPzRAinOshDgLM0BtFJakxCcyQDcxszdnTDBA0RKkNI4YL0CKN9F+TzgwQDLmp6UmLTBAflLT+3tnMUBoXmnJUZ4xQIemLDVbujBAi/+q2YqnMEABY+0ZdfIwQMeznWHpJzFA9BG3S0QAMkD9/ty46EYzQFqBIs8OEzNAhn8fhB2+MkAz41u6q2UyQPh4vNbsyzFA+Xpxgp7ML0BN3I/7/hUvQKW4CNz8bjFAB4A54URDMUDfWPJ8EKQwQBHkykPNrTJALCWgUsM0MkAOBgpg+mExQKwK6FIpZi5AltoI479OK0DLOJu3T+stQLGtUfl3Oy9AA6oJW5LHK0CP8XqGttMrQDQ/taKClytAd0EQC3onK0AmYkYZTekoQMhKsFOe9SpAF6DknP5pK0BurP67CSksQCgzYB3DkyhARWNxWtrCJ0CBKHwQE3smQN8VRbUW9yZAmNeGFYkLJkDIc8fd+lAnQIifhpBzpihA2n4PpVuyJ0BQD3Jj5egpQAOHmi36ryhAwE+p9X9IKUBEiwkAiHgpQBC3dA5y3iZA5DAwzwiyJ0Bw0gNPPnwoQAPkHBXS3CVAh9QGhLlAJkCC4Z/5aK0kQBeVEHNhxR5Achd6Mf7jFkB0n+GDZVAVQBY46zBi8hFA4YbqPpgmEkCqnUvBb7IPQLQfWBD25RhAyzWFsYHyE0BSltRfx3AQQPkbMDBmxxBA/ThuCmw/GkC/tbhnqHUeQNApIJnTER1ASsAK7SOaGEC1dxpv4hwWQKhjrVWfKxRAWt7wZAD7FEAYUgUJzPEWQPA2Matq/BlAzOmvQkxYHEAE/jQP1aYcQEgNOS0hahxAmvWd8PCYGkC7hwR5hQIYQKLcL04g2xdAZQ6TixiiG0AJR7w8B/AZQJer7feS5hFA3tlBo16EEUC1obNKEgwUQIphd+rjhxJAbglFPnldF0Cv/bIHn1QRQL9MKH8PoxNADRkBb43IFECqQzAk5gUPQE2orkXsjw5AzFA/gEg5+D/1xKr5L0IBQCQCEYGspQNAXtbrADXvBkAVAUyhbDcGQIV+yAOZsQ1AKduwWf2e/j/Mc0FUsRYEQD7+E7ui8QJAIc4sxBUG9D+6hLTTbr3uP49xMpOp1Ow/JL49D/uH6j/28rF4FY/gv5Jl9fU2Wve/0+g5C+S387+z4FKbJjH0v+CY2I6fS6Q/hb058PGT4z8TQPJRoaT0PxV51R3++AJAYVoypdViAkABiiaKE0QGQJQBJ5fzDwNASrn1TKDqAkB2vfjTz4P0P5cw+ECTvOo/pSpOlNTD7r9d0T0C90n1v6CEPRwlb8S/UdysivQz/D9qqarmg/IGQArdZ53wDxFAPXClKLYBGUB9wcxJKtkTQFlerjW+OhNAx/UCwvjfFEAYdLljQqcRQMxD/lYRGwlAZ1dZxS/TDUAGjwPn3yEOQL6tEnbv6A9A0BPGxciOFkBlKSoAcE8aQNxomUbXvx1AFtMaUCgNGkBejHv8Lc8ZQJMLruMjNyJAZON0fCDwG0BePuMVlgkbQBMYuZ3NORJAbMLZXuyHDUAZBNUMgVoMQM7H4r6NTQxAlQVXf9nxDEC0Q5oZNyERQKDdl2fqjf8/2uLKAql5CUDK2cl+zpgPQLwUD5K46wBABv9xH3ZGAkA4iYGT2N30P+hjqHNR6PI/BNRFM0k/EEC+NUp4r44OQDqfxsifVBFAE+U4dHYOEEDL+jPG49YVQENlnAlKAhhAcDmEkorbHUAKMeorV6kcQEAFBq8D0xlAxNdvnlupH0Bfu/EnNFAdQH2aOReNXh1ADuOlV/WgIEAUoM5bx6QhQI1c83HNSCNAph+CyrhhI0DHZmbQBsUjQFOTAieL2iVAZlhAiEG+J0BZJzX2lxYmQFjCEJUtQChAvIIrGZmWKEDbj02FzPooQKMNQyQ6NCtAsn2vYAbJKECZhiA1smAmQMdnd5HN/SZA7qRdIa/TJEDZtf1kkr0eQOQZlj8IfhpAUIoHlJ7TH0DYXyzSCLAeQO73PTYfihlAGhojK5spGECn8Sar25gZQN6CDe/ymxdAZOPLOK7iEUD/Bke1rO4SQEZz3SLj7RNAYuiFTgjgFkDP3Qg3tZ8eQNPQ/1DR4B5AlixOx8aTFkCTiHo39ssVQDe3QDrq3BBApmf59xE3DED15lnK12EUQEd2pGx//BFANOGqfJT3EUCYzwH4CikTQHbO0yKkExJAS/qOb6jHDUBeDdEiV18RQIJcWm4cvBFAnhe2d73bEUCrbpEj3mYNQAJamj03+BFA0wtmbkU2E0BFKFTvLiAMQDJGDhc/DRJAawTE4I7UEEDqXRwkubcQQJvzXsYUIhRAYQ6IBKFfGkBEgvx2NmYcQGL/SSv+eBhAUV992saEF0DcaLKqkwARQB1Kpm32vBlAjv6oqu5KIEDrn9q93jcgQI/S1mae/SFACxLhk1kMIUAaXVncOnIgQFvoZ/QD0yJAAMoPFo6WI0AXP39xGQkiQH0vzJjE+yJAFF/NvOKLIkCOg0hbfzIhQJot/SimWBlAxHxA+3kAGUDTejrbawwXQHOxDfJouRZAuziMR4kKE0Ajwcqj6PIJQAmhVuM0OgxAx7FRSmzQEkDVr9zH15EXQMN4JctMeBhAsiseamFkFUASeGbU+24XQH/nZ2qrUBNA4W9f9o86EUCZX6y9q/MRQPl8ev+TfARAWQZwmBz5AUAsWdnXIRAGQNG+4IIe2QNAOBk6Y7o2D0DJ9zKxqBcRQM5I9W7xyAxAUWM1QonLDEDEMqn/OJDoP9BhDyK/Tea/1G3RrP011j9wGqBe07/kPxrnSB6JItG/9uW2W0xh5D+k2Drgm1bDv/KUKwGa5dy/duXXnaXc9792isP50LX+v2pWaiPL4fO/Ln7UpY2BBsBaSYbZhwcNwMoK01n9ywXAM6IeCrTXBMDrqQ5CSl8OwCpGs3SwPArAPiAUSYrWA8Bs92uB6K4OwNIxtvrYsADAXK39NScf+78Ge5AsVsz+v+vGAP6hmPy/DEa0u3CM5L/mkOolKbbqv8xC9U5SF/K/HLDoD5Y41D9QJpe36hyuPwrLlDvSHPE/+vpiEnKd9z+whO/v2qYAQOUc0bsCVgVAFiJw59bGCEArEwgNnXQNQJBkk+URAhRAMPRRGH4NEkDsOwaVbFUYQIAmRWRmuxJA+bo/qYlyD0AGwkjQhw8VQKDB2RpdjhZA4/G3F7sZFEB+75AiML4dQPksqQb7nSFA9zh4gxLrH0D4b6LeqvkbQKqC4jb4JRpAekYClq7GGUD/mpHuIqogQAg03KjpbSRAyO0Q7aOyJ0BQHDirWiApQB2eTG2wDiZAHNyxT3GrJEBedouPPzglQHtydPwPISRAa5OG2q+PJ0A3q9C2GxYpQHPjzpN4PyRAOKleRLTVJUB1qT+8gHEiQPCpx/7HnyFAQDH5kDu3GkDFgha2imoaQK1n4qi0iBZAPrxH2u25FEDqRgh6zVEUQHxCeyO3PxhAxLGzlSrBFEAN3HeLID0VQMctoBGhqw9Ay0LTvUnnCkDaxCU3ylcBQMGnpTy4qwJA/T4NqmAnCkArHrzJ6sICQCKxALnk5+Y/yF7r8PNx8D+upNmVkG/2P6+DGfeI3/k/TM87L9Eo8T+ORKoMhQDwPwivlMZPude/IICRJPv23z84XOxahFvBvwAm4DGuwpW/RwEMbNbqxz/dxV7nL3Pgv/ikGPAv1bk/Swqkmzar77/ApiuMCtnwv24zJundkADAVnPemJg9FMCiotR1uYATwJAfvvLEhBrACf1g1TijGsDXy2BeFh8cwItF2BMyzSHA+sB+V/CWJMBX4tnrv8clwEDidQHIkyXAyUKfqYl8JcD1r2q5bNAlwN2rmqn+XyfAB00r2Y3mJsDVTcwoAHonwD8bm4qfnSjAawgS+T+zKMCfRDGdrjInwDje+z+foSPADzLq/6ySIsCoDXu3MoYewFo+WzfhoR7ArdXUyll/G8BLcze9msIZwHwWrXRhOBvA3Ou1KbobHcAlMoKm37sUwLfVRmAX4hXAfDVDEsAYF8AfMdjfESkSwHkD1TKbDAvABIoVe3tLEcASSzTMj18HwBfQSmO4cwTAOAq9bVFZA8Aj8VZGLEH6vyAJuADs4PC/eAkUNkDm07/G3tJT92kAwByrn2ObGgXAVC3G5YX+DMAh28TlhnwQwLwQPs9SnAbAqIlJIkXXBsDZ8GXKR3ECwBORDrSTJAbAEmcbhB1u/L9IF0UnVwvWvxU3lojgs/q/vg7h6UJI8b+YXhb0JCbiv3knyvE+7uq/dtTLkS9D4L/ONcg1b+DnP3bMoQ+VovY/s3jqq1OWCUBprBbcjWsKQABVZ8osXP0/akDEQ4dnCEAAZEZ57W0RQBItILwITwhA52nxwK0NEUBFydCSOyQTQLzGym9K8QxAH6FOFFpfEED4ptF2+/wRQNb6oPolyQtAJM/p62+u/j+Ul02OFsD6P542nQAcqv4/pMykeqHDCkDgbnrYM/EAQJahQZeDPQNA4ZaT9Ztd/T/hASUw0ND8P2Fb8fO1QP4/QIwHbhheB0DwZw1cQCoQQLxTYuXG3QxA+vW/UTTgA0ASrSVyiWP7P90wIUk9vgJAtF1sLwiMD0D+e+HVPxINQDqI2j74cQhA5Yf6WjkXBkCkse7tV50EQG1WtyNp/PY/iTrT2uTE8z+WaSRJkZwRQCbPlz7h1/Q/3wuziPeGBUBQPT+j0jgBQJQbk+0zVBBAcFO0K/rZEUChqrwBl0sUQCOajOoYOhpAs1BoM1ZwHkDlo7aROKYhQFpXRQue4iJASV+nbnd/IkDie4jLthIeQEq3D9vDVyBAXf1+Mp0TIUCn+VxU6ngfQEF1RVXivhlAFiiUzMbKEUAng9TKRu0SQDofEVq6ChxA3dMP8rBvGkBtwgAu4yMcQBGyDlaknBtAjXp2Jp83HkAGitky/uglQAcEqeDtDCZA6n9wvL8sIUAexBm+Nq8jQLDZm7xbUSdAZxc008DnI0D3WumiTBkkQJXwBnRANiRAOmgdF10QJECEYwznbhclQM9PlQRXbCVAdf+F2klrKECa//WFdmEnQF5uabx/EipAdHZJBXeJKUBqfunnx0IlQPI2q1RB2CVAPQtCDUxmKEBqh2qO7b4mQDIe2UU9TChA0m/OUUNUKkCQ+1LYbx4pQAcBW7CPSClAwCqJOmm5KUCh7fYuG/wqQEl26THycilA3ofZYystLUB0av18+DUtQO4cN5tFDDBANmPcBMMNLkCOOg3mso8sQNsTBxRF4SxA8CjgnQ1vLkCXAx7H3qsuQFqStp2lpC9ARQAjiz5ML0AIJTIre9QvQIXDjKctUTBAz7e60494MEA9YpeZl+0xQMmf35UYzjBAxX4jANwUMUBpU8R0QRYxQL7HnLD9zDFASZfx+Nf2MEAXWFLLDU4xQHIycpkxKTJAmpvEEkqhMUBxi2eEcooxQF0B8I0ErDJA2B75zbtTMUBrKX5J3j0xQKFX52CTdTFAkSVWSqTrMUA9Wk+L+OExQGLT8C/lUzNAxy0ny4jwMkBKFPsIM90xQPd8Q++15TFAdacQfU/gMUCktOC8czowQJ2fp2i9djBAuknlsjCRMECVI/+6AtUtQBdpQadVvi1AFNh3T3gAL0CJPtcYEKwuQJ1LKcZYSi5AMx53xY8jL0AJXfOcVJkvQJL2uW9KeTBAZ0FSKpt/L0A8S7c9H7QxQOacKrxTozJAN4fe2ko7MkA8hCNJcuAxQCSeC2PL9jFAI0lYeFrGMUDqnEdHWYcyQEzJ90/bJTJAZxSxDAV/MUAOu4ek5KwyQIGPdQTkKzNAVNiyzRaaMkB6lr8UL5IyQAqsx2xuqzNAVHpqL5NWMUA3ioN5pYUxQB4znkdtajJArNaxkREFMkBeenjdUPwyQBikSd5oXTRAyuwYcGm4MkAsO1e83tIxQEQSymQANDFAmgyPn8cUMED3AyCm4aouQFF5pORegTBAVCnD22GJL0CmuM+hsagwQORK9wk3uDBAIOkZq0VmMEB7Cpy9esswQIsUZ53rCjJAkV2XzVDaMUDUMwTXH4owQMQVG+98jzFApUTbxuU3MUAohoJDmPcvQDPSdnyzUzBA7OeJaXJILUAgOMn1UFsuQNLGksPL/C9AyyCoNQjTL0AwqgWW+k0uQHDVW/36Ly9ABQr46WNxL0D6Wf1vX6kvQMlOv70c1TBAutlxsPEzMkBHa11zRMsxQF8G4VZrszFAFdCZ7+hiMkD2EztpyeowQDYmaclPKDJAsks0yk/oMkCbVll3sP0xQAmhgVMlgTJAJyubs3ZXMkDb3/IdrIAxQF493fd4rjBApMsKe+eVLkA3aBqG9hAtQPDzb8wBlytAtJ0Fu5obLECur7ZjfXMtQL/l2B1+NCtAUIFUsnP0LUAxxqaERwgtQKQst1GmLStAyDinBHvQKUAzQRmj90IpQIj5nzkQrChAmCQkwiiAKUCRaFsRpAkpQOFXIYFi3ilAeOiAzhpUK0DjzjA5yNkpQOYM24uoGCxAQ0qdhPMhLECfg7oRJfUqQMRyamiDXClA4tnamqfcKUDJLpLbwzYnQKlv7qgkwilASIxGpL45J0A/7YHEa1spQBLIJ37NvCpAmg+k0IXzKkA/md+liecpQC86aYs7aSlA53RomBaXKED44CebutYpQISOhb10KylAlBmld6JWJkCtEyUXma4mQPIu/llGzCNA8YvBLsRUIkAAiievq7IiQEUCskMOhSRAxrmARlk1JUAQPf00T8IkQJy4NXUh7SRAM2X1LCsSJkBQRFlEEFYoQN6kI4tAgiZAIl9wj6uHJEC28BR3Y6wnQHu5ZzJ7gSpABuc2yuuSJ0DCm1Q5cAMnQCjQltF1MCVA3CtliUUCJEDYBixdA5IgQDihd3j5wiBAfFawGxN4IkDNvm2oUN4hQLJqXI4wqCNAUk+xpTzeI0Dffc490oYiQOn4YPxNOCNAq7DrsDFxJEDPWURd/lkjQA3wUF+IQSFAyJYjEQHvI0CbxtpoEyYjQN7tn98MMSVAi0l3u5kNJECl6orfF1kkQOgBMQNH2SFAMa38k3VMHkAewDF5micjQFYaQ/fxXCRAunc/Cmv2IkBTyRDHCJIlQHMWjYYI0iRAB3kOW9yLI0AozDf5ATEjQPQY+1WFZSFAGjEN7vy+I0CzRb7DIGclQOB70XmfeSNAwAQiezeTIkA7QE3tv9MfQLDGqstEwh5AmQvXFjh9I0DRgMHnCGIgQHX+MF4opx5AeqMrnKGlHkBJFHB4fJwfQJFZUBFIzSFAVhZJNZk1I0A1bwvhCakiQFSwsT02Yx9AWFsZ2+V9G0DrKi3CzfMbQGiYmnPfEhpAbmMGqx/mGEB5a6tbrzMWQKBTV0jKnhFABFElvtqLDkCQcA7RTDcUQEqiNCsvKQlAaB5z62/pA0AVNieOQzwJQGsQTlGBjxVAtsebAU14C0Dm2or1ciYLQJ5Og7dHFhBADWXndQ7zD0CaDhEBiwcSQGFByGuf/gtAABNilubRC0BY/9NwPbAGQMQ0c15jBQdA2UffsS+HD0AM1SZLikQLQED1uiK8+vg/9437hRxY+j/PQNuxlTz+P7zkMPbniAFAKtuwvSnpAEDg6CgFGTABQLKKoEvfrvg/v4Vg7O7l9T/onzvY1CnuPwx1hyJnDu8/edqZzBbL5j9osYBwHyLHv+QKPwADrOY/1Mocpiv18b+2u2j7R+X1v4lJLeW+3O6/xBpZI8Eu278LGeKkibrYvxQV/p5gT78/Gk8TG1bxxL9kwuEJQPbrP74Lna4NQt0/Dqa7h3Vs9b94LlPrshb2v61YYq9vkfq/5h7Jr33O+r/CGpWZV8T5v26Jt2y79wfAx926AVFBB8A++4Sy5en+vxS2D8Vi/PS/WEQT5ZJI9L8/30QbSw/jv6icUWL6y+m/YPsdlbIknj/OF5dhfizuPxybURXBd+U/DC/tUe5w5L+cBaEcqfDDP5i9pvRMcs8/Gen+IIpc5L9deTY3rADjvyvCDD/JLQjAjHnEo7LjCsAhdgG0nhYOwCQAY2e/5hDA7oTKaZ/aFMCH2Nw28x8QwCU+ti1jGAvA9Yq9UJoUAMBM47vKwioDwPzYsIHZSd+/BhrqhDf98j9snTLq+dcEQMz4nqz/agBAstVHx02o+D++Bs53XRH5P8jEWn4o5gZAXczs01CxB0A+87m3X3EGQOKeS+NJ2whA57fASJGlBkDkwT56rS4LQPcz84Lo/RBA1xZEJ3hiFUBCHbA7KwIWQHbNzDw45xVA3CtlzUMpF0BCNlaqQMUcQGKtbzbJnx5AVIZfs4BvIUCE9gNh56ohQBDMzJUnMyBAMBbxVaGvHkCmyuMh5LcbQH+Be5p0IxxAu2qFpHyXHUCSJ52V5E8aQGbvsVVAaB1AEeAue5ZGH0CxBAsxXuAgQNWN73jTWCNAlrGy/xC1JECT8hL56WYhQH5IDiKy4iBAzpk922I/GkA+MyTKM3kXQIrmYx85CBdA6pmJkiCxE0B4zAJYgcYSQFTF287lLhVA3D7otz74EkA4yjHQ60sSQHPq5DsiFAtAVfppY37eD0A1fLNUUSAPQPwxqiHxNxRAIXlQVUvsE0Bu0dPbXLARQJPKIokrXA1A2AxJZVWPAUBGyeSC35X0PwQ7N7R+rfU/9oSyHazvAUBCpHo6TqkPQJpmw/gEQw1AysTQAW55DEBsX4GJqW0YQLQc+0sDERRA7kY3F1z5EUDvZlpvdzYLQH7+pRwn7g1AKK9Z7UifAUA7N8vUTZ8CQBAJav+xrdQ/rIhKAc4Hx78qhzdU03Pjv63Pw15Mzdm/3ZC7nfKC1j/jecMK5JPwP/S7TkSwTO0/2J+/0W7W9L8Gju1sAy78v5kBdRM4DALAZPZDXf0k57/RLtpBWBr/v1oONa63nQLAxpmx2OCa+L8ztEPH8K33v5I1aHCQhPW/rPsZf44sBMCnTNxWvRsHwE3biU5tzQnAwlXlzLK+AsD4byminN0EwKxf0R/wzxDA4AjRBywgAcBe5yEFuMMPwFnKSCR89hXA0RtBK7Z0FMCQ4g926WQVwLjLaDirBhXABm7FduLZFMAtj7fPG1UUwFbe6OIDUhbARNZUgDhiEsCC2XCIVx4VwMCMZ4W2wRrAtlkTAYkZIMBCGQd20sIbwNUNJ0/pXRvAqpq7OFJcG8Dvmz+pbwkdwB3EiXWHoxnAZ/8IQR/6HMCpiZNcE78YwBFaIRzreRXARZ57Ky9UGMBhVU7ExskUwIWlDnue3RjA/ma76UvlHMAsE+eJEvEZwMZiF26tERfA8bOE/57PGcCMmr69WHEbwIxE0eQVqBfA4JFWKoVgE8DIqztCPXQTwH7ueOmtpRnAnaAxMN1KF8BAJEbd4WQUwGQ8MtMF0RjAdZGSuPpWF8AexJVv1mogwPE4SSraWCLAxZap8vVpIMBzUUJp0RkiwLcNbotTJiHA+AC1prTuIMBYK+Ol8iEiwJD0M4ws1iLAcW6x7q1FI8DM7XXZuccjwLuqikF5zCHAuq8E3UAiJMAq2YKQ6KckwF2IBgC/byPAnaYzz8VXJMA0XplfIsclwK17q035TibAu6/7hqYXJ8D58uB+Tw4lwPr1DBLkvybANFYrr5OeKcCk2ooo9yInwMoS9DP19CXAWOkZP74HJ8C5FD5HtQ0mwBOwtd/JsyPAwhljoUwCJMDa3H0JvpYkwLhVE0U6tCjALEb74gSKJcBvxwEh0qEjwGiJ4y2HSiTA0rjBgpnYJMBM521b3esjwKpdvA06nCTAVLcKelHkJcAB+b6WxFYmwFDxRImpzyPAOb2o0XprJsDTBTKo8eAkwKlMFOiRaSXAaCkHZQlRJsAtTg7PG4AlwGOXqMX35CPAqCbMdl0WJ8Af/FKLIOImwCMWp7iltiTAAJsVW/ZBJMAJsRmrDPUlwNZrdO7LMyXAiPCBRekzIcA0Y0uLulshwDcd15M/eyTApQI9HK4KIsB2c9zL1EEZwC8Zkja1ZBPA0AlkRCXPC8C4SPU/BysDwE+beHL7rPu/T6N5/fip/r9IYOe5rLP5vzceEFWH5gvA70uOfzssE8Agux76gB4bwHK6/+V9ah/AZDZWImGhHsDepCyVmxMewK0ftqKjPBvAQjWdKNvEIMB4K2az0FkdwESSjoRlQCPACpKoeJXaHcBYfgWqywUYwAEJVd823xLAgJ9PIGhyEcBuOUKPEn8XwOyI7Ifr/BbACM2wAxGvEsCQJSWZU0EXwMuFxFU3uhnAK+T+YACeFcAzs4RPz0oNwKc20ZT0mQ/Adlhuu4OfDsAcGkAb/TzhvwgVe3rIdbm/pIINH6UQyD8UpSeTy6HxP9A5unsSfwdAwgKT4pw5/j+ysO/E66UGQIIUAuo39hBAJd4z1PXaEkCYS5rI+bYNQEYFOnFnLgNA3lnzQJw86j8G6Fu03In6P8SzH+0aUwFAGcZIebf6+T8iTLTAII/hv5i6bH5gCfA/PFAoYBwDwj9HtqCeqoDSPx0HayzU0tu/ChSLS/xl6r8OKNi+ObPnP9AEq50wEfU/tACZGo4q/z9OzxJs5+vjP1KKsF2arck/oKBUWMH0jL/yBMpz7dL+v6qpEZOjqQDAZLjYsy1p9L8hdOt2dQ/mv0QLONcLzc6/UK/W2tgz+b8hesi6s8IAwAimS3K9VgHAIDankjhlC8AZVmIIvpYOwNyUlg+QBRnA8MiPa34cFMCoPwwZMbkSwBGDXyJYyhPAreCfwdLuFMBdJjPG8S8TwHDTFpkNmAjAR54itKMyCsBpdEmEazMNwMv+DK+AVwvAr+cClNhQD8CzwsGwlNcHwKD3yS8F6w7AtYmFWx5YFcCjQGfngAMYwEyaFvpX9RDAJA+dhTWfDcD9qypmQFQSwKqOveTZFRDAHPZIe56qEMBb/97slhITwJRsIQpEsA/AE6dkSy0YFMCo4F4up6MWwL4sHtDwFhDAfGF7Mi7e/r9HmmQNSsQBwP3pmVfp5AfASz/++OP8+r9luhpqZCABwPSBpKtc+gjA5DGEVaSFD8CQPciWM1ENwJ9GWDezwxDA52ZeofD9BsBK3Jrbj1QKwNS7CHhUevy/jJ7bkw9b7b/++aV71qoGwBjjqUaZYOq/iqasip0W7T+eSq2AfC/bP2WVMr3qku+/KD6lM47Z+r/2+v30skTuvy8InSJfaPI/0zVUoWNHB0BfrgI+YV4SQJY69R7JrAlA2UypGgztC0Dk7EJa8ZUAQA8zNYK2lgFAwh/yb626DUDXzS4X+kALQCppAPYqew5AJYGkSKV9FkBrjyNMiecVQJptx5YB8RFAX3/rz2OSEEBSIC9IAzIIQJU+x79GEhBAEna/3s5QEkDvi5NF0hwJQDmou3EDlw9ArGjLxhV5DUAKbCaRaGIGQFqRMiz5HPw/Pwipukd7+D/XQKckyyX2PzLgt+th9/Q/XQC4qwcDBEDO8h3c9akCQGrMHVhvfvg/zMGCUkUu5D/UdD26v/Pbv2oSZo4f3+C/Tq9CFcasyr/kq9bODYz0v1+i5qvfrve/nVef7I2kBMB40RvvC84CwOh9ddHnX/y/Z4tmUTkJDMB7fy4c5yEOwFhgbA7ZfgvAEzbf4aWjD8D9f8yAg2QKwMIof8N6HgTA1ge0nHk3/r9QHv4uMoACwHf1TRneYvu/iclXjEsd9D+ibVtorivzP6jryZUqVvg/kqdGYu4lBUAm4TMt1UEIQJ/0/wzpyfs/ocn2qAiWAECSz+VXTGjtPzgXDrEEedq/QZ3FQdaoyr/k0txnGRnUP1Iq4uREpgVAijYsCkHp+T9hL9aZYi/zPxSKpiNf1P4/bvc8humwAkAuwX78kIcKQBoC82AZQf4/jwDjmPmMDUCU/SOZVmwTQJlfEb4j5xRAJeZNXGIGFUDFxp5QP2QUQPL3pcO4kRVAoPmts0MLE0AjDMbCeDsUQMAiCMFTZBNAG0plGVPbFkB/6vlLrVsgQOxkhqkAoiFABCP+vab2GUA4wBT7YjIWQAg+RK7r7hdAfTYKzqVkFEDGRJW204obQBurYRHkwxxA1ODFdTQHG0A+myeevQsbQEyx93MYLyJAE0vsrRhUIECl0jrLqwMhQB5weA944iBA99udCUYWI0AATTwfbQggQKBwaMg5sCFAVlcmK5d3IUAaRrRDMR4iQC7oi6k2MyBALK+OKbmHIUAlEAp5SMcgQPJfj48VvR1Aq3QQ9n+tIED2xmnYU7QYQAKDlbkYYxFAZhOui6+2C0A8ysZ9ZtUMQHVdoNnpcQ1Ay7BTNrRCE0AE5M7+X8IWQBNOLX5TKxZAnrOq/e+OE0Arl/Qzn8cVQKhZ4hn0VBRAtAGDjBmbGEDM7KHe6HsVQOcGFM+iLxJAig7nN6AtEkC8NHpR2/0QQIYYcOAjkxFA4K58ZesSC0Ap95I9qokBQDRjqfJuVdI/tYrnQGDD4z/0T85XjYjwP86nRqLFkvC/5E5gu/iR3L937MiWxNHZvx7JBHgpkfy/UMPeI3xqBMAXg8sPaSUBwFBOP2U70/W/Ghv6B4sF9r/TKCbedsrvv6XlR4uxCQDAKscN3VzuDMBGVHBfBZMLwB5W0gGFSfu/XbXifqpF9L8wJv7fePINwFi8R8KzLAXAmIr1netOBcDzAmZ7HVUEwGOBwTzRDg/AnNXRryROCMAqJVkUAEgGwL/f5ei+FQjAICzL0oskCcD8eBH6IzIFwDLhQutwkAPABh+a4v00CcBEyLsBQeEPwIkpJLPHAhHA9MR73JMQFMBKrfFBPVQOwGB0RfqICdA//hexjVD06b9aYZmbKmXkv9rXIcChBQLAuYuQj04DCsCpXYmMoLIJwGhhSi2rshbAz8A1+9rEFMBD1YgC2poSwHDbtDTNhxDARkVWF+ZqDcDdcAhL2P8SwOpOUEg9TRDA/BeDqU9MEsCbETgXhCUCwJblbyzbKPu/8WVLdh7C/r8PF6jhkdUAwHRGu9Yvsvm/dSV6py7E/b/Y4sfNkr7zv9OCkxR2LwDA9PIbIA7u3b9WsqdSxVXjP49R1/rXj+Y/9n18k4kW8D/Gtfcrrob0PyUTdvWTw/Y/HkNre7eK9D/tr6Inuv/gP3w0sTA4quU/v3LIVml71T+eZ8nGSwfjv1w2kOYXqvO/a40UTaQM7L+nDz1Bcx7uPyhKntm9hss/alQiKZKu3L9Q7xnPvIf1P+q9/Jon1PM/YJYySXoP67/V9nio8SXzv8Qd/eXJLgHAJ2JgUmraA8BWl9DKbZcKwEgJM721tBPAJJrbEnuQGMBbOjwMAbETwMYetUP+IBDAstwaegnQEcD/F/Ih/SYSwH28hL4JdA7Af9sG9/QyEsA0mqpUYCIbwFjE7cSg3xfAIcz3RXrIGMDMdPNrTPAZwKsznfRpdh7A4hE5vN9VIMC9iWayKoggwK9REKbcFyDA/ghaJ+LNGMCoR80+hqkawDsBuCQiQhfACghmIDAlHsCmsUxtrKQcwHNBtYtPZhvAXCUPgJLxG8BfLepKV8obwO9K2JbNNyHA0KhnwdR7G8Cs0/c6PHcXwJGKzhy8VBbA3QviKHwVF8Adoh9mFj0YwNj1E1cgWRXAG8WLXWP9FcAtXl40xbYdwL8Cr5lx9BvAyqimshNdGsCaHJiU00cTwD5CmygBTQ/AVJMS0rhu9b8aQJFFmIMCwIfqxNhv0APAG6VC2ZQXCcBU6RtbuF8OwErfbGOOLxjA5bM63hEXE8CjRUUlx84ZwMdC0CMQHBzAjlL3xXbRHMCxjHPOEPYUwDwjX4hkHhfAkgwhbmR8FcBGsG/D6CIUwMOMFJAxZg/A95Q+uVNlFMBQ+tn6vJYQwARUfG0JIwzAsw3KAqBV/79J5tkNHln8v3CnRqLUtbY/SBgM7SQR+j/4AbSIJn0HQBEfrY2czBRAGHEmGCiBE0BIM4F1D24TQJvsBz5itQ9Aoin++s+MEEC5+C7DJwUSQCDGFDSZYQVA+JhrJdQKBkB5SfI8HOAHQDAwMMeqLAtAFXtQlEH/DEAfSE3FxRsPQG/loEz+EwpAF7kRgYCwDkBUgTO7sx0QQGv8n4+bahFAqmQT/VdWBkBVFSgrCJMJQB9Ve4qwRglAU9/nWjRPBkBu+sCB6VsKQE6csNehtgBA3A35EWpKAkD40F43vn4CQPC0YlZ3dMu/wMNmFoAU9r/axxOqCzEBwL4cK5htVADAqOHaVHnWAcAeNOlX7G4GwNpWhTUNpPu/StvEdpdT8b++Sy5EXW73v2jadzV4Xew/rKBPafeg0L8SfR3/Ag/zv3RL788O7ADAFMPhxIu5+7/zncRMq0b5v4IVXlxjiPG/1Gi7Ee5D1T/wqKmTPIMEQJSdIkW5Jfg/vB//qUXeAkDY+I3xt6MCQDzQTxRLZek/w1ecNoX38z8sc/OjnzQIQESDHrs/VwhAhfnQFqJbCUBrAsf5Ti3+P9vH77BNT/0/krWvnPAfCUCYvLHFeRYGQFzUGgiqMA1ArvtMgZBMBUDgi4VoePIHQPL8CedZrQZALk3BLB3qEUBU9vi2GzMOQF8GhDQ8fBJAXERofGv+BEAmjHIaKnkOQNk56vR5dQhAbKjBbLfiAkBxXs832A8AQAOunzfhLAdAWgH9di5IDECWRcUprrgSQAqjppVQfRBAwcd5VqG2FkCyZPxJIzIVQPl0AtIfGBJANlTgCYbKEUBJ1tPyEjsTQC1ZDOy03BRA4q3mZCgiE0CD5zzqsXQNQD9s6QDnsAlAg3HnWAKoB0Bg44StOlgMQLfdKXtEdgdAVoGAU6chEUCdqj3NAiUSQOBw8Zd75gpAOGi6pnK4BUCoJWnVaz0DQMHvUcw9AQlA6QK0H+V6BkD2Ox+EDUMGQLOy6ZEqZwNAErg0A/yGAEAEY5k3MGwGQDMmvsmtKPc/rxJYKoPk8D+K0AiUzhfZPziu0GpRmAdAoN61RQDyDkD04gJg3XgYQMM5o+0GoRlAM28MTGEdE0DetZ2a2loWQPF6UI+gZhdAoYjjF/wRFUBylaBbK88SQEwV16C0tRFAmpLYCrHYDEAtgK275SQGQBnoNmcHAgJApqrv/K0gAkCP4+iGwWAGQNzj9LEixRRAnn4R8VmdFEAJWNIF2T8SQKItpooN1RJA1MHryV+QDECnmYmGBnkPQOUo5a9IqQ5A4E6EP+YNBUDUA0K+J3cOQBGg4Rq9DQNA65OoP0aJBEC8YnV2wcsHQBQ028Vm5xBAVCiz26sFE0AFZoTveGoSQOl/RLjsyRJATcOlvmIYGEDTjUWkrpAbQLCrc9CO2iJADD7QuDdBJEC9CXQ6oc4kQKYwvVzG1SdA36HEWs7LKUDcg6vT3XYmQN0IW0GAbChAGbI5pFbQKEBMij9GjBAuQFB1jjkQSC5At8OskICoLkCv6pCbimgtQJp3w5SlOCpATUbRuXOnKEBHfu45j+wmQO7DgO911ylAA2SN9l1XKUC+k/mygbApQLHmJNLAuSlAcvLbIIetJ0DYTu8Wn50kQGuWeVL6MiBAI1AkAvbEIUB1ZpojkSUiQLwKMFuKox9Ak64ZbTaFH0CCoUZH96YhQKRkXaU0lSNAU5EAD5kRJUAhUX225LchQIxgcoinySBAzINTiDzGIkCSEzxfOfkkQKq0yPxH3iNAXpG/Mh2VIUDOPM6XhQQgQLoPwEA7FxpAEG0jc70IHEBu9ZNjetQXQHY7f67DQxlAkpDbWJKdE0DRdFOU+i0ZQFiyhC9+lRdA4x57tL9VD0AcdC/e23EQQEbyNkR7VhNAFZlFobPAFUDbanASvnQYQKqAN0QuWRZAK+kkz4CVEEB/ASEOm2QRQNOZnSs6LhNAayrSZMYOE0AyrB3YYC0VQP08qjx51RJAdNj8DO0aF0BEjfWGvtkVQI+lp6GGsRBA4t89h5wWEEDDlH07uzYWQIiSB04MaRNAy9MkOgyoFUDUOw3ydpoWQCPyAXAlYBdA7xrFq2kaGUBw8IQQR9sVQMNBU4SdexJAKg9DfsbSEEAaYNhTeMwNQFgBHD8S2RNAim8DNhicBkCOMXC/l14QQO9XddS/SBFAjOfT7VOdFEDoVWfT0aEMQBv4HDrGrP0/FmazIN8PB0D4A2Nf5sTbP5p53VKvxPA/iWWT3MoL8T/w2myqUyPkP27dOJbaEOo/ib2/F3rs4z93segBke3lv5RFrBaIMcC/uBhRpsC11T9qZz+0fxXwP92E/Nyn0PE/cuEqPvzSBEAOrJxLh2gKQE7DLS71XQ1AjCD2ZUn+CkBEVSd7U1oJQAIc8iyDxAxAOI7AAORCBkDFpAyXldEJQNwvT1QUVv8/QHok7JEWEkA0vGshvmcQQDIr/WvB1AVAhxt2ilScCUC4ZDmSrwkPQHArvGpKIBVAwDZOGTx/F0AZoPvl3PEYQKSbvRg3OxZATS73y9+2FEAipr17eHIXQHOa9XQYBhtAsUfpsFDgIEDp1pmM/qUiQIp1T1yAaCJAVDOy7LGDIEB5DLuDSqohQEYOE3g5+R5ArC7H+KL5HUAiaqEqtiMcQEYCcfkQeRRAsIcbUO3lHkCE3tyk1awcQJo+ViTlmSJAnbeoEsr/JEDsmp3XaOslQAx4Hrq9oSNAOfMBrLXuJUDUokr04WImQN9xyar0CyhA28mkC2DrJkBHEiKSK+8oQCKnsKaq3CpALg2KoXHoKEDGGWLngZcrQKCAc5Xx7ilAaPh00goKKUDmNq+tJAQsQNrMX5r8rS5ANrYfaaggMEBjY5+1M3wwQLoqePuM8zFAYLlg0lrSMkABdmHc9h0yQPOtHkw05TBAYAL7bpGPLkBo3z0PfXAsQI8QfiIxuy1APFh0Ep1RMEBdHxkrnCgwQFYLjW3kbzFAP4sGe70oMkCoZGW/7bEyQJNXaCwcoDJArB6EWngDM0CS+xo1flc0QILtSvIL6zNAVfR2eBCJMkCIMg333H8zQCghdMBuGDRA5lUngE5UNUCj2jDRlhA1QNq982hxrzNAjSyLSN8bNUBA7Y9vifk1QIeINg3x1TNA29HqYcjENED/mIAW7GQ0QP5TJ1OfHzVAKvw7An3INkDOJ+c8sHM4QGH7MNgkRzZAWCWrXUIBNkCTs030Tgo0QLUTnAV+pzVAh150/DdJNkDcTHo43f43QISfMknS/TZApozHqAPlNkADVbslwak2QC2WKSpQQDZAEeyxHfhINkAnXxLn7tc0QDHXTAwoszNAbVMH0JZJNEAExPt99zwzQHADO2/HVDJA6AiORDA1MUDNyuFxklgxQKhGruMKwzBAjKB4xvaLMEApE0HxkBYvQORnxNy+lStAZvkffi5YK0CuJF6FR4MsQMF01/vM5CtAir6jgxw6K0DTvI+7xQMsQCsWBGHA7CpA8M00WNJsKUAfP+0uItItQI1av9c6NStA7/I/iberKEATK+pp1DolQF6c47WldSlADytkUToLK0B544orHcQrQMiMaXBrAyxAn2vH9oSrK0AaCnlSua0rQH1HROJg6CxAuQ5674CwLEBIRzI01XgrQI7nMryOZzBATyYN8a9iL0CY21dBJd4uQMzkTgpZji1Aqj3wHx0PMEAJfForha4wQLKnEa549CxA6B1r1swjLECIxACHGm0rQBmaKcq9nStA0RthxYEdKkD0P3yhp/kpQCGyjf606SZAEPzYmUgFKECONlw5uo8jQJg/YDU3xiFAw6NrMG+KGkBCRdcJrQIZQLTWjcIFxhpAWpfNmQPkHkDDyq793FEaQM5XWKm1vhVAINi/E1q+C0DUgnca10gLQDjvV8KLmRJAtqjTKjEXE0BWRII3yV4OQClvY+AiPxBApPLaZ2qaEEDsmwJFjZUJQMFUV8rn6Po/0ZwMcwMmA0DQs1sPokz7P3CWJgXq5QVAigF/28srDECS/zToN8oPQNEX3JYMQBBAjZLWvx9bEEA4HnA/XIkGQEUpC9wHCQ1AxjeqAt7TBUAaYMavgEb9Pzu159B1Lv0//XdEEOv0CEAIOaS9wuwGQDHFLLCa2Q5AcMbhfnJhDUAMZJHc/s0DQP65xNHnYwZAGC91q6RkC0CuvXktKGcIQIHfcBmGSApAxsxTi4mzBEDpemtd5OkGQCGK1hk41gBAp/TcfQec+j8sGXf5f6biPx7QI3yyOOe/9MNuvW8E2j+mCF3x+Nzvv75VPw3nxuw/iX4SJJ679L/0g7fSp6wGwEBcVAjmbwXANqm3tm44C8CDEBlNFDIHwBrmV3mEUv6/Cgrmhl1oB8CqgjITFs7zvyiq7JJGb+q/vA86tdwM2T9YTbNqJdLpP0fxH0vesANAAMeR2RUooz/9ZU3RzgHjvw4bFQudKPy/aOGevoVnEMDnRcWzV9IMwPGlqRkagxLAvY/BNqTDEMDGJEiBd60LwHtynuc8rQ/AbDjS67WfAsBM1McYYO7pv5TPCqmfys6/GKqgWEKKtD+1EJi1KHHav27qkBfRDOI/+F0ql13n6D9yocYxfF/mPwA4CVY9zqS/W3Ix+smw5z9sir2fXjnIPziqSnc8Mfo/EB9FFXxH0z+6ZvUzFAfmPzABWcHeH/o/QMbhvohQC0A5kfTeg+QIQJCytIUVsMK/sOUttiMC5r/8J5R3+Ln2v0zsX3OgVOQ/yNH66LBtAEDBZ0hs7LQAQJzu2/g/LdY/67eVzDDn5D9g3z4pP7P/PyDyW51c6/A/FF0bGKbE/j99yDGI9Rj6P+4Fc6EoDwJAsM0BA8t43T8E1PBItQOwP9lwEim+wNQ/h/ylkq5L5T8H+hiYvSABQDQVNrE0yAZAmCxDCGV2B0COeh5zLjwLQGiY8QBlYwVAoEGfMDsDB0AM8KLCn+UQQLailzebUwVAMJJfdAgmB0D5MQMPKacIQJlvUKZ+9RJAZNXwEFwOFUBu8Sv64YsUQIrpspS1+hpApezRLEMbGUCWxyIez80SQPVCKK80IRJAyz6054v4EkACGiwde0wQQOsuUz56JA1AiNJBRpTyAEAEL8SjZzkLQKc9wst4ugVA2nJG3KscBUA127FrGP8IQIx0k3+a+xZApOdHlwxpEUBQdgp/SUkNQFnBBG4IEQ1A8kBGNugQBEASRb862X0CQAD7jfwaELc/XqYDGdbyBcD58fBhZfr6v0//BQ3KigTAqJTOLsDkB8DaLyYWLo0KwMfOcDl81f+/KEciqM1Rzj/O1N+PU8zTv75v7gDe4tI/KCkgZmET4z934AeU29bUP8U6mZaHhde/MlsO2e/K5b8eD8v1Yv/6v3XmoOXPIPm/KarqzrVj+78GBaMgZ2Ptv3E4xaKKZui/6B67lfaX37/iTrt+/B3tvwBgpGAOvOs/0ZYoBnWa9T9cmfHqUnsOQJdKGMp5v/0/UG4qWnj0AUCCA2u5gQYMQHkNtwXfHw9AcPE6NvfU+D8zNw9t+w78PxvDZlWSbRBAe3uptIB5E0BY3lF56TMTQFDQwxPYqApArCfCtUpABUDwKm3d/5sDQJzP22hzAw9AxlFnkR+jEUDHkVnX/RgRQLqagTHR8A1A+9b66+IOEEA5UXCT/y4HQJhRikr/DP4/p2d6rNgIA0CIlB28gxYPQObuH7LfUgVAdPgBefR54T+oPQpa8kvzv4ohIz+FJwzA6jgIIAG+8L9ElTXkDGEFwJesWge0KRLAyDmlz7USD8BeaXFhrvoOwMTf+SmvRhrAVt6U4XpYG8AXVoai6HobwAvr29MLHh3ARoV7wjqWGMDahg/hz8wcwD6erWcgYhXA8hrq71yXFMAVhtBbfi8YwPRJcnQIFRvAhBIkoLkHFsAF+zcq8ywUwMHPVwoCOxPAePTSKhdUGsA7pZaeJ3wXwIHjL79kWBfApKZaFQDLFcDSTK3mu4UVwHL/eDNkHhTASDL8uvmdEsClmWIzkzQRwHT4xP3iywvAnn7QpkaVDsCzODVJIGsIwLQSy3pth/6/IOM9Ws/OAcAaoqKNmHkRwCsUh+TxYg7A9OmTrpyPD8C/4pCK+FEJwKKker6pBwXAUR1wzR8bC8AsIx5AJYYQwDmJD6u8KA3A0Ck6Y5n7EsBC8/CCw3kOwFDTfm7G3wzAdgzbB+Os9r9YwYoo+q3JvwgImYSYX/G/j4vzgnBP4L+3NSUwNtvvv/6JZWtPRfu/EPiifcrx/b/IhwMgzSXnvxSJiN0RsN6/XkNG2qyj+b9Iu6qvaQsCwMfA6hiCxw/AzwjEoN24FsDN43f5z1IXwBxgX2JmjRvACVbphiKxGsCS/ZpnOzcTwDoNg42KSBLAc1rUs6tGGsBR3zIeL5wawIQm0mysrxHAk9MQsKYUE8BSb7Y5L/AQwH7rnA1jBQTAGLd2Igd2+L+WHWN5Ayblv24B4dt1+v+/STK+Qhs/AMByu0HtCKIJwLDhxNpmowrASGoiIPbtEMDw54vYTkIKwHF2PUn6JwbAGnVrJnoPC8BrV11e4O4GwPDZRz2rOQHAhD/Z7x37BMDs5VEL2z4NwG+WWIOzEA/AQ3z31GEbCsA3enIukdYXwA7bmT6awB7Amogb9j8LHMAOYgp2Vz0WwG3cYPN5CxHAi+q7JpNrEcA0Ds7jaIYFwJ0Jdh9aeAfAaQinHdGeDcDF9Hgut6oTwIat4eWNphTAIpcA5prKD8BAMf5i+OAQwJhjUEpaAwvAmZkIYW/PCsAXL1WJBwz9vz8L+zgm4wbAlA5keypyDsAixXfIukURwIj5izIQaAvAxooPSlOPBsCjtGROZmIUwMbisKffDxXAK6C3yt9wDsCzg30KrA8SwIuAhbEJHBvAXhdyF33sGMDq4MI8N90hwFeqOzUhGyHAaLutI1HfIMDyLi6/wLIhwJZv1i8gWCHAj1apTPMnIsDC+d1xj/EkwFDpH9aSjCbAd++dEE6DKMB5W/UQ2XwmwD7VdIrEZiXAprNYPHZqJcDSPK0YLYQkwE+TK4AWeiLAzdN4X+pNJMD4W6wogBQkwM2W15HDpCLABbiEMxTNIsAh8kExDXsjwM7uUdS2oiTAEsNjE71hJMCRPrpIZmojwCex2pbYjiLABWU6vgSwIsDekOH6Hp4jwCv86tHvSh/AmulgMwS8GcAD545TYwwVwDu47a4rQBTAFGgI3EKXG8B72nxQO8EcwLz3zhKZlyLAnxKP12LmI8A8bgD7KcMhwC9fTXy4wCHAl41Jh1XxIsCMWM/IbnEiwGcGvh5UNybAUg7FjggNJsALCsespxskwDgIMoEtCibA2IyjsaT+J8BaAm8c/ZgowAinlOtiZCnADXj11/g+K8D7DqID6GopwNGFQ+HuUizA7ZngbqB/LcB0o3a2h+4rwApHP6xFgSzAUWUao2ipK8BrLuLKVmIrwKCw1o/TbSrA0HJwrbhUKcB16nUz0aEqwERc5aaXkyrAVJFTXS7uK8DoAZu95REtwDDnS+XCYS3AD9OSh/7/LMDOoSc0hg4rwDH7nxttoynAw1pMrk4GKMBAuHozZGsqwIaS21sM9CbAXIrnWTbgJsCO6/aSL54nwHBZEcBmwyjANk2hd7lQJsAm6P6JMQAmwHgtuNRnkiTASE3iOotZJMAFe2KCAIYiwNmpX+To1CPAyOylS8yRJ8A5P2oNMu8lwBNpfyl8ySTAKVfI5ubvJcCXwa9T/9AlwC1gh1H27yLAkIAG4AqgI8B+T2DTXKAkwAr4vlXFNiXA9EQhKAA2JcDec8bRx/MnwD0LFIfpjCfAgB5/c0GVHsAZysDFewUfwPemhnDijxjAGoqhX6OzHsCi+4IOfHsZwMEs+fnh0RjA852OrNpIGMCkXXKq/FEXwIod73H42RPA/NC1bPI7FcAm8P2DsCoawNNAFFMDXBXA6VB8GGtnFsDbZQ563u4ZwMrMina5WRvAguAxk9DaHsAVPuhkndAewD+sBivdmiHAuiHWhqIlHMCAp9lUSa0XwGvtQr0huRXArDUpukXfD8ALccBfCKYRwCrSAnGDPBLARJYg2y8GEcBI0FWP+8oWwCqcC5o9sBvAVCppu7RjG8CnFOioBJEewDfeUuX6NhvA+c3rqB8XGMAsbeBfbvsVwOnkuyKt0xfA6A1Yh7w8GcD3g3U5PwsUwEn0kYZ2SBPATHUWe7t9EMAUu4NRjXIEwCLaW/uazei/TVTheV2h4r+ScC8yJIjdPyJMzBkK2Ps/ddTWaRG87z9Q6dU8cDKjP3JLBkrWnOa/XkDHeime4r9McS8r9OvHvyjT2rXISfY/h9hnk4eu5D8UbFKbwo/EPwQUDMoOEum/ii7Xv8fTAMAjdPhsknb1vy2x+iVr2QbAQcHJBuJeBMDSe67YOx0GwAQD4379KPC/hOy/nSZ0xb8Of4eHjA7kv31XzRr8QvC/1BN6wfGj4D9y1s6t4wPgP6ApMehF3MY/MVNUb7sS/j9hgYZD16wGQOhu8b/eEQJAOh5KuJzeC0DFkbd5MQMSQIsHo5B5YRlArN7MwioUDkBQ+3SujfkEQD7iThBHpAdA2qlEd6OK+z9EbqJys37gv6oqT9TTA+e/JqW5V0xuz788CRlb/JYDQHW4HK4NhxFA3jtO6EKjDECdm8kAUi0RQHuNag0CcRNAJUv8aJr0FUDPaeg+VNUWQIqzTP7NHRFApAqs+0AdEUBBcCcWUFAVQJxvvPuSIxZAhB37HoaNE0CO2rk8rXQQQHBlnRzwdxBAn4G8ps66D0DhSYLlHsYOQLaOXDfaagdAmT9pUzzuCUBGRa4XjkwPQNabGkaLzQpAbwUA6z7oBEBDdyj7/k0LQMTOlt+h1xFAerXyQ40GDECbch6G4pkLQCl0K8jsUBBAsFKFl1cUD0Cj5oauRMsJQLShBJ0sFw9AH9KlXW6rC0DJTNU9Qr0RQI57uK0IPxJAG07ujO3kFkCC2XpVtXwRQI++9inB/A1Ak1uixJrtEEANJn8JctEPQMyj7GxTbw1Ar4dS/ry9EkBAvl0y31MaQD8zUhO4hiFA9k/G3WylJkDf8S67AKgnQJ5crzfERCpAaTmw1JV4KUDNueWR1ZQpQPR/N+q/MixAxrqYX6xBLkBUZ2H5hAYxQFW+bzBHfzBA1RRbHnf6LUDVhzgMJUsxQOSx6OkFfDJARlHHOKuRM0CRY3Q0O7EzQKM7omdXDDVAyOcExY3xNUBULotWJeE1QERdVT1i6TJAncRR5rMnMUBh7IQDwvQxQMftje35OzFAAt7P0w9lMkCAsV7mETMxQNvjswOxlDFA+l6BifOXNEDbXpvb44o0QCOESq3dHDVAwnItSRu2NEAWIW8Hvuk0QKtf/HCzPTVAZv5f4OaZM0CalFbr2v0yQAAZ/wjV5DJA7NVzyk8QMkCdoD0sXoMxQA+M9HlsVS9A0AwOWTY2LUDaGYEs8JMrQB/oYMXlxyxA74xpjHCvLEBjPPDo2hMtQJG4W2J1fytAVzLJN+/HKUB6C/91yQwrQEkD/d4FsydA/ox8YMi8J0CD1h7qv5QnQGx52CShGClANqYGZ2NmK0CUOScs2CMsQMcGY4oHeitAVr5AJumzK0DnO1iCJxUoQBLto4eg9ilAFYPHI8a0KUCwSl/8iSQmQKI57J/jCyJAi4d2hyW4JEBIdCDECfwkQEi2+OwdeCRAqoZLfC0GJECtsyUlVjslQKMjEzWUfSVAmaujwx9NJkBP+GM7GiAnQEpNWVzr8iRADmeJ0YdgJkDnIHAfFYwkQDydxzVD1R9A8vdGl+XtH0A6MLhWOJ0cQAUtoxl+UR1A4r47DsbsG0A86YpEC5IaQM7gbGnqJBZAH0KkAtSrEkAxrndHA7cRQDp/SPTCORVAMHCbHZkCFkBhxvXIUEQYQJAp4InZ2hhATFGpybwqG0AW6A3oRhEUQOMfd34vUBNAofWJ1aIZEkCdkdBS8+EUQJzxm8pPTxNAh1Oi2I0LEUCaO3p3vPEIQNTvz9CDpRVALBsVy1FcGEC3/mcCjWccQE8uWdB5BB5ABNWTsRtSHEAmKfgHzIsWQI95EhW0URBA36g1manYEUDajShqWNIPQGWKB8L5mhVAyjgpCUc+FEAVUsKmFzIPQC2fWT7FfRBAculB/IRHEkCAC8QLe1cMQMTslYvrdhdAHTf4ZnRREkBpRWzDrrkHQB80QyM70gpAqYctqIeIDUAOHAT+NyUQQB+CJ2qxhg5AUlzJrQwyBUAsuZtJfFAIQCzoUEaA3AxAKDbrQGNFFEDu9Z5xdlEcQIMz3ODENRhAvelJxPjoGUCMm/ZefmQUQPYwbLyY2hZAf5JXKJjlEkBDwhxfhtQVQJt1dG7PLBVA8/+8Ou7tFkBWxppRoPAaQPtdm2t9chlAMJw2x2PeG0AC08FYkQwdQLH+HaxBpiFA1CizhVxQIUDZnN0iOc4hQCgnLbzkDiNAHoXTESX7JEBNzJxa0dEmQCYkRySwLiVAVQpbksCUI0Dknxblav0iQOD898vyoSNAP2S1Lk5gIUBSDI2oFDEhQNhvD/zOOCFAsMSAebnmIkC0Vv7qdkIjQN0AP0msUSJAHtkRei5rHkAcdE9vPKYaQCTkRWjd0xpAOQLgwLp4GkCK5OJ83X4VQJ2fIj3uqxZARHpHEaX7FEAYmsTxlPgXQECObPow/xVA+0np35bJHEBQcSRFyycWQCErB8Dg+hxAmmzesO15IEAuaLUexycaQNqFpfj13xZAqtRFDzq0GkD5AJFTgjsdQDEDcCYeWiBAM+ADeSyMH0CNgQ7fPHogQOZK7CJgSSJAqlC+aNRtJkDUsboGzOopQD5ukoM+xSlAu5VkcLuMLUAOz2xG4dwtQDpyX66FMitAhEVdOjBZK0AHqrdwb7MrQGvH+CkmuipAaBvw+DL/LECfNiLylwcrQKJbJeEMKyxA5pjcEZGkKkBImgs8SC4qQHBA4EkvmihAJ2yUMyjAKEC9YDuDGxAoQPUAS+Fx5CdAWnauvL7zKEDWGQrIpS0qQHjO/A5okydAy/+OnUlsKEAfa3Uj0y8nQDyaG2t7QClAbJdAk3YgJUDjlaLs3PYlQBCz2c8bdiVAmWlS3XQWJUBY7nS5RTciQDHcXZJQIiBAsd2LQnS5G0AJw08GyQAaQHopG9aLDBNArMzm4HNzF0DRkC2ZMwkaQFOAv0h3ASBASTxMlD77HUCXdfccJO0hQFuR9tf2fSFAj5HVBCCIIkAFomeJP8QfQCxfbDnSEB9AfhQg51+OJEAwrhBIy+kjQMxYonlkcSJA+jn6gLNiHUCt9jPoABwlQOU4tWDqDCRAAgPt6yyUH0A0FIxioU8fQCQ/+EYIphlAUJbNAEURGEDe26Ug1AIXQBHPIqdz+hdAjHujw/5wF0BEllDSB0ESQHWy3pa8FRNAnPn4KR8KE0CAZAqCyJ0UQPDI5hmZuBZAtCcF6T58HEAsWzW3moAdQKTMgJdgkh9A2rk+Fl4bIkDnS0ApFBgfQIA7/UMvUiBA5Ld6Qx9+HECSmGtjScEdQHkvuOWzISFA2Qi63GTAH0B0woiRRMshQDDAnaof9CJAO9Ou/dUqJEAw42/blv4hQDN4OtmgwCBAhli4iLogHUCVV+lUrSwaQK6hZ431/yBA7HcND9CAIUBx/pvPgYUgQK4PYgkQ+B9AWP+GqlthGUAd0NQh+TsXQF/KwsfBeRtAuCe6YnmvFkBIH7xli7IZQAdILh0Izh5AK2Kc8k04IkDyiHVKsaIkQEfxY586yClAOuL3FsArK0BeoesoDEwpQOrGIK8GdSdAGDs5abL1JkAanaKOwIcjQCLIkNx2giNA6/Ul5clwJkDlv2O+VkQpQHjixwW5mSdAVc6Ug5rFJkBfIZ9CFqomQPiR9CtgtihANixKQl/AKEBdVW3FycYkQHX9LRn0lCRAQOmRC/R6JkCT5YI799ojQN+yr3zR+CJAuyO8ivVzIUCFyxPMhEkgQN/F8wOQASRAJlUBaaanJUAHLyYyjYkoQJz+N+ePwSVAY0qE9eEuJkAEJZiDusgmQHbGBSCVqiZAODdJ12kbJEBL3lhl9i0kQAjMX3KwGihAR0v1993VKUAN4vy9u6csQJI5lQnMyi9ApMEAo4ivMEC59I6U9fIsQNVtpxTTcitAuAWkLXReKECVZIMTt5cmQPxdLwHNPSZAj+KRpJHbJUBbiNooma4kQBY1CFWe/SRAeyQjzcWaJUCIVxdBCDIkQI+MSNOLgiVA2x2mTdGRJEBlPkBEUPkkQFAynzOgsCRAyhJ66+ctJ0BImkB3QOUpQEahEDLCCShAL6418GTsJEDWDLtrtNslQGHxgd7ddiRAIBUHfGVRJ0COnid9wYcnQDXC5fDsLSVAXka3KTw7JUDAzQ/ohFooQBrndVHX6SZA+BMi78bnJ0AJewRLGqAoQJKKcxPx0yVAsyLC1jmhJkByrMqLazgoQEoVMHAhsCZARalXpZzJJkBoDxGZ9sYlQOvEOKKpaSZAQfvTc4RoIkA3BRANYokjQGTSAiUiNyRApE8yfDOtKECIzOK9qb0lQKRJPtiTaCNASAJrNaIMJECsT8bupiEoQCAENFt79yZArID/+EcFKECfRGOib0omQIdPWoZKVidAA5oTD0CPKEAFkdzOrPspQK09C6M7CypAcP4I6qPXLEBkyalcmWUqQLxB0Y4DPipAP6iQcsV6K0AKrMPweIIrQMvvuLgQaitAGca/sshLKEAw25DwT6smQEixynNMfydAmvX+3seHJ0Ah1nvz0EUmQJRik/6L1ChAYiz2QsvQKUDAZQCrE2YqQCioi45+iStAwuHgBvMuK0D9QfAzHrApQJtoMtBzqCpAtVfHFhfTJ0AMjAsAi/UkQNnfgLPLICZABxg4NIklKECUt1UHgmEpQNiNkFq7LypAZ8MfHx1rJkAwk94S0gsoQEjLQ69PBCdAvG7ei3XYKECLhTlklhwrQKar+iaJmSlAuV7LdKgAKkBax1kO/DApQKCgOF6MZiZA8YbTQUqwJEBZ65Ej+KQjQHd/sSYzBCZAee77aTb5I0DHc8QZoDAkQNK0Itl4MSVAKKVPya6IJkDwwcBGH00nQGsYO1m6ZSlAqPncTiycK0CNhi3PHo4uQBqNXg6+hy5AuejoIbZoLkB01LtWFEUvQKr7jn/pkCxAIFepDRQgKkAwHpUzQYoqQGlNPBSNGSdArUiCuYYbKEAzz6SUG4coQN+OxTR4JyhA2DIgXoFgKEBL3rATQbMoQNol3gIiMydA/kLuh3ZmKEBk+zLTVokqQLm0VEIPDypAb988PdveJ0AFcaE4gBUqQCqv2AKQDCdAqzMg4jKjKUDqggqgJy8sQPOPx2OdxC1AAm56uxCPLUCkI0VCmistQAzrdCNfiy9A/T1Jg+e8MEBn53ip4y8wQBf3CaFMzi9AGs6BK4EsK0B7i6FT7k8sQINo85rYoixAZFhpyrohLkBhlOwa2KYtQBhUdB72dytAzMvf9atdLEAGk2Aaxa4rQALEGy1Y0ilAd7knIZ5tKUAjco3TNcgoQHB49X2OxihALEr2/c3fK0AHwOFNxYIsQIJ1sqgxFCpAixAwxegrKEDzr0l8RJMnQCmHXBvrJiZAWprDfxraIkCl0wnqoecgQAKiupe0SSJA47CGrTfWJEAcCYdmU5okQMHrDKlSaidA5oHpwe8rJEDJaG+CEE0kQJZoQ3Xd8yJAVz6PH/LHIUBi2aGlmQ0hQFSux+JJQiJASGR17vXDJkCY+RGyo+IoQO92CyHMCCpAb3o7G3gRKUBPVJmrPeEpQFqHS8PE7ypAO2SdzrpMKUBqJYV4aF4oQCp57TDgAShAnrD/wZRuKUAPtKo7Kn4pQHABsFEaWStASSOkimOZK0DuXQWZXrApQN4rbLCLTy1Aap2NC/BHMECyhUo9McAuQM5IzcYyqC1AtM3WCvLHLEDfZEfZLPsqQDS9jIeUUy9Ak0VLvzoxMUBad6vk/h8xQMcZ2Dg9ejBAUDV31CZTL0Az+UVm+rgwQEQmwd1qqDJAknC6WeCDMUAY5t8Zy+QvQP1IV3uSnS9A1UqwWu0qMkBpsc1a0h0zQM54Ksoi8DFAa7fcKK8OMUDmW1IgwUUxQEEwm5CmmjBAyGxx/KT3MUDsbNNQUKwyQByrklS0nDJA1BJV6C/GMkD+unRZyBMyQHuXKCzlBjNA6Ps3Kyv4MkBHyOaLbVkyQMcqbTJbtS9Az9+f+xolLkC2exDMVXYvQOYQ1neI4i1AycQqBlCWLkCsPkdvziEvQKX6RB3+aC9Ap/V7gis5MUC7PYwt1f0wQKzOKHOuxjBA1EpH7pX1LUAEkU4Nmx0uQOScHcPy6C1AtMqwxpTILEDPDoWSNtQvQC6128u7yy1AdSbWSzILLUCL7UkZ2uwsQE0ZHyoOMStAc0Pj8KlKLkDz2O7HhA4vQNTLhYpmIS5AiVrM00IsLEBHtoRoiLMsQOwMTK1CLC1A+qA26wy6LECMMGlrcVQtQBDs9Pkioy5Awr/6IyV/LUA3NHkGRJIuQFKhKX12JC5A60cIo2zlLUBYPyr8nwIuQPt+Z6iZ5i5AYeH6G1bEMEAQSfJUwqswQO4cj6YW8zBAfMADpqPiMECX4yu0xzAwQO3f6XG/UDBAlsvB/BtFMUA5MLrbyY4xQAPmFaEPMTJAgMtX8XiXMUC5WNmzTzkyQCm1AjfKsTFA0nUwwunTMUAKIYbBKv4yQDUtz7c12DFAjDPnHqBHMUChsEV9E9cxQE0L9I/CKDFAWbbPwNn/MEApEhNiLeYxQLBfQhQZbDJAHuZN6yCjMkBvaLiAs3AxQFX45sgg+TBAWHhlqifeM0C7ArmNLugyQO5O6WMs2zNAnLMNqxE+NkBwWxrevLg2QPTF5ev8JDVAIdS8REUZNEBO3XhGb081QCu2yp2VpjVAKgy+yqWbNUA7ASg1jQE2QGbWwv3UDjRAiPDXtGSoM0DSvZYLA7g0QJVjNHnxPzZA5huWELS9NkDresh+SJY2QJDBXRICwzhAyu8LJ0yAN0CaUqdn5mk3QPpAJ5wyCzdAWbB+oojyN0CZzx/tLMQ2QKsdzKaM4TZAbEfAMzshN0CcWIJYHY83QPbZ2I9MdjdA87eZ7yOrNkBe8m+qgoQ1QMdl+KqS7TVAxNfooPBqNkCCcyOGckE1QFGH2ywyBDVAbtzCzN7JNkAunb8Co0g3QMA6wvZwUThAETfB5OpOOECJceM4QEU4QE/wiHeNGjlAVjKlBCodOkAbmqb3Ynw4QOQOSfJwxDdAnIgK/6FnOECVBxBphJ83QG65KoWASzhA3sqNiKXqOEAvUTTZr+E5QKe/dkZrGzhAm1SSIwjAN0B32zKYWrE4QPKE325DnDpAIN9g46PLOkD7nN7Qfsw6QLk6avg6NDpAviH1qzzzOUDIN/ue79I5QCTGMZi3RDtAVDyxzJwNO0BUxSD17EI6QHjG8W25FTpAS8MHhasROkAR7R3V6IU5QA2LTeR70ThADCQa8yLGOUDI9U5rvsU8QH/Kv3Rs1jtAcJui7sqzPUDOmN/6YzE+QH0BgqsmNT5AvV++z3AVQEAJmC/EO0U/QCTEFjRmMUBAggbEs35GQEBjdaP6aQRAQMYZEDIVH0BASqP78e83QEC/Aof90XBAQH6n9qGYKz9AeltvMHqwP0BcRCQB0TA+QLi1cw+k4T5AQ9xeBCizPkBS2d6F/iE/QGzNuRvoTD9AIFSkLy6hQECc+4tsjH5BQJYUtJ0NV0JAyIYLcQ9hQkBcTI84rDBCQHJO2UgruEJAOV03gJcbQ0BKyFacpwVDQE3ELyFOjUNAnaV+ejWfQ0D83B+Nz0JEQB3Zy0jnYERATWtB6NCDREDyqTUw4ItFQLTniZH7cEVA+temP5r3REDavEDk+lZFQLtvgZd7kEVAC17gZEzeRUDiHnHfbmtFQMj5n8PgrURA4SkxRV7HREDyRziHa3hEQLbNnQGxtURA4pFqAA/yRUB0kNS25X5GQKILKDg9UUdAL1QZqRXoRkD2k5ovsYRHQFzWOqM3IUhABNY31yTsR0C3a9IZCh5IQEA3XGB6bkdAfhwyRzmASEBmZKVee/lIQAm/Jojy10hAAIEe0GCwSEAzphR77opIQL+NlWMSjkhA8vzXJpWESUAF1Z2J/PpIQG1Z1ll5sEhAqZWCD8PhSEAKHhjHlXVJQJmPSQnufUlAVfyriygASkBkx+qxR/tJQP25SjqGpklAxUxFiccsSUB1cqWJ4K5IQL5J5J9IbUlAeKzxTTapSEBxh//M7wRIQDd9SXMszkhA145qS+4SSUBxHDoz3S1JQNI0Q3uib0lA1H78//D/SEBiJpG2N/pIQN5S+bL5OklAk+hV+x6ZSUCf3Js9Et9JQKJ/e+pwtElADVyhOkt8SUDYLtpcaH9KQBPpKcCluElA+Llt2SSESUAY6QVHvjxJQJN6gppTdklAa/UEXKmxSEBlIH2+zjZIQEt0ml6vhkhAbPXb33UXSEChamPxJcNHQKmGogyVNkdAZgfatZUeSEA7W4cYxbxHQLPhYywo0UdAPUTOw2xuR0C4ZdY6khlIQJrvDbqtMklAmvsQ2ccmSUDw6YK7vERJQCfvKRNVOElAjcATscRESUD0otctg+xIQFrtGN0gLklAdO0bh7JwSEAdz1A9gnNIQLLMdZHrLUhAWLyefUpSR0D2Pyj0I0FIQEB4OynJ+UdAayIENDWpR0D1YdYOcQFIQEl4sOqJVUhALy/7DUxFSEBSGq6Tjh9IQFyAbfxwTEhA7LfJ6pnDR0DO/lR3JN5HQFPwg5R950dAgKMfdtPbR0BN8RexSH1IQG6cOJYhHUlApmDv6Z/sSED31Rv+q/RIQD5rrgHqJUlA124PTXBXSEA9rXXFhJxHQHLyquPJdUhA0EgzEV1WSUCeSQxwKtRJQPTn51vT0EhAK9Z3KU2mSECVBCCFpapIQLGEp3n0Q0lAsd3NeX2NSEDFTwuZDgdIQLvPap3e6kdAX5D6Ih7jR0BNJhcDcfFHQKVNXrdPiEhAoUUqKRERSECjgUbGWkVIQBKfG/y10kdAj+oeKCw6SEBQLzWVZb1HQAcR3YYEVEhAxHXDrYecSEAbbmtwfNxHQKmIyl9B1kdAdNyNkruOSEAdwZjR/YNJQJLkjXOqtklAmmhYCoZUSUDseMXA07tJQMJxIHObIElAH6yo0f7dSEBG1Mvia4VIQJ8g4xcWXkhA75pYxm1ZSEDFsD8jjBpIQCvdXuXzWUhABUcK7BciSUBOvIfEKfFIQCYty0QfF0lAvBnPVT07SUA9IjFbUK9JQKGSTUcdDkpAonB2z8OgSUBZe8IYxQ5JQEFIzQnhwUhA+yhg09CjSEBhxjS//KlIQG7VXiLVRkhAMBD7WUpvSEDY7Y64jFBIQB2pZZKnaUhAWzCTnecXSEDNSLd1kBNIQHHIalba10ZAJ6ZPk7ZZR0Dzg229C+VGQJukjySI50ZAysVSFW6oRkCrK008tuBHQCWxQboNjkdA6OBa99fFR0CGR7hYzdRHQHWzwlpnVUdAMbTxX0ZqR0CEmMRYcR9HQCZDOs3zHEdAwNeGATo6R0C0bzsXWHVHQF0naNu1+EdAXNcOkhAJSUB3JD53PN1IQFKuFiF5uEhAM+tpPCAhSUCbQKnPmhhJQPGIBRxQkklA5s5kvp+oSUC0JywGHCpKQCMetijfEUtA2PL5UPTsSkAR6+ZLx4ZKQCHFr32Ny0pAYciJ0BU3S0Bvjb1KcDlLQCNnHHZtjUtAJTaBmqR3SkCaUO8AMyhLQEuopsy1X0pAttvmv8XcSUANjAgQ3ZdJQCbox8KNcklAHow5n151SUA66Ch3u6NKQIF25EnVNktAyCRU1BgnS0CP+lNyeIlKQOL30S2Ur0lAf+YfU5FZSUBE+UA/h3hJQDKtKKn4nklAkIi/zuTCSUCjxpmXrrtKQJ3Mhf0QKktA+B/mq0hfS0CsTWr913pKQEfwW8kgOElAFvc6f3y2SUBNb+OLH9FJQBMAzDer50lAoOXxEwnDSEBMKvIzxmNJQEn023SNw0lACBp5kZo8SUBXD+m2z25JQEC0HJe1vUhA+/i8+4G6SEDrxoAZhWZIQDDbgogLD0hAE4prDDjeSECcul+buZdIQJ1FbEBDr0hAiVQP782cSUDqNVKx7WNJQDFWYiy+oEhALSHS6cx0SUD+83gK/uJHQMw19xOHlkhAk28B/beNSEBLGeFlb+hIQLkXCkH0zkhA9tZNdMdGSUDum/XZem1JQFCF0THpZkpA9HxN9k2LSUC2CpeuG21KQDkUpm1Uu0pAH3mJrJ97SkC98NcXKWVKQP4msA94cElAqGSnZ1rtSUC/yi9sSHlJQPbG9NmjTElA0YniYYOCSUCr1fhgBEZJQG187UqlCkhAxuAWfjU7SUA7xWnZ3SNJQMMt12eV00hA5CG294teSECAFtBe/LFIQJfpZZDON0hAhy3sLiA6SEAEgpAJMLtHQNFHNh8iZ0dAvPBI3WdFRkApGX87FqpFQHkjjrk4g0RAyXu0zlfDQ0AggvTwqwJDQIX0BX4hv0NA8QqCUbXUQ0AZ/65LjhdEQChmC4PECEVANKqdBk5hRUBnuFV6VFZGQMHzVok12kZAQgkNVhy3RkDimEt28fhGQPmkv9z8Q0dAPXZPKO9XR0CfIZkGv9NHQDkg6mPmQEhALVrclRvVR0Cy1YVgWOFIQAlAGDjwskhAdBf2Nu8JSUCn5I8YtwhJQCyOFhELC0lAgHM+HL85SUAv9YW3HN5IQG5HglAEeEhA0Pa6ryuNSUCB4C6hdnJJQGho3Nmiq0lAQHG/YYD1SUADbmqW2cxJQL1O+BI18UlAC9+67NW5SUCjZ3Vr8ClJQP391CrzMkhArDV5AyrZR0AqCL8DrHxHQEp5AG1rj0ZAxNOHDHA5RkD/6bZ0NdRGQLvKliakGEhAwsaJ1kmoSEAyVoA9dqVIQDDhJYlkE0lAVKFlfoxGSUA6pN3GG4VJQJ37Y0gtC0pAl+2UL5XiSkA6y3Iu6shKQMNRtvhLikpAYfF8wMldSkCwB1BUZ79KQPxpPg2cdktAHRU6B9qxS0BrXm61Wl9MQAsuRI0hw0xAHETOUuJbTUDC4AM0cFtNQHKUHeuheE1A8bBv6G1sTUAUXLgJYeBNQM5118Z0tU1AY1+2A6NBTUCa5qDlqbpMQIXfKGMrWExAYxNLz05dTEBAFC8dpstLQERyHDRqrktA4pUBbKcmTEBlIwtlb/NLQARAv6MahUxAKuvMopzbTECGHaWdyMtLQLVadJL9qUtACj7dPaEIS0C/UgdredlKQFoeAQM2bEtAKXg/oKliS0B3a06OsItLQH8GdHXq8EtAIcjxC2+GTEAhs+GHhXJMQPaCzWnSDk1AhthDNQxqTUCiceegY5xNQHrExuFioE1ABMgsNDFvTUCaD1vXksNNQLINCLmwak5AgnYpGnSmTUDcKtFNOgNOQEJgTj5b0k1A5Hji5EDfTUAmVJvm53VNQJ4NB45Zz01Al2cVjb2ATUBodQlDRL5NQGnvPNmc40xA41sMebLuS0AEloKfxz1LQG7vGOrAMUtAD50taSXoSkBZQwaBY5xKQCsspVRIlEpAFu15LufFSkCp3w7WZLxKQPYhfOuud0pAke6l4WTUSkC2jxeHc0NLQECRoOpgnktACXQrMSmVSkBNGd7t+QZLQDgiNQj6d0pAaCEGAt1KSkB2q1tzjlZKQF5WHuaFhUlAV2Q5ySUiSUCYXM0GLZBIQJZYnfz74EhAb1ybBZEmSUDvT7tAqvRIQGeFpI+Jm0lA9YWKVbw/SkARUV9sKAVLQNZr8bT6jUpAjxCkEck8SkAqBSU6Bx5KQI/kLCQViUlAGvMddGHTSEDrKRxLN8FIQJk6X9k7KEhAIuG1YkqJSEAoDNcdQUlIQPyMCO4A6UdAHWcdKG9mR0CrunfcZHlHQNhPHNDqQ0dAgnR+rlSbSECFnqty26hIQGXWO13sVkhAuggtYph8SECKXO+WMDhIQNd2PS5kb0hAOGtZuUKhSEBEDxAV1UpJQEFwvYBsJElAGVUsw4IiSED8Ugb/7t5HQCtedzXYEUhAZGicrjkRSECqN6Q60KhHQP9X5YK5vEdAr6HdRTXYRkC7e+1TbSRHQJy8xOORVkdAWOttbGW4R0A4K0juo0pHQDwPO/RWTkdAQK9iAPo/SEDSjkHZ6ylIQFY02nbPgkhA75xnx6PXSEDXrkeSwVJJQBX+wuKD1EhAkY6skqBWSEACNFYaOKdHQAJWWnv3MkhALoAfFEuFSEBuPvklkxBJQGbjdYVnPElAnvzIx98nSkDW6UH80bdJQCoSKbbDZ0pACA4hyD4WSkB7Yq00jw9KQELqa9z39ElAa+Re0e0MSkCUHQIoomJKQP3TibcJ5UlAxUsw4rGqSUBeuTaIn0hKQJxTOG32jklAroz8WPLQSUBQyv1pydJJQF+a+nFk8klAOvMht0ZfSUAZwNiYnShJQFI71bchi0lAVfKpdAqdSUC0pqNC6mVJQKhb+57wO0lAxIPfZ/GWSUCouNsE57JKQGi+z5OFwUpAaFpAZ43OSkCd54TBYP9KQKNiqPr0M0xAz8KSb3EmTECcE7GdYQBMQBya2JMY20tA4LV6WO1ZTEA5nmuEDK9MQKm3OvjgL0xABiG7V8AwTEAPRconj35MQOBYfe7deUtAPxS4iVE4TEBhRqVdyzdLQD0cCnmPmUpAqerBfI5ySkCu84SY5mZKQFuFgvC75EpAGSb1jyAPTEAio4HTRw1MQFqS6JWTu0xApMSN8j7iTECUIUj4oSxNQIk+jNNg1ExAXvIJqFxATED0MaBqVb5MQJWSYaugDkxATMTcYyg5S0CUU+C48a9LQB3V1E/PAEtAOBfqWBNjS0Du2Gp191VLQDveXqEW/UpA/rf/+0hyS0BSV+elMjtLQIO2h6N4rUtAk/TQcWsfTEB4rGLKpfRKQHKnLLRBdkpAuK24WmzWSkBLhPkpzHVKQCYXnxuX0klAknH5cbV/SkAkLd6DcYRKQFKSgLl8FkpA1DPznGaMSkCql0fgIu1KQF/nxSguIUtAW3tVTL6hSkBR11/83v1KQDrt2tYBFUtAps/Sjr60SkD0v3A2035KQDCp7ULIgEpAtYYVESw4SkC0kNuIHBFJQFmNzDkC2EhAFonTOtgpSEBeQn6BsmJIQJm8PnIW9kdArgUtDib8SEDxsu3zCIRJQKNGnrI15UlA5XPrtwzGSUDnM0YtxCtJQEKMV++iAklAJoj1sdtmSUCWfUdgAbxIQGiV6NRnNklAlvFop93xSEBPSI/9FyJJQAOTPgQbKElAH/PGODfnSEDuQQISNZNJQM+MXPj9mElAq2FUdH7zSUBih9rn5jJKQCG7HOz+uUpAMplXzZBYS0C8RtK1nA1LQEeen4z3aEpA6kCZ+/1mSkB1dCVYt45KQDOiZTPQr0pA+Kth24BCSkDX8HIwjBZLQLXsF2EMi0tAM9VX1itAS0DbMH2b0xBLQFawDEx59UpA/lCIOt4yS0DHdDAXH9dKQC4p27CHzEpAKuRa4WErSkBGlt21LO1JQOtkOTFp7UhAtrnKeNhjSEB8TSdqtcRHQMJTmt4ABEdAFlKM14CdRkAG4STa+JVGQM6WIFPCBEZAh5clRqhZRUDgMi5iRsVFQD8Nbf8qeEZAxTxqFiWMRUARNHf+VhNGQCm5VubtaUVA9MSCXzfaREDWkNKPPmpFQJH4CR4bA0ZAI5MUmhD4RUBGwswjZf1FQCpLV+8w7kVAB8BQN/NIRUB1ZmzPLDZFQGFqMEDepkVARBiSQYvyRUBYUxQbcCVGQB5E5qnolEZAgU2oPVNVRUD4RbdA6pNEQPcQwhF3OEVA3OTUlXPKREByAKORXLBEQCdXI5cJV0VAyW3CdEoHRUCNj5KKkitFQK7gcNYTDkRATTqWapC0Q0CylKlr2X1DQM1cp13dekNAhw6Jkv/LQ0AUm7LoUq1DQCmscHAeXUNApitykKMMQ0A92wf7gfREQI6VkXuON0RAtqwuQ/ZnRECSvkpe/BhFQAvNl8WC6URAlIqbH6zgRECHSA91suJEQArKM3HUq0RAqMcKg3BZREDOOAIPjdJEQJR6TNWwXERA4jDby+btQ0AWUOGL/nlEQJ7MtmtGJURAGE+qPKqyQ0CTRLNf8tdCQFBjZNiSQENAnWFWCtKfQ0DMlmw0aUNDQCPAp/meeENAscpwk3npQ0AKOQbycspDQCQyfKfGDkRAd7VsmeG+REBKyaqF44JDQCCFSOEf7UJAbKyGC0o/Q0BDeEYZ4BBEQDogoCHOMENAcMaBw514Q0AKKvOoPVBDQJdJfKOp8kNAkJelVfK1REAFTucv1dZDQJ5t2ECjo0NAKLBZA6UXREDLqmekwOFDQL30DAiUaUNABflyQV+qQkCctNwZTYZDQIQDYDnF4kNAQw89xyTIQ0DNFMxhlW9DQF4OdydsVENAteedJlBNQ0BZGm+LTolCQOWKe8rCx0JAC++ih7tHQ0BSVF7GoMhDQEMAWOxHjkNApHx79z83Q0DsCNI5Oc5DQLWBMbmviURA5QjPNTHIREBDlHeCG0VFQK54YIHKwERA4vvNoPIyRECYuKF7zSZFQNJgualH5ERA3Q3AdUFARUAt84V4MmFEQIQChg2xdERAMI+Mu1slRUBDnsXEKEpEQC8xcfxAzENAiJBuaHt6Q0CnB5ux/tNCQNKMsQvd8ENAfytIaRO5Q0BtjYI37VhDQB9iEauTj0NAlDUI/DV6Q0AAW2J8FU5DQF7m6PMnU0NAIh4bcEviQ0DbbkWGFn5EQFXjs8Odw0NAF7Je2n1oQ0AiqYSbYT9EQJHc329aiERAlEO1rte2REDeFQYo4B1EQH7b6HrBeERA6TihmP6ARECQCKrkAz1EQNJPSdpn6kNAoLZsxq+WQ0CYC/be++RDQITq0wJav0RA6XAfehwERUDpwKQ/rdNFQKkE/sDKTkVAZrAS3NQ6RUD5XX+O6NBEQOKgVd2y2URADPZs2qgYRUCab1v3wLdFQAhcVqRPV0VAS6tR8AMNRUDEM0CqgXBGQOj9fW7Q8UZA0SEp9U1GRkCGibL4GR1GQFLKYQKG8UVAQn6SgN4XRkDOZe3vOPtFQPreMxKQmERA8xTlNGdURUBD+nT1aNVEQNaxe+kEI0VAg2365HCjRUDE9Mv/EZlGQKou26h1RkdA1lpRgSCxR0DILn1k6CtIQIqqS67clEhA2yuXrqinSUCDQxwRE2lKQGMVx6Sc6klApDO9W1RPSkDpx+fd7CNLQPce5G08CktAonp7FCDxS0Ch/A3rZC1MQKCKf3b/wExAJzjY/XOxTECQl+9tnEZNQK+PoRf3cU1ANS5aKojNTEBuLaOjelFNQPMUMPN+aU1AIcLeuwFFTUAwFlFM0hpOQFG5h2uwdU1A82Jf/jVETUBYy4bFEhdNQOsT1FZE8k1AHIx7wdFgTkBsDZQRAVVOQIQiim/bu05AQ00E9ROiT0BajwbJ85VPQOXTJYzf/U5ANccnBV4sTkCQIcy0NtVNQJaxZK8sd01A+P+xG7/XTECUIqD6amBMQMjLTUtNx0tA738TDaCDS0AKfCTtKJZLQL0hcHnCm0tAGtDVPWRsTED0be1DGlxMQC2u3SbezExABDh+KW/1S0AdryQf2OBLQAT791uQJkxA\"},\"shape\":[7680],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1238\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1239\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1234\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 0\"},\"line_color\":\"#1f77b4\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1235\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 0\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1236\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 0\"},\"line_color\":\"#1f77b4\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1253\",\"attributes\":{\"name\":\"EEG 1\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p1242\",\"attributes\":{\"x_source\":{\"id\":\"p1196\"},\"y_source\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1240\",\"attributes\":{\"start\":-67.11268744064077,\"end\":71.04289117567957}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1245\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1246\"},\"x_target\":{\"id\":\"p1196\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1241\",\"attributes\":{\"start\":1,\"end\":2}}}},\"data_source\":{\"id\":\"p1221\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1254\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1255\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1250\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 1\"},\"line_color\":\"#ff7f0e\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1251\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 1\"},\"line_color\":\"#ff7f0e\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1252\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 1\"},\"line_color\":\"#ff7f0e\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1269\",\"attributes\":{\"name\":\"EEG 2\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p1258\",\"attributes\":{\"x_source\":{\"id\":\"p1196\"},\"y_source\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1256\",\"attributes\":{\"start\":-66.22942956460888,\"end\":31.46447929851465}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1261\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1262\"},\"x_target\":{\"id\":\"p1196\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1257\",\"attributes\":{\"start\":2,\"end\":3}}}},\"data_source\":{\"id\":\"p1221\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1270\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1271\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1266\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 2\"},\"line_color\":\"#2ca02c\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1267\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 2\"},\"line_color\":\"#2ca02c\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1268\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 2\"},\"line_color\":\"#2ca02c\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1285\",\"attributes\":{\"name\":\"EEG 3\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p1274\",\"attributes\":{\"x_source\":{\"id\":\"p1196\"},\"y_source\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1272\",\"attributes\":{\"start\":-54.536631833416024,\"end\":101.74073367927085}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1277\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1278\"},\"x_target\":{\"id\":\"p1196\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1273\",\"attributes\":{\"start\":3,\"end\":4}}}},\"data_source\":{\"id\":\"p1221\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1286\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1287\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1282\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 3\"},\"line_color\":\"#d62728\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1283\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 3\"},\"line_color\":\"#d62728\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1284\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 3\"},\"line_color\":\"#d62728\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1301\",\"attributes\":{\"name\":\"EEG 4\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p1290\",\"attributes\":{\"x_source\":{\"id\":\"p1196\"},\"y_source\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1288\",\"attributes\":{\"start\":-89.87000253015603,\"end\":27.27233998822553}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1293\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1294\"},\"x_target\":{\"id\":\"p1196\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1289\",\"attributes\":{\"start\":4,\"end\":5}}}},\"data_source\":{\"id\":\"p1221\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1302\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1303\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1298\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 4\"},\"line_color\":\"#9467bd\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1299\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 4\"},\"line_color\":\"#9467bd\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1300\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 4\"},\"line_color\":\"#9467bd\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1317\",\"attributes\":{\"name\":\"EEG 5\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p1306\",\"attributes\":{\"x_source\":{\"id\":\"p1196\"},\"y_source\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1304\",\"attributes\":{\"start\":0.9476428402150643,\"end\":164.915039421156}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1309\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1310\"},\"x_target\":{\"id\":\"p1196\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1305\",\"attributes\":{\"start\":5,\"end\":6}}}},\"data_source\":{\"id\":\"p1221\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1318\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1319\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1314\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 5\"},\"line_color\":\"#8c564b\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1315\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 5\"},\"line_color\":\"#8c564b\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1316\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 5\"},\"line_color\":\"#8c564b\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1333\",\"attributes\":{\"name\":\"EEG 6\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p1322\",\"attributes\":{\"x_source\":{\"id\":\"p1196\"},\"y_source\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1320\",\"attributes\":{\"start\":-51.938928464448345,\"end\":191.10986463252786}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1325\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1326\"},\"x_target\":{\"id\":\"p1196\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1321\",\"attributes\":{\"start\":6,\"end\":7}}}},\"data_source\":{\"id\":\"p1221\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1334\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1335\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1330\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 6\"},\"line_color\":\"#e377c2\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1331\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 6\"},\"line_color\":\"#e377c2\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1332\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 6\"},\"line_color\":\"#e377c2\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1349\",\"attributes\":{\"name\":\"EEG 7\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p1338\",\"attributes\":{\"x_source\":{\"id\":\"p1196\"},\"y_source\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1336\",\"attributes\":{\"start\":-95.69198051978556,\"end\":3.03866294096691}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1341\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1342\"},\"x_target\":{\"id\":\"p1196\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1337\",\"attributes\":{\"start\":7,\"end\":8}}}},\"data_source\":{\"id\":\"p1221\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1350\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1351\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1346\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 7\"},\"line_color\":\"#7f7f7f\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1347\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 7\"},\"line_color\":\"#7f7f7f\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1348\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 7\"},\"line_color\":\"#7f7f7f\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1365\",\"attributes\":{\"name\":\"EEG 8\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p1354\",\"attributes\":{\"x_source\":{\"id\":\"p1196\"},\"y_source\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1352\",\"attributes\":{\"start\":-6.415399735867862,\"end\":115.93382318385717}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1357\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1358\"},\"x_target\":{\"id\":\"p1196\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1353\",\"attributes\":{\"start\":8,\"end\":9}}}},\"data_source\":{\"id\":\"p1221\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1366\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1367\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1362\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 8\"},\"line_color\":\"#bcbd22\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1363\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 8\"},\"line_color\":\"#bcbd22\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1364\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 8\"},\"line_color\":\"#bcbd22\",\"line_alpha\":0.2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1381\",\"attributes\":{\"name\":\"EEG 9\",\"coordinates\":{\"type\":\"object\",\"name\":\"CoordinateMapping\",\"id\":\"p1370\",\"attributes\":{\"x_source\":{\"id\":\"p1196\"},\"y_source\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1368\",\"attributes\":{\"start\":-50.09510174132892,\"end\":63.2662340422635}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1373\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1374\"},\"x_target\":{\"id\":\"p1196\"},\"y_target\":{\"type\":\"object\",\"name\":\"Range1d\",\"id\":\"p1369\",\"attributes\":{\"start\":9,\"end\":10}}}},\"data_source\":{\"id\":\"p1221\"},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1382\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1383\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1378\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 9\"},\"line_color\":\"#17becf\"}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1379\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 9\"},\"line_color\":\"#17becf\",\"line_alpha\":0.1}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1380\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"time\"},\"y\":{\"type\":\"field\",\"field\":\"EEG 9\"},\"line_color\":\"#17becf\",\"line_alpha\":0.2}}}}],\"level\":1}},{\"type\":\"object\",\"name\":\"ZoomInTool\",\"id\":\"p1386\",\"attributes\":{\"renderers\":[{\"id\":\"p1237\"},{\"id\":\"p1253\"},{\"id\":\"p1269\"},{\"id\":\"p1285\"},{\"id\":\"p1301\"},{\"id\":\"p1317\"},{\"id\":\"p1333\"},{\"id\":\"p1349\"},{\"id\":\"p1365\"},{\"id\":\"p1381\"}],\"dimensions\":\"height\",\"level\":1}},{\"type\":\"object\",\"name\":\"ZoomOutTool\",\"id\":\"p1387\",\"attributes\":{\"renderers\":[{\"id\":\"p1237\"},{\"id\":\"p1253\"},{\"id\":\"p1269\"},{\"id\":\"p1285\"},{\"id\":\"p1301\"},{\"id\":\"p1317\"},{\"id\":\"p1333\"},{\"id\":\"p1349\"},{\"id\":\"p1365\"},{\"id\":\"p1381\"}],\"dimensions\":\"height\",\"level\":1}}]]]},\"code\":\"\\nexport default ({tools}, obj) => {\\n const level = obj.active ? 1 : 0\\n for (const tool of tools) {\\n tool.level = level\\n }\\n}\\n\"}}]]]},\"active\":true}}]}},{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1198\",\"attributes\":{\"x_range\":{\"id\":\"p1196\"},\"y_range\":{\"type\":\"object\",\"name\":\"FactorRange\",\"id\":\"p1197\",\"attributes\":{\"factors\":[\"EEG 0\",\"EEG 1\",\"EEG 2\",\"EEG 3\",\"EEG 4\",\"EEG 5\",\"EEG 6\",\"EEG 7\",\"EEG 8\",\"EEG 9\"]}},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1207\"},\"y_scale\":{\"type\":\"object\",\"name\":\"CategoricalScale\",\"id\":\"p1208\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1205\"},\"renderers\":[{\"id\":\"p1237\"},{\"id\":\"p1253\"},{\"id\":\"p1269\"},{\"id\":\"p1285\"},{\"id\":\"p1301\"},{\"id\":\"p1317\"},{\"id\":\"p1333\"},{\"id\":\"p1349\"},{\"id\":\"p1365\"},{\"id\":\"p1381\"}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1206\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1219\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1220\"},{\"id\":\"p1384\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1385\",\"attributes\":{\"dimensions\":\"width\",\"renderers\":[{\"id\":\"p1237\"},{\"id\":\"p1253\"},{\"id\":\"p1269\"},{\"id\":\"p1285\"},{\"id\":\"p1301\"},{\"id\":\"p1317\"},{\"id\":\"p1333\"},{\"id\":\"p1349\"},{\"id\":\"p1365\"},{\"id\":\"p1381\"}],\"level\":1}},{\"id\":\"p1386\"},{\"id\":\"p1387\"},{\"type\":\"object\",\"name\":\"HoverTool\",\"id\":\"p1195\",\"attributes\":{\"renderers\":\"auto\",\"tooltips\":[[\"Channel\",\"$name\"],[\"Time\",\"$x s\"],[\"Amplitude\",\"$y \\u00b5V\"]]}}],\"active_scroll\":{\"id\":\"p1384\"}}},\"left\":[{\"type\":\"object\",\"name\":\"CategoricalAxis\",\"id\":\"p1214\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"CategoricalTicker\",\"id\":\"p1215\"},\"formatter\":{\"type\":\"object\",\"name\":\"CategoricalTickFormatter\",\"id\":\"p1216\"},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1217\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1209\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1210\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1211\"},\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1212\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1213\",\"attributes\":{\"axis\":{\"id\":\"p1209\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1218\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1214\"}}}],\"lod_threshold\":null}}]}}]}};\n", - " const render_items = [{\"docid\":\"55f59422-a805-4115-af97-a6bf29972d7a\",\"roots\":{\"p1392\":\"d3dc5fa4-deed-4441-aeaa-2673eeb50d37\"},\"root_ids\":[\"p1392\"]}];\n", - " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", - " }\n", - " if (root.Bokeh !== undefined) {\n", - " embed_document(root);\n", - " } else {\n", - " let attempts = 0;\n", - " const timer = setInterval(function(root) {\n", - " if (root.Bokeh !== undefined) {\n", - " clearInterval(timer);\n", - " embed_document(root);\n", - " } else {\n", - " attempts++;\n", - " if (attempts > 100) {\n", - " clearInterval(timer);\n", - " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", - " }\n", - " }\n", - " }, 10, root)\n", - " }\n", - "})(window);" - ], - "application/vnd.bokehjs_exec.v0+json": "" - }, - "metadata": { - "application/vnd.bokehjs_exec.v0+json": { - "id": "p1392" - } - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import numpy as np\n", "\n", @@ -1022,7 +105,11 @@ "\n", " source.data[channel] = data[i]\n", " line = xy.line(field(\"time\"), field(channel), color=Category10[10][i], source=source, name=channel)\n", - " renderers.append(line)\n", + " \n", + " if i > len(channels)//2:\n", + " renderers_grp2.append(line)\n", + " else:\n", + " renderers_grp1.append(line)\n", "\n", "level = 1\n", "\n", @@ -1077,7 +164,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.12.2" } }, "nbformat": 4, diff --git a/workflows/multi_channel_timeseries/dev/checking_large_multi-chan-ts.ipynb b/workflows/multi_channel_timeseries/dev/checking_large_multi-chan-ts.ipynb new file mode 100644 index 0000000..c73c1c9 --- /dev/null +++ b/workflows/multi_channel_timeseries/dev/checking_large_multi-chan-ts.ipynb @@ -0,0 +1,581 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "vscode": { + "languageId": "plaintext" + } + }, + "source": [ + "# Large - Multi-Channel Timeseries App" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TODO create banner image" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overview" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "

Visit the Index Page

\n", + " This workflow example is part of set of related workflows. If you haven't already, visit the index page for an introduction and guidance on choosing the appropriate workflow.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This workflow is tailored for processing and analyzing large-sized multi-channel timeseries data derived from [electrophysiological](https://en.wikipedia.org/wiki/Electrophysiology) recordings. It is more experimental and complex than the other related workflow approaches, but provides a scalable starting point.\n", + "\n", + "### What Defines a 'Large-Sized' Dataset?\n", + "\n", + "A large-sized dataset in this context is characterized by its size surpassing the available memory, making it impossible to load the entire dataset into RAM simultaneously. So how are we to visualize a zoomed out representation of the entire large dataset?\n", + "\n", + "### Utilizing a Large Data Pyramid\n", + "\n", + "In the 'medium' workflow, we employed downsampling to reduce the volume of data transferred to the browser, a technique feasible when the entire dataset already resides in memory. For larger datasets, however, we now adopt an additional strategy: the creation and dynamic access to a data pyramid. A data pyramid involves storing multiple layers of the dataset at varying resolutions, where each successive layer is a downsampled version of the previous one. For instance, when fully zoomed out, a greatly downsampled version of the data provides a quick overview, guiding users to areas of interest. Upon zooming in, tiles of higher resolution pyramid levels are dynamically loaded. This strategy outlined is similar to the approach used in geosciences for managing interactive map tiles, and which has also been adopted in bio-imaging for handling high-resolution electron microscopy images. \n", + "\n", + "### Key Software:\n", + "\n", + "Besides [HoloViz](https://github.com/holoviz) and [Bokeh](https://holoviz.org/), we make extensive use of several open source libraries to implement our solution:\n", + "- **[Xarray](https://github.com/pydata/xarray):** Manages labeled multi-dimensional data, facilitating complex data operations and enabling partial data loading for out-of-core computation.\n", + "- **[Xarray DataTree](https://github.com/xarray-contrib/datatree):** Organizes xarray DataArrays and Datasets into a logical tree structure, making it easier to manage and access different resolutions of the dataset. At the moment of writing, this is [actively being migrated](https://github.com/pydata/xarray/issues/8572) into the core Xarray library.\n", + "- **[Dask](https://github.com/dask/dask):** Adds parallel computing capabilities, managing tasks that exceed memory limits.\n", + "- **[ndpyramid](https://github.com/carbonplan/ndpyramid):** Specifically designed for creating multi-resolution data pyramids.\n", + "- **[Zarr](https://github.com/zarr-developers/zarr-python):** Used for storing the large arrays of the data pyramid on disk in a compressed, chunked, and memory-mappable format, which is crucial for efficient data retrieval.\n", + "- **[tsdownsample](https://github.com/predict-idlab/tsdownsample):** Provides optimized implementations of downsampling algorithms that help to maintain important aspects of the data.\n", + "\n", + "### Considerations and Trade-offs\n", + "While this approach allows visualization and interaction with datasets larger than available memory, it does introduce certain trade-offs:\n", + "\n", + "- **Increased Storage Requirement:** Constructing a data pyramid requires additional disk space since multiple representations of the data are stored.\n", + "- **Code Complexity:** Creating the pyramids still involves a fair bit of familiarity with the key packages, and their interoperability. Also, the plotting code involved in dynamic access to the data pyramid structure is still experimental, and could be matured into HoloViz or another codebase in the future.\n", + "- **Performance:** While this method can handle large datasets, the performance may not match that of handling smaller datasets due to the overhead associated with processing and dynamically loading multiple layers of the pyramid." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prerequisites and Resources\n", + "\n", + "| Topic | Type | Notes |\n", + "| --- | --- | --- |\n", + "| [Intro and Guidance](./index.ipynb) | Prerequisite | Background |\n", + "| [Time Range Annotation](./time_range_annotation.ipynb) | Next Step | Display and edit time ranges |\n", + "| [Smaller Dataset Workflow](./small_multi-chan-ts.ipynb) | Alternative | Use Numpy |\n", + "| [Medium Dataset Workflow](./medium_multi-chan-ts.ipynb) | Alternative | Use Pandas and downsampling |" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Imports and Configuration" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import h5py\n", + "import xarray as xr\n", + "import dask.array as da\n", + "from xarray.core.datatree import DataTree as dt\n", + "from xarray.backends.api import open_datatree\n", + "from ndpyramid import pyramid_create\n", + "from tsdownsample import MinMaxLTTBDownsampler\n", + "from pathlib import Path\n", + "import numpy as np\n", + "import panel as pn\n", + "import holoviews as hv\n", + "from bokeh.models.tools import WheelZoomTool, HoverTool\n", + "\n", + "hv.extension(\"bokeh\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# TODO: add text about data (3GB) access: s3://datasets.holoviz.org/ephys_sim/v1/ephys_sim_neuropixels_10s_384ch.h5\n", + "\n", + "OVERWRITE = False # Set True to initially create data pyramid\n", + "\n", + "# Dataset-specific parameters\n", + "\n", + "# Option 1: Simulated neuropixels spike-band dataset\n", + "DATA_DIR = Path('~/data/ephys_sim_neuropixels/').expanduser()\n", + "H5_FILE = Path('ephys_sim_neuropixels_10s_384ch.h5')\n", + "DATA_KEY = \"recordings\"\n", + "DATA_DIMS = { # Each dim item value should be the path to the data in the h5 file\n", + " \"time\": \"timestamps\",\n", + " \"channel\": \"channels\",\n", + "}\n", + "\n", + "# Option 2: Neuropixels LFP-band dataset from allen institute\n", + "# DATA_DIR = Path(\"~/data/allen/\").expanduser()\n", + "# H5_FILE = Path(\"probe_810755797_lfp.nwb\")\n", + "# DATA_KEY = \"acquisition/probe_810755797_lfp_data/data\"\n", + "# DATA_DIMS = {\n", + "# \"time\": \"acquisition/probe_810755797_lfp_data/timestamps\",\n", + "# \"channel\": \"acquisition/probe_810755797_lfp_data/electrodes\",\n", + "# }\n", + "\n", + "# TODO: remove max channel limits before final publishing\n", + "MAX_CHANNELS_TO_PROCESS = 100\n", + "MAX_CHANNELS_TO_DISPLAY = 50\n", + "\n", + "# Common parameters\n", + "H5_PATH = DATA_DIR / H5_FILE\n", + "PYRAMID_FILE = f\"{H5_FILE.stem}.zarr\"\n", + "PYRAMID_PATH = DATA_DIR / PYRAMID_FILE\n", + "print('Pyramid Path:', PYRAMID_PATH)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Converting to `xarray.DataArray`\n", + "\n", + "Before building a data pyramid, we'll first we construct an `xarray.DataArray` version of our dataset from its original HDF5 format. We'll make use of `Dask` for parallel and 'lazy' computation, i.e. chunks of the data are only loaded when necessary, enabling operations on data that exceed memory limits." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def serialize_to_xarray(f, data_key, dims):\n", + " \"\"\"Serialize HDF5 data into an xarray Dataset with lazy loading.\"\"\"\n", + " # Extract coordinates for the specified dimensions\n", + " coords = {dim: f[coord_key][:] for dim, coord_key in dims.items()}\n", + " \n", + " # Load the dataset lazily using Dask\n", + " data = f[data_key]\n", + " dask_data = da.from_array(data, chunks=(data.shape[0], 1))\n", + " \n", + " # Create the xarray DataArray and convert it to a Dataset\n", + " data_array = xr.DataArray(\n", + " dask_data,\n", + " dims=list(dims.keys()),\n", + " coords=coords,\n", + " name=data_key.split(\"/\")[-1]\n", + " )\n", + " ds = data_array.to_dataset(name='data') #data_key.split(\"/\")[-1]\n", + " return ds" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "f = h5py.File(H5_PATH, \"r\")\n", + "ts_ds = serialize_to_xarray(f, DATA_KEY, DATA_DIMS).isel(channel=slice(MAX_CHANNELS_TO_PROCESS))\n", + "ts_ds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Building a Data Pyramid\n", + "\n", + "We will feed our new `xarray.DataArray` to `ndpyramid.pyramid_create`, also passing in the dimension that we want downsampled ('`time`'), a custom `apply_downsample` function that uses `xarray.apply_ufunc` to perform computations in a vectorized and parallelized manner, and `FACTORS` which determine the extent of each downsampled level. For instance, a factor of '2' halves the number of time samples, '4' reduces them to a quarter, and so on.\n", + "\n", + "To each chunk of data, our custom `apply_downsample` function applies the `MinMaxLTTBDownsampler` from the `tsdownsample` library, which selects data points that best represent the overall shape of the signal. This method is particularly effective in preserving the visual integrity of the data, even at reduced resolutions." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "FACTORS = [1, 2, 4, 8, 16, 32, 64, 128, 256]\n", + "\n", + "# TODO: find better principled way to determine factors.. The following doesn't work as the number of channels scales\n", + "# FACTORS = list(np.array([1, 2, 4, 8, 16, 32, 64, 128, 256]) ** (len(ts_ds[\"channel\"]) // 4))\n", + "\n", + "\n", + "def _help_downsample(data, time, n_out):\n", + " \"\"\"\n", + " Helper function for downsampling and returning as a specific format.\n", + " \"\"\"\n", + " indices = MinMaxLTTBDownsampler().downsample(time, data, n_out=n_out)\n", + " return data[indices], indices\n", + "\n", + "\n", + "def apply_downsample(ts_ds, factor, dims):\n", + " \"\"\"\n", + " Apply downsampling to a time series dataset.\n", + " \"\"\"\n", + " dim = dims[0]\n", + " n_out = len(ts_ds[\"data\"]) // factor\n", + " print(f\"Downsampling by factor {factor} for a size of {n_out}.\")\n", + " ts_ds_downsampled, indices = xr.apply_ufunc(\n", + " _help_downsample,\n", + " ts_ds[\"data\"],\n", + " ts_ds[dim],\n", + " kwargs=dict(n_out=n_out),\n", + " input_core_dims=[[dim], [dim]],\n", + " output_core_dims=[[dim], [\"indices\"]],\n", + " exclude_dims=set((dim,)),\n", + " vectorize=True,\n", + " dask=\"parallelized\",\n", + " dask_gufunc_kwargs=dict(output_sizes={dim: n_out, \"indices\": n_out}),\n", + " )\n", + " # Update the dimension coordinates with the downsampled indices\n", + " ts_ds_downsampled[dim] = ts_ds[dim].isel(time=indices.values[0])\n", + " return ts_ds_downsampled.rename(\"data\")\n", + "\n", + "\n", + "if not PYRAMID_PATH.exists() or OVERWRITE:\n", + " ts_dt = pyramid_create(\n", + " ts_ds,\n", + " factors=FACTORS,\n", + " dims=[\"time\"],\n", + " func=apply_downsample,\n", + " type_label=\"pick\",\n", + " method_label=\"pyramid_downsample\",\n", + " )\n", + " display(ts_dt)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Persist and Re-open\n", + "\n", + "Now we can easily save the multi-level pyramid `to_zarr` format on disk." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if not PYRAMID_PATH.exists() or OVERWRITE:\n", + " PYRAMID_PATH.parent.mkdir(parents=True, exist_ok=True)\n", + " ts_dt.to_zarr(PYRAMID_PATH, mode=\"w\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And read it back in just as easily; just be sure to specify the `zarr` engine." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ts_dt = open_datatree(PYRAMID_PATH, engine=\"zarr\")\n", + "ts_dt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you expand the 'Group' dropdown above, you can see each pyramid level has the same number of channels, but different number of timestamps, since the time dimension was downsampled." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dynamic Pyramid Plotting\n", + "\n", + "Now that we've created our data pyramid, we can set up the interactive visualization." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Prepare the Data\n", + "\n", + "First, we will prepare some metadata needed for plotting and define a helper function to extract a dataset at a specific pyramid level and channel." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def _extract_ds(ts_dt, level, channels=None):\n", + " \"\"\" Extract a dataset at a specific level\"\"\"\n", + " ds = ts_dt[str(level)].ds\n", + " return ds if channels is None else ds.sel(channel=channels)\n", + "\n", + "# Grab the timestamps from the coursest level of the datatree for initialization\n", + "num_levels = len(ts_dt)\n", + "coarsest_level = str(num_levels-1)\n", + "time_da = _extract_ds(ts_dt, coarsest_level)[\"time\"]\n", + "channels = ts_dt[coarsest_level].ds[\"channel\"].values[:MAX_CHANNELS_TO_DISPLAY]\n", + "num_channels = len(channels)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create Dynamic Plot\n", + "\n", + "We'll utilize a HoloViews `DynamicMap` which will call our custom function called `rescale` whenever there is a change in the visible axes' ranges (`RangeXY`) or the size of a plot (`PlotSize`).\n", + "\n", + "Based on the changes and thresholds, a new plot is created using a new subset of the datatree pyramid.\n", + "\n", + "\n", + "
Want more details? Click here \n", + "\n", + "When the `rescale` function is triggered, it will first determine which pyramid `zoom_level` has the next closest number of data samples in the visible time range (`time_slice`) compared with the number of horizontal pixels on the screen.\n", + "\n", + "Depending on the determined `zoom_level`, data corresponding to the visible time range is fetched through the `_extract_ds` function, which accesses the specific slice of data from the appropriate pyramid level.\n", + "\n", + "Finally, for each channel within the specified range, a `Curve` element is generated using HoloViews, and each curve is added to the `Overlay` for a stacked multi-channel timeseries visualization.\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# TODO: add handling for large number of channels - at some threshold it will impact loadable pyramid level \n", + "# TODO: profile for latency.. potentially parallel stream rendering?\n", + "# TODO: debug why sometimes the plotsize stream doesn't get triggered\n", + "\n", + "X_PADDING = 0.2 # buffer x-range to reduce update latency with pans and zoom-outs\n", + "\n", + "# TODO: use custom hv hovertool when holoviews is released.\n", + "hover = HoverTool(\n", + " tooltips=[\n", + " (\"Channel\", \"@label\"),\n", + " (\"Time\", \"$x s\"),\n", + " (\"Amplitude\", \"$y µV\"),\n", + " ]\n", + " )\n", + "\n", + "def rescale(x_range, y_range, width, scale, height):\n", + "\n", + " # Handle edge case when streams are initialized\n", + " if x_range is None:\n", + " x_range = time_da.min().item(), time_da.max().item()\n", + " if y_range is None:\n", + " y_range = 0, num_channels\n", + "\n", + " # define time range slice\n", + " x_padding = (x_range[1] - x_range[0]) * X_PADDING\n", + " time_slice = slice(x_range[0] - x_padding, x_range[1] + x_padding)\n", + " channel_slice = slice(y_range[0], y_range[1])\n", + "\n", + " # calculate the appropriate pyramid level and size\n", + " if width is None or height is None:\n", + " pyramid_level = num_levels - 1\n", + " size = time_da.size\n", + " else:\n", + " sizes = np.array([\n", + " _extract_ds(ts_dt, pyramid_level)[\"time\"].sel(time=time_slice).size\n", + " for pyramid_level in range(num_levels)\n", + " ])\n", + " diffs = sizes - width\n", + " pyramid_level = np.argmin(np.where(diffs >= 0, diffs, np.inf)) # nearest higher-resolution level\n", + " # pyramid_level = np.argmin(np.abs(np.array(sizes) - width)) # nearest, regardless of direction\n", + " size = sizes[pyramid_level]\n", + " \n", + " title = (\n", + " f\"[Pyramid Level {pyramid_level} ({x_range[0]:.2f}s - {x_range[1]:.2f}s)] \"\n", + " f\"[Time Samples: {size}] [Plot Size WxH: {width}x{height}]\"\n", + " )\n", + "\n", + " # extract new data and re-paint the plot\n", + " # ds = _extract_ds(ts_dt, pyramid_level, channels).sel(time=time_slice).load()\n", + " ds = _extract_ds(ts_dt, pyramid_level, channels).sel(time=time_slice, channel=channel_slice).load()\n", + "\n", + "\n", + " curves = hv.Overlay(kdims=\"Channel\")\n", + " # for channel in channels:\n", + " for channel in ds[\"channel\"].values.tolist():\n", + " curves *= hv.Curve(ds.sel(channel=channel), [\"time\"], [\"data\"], label=str(channel)).opts(\n", + " color=\"black\",\n", + " line_width=1,\n", + " subcoordinate_y=True,\n", + " subcoordinate_scale=2,\n", + " default_tools=[\"pan\", \"reset\", \"wheel_zoom\", \"box_zoom\", \"xbox_zoom\", WheelZoomTool(), hover],\n", + " )\n", + " \n", + " curves = curves.opts(\n", + " xlabel=\"Time (s)\",\n", + " ylabel=\"Channel\",\n", + " title=title,\n", + " show_legend=False,\n", + " padding=0,\n", + " min_height=500,\n", + " responsive=True,\n", + " framewise=True,\n", + " axiswise=True,\n", + " )\n", + " return curves\n", + "\n", + "range_stream = hv.streams.RangeXY()\n", + "size_stream = hv.streams.PlotSize()\n", + "dmap = hv.DynamicMap(rescale, streams=[size_stream, range_stream])\n", + "\n", + "# dmap # uncomment to display timeseries plot prior to extensions below" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Extension: Minimap" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.stats import zscore\n", + "from holoviews.operation.datashader import rasterize\n", + "from holoviews.plotting.links import RangeToolLink\n", + "\n", + "y_positions = range(num_channels)\n", + "yticks = [(i, ich) for i, ich in enumerate(channels)]\n", + "\n", + "z_data = zscore(ts_dt[coarsest_level].ds[\"data\"].values[:MAX_CHANNELS_TO_DISPLAY], axis=1)\n", + "\n", + "minimap = rasterize(\n", + " hv.Image((time_da, y_positions, z_data), [\"Time\", \"Channel\"], \"Amplitude\")\n", + ")\n", + "\n", + "minimap = minimap.opts(\n", + " cnorm='eq_hist',\n", + " cmap=\"RdBu_r\",\n", + " alpha=0.5,\n", + " xlabel=\"\",\n", + " yticks=[yticks[0], yticks[-1]],\n", + " toolbar=\"disable\",\n", + " height=120,\n", + " responsive=True,\n", + ")\n", + "\n", + "tool_link = RangeToolLink(\n", + " minimap,\n", + " dmap,\n", + " axes=[\"x\", \"y\"],\n", + " boundsx=(0, time_da.max().item() // 2),\n", + " boundsy=(0, len(channels) // 2),\n", + ")\n", + "\n", + "app = (dmap + minimap).cols(1)#.opts(axiswise=True)\n", + "# app" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Extension: Standalone App" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using HoloViz Panel, we can also set this application as servable so we can see it in a browser window, outside of a Jupyter Notebook.\n", + "\n", + "We'll add our plot to the `main` area of a Panel app template (for styling), and then set the `servable` parameter to `True`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# pn.serve(app)\n", + "\n", + "# TODO: isel error when serving from command line:\n", + "# templated_app = pn.template.FastListTemplate(\n", + "# main=[pn.Column(app)]\n", + "# ).servable()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/workflows/multi_channel_timeseries/dev/examples.ipynb b/workflows/multi_channel_timeseries/dev/examples.ipynb index 3dcdf2f..1121138 100644 --- a/workflows/multi_channel_timeseries/dev/examples.ipynb +++ b/workflows/multi_channel_timeseries/dev/examples.ipynb @@ -16,802 +16,74 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "(function(root) {\n", - " function now() {\n", - " return new Date();\n", - " }\n", - "\n", - " var force = true;\n", - " var py_version = '3.4.1'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", - " var reloading = false;\n", - " var Bokeh = root.Bokeh;\n", - "\n", - " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", - " root._bokeh_timeout = Date.now() + 5000;\n", - " root._bokeh_failed_load = false;\n", - " }\n", - "\n", - " function run_callbacks() {\n", - " try {\n", - " root._bokeh_onload_callbacks.forEach(function(callback) {\n", - " if (callback != null)\n", - " callback();\n", - " });\n", - " } finally {\n", - " delete root._bokeh_onload_callbacks;\n", - " }\n", - " console.debug(\"Bokeh: all callbacks have finished\");\n", - " }\n", - "\n", - " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", - " if (css_urls == null) css_urls = [];\n", - " if (js_urls == null) js_urls = [];\n", - " if (js_modules == null) js_modules = [];\n", - " if (js_exports == null) js_exports = {};\n", - "\n", - " root._bokeh_onload_callbacks.push(callback);\n", - "\n", - " if (root._bokeh_is_loading > 0) {\n", - " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", - " return null;\n", - " }\n", - " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", - " run_callbacks();\n", - " return null;\n", - " }\n", - " if (!reloading) {\n", - " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", - " }\n", - "\n", - " function on_load() {\n", - " root._bokeh_is_loading--;\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", - " run_callbacks()\n", - " }\n", - " }\n", - " window._bokeh_on_load = on_load\n", - "\n", - " function on_error() {\n", - " console.error(\"failed to load \" + url);\n", - " }\n", - "\n", - " var skip = [];\n", - " if (window.requirejs) {\n", - " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", - " root._bokeh_is_loading = css_urls.length + 0;\n", - " } else {\n", - " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", - " }\n", - "\n", - " var existing_stylesheets = []\n", - " var links = document.getElementsByTagName('link')\n", - " for (var i = 0; i < links.length; i++) {\n", - " var link = links[i]\n", - " if (link.href != null) {\n", - "\texisting_stylesheets.push(link.href)\n", - " }\n", - " }\n", - " for (var i = 0; i < css_urls.length; i++) {\n", - " var url = css_urls[i];\n", - " if (existing_stylesheets.indexOf(url) !== -1) {\n", - "\ton_load()\n", - "\tcontinue;\n", - " }\n", - " const element = document.createElement(\"link\");\n", - " element.onload = on_load;\n", - " element.onerror = on_error;\n", - " element.rel = \"stylesheet\";\n", - " element.type = \"text/css\";\n", - " element.href = url;\n", - " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", - " document.body.appendChild(element);\n", - " } var existing_scripts = []\n", - " var scripts = document.getElementsByTagName('script')\n", - " for (var i = 0; i < scripts.length; i++) {\n", - " var script = scripts[i]\n", - " if (script.src != null) {\n", - "\texisting_scripts.push(script.src)\n", - " }\n", - " }\n", - " for (var i = 0; i < js_urls.length; i++) {\n", - " var url = js_urls[i];\n", - " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", - "\tif (!window.requirejs) {\n", - "\t on_load();\n", - "\t}\n", - "\tcontinue;\n", - " }\n", - " var element = document.createElement('script');\n", - " element.onload = on_load;\n", - " element.onerror = on_error;\n", - " element.async = false;\n", - " element.src = url;\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " document.head.appendChild(element);\n", - " }\n", - " for (var i = 0; i < js_modules.length; i++) {\n", - " var url = js_modules[i];\n", - " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", - "\tif (!window.requirejs) {\n", - "\t on_load();\n", - "\t}\n", - "\tcontinue;\n", - " }\n", - " var element = document.createElement('script');\n", - " element.onload = on_load;\n", - " element.onerror = on_error;\n", - " element.async = false;\n", - " element.src = url;\n", - " element.type = \"module\";\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " document.head.appendChild(element);\n", - " }\n", - " for (const name in js_exports) {\n", - " var url = js_exports[name];\n", - " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", - "\tif (!window.requirejs) {\n", - "\t on_load();\n", - "\t}\n", - "\tcontinue;\n", - " }\n", - " var element = document.createElement('script');\n", - " element.onerror = on_error;\n", - " element.async = false;\n", - " element.type = \"module\";\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " element.textContent = `\n", - " import ${name} from \"${url}\"\n", - " window.${name} = ${name}\n", - " window._bokeh_on_load()\n", - " `\n", - " document.head.appendChild(element);\n", - " }\n", - " if (!js_urls.length && !js_modules.length) {\n", - " on_load()\n", - " }\n", - " };\n", - "\n", - " function inject_raw_css(css) {\n", - " const element = document.createElement(\"style\");\n", - " element.appendChild(document.createTextNode(css));\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.1.min.js\", \"https://cdn.holoviz.org/panel/1.4.1/dist/panel.min.js\"];\n", - " var js_modules = [];\n", - " var js_exports = {};\n", - " var css_urls = [];\n", - " var inline_js = [ function(Bokeh) {\n", - " Bokeh.set_log_level(\"info\");\n", - " },\n", - "function(Bokeh) {} // ensure no trailing comma for IE\n", - " ];\n", - "\n", - " function run_inline_js() {\n", - " if ((root.Bokeh !== undefined) || (force === true)) {\n", - " for (var i = 0; i < inline_js.length; i++) {\n", - "\ttry {\n", - " inline_js[i].call(root, root.Bokeh);\n", - "\t} catch(e) {\n", - "\t if (!reloading) {\n", - "\t throw e;\n", - "\t }\n", - "\t}\n", - " }\n", - " // Cache old bokeh versions\n", - " if (Bokeh != undefined && !reloading) {\n", - "\tvar NewBokeh = root.Bokeh;\n", - "\tif (Bokeh.versions === undefined) {\n", - "\t Bokeh.versions = new Map();\n", - "\t}\n", - "\tif (NewBokeh.version !== Bokeh.version) {\n", - "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", - "\t}\n", - "\troot.Bokeh = Bokeh;\n", - " }} else if (Date.now() < root._bokeh_timeout) {\n", - " setTimeout(run_inline_js, 100);\n", - " } else if (!root._bokeh_failed_load) {\n", - " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", - " root._bokeh_failed_load = true;\n", - " }\n", - " root._bokeh_is_initializing = false\n", - " }\n", - "\n", - " function load_or_wait() {\n", - " // Implement a backoff loop that tries to ensure we do not load multiple\n", - " // versions of Bokeh and its dependencies at the same time.\n", - " // In recent versions we use the root._bokeh_is_initializing flag\n", - " // to determine whether there is an ongoing attempt to initialize\n", - " // bokeh, however for backward compatibility we also try to ensure\n", - " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", - " // before older versions are fully initialized.\n", - " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", - " root._bokeh_is_initializing = false;\n", - " root._bokeh_onload_callbacks = undefined;\n", - " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", - " load_or_wait();\n", - " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", - " setTimeout(load_or_wait, 100);\n", - " } else {\n", - " root._bokeh_is_initializing = true\n", - " root._bokeh_onload_callbacks = []\n", - " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", - " if (!reloading && !bokeh_loaded) {\n", - "\troot.Bokeh = undefined;\n", - " }\n", - " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", - "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", - "\trun_inline_js();\n", - " });\n", - " }\n", - " }\n", - " // Give older versions of the autoload script a head-start to ensure\n", - " // they initialize before we start loading newer version.\n", - " setTimeout(load_or_wait, 100)\n", - "}(window));" - ], - "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.4.1'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.1.min.js\", \"https://cdn.holoviz.org/panel/1.4.1/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/javascript": [ - "\n", - "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", - " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", - "}\n", - "\n", - "\n", - " function JupyterCommManager() {\n", - " }\n", - "\n", - " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", - " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", - " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", - " comm_manager.register_target(comm_id, function(comm) {\n", - " comm.on_msg(msg_handler);\n", - " });\n", - " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", - " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", - " comm.onMsg = msg_handler;\n", - " });\n", - " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", - " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", - " var messages = comm.messages[Symbol.asyncIterator]();\n", - " function processIteratorResult(result) {\n", - " var message = result.value;\n", - " console.log(message)\n", - " var content = {data: message.data, comm_id};\n", - " var buffers = []\n", - " for (var buffer of message.buffers || []) {\n", - " buffers.push(new DataView(buffer))\n", - " }\n", - " var metadata = message.metadata || {};\n", - " var msg = {content, buffers, metadata}\n", - " msg_handler(msg);\n", - " return messages.next().then(processIteratorResult);\n", - " }\n", - " return messages.next().then(processIteratorResult);\n", - " })\n", - " }\n", - " }\n", - "\n", - " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", - " if (comm_id in window.PyViz.comms) {\n", - " return window.PyViz.comms[comm_id];\n", - " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", - " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", - " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", - " if (msg_handler) {\n", - " comm.on_msg(msg_handler);\n", - " }\n", - " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", - " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", - " comm.open();\n", - " if (msg_handler) {\n", - " comm.onMsg = msg_handler;\n", - " }\n", - " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", - " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", - " comm_promise.then((comm) => {\n", - " window.PyViz.comms[comm_id] = comm;\n", - " if (msg_handler) {\n", - " var messages = comm.messages[Symbol.asyncIterator]();\n", - " function processIteratorResult(result) {\n", - " var message = result.value;\n", - " var content = {data: message.data};\n", - " var metadata = message.metadata || {comm_id};\n", - " var msg = {content, metadata}\n", - " msg_handler(msg);\n", - " return messages.next().then(processIteratorResult);\n", - " }\n", - " return messages.next().then(processIteratorResult);\n", - " }\n", - " }) \n", - " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", - " return comm_promise.then((comm) => {\n", - " comm.send(data, metadata, buffers, disposeOnDone);\n", - " });\n", - " };\n", - " var comm = {\n", - " send: sendClosure\n", - " };\n", - " }\n", - " window.PyViz.comms[comm_id] = comm;\n", - " return comm;\n", - " }\n", - " window.PyViz.comm_manager = new JupyterCommManager();\n", - " \n", - "\n", - "\n", - "var JS_MIME_TYPE = 'application/javascript';\n", - "var HTML_MIME_TYPE = 'text/html';\n", - "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", - "var CLASS_NAME = 'output';\n", - "\n", - "/**\n", - " * Render data to the DOM node\n", - " */\n", - "function render(props, node) {\n", - " var div = document.createElement(\"div\");\n", - " var script = document.createElement(\"script\");\n", - " node.appendChild(div);\n", - " node.appendChild(script);\n", - "}\n", - "\n", - "/**\n", - " * Handle when a new output is added\n", - " */\n", - "function handle_add_output(event, handle) {\n", - " var output_area = handle.output_area;\n", - " var output = handle.output;\n", - " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", - " return\n", - " }\n", - " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", - " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", - " if (id !== undefined) {\n", - " var nchildren = toinsert.length;\n", - " var html_node = toinsert[nchildren-1].children[0];\n", - " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", - " var scripts = [];\n", - " var nodelist = html_node.querySelectorAll(\"script\");\n", - " for (var i in nodelist) {\n", - " if (nodelist.hasOwnProperty(i)) {\n", - " scripts.push(nodelist[i])\n", - " }\n", - " }\n", - "\n", - " scripts.forEach( function (oldScript) {\n", - " var newScript = document.createElement(\"script\");\n", - " var attrs = [];\n", - " var nodemap = oldScript.attributes;\n", - " for (var j in nodemap) {\n", - " if (nodemap.hasOwnProperty(j)) {\n", - " attrs.push(nodemap[j])\n", - " }\n", - " }\n", - " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", - " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", - " oldScript.parentNode.replaceChild(newScript, oldScript);\n", - " });\n", - " if (JS_MIME_TYPE in output.data) {\n", - " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", - " }\n", - " output_area._hv_plot_id = id;\n", - " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", - " window.PyViz.plot_index[id] = Bokeh.index[id];\n", - " } else {\n", - " window.PyViz.plot_index[id] = null;\n", - " }\n", - " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", - " var bk_div = document.createElement(\"div\");\n", - " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", - " var script_attrs = bk_div.children[0].attributes;\n", - " for (var i = 0; i < script_attrs.length; i++) {\n", - " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", - " }\n", - " // store reference to server id on output_area\n", - " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", - " }\n", - "}\n", - "\n", - "/**\n", - " * Handle when an output is cleared or removed\n", - " */\n", - "function handle_clear_output(event, handle) {\n", - " var id = handle.cell.output_area._hv_plot_id;\n", - " var server_id = handle.cell.output_area._bokeh_server_id;\n", - " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", - " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", - " if (server_id !== null) {\n", - " comm.send({event_type: 'server_delete', 'id': server_id});\n", - " return;\n", - " } else if (comm !== null) {\n", - " comm.send({event_type: 'delete', 'id': id});\n", - " }\n", - " delete PyViz.plot_index[id];\n", - " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", - " var doc = window.Bokeh.index[id].model.document\n", - " doc.clear();\n", - " const i = window.Bokeh.documents.indexOf(doc);\n", - " if (i > -1) {\n", - " window.Bokeh.documents.splice(i, 1);\n", - " }\n", - " }\n", - "}\n", - "\n", - "/**\n", - " * Handle kernel restart event\n", - " */\n", - "function handle_kernel_cleanup(event, handle) {\n", - " delete PyViz.comms[\"hv-extension-comm\"];\n", - " window.PyViz.plot_index = {}\n", - "}\n", - "\n", - "/**\n", - " * Handle update_display_data messages\n", - " */\n", - "function handle_update_output(event, handle) {\n", - " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", - " handle_add_output(event, handle)\n", - "}\n", - "\n", - "function register_renderer(events, OutputArea) {\n", - " function append_mime(data, metadata, element) {\n", - " // create a DOM node to render to\n", - " var toinsert = this.create_output_subarea(\n", - " metadata,\n", - " CLASS_NAME,\n", - " EXEC_MIME_TYPE\n", - " );\n", - " this.keyboard_manager.register_events(toinsert);\n", - " // Render to node\n", - " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", - " render(props, toinsert[0]);\n", - " element.append(toinsert);\n", - " return toinsert\n", - " }\n", - "\n", - " events.on('output_added.OutputArea', handle_add_output);\n", - " events.on('output_updated.OutputArea', handle_update_output);\n", - " events.on('clear_output.CodeCell', handle_clear_output);\n", - " events.on('delete.Cell', handle_clear_output);\n", - " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", - "\n", - " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", - " safe: true,\n", - " index: 0\n", - " });\n", - "}\n", - "\n", - "if (window.Jupyter !== undefined) {\n", - " try {\n", - " var events = require('base/js/events');\n", - " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", - " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", - " register_renderer(events, OutputArea);\n", - " }\n", - " } catch(err) {\n", - " }\n", - "}\n" - ], - "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.holoviews_exec.v0+json": "", - "text/html": [ - "
\n", - "
\n", - "
\n", - "" - ] - }, - "metadata": { - "application/vnd.holoviews_exec.v0+json": { - "id": "p1066" - } - }, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - "\n", - "\n", - "\n", - " \n", - " \n", - "\n", - "\n", - "\n", - "\n", - "
\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": {}, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.holoviews_exec.v0+json": "", - "text/html": [ - "
\n", - "
\n", - "
\n", - "" - ], - "text/plain": [ - ":Curve [x] (y)" - ] - }, - "execution_count": 3, - "metadata": { - "application/vnd.holoviews_exec.v0+json": { - "id": "p1068" - } - }, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "import holoviews as hv; hv.extension('bokeh')\n", "hv.Curve([])" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## using pd df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from datetime import datetime, timedelta\n", + "\n", + "import holoviews as hv; hv.extension('bokeh')\n", + "import panel as pn; pn.extension()\n", + "\n", + "amp_dim = hv.Dimension(\"amplitude\", unit=\"µV\")\n", + "time_dim = hv.Dimension(\"time\", unit=\"ms\")\n", + "\n", + "n_channels = 10\n", + "n_seconds = 5\n", + "total_samples = 256*n_seconds\n", + "start_datetime = datetime(2024, 1, 1)\n", + "time = np.array([start_datetime + timedelta(seconds=t) for t in np.linspace(0, n_seconds, total_samples)])\n", + "\n", + "data = np.random.randn(n_channels, total_samples).cumsum(axis=1)\n", + "channels = [f\"EEG {i}\" for i in range(n_channels)]\n", + "\n", + "df = pd.DataFrame(data.T, index=time, columns=channels)\n", + "df.index.name = 'time'\n", + "\n", + "hover_tooltips=[\n", + " (\"type\", \"$group\"),\n", + " (\"channel\", \"$label\"),\n", + " (\"time\", '@time{%H:%M:%S.%3N}'),\n", + " (\"amplitude\"),\n", + "]\n", + "\n", + "curves = {}\n", + "for channel_name, channel_data in df.items():\n", + " ds = hv.Dataset((channel_data.index, channel_data, channel), [time_dim, amp_dim, \"channel\"])\n", + " curve = hv.Curve(ds, time_dim, [amp_dim, \"channel\"], label=channel_name, group='EEG')\n", + " curve.opts(color=\"black\", line_width=1, subcoordinate_y=True, subcoordinate_scale=3,\n", + " hover_tooltips = hover_tooltips)\n", + " curves[channel_name] = curve\n", + "\n", + "curves_overlay = hv.Overlay(curves, kdims=\"channel\").opts(padding=0, aspect=2, responsive=True,show_legend=False)\n", + "\n", + "curves_overlay" + ] + }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "ename": "ModuleNotFoundError", - "evalue": "No module named 'h5py'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mh5py\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mnumpy\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mnp\u001b[39;00m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mholoviews\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mhv\u001b[39;00m; hv\u001b[38;5;241m.\u001b[39mextension(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbokeh\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", - "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'h5py'" - ] - } - ], + "outputs": [], "source": [ "\n", "# import h5py\n", @@ -837,7 +109,7 @@ "for channel, channel_data in zip(channels, data):\n", " ds = hv.Dataset((time, channel_data, channel), [\"Time\", \"Amplitude\", \"channel\"])\n", " curve = hv.Curve(ds, \"Time\", [\"Amplitude\", \"channel\"], label=channel)\n", - " curve.opts(color=\"black\", line_width=1, subcoordinate_y=True, subcoordinate_scale=3, tools=['hover']) #tools=[hover]\n", + " curve.opts(color=\"black\", line_width=1, subcoordinate_y=True, subcoordinate_scale=3, tools=['hover'])\n", " channel_curves.append(curve)\n", "\n", "curves = hv.Overlay(channel_curves, kdims=\"Channel\").opts(padding=0, aspect=3, responsive=True,)\n", @@ -854,781 +126,9 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "(function(root) {\n", - " function now() {\n", - " return new Date();\n", - " }\n", - "\n", - " var force = true;\n", - " var py_version = '3.4.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", - " var reloading = false;\n", - " var Bokeh = root.Bokeh;\n", - "\n", - " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", - " root._bokeh_timeout = Date.now() + 5000;\n", - " root._bokeh_failed_load = false;\n", - " }\n", - "\n", - " function run_callbacks() {\n", - " try {\n", - " root._bokeh_onload_callbacks.forEach(function(callback) {\n", - " if (callback != null)\n", - " callback();\n", - " });\n", - " } finally {\n", - " delete root._bokeh_onload_callbacks;\n", - " }\n", - " console.debug(\"Bokeh: all callbacks have finished\");\n", - " }\n", - "\n", - " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", - " if (css_urls == null) css_urls = [];\n", - " if (js_urls == null) js_urls = [];\n", - " if (js_modules == null) js_modules = [];\n", - " if (js_exports == null) js_exports = {};\n", - "\n", - " root._bokeh_onload_callbacks.push(callback);\n", - "\n", - " if (root._bokeh_is_loading > 0) {\n", - " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", - " return null;\n", - " }\n", - " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", - " run_callbacks();\n", - " return null;\n", - " }\n", - " if (!reloading) {\n", - " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", - " }\n", - "\n", - " function on_load() {\n", - " root._bokeh_is_loading--;\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", - " run_callbacks()\n", - " }\n", - " }\n", - " window._bokeh_on_load = on_load\n", - "\n", - " function on_error() {\n", - " console.error(\"failed to load \" + url);\n", - " }\n", - "\n", - " var skip = [];\n", - " if (window.requirejs) {\n", - " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", - " root._bokeh_is_loading = css_urls.length + 0;\n", - " } else {\n", - " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", - " }\n", - "\n", - " var existing_stylesheets = []\n", - " var links = document.getElementsByTagName('link')\n", - " for (var i = 0; i < links.length; i++) {\n", - " var link = links[i]\n", - " if (link.href != null) {\n", - "\texisting_stylesheets.push(link.href)\n", - " }\n", - " }\n", - " for (var i = 0; i < css_urls.length; i++) {\n", - " var url = css_urls[i];\n", - " if (existing_stylesheets.indexOf(url) !== -1) {\n", - "\ton_load()\n", - "\tcontinue;\n", - " }\n", - " const element = document.createElement(\"link\");\n", - " element.onload = on_load;\n", - " element.onerror = on_error;\n", - " element.rel = \"stylesheet\";\n", - " element.type = \"text/css\";\n", - " element.href = url;\n", - " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", - " document.body.appendChild(element);\n", - " } var existing_scripts = []\n", - " var scripts = document.getElementsByTagName('script')\n", - " for (var i = 0; i < scripts.length; i++) {\n", - " var script = scripts[i]\n", - " if (script.src != null) {\n", - "\texisting_scripts.push(script.src)\n", - " }\n", - " }\n", - " for (var i = 0; i < js_urls.length; i++) {\n", - " var url = js_urls[i];\n", - " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", - "\tif (!window.requirejs) {\n", - "\t on_load();\n", - "\t}\n", - "\tcontinue;\n", - " }\n", - " var element = document.createElement('script');\n", - " element.onload = on_load;\n", - " element.onerror = on_error;\n", - " element.async = false;\n", - " element.src = url;\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " document.head.appendChild(element);\n", - " }\n", - " for (var i = 0; i < js_modules.length; i++) {\n", - " var url = js_modules[i];\n", - " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", - "\tif (!window.requirejs) {\n", - "\t on_load();\n", - "\t}\n", - "\tcontinue;\n", - " }\n", - " var element = document.createElement('script');\n", - " element.onload = on_load;\n", - " element.onerror = on_error;\n", - " element.async = false;\n", - " element.src = url;\n", - " element.type = \"module\";\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " document.head.appendChild(element);\n", - " }\n", - " for (const name in js_exports) {\n", - " var url = js_exports[name];\n", - " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", - "\tif (!window.requirejs) {\n", - "\t on_load();\n", - "\t}\n", - "\tcontinue;\n", - " }\n", - " var element = document.createElement('script');\n", - " element.onerror = on_error;\n", - " element.async = false;\n", - " element.type = \"module\";\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " element.textContent = `\n", - " import ${name} from \"${url}\"\n", - " window.${name} = ${name}\n", - " window._bokeh_on_load()\n", - " `\n", - " document.head.appendChild(element);\n", - " }\n", - " if (!js_urls.length && !js_modules.length) {\n", - " on_load()\n", - " }\n", - " };\n", - "\n", - " function inject_raw_css(css) {\n", - " const element = document.createElement(\"style\");\n", - " element.appendChild(document.createTextNode(css));\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.0.min.js\", \"https://cdn.holoviz.org/panel/1.4.0/dist/panel.min.js\"];\n", - " var js_modules = [];\n", - " var js_exports = {};\n", - " var css_urls = [];\n", - " var inline_js = [ function(Bokeh) {\n", - " Bokeh.set_log_level(\"info\");\n", - " },\n", - "function(Bokeh) {} // ensure no trailing comma for IE\n", - " ];\n", - "\n", - " function run_inline_js() {\n", - " if ((root.Bokeh !== undefined) || (force === true)) {\n", - " for (var i = 0; i < inline_js.length; i++) {\n", - "\ttry {\n", - " inline_js[i].call(root, root.Bokeh);\n", - "\t} catch(e) {\n", - "\t if (!reloading) {\n", - "\t throw e;\n", - "\t }\n", - "\t}\n", - " }\n", - " // Cache old bokeh versions\n", - " if (Bokeh != undefined && !reloading) {\n", - "\tvar NewBokeh = root.Bokeh;\n", - "\tif (Bokeh.versions === undefined) {\n", - "\t Bokeh.versions = new Map();\n", - "\t}\n", - "\tif (NewBokeh.version !== Bokeh.version) {\n", - "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", - "\t}\n", - "\troot.Bokeh = Bokeh;\n", - " }} else if (Date.now() < root._bokeh_timeout) {\n", - " setTimeout(run_inline_js, 100);\n", - " } else if (!root._bokeh_failed_load) {\n", - " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", - " root._bokeh_failed_load = true;\n", - " }\n", - " root._bokeh_is_initializing = false\n", - " }\n", - "\n", - " function load_or_wait() {\n", - " // Implement a backoff loop that tries to ensure we do not load multiple\n", - " // versions of Bokeh and its dependencies at the same time.\n", - " // In recent versions we use the root._bokeh_is_initializing flag\n", - " // to determine whether there is an ongoing attempt to initialize\n", - " // bokeh, however for backward compatibility we also try to ensure\n", - " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", - " // before older versions are fully initialized.\n", - " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", - " root._bokeh_is_initializing = false;\n", - " root._bokeh_onload_callbacks = undefined;\n", - " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", - " load_or_wait();\n", - " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", - " setTimeout(load_or_wait, 100);\n", - " } else {\n", - " root._bokeh_is_initializing = true\n", - " root._bokeh_onload_callbacks = []\n", - " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", - " if (!reloading && !bokeh_loaded) {\n", - "\troot.Bokeh = undefined;\n", - " }\n", - " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", - "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", - "\trun_inline_js();\n", - " });\n", - " }\n", - " }\n", - " // Give older versions of the autoload script a head-start to ensure\n", - " // they initialize before we start loading newer version.\n", - " setTimeout(load_or_wait, 100)\n", - "}(window));" - ], - "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.4.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.0.min.js\", \"https://cdn.holoviz.org/panel/1.4.0/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/javascript": [ - "\n", - "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", - " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", - "}\n", - "\n", - "\n", - " function JupyterCommManager() {\n", - " }\n", - "\n", - " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", - " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", - " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", - " comm_manager.register_target(comm_id, function(comm) {\n", - " comm.on_msg(msg_handler);\n", - " });\n", - " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", - " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", - " comm.onMsg = msg_handler;\n", - " });\n", - " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", - " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", - " var messages = comm.messages[Symbol.asyncIterator]();\n", - " function processIteratorResult(result) {\n", - " var message = result.value;\n", - " console.log(message)\n", - " var content = {data: message.data, comm_id};\n", - " var buffers = []\n", - " for (var buffer of message.buffers || []) {\n", - " buffers.push(new DataView(buffer))\n", - " }\n", - " var metadata = message.metadata || {};\n", - " var msg = {content, buffers, metadata}\n", - " msg_handler(msg);\n", - " return messages.next().then(processIteratorResult);\n", - " }\n", - " return messages.next().then(processIteratorResult);\n", - " })\n", - " }\n", - " }\n", - "\n", - " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", - " if (comm_id in window.PyViz.comms) {\n", - " return window.PyViz.comms[comm_id];\n", - " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", - " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", - " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", - " if (msg_handler) {\n", - " comm.on_msg(msg_handler);\n", - " }\n", - " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", - " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", - " comm.open();\n", - " if (msg_handler) {\n", - " comm.onMsg = msg_handler;\n", - " }\n", - " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", - " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", - " comm_promise.then((comm) => {\n", - " window.PyViz.comms[comm_id] = comm;\n", - " if (msg_handler) {\n", - " var messages = comm.messages[Symbol.asyncIterator]();\n", - " function processIteratorResult(result) {\n", - " var message = result.value;\n", - " var content = {data: message.data};\n", - " var metadata = message.metadata || {comm_id};\n", - " var msg = {content, metadata}\n", - " msg_handler(msg);\n", - " return messages.next().then(processIteratorResult);\n", - " }\n", - " return messages.next().then(processIteratorResult);\n", - " }\n", - " }) \n", - " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", - " return comm_promise.then((comm) => {\n", - " comm.send(data, metadata, buffers, disposeOnDone);\n", - " });\n", - " };\n", - " var comm = {\n", - " send: sendClosure\n", - " };\n", - " }\n", - " window.PyViz.comms[comm_id] = comm;\n", - " return comm;\n", - " }\n", - " window.PyViz.comm_manager = new JupyterCommManager();\n", - " \n", - "\n", - "\n", - "var JS_MIME_TYPE = 'application/javascript';\n", - "var HTML_MIME_TYPE = 'text/html';\n", - "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", - "var CLASS_NAME = 'output';\n", - "\n", - "/**\n", - " * Render data to the DOM node\n", - " */\n", - "function render(props, node) {\n", - " var div = document.createElement(\"div\");\n", - " var script = document.createElement(\"script\");\n", - " node.appendChild(div);\n", - " node.appendChild(script);\n", - "}\n", - "\n", - "/**\n", - " * Handle when a new output is added\n", - " */\n", - "function handle_add_output(event, handle) {\n", - " var output_area = handle.output_area;\n", - " var output = handle.output;\n", - " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", - " return\n", - " }\n", - " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", - " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", - " if (id !== undefined) {\n", - " var nchildren = toinsert.length;\n", - " var html_node = toinsert[nchildren-1].children[0];\n", - " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", - " var scripts = [];\n", - " var nodelist = html_node.querySelectorAll(\"script\");\n", - " for (var i in nodelist) {\n", - " if (nodelist.hasOwnProperty(i)) {\n", - " scripts.push(nodelist[i])\n", - " }\n", - " }\n", - "\n", - " scripts.forEach( function (oldScript) {\n", - " var newScript = document.createElement(\"script\");\n", - " var attrs = [];\n", - " var nodemap = oldScript.attributes;\n", - " for (var j in nodemap) {\n", - " if (nodemap.hasOwnProperty(j)) {\n", - " attrs.push(nodemap[j])\n", - " }\n", - " }\n", - " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", - " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", - " oldScript.parentNode.replaceChild(newScript, oldScript);\n", - " });\n", - " if (JS_MIME_TYPE in output.data) {\n", - " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", - " }\n", - " output_area._hv_plot_id = id;\n", - " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", - " window.PyViz.plot_index[id] = Bokeh.index[id];\n", - " } else {\n", - " window.PyViz.plot_index[id] = null;\n", - " }\n", - " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", - " var bk_div = document.createElement(\"div\");\n", - " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", - " var script_attrs = bk_div.children[0].attributes;\n", - " for (var i = 0; i < script_attrs.length; i++) {\n", - " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", - " }\n", - " // store reference to server id on output_area\n", - " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", - " }\n", - "}\n", - "\n", - "/**\n", - " * Handle when an output is cleared or removed\n", - " */\n", - "function handle_clear_output(event, handle) {\n", - " var id = handle.cell.output_area._hv_plot_id;\n", - " var server_id = handle.cell.output_area._bokeh_server_id;\n", - " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", - " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", - " if (server_id !== null) {\n", - " comm.send({event_type: 'server_delete', 'id': server_id});\n", - " return;\n", - " } else if (comm !== null) {\n", - " comm.send({event_type: 'delete', 'id': id});\n", - " }\n", - " delete PyViz.plot_index[id];\n", - " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", - " var doc = window.Bokeh.index[id].model.document\n", - " doc.clear();\n", - " const i = window.Bokeh.documents.indexOf(doc);\n", - " if (i > -1) {\n", - " window.Bokeh.documents.splice(i, 1);\n", - " }\n", - " }\n", - "}\n", - "\n", - "/**\n", - " * Handle kernel restart event\n", - " */\n", - "function handle_kernel_cleanup(event, handle) {\n", - " delete PyViz.comms[\"hv-extension-comm\"];\n", - " window.PyViz.plot_index = {}\n", - "}\n", - "\n", - "/**\n", - " * Handle update_display_data messages\n", - " */\n", - "function handle_update_output(event, handle) {\n", - " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", - " handle_add_output(event, handle)\n", - "}\n", - "\n", - "function register_renderer(events, OutputArea) {\n", - " function append_mime(data, metadata, element) {\n", - " // create a DOM node to render to\n", - " var toinsert = this.create_output_subarea(\n", - " metadata,\n", - " CLASS_NAME,\n", - " EXEC_MIME_TYPE\n", - " );\n", - " this.keyboard_manager.register_events(toinsert);\n", - " // Render to node\n", - " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", - " render(props, toinsert[0]);\n", - " element.append(toinsert);\n", - " return toinsert\n", - " }\n", - "\n", - " events.on('output_added.OutputArea', handle_add_output);\n", - " events.on('output_updated.OutputArea', handle_update_output);\n", - " events.on('clear_output.CodeCell', handle_clear_output);\n", - " events.on('delete.Cell', handle_clear_output);\n", - " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", - "\n", - " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", - " safe: true,\n", - " index: 0\n", - " });\n", - "}\n", - "\n", - "if (window.Jupyter !== undefined) {\n", - " try {\n", - " var events = require('base/js/events');\n", - " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", - " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", - " register_renderer(events, OutputArea);\n", - " }\n", - " } catch(err) {\n", - " }\n", - "}\n" - ], - "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.holoviews_exec.v0+json": "", - "text/html": [ - "
\n", - "
\n", - "
\n", - "" - ] - }, - "metadata": { - "application/vnd.holoviews_exec.v0+json": { - "id": "9743514e-04f0-42ed-ae33-1e208ece7fa9" - } - }, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - "\n", - "\n", - "\n", - " \n", - " \n", - "\n", - "\n", - "\n", - "\n", - "
\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": {}, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.holoviews_exec.v0+json": "", - "text/html": [ - "
\n", - "
\n", - "
\n", - "" - ], - "text/plain": [ - ":NdOverlay [channel]\n", - " :Curve [time] (value)" - ] - }, - "execution_count": 40, - "metadata": { - "application/vnd.holoviews_exec.v0+json": { - "id": "990cce2f-c978-484c-a408-61252d53d4ba" - } - }, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "import numpy as np\n", "import holoviews as hv\n", @@ -1666,709 +166,11 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": null, "metadata": { "scrolled": true }, - "outputs": [ - { - "data": { - "application/javascript": [ - "(function(root) {\n", - " function now() {\n", - " return new Date();\n", - " }\n", - "\n", - " var force = true;\n", - " var py_version = '3.4.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", - " var reloading = false;\n", - " var Bokeh = root.Bokeh;\n", - "\n", - " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", - " root._bokeh_timeout = Date.now() + 5000;\n", - " root._bokeh_failed_load = false;\n", - " }\n", - "\n", - " function run_callbacks() {\n", - " try {\n", - " root._bokeh_onload_callbacks.forEach(function(callback) {\n", - " if (callback != null)\n", - " callback();\n", - " });\n", - " } finally {\n", - " delete root._bokeh_onload_callbacks;\n", - " }\n", - " console.debug(\"Bokeh: all callbacks have finished\");\n", - " }\n", - "\n", - " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", - " if (css_urls == null) css_urls = [];\n", - " if (js_urls == null) js_urls = [];\n", - " if (js_modules == null) js_modules = [];\n", - " if (js_exports == null) js_exports = {};\n", - "\n", - " root._bokeh_onload_callbacks.push(callback);\n", - "\n", - " if (root._bokeh_is_loading > 0) {\n", - " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", - " return null;\n", - " }\n", - " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", - " run_callbacks();\n", - " return null;\n", - " }\n", - " if (!reloading) {\n", - " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", - " }\n", - "\n", - " function on_load() {\n", - " root._bokeh_is_loading--;\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", - " run_callbacks()\n", - " }\n", - " }\n", - " window._bokeh_on_load = on_load\n", - "\n", - " function on_error() {\n", - " console.error(\"failed to load \" + url);\n", - " }\n", - "\n", - " var skip = [];\n", - " if (window.requirejs) {\n", - " window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n", - " root._bokeh_is_loading = css_urls.length + 0;\n", - " } else {\n", - " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", - " }\n", - "\n", - " var existing_stylesheets = []\n", - " var links = document.getElementsByTagName('link')\n", - " for (var i = 0; i < links.length; i++) {\n", - " var link = links[i]\n", - " if (link.href != null) {\n", - "\texisting_stylesheets.push(link.href)\n", - " }\n", - " }\n", - " for (var i = 0; i < css_urls.length; i++) {\n", - " var url = css_urls[i];\n", - " if (existing_stylesheets.indexOf(url) !== -1) {\n", - "\ton_load()\n", - "\tcontinue;\n", - " }\n", - " const element = document.createElement(\"link\");\n", - " element.onload = on_load;\n", - " element.onerror = on_error;\n", - " element.rel = \"stylesheet\";\n", - " element.type = \"text/css\";\n", - " element.href = url;\n", - " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", - " document.body.appendChild(element);\n", - " } var existing_scripts = []\n", - " var scripts = document.getElementsByTagName('script')\n", - " for (var i = 0; i < scripts.length; i++) {\n", - " var script = scripts[i]\n", - " if (script.src != null) {\n", - "\texisting_scripts.push(script.src)\n", - " }\n", - " }\n", - " for (var i = 0; i < js_urls.length; i++) {\n", - " var url = js_urls[i];\n", - " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", - "\tif (!window.requirejs) {\n", - "\t on_load();\n", - "\t}\n", - "\tcontinue;\n", - " }\n", - " var element = document.createElement('script');\n", - " element.onload = on_load;\n", - " element.onerror = on_error;\n", - " element.async = false;\n", - " element.src = url;\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " document.head.appendChild(element);\n", - " }\n", - " for (var i = 0; i < js_modules.length; i++) {\n", - " var url = js_modules[i];\n", - " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", - "\tif (!window.requirejs) {\n", - "\t on_load();\n", - "\t}\n", - "\tcontinue;\n", - " }\n", - " var element = document.createElement('script');\n", - " element.onload = on_load;\n", - " element.onerror = on_error;\n", - " element.async = false;\n", - " element.src = url;\n", - " element.type = \"module\";\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " document.head.appendChild(element);\n", - " }\n", - " for (const name in js_exports) {\n", - " var url = js_exports[name];\n", - " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", - "\tif (!window.requirejs) {\n", - "\t on_load();\n", - "\t}\n", - "\tcontinue;\n", - " }\n", - " var element = document.createElement('script');\n", - " element.onerror = on_error;\n", - " element.async = false;\n", - " element.type = \"module\";\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " element.textContent = `\n", - " import ${name} from \"${url}\"\n", - " window.${name} = ${name}\n", - " window._bokeh_on_load()\n", - " `\n", - " document.head.appendChild(element);\n", - " }\n", - " if (!js_urls.length && !js_modules.length) {\n", - " on_load()\n", - " }\n", - " };\n", - "\n", - " function inject_raw_css(css) {\n", - " const element = document.createElement(\"style\");\n", - " element.appendChild(document.createTextNode(css));\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.0.min.js\", \"https://cdn.holoviz.org/panel/1.4.0/dist/panel.min.js\"];\n", - " var js_modules = [];\n", - " var js_exports = {};\n", - " var css_urls = [];\n", - " var inline_js = [ function(Bokeh) {\n", - " Bokeh.set_log_level(\"info\");\n", - " },\n", - "function(Bokeh) {} // ensure no trailing comma for IE\n", - " ];\n", - "\n", - " function run_inline_js() {\n", - " if ((root.Bokeh !== undefined) || (force === true)) {\n", - " for (var i = 0; i < inline_js.length; i++) {\n", - "\ttry {\n", - " inline_js[i].call(root, root.Bokeh);\n", - "\t} catch(e) {\n", - "\t if (!reloading) {\n", - "\t throw e;\n", - "\t }\n", - "\t}\n", - " }\n", - " // Cache old bokeh versions\n", - " if (Bokeh != undefined && !reloading) {\n", - "\tvar NewBokeh = root.Bokeh;\n", - "\tif (Bokeh.versions === undefined) {\n", - "\t Bokeh.versions = new Map();\n", - "\t}\n", - "\tif (NewBokeh.version !== Bokeh.version) {\n", - "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", - "\t}\n", - "\troot.Bokeh = Bokeh;\n", - " }} else if (Date.now() < root._bokeh_timeout) {\n", - " setTimeout(run_inline_js, 100);\n", - " } else if (!root._bokeh_failed_load) {\n", - " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", - " root._bokeh_failed_load = true;\n", - " }\n", - " root._bokeh_is_initializing = false\n", - " }\n", - "\n", - " function load_or_wait() {\n", - " // Implement a backoff loop that tries to ensure we do not load multiple\n", - " // versions of Bokeh and its dependencies at the same time.\n", - " // In recent versions we use the root._bokeh_is_initializing flag\n", - " // to determine whether there is an ongoing attempt to initialize\n", - " // bokeh, however for backward compatibility we also try to ensure\n", - " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", - " // before older versions are fully initialized.\n", - " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", - " root._bokeh_is_initializing = false;\n", - " root._bokeh_onload_callbacks = undefined;\n", - " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", - " load_or_wait();\n", - " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", - " setTimeout(load_or_wait, 100);\n", - " } else {\n", - " root._bokeh_is_initializing = true\n", - " root._bokeh_onload_callbacks = []\n", - " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", - " if (!reloading && !bokeh_loaded) {\n", - "\troot.Bokeh = undefined;\n", - " }\n", - " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", - "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", - "\trun_inline_js();\n", - " });\n", - " }\n", - " }\n", - " // Give older versions of the autoload script a head-start to ensure\n", - " // they initialize before we start loading newer version.\n", - " setTimeout(load_or_wait, 100)\n", - "}(window));" - ], - "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.4.0'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.0.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.0.min.js\", \"https://cdn.holoviz.org/panel/1.4.0/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/javascript": [ - "\n", - "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", - " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", - "}\n", - "\n", - "\n", - " function JupyterCommManager() {\n", - " }\n", - "\n", - " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", - " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", - " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", - " comm_manager.register_target(comm_id, function(comm) {\n", - " comm.on_msg(msg_handler);\n", - " });\n", - " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", - " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", - " comm.onMsg = msg_handler;\n", - " });\n", - " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", - " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", - " var messages = comm.messages[Symbol.asyncIterator]();\n", - " function processIteratorResult(result) {\n", - " var message = result.value;\n", - " console.log(message)\n", - " var content = {data: message.data, comm_id};\n", - " var buffers = []\n", - " for (var buffer of message.buffers || []) {\n", - " buffers.push(new DataView(buffer))\n", - " }\n", - " var metadata = message.metadata || {};\n", - " var msg = {content, buffers, metadata}\n", - " msg_handler(msg);\n", - " return messages.next().then(processIteratorResult);\n", - " }\n", - " return messages.next().then(processIteratorResult);\n", - " })\n", - " }\n", - " }\n", - "\n", - " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", - " if (comm_id in window.PyViz.comms) {\n", - " return window.PyViz.comms[comm_id];\n", - " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", - " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", - " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", - " if (msg_handler) {\n", - " comm.on_msg(msg_handler);\n", - " }\n", - " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", - " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", - " comm.open();\n", - " if (msg_handler) {\n", - " comm.onMsg = msg_handler;\n", - " }\n", - " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", - " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", - " comm_promise.then((comm) => {\n", - " window.PyViz.comms[comm_id] = comm;\n", - " if (msg_handler) {\n", - " var messages = comm.messages[Symbol.asyncIterator]();\n", - " function processIteratorResult(result) {\n", - " var message = result.value;\n", - " var content = {data: message.data};\n", - " var metadata = message.metadata || {comm_id};\n", - " var msg = {content, metadata}\n", - " msg_handler(msg);\n", - " return messages.next().then(processIteratorResult);\n", - " }\n", - " return messages.next().then(processIteratorResult);\n", - " }\n", - " }) \n", - " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", - " return comm_promise.then((comm) => {\n", - " comm.send(data, metadata, buffers, disposeOnDone);\n", - " });\n", - " };\n", - " var comm = {\n", - " send: sendClosure\n", - " };\n", - " }\n", - " window.PyViz.comms[comm_id] = comm;\n", - " return comm;\n", - " }\n", - " window.PyViz.comm_manager = new JupyterCommManager();\n", - " \n", - "\n", - "\n", - "var JS_MIME_TYPE = 'application/javascript';\n", - "var HTML_MIME_TYPE = 'text/html';\n", - "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", - "var CLASS_NAME = 'output';\n", - "\n", - "/**\n", - " * Render data to the DOM node\n", - " */\n", - "function render(props, node) {\n", - " var div = document.createElement(\"div\");\n", - " var script = document.createElement(\"script\");\n", - " node.appendChild(div);\n", - " node.appendChild(script);\n", - "}\n", - "\n", - "/**\n", - " * Handle when a new output is added\n", - " */\n", - "function handle_add_output(event, handle) {\n", - " var output_area = handle.output_area;\n", - " var output = handle.output;\n", - " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", - " return\n", - " }\n", - " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", - " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", - " if (id !== undefined) {\n", - " var nchildren = toinsert.length;\n", - " var html_node = toinsert[nchildren-1].children[0];\n", - " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", - " var scripts = [];\n", - " var nodelist = html_node.querySelectorAll(\"script\");\n", - " for (var i in nodelist) {\n", - " if (nodelist.hasOwnProperty(i)) {\n", - " scripts.push(nodelist[i])\n", - " }\n", - " }\n", - "\n", - " scripts.forEach( function (oldScript) {\n", - " var newScript = document.createElement(\"script\");\n", - " var attrs = [];\n", - " var nodemap = oldScript.attributes;\n", - " for (var j in nodemap) {\n", - " if (nodemap.hasOwnProperty(j)) {\n", - " attrs.push(nodemap[j])\n", - " }\n", - " }\n", - " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", - " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", - " oldScript.parentNode.replaceChild(newScript, oldScript);\n", - " });\n", - " if (JS_MIME_TYPE in output.data) {\n", - " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", - " }\n", - " output_area._hv_plot_id = id;\n", - " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", - " window.PyViz.plot_index[id] = Bokeh.index[id];\n", - " } else {\n", - " window.PyViz.plot_index[id] = null;\n", - " }\n", - " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", - " var bk_div = document.createElement(\"div\");\n", - " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", - " var script_attrs = bk_div.children[0].attributes;\n", - " for (var i = 0; i < script_attrs.length; i++) {\n", - " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", - " }\n", - " // store reference to server id on output_area\n", - " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", - " }\n", - "}\n", - "\n", - "/**\n", - " * Handle when an output is cleared or removed\n", - " */\n", - "function handle_clear_output(event, handle) {\n", - " var id = handle.cell.output_area._hv_plot_id;\n", - " var server_id = handle.cell.output_area._bokeh_server_id;\n", - " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", - " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", - " if (server_id !== null) {\n", - " comm.send({event_type: 'server_delete', 'id': server_id});\n", - " return;\n", - " } else if (comm !== null) {\n", - " comm.send({event_type: 'delete', 'id': id});\n", - " }\n", - " delete PyViz.plot_index[id];\n", - " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", - " var doc = window.Bokeh.index[id].model.document\n", - " doc.clear();\n", - " const i = window.Bokeh.documents.indexOf(doc);\n", - " if (i > -1) {\n", - " window.Bokeh.documents.splice(i, 1);\n", - " }\n", - " }\n", - "}\n", - "\n", - "/**\n", - " * Handle kernel restart event\n", - " */\n", - "function handle_kernel_cleanup(event, handle) {\n", - " delete PyViz.comms[\"hv-extension-comm\"];\n", - " window.PyViz.plot_index = {}\n", - "}\n", - "\n", - "/**\n", - " * Handle update_display_data messages\n", - " */\n", - "function handle_update_output(event, handle) {\n", - " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", - " handle_add_output(event, handle)\n", - "}\n", - "\n", - "function register_renderer(events, OutputArea) {\n", - " function append_mime(data, metadata, element) {\n", - " // create a DOM node to render to\n", - " var toinsert = this.create_output_subarea(\n", - " metadata,\n", - " CLASS_NAME,\n", - " EXEC_MIME_TYPE\n", - " );\n", - " this.keyboard_manager.register_events(toinsert);\n", - " // Render to node\n", - " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", - " render(props, toinsert[0]);\n", - " element.append(toinsert);\n", - " return toinsert\n", - " }\n", - "\n", - " events.on('output_added.OutputArea', handle_add_output);\n", - " events.on('output_updated.OutputArea', handle_update_output);\n", - " events.on('clear_output.CodeCell', handle_clear_output);\n", - " events.on('delete.Cell', handle_clear_output);\n", - " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", - "\n", - " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", - " safe: true,\n", - " index: 0\n", - " });\n", - "}\n", - "\n", - "if (window.Jupyter !== undefined) {\n", - " try {\n", - " var events = require('base/js/events');\n", - " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", - " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", - " register_renderer(events, OutputArea);\n", - " }\n", - " } catch(err) {\n", - " }\n", - "}\n" - ], - "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.holoviews_exec.v0+json": "", - "text/html": [ - "
\n", - "
\n", - "
\n", - "" - ] - }, - "metadata": { - "application/vnd.holoviews_exec.v0+json": { - "id": "63ef35be-263f-443e-a624-f2cd48c75143" - } - }, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - "\n", - "\n", - "\n", - " \n", - " \n", - "\n", - "\n", - "\n", - "\n", - "
\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "ename": "ValueError", - "evalue": "coordinate group has dimensions ('group',), but these are not a subset of the DataArray dimensions ('channel', 'time')", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[37], line 20\u001b[0m\n\u001b[1;32m 17\u001b[0m channel_groups \u001b[38;5;241m=\u001b[39m [groups[i \u001b[38;5;241m%\u001b[39m \u001b[38;5;28mlen\u001b[39m(groups)] \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(n_channels)]\n\u001b[1;32m 19\u001b[0m \u001b[38;5;66;03m# Create a DataArray with an additional 'group' coordinate\u001b[39;00m\n\u001b[0;32m---> 20\u001b[0m data_xr \u001b[38;5;241m=\u001b[39m \u001b[43mxr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mDataArray\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 21\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\n\u001b[1;32m 22\u001b[0m \u001b[43m \u001b[49m\u001b[43mdims\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mchannel\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtime\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\n\u001b[1;32m 23\u001b[0m \u001b[43m \u001b[49m\u001b[43mcoords\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m{\u001b[49m\n\u001b[1;32m 24\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mchannel\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mchannels\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\n\u001b[1;32m 25\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtime\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtime\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 26\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mgroup\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mchannel_groups\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 27\u001b[0m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 28\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mvalue\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\n\u001b[1;32m 29\u001b[0m \u001b[43m)\u001b[49m\n\u001b[1;32m 31\u001b[0m curves \u001b[38;5;241m=\u001b[39m hv\u001b[38;5;241m.\u001b[39mDataset(data_xr)\u001b[38;5;241m.\u001b[39mto(hv\u001b[38;5;241m.\u001b[39mCurve, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtime\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvalue\u001b[39m\u001b[38;5;124m'\u001b[39m, [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mchannel\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mgroup\u001b[39m\u001b[38;5;124m'\u001b[39m])\u001b[38;5;241m.\u001b[39moverlay(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mchannel\u001b[39m\u001b[38;5;124m'\u001b[39m)\u001b[38;5;241m.\u001b[39mopts(\n\u001b[1;32m 32\u001b[0m hv\u001b[38;5;241m.\u001b[39mopts\u001b[38;5;241m.\u001b[39mCurve(\n\u001b[1;32m 33\u001b[0m tools\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhover\u001b[39m\u001b[38;5;124m'\u001b[39m],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 38\u001b[0m )\n\u001b[1;32m 39\u001b[0m )\n\u001b[1;32m 41\u001b[0m \u001b[38;5;66;03m# Displaying the plot with the added dimension\u001b[39;00m\n", - "File \u001b[0;32m~/opt/miniconda3/envs/neuro-multi-chan/lib/python3.12/site-packages/xarray/core/dataarray.py:454\u001b[0m, in \u001b[0;36mDataArray.__init__\u001b[0;34m(self, data, coords, dims, name, attrs, indexes, fastpath)\u001b[0m\n\u001b[1;32m 452\u001b[0m data \u001b[38;5;241m=\u001b[39m _check_data_shape(data, coords, dims)\n\u001b[1;32m 453\u001b[0m data \u001b[38;5;241m=\u001b[39m as_compatible_data(data)\n\u001b[0;32m--> 454\u001b[0m coords, dims \u001b[38;5;241m=\u001b[39m \u001b[43m_infer_coords_and_dims\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshape\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcoords\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdims\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 455\u001b[0m variable \u001b[38;5;241m=\u001b[39m Variable(dims, data, attrs, fastpath\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m 457\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(coords, Coordinates):\n", - "File \u001b[0;32m~/opt/miniconda3/envs/neuro-multi-chan/lib/python3.12/site-packages/xarray/core/dataarray.py:193\u001b[0m, in \u001b[0;36m_infer_coords_and_dims\u001b[0;34m(shape, coords, dims)\u001b[0m\n\u001b[1;32m 190\u001b[0m var\u001b[38;5;241m.\u001b[39mdims \u001b[38;5;241m=\u001b[39m (dim,)\n\u001b[1;32m 191\u001b[0m new_coords[dim] \u001b[38;5;241m=\u001b[39m var\u001b[38;5;241m.\u001b[39mto_index_variable()\n\u001b[0;32m--> 193\u001b[0m \u001b[43m_check_coords_dims\u001b[49m\u001b[43m(\u001b[49m\u001b[43mshape\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnew_coords\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdims_tuple\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 195\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m new_coords, dims_tuple\n", - "File \u001b[0;32m~/opt/miniconda3/envs/neuro-multi-chan/lib/python3.12/site-packages/xarray/core/dataarray.py:119\u001b[0m, in \u001b[0;36m_check_coords_dims\u001b[0;34m(shape, coords, dim)\u001b[0m\n\u001b[1;32m 117\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m k, v \u001b[38;5;129;01min\u001b[39;00m coords\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 118\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28many\u001b[39m(d \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m dim \u001b[38;5;28;01mfor\u001b[39;00m d \u001b[38;5;129;01min\u001b[39;00m v\u001b[38;5;241m.\u001b[39mdims):\n\u001b[0;32m--> 119\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 120\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcoordinate \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m has dimensions \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mv\u001b[38;5;241m.\u001b[39mdims\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, but these \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 121\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mare not a subset of the DataArray \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdimensions \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mdim\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 123\u001b[0m )\n\u001b[1;32m 125\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m d, s \u001b[38;5;129;01min\u001b[39;00m v\u001b[38;5;241m.\u001b[39msizes\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 126\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m s \u001b[38;5;241m!=\u001b[39m sizes[d]:\n", - "\u001b[0;31mValueError\u001b[0m: coordinate group has dimensions ('group',), but these are not a subset of the DataArray dimensions ('channel', 'time')" - ] - } - ], + "outputs": [], "source": [ "import numpy as np\n", "import xarray as xr\n", @@ -2412,463 +214,18 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.DataArray 'value' (channel: 10, time: 1280)> Size: 102kB\n",
-       "array([[-3.97168397e-01,  3.16809427e-01, -7.24738207e-01, ...,\n",
-       "        -3.80461687e+01, -3.87342359e+01, -3.87612205e+01],\n",
-       "       [ 5.74970652e-01,  3.57991866e-01,  2.82790051e-02, ...,\n",
-       "        -4.45808503e+00, -3.03739011e+00, -3.11130749e+00],\n",
-       "       [-1.55057719e+00, -2.68244322e+00, -3.17888892e+00, ...,\n",
-       "        -1.39981549e+01, -1.29738342e+01, -1.37371670e+01],\n",
-       "       ...,\n",
-       "       [ 7.51967849e-01,  7.22525060e-01,  5.80195695e-01, ...,\n",
-       "        -4.60049743e+01, -4.58063681e+01, -4.53709490e+01],\n",
-       "       [ 2.48108863e-01,  9.33010605e-02,  6.46380629e-02, ...,\n",
-       "         3.49839596e+01,  3.51516409e+01,  3.57323487e+01],\n",
-       "       [-1.08325005e+00,  2.89083915e-01,  1.62128828e+00, ...,\n",
-       "        -5.33306805e+01, -5.11417266e+01, -5.20163110e+01]])\n",
-       "Coordinates:\n",
-       "  * channel  (channel) <U5 200B 'EEG 0' 'EEG 1' 'EEG 2' ... 'EEG 8' 'EEG 9'\n",
-       "  * time     (time) float64 10kB 0.0 0.003909 0.007819 ... 4.992 4.996 5.0\n",
-       "    group    (channel) <U1 40B 'A' 'B' 'C' 'A' 'B' 'C' 'A' 'B' 'C' 'A'
" - ], - "text/plain": [ - " Size: 102kB\n", - "array([[-3.97168397e-01, 3.16809427e-01, -7.24738207e-01, ...,\n", - " -3.80461687e+01, -3.87342359e+01, -3.87612205e+01],\n", - " [ 5.74970652e-01, 3.57991866e-01, 2.82790051e-02, ...,\n", - " -4.45808503e+00, -3.03739011e+00, -3.11130749e+00],\n", - " [-1.55057719e+00, -2.68244322e+00, -3.17888892e+00, ...,\n", - " -1.39981549e+01, -1.29738342e+01, -1.37371670e+01],\n", - " ...,\n", - " [ 7.51967849e-01, 7.22525060e-01, 5.80195695e-01, ...,\n", - " -4.60049743e+01, -4.58063681e+01, -4.53709490e+01],\n", - " [ 2.48108863e-01, 9.33010605e-02, 6.46380629e-02, ...,\n", - " 3.49839596e+01, 3.51516409e+01, 3.57323487e+01],\n", - " [-1.08325005e+00, 2.89083915e-01, 1.62128828e+00, ...,\n", - " -5.33306805e+01, -5.11417266e+01, -5.20163110e+01]])\n", - "Coordinates:\n", - " * channel (channel) \n", + "

Visit the Index Page

\n", + " This workflow example is part of set of related workflows. If you haven't already, visit the index page for an introduction and guidance on choosing the appropriate workflow.\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The intended use-case for this workflow is to browse and annotate multi-channel timeseries data from an [electrophysiological](https://en.wikipedia.org/wiki/Electrophysiology) recording session. Compared to the notebooks in this set of workflows, this particular workflow is focused on 'medium-sized' dataset, which we will loosely define as a dataset with >100k samples and comfortably fits into available RAM. \n", + "\n", + "Medium-sized datasets can start to slow down a browser, and may require strategies like downsampling - a processing strategy that only sends a strided subsample of the data from memory to the browser for visualization. If there are many timeseries and they utilize a common time index, we can often streamline the added processing computation by using a single index-based slicing operation on all the timeseries.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prerequisites and Resources\n", + "\n", + "| Topic | Type | Notes |\n", + "| --- | --- | --- |\n", + "| [Intro and Guidance](./index.ipynb) | Prerequisite | Background |\n", + "| [Time Range Annotation](./time_range_annotation.ipynb) | Next Step | Display and edit time ranges |\n", + "| [Smaller Dataset Workflow](./small_multi-chan-ts.ipynb) | Alternative | Use Pandas and downsample |\n", + "| [Larger Dataset Workflow](./large_multi-chan-ts.ipynb) | Alternative | Use dynamic data chunking |" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Imports and Configuration" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from scipy.stats import zscore\n", + "import string\n", + "import wget\n", + "from pathlib import Path\n", + "\n", + "import mne\n", + "\n", + "import colorcet as cc\n", + "import holoviews as hv\n", + "from holoviews.plotting.links import RangeToolLink\n", + "from holoviews.operation.datashader import rasterize\n", + "from holoviews.operation.downsample import downsample1d\n", + "from bokeh.models import HoverTool\n", + "import panel as pn\n", + "\n", + "pn.extension()\n", + "hv.extension('bokeh')\n", + "np.random.seed(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Download the data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's get some data! The following code downloads a dataset (2.6 MB) from a specified URL into a designated directory. It performs these steps:\n", + "\n", + "1. Sets the URL for the dataset.\n", + "2. Identifies the directory to store the downloaded file.\n", + "3. Ensures the directory exists, creating it if necessary.\n", + "4. Constructs the file path by combining the directory and dataset's filename.\n", + "5. Checks if the file already exists to avoid redundant downloads.\n", + "6. Downloads and saves the file if it's not already present." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = 'https://physionet.org/files/eegmmidb/1.0.0/S001/S001R04.edf'\n", + "output_directory = Path('./data')\n", + "\n", + "output_directory.mkdir(parents=True, exist_ok=True)\n", + "data_path = output_directory / Path(data_url).name\n", + "if not data_path.exists():\n", + " data_path = wget.download(data_url, out=str(data_path))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Read the data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, let's load the data into an MNE Raw object:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "raw = mne.io.read_raw_edf(data_path, preload=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's take a look at some general information for this data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print('num samples in dataset:', len(raw.times) * len(raw.ch_names))\n", + "raw" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here is the output from the previous code:\n", + "\n", + "```\n", + "num samples in dataset: 1280000\n", + "\n", + "General\n", + "Measurement date\tAugust 12, 2009 16:15:00 GMT\n", + "Experimenter\tUnknown\n", + "Participant\tX\n", + "Channels\n", + "Digitized points\tNot available\n", + "Good channels\t64 EEG\n", + "Bad channels\tNone\n", + "EOG channels\tNot available\n", + "ECG channels\tNot available\n", + "Data\n", + "Sampling frequency\t160.00 Hz\n", + "Highpass\t0.00 Hz\n", + "Lowpass\t80.00 Hz\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So we have 64 channels of filtered 'EEG' data, sampled at 160Hz for about 2 minutes, and over a million data samples in total." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's preview the channel names, types, unit, and signal ranges. This `describe` method is from MNE, and we can have it return a Pandas DataFrame, from which we can `sample` some rows." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "raw.describe(data_frame=True).sample(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pre-processing\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Averaging" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll first remove some of the large noise artifacts that impact all the channels by using an average reference. The idea is to compute the average across channels for every time point to get an average time series, and then subtract that average out of the raw EEG signal." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "raw.set_eeg_reference(\"average\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Clean Channel Names" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the output of the `describe` method, it looks like the channels are from commonly used standardized locations (e.g. 'Cz'), but contain some unnecessary periods, so let's clean those up." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "raw.rename_channels(lambda s: s.strip(\".\"));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## *Optional*: Get Channel Locations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is an optional step, but let's see if we can add locations to the channels. MNE has functionality to assign locations of the channels based on their standardized channel names, so we can go ahead and assign a commonly used arrangement (or 'montage') of electrodes ('10-05') to this data. Read more about making and setting the montage [here](https://mne.tools/stable/auto_tutorials/intro/40_sensor_locations.html#sphx-glr-auto-tutorials-intro-40-sensor-locations-py)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "montage = mne.channels.make_standard_montage(\"standard_1005\")\n", + "raw.set_montage(montage, match_case=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that the 'digitized points' (locations) are now added to the raw data.\n", + "\n", + "Now let's plot the channels ('sensors') using MNE [`plot_sensors`](https://mne.tools/stable/generated/mne.io.Raw.html#mne.io.Raw.plot_sensors) on a top-down view of a head. Note, we'll adjust the reference point so the points are contained in the head." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sphere=(0, 0.015, 0, 0.099) # manually adjust the y origin coordinate and radius\n", + "raw.plot_sensors(show_names=True, sphere=sphere);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prepare the data for plotting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll use an MNE method, `to_data_frame`, to create a Pandas DataFrame. By default, MNE will convert EEG data from Volts to microVolts (µV) during this operation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# TODO: file issue about rangetool not working with datetime (timezone error)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = raw.to_data_frame() # time_format='datetime'\n", + "df.set_index('time', inplace=True) \n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Interactive plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As of writing, there's no easy way to track units with Pandas, so we can use a modular HoloViews approach to create and annotate dimensions with a unit, and then refer to these dimensions when plotting. Read more about annotating data with HoloViews [here](https://holoviews.org/user_guide/Annotating_Data.html)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "amplitude_dim = hv.Dimension(\"amplitude\", unit=\"µV\")\n", + "time_dim = hv.Dimension(\"time\", unit=\"s\") # matches the index name in the df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we will loop over the columns (channels) in the dataframe, creating a HoloViews `Curve` element from each. Since each column in the df has a different name, we will use the `redim` method to map from the channel name to the common `amplitude_dim`. We'll set the Curve label to be the original channel name so we can still see this info in the hover tooltip.\n", + "\n", + "We will use HoloViews `.opts` to set the plotting options per Curve element. A couple important options include `hover_tooltip` and `subcoordinate_y`.\n", + "\n", + "The custom `hover_tooltip` argument is new in HoloViews as of 1.19.0. It allows us to specify which data dimensions show up in the tooltip when hovering over a data point. We can also specify that the values of 'group' or 'label' arguments should be included as well. Read more about `hover_tooltip` and related arguments [here](https://holoviews.org/user_guide/Plotting_with_Bokeh.html).\n", + "\n", + "The `subcoordinate_y` argument was introduced in HoloViews 1.18.0. Setting this to True will automatically distribute overlay elements along the y-axis, each with their own distinct y-axis subcoordinate system. Read more about `subcoordinate_y` [here](https://holoviews.org/user_guide/Customizing_Plots.html#subcoordinate-y-axis).\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "curves = {}\n", + "for channel_name, channel_data in df.items():\n", + " curve = (\n", + " hv.Curve(\n", + " df, kdims=[time_dim], vdims=[channel_name], group=\"EEG\", label=channel_name\n", + " )\n", + " .redim(**{channel_name: amplitude_dim})\n", + " .opts(\n", + " subcoordinate_y=True,\n", + " subcoordinate_scale=2,\n", + " color=\"black\",\n", + " line_width=1,\n", + " tools=[\"hover\"],\n", + " hover_tooltips=[\n", + " (\"type\", \"$group\"),\n", + " (\"channel\", \"$label\"),\n", + " (\"time\"), #'@time{%H:%M:%S.%3N}'), # hide date and use ms precision\n", + " (\"amplitude\"),\n", + " ],\n", + " # hover_formatters = {'time': 'datetime'},\n", + " )\n", + " )\n", + " curves[channel_name] = curve\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using a HoloViews `Overlay` container, we can now overlay all the curves on the same plot." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "curves_overlay = hv.Overlay(curves, kdims=\"channel\").opts(\n", + " ylabel=\"channel\",\n", + " show_legend=False,\n", + " padding=0,\n", + " aspect=1.5,\n", + " responsive=True,\n", + " shared_axes=False,\n", + " framewise=False,\n", + " min_height=100,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since there are 64 channels and over a million data samples, we'll make use of downsampling before trying to send all that data to the browser. We can use `downsample1d` imported from HoloViews. Starting in HoloViews version 1.19.0, integration with the `tsdownsample` library introduces enhanced downsampling algorithms. Read more about downsampling [here](https://holoviews.org/user_guide/Large_Data.html)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "curves_overlay = downsample1d(curves_overlay, algorithm='minmax-lttb')\n", + "curves_overlay" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we've created the main plot, let's add a secondary plot to hold the linked minimap element, which will allow for range control over the main plot, while contextualizing with a Datashaded rendering of all the data, so a view of the zoomed out data is maintained while navigating in on the main plot." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "channels = df.columns\n", + "time = df.index.values\n", + "\n", + "y_positions = range(len(channels))\n", + "yticks = [(i, ich) for i, ich in enumerate(channels)]\n", + "z_data = zscore(df, axis=0).T\n", + "minimap = rasterize(hv.Image((time, y_positions, z_data), [\"Time\", \"Channel\"], \"amplitude\"))\n", + "https://holoviews.org/user_guide/Large_Data.html = minimap.opts(\n", + " cmap=\"RdBu_r\",\n", + " colorbar=False,\n", + " xlabel='',\n", + " alpha=0.5,\n", + " yticks=[yticks[0], yticks[-1]],\n", + " toolbar='disable',\n", + " height=120,\n", + " responsive=True,\n", + " default_tools=[],\n", + " )\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With the minimap created, we can now go ahead and link the minimap to the main plot using a HoloViews `RangeToolLink`. We'll also constrain the initial x-range view to a third of the duration." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Link minimap widget to curves overlay plot\n", + "RangeToolLink(minimap, curves_overlay, axes=[\"x\", \"y\"],\n", + " boundsx=(0, time[len(time)//3]) # limit the initial x-range of the minimap\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we'll layout the main plot and minimap and use HoloViz Panel to allow for serving the application from command line. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "app = (curves_overlay + minimap).cols(1)\n", + "app" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## *Optional:* Standalone App" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using HoloViz Panel, we can also set this application as servable so we can see it in a browser window, outside of a Jupyter Notebook." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "template = pn.template.FastListTemplate(\n", + " title = \"Medium Multi-Chanel Timeseries App\",\n", + " main = pn.Column(app, min_height=500)\n", + ").servable()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "neuro-multi-chan", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/workflows/multi_channel_timeseries/dev/minimap.ipynb b/workflows/multi_channel_timeseries/dev/minimap.ipynb new file mode 100644 index 0000000..c8b4709 --- /dev/null +++ b/workflows/multi_channel_timeseries/dev/minimap.ipynb @@ -0,0 +1,65 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Medium Dataset Minimap" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Large Dataset Minimap" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Creating a minimap for the approach in the large multi channel workflow is very similar the work above so we will just make a note of the difference.Since in this case you would be working with a dataset that is too large to fit into memory, you cannot simply load and rasterize the full resolution version of the data into an image for the minimap. Instead, simply choose a level of downsampled courseness from the data pyramid that is able to fit into memory and rasterize into an image in a single pass. The higher resolution level you select, the more information the minimap will contain, but the longer it will take to compute and the closer to memory constraints you will be." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/workflows/multi_channel_timeseries/dev/test_ds_legend.ipynb b/workflows/multi_channel_timeseries/dev/test_ds_legend.ipynb new file mode 100644 index 0000000..49d4b29 --- /dev/null +++ b/workflows/multi_channel_timeseries/dev/test_ds_legend.ipynb @@ -0,0 +1,199 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "2ab4d105-8757-4ec2-b2c9-7adb73ac4d4e", + "metadata": {}, + "outputs": [], + "source": [ + "import holoviews as hv; hv.extension('bokeh')\n", + "from holoviews.operation.datashader import rasterize, datashade, shade, inspect, inspect_points\n", + "import panel as pn; pn.extension()\n", + "import datashader as ds\n", + "import numpy as np\n", + "import string\n", + "import colorcet as cc" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5f063056-82dd-4450-b4f9-baf7b81f1cfc", + "metadata": {}, + "outputs": [], + "source": [ + "color_key = list(enumerate(cc.glasbey[0:n_curves]))\n", + "color_points = hv.NdOverlay({k: hv.Points([(0,0)], label=str(k)).opts(color=v, size=0) for k, v in color_key})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "56ee8d1c-b692-487c-b584-26a6df2e72d1", + "metadata": {}, + "outputs": [], + "source": [ + "color_key" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f52691a7-fd8b-44a6-8bc7-246b600a5be2", + "metadata": {}, + "outputs": [], + "source": [ + "hv.Curve([1,2,3], label='A').opts(tools=['hover']) * hv.Curve([3,2,3], label='B').opts(tools=['hover'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e4e2af86-ab89-4c81-8f8a-bd0c7a8eb50f", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "n_curves = 4\n", + "\n", + "curves = {}\n", + "color_key = {}\n", + "\n", + "for i in np.arange(1,n_curves+1):\n", + " curves[string.ascii_uppercase[-i]] = hv.Curve(np.random.randint(10, size=10), label=string.ascii_uppercase[-i]).opts(color=cc.glasbey[-i], tools=['hover'],)\n", + " color_key[string.ascii_uppercase[-i]] = cc.glasbey[-i]\n", + "\n", + "color_points = hv.NdOverlay({k: hv.Points([(0,0)], label=str(k)).opts(color=v, size=0) for k, v in color_key.items()}).opts(legend_cols=2)\n", + "\n", + "orig_plot = hv.NdOverlay(curves, kdims='curve').opts(width=300, height=300, legend_cols=2, title='original')\n", + "ds_plot = datashade(hv.NdOverlay(curves, kdims='curve'), line_width=2, cmap=cc.glasbey[:n_curves], aggregator=ds.by('curve', ds.count())).opts(tools=['hover'], title='datashade', width=300, height=300)\n", + "r_plot = rasterize(hv.NdOverlay(curves, kdims='curve'),line_width=2, aggregator=ds.by('curve', ds.count())).opts(tools=['hover'], title='rasterize', cmap=cc.glasbey[:n_curves], width=300, height=300)\n", + "rs_plot = shade(rasterize(hv.NdOverlay(curves, kdims='curve'), line_width=2, aggregator=ds.by('curve', ds.count())).opts(cmap=cc.glasbey[:n_curves])).opts(tools=['hover'], title='rasterize+shade', width=300, height=300)\n", + "\n", + "orig_plot + (ds_plot * color_points) + (r_plot * color_points) + (rs_plot * color_points)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8156fad1-f045-450f-88f0-52462b8e2cdb", + "metadata": {}, + "outputs": [], + "source": [ + "hv.NdOverlay(curves, kdims='curve').opts(width=300, height=300, legend_cols=4, title='original')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ff16e2b2-b8fa-4edf-9fcd-b6fc9db4cfe9", + "metadata": {}, + "outputs": [], + "source": [ + "hv.streams.Tap(source=points, popup=form('Tap'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "837009dc-5423-4ace-9287-5e7cbb8e4b2a", + "metadata": {}, + "outputs": [], + "source": [ + "def table_df(df):\n", + " return pn.pane.DataFrame(df)\n", + "\n", + "highlighter = inspect_points.instance(streams=[hv.streams.Tap])\n", + "\n", + "highlight = highlighter(ds_plot).opts(color='grey', tools=[\"hover\"], marker='circle', \n", + " size=5, fill_alpha=.1, line_dash='-', line_alpha=.4)\n", + "\n", + "table = pn.bind(table_df, df=highlighter.param.hits)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fd9a174d-2b77-423d-9c92-20eb86ddb9a2", + "metadata": {}, + "outputs": [], + "source": [ + "pn.Column((highlight * ds_plot.opts(tools=[])), table)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fb23ec33-0158-4c12-9da0-9c7bce1c2f15", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import holoviews as hv\n", + "from holoviews import streams\n", + "hv.extension('bokeh')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6000fbe0-ec50-4b83-9bc6-106896263b1a", + "metadata": {}, + "outputs": [], + "source": [ + "Y, X = (np.mgrid[0:100, 0:100]-50.)/20.\n", + "img = hv.Image(np.sin(X**2 + Y**2))\n", + "\n", + "def coords(x):\n", + " # return pn.pane.Markdown(f'{x}, {y}')\n", + " return hv.Curve([x])\n", + "\n", + "# Declare pointer stream initializing at (0, 0) and linking to Image\n", + "pointer = streams.Tap(x=0, source=img, popup=coords)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d47c0c56-d138-4c89-a5a0-253c764c34fd", + "metadata": {}, + "outputs": [], + "source": [ + "img#.opts(tools=['hover'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ed948c8e-8c1b-45d3-b20c-e9c945e92d66", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/workflows/multi_channel_timeseries/dev/test_stocks_wide_df.ipynb b/workflows/multi_channel_timeseries/dev/test_stocks_wide_df.ipynb new file mode 100644 index 0000000..a3a79ef --- /dev/null +++ b/workflows/multi_channel_timeseries/dev/test_stocks_wide_df.ipynb @@ -0,0 +1,1031 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "a16ff13d-2764-405f-8acf-5ed05d465776", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from scipy.stats import zscore\n", + "import wget\n", + "from pathlib import Path\n", + "import mne\n", + "import colorcet as cc\n", + "import holoviews as hv\n", + "from holoviews.plotting.links import RangeToolLink\n", + "from holoviews.operation.datashader import rasterize\n", + "from holoviews.operation.downsample import downsample1d\n", + "from bokeh.models import HoverTool\n", + "import panel as pn\n", + "\n", + "pn.extension()\n", + "hv.extension('bokeh')\n", + "\n", + "np.random.seed(0)\n", + "\n", + "\n", + "data_url = 'https://physionet.org/files/eegmmidb/1.0.0/S001/S001R04.edf'\n", + "output_directory = Path('./data')\n", + "\n", + "output_directory.mkdir(parents=True, exist_ok=True)\n", + "data_path = output_directory / Path(data_url).name\n", + "if not data_path.exists():\n", + " data_path = wget.download(data_url, out=str(data_path))\n", + " \n", + " \n", + "raw = mne.io.read_raw_edf(data_path, preload=True)\n", + "\n", + "raw.set_eeg_reference(\"average\")\n", + "\n", + "raw.rename_channels(lambda s: s.strip(\".\"));\n", + "\n", + "df = raw.to_data_frame() # TODO: fix rangetool for time_format='datetime'\n", + "df.set_index('time', inplace=True) \n", + "df.head()\n", + "\n", + "# Viz\n", + "amplitude_dim = hv.Dimension(\"amplitude\", unit=\"µV\")\n", + "time_dim = hv.Dimension(\"time\", unit=\"s\") # match the index name in the df\n", + "\n", + "curves = {}\n", + "for channel_name, channel_data in df.items():\n", + " \n", + " curve = hv.Curve(df, kdims=[time_dim], vdims=[channel_name], group=\"EEG\", label=channel_name)\n", + " \n", + " # TODO: Without the redim, downsample1d errors. But with, it prevents common index slice optimization. :(\n", + " curve = curve.redim(**{str(channel_name): amplitude_dim})\n", + "\n", + " curve = curve.opts(\n", + " subcoordinate_y=True,\n", + " subcoordinate_scale=2,\n", + " color=\"black\",\n", + " line_width=1,\n", + " tools=[\"hover\"],\n", + " hover_tooltips=[\n", + " (\"type\", \"$group\"),\n", + " (\"channel\", \"$label\"),\n", + " (\"time\"), # TODO: '@time{%H:%M:%S.%3N}'),\n", + " (\"amplitude\"),\n", + " ],\n", + " )\n", + " curves[channel_name] = curve\n", + " \n", + "curves_overlay = hv.Overlay(curves, kdims=\"channel\").opts(\n", + " ylabel=\"channel\",\n", + " show_legend=False,\n", + " padding=0,\n", + " min_height=500,\n", + " responsive=True,\n", + " shared_axes=False,\n", + " framewise=False,\n", + ")\n", + "\n", + "curves_overlay = downsample1d(curves_overlay, algorithm='minmax-lttb')\n", + "\n", + "# minimap\n", + "\n", + "channels = df.columns\n", + "time = df.index.values\n", + "\n", + "y_positions = range(len(channels))\n", + "yticks = [(i, ich) for i, ich in enumerate(channels)]\n", + "z_data = zscore(df, axis=0).T\n", + "minimap = rasterize(hv.Image((time, y_positions, z_data), [\"Time\", \"Channel\"], \"amplitude\"))\n", + "minimap = minimap.opts(\n", + " cmap=\"RdBu_r\",\n", + " colorbar=False,\n", + " xlabel='',\n", + " alpha=0.5,\n", + " yticks=[yticks[0], yticks[-1]],\n", + " toolbar='disable',\n", + " height=120,\n", + " responsive=True,\n", + " # default_tools=[],\n", + " cnorm='eq_hist'\n", + " )\n", + "\n", + "RangeToolLink(minimap, curves_overlay, axes=[\"x\", \"y\"],\n", + " boundsx=(0, time[len(time)//3]) # limit the initial x-range of the minimap\n", + " )\n", + "\n", + "layout = (curves_overlay + minimap).cols(1)\n", + "layout" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b707d12f-d7c4-4b61-9c83-abb0479edd91", + "metadata": {}, + "outputs": [], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "cf750d7b-18f2-4b2e-b3f9-561e6eaaf575", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + " var py_version = '3.4.1'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " var reloading = false;\n", + " var Bokeh = root.Bokeh;\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " if (!reloading) {\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {'tabulator': 'https://cdn.jsdelivr.net/npm/tabulator-tables@5.5.0/dist/js/tabulator.min', 'moment': 'https://cdn.jsdelivr.net/npm/luxon/build/global/luxon.min'}, 'shim': {}});\n", + " require([\"tabulator\"], function(Tabulator) {\n", + "\twindow.Tabulator = Tabulator\n", + "\ton_load()\n", + " })\n", + " require([\"moment\"], function(moment) {\n", + "\twindow.moment = moment\n", + "\ton_load()\n", + " })\n", + " root._bokeh_is_loading = css_urls.length + 2;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " var existing_stylesheets = []\n", + " var links = document.getElementsByTagName('link')\n", + " for (var i = 0; i < links.length; i++) {\n", + " var link = links[i]\n", + " if (link.href != null) {\n", + "\texisting_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " if (existing_stylesheets.indexOf(url) !== -1) {\n", + "\ton_load()\n", + "\tcontinue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } if (((window.Tabulator !== undefined) && (!(window.Tabulator instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.4.1/dist/bundled/datatabulator/tabulator-tables@5.5.0/dist/js/tabulator.min.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } if (((window.moment !== undefined) && (!(window.moment instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.4.1/dist/bundled/datatabulator/luxon/build/global/luxon.min.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } var existing_scripts = []\n", + " var scripts = document.getElementsByTagName('script')\n", + " for (var i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + "\texisting_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " var url = js_exports[name];\n", + " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [\"https://cdn.holoviz.org/panel/1.4.1/dist/bundled/datatabulator/tabulator-tables@5.5.0/dist/js/tabulator.min.js\", \"https://cdn.holoviz.org/panel/1.4.1/dist/bundled/datatabulator/luxon/build/global/luxon.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.1.min.js\", \"https://cdn.holoviz.org/panel/1.4.1/dist/panel.min.js\"];\n", + " var js_modules = [];\n", + " var js_exports = {};\n", + " var css_urls = [\"https://cdn.holoviz.org/panel/1.4.1/dist/bundled/datatabulator/tabulator-tables@5.5.0/dist/css/tabulator_simple.min.css?v=1.4.1\", \"https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.2/css/all.min.css\"];\n", + " var inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + "\ttry {\n", + " inline_js[i].call(root, root.Bokeh);\n", + "\t} catch(e) {\n", + "\t if (!reloading) {\n", + "\t throw e;\n", + "\t }\n", + "\t}\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + "\tvar NewBokeh = root.Bokeh;\n", + "\tif (Bokeh.versions === undefined) {\n", + "\t Bokeh.versions = new Map();\n", + "\t}\n", + "\tif (NewBokeh.version !== Bokeh.version) {\n", + "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + "\t}\n", + "\troot.Bokeh = Bokeh;\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + " if (!reloading && !bokeh_loaded) {\n", + "\troot.Bokeh = undefined;\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + "\trun_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.4.1'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {'tabulator': 'https://cdn.jsdelivr.net/npm/tabulator-tables@5.5.0/dist/js/tabulator.min', 'moment': 'https://cdn.jsdelivr.net/npm/luxon/build/global/luxon.min'}, 'shim': {}});\n require([\"tabulator\"], function(Tabulator) {\n\twindow.Tabulator = Tabulator\n\ton_load()\n })\n require([\"moment\"], function(moment) {\n\twindow.moment = moment\n\ton_load()\n })\n root._bokeh_is_loading = css_urls.length + 2;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } if (((window.Tabulator !== undefined) && (!(window.Tabulator instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.4.1/dist/bundled/datatabulator/tabulator-tables@5.5.0/dist/js/tabulator.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window.moment !== undefined) && (!(window.moment instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.4.1/dist/bundled/datatabulator/luxon/build/global/luxon.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.holoviz.org/panel/1.4.1/dist/bundled/datatabulator/tabulator-tables@5.5.0/dist/js/tabulator.min.js\", \"https://cdn.holoviz.org/panel/1.4.1/dist/bundled/datatabulator/luxon/build/global/luxon.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.1.min.js\", \"https://cdn.holoviz.org/panel/1.4.1/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [\"https://cdn.holoviz.org/panel/1.4.1/dist/bundled/datatabulator/tabulator-tables@5.5.0/dist/css/tabulator_simple.min.css?v=1.4.1\", \"https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.2/css/all.min.css\"];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ] + }, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "9ac28233-ddfd-4243-9cb1-05cce8934f56" + } + }, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "\n", + "\n", + "\n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": {}, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ], + "text/plain": [ + ":NdOverlay [Ticker]\n", + " :Curve [Date] (Price)" + ] + }, + "execution_count": 19, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "a9fb4d6c-4880-4008-ba02-3c418317d436" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import holoviews as hv; hv.extension('bokeh')\n", + "\n", + "# price_dim = hv.Dimension(\"Price\", unit=\"$\") # match the index name in the df\n", + "\n", + "df = pd.read_csv('https://datasets.holoviz.org/stocks/v1/stocks.csv', parse_dates=['Date']).set_index('Date')\n", + "\n", + "# hv.NdOverlay({col: hv.Curve(df, 'Date', (col, price_dim)).opts(tools=['hover'], subcoordinate_y=True) for col in df.columns}, 'Ticker')\n", + "hv.NdOverlay({col: hv.Curve(df, 'Date', hv.Dimension(col, label=\"Price\", unit=\"$\")).opts(tools=['hover'], subcoordinate_y=True) for col in df.columns}, 'Ticker')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4478f8f6-6a7f-4c99-b1fc-cb9f210ad593", + "metadata": {}, + "outputs": [], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "53086606-ea34-4244-9c0e-03a0f5b236db", + "metadata": {}, + "outputs": [], + "source": [ + "from holonote.annotate import Annotator, SQLiteDB\n", + "import hvplot.pandas\n", + "import pandas as pd\n", + "\n", + "speed_data = pd.read_parquet(\"~/src/holonote/examples/assets/example.parquet\")\n", + "curve = speed_data.hvplot(\"TIME\", \"SPEED\")\n", + "annotator = Annotator(\n", + " curve,\n", + " fields=[\"category\"],\n", + " connector=SQLiteDB(table_name=\"styling\"),\n", + ")\n", + "\n", + "start_time = pd.date_range(\"2022-06-04\", \"2022-06-22\", periods=5)\n", + "end_time = start_time + pd.Timedelta(days=2)\n", + "data = {\n", + " \"start_time\": start_time,\n", + " \"end_time\": end_time,\n", + " \"category\": [\"A\", \"B\", \"A\", \"C\", \"B\"],\n", + "}\n", + "annotator.define_annotations(pd.DataFrame(data), TIME=(\"start_time\", \"end_time\"))\n", + "\n", + "from holonote.app.tabulator import AnnotatorTabulator\n", + "\n", + "AnnotatorTabulator(annotator)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "01382ced-f515-4e53-bbb9-0dd07e01e6a8", + "metadata": {}, + "outputs": [], + "source": [ + "annotator * curve" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c05d8ac3-095b-4468-b26c-fcd868aeebab", + "metadata": {}, + "outputs": [], + "source": [ + "annotator.add_annotation(category='B')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7c1e3c72-e5ce-4785-ba58-797937081192", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/workflows/multi_channel_timeseries/environment.yml b/workflows/multi_channel_timeseries/environment.yml index 6c95a27..0f247de 100644 --- a/workflows/multi_channel_timeseries/environment.yml +++ b/workflows/multi_channel_timeseries/environment.yml @@ -1,24 +1,28 @@ -name: neuro-multi-chan +name: tmp_neuro-multi-chan-ts channels: - conda-forge dependencies: - python - - holoviews>=1.18.1 + - holoviews>=1.19.0 - bokeh>=3.3.1 - hvplot - panel - datashader - numpy - pandas - - xarray + - xarray>=2024.5.0 - ipykernel - - mne - jupyterlab - zarr - kerchunk - pyarrow - dask - jupyter_bokeh + - h5py - pip - pip: - - holonote \ No newline at end of file + - holonote + - ndpyramid==0.2.0 + - tsdownsample + - mne + - wget \ No newline at end of file diff --git a/workflows/multi_channel_timeseries/index.ipynb b/workflows/multi_channel_timeseries/index.ipynb index 6225d63..6dea89b 100644 --- a/workflows/multi_channel_timeseries/index.ipynb +++ b/workflows/multi_channel_timeseries/index.ipynb @@ -8,167 +8,37 @@ "\n", "## Introduction\n", "\n", - "The intended use-case for this workflow is to browse and annotate multi-channel timeseries data from an [electrophysiological](https://en.wikipedia.org/wiki/Electrophysiology) recording session. In such recordings, there can be multiple groups of channels, each potentially from a different signal (e.g. LFP, EMG, EEG, etc.), but each group of channels is time-aligned, using the same series of timestamps.\n", + "Visualizing time series from various sources on a vertically stacked, time-aligned display is often the first tool employed when working with data from [electrophysiological](https://en.wikipedia.org/wiki/Electrophysiology) studies. These experiments generally seek to provide insight into the electrical activities of nerve cells or muscles, as well as how they relate to each other or other measurable variables, such as the spatial position of the organism under study. Electrophysiological recording sessions can include diverse data types like electromyograms (EMG), electroencephalograms (EEG), local field potentials (LFP), or neural action potentials (spikes) - each consisting of multiple streams of information ('channels') that all are unified by their alignment to a single series of timestamps, but having a heterogenuous range of amplitude values.\n", "\n", - "In this set of workflows, we focus on the first and most useful intution-building views for timeseries data in neuroscience - a stacked 'multi-channel' plot for amplitude-diverse, time-aligned data series.\n", + "### Important Features\n", + "Analyzing electrophysiological data often involves searching for patterns across time, channels, and covariates. Features that support this type of investigation for time-aligned, amplitude-diverse data include:\n", "\n", - "Important features of such a plot include:\n", - "- **Good Performance:** Smooth zooming and panning across time and channels.\n", - "- **Group-Aware Handling:** Group-wise zooming and y-range normalization.\n", + "> - TODO: Make this list into a diagram showing the feature-components of the viewer\n", + "- **Smooth Interactions at Scale:** Smooth zooming and panning across time and channels.\n", "- **Subcoordinate Axes:** Independent amplitude dimension (y-axis) per channel.\n", - "- **Hover Tooltips:** Detailed information about the data under the mouse cursor.\n", - "- **Scale Bar:** Embed a scale bar for the Y-axis on the plot.\n", + "- **Instant Inspection:** Quick information preview about the data under the cursor.\n", + "- **Group-Aware Handling:** Zooming and y-range normalization per specified channel group/type.\n", "- **Reference View:** Minimap for navigation and contextualization in large datasets.\n", - "- **Time-Range Annotations:** Create and edit time-range annotations on the plot.\n", + "- **Responsive Scale Bar:** Dynamic amplitude reference measurement.\n", + "- **Time-Range Annotations:** Create and edit time-range annotations directly on the plot.\n", "\n", - "## Primary Workflow Approaches\n", + "## Recommended Workflow\n", "\n", - "Choosing the appropriate approach given your particular situation is critical to producing a useful visualization. One of the most important factor influencing the approach is the size of your dataset. Below are different approaches for a multi-channel timeseries visualization based on dataset size. These size categorizations are just loose simplifications; in reality, many factors can impact the performance of a visualization. We recommend that you try multiple approaches!" + "There are many different approaches, but we'll highlight the one that we've found to be promising in many scenarios. However, if you have a dataset that is too large to fit into memory, or a small dataset with only a couple of channels and <100k data points, check out the alternate approaches in the [extensions](#extensions) below." ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": { + "jupyter": { + "source_hidden": true + }, "tags": [ "hide-cell" ] }, - "outputs": [ - { - "data": { - "application/javascript": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.4.1'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.1.min.js\", \"https://cdn.holoviz.org/panel/1.4.1/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));", - "application/vnd.holoviews_load.v0+json": "" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/javascript": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n", - "application/vnd.holoviews_load.v0+json": "" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.holoviews_exec.v0+json": "", - "text/html": [ - "
\n", - "
\n", - "
\n", - "" - ] - }, - "metadata": { - "application/vnd.holoviews_exec.v0+json": { - "id": "178a0c95-c60d-4a6b-ba04-e09c85b1612d" - } - }, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f13b30a0b68449bfb873d3ca3ba0f1ba", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "BokehModel(combine_events=True, render_bundle={'docs_json': {'13bc5032-d681-4adb-b90b-e06d0ed2055d': {'version…" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# This cell has tags to make it hidden on the holoviz websites. If you can see this on a holoviz website, please file an issue on github.\n", "\n", @@ -178,139 +48,209 @@ "pn.extension()\n", "\n", "width = 300\n", - "height = 350\n", + "height = 300\n", "card_margin = 10\n", "text_margin = (0, 10)\n", "\n", - "pn.FlexBox(\n", - " pn.Card(\n", + "pn.Column(\n", + "pn.Card(\n", " pn.pane.Markdown(\n", - " \"* 🧭 **Approach:** Stick with [Numpy](https://numpy.org/doc/stable/) to maximize flexibility and simplicity. \",\n", + " \"\"\"* 🧭 **Summary:** Leverage [Pandas](https://pandas.pydata.org/docs/) for efficient \\\n", + " slicing during downsampling operations with 'Medium' sized datasets.\"\"\",\n", " margin=text_margin,\n", " ),\n", " pn.pane.Markdown(\n", - " \"* 💡 **Example:** 4-channel EEG recording (256 Hz, 16 bit) from a 5-minute session.\",\n", + " \"\"\"* 🔍 **Details:** Displaying datasets with >100k samples can slow down a browser.\n", + " Such cases may require strategies like downsampling - a processing strategy that only \\\n", + " sends a subsample of the data to the browser for visualization. If there are many timeseries, \\\n", + " we can often streamline the process by leveraging a common time index.\"\"\",\n", + " margin=text_margin,\n", + " ),\n", + " # header_background=\"#D2B48C\",\n", + " header_background=cc.glasbey_cool[3],\n", + " header=pn.pane.Markdown(\"### [**Multi-Channel Timeseries**](./medium_multi-chan-ts.ipynb)\"),\n", + " width=width,\n", + " height=height,\n", + " collapsible=False,\n", + " margin=card_margin,\n", + " sizing_mode=\"fixed\",\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> - TODO: fix size of cards, while still allowing for flexbox column wrap. File Panel issue\n", + "> - TODO: Customize color of link text or reconsider how to link to workflow\n", + "> - TODO: add visual thumbnails to cars" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Extensions\n", + "\n", + "Extension workflows provide additional functionality or alternate approaches to the a primary workflow above." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "jupyter": { + "source_hidden": true + }, + "tags": [ + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "# This cell has tags to make it hidden on the holoviz websites. If you can see this on a holoviz website, please file an issue on github.\n", + "\n", + "pn.Column(\n", + "pn.Row(\n", + " pn.Card(\n", + " pn.pane.Markdown(\n", + " \"* 🧭 **Summary:** Minimal imports for a flexible approach with very small dataset\",\n", " margin=text_margin,\n", " ),\n", " pn.pane.Markdown(\n", - " \"* 🔍 **Why?:** Datasets up to **~100 MB** with less than ~100k data points can often be handled comfortably by modern desktop browsers on well-equipped devices, assuming efficient analysis practices.\",\n", + " \"\"\"* 🔍 **Details:** Only imports HoloViz libraries, Bokeh, and [Numpy](https://numpy.org/doc/stable/). Datasets with <100k data points and <10 channels can often be handled comfortably by modern \\\n", + " desktop browsers on well-equipped devices, assuming efficient analysis practices.\"\"\",\n", " margin=text_margin,\n", " ),\n", " # header_background=\"#A0AAB5\",\n", - " header_background=cc.glasbey_cool[2],\n", - " header=pn.pane.Markdown(\n", - " \"### [Smaller Dataset (<100 MB)](./small_multi-chan-ts.ipynb)\",\n", - " ),\n", + " header_background=cc.glasbey_cool[63],\n", + " header=pn.pane.Markdown(\"### [**Smaller Dataset (<100k samples)**](./small_multi-chan-ts.ipynb)\",),\n", " height=height,\n", " width=width,\n", " collapsible=False,\n", " margin=card_margin,\n", - " \n", + " sizing_mode=\"fixed\",\n", " ),\n", + " \n", " pn.Card(\n", " pn.pane.Markdown(\n", - " \"* 🧭 **Approach:** Leverage [Pandas](https://pandas.pydata.org/docs/) for efficient index-slicing during downsampling.\",\n", + " \"\"\"* 🧭 **Summary:** Utilize [Xarray](http://xarray.pydata.org/en/stable/), \\\n", + " [Zarr](https://zarr.readthedocs.io/en/stable/), and [Dask](https://docs.dask.org/en/latest/) \\\n", + " for dynamic access of data subsets.\"\"\",\n", " margin=text_margin,\n", " ),\n", " pn.pane.Markdown(\n", - " \"* 💡 **Example:** 64-channel EEG recording (512 Hz, 16 bit) from a 4-hour session.\",\n", + " \"\"\"* 🔍 **Details:** To handle datasets beyond available memory (RAM), we can \\\n", + " utilize dynamic access of certain data ranges and resolutions, using a precomputed hierarchical \\\n", + " array pyramid.\"\"\",\n", " margin=text_margin,\n", " ),\n", + " # header_background=\"#9DBEBB\",\n", + " header_background=cc.glasbey_cool[71],\n", + " header=pn.pane.Markdown(\"### [**Larger Dataset (> RAM)**](./large_multi-chan-ts.ipynb)\"),\n", + " height=height,\n", + " width=width,\n", + " collapsible=False,\n", + " margin=card_margin,\n", + " sizing_mode=\"fixed\",\n", + " ),\n", + " pn.Card(\n", " pn.pane.Markdown(\n", - " \"* 🔍 **Why?:** Handling datasets between **100 MB to a few GB** in a browser can be more challenging and requires strategies like downsampling or aggregation. For such datasets, server-side processing that only sends aggregated results or downsampled subsets of the data to the browser for visualization are usually employed.\",\n", + " \"* 🧭 **Summary:** Use HoloViews RangeToolLink and Datashader to rasterize an aggregate view\",\n", " margin=text_margin,\n", " ),\n", - " # header_background=\"#D2B48C\",\n", - " header_background=cc.glasbey_cool[3],\n", - " header=pn.pane.Markdown(\"### [Medium Dataset (>100 MB, fits in RAM)](./medium_multi-chan-ts.ipynb)\"),\n", + " pn.pane.Markdown(\n", + " \"\"\"* 🔍 **Details:** Create a minimap widget that provides a condensed overview of the entire dataset, \\\n", + " allowing users to select and zoom into areas of interest quickly in the main plot while maintaining the contextualization of the zoomed out view\"\"\",\n", + " margin=text_margin,\n", + " ),\n", + " header_background=cc.glasbey_warm[16],\n", + " header=pn.pane.Markdown(\"### [Minimap Widget](./minimap.ipynb)\"),\n", + " height=height,\n", " width=width,\n", + " collapsible=False,\n", + " margin=card_margin,\n", + " ),\n", + "\n", + "),\n", + " pn.Row(\n", + " pn.Card(\n", + " pn.pane.Markdown(\n", + " \"* 🧭 **Summary:** \",\n", + " margin=text_margin,\n", + " ),\n", + " pn.pane.Markdown(\n", + " \"\"\"* 🔍 **Details:** \"\"\",\n", + " margin=text_margin,\n", + " ),\n", + " header_background=cc.glasbey_warm[87],\n", + " header=pn.pane.Markdown(\n", + " \"### [Standalone App](./medium_multi-chan-ts.ipynb#extension-standalone-app)\"\n", + " ),\n", " height=height,\n", + " width=width,\n", " collapsible=False,\n", " margin=card_margin,\n", " ),\n", - " pn.Card(\n", + " pn.Card(\n", + " pn.pane.Markdown(\n", + " \"* 🧭 **Summary:** Utilize HoloNote along with any primary workflow approach.\",\n", + " margin=text_margin,\n", + " ),\n", " pn.pane.Markdown(\n", - " \"* 🧭 **Approach:** Utilize [Xarray](http://xarray.pydata.org/en/stable/), [Zarr](https://zarr.readthedocs.io/en/stable/), and [Dask](https://docs.dask.org/en/latest/) for dynamic data access based on the range in view.\",\n", + " \"\"\"* 🔍 **Details:** Create (or import), edit, and save a table of start and end times. View the categorized \\\n", + " ranges overlaid on the multi-channel timeseries plot. HoloNote allows you to interact with time range annotations \\\n", + " directly on a plot, through widgets, or programmatically.\"\"\",\n", " margin=text_margin,\n", " ),\n", + " header_background=cc.glasbey_warm[5],\n", + " header=pn.pane.Markdown(\"### [Time Range Annotation](./time_range_annotation.ipynb)\"),\n", + " height=height,\n", + " width=width,\n", + " collapsible=False,\n", + " margin=card_margin,\n", + " ),\n", + " pn.Card(\n", " pn.pane.Markdown(\n", - " \"* 💡 **Example:** 384-channel extracellular probe recording (30 KHz) from essentially any experimental duration (∼1 GB/min).\",\n", + " \"* 🧭 **Summary:** \",\n", " margin=text_margin,\n", " ),\n", " pn.pane.Markdown(\n", - " \"* 🔍 **Why?:** If the dataset size is beyond the available memory limit of your computer, then the visualization approach will likely need to incorporate dynamic loading of certain data chunks based on the active data range on display, and likely also employ strategies like downsampling or aggregation.\",\n", + " \"\"\"* 🔍 **Details:** \"\"\",\n", " margin=text_margin,\n", " ),\n", - " # header_background=\"#9DBEBB\",\n", - " header_background=cc.glasbey_cool[9],\n", - " header=pn.pane.Markdown(\"### [Larger Dataset (does not fit in RAM)](./large_multi-chan-ts.ipynb)\"),\n", + " header_background=cc.glasbey_warm[38],\n", + " header=pn.pane.Markdown(\n", + " \"### [Scale Bar (WIP)](./medium_multi-chan-ts.ipynb#scale-bar-extension)\"\n", + " ),\n", " height=height,\n", " width=width,\n", " collapsible=False,\n", " margin=card_margin,\n", " ),\n", - " sizing_mode=\"fixed\",\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Extension Workflows\n", - "\n", - "Extension workflows provide additional functionality to the a primary workflow above. Choose one that best fits your needs." - ] - }, - { - "cell_type": "code", - "execution_count": 102, - "metadata": { - "tags": [ - "hide-cell" - ] - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1e62a6bba1874fe083c3c967be39342e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "BokehModel(combine_events=True, render_bundle={'docs_json': {'d1523e77-603d-4ded-b4d1-2e3b8f48a1b2': {'version…" - ] - }, - "execution_count": 102, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# This cell has tags to make it hidden on the holoviz websites. If you can see this on a holoviz website, please file an issue on github.\n", - "\n", - "width = 300\n", - "height = 150\n", - "card_margin = 20\n", - "text_margin = (0, 10)\n", - "\n", - "pn.Row(\n", - " pn.Card(\n", + " \n", + " ),\n", + " pn.Row(\n", + "pn.Card(\n", " pn.pane.Markdown(\n", - " \"* 🧭 **Approach:** Utilize HoloNote along with any primary workflow approach.\",\n", + " \"* 🧭 **Summary:** \",\n", " margin=text_margin,\n", " ),\n", - " header_background=cc.glasbey_warm[5],\n", + " pn.pane.Markdown(\n", + " \"\"\"* 🔍 **Details:** \"\"\",\n", + " margin=text_margin,\n", + " ),\n", + " header_background=cc.glasbey_warm[98],\n", " header=pn.pane.Markdown(\n", - " \"### [Time Range Annotation](./time_range_annotation.ipynb)\"\n", + " \"### Streaming (WIP)\"\n", " ),\n", " height=height,\n", " width=width,\n", " collapsible=False,\n", " margin=card_margin,\n", " ),\n", - " # sizing_mode=\"stretch_width\",\n", + " )\n", ")" ] }, @@ -318,21 +258,24 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "
\n", - "

Tip: Launch as web-app! 🚀

\n", - "

To launch any of the notebook's visualization as a standalone application outside of Jupyter Notebook, use `panel serve [path to file] --show` at the command line.

\n", - "
" + "## Benchmarking\n", + "\n", + "- TODO: add content\n", + "\n", + "WIP. Below, we will include benchmarking results and comparisons of the various workflow approaches." ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [] } ], "metadata": { "kernelspec": { - "display_name": "neuro-multi-chan", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -346,9 +289,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.2" + "version": "3.12.3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/workflows/multi_channel_timeseries/large_multi-chan-ts.ipynb b/workflows/multi_channel_timeseries/large_multi-chan-ts.ipynb new file mode 100644 index 0000000..148e4c6 --- /dev/null +++ b/workflows/multi_channel_timeseries/large_multi-chan-ts.ipynb @@ -0,0 +1,561 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "vscode": { + "languageId": "plaintext" + } + }, + "source": [ + "# Multi-Channel Timeseries with Large Datasets via Pyramid" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![](./assets/large_multichan-ts.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overview" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For an introduction, please visit the ['Index'](./index.ipynb) page. This workflow is tailored for processing and analyzing large-sized multi-channel timeseries data derived from [electrophysiological](https://en.wikipedia.org/wiki/Electrophysiology) recordings. It is more experimental and complex than the other related workflow approaches, but provides a scalable solutiom.\n", + "\n", + "### What Defines a 'Large-Sized' Dataset?\n", + "\n", + "A 'large-sized' dataset in this context is characterized by its size surpassing the available memory, making it impossible to load the entire dataset into RAM simultaneously. So, how are we to visualize a zoomed-out representation of the entire large dataset?\n", + "\n", + "### Utilizing a Large Data Pyramid\n", + "\n", + "In the 'medium' workflow, we employed downsampling to reduce the volume of data transferred to the browser, a technique feasible when the entire dataset already resides in memory. For larger datasets, however, we now adopt an additional strategy: the creation and dynamic access to a data pyramid. A data pyramid involves storing multiple layers of the dataset at varying resolutions, where each successive layer is a downsampled version of the previous one. For instance, when fully zoomed out, a greatly downsampled version of the data provides a quick overview, guiding users to areas of interest. Upon zooming in, tiles of higher-resolution pyramid levels are dynamically loaded. This strategy outlined is similar to the approach used in geosciences for managing interactive map tiles, and which has also been adopted in bio-imaging for handling high-resolution electron microscopy images. \n", + "\n", + "### Key Software:\n", + "\n", + "Besides [HoloViz](https://github.com/holoviz) and [Bokeh](https://holoviz.org/), we make extensive use of several open source libraries to implement our solution:\n", + "- **[Xarray](https://github.com/pydata/xarray):** Manages labeled multi-dimensional data, facilitating complex data operations and enabling partial data loading for out-of-core computation.\n", + "- **[Xarray DataTree](https://github.com/xarray-contrib/datatree):** Organizes xarray DataArrays and Datasets into a logical tree structure, making it easier to manage and access different resolutions of the dataset. At the moment of writing, this is [actively being migrated](https://github.com/pydata/xarray/issues/8572) into the core Xarray library.\n", + "- **[Dask](https://github.com/dask/dask):** Adds parallel computing capabilities, managing tasks that exceed memory limits.\n", + "- **[ndpyramid](https://github.com/carbonplan/ndpyramid):** Specifically designed for creating multi-resolution data pyramids.\n", + "- **[Zarr](https://github.com/zarr-developers/zarr-python):** Used for storing the large arrays of the data pyramid on disk in a compressed, chunked, and memory-mappable format, which is crucial for efficient data retrieval.\n", + "- **[tsdownsample](https://github.com/predict-idlab/tsdownsample):** Provides optimized implementations of downsampling algorithms that help to maintain important aspects of the data.\n", + "\n", + "### Considerations and Trade-offs\n", + "While this approach allows visualization and interaction with datasets larger than available memory, it does introduce certain trade-offs:\n", + "\n", + "- **Increased Storage Requirement:** Constructing a data pyramid requires additional disk space since multiple representations of the data are stored.\n", + "- **Code Complexity:** Creating the pyramids still involves a fair bit of familiarity with the key packages, and their interoperability. Also, the plotting code involved in dynamic access to the data pyramid structure is still experimental, and could be matured into HoloViz or another codebase in the future.\n", + "- **Performance:** While this method can handle large datasets, the performance may not match that of handling smaller datasets due to the overhead associated with processing and dynamically loading multiple layers of the pyramid." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prerequisites and Resources\n", + "\n", + "| Topic | Type | Notes |\n", + "| --- | --- | --- |\n", + "| [Intro and Guidance](./index.ipynb) | Prerequisite | Background |\n", + "| [Time Range Annotation](./time_range_annotation.ipynb) | Next Step | Display and edit time ranges |\n", + "| [Smaller Dataset Workflow](./small_multi-chan-ts.ipynb) | Alternative | Use Numpy |\n", + "| [Medium Dataset Workflow](./medium_multi-chan-ts.ipynb) | Alternative | Use Pandas and downsampling |" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Imports and Configuration" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import h5py\n", + "import xarray as xr\n", + "import dask.array as da\n", + "from xarray.core.datatree import DataTree as dt\n", + "from xarray.backends.api import open_datatree\n", + "from ndpyramid import pyramid_create\n", + "from tsdownsample import MinMaxLTTBDownsampler\n", + "from pathlib import Path\n", + "import numpy as np\n", + "import panel as pn\n", + "import holoviews as hv\n", + "from bokeh.models.tools import WheelZoomTool, HoverTool\n", + "\n", + "hv.extension(\"bokeh\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# TODO: add text about data (3GB) access: s3://datasets.holoviz.org/ephys_sim/v1/ephys_sim_neuropixels_10s_384ch.h5\n", + "\n", + "OVERWRITE = False # Set True to initially create data pyramid\n", + "\n", + "# Dataset-specific parameters\n", + "\n", + "# Option 1: Simulated neuropixels spike-band dataset\n", + "DATA_DIR = Path('~/data/ephys_sim_neuropixels/').expanduser()\n", + "H5_FILE = Path('ephys_sim_neuropixels_10s_384ch.h5')\n", + "DATA_KEY = \"recordings\"\n", + "DATA_DIMS = { # Each dim item value should be the path to the data in the h5 file\n", + " \"time\": \"timestamps\",\n", + " \"channel\": \"channels\",\n", + "}\n", + "\n", + "# Option 2: Neuropixels LFP-band dataset from allen institute\n", + "# DATA_DIR = Path(\"~/data/allen/\").expanduser()\n", + "# H5_FILE = Path(\"probe_810755797_lfp.nwb\")\n", + "# DATA_KEY = \"acquisition/probe_810755797_lfp_data/data\"\n", + "# DATA_DIMS = {\n", + "# \"time\": \"acquisition/probe_810755797_lfp_data/timestamps\",\n", + "# \"channel\": \"acquisition/probe_810755797_lfp_data/electrodes\",\n", + "# }\n", + "\n", + "# TODO: remove max channel limits before final publishing\n", + "MAX_CHANNELS_TO_PROCESS = 100\n", + "MAX_CHANNELS_TO_DISPLAY = 50\n", + "\n", + "# Common parameters\n", + "H5_PATH = DATA_DIR / H5_FILE\n", + "PYRAMID_FILE = f\"{H5_FILE.stem}.zarr\"\n", + "PYRAMID_PATH = DATA_DIR / PYRAMID_FILE\n", + "print('Pyramid Path:', PYRAMID_PATH)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Converting to `xarray.DataArray`\n", + "\n", + "Before building a data pyramid, we'll first we construct an `xarray.DataArray` version of our dataset from its original HDF5 format. We'll make use of `Dask` for parallel and 'lazy' computation, i.e. chunks of the data are only loaded when necessary, enabling operations on data that exceed memory limits." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def serialize_to_xarray(f, data_key, dims):\n", + " \"\"\"Serialize HDF5 data into an xarray Dataset with lazy loading.\"\"\"\n", + " # Extract coordinates for the specified dimensions\n", + " coords = {dim: f[coord_key][:] for dim, coord_key in dims.items()}\n", + " \n", + " # Load the dataset lazily using Dask\n", + " data = f[data_key]\n", + " dask_data = da.from_array(data, chunks=(data.shape[0], 1))\n", + " \n", + " # Create the xarray DataArray and convert it to a Dataset\n", + " data_array = xr.DataArray(\n", + " dask_data,\n", + " dims=list(dims.keys()),\n", + " coords=coords,\n", + " name=data_key.split(\"/\")[-1]\n", + " )\n", + " ds = data_array.to_dataset(name='data') #data_key.split(\"/\")[-1]\n", + " return ds" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "f = h5py.File(H5_PATH, \"r\")\n", + "ts_ds = serialize_to_xarray(f, DATA_KEY, DATA_DIMS).isel(channel=slice(MAX_CHANNELS_TO_PROCESS))\n", + "ts_ds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Building a Data Pyramid\n", + "\n", + "We will feed our new `xarray.DataArray` to `ndpyramid.pyramid_create`, also passing in the dimension that we want downsampled ('`time`'), a custom `apply_downsample` function that uses `xarray.apply_ufunc` to perform computations in a vectorized and parallelized manner, and `FACTORS` which determine the extent of each downsampled level. For instance, a factor of '2' halves the number of time samples, '4' reduces them to a quarter, and so on.\n", + "\n", + "To each chunk of data, our custom `apply_downsample` function applies the `MinMaxLTTBDownsampler` from the `tsdownsample` library, which selects data points that best represent the overall shape of the signal. This method is particularly effective in preserving the visual integrity of the data, even at reduced resolutions." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "FACTORS = [1, 2, 4, 8, 16, 32, 64, 128, 256]\n", + "\n", + "# TODO: find better principled way to determine factors.. The following doesn't work as the number of channels scales\n", + "# FACTORS = list(np.array([1, 2, 4, 8, 16, 32, 64, 128, 256]) ** (len(ts_ds[\"channel\"]) // 4))\n", + "\n", + "def _help_downsample(data, time, n_out):\n", + " \"\"\"\n", + " Helper function for downsampling and returning as a specific format.\n", + " \"\"\"\n", + " indices = MinMaxLTTBDownsampler().downsample(time, data, n_out=n_out)\n", + " return data[indices], indices\n", + "\n", + "\n", + "def apply_downsample(ts_ds, factor, dims):\n", + " \"\"\"\n", + " Apply downsampling to a time series dataset.\n", + " \"\"\"\n", + " dim = dims[0]\n", + " n_out = len(ts_ds[\"data\"]) // factor\n", + " print(f\"Downsampling by factor {factor} for a size of {n_out}.\")\n", + " ts_ds_downsampled, indices = xr.apply_ufunc(\n", + " _help_downsample,\n", + " ts_ds[\"data\"],\n", + " ts_ds[dim],\n", + " kwargs=dict(n_out=n_out),\n", + " input_core_dims=[[dim], [dim]],\n", + " output_core_dims=[[dim], [\"indices\"]],\n", + " exclude_dims=set((dim,)),\n", + " vectorize=True,\n", + " dask=\"parallelized\",\n", + " dask_gufunc_kwargs=dict(output_sizes={dim: n_out, \"indices\": n_out}),\n", + " )\n", + " # Update the dimension coordinates with the downsampled indices\n", + " ts_ds_downsampled[dim] = ts_ds[dim].isel(time=indices.values[0])\n", + " return ts_ds_downsampled.rename(\"data\")\n", + "\n", + "\n", + "if not PYRAMID_PATH.exists() or OVERWRITE:\n", + " ts_dt = pyramid_create(\n", + " ts_ds,\n", + " factors=FACTORS,\n", + " dims=[\"time\"],\n", + " func=apply_downsample,\n", + " type_label=\"pick\",\n", + " method_label=\"pyramid_downsample\",\n", + " )\n", + " display(ts_dt)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Persist and Re-open\n", + "\n", + "Now we can easily save the multi-level pyramid `to_zarr` format on disk." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if not PYRAMID_PATH.exists() or OVERWRITE:\n", + " PYRAMID_PATH.parent.mkdir(parents=True, exist_ok=True)\n", + " ts_dt.to_zarr(PYRAMID_PATH, mode=\"w\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And read it back in just as easily; just be sure to specify the `zarr` engine." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ts_dt = open_datatree(PYRAMID_PATH, engine=\"zarr\")\n", + "ts_dt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you expand the 'Group' dropdown above, you can see each pyramid level has the same number of channels, but different number of timestamps, since the time dimension was downsampled." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dynamic Pyramid Plotting\n", + "\n", + "Now that we've created our data pyramid, we can set up the interactive visualization." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Prepare the Data\n", + "\n", + "First, we will prepare some metadata needed for plotting and define a helper function to extract a dataset at a specific pyramid level and channel." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def _extract_ds(ts_dt, level, channels=None):\n", + " \"\"\" Extract a dataset at a specific level\"\"\"\n", + " ds = ts_dt[str(level)].ds\n", + " return ds if channels is None else ds.sel(channel=channels)\n", + "\n", + "# Grab the timestamps from the coursest level of the datatree for initialization\n", + "num_levels = len(ts_dt)\n", + "coarsest_level = str(num_levels-1)\n", + "time_da = _extract_ds(ts_dt, coarsest_level)[\"time\"]\n", + "channels = ts_dt[coarsest_level].ds[\"channel\"].values[:MAX_CHANNELS_TO_DISPLAY]\n", + "num_channels = len(channels)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create Dynamic Plot\n", + "\n", + "We'll utilize a HoloViews `DynamicMap` which will call our custom function called `rescale` whenever there is a change in the visible axes' ranges (`RangeXY`) or the size of a plot (`PlotSize`).\n", + "\n", + "Based on the changes and thresholds, a new plot is created using a new subset of the datatree pyramid.\n", + "\n", + "\n", + "
Want more details? Click here \n", + "\n", + "When the `rescale` function is triggered, it will first determine which pyramid `zoom_level` has the next closest number of data samples in the visible time range (`time_slice`) compared with the number of horizontal pixels on the screen.\n", + "\n", + "Depending on the determined `zoom_level`, data corresponding to the visible time range is fetched through the `_extract_ds` function, which accesses the specific slice of data from the appropriate pyramid level.\n", + "\n", + "Finally, for each channel within the specified range, a `Curve` element is generated using HoloViews, and each curve is added to the `Overlay` for a stacked multi-channel timeseries visualization.\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_PADDING = 0.2 # buffer x-range to reduce update latency with pans and zoom-outs\n", + "\n", + "amplitude_dim = hv.Dimension(\"amplitude\", unit=\"µV\")\n", + "time_dim = hv.Dimension(\"time\", unit=\"s\") # match the index name in the df\n", + "\n", + "def rescale(x_range, y_range, width, scale, height):\n", + "\n", + " # Handle edge case when streams are initialized\n", + " if x_range is None:\n", + " x_range = time_da.min().item(), time_da.max().item()\n", + " if y_range is None:\n", + " y_range = 0, num_channels\n", + "\n", + " # define time range slice\n", + " x_padding = (x_range[1] - x_range[0]) * X_PADDING\n", + " time_slice = slice(x_range[0] - x_padding, x_range[1] + x_padding)\n", + " channel_slice = slice(y_range[0], y_range[1])\n", + "\n", + " # calculate the appropriate pyramid level and size\n", + " if width is None or height is None:\n", + " pyramid_level = num_levels - 1\n", + " size = time_da.size\n", + " else:\n", + " sizes = np.array([\n", + " _extract_ds(ts_dt, pyramid_level)[\"time\"].sel(time=time_slice).size\n", + " for pyramid_level in range(num_levels)\n", + " ])\n", + " diffs = sizes - width\n", + " pyramid_level = np.argmin(np.where(diffs >= 0, diffs, np.inf)) # nearest higher-resolution level\n", + " # pyramid_level = np.argmin(np.abs(np.array(sizes) - width)) # nearest, regardless of direction\n", + " size = sizes[pyramid_level]\n", + " \n", + " title = (\n", + " f\"[Pyramid Level {pyramid_level} ({x_range[0]:.2f}s - {x_range[1]:.2f}s)] \"\n", + " f\"[Time Samples: {size}] [Plot Size WxH: {width}x{height}]\"\n", + " )\n", + "\n", + " # extract new data and re-paint the plot\n", + " ds = _extract_ds(ts_dt, pyramid_level, channels).sel(time=time_slice, channel=channel_slice).load()\n", + "\n", + " curves = {}\n", + " for channel in ds[\"channel\"].values.tolist():\n", + " curves[str(channel)] = hv.Curve(ds.sel(channel=channel), [time_dim], ['data'], label=str(channel)).redim(\n", + " data=amplitude_dim).opts(\n", + " color=\"black\",\n", + " line_width=1,\n", + " subcoordinate_y=True,\n", + " subcoordinate_scale=2,\n", + " hover_tooltips = [\n", + " (\"channel\", \"$label\"),\n", + " (\"time\"),\n", + " (\"amplitude\")],\n", + " tools=[\"xwheel_zoom\"],\n", + " active_tools=[\"box_zoom\"],\n", + " )\n", + " \n", + " curves_overlay = hv.NdOverlay(curves, kdims=\"Channel\", sort=False).opts(\n", + " xlabel=\"Time (s)\",\n", + " ylabel=\"Channel\",\n", + " title=title,\n", + " show_legend=False,\n", + " padding=0,\n", + " min_height=600,\n", + " responsive=True,\n", + " framewise=True,\n", + " axiswise=True,\n", + " )\n", + " return curves_overlay\n", + "\n", + "range_stream = hv.streams.RangeXY()\n", + "size_stream = hv.streams.PlotSize()\n", + "dmap = hv.DynamicMap(rescale, streams=[size_stream, range_stream])\n", + "\n", + "# dmap # uncomment to display the curves plot without further extensions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Optional Extensions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Minimap Extension" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from scipy.stats import zscore\n", + "from holoviews.operation.datashader import rasterize\n", + "from holoviews.plotting.links import RangeToolLink\n", + "\n", + "y_positions = range(num_channels)\n", + "yticks = [(i, ich) for i, ich in enumerate(channels)]\n", + "\n", + "z_data = zscore(ts_dt[coarsest_level].ds[\"data\"].values[:MAX_CHANNELS_TO_DISPLAY], axis=1)\n", + "\n", + "minimap = rasterize(\n", + " hv.QuadMesh((time_da, y_positions, z_data), [\"Time\", \"Channel\"], \"Amplitude\")\n", + ")\n", + "\n", + "minimap = minimap.opts(\n", + " cnorm='eq_hist',\n", + " cmap=\"RdBu_r\",\n", + " alpha=0.5,\n", + " xlabel=\"\",\n", + " yticks=[yticks[0], yticks[-1]],\n", + " toolbar=\"disable\",\n", + " height=120,\n", + " responsive=True,\n", + ")\n", + "\n", + "tool_link = RangeToolLink(\n", + " minimap,\n", + " dmap,\n", + " axes=[\"x\", \"y\"],\n", + " boundsx=(0, time_da.max().item() // 2),\n", + " boundsy=(0, len(channels) // 2),\n", + ")\n", + "\n", + "nb_app = (dmap + minimap).cols(1)\n", + "nb_app # uncomment to display app in a notebook" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Standalone App Extension" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "standalone_app = pn.template.FastListTemplate(\n", + " title = \"HoloViz + Bokeh Multi-Channel Timeseries with Large Data via Pyramid\",\n", + " main = pn.Column(nb_app),\n", + ").servable()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/workflows/multi_channel_timeseries/medium_multi-chan-ts.ipynb b/workflows/multi_channel_timeseries/medium_multi-chan-ts.ipynb new file mode 100644 index 0000000..8ffbdeb --- /dev/null +++ b/workflows/multi_channel_timeseries/medium_multi-chan-ts.ipynb @@ -0,0 +1,592 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Multi-Channel Timeseries via Live Downsampling" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> TODO create banner image\n", + "\n", + "![]()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overview" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For an introduction, please visit the ['Index'](./index.ipynb) page. This workflow is tailored for processing and analyzing 'medium-sized' multi-channel timeseries data derived from [electrophysiological](https://en.wikipedia.org/wiki/Electrophysiology) recordings. \n", + "\n", + "### What Defines a 'Medium-Sized' Dataset?\n", + "\n", + "In this context, we'll define a medium-sized dataset as that which is challenging for browsers (roughly more than 100,000 samples) but can be handled within the available RAM without exhausting system resources.\n", + "\n", + "### Why Downsample?\n", + "\n", + "Medium-sized datasets can strain the processing capabilities when visualizing or analyzing data directly in the browser. To address this challenge, we will employ a smart-downsampling approach - reducing the dataset size by selectively subsampling the data points. Specifically, we'll make use of a variant of a downsampling algorithm called [Largest Triangle Three Buckets (LTTB)](https://skemman.is/handle/1946/15343). LTTB allows data points not contributing significantly to the visible shape to be dropped, reducing the amount of data to send to the browser but preserving the appearance (and particularly the envelope, i.e. highest and lowest values in a region). This ensures efficient data handling and visualization without significant loss of information.\n", + "\n", + "Downsampling is particularly beneficial when dealing with numerous timeseries sharing a common time index, as it allows for a consolidated slicing operation across all series, significantly reducing the computational load and enhancing responsiveness for interactive visualization. We'll make use of a [Pandas](https://pandas.pydata.org/docs/index.html) index to represent the time index across all timeseries.\n", + "\n", + "### Quick Introduction to MNE\n", + "\n", + "[MNE (MNE-Python)](https://mne.tools/stable/index.html) is a powerful open-source Python library designed for handling and analyzing data like EEG and MEG. In this workflow, we'll utilize an EEG dataset, so we demonstrate how to use MNE for loading, preprocessing, and conversion to a Pandas DataFrame. However, the data visualization section is highly generalizable to dataset types beyond the scope of MNE, so you can meet us there if you have your timeseries data as a Pandas DataFrame with a time index and channel columns.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prerequisites and Resources\n", + "\n", + "| Topic | Type | Notes |\n", + "| --- | --- | --- |\n", + "| [Introduction and Index](./index.ipynb) | Prerequisite | Read the foundational concepts and workflow selection assistance. |\n", + "| [Time Range Annotation](./time_range_annotation.ipynb) | Suggested Next Step | Learn to display and edit time ranges in data. |\n", + "| [Handling Smaller Datasets](./small_multi-chan-ts.ipynb) | Alternative Workflow | Use Numpy for flexibility with smaller datasets |\n", + "| [Handling Larger Datasets](./large_multi-chan-ts.ipynb) | Alternative Workflow | Discover techniques for dynamic data chunking in larger datasets. |" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Imports and Configuration" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import wget\n", + "from pathlib import Path\n", + "import mne\n", + "import warnings\n", + "warnings.filterwarnings('ignore', message='omp_set_nested')\n", + "\n", + "import colorcet as cc\n", + "import holoviews as hv\n", + "from holoviews.operation.downsample import downsample1d\n", + "import panel as pn\n", + "\n", + "pn.extension()\n", + "hv.extension('bokeh')\n", + "np.random.seed(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Loading and Inspecting the Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's get some data! This section walks through obtaining an EEG dataset (2.6 MB). If it doesn't already exist, it will put the data in a new 'data' folder in the same directory of this notebook:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = 'https://physionet.org/files/eegmmidb/1.0.0/S001/S001R04.edf'\n", + "output_directory = Path('./data')\n", + "\n", + "output_directory.mkdir(parents=True, exist_ok=True)\n", + "data_path = output_directory / Path(data_url).name\n", + "if not data_path.exists():\n", + " data_path = wget.download(data_url, out=str(data_path))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Once the data is downloaded, the next crucial step is to load it into an analysis-friendly format and inspect its basic characteristics:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "raw = mne.io.read_raw_edf(data_path, preload=True)\n", + "print('num samples in dataset:', len(raw.times) * len(raw.ch_names))\n", + "raw.info" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This step confirms the successful loading of the data and provides an initial understanding of its structure, such as the number of channels and samples.\n", + "\n", + "Now, let's preview the channel names, types, unit, and signal ranges. This `describe` method is from MNE, and we can have it return a Pandas DataFrame, from which we can `sample` some rows." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "raw.describe(data_frame=True).sample(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pre-processing the Data\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Noise Reduction via Averaging" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Significant noise reduction is often achieved by employing an average reference, which involves calculating the mean signal across all channels at each time point and subtracting it from the individual channel signals:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "raw.set_eeg_reference(\"average\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Standardizing Channel Names" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the output of the `describe` method, it looks like the channels are from commonly used standardized locations (e.g. 'Cz'), but contain some unnecessary periods, so let's clean those up to ensure smoother processing and analysis." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "raw.rename_channels(lambda s: s.strip(\".\"));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Optional: Enhancing Channel Metadata" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Visualizing physical locations of EEG channels enhances interpretative analysis. MNE has functionality to assign locations of the channels based on their standardized channel names, so we can go ahead and assign a commonly used arrangement (or 'montage') of electrodes ('10-05') to this data. Read more about making and setting the montage [here](https://mne.tools/stable/auto_tutorials/intro/40_sensor_locations.html#sphx-glr-auto-tutorials-intro-40-sensor-locations-py)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "montage = mne.channels.make_standard_montage(\"standard_1005\")\n", + "raw.set_montage(montage, match_case=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that the 'digitized points' (locations) are now added to the raw data.\n", + "\n", + "Now let's plot the channels using MNE [`plot_sensors`](https://mne.tools/stable/generated/mne.io.Raw.html#mne.io.Raw.plot_sensors) on a top-down view of a head. Note, we'll tweak the reference point so that all the points are contained within the depiction of the head." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sphere=(0, 0.015, 0, 0.099) # manually adjust the y origin coordinate and radius\n", + "raw.plot_sensors(show_names=True, sphere=sphere, show=False);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Visualization\n", + "\n", + "### Preparing Data for Visualization\n", + "\n", + "We'll use an MNE method, `to_data_frame`, to create a Pandas DataFrame. By default, MNE will convert EEG data from Volts to microVolts (µV) during this operation.\n", + "\n", + "> TODO: file issue about rangetool not working with datetime (timezone error). When fixed, use `raw.to_data_frame(time_format='datetime')`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = raw.to_data_frame()\n", + "df.set_index('time', inplace=True) \n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creating the Main Plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As of the time of writing, there's no easy way to track units with Pandas, so we can use a modular HoloViews approach to create and annotate dimensions with a unit, and then refer to these dimensions when plotting. Read more about annotating data with HoloViews [here](https://holoviews.org/user_guide/Annotating_Data.html)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "time_dim = hv.Dimension(\"time\", unit=\"s\") # match the df index name" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we will loop over the columns (channels) in the dataframe, creating a HoloViews `Curve` element from each. Since each column in the df has a different channel name, which is generally not describing a measurable quantity, we will map from the channel to a common `amplitude` dimension (see [this issue](https://github.com/holoviz/holoviews/issues/6260) for details of this recent enhancement for 'wide' tabular data), and collect each `Curve` element into a Python list.\n", + "\n", + "In configuring these curves, we apply the `.opts` method from HoloViews to fine-tune the visualization properties of each curve. The `subcoordinate_y` setting is pivotal for managing time-aligned, amplitude-diverse plots. When enabled, it arranges each curve along its own segment of the y-axis within a single composite plot. This method not only aids in differentiating the data visually but also in analyzing comparative trends across multiple channels, ensuring that each channel's data is individually accessible and comparably presentable, thereby enhancing the analytical value of the visualizations. Applying `subcoordinate_y` has additional effects, such as creating a Y-axis zoom tool that applies to individual subcoordinate axes rather than the global Y-axis. Read more about `subcoordinate_y` [here](https://holoviews.org/user_guide/Customizing_Plots.html#subcoordinate-y-axis)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "curves = {}\n", + "for col in df.columns:\n", + " col_amplitude_dim = hv.Dimension(col, label='amplitude', unit=\"µV\") # map amplitude-labeled dim per chan\n", + " curves[col] = hv.Curve(df, time_dim, col_amplitude_dim, group='EEG', label=col)\n", + " curves[col] = curves[col].opts(\n", + " subcoordinate_y=True,\n", + " subcoordinate_scale=3,\n", + " color=\"black\",\n", + " line_width=1,\n", + " hover_tooltips = [\n", + " (\"type\", \"$group\"),\n", + " (\"channel\", \"$label\"),\n", + " (\"time\"),\n", + " (\"amplitude\")],\n", + " tools=['xwheel_zoom'],\n", + " active_tools=[\"box_zoom\"]\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using a HoloViews `NdOverlay` container, we can now overlay all the curves on the same plot." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "curves_overlay = hv.NdOverlay(curves, 'Channel', sort=False)\n", + "curves_overlay = curves_overlay.opts(\n", + " ylabel=\"Channel\",\n", + " show_legend=False,\n", + " padding=0,\n", + " min_height=600,\n", + " responsive=True,\n", + " shared_axes=False,\n", + " title=\"\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Apply Downsampling" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since there are 64 channels and over a million data samples, we'll make use of downsampling before trying to send all that data to the browser. We can use `downsample1d` imported from HoloViews. Starting in HoloViews version 1.19.0, integration with the `tsdownsample` library introduces enhanced downsampling algorithms. Read more about downsampling [here](https://holoviews.org/user_guide/Large_Data.html)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "curves_overlay = downsample1d(curves_overlay, algorithm='minmax-lttb')\n", + "# curves_overlay # uncomment to display the curves plot without further extensions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Optional Extensions:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Minimap Extension\n", + "\n", + "To assist in navigating the dataset, we integrate a minimap widget. This secondary minimap plot provides a condensed overview of the entire dataset, allowing users to select and zoom into areas of interest quickly in the main plot while maintaining the contextualization of the zoomed out view.\n", + "\n", + "We will employ datashader rasterization of the image for the minimap plot to display a browser-friendly, aggregated view of the entire dataset. Read more about datashder rasterization via HoloViews [here](https://holoviews.org/user_guide/Large_Data.html)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.stats import zscore\n", + "from holoviews.operation.datashader import rasterize\n", + "from holoviews.plotting.links import RangeToolLink\n", + "\n", + "channels = df.columns\n", + "time = df.index.values\n", + "\n", + "y_positions = range(len(channels))\n", + "yticks = [(i, ich) for i, ich in enumerate(channels)]\n", + "z_data = zscore(df, axis=0).T\n", + "minimap = rasterize(hv.Image((time, y_positions, z_data), [\"Time\", \"Channel\"], \"amplitude\"))\n", + "minimap = minimap.opts(\n", + " cmap=\"RdBu_r\",\n", + " colorbar=False,\n", + " xlabel='',\n", + " alpha=0.5,\n", + " yticks=[yticks[0], yticks[-1]],\n", + " toolbar='disable',\n", + " height=120,\n", + " responsive=True,\n", + " cnorm='eq_hist',\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The connection between the main plot and the minimap is facilitated by a `RangeToolLink`, enhancing user interaction by synchronizing the visible range of the main plot with selections made on the minimap. Optionally, we'll also constrain the initially displayed x-range view to a third of the duration." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "RangeToolLink(minimap, curves_overlay, axes=[\"x\", \"y\"],\n", + " boundsx=(0, time[len(time)//3]), # limit the initial selected x-range of the minimap\n", + " boundsy=(-.5,len(channels)//3) # limit the initial selected y-range of the minimap\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we'll arrange the main plot and minimap into a single column layout." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> TODO: Apply nb template with loading indicator while downsampling" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "nb_app = (curves_overlay + minimap).cols(1)\n", + "nb_app" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Standalone App Extension\n", + "This layout, combined with the capabilities of HoloViz Panel, allows for the deployment of this complex visualization as a standalone, template-styled, interactive web application (outside of a Jupyter Notebook). Read more about Panel [here](https://panel.holoviz.org/).\n", + "\n", + "In short, we'll add our plot to the `main` area of a Panel Template (for styling), and set it to be `servable`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "standalone_app = pn.template.FastListTemplate(\n", + " title = \"HoloViz + Bokeh Multi-Channel Timeseries Workflow with Medium Data via Live Downsampling\",\n", + " main = pn.Column(nb_app),\n", + ").servable()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, in the same conda environment, you can use `panel serve ` on the command line to view the standalone application." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scale Bar Extension" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Although we can access the amplitude values of an individual curve through the instant inspection provided by the hover-activated toolitip, it can be helpful to also have persistent reference measurement. A scale bar may be added to any curve, and then the display of scale bars may be toggled with the measurement ruler icon in the toolbar." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "WIP..." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time Range Annotation Extension" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Annotations may be added using the new HoloViz HoloNote package. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "WIP..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/workflows/multi_channel_timeseries/small_multi-chan-ts.ipynb b/workflows/multi_channel_timeseries/small_multi-chan-ts.ipynb index 44d9ac9..a2c7631 100644 --- a/workflows/multi_channel_timeseries/small_multi-chan-ts.ipynb +++ b/workflows/multi_channel_timeseries/small_multi-chan-ts.ipynb @@ -4,14 +4,83 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Multi-Channel Timeseries (Small, In-Memory)" + "# Small Datasets - Multi-Channel Timeseries with Numpy" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Insert text about this focusing on using a numpy array approach without any downsampling" + "TODO create banner image\n", + "![]()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TODO: find and use a real EMG or EKG dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overview" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "

Visit the Index Page

\n", + " This workflow example is part of set of related workflows. If you haven't already, visit the index page for an introduction and guidance on choosing the appropriate workflow.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The intended use-case for this workflow is to browse and annotate multi-channel timeseries data from an [electrophysiological](https://en.wikipedia.org/wiki/Electrophysiology) recording session.\n", + "\n", + "TODO: write overview specific to smaller dataset situations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prerequisites and Resources\n", + "\n", + "| Topic | Type | Notes |\n", + "| --- | --- | --- |\n", + "| [Intro and Guidance](./index.ipynb) | Prerequisite | Background |\n", + "| [Time Range Annotation](./time_range_annotation.ipynb) | Next Step | Display and edit time ranges |\n", + "| [Medium Dataset Workflow](./medium_multi-chan-ts.ipynb) | Alternative | Use Pandas and downsample |\n", + "| [Larger Dataset Workflow](./large_multi-chan-ts.ipynb) | Alternative | Use dynamic data chunking |" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Imports and Configuration" ] }, { @@ -20,28 +89,32 @@ "metadata": {}, "outputs": [], "source": [ - "import numpy as np; np.random.seed(0)\n", - "import pandas as pd\n", - "from scipy.stats import zscore\n", - "import string\n", + "import numpy as np\n", "\n", "import colorcet as cc\n", - "import holoviews as hv; hv.extension('bokeh')\n", + "import holoviews as hv\n", "from holoviews.plotting.links import RangeToolLink\n", "from holoviews.operation.datashader import rasterize\n", - "from holoviews import opts\n", - "from holoviews import Dataset\n", "from bokeh.models import HoverTool\n", - "import panel as pn; pn.extension(template='fast')\n", - "from holonote.annotate import Annotator\n", - "from holonote.app import PanelWidgets" + "import panel as pn\n", + "\n", + "pn.extension()\n", + "hv.extension('bokeh')\n", + "np.random.seed(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Generate a Small Fake Dataset" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Generate fake data" + "TODO: replace with a small real EMG dataset" ] }, { @@ -50,21 +123,26 @@ "metadata": {}, "outputs": [], "source": [ - "n_channels = 8\n", + "n_channels = 6\n", "n_seconds = 300\n", - "fs = 256 # Sampling frequency\n", + "sampling_rate = 128\n", "\n", - "init_freq = .01 # Initial sine wave frequency in Hz\n", - "freq_inc = 2/n_channels # Frequency increment\n", + "initial_frequency = .01\n", + "frequency_increment = 2/n_channels\n", "amplitude = 1\n", "\n", - "total_samples = n_seconds * fs\n", + "total_samples = n_seconds * sampling_rate\n", "time = np.linspace(0, n_seconds, total_samples)\n", + "\n", + "# Let's just name our channels 'CH 0', 'CH 1', ...\n", "channels = [f'CH {i}' for i in range(n_channels)]\n", + "\n", + "# We'll also add a grouping to our channels\n", "groups = ['EEG'] * (n_channels // 2) + ['MEG'] * (n_channels - n_channels // 2)\n", "\n", - "data = np.array([amplitude * np.sin(2 * np.pi * (init_freq + i * freq_inc) * time)\n", + "data = np.array([amplitude * np.sin(2 * np.pi * (initial_frequency + i * frequency_increment) * time)\n", " for i in range(n_channels)])\n", + "\n", "print(f'shape: {data.shape} (n_channels, samples) ')" ] }, @@ -81,17 +159,23 @@ "metadata": {}, "outputs": [], "source": [ + "# TODO: different groups would have different units so need to change the amplitude dim" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", "time_dim = hv.Dimension('Time', unit='s')\n", "amplitude_dim = hv.Dimension('Amplitude', unit='µV')\n", "\n", - "# set group colors\n", - "color_map = dict(zip(set(groups), cc.b_glasbey_bw_minc_20[::-1][:len(set(groups))]))\n", - "group_color_opts = [opts.Curve(grp, color=grpclr) for grp, grpclr in color_map.items()]\n", - "\n", "# Create curves overlay plot\n", "curves = []\n", "for group, channel, channel_data in zip(groups, channels, data):\n", - " ds = Dataset((time, channel_data), [time_dim, amplitude_dim])\n", + " ds = hv.Dataset((time, channel_data), [time_dim, amplitude_dim])\n", " curve = hv.Curve(ds, time_dim, amplitude_dim, group=group, label=f'{channel}')\n", " curve.opts(\n", " subcoordinate_y=True,\n", @@ -99,15 +183,18 @@ " color=\"black\",\n", " line_width=1,\n", " tools=['hover'],\n", - " hover_tooltips=[(\"Group\", \"$group\"), (\"Channel\", \"$label\"), \"Time\", \"Amplitude\"],\n", + " hover_tooltips=[(\"Type\", \"$group\"), (\"Channel\", \"$label\"), \"Time\", \"Amplitude\"],\n", " )\n", " curves.append(curve)\n", "\n", "curves_overlay = hv.Overlay(curves, kdims=\"Channel\")\n", "\n", + "# set opts on overlay, including group-wise coloring\n", + "color_map = dict(zip(set(groups), cc.b_glasbey_bw_minc_20[::-1][:len(set(groups))]))\n", + "group_color_opts = [hv.opts.Curve(grp, color=grpclr) for grp, grpclr in color_map.items()]\n", "curves_overlay = curves_overlay.opts(\n", " *group_color_opts,\n", - " opts.Overlay(\n", + " hv.opts.Overlay(\n", " xlabel=\"Time (s)\", ylabel=\"Channel\", show_legend=False,\n", " padding=0, aspect=1.5, responsive=True, shared_axes=False, framewise=False, min_height=100,)\n", ")\n", @@ -131,8 +218,7 @@ "\n", "# Link minimap widget to curves overlay plot\n", "RangeToolLink(minimap, curves_overlay, axes=[\"x\", \"y\"],\n", - " boundsy=(-.5, 5.5),\n", - " boundsx=(0, time[len(time)//3])\n", + " boundsx=(0, time[len(time)//3]) # initial range of the minimap\n", " )\n", "\n", "app = pn.Column((curves_overlay + minimap).cols(1), min_height=500).servable()\n", @@ -143,21 +229,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Add Time-Range Annotations" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Add time-range annotation (Under Construction)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Create fake time range annotations" + "## Complete Code for Application" ] }, { @@ -166,69 +238,92 @@ "metadata": {}, "outputs": [], "source": [ - "def create_range_annotations(n_total_seconds: int, n_categories: int, \n", - " n_total_annotations: int, duration: int = 1) -> pd.DataFrame:\n", + "n_channels = 6\n", + "n_seconds = 300\n", + "sampling_rate = 128\n", "\n", - " \n", - " start_times = np.sort(np.random.randint(0, n_total_seconds - duration, n_total_annotations))\n", - " \n", - " # Ensure the annotations are non-overlapping\n", - " for i in range(1, len(start_times)):\n", - " if start_times[i] < start_times[i-1] + duration:\n", - " start_times[i] = start_times[i-1] + duration\n", - " end_times = start_times + duration\n", - " categories = np.random.choice(list(string.ascii_uppercase)[:n_categories], n_total_annotations)\n", - " \n", - " df = pd.DataFrame({\n", - " 'start': start_times,\n", - " 'end': end_times,\n", - " 'category': categories\n", - " })\n", - " df['category'] = df['category'].astype('category')\n", - " return df\n", + "initial_frequency = .01\n", + "frequency_increment = 2/n_channels\n", + "amplitude = 1\n", "\n", - "np.random.seed(1)\n", - "n_categories = 2\n", - "n_total_annotations = 5\n", - "annotations_df = create_range_annotations(n_seconds, n_categories, n_total_annotations)\n", - "annotations_df.sample(5)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ + "total_samples = n_seconds * sampling_rate\n", + "time = np.linspace(0, n_seconds, total_samples)\n", "\n", - "annotator = Annotator({\"Time\": float}, fields=[\"category\"])\n", - "annotator.define_annotations(annotations_df, Time=(\"start\", \"end\"))\n", + "channels = [f'CH {i}' for i in range(n_channels)]\n", + "groups = ['EEG'] * (n_channels // 2) + ['MEG'] * (n_channels - n_channels // 2)\n", + "data = np.array([amplitude * np.sin(2 * np.pi * (initial_frequency + i * frequency_increment) * time)\n", + " for i in range(n_channels)])\n", "\n", - "annotations_4_overlay = annotator.get_element(\"Time\")\n", + "time_dim = hv.Dimension('Time', unit='s')\n", + "amplitude_dim = hv.Dimension('Amplitude', unit='µV')\n", "\n", - "# Setup Annotator styling and groupby\n", - "unique_categories = [\"A\", \"B\", \"C\"]\n", - "color_map = dict(zip(unique_categories, cc.glasbey[:len(unique_categories)]))\n", + "# set group colors\n", + "color_map = dict(zip(set(groups), cc.b_glasbey_bw_minc_20[::-1][:len(set(groups))]))\n", + "group_color_opts = [hv.opts.Curve(grp, color=grpclr) for grp, grpclr in color_map.items()]\n", "\n", - "annotator.style.color = hv.dim(\"category\").categorize(categories=color_map, default=\"grey\")\n", - "annotator.groupby = \"category\"\n", - "widget = pn.widgets.MultiSelect(name=\"Show category\", value=[\"B\", \"C\"], options=[\"A\", \"B\", \"C\"], )\n", - "annotator.visible = widget\n", - "widget.servable(location='sidebar')\n", + "# Create curves overlay plot\n", + "curves = []\n", + "for group, channel, channel_data in zip(groups, channels, data):\n", + " ds = hv.Dataset((time, channel_data), [time_dim, amplitude_dim])\n", + " curve = hv.Curve(ds, time_dim, amplitude_dim, group=group, label=f'{channel}')\n", + " curve.opts(\n", + " subcoordinate_y=True,\n", + " subcoordinate_scale=.75,\n", + " color=\"black\",\n", + " line_width=1,\n", + " tools=['hover'],\n", + " hover_tooltips=[(\"Group\", \"$group\"), (\"Channel\", \"$label\"), \"Time\", \"Amplitude\"],\n", + " )\n", + " curves.append(curve)\n", "\n", - "annotator_tools = PanelWidgets(annotator, {\"category\": unique_categories})\n", + "curves_overlay = hv.Overlay(curves, \"Channel\")\n", "\n", - "# TODO: BUG: adding the annotator tools to the servable app prevents anything from displaying when served\n", - "annotator_tools_pn = pn.panel(annotator_tools).servable(target='sidebar')\n", + "curves_overlay = curves_overlay.opts(\n", + " *group_color_opts,\n", + " hv.opts.Overlay(\n", + " xlabel=\"Time (s)\", ylabel=\"Channel\", show_legend=False,\n", + " padding=0, aspect=1.5, responsive=True, shared_axes=False, framewise=False, min_height=100,)\n", + ")\n", + "\n", + "# Create minimap\n", + "y_positions = range(len(channels))\n", + "yticks = [(i, ich) for i, ich in enumerate(channels)]\n", + "z_data = zscore(data, axis=1)\n", + "minimap = hv.Image((time, y_positions, z_data), [\"Time (s)\", \"Channel\"], \"Amplitude (uV)\")\n", + "minimap = minimap.opts(\n", + " cmap=\"RdBu_r\",\n", + " colorbar=False,\n", + " xlabel='',\n", + " alpha=0.5,\n", + " yticks=[yticks[0], yticks[-1]],\n", + " toolbar='disable',\n", + " height=120,\n", + " responsive=True,\n", + " default_tools=[],\n", + " )\n", "\n", - "app_w_annotator = pn.Column((curves_overlay * annotations_overlay + minimap * annotations_overlay).cols(1), min_height=500).servable()" + "# Link minimap widget to curves overlay plot\n", + "RangeToolLink(minimap, curves_overlay, axes=[\"x\", \"y\"],\n", + " boundsy=(-.5, 5.5),\n", + " boundsx=(0, time[len(time)//3])\n", + " )\n", + "\n", + "app = pn.Column((curves_overlay + minimap).cols(1), min_height=500).servable()\n", + "app\n" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Summary\n", + "\n", + "### What's next?" + ] + }, + { + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [] } ], diff --git a/workflows/multi_channel_timeseries/time_range_annotation.ipynb b/workflows/multi_channel_timeseries/time_range_annotation.ipynb new file mode 100644 index 0000000..76ad294 --- /dev/null +++ b/workflows/multi_channel_timeseries/time_range_annotation.ipynb @@ -0,0 +1,68 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = 'https://physionet.org/files/eegmmidb/1.0.0/S001/S001R04.edf'\n", + "output_directory = Path('./data')\n", + "\n", + "output_directory.mkdir(parents=True, exist_ok=True)\n", + "data_path = output_directory / Path(data_url).name\n", + "if not data_path.exists():\n", + " data_path = wget.download(data_url, out=str(data_path))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "raw = mne.io.read_raw_edf(local_file_path, preload=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Gather the real timeseries annotations and clean up" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# get initial time of experiment\n", + "orig_time = raw.annotations.orig_time\n", + "\n", + "# get annotations into pd df\n", + "annotations_df = raw.annotations.to_data_frame()\n", + "\n", + "# Ensure the 'onset' column is in UTC timezone\n", + "annotations_df['onset'] = annotations_df['onset'].dt.tz_localize('UTC')\n", + "\n", + "annotations_df['start'] = (annotations_df['onset'] - orig_time).dt.total_seconds()\n", + "annotations_df['end'] = annotations_df['start'] + annotations_df['duration']\n", + "\n", + "\n", + "unique_descriptions = annotations_df['description'].unique()\n", + "color_map = dict(zip(unique_descriptions, cc.glasbey[:len(unique_descriptions)]))\n", + "annotations_df['color'] = annotations_df['description'].map(color_map)\n", + "\n", + "annotations_df.head()\n" + ] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/workflows/neuroglancer_notebook/assets/20240612_neuroglancerNB.png b/workflows/neuroglancer_notebook/assets/20240612_neuroglancerNB.png new file mode 100644 index 0000000..f64e191 Binary files /dev/null and b/workflows/neuroglancer_notebook/assets/20240612_neuroglancerNB.png differ diff --git a/workflows/neuroglancer_notebook/neuroglancer-nb-workflow.ipynb b/workflows/neuroglancer_notebook/neuroglancer-nb-workflow.ipynb index b8e7832..1a3a089 100644 --- a/workflows/neuroglancer_notebook/neuroglancer-nb-workflow.ipynb +++ b/workflows/neuroglancer_notebook/neuroglancer-nb-workflow.ipynb @@ -53,13 +53,14 @@ "end_time": "2024-03-29T17:38:20.342922Z", "start_time": "2024-03-29T17:38:20.339991Z" }, + "collapsed": false, "jupyter": { "outputs_hidden": false } }, "source": [ "## Define the NeuroglancerNB Class\n", - "TODO: Try to get this merged into Neuroglancer, or importable as a Panel extension" + "> TODO: get this merged into Neuroglancer, or importable as a Panel extension" ] }, { @@ -89,7 +90,7 @@ " \n", " DEMO_URL = 'https://neuroglancer-demo.appspot.com/#!%7B%22dimensions%22:%7B%22x%22:%5B6.000000000000001e-9%2C%22m%22%5D%2C%22y%22:%5B6.000000000000001e-9%2C%22m%22%5D%2C%22z%22:%5B3.0000000000000004e-8%2C%22m%22%5D%7D%2C%22position%22:%5B5029.42333984375%2C6217.5849609375%2C1182.5%5D%2C%22crossSectionScale%22:3.7621853549999242%2C%22projectionOrientation%22:%5B-0.05179581791162491%2C-0.8017329573631287%2C0.0831851214170456%2C-0.5895944833755493%5D%2C%22projectionScale%22:4699.372698097029%2C%22layers%22:%5B%7B%22type%22:%22image%22%2C%22source%22:%22precomputed://gs://neuroglancer-public-data/kasthuri2011/image%22%2C%22tab%22:%22source%22%2C%22name%22:%22original-image%22%7D%2C%7B%22type%22:%22image%22%2C%22source%22:%22precomputed://gs://neuroglancer-public-data/kasthuri2011/image_color_corrected%22%2C%22tab%22:%22source%22%2C%22name%22:%22corrected-image%22%7D%2C%7B%22type%22:%22segmentation%22%2C%22source%22:%22precomputed://gs://neuroglancer-public-data/kasthuri2011/ground_truth%22%2C%22tab%22:%22source%22%2C%22selectedAlpha%22:0.63%2C%22notSelectedAlpha%22:0.14%2C%22segments%22:%5B%223208%22%2C%224901%22%2C%2213%22%2C%224965%22%2C%224651%22%2C%222282%22%2C%223189%22%2C%223758%22%2C%2215%22%2C%224027%22%2C%223228%22%2C%22444%22%2C%223207%22%2C%223224%22%2C%223710%22%5D%2C%22name%22:%22ground_truth%22%7D%5D%2C%22layout%22:%224panel%22%7D'\n", "\n", - " def __init__(self, source=None, aspect_ratio=1.5, show_state=False, **params):\n", + " def __init__(self, source=None, aspect_ratio=2.75, show_state=False, **params):\n", "\n", " \"\"\"\n", " Args:\n", @@ -97,7 +98,7 @@ " which can be a URL string or an existing neuroglancer.viewer.Viewer instance.\n", " If None, a new viewer will be initialized without a predefined state.\n", " aspect_ratio (float, optional): The width to height ratio for the window-responsive Neuroglancer viewer.\n", - " Default is 1.5.\n", + " Default is 2.75.\n", " show_state (bool, optional): Provides a collapsable card widget under the viewer that displays the viewer's\n", " Useful for debugging. Default is False.\n", " \"\"\"\n", @@ -125,7 +126,7 @@ " self.json_pane = pn.pane.JSON({}, theme='light', depth=2, name='Viewer State', height=600, width=400)\n", " self.shareable_url_pane = pn.pane.Markdown(\"**Shareable URL:**\")\n", " self.local_url_pane = pn.pane.Markdown(\"**Local URL:**\")\n", - " self.iframe = pn.pane.HTML(sizing_mode='stretch_both', aspect_ratio=aspect_ratio)\n", + " self.iframe = pn.pane.HTML(sizing_mode='stretch_both', aspect_ratio=aspect_ratio, min_height=500, styles={\"resize\": \"both\", \"overflow\": \"hidden\"})\n", "\n", " def _configure_viewer(self):\n", " self._update_local_url()\n", @@ -148,7 +149,7 @@ " new_state = self._parse_state_from_url(url)\n", " self.viewer.set_state(new_state)\n", " except Exception as e:\n", - " print(f\"Error loading Neuroglancer state: {e}\")\n", + " print(f\"Error loading Neuroglancer state: Please {e}\")\n", "\n", " def _parse_state_from_url(self, url):\n", " return neuroglancer.parse_url(url)\n", @@ -187,7 +188,9 @@ " return pn.Column(\n", " controls_layout,\n", " links_layout,\n", - " pn.FlexBox(self.iframe, pn.Card(self.json_pane, title='State', collapsed=True, visible=self.show_state)))\n", + " self.iframe,\n", + " pn.Card(self.json_pane, title='State', collapsed=True, visible=self.show_state)\n", + " )\n", " " ] }, @@ -195,6 +198,7 @@ "cell_type": "markdown", "id": "ac3c7976-b7b0-48ee-9735-9a72d851f39f", "metadata": { + "collapsed": false, "jupyter": { "outputs_hidden": false } @@ -221,7 +225,7 @@ }, "outputs": [], "source": [ - "NeuroglancerNB()" + "NeuroglancerNB(show_state=True)" ] }, { @@ -232,6 +236,7 @@ "end_time": "2024-03-29T17:48:56.655478Z", "start_time": "2024-03-29T17:48:56.653461Z" }, + "collapsed": false, "jupyter": { "outputs_hidden": false } @@ -244,6 +249,7 @@ "cell_type": "markdown", "id": "cfe5d277ca4b472a", "metadata": { + "collapsed": false, "jupyter": { "outputs_hidden": false } @@ -278,7 +284,7 @@ " source=\"precomputed://gs://neuroglancer-janelia-flyem-hemibrain/v1.1/segmentation\",\n", " )\n", "\n", - "NeuroglancerNB(source=viewer)" + "NeuroglancerNB(source=viewer, show_state=True)" ] }, { @@ -306,7 +312,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.12.3" } }, "nbformat": 4,