From a36504483404232ef78e8e6db5a1e6f7d68d289c Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 17 Feb 2024 23:04:16 +0200 Subject: [PATCH] ggml : add ALiBi support for ggml_soft_max_ext (#5488) * ggml : avoid recomputing alibi slopes (CPU) * llama : reuse hparams.f_max_alibi_bias in all cases ggml-ci * ggml : support alibi bias in ggml_soft_max_ext (CPU + Metal) ggml-ci * ggml : handle all SRCs (do not break on first null) ggml-ci * tests : do not use slope for large soft_max accumulates too much error ggml-ci * ggml : alternative ALiBi without extra tensor We compute the slopes in the kernel ggml-ci * cuda : add ALiBi support in ggml_soft_max_ext ggml-ci * ggml : deprecate ggml_alibi * ggml : support multi-sequence ALiBi (Metal) ggml-ci * cuda : add multi-seq ALiBi + remote F16 soft_max ggml-ci * ggml : update deprecation message * ggml : fix pos ptr when no ALiBi ggml-ci * cuda : fix performance (pow -> powf) * cuda : precompute ALiBi constants * metal : pre-compute ALiBi slopes ggml-ci * llama : init kq_pos only if needed ggml-ci * test-backend-ops : add null pos test to soft_max test-backend-ops : replace soft_max tests ggml-ci --------- Co-authored-by: slaren --- ggml-alloc.c | 6 +- ggml-backend.c | 16 +-- ggml-cuda.cu | 257 ++++++++----------------------------- ggml-metal.m | 35 +++-- ggml-metal.metal | 47 ++++++- ggml.c | 116 +++++++++++------ ggml.h | 13 +- llama.cpp | 133 ++++++++++++------- tests/test-backend-ops.cpp | 74 ++++++----- 9 files changed, 344 insertions(+), 353 deletions(-) diff --git a/ggml-alloc.c b/ggml-alloc.c index c28c37c4fd9ffb..d4123564ff0d17 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -551,7 +551,7 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr } for (int j = 0; j < GGML_MAX_SRC; j++) { if (graph->nodes[i]->src[j] == NULL) { - break; + continue; } if (graph->nodes[i]->src[j]->flags & GGML_TENSOR_FLAG_INPUT) { ggml_gallocr_allocate_node(galloc, graph->nodes[i]->src[j], get_node_buffer_id(node_buffer_ids, i)); @@ -787,7 +787,7 @@ static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { - break; + continue; } if (!ggml_gallocr_node_needs_realloc(galloc, src, node_alloc, &node_alloc->src[j])) { #ifndef NDEBUG @@ -833,7 +833,7 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph) for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { - break; + continue; } ggml_gallocr_init_tensor(galloc, src, node_alloc, &node_alloc->src[j]); } diff --git a/ggml-backend.c b/ggml-backend.c index d019d813ad5f07..66e8c293a9e3fc 100644 --- a/ggml-backend.c +++ b/ggml-backend.c @@ -1041,7 +1041,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st for (int i = 0; i < GGML_MAX_SRC; i++) { const struct ggml_tensor * src = tensor->src[i]; if (src == NULL) { - break; + continue; } if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { int src_backend = ggml_backend_sched_backend_from_buffer(sched, src->buffer); @@ -1088,7 +1088,7 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { - break; + continue; } ggml_backend_t src_backend = tensor_backend(src); fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name, @@ -1144,7 +1144,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { - break; + continue; } if (tensor_backend_id(src) == -1) { tensor_backend_id(src) = ggml_backend_sched_backend_id_from_cur(sched, src); @@ -1256,7 +1256,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { - break; + continue; } int src_backend_id = tensor_backend_id(src); if (src_backend_id == -1) { @@ -1315,7 +1315,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { - break; + continue; } int src_backend_id = tensor_backend_id(src); assert(src_backend_id != -1); // all inputs should be assigned by now @@ -1362,7 +1362,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { - break; + continue; } ggml_backend_t src_backend = tensor_backend(src); if (src_backend != tensor_backend /* && src_backend != NULL */) { @@ -1668,7 +1668,7 @@ static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, for (int i = 0; i < GGML_MAX_SRC; i++) { struct ggml_tensor * s = src->src[i]; if (s == NULL) { - break; + continue; } dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s); } @@ -1697,7 +1697,7 @@ static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_te for (int i = 0; i < GGML_MAX_SRC; i++) { struct ggml_tensor * s = src->src[i]; if (s == NULL) { - break; + continue; } graph_copy_init_tensor(hash_set, node_copies, node_init, s); } diff --git a/ggml-cuda.cu b/ggml-cuda.cu index b35fcb7fdb5d2a..5fd8a87e4150f0 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -5956,148 +5956,30 @@ static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX; } -template -static __global__ void soft_max_f16(const float * x, const float * y, float * dst, const int ncols_par, const int nrows_y, const float scale) { -#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX - const int ncols_data = ncols_template == 0 ? ncols_par : ncols_template; - const int ncols_smem = GGML_PAD(ncols_data, 2*WARP_SIZE)/2; +template +static __global__ void soft_max_f32(const float * x, const float * mask, const float * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) { + const int ncols = ncols_template == 0 ? ncols_par : ncols_template; const int tid = threadIdx.x; const int rowx = blockIdx.x; - const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension + const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension const int block_size = block_size_template == 0 ? blockDim.x : block_size_template; const int warp_id = threadIdx.x / WARP_SIZE; const int lane_id = threadIdx.x % WARP_SIZE; - extern __shared__ half data_soft_max_f16[]; - half * buf_iw = data_soft_max_f16 + 0; // shared memory buffer for inter-warp communication - // (shared memory) buffer to cache values between iterations: - half2 * vals = vals_smem ? (half2 *) (buf_iw + WARP_SIZE) : (half2 *) (dst + rowx*ncols_data); - // if the buffer is larger than max. shared memory per block, use dst as temp. buffer instead - // in that case col_smem == col_data must be enforced to avoid race conditions - - half2 max_val = make_half2(-INFINITY, -INFINITY); - -#pragma unroll - for (int col0 = 0; col0 < ncols_smem; col0 += block_size) { - const int col_data = 2*col0 + 2*WARP_SIZE*warp_id + lane_id; - const int col_smem = vals_smem ? col0 + tid : col_data; - - const int ix = rowx*ncols_data + col_data; - const int iy = rowy*ncols_data + col_data; - - half2 val; - if (need_check && col_data + 0 >= ncols_data) { - val.x = -INFINITY; - } else { - val.x = x[ix + 0]*scale + (y ? y[iy + 0] : 0.0f); - } - if (need_check && col_data + WARP_SIZE >= ncols_data) { - val.y = -INFINITY; - } else { - val.y = x[ix + WARP_SIZE]*scale + (y ? y[iy + WARP_SIZE] : 0.0f); - } - if (!need_check || col_smem < (vals_smem ? ncols_smem : ncols_data)) { - vals[col_smem] = val; - } - max_val = __hmax2(max_val, val); - } - - // find the max value in the block - max_val = warp_reduce_max(max_val); - if (block_size > WARP_SIZE) { - if (warp_id == 0) { - buf_iw[lane_id] = -INFINITY; - } - __syncthreads(); - - if (lane_id == 0) { - buf_iw[warp_id] = __hmax(max_val.x, max_val.y); - } - __syncthreads(); - - max_val = __half2half2(buf_iw[lane_id]); - max_val = warp_reduce_max(max_val); - } else { - max_val = __half2half2(__hmax(max_val.x, max_val.y)); - } - - half2 tmp = make_half2(0.0f, 0.0f); // partial sums + float slope = 0.0f; -#pragma unroll - for (int col0 = 0; col0 < ncols_smem; col0 += block_size) { - const int col_smem = vals_smem ? col0 + tid : 2*col0 + 2*warp_id*WARP_SIZE + lane_id; - - if (ncols_template == 0 && col_smem >= (vals_smem ? ncols_smem : ncols_data)) { - break; - } - - const half2 val = h2exp(vals[col_smem] - max_val); - - tmp += val; - vals[col_smem] = val; - } - - // find the sum of exps in the block - tmp = warp_reduce_sum(tmp); - if (block_size > WARP_SIZE) { - if (warp_id == 0) { - buf_iw[lane_id] = 0.0f; - } - __syncthreads(); - - if (lane_id == 0) { - buf_iw[warp_id] = tmp.x + tmp.y; - } - __syncthreads(); - - tmp = __half2half2(buf_iw[lane_id]); - tmp = warp_reduce_sum(tmp); - } else { - tmp = __half2half2(tmp.x + tmp.y); - } - - const half2 inv_sum = make_half2(1.0f, 1.0f) / tmp; - -#pragma unroll - for (int col0 = 0; col0 < ncols_smem; col0 += block_size) { - const int col_data = 2*col0 + 2*WARP_SIZE*warp_id + lane_id; - const int col_smem = vals_smem ? col0 + tid : col_data; - - const int idst = rowx*ncols_data + col_data; - const half2 result = vals[col_smem] * inv_sum; - - if (need_check && col_data + 0 >= ncols_data) { - return; - } - dst[idst] = result.x; + // ALiBi + if (max_bias > 0.0f) { + const int h = rowx/nrows_y; // head index - if (need_check && col_data + WARP_SIZE >= ncols_data) { - return; - } + const float base = h < n_head_log2 ? m0 : m1; + const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; - dst[idst + WARP_SIZE] = result.y; + slope = powf(base, exp); } -#else - (void) x; (void) y; (void) dst; (void) ncols_par; (void) nrows_y; (void) scale; - NO_DEVICE_CODE; -#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX -} - -template -static __global__ void soft_max_f32(const float * x, const float * y, float * dst, const int ncols_par, const int nrows_y, const float scale) { - const int ncols = ncols_template == 0 ? ncols_par : ncols_template; - - const int tid = threadIdx.x; - const int rowx = blockIdx.x; - const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension - - const int block_size = block_size_template == 0 ? blockDim.x : block_size_template; - - const int warp_id = threadIdx.x / WARP_SIZE; - const int lane_id = threadIdx.x % WARP_SIZE; extern __shared__ float data_soft_max_f32[]; float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication @@ -6117,7 +5999,8 @@ static __global__ void soft_max_f32(const float * x, const float * y, float * ds const int ix = rowx*ncols + col; const int iy = rowy*ncols + col; - const float val = x[ix]*scale + (y ? y[iy] : 0.0f); + const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + slope*pos[col]; + vals[col] = val; max_val = max(max_val, val); } @@ -7589,89 +7472,53 @@ static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols diag_mask_inf_f32<<>>(x, dst, ncols_x, rows_per_channel, n_past); } -static void soft_max_f16_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) { - int nth = WARP_SIZE; - while (nth < ncols_x/2 && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2; - const dim3 block_dims(nth, 1, 1); - const dim3 block_nums(nrows_x, 1, 1); - const size_t shmem = (GGML_PAD(ncols_x, 2*WARP_SIZE) + WARP_SIZE)*sizeof(half); - static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted."); - if (shmem <= g_device_caps[g_main_device].smpb) { - switch (ncols_x) { - case 32: - soft_max_f16<<>>(x, y, dst, ncols_x, nrows_y, scale); - break; - case 64: - soft_max_f16<<>>(x, y, dst, ncols_x, nrows_y, scale); - break; - case 128: - soft_max_f16<<>>(x, y, dst, ncols_x, nrows_y, scale); - break; - case 256: - soft_max_f16<<>>(x, y, dst, ncols_x, nrows_y, scale); - break; - case 512: - soft_max_f16<<>>(x, y, dst, ncols_x, nrows_y, scale); - break; - case 1024: - soft_max_f16<<>>(x, y, dst, ncols_x, nrows_y, scale); - break; - case 2048: - soft_max_f16<<>>(x, y, dst, ncols_x, nrows_y, scale); - break; - case 4096: - soft_max_f16<<>>(x, y, dst, ncols_x, nrows_y, scale); - break; - default: - soft_max_f16<<>>(x, y, dst, ncols_x, nrows_y, scale); - break; - } - } else { - const size_t shmem_low = WARP_SIZE*sizeof(half); - soft_max_f16<<>>(x, y, dst, ncols_x, nrows_y, scale); - } -} - -static void soft_max_f32_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) { +static void soft_max_f32_cuda(const float * x, const float * mask, const float * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) { int nth = WARP_SIZE; while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2; const dim3 block_dims(nth, 1, 1); const dim3 block_nums(nrows_x, 1, 1); const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float); static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted."); + + const uint32_t n_head_kv = nrows_x/nrows_y; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); + if (shmem < g_device_caps[g_main_device].smpb) { switch (ncols_x) { case 32: - soft_max_f32<<>>(x, y, dst, ncols_x, nrows_y, scale); + soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; case 64: - soft_max_f32<<>>(x, y, dst, ncols_x, nrows_y, scale); + soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; case 128: - soft_max_f32<<>>(x, y, dst, ncols_x, nrows_y, scale); + soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; case 256: - soft_max_f32<<>>(x, y, dst, ncols_x, nrows_y, scale); + soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; case 512: - soft_max_f32<<>>(x, y, dst, ncols_x, nrows_y, scale); + soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; case 1024: - soft_max_f32<<>>(x, y, dst, ncols_x, nrows_y, scale); + soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; case 2048: - soft_max_f32<<>>(x, y, dst, ncols_x, nrows_y, scale); + soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; case 4096: - soft_max_f32<<>>(x, y, dst, ncols_x, nrows_y, scale); + soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; default: - soft_max_f32<<>>(x, y, dst, ncols_x, nrows_y, scale); + soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); break; } } else { const size_t shmem_low = WARP_SIZE*sizeof(float); - soft_max_f32<<>>(x, y, dst, ncols_x, nrows_y, scale); + soft_max_f32<<>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2); } } @@ -9090,30 +8937,36 @@ static void ggml_cuda_op_soft_max( GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional - const int64_t ne00 = src0->ne[0]; + const int64_t ne00 = src0->ne[0]; const int64_t nrows_x = ggml_nrows(src0); - const int64_t nrows_y = src1 ? ggml_nrows(src1) : 1; + const int64_t nrows_y = src0->ne[1]; - float scale = 1.0f; - memcpy(&scale, dst->op_params, sizeof(float)); + float scale = 1.0f; + float max_bias = 0.0f; -#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION >= CUDART_HMAX -#ifdef GGML_CUDA_F16 - const bool use_f16_soft_max = true; -#else - const bool use_f16_soft_max = false; -#endif // GGML_CUDA_F16 -#else - const bool use_f16_soft_max = false; -#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && CUDART_VERSION >= CUDART_HMAX + memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); + memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float)); - if (use_f16_soft_max) { - soft_max_f16_cuda(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream); - } else { - soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream); + // positions tensor + float * src2_dd = dst_dd; // default to avoid null checks in the kernel + cuda_pool_alloc src2_f; + + ggml_tensor * src2 = dst->src[2]; + const bool use_src2 = src2 != nullptr; + + if (use_src2) { + const bool src2_on_device = use_src2 && src2->backend == GGML_BACKEND_GPU; + ggml_tensor_extra_gpu * src2_extra = use_src2 ? (ggml_tensor_extra_gpu *) src2->extra : nullptr; + + if (src2_on_device) { + src2_dd = (float *) src2_extra->data_device[g_main_device]; + } else { + src2_dd = src2_f.alloc(ggml_nelements(src2)); + CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src2_dd, src2, 0, 0, 0, 1, main_stream)); + } } - (void) dst; + soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream); } static void ggml_cuda_op_scale( diff --git a/ggml-metal.m b/ggml-metal.m index 6e76f8bedb50b6..c0848a293e48f3 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -728,6 +728,7 @@ static bool ggml_metal_graph_compute( size_t offs_src0 = 0; size_t offs_src1 = 0; + size_t offs_src2 = 0; size_t offs_dst = 0; id command_buffer = command_buffers[cb_idx]; @@ -746,6 +747,7 @@ static bool ggml_metal_graph_compute( struct ggml_tensor * src0 = gf->nodes[i]->src[0]; struct ggml_tensor * src1 = gf->nodes[i]->src[1]; + struct ggml_tensor * src2 = gf->nodes[i]->src[2]; struct ggml_tensor * dst = gf->nodes[i]; switch (dst->op) { @@ -807,6 +809,7 @@ static bool ggml_metal_graph_compute( id id_src0 = src0 ? ggml_metal_get_buffer(src0, &offs_src0) : nil; id id_src1 = src1 ? ggml_metal_get_buffer(src1, &offs_src1) : nil; + id id_src2 = src2 ? ggml_metal_get_buffer(src2, &offs_src2) : nil; id id_dst = dst ? ggml_metal_get_buffer(dst, &offs_dst) : nil; //GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op)); @@ -1188,7 +1191,16 @@ static bool ggml_metal_graph_compute( pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX].pipeline; } - const float scale = ((float *) dst->op_params)[0]; + const float scale = ((float *) dst->op_params)[0]; + const float max_bias = ((float *) dst->op_params)[1]; + + const int64_t nrows_x = ggml_nrows(src0); + const int64_t nrows_y = src0->ne[1]; + const uint32_t n_head_kv = nrows_x/nrows_y; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; @@ -1197,11 +1209,20 @@ static bool ggml_metal_graph_compute( } else { [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1]; } - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; - [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; - [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; - [encoder setBytes:&scale length:sizeof(scale) atIndex:6]; + if (id_src2) { + [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2]; + } else { + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:2]; + } + [encoder setBuffer:id_dst offset:offs_dst atIndex:3]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:4]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:5]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:6]; + [encoder setBytes:&scale length:sizeof(scale) atIndex:7]; + [encoder setBytes:&max_bias length:sizeof(max_bias) atIndex:8]; + [encoder setBytes:&m0 length:sizeof(m0) atIndex:9]; + [encoder setBytes:&m1 length:sizeof(m1) atIndex:10]; + [encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:11]; [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; @@ -1514,8 +1535,6 @@ static bool ggml_metal_graph_compute( // max size of the src1ids array in the kernel stack GGML_ASSERT(ne11 <= 512); - struct ggml_tensor * src2 = gf->nodes[i]->src[2]; - const int64_t ne20 = src2 ? src2->ne[0] : 0; const int64_t ne21 = src2 ? src2->ne[1] : 0; const int64_t ne22 = src2 ? src2->ne[2] : 0; diff --git a/ggml-metal.metal b/ggml-metal.metal index efed6ad465e78d..09ebcc9e3040fd 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -351,12 +351,17 @@ kernel void kernel_sum_rows( kernel void kernel_soft_max( device const float * src0, device const float * src1, + device const float * src2, device float * dst, constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, constant float & scale, - threadgroup float * buf [[threadgroup(0)]], + constant float & max_bias, + constant float & m0, + constant float & m1, + constant uint32_t & n_head_log2, + threadgroup float * buf [[threadgroup(0)]], uint tgpig[[threadgroup_position_in_grid]], uint tpitg[[thread_position_in_threadgroup]], uint sgitg[[simdgroup_index_in_threadgroup]], @@ -368,13 +373,26 @@ kernel void kernel_soft_max( device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr; + device const float * ppos = src2 != src0 ? src2 : nullptr; device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + float slope = 0.0f; + + // ALiBi + if (max_bias > 0.0f) { + const int64_t h = i02; + + const float base = h < n_head_log2 ? m0 : m1; + const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = pow(base, exp); + } + // parallel max float lmax = -INFINITY; for (int i00 = tpitg; i00 < ne00; i00 += ntg) { - lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f)); + lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + slope*ppos[i00]); } // find the max value in the block @@ -399,7 +417,7 @@ kernel void kernel_soft_max( // parallel sum float lsum = 0.0f; for (int i00 = tpitg; i00 < ne00; i00 += ntg) { - const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val); + const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + slope*ppos[i00]) - max_val); lsum += exp_psrc0; pdst[i00] = exp_psrc0; } @@ -437,12 +455,17 @@ kernel void kernel_soft_max( kernel void kernel_soft_max_4( device const float * src0, device const float * src1, + device const float * src2, device float * dst, constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, constant float & scale, - threadgroup float * buf [[threadgroup(0)]], + constant float & max_bias, + constant float & m0, + constant float & m1, + constant uint32_t & n_head_log2, + threadgroup float * buf [[threadgroup(0)]], uint tgpig[[threadgroup_position_in_grid]], uint tpitg[[thread_position_in_threadgroup]], uint sgitg[[simdgroup_index_in_threadgroup]], @@ -454,13 +477,25 @@ kernel void kernel_soft_max_4( device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr; + device const float4 * ppos = src2 != src0 ? (device const float4 *)(src2) : nullptr; device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); + float slope = 0.0f; + + if (max_bias > 0.0f) { + const int64_t h = i02; + + const float base = h < n_head_log2 ? m0 : m1; + const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = pow(base, exp); + } + // parallel max float4 lmax4 = -INFINITY; for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { - lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f)); + lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + slope*ppos[i00]); } const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3])); @@ -486,7 +521,7 @@ kernel void kernel_soft_max_4( // parallel sum float4 lsum4 = 0.0f; for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { - const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val); + const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + slope*ppos[i00]) - max_val); lsum4 += exp_psrc4; pdst4[i00] = exp_psrc4; } diff --git a/ggml.c b/ggml.c index 264cfd705cd378..e94024c62a1238 100644 --- a/ggml.c +++ b/ggml.c @@ -5096,16 +5096,28 @@ static struct ggml_tensor * ggml_soft_max_impl( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * mask, + struct ggml_tensor * pos, float scale, + float max_bias, bool inplace) { GGML_ASSERT(ggml_is_contiguous(a)); + if (mask) { GGML_ASSERT(ggml_is_contiguous(mask)); - GGML_ASSERT(mask->ne[2] == 1); - GGML_ASSERT(mask->ne[3] == 1); + GGML_ASSERT(ggml_is_matrix(mask)); GGML_ASSERT(ggml_can_repeat_rows(mask, a)); } + if (pos) { + GGML_ASSERT(ggml_is_vector(pos)); + GGML_ASSERT(pos->type == GGML_TYPE_F32); + GGML_ASSERT(pos->ne[0] == a->ne[0]); + } + + if (max_bias > 0.0f) { + GGML_ASSERT(pos); + } + bool is_node = false; if (a->grad) { @@ -5114,13 +5126,14 @@ static struct ggml_tensor * ggml_soft_max_impl( struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); - float params[] = { scale }; + float params[] = { scale, max_bias }; ggml_set_op_params(result, params, sizeof(params)); result->op = GGML_OP_SOFT_MAX; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = mask; + result->src[2] = pos; return result; } @@ -5128,21 +5141,23 @@ static struct ggml_tensor * ggml_soft_max_impl( struct ggml_tensor * ggml_soft_max( struct ggml_context * ctx, struct ggml_tensor * a) { - return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false); + return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false); } struct ggml_tensor * ggml_soft_max_inplace( struct ggml_context * ctx, struct ggml_tensor * a) { - return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true); + return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true); } struct ggml_tensor * ggml_soft_max_ext( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * mask, - float scale) { - return ggml_soft_max_impl(ctx, a, mask, scale, false); + struct ggml_tensor * pos, + float scale, + float max_bias) { + return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false); } // ggml_soft_max_back @@ -11495,6 +11510,7 @@ static void ggml_compute_forward_soft_max_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, + const struct ggml_tensor * src2, struct ggml_tensor * dst) { assert(ggml_is_contiguous(dst)); assert(ggml_are_same_shape(src0, dst)); @@ -11503,16 +11519,29 @@ static void ggml_compute_forward_soft_max_f32( return; } - float scale = 1.0f; - memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); + float scale = 1.0f; + float max_bias = 0.0f; + + memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); + memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float)); // TODO: handle transposed/permuted matrices const int ith = params->ith; const int nth = params->nth; + GGML_TENSOR_UNARY_OP_LOCALS + const int64_t ne11 = src1 ? src1->ne[1] : 1; + // TODO: is this supposed to be ceil instead of floor? + // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370 + const uint32_t n_head_kv = ne02; + const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); + const int nc = src0->ne[0]; const int nr = ggml_nrows(src0); @@ -11525,6 +11554,9 @@ static void ggml_compute_forward_soft_max_f32( float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith; + // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching + float * pos = src2 ? (float *) src2->data : src0->data; + for (int i1 = ir0; i1 < ir1; i1++) { float * sp = (float *)((char *) src0->data + i1*src0->nb[1]); float * dp = (float *)((char *) dst->data + i1*dst->nb[1]); @@ -11538,6 +11570,16 @@ static void ggml_compute_forward_soft_max_f32( ggml_vec_acc_f32(nc, wp, mp); } + // ALiBi bias + if (max_bias > 0.0f) { + const uint32_t h = (i1/ne01)%ne02; // head + const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1); + + for (int i = 0; i < nc; i++) { + wp[i] = wp[i] + slope*pos[i]; + } + } + #ifndef NDEBUG for (int i = 0; i < nc; ++i) { //printf("p[%d] = %f\n", i, p[i]); @@ -11582,11 +11624,12 @@ static void ggml_compute_forward_soft_max( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, + const struct ggml_tensor * src2, struct ggml_tensor * dst) { switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_soft_max_f32(params, src0, src1, dst); + ggml_compute_forward_soft_max_f32(params, src0, src1, src2, dst); } break; default: { @@ -11730,22 +11773,20 @@ static void ggml_compute_forward_alibi_f32( const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); - for (int64_t i = 0; i < ne0; i++) { - for (int64_t j = 0; j < ne1; j++) { - for (int64_t k = 0; k < ne2_ne3; k++) { - float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2); - float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2); - - // TODO: k*nb2 or k*nb3 + for (int64_t k = 0; k < ne2_ne3; k++) { + // TODO: k*nb2 or k*nb3 + float m_k; - float m_k; - - if (k < n_heads_log2_floor) { - m_k = powf(m0, k + 1); - } else { - m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); - } + if (k < n_heads_log2_floor) { + m_k = powf(m0, k + 1); + } else { + m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); + } + for (int64_t i = 0; i < ne0; i++) { + for (int64_t j = 0; j < ne1; j++) { + float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2); + float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2); pdst[0] = i * m_k + src[0]; } } @@ -11790,21 +11831,20 @@ static void ggml_compute_forward_alibi_f16( const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); - for (int i = 0; i < ne0; i++) { - for (int j = 0; j < ne1; j++) { - for (int k = 0; k < ne2_ne3; k++) { - ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2); - float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2); - - // TODO: k*nb2 or k*nb3 + for (int k = 0; k < ne2_ne3; k++) { + // TODO: k*nb2 or k*nb3 + float m_k; - float m_k; + if (k < n_heads_log2_floor) { + m_k = powf(m0, k + 1); + } else { + m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); + } - if (k < n_heads_log2_floor) { - m_k = powf(m0, k + 1); - } else { - m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); - } + for (int i = 0; i < ne0; i++) { + for (int j = 0; j < ne1; j++) { + ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2); + float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2); // we return F32 pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]); @@ -15116,7 +15156,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm } break; case GGML_OP_SOFT_MAX: { - ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor); } break; case GGML_OP_SOFT_MAX_BACK: { diff --git a/ggml.h b/ggml.h index 270018185f397c..6c1956772324c2 100644 --- a/ggml.h +++ b/ggml.h @@ -1383,13 +1383,17 @@ extern "C" { struct ggml_context * ctx, struct ggml_tensor * a); - // fused soft_max(a*scale + mask) + // fused soft_max(a*scale + mask + pos[i]*(ALiBi slope)) // mask is optional + // pos is required when max_bias > 0.0f + // max_bias = 0.0f for no ALiBi GGML_API struct ggml_tensor * ggml_soft_max_ext( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * mask, - float scale); + struct ggml_tensor * pos, + float scale, + float max_bias); GGML_API struct ggml_tensor * ggml_soft_max_back( struct ggml_context * ctx, @@ -1491,12 +1495,13 @@ extern "C" { // alibi position embedding // in-place, returns view(a) - GGML_API struct ggml_tensor * ggml_alibi( + GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_alibi( struct ggml_context * ctx, struct ggml_tensor * a, int n_past, int n_head, - float bias_max); + float bias_max), + "use ggml_soft_max_ext instead (will be removed in Mar 2024)"); // clamp // in-place, returns view(a) diff --git a/llama.cpp b/llama.cpp index 8966c3e6659169..6ac9caa957a05d 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1557,12 +1557,13 @@ struct llama_hparams { uint32_t n_yarn_orig_ctx; int32_t rope_scaling_type_train; - float f_clamp_kqv; - float f_max_alibi_bias; + float f_clamp_kqv = 0.0f; + float f_max_alibi_bias = 0.0f; bool causal_attn = true; - uint32_t pooling_type = LLAMA_POOLING_NONE; + bool need_kq_pos = false; + uint32_t pooling_type = LLAMA_POOLING_NONE; bool operator!=(const llama_hparams & other) const { if (this->vocab_only != other.vocab_only) return true; @@ -1923,6 +1924,7 @@ struct llama_context { struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] struct ggml_tensor * inp_pos; // I32 [n_batch] struct ggml_tensor * inp_KQ_mask; // F32 [n_ctx, n_batch] + struct ggml_tensor * inp_KQ_pos; // F32 [n_ctx] struct ggml_tensor * inp_K_shift; // I32 [n_ctx] struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch] struct ggml_tensor * inp_cls; // I32 [n_batch] @@ -3054,6 +3056,11 @@ static void llm_load_hparams( case 40: model.type = e_model::MODEL_13B; break; default: model.type = e_model::MODEL_UNKNOWN; } + + if (model.type == e_model::MODEL_13B) { + // TODO: become GGUF KV parameter + hparams.f_max_alibi_bias = 8.0f; + } } break; case LLM_ARCH_STARCODER: { @@ -3081,6 +3088,9 @@ static void llm_load_hparams( case 32: model.type = e_model::MODEL_1B; break; default: model.type = e_model::MODEL_UNKNOWN; } + + // TODO: become GGUF KV parameter + hparams.f_max_alibi_bias = 8.0f; } break; case LLM_ARCH_BERT: { @@ -3126,11 +3136,12 @@ static void llm_load_hparams( case 4096: model.type = e_model::MODEL_7B; break; } break; } + + // TODO: become GGUF KV parameter + hparams.f_max_alibi_bias = 8.0f; } break; case LLM_ARCH_MPT: { - hparams.f_clamp_kqv = 0.0f; - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); @@ -3232,6 +3243,10 @@ static void llm_load_hparams( } model.ftype = ml.ftype; + + if (hparams.f_max_alibi_bias > 0.0f) { + hparams.need_kq_pos = true; + } } // TODO: This should probably be in llama.h @@ -4774,10 +4789,10 @@ static struct ggml_tensor * llm_build_kqv( struct ggml_tensor * wo_b, struct ggml_tensor * q_cur, struct ggml_tensor * kq_mask, + struct ggml_tensor * kq_pos, int64_t n_ctx, int32_t n_tokens, int32_t n_kv, - float max_alibi_bias, float kq_scale, const llm_build_cb & cb, int il) { @@ -4807,26 +4822,26 @@ static struct ggml_tensor * llm_build_kqv( ggml_mul_mat_set_prec(kq, GGML_PREC_F32); } - if (max_alibi_bias > 0.0f) { - // temporary branch until we figure out how to handle ggml_alibi through ggml_add +#if defined(GGML_USE_VULKAN) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_SYCL) +#pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Vulkan, Kompute, and SYCL") +#pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024") +#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488") + if (hparams.f_max_alibi_bias > 0.0f) { kq = ggml_scale(ctx, kq, kq_scale); cb(kq, "kq_scaled", il); - if (max_alibi_bias > 0.0f) { - // TODO: n_head or n_head_kv - // TODO: K-shift is likely not working - // TODO: change to ggml_add - kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, max_alibi_bias); - cb(kq, "kq_scaled_alibi", il); - } + kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias); + cb(kq, "kq_scaled_alibi", il); kq = ggml_add(ctx, kq, kq_mask); cb(kq, "kq_masked", il); kq = ggml_soft_max(ctx, kq); cb(kq, "kq_soft_max", il); - } else { - kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale); + } else +#endif + { + kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias); cb(kq, "kq_soft_max_ext", il); } @@ -4874,11 +4889,11 @@ static struct ggml_tensor * llm_build_kv( struct ggml_tensor * v_cur, struct ggml_tensor * q_cur, struct ggml_tensor * kq_mask, + struct ggml_tensor * kq_pos, int64_t n_ctx, int32_t n_tokens, int32_t kv_head, int32_t n_kv, - float max_alibi_bias, float kq_scale, const llm_build_cb & cb, int il) { @@ -4892,9 +4907,8 @@ static struct ggml_tensor * llm_build_kv( llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il); struct ggml_tensor * cur; - cur = llm_build_kqv(ctx, model, hparams, kv, graph, - wo, wo_b, - q_cur, kq_mask, n_ctx, n_tokens, n_kv, max_alibi_bias, kq_scale, cb, il); + cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b, + q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il); cb(cur, "kqv_out", il); return cur; @@ -5062,7 +5076,7 @@ struct llm_build_context { } Qcur = ggml_rope_custom( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); @@ -5077,7 +5091,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -5207,6 +5221,10 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); + // positions of the tokens in the KV cache + struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0); + cb(KQ_pos, "KQ_pos", -1); + // shift the entire K-cache if needed if (do_rope_shift) { llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); @@ -5255,12 +5273,9 @@ struct llm_build_context { cb(Kcur, "Kcur", il); - // apply ALiBi for 13B model - const float max_alibi_bias = model.type == MODEL_13B ? 8.0f : -1.0f; - cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -5384,7 +5399,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -5483,7 +5498,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -5688,7 +5703,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Q, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -5750,6 +5765,10 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); + // positions of the tokens in the KV cache + struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0); + cb(KQ_pos, "KQ_pos", -1); + for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -5777,7 +5796,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -5878,7 +5897,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } else { // compute Q and K and RoPE them @@ -5909,7 +5928,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -5985,6 +6004,10 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); + // positions of the tokens in the KV cache + struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0); + cb(KQ_pos, "KQ_pos", -1); + inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, @@ -6018,7 +6041,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -6078,6 +6101,10 @@ struct llm_build_context { struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); + // positions of the tokens in the KV cache + struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0); + cb(KQ_pos, "KQ_pos", -1); + for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * attn_norm; @@ -6111,7 +6138,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, hparams.f_max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -6233,7 +6260,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -6348,7 +6375,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -6469,7 +6496,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -6596,7 +6623,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f, cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); cb(cur, "kqv_out", il); } @@ -6699,7 +6726,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } struct ggml_tensor * sa_out = cur; @@ -6798,7 +6825,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -6907,7 +6934,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -7025,7 +7052,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -7144,7 +7171,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -7276,7 +7303,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -7507,6 +7534,18 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { } } + if (hparams.need_kq_pos) { + const int64_t n_kv = kv_self.n; + + assert(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer)); + + float * data = (float *) lctx.inp_KQ_pos->data; + + for (int i = 0; i < n_kv; ++i) { + data[i] = float(lctx.kv_self.cells[i].pos); + } + } + if (kv_self.has_shift) { const int64_t n_ctx = cparams.n_ctx; @@ -11434,7 +11473,7 @@ struct llama_context * llama_new_context_with_model( // graph inputs { ggml_init_params init_params = { - /* .mem_size */ ggml_tensor_overhead()*7, + /* .mem_size */ ggml_tensor_overhead()*8, /* .mem_buffer */ nullptr, /* .no_alloc */ true, }; @@ -11444,6 +11483,7 @@ struct llama_context * llama_new_context_with_model( ctx->inp_embd = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, hparams.n_embd, cparams.n_batch); ctx->inp_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch); ctx->inp_KQ_mask = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_ctx, cparams.n_batch); + ctx->inp_KQ_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_ctx); ctx->inp_K_shift = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_ctx); ctx->inp_mean = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_batch, cparams.n_batch); ctx->inp_cls = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch); @@ -11452,6 +11492,7 @@ struct llama_context * llama_new_context_with_model( ggml_set_name(ctx->inp_embd, "inp_embd"); ggml_set_name(ctx->inp_pos, "inp_pos"); ggml_set_name(ctx->inp_KQ_mask, "inp_KQ_mask"); + ggml_set_name(ctx->inp_KQ_pos, "inp_KQ_pos"); ggml_set_name(ctx->inp_K_shift, "inp_K_shift"); ggml_set_name(ctx->inp_mean, "inp_mean"); ggml_set_name(ctx->inp_cls, "inp_cls"); diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 9af8517d950db9..30a7d1f5ab3e2c 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -1085,24 +1085,32 @@ struct test_diag_mask_inf : public test_case { struct test_soft_max : public test_case { const ggml_type type; const std::array ne; - const float scale; const bool mask; + const float scale; + const float max_bias; std::string vars() override { - return VARS_TO_STR4(type, ne, scale, mask); + return VARS_TO_STR5(type, ne, mask, scale, max_bias); } test_soft_max(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 10}, + bool mask = false, float scale = 1.0f, - bool mask = false) - : type(type), ne(ne), scale(scale), mask(mask) {} + float max_bias = 0.0f) + : type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); - ggml_tensor * b = nullptr; - if (mask) { b = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]); } - ggml_tensor * out = ggml_soft_max_ext(ctx, a, b, scale); + ggml_tensor * mask = nullptr; + if (this->mask) { + mask = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]); + } + ggml_tensor * pos = nullptr; + if (max_bias > 0.0f) { + pos = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[0]); + } + ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, pos, scale, max_bias); return out; } }; @@ -1147,30 +1155,6 @@ struct test_rope : public test_case { } }; -// GGML_OP_ALIBI -struct test_alibi : public test_case { - const ggml_type type; - const std::array ne; - int n_past; - int n_head; - float bias_max; - - std::string vars() override { - return VARS_TO_STR5(type, ne, n_past, n_head, bias_max); - } - - test_alibi(ggml_type type = GGML_TYPE_F32, - std::array ne = {10, 10, 10, 10}, - int n_past = 512, int n_head = 10, float bias_max = 0.5f) - : type(type), ne(ne), n_past(n_past), n_head(n_head), bias_max(bias_max) {} - - ggml_tensor * build_graph(ggml_context * ctx) override { - ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); - ggml_tensor * out = ggml_alibi(ctx, a, n_past, n_head, bias_max); - return out; - } -}; - // GGML_OP_POOL2D struct test_pool2d : public test_case { enum ggml_op_pool pool_type; @@ -1488,7 +1472,7 @@ struct test_moe : public test_case { ggml_tensor * cur = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_tokens); ggml_tensor * logits = ggml_mul_mat(ctx, ffn_gate_inp, cur); - ggml_tensor * probs = ggml_soft_max_ext(ctx, logits, nullptr, 1.0f/sqrtf(n_embd)); + ggml_tensor * probs = ggml_soft_max_ext(ctx, logits, nullptr, nullptr, 1.0f/sqrtf(n_embd), 0.0f); // select experts ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_experts_per_tok); @@ -1617,7 +1601,6 @@ struct test_llm : public test_case { ggml_cpy(ctx, v_cur_t, v_cache_view); } - // if max_alibi_bias > 0 then apply ALiBi struct ggml_tensor * llm_build_kqv( struct ggml_context * ctx, struct ggml_tensor * k_l, @@ -1636,7 +1619,7 @@ struct test_llm : public test_case { struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); - kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale); + kq = ggml_soft_max_ext(ctx, kq, kq_mask, nullptr, kq_scale, 0.0f); // split cached v into n_head heads struct ggml_tensor * v = @@ -2083,6 +2066,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 1}, 5)); test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5)); +#if 0 std::uniform_int_distribution<> dist_ne1(1, 50); int exponent = 1; while (exponent < (1 << 17)) { @@ -2091,14 +2075,29 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op for (int n = 0; n < 10; ++n) { int64_t ne0 = dist_ne0(rng); int64_t ne1 = dist_ne1(rng); - test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1})); + test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f)); } exponent <<= 1; } +#endif + for (bool mask : {false, true}) { + for (float max_bias : {0.0f, 8.0f}) { + for (float scale : {1.0f, 0.1f}) { + for (int64_t ne0 : {16, 1024}) { + for (int64_t ne1 : {16, 1024}) { + test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias)); + test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias)); + } + } + } + } + } - test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, 0.1f)); - test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, 0.1f, true)); + test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f)); + test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f)); + test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 8.0f)); + test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f)); for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B @@ -2113,7 +2112,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512)); // neox (phi-2) } - test_cases.emplace_back(new test_alibi()); test_cases.emplace_back(new test_concat(GGML_TYPE_F32)); test_cases.emplace_back(new test_concat(GGML_TYPE_I32));