-
Notifications
You must be signed in to change notification settings - Fork 0
/
layers.py
157 lines (123 loc) · 5.25 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
import torch
import torch.nn as nn
import time
import torch.nn.functional as F
from torch.autograd import Variable
from config import Config
args = Config()
args.load_config()
device = "cuda" if args.cuda else "cpu"
class ConvKB(nn.Module):
def __init__(self, input_dim, input_seq_len, in_channels, out_channels, drop_prob, alpha_leaky):
super().__init__()
self.conv_layer = nn.Conv2d(
in_channels, out_channels, (1, input_seq_len)) # kernel size -> 1*input_seq_length(i.e. 2)
self.dropout = nn.Dropout(drop_prob)
self.non_linearity = nn.ReLU()
self.fc_layer = nn.Linear((input_dim) * out_channels, 1)
nn.init.xavier_uniform_(self.fc_layer.weight, gain=1.414)
nn.init.xavier_uniform_(self.conv_layer.weight, gain=1.414)
def forward(self, conv_input):
batch_size, length, dim = conv_input.size()
# assuming inputs are of the form ->
conv_input = conv_input.transpose(1, 2)
# batch * length(which is 3 here -> entity,relation,entity) * dim
# To make tensor of size 4, where second dim is for input channels
conv_input = conv_input.unsqueeze(1)
out_conv = self.dropout(
self.non_linearity(self.conv_layer(conv_input)))
input_fc = out_conv.squeeze(-1).view(batch_size, -1)
output = self.fc_layer(input_fc)
return output
class SpecialSpmmFunctionFinal(torch.autograd.Function):
"""Special function for only sparse region backpropataion layer."""
@staticmethod
def forward(ctx, edge, edge_w, N, E, out_features):
# assert indices.requires_grad == False
a = torch.sparse_coo_tensor(
edge, edge_w, torch.Size([N, N, out_features]))
b = torch.sparse.sum(a, dim=1)
ctx.N = b.shape[0]
ctx.outfeat = b.shape[1]
ctx.E = E
ctx.indices = a._indices()[0, :]
return b.to_dense()
@staticmethod
def backward(ctx, grad_output):
grad_values = None
if ctx.needs_input_grad[1]:
edge_sources = ctx.indices
if args.cuda:
edge_sources = edge_sources.to(device)
grad_values = grad_output[edge_sources]
# grad_values = grad_values.view(ctx.E, ctx.outfeat)
# print("Grad Outputs-> ", grad_output)
# print("Grad values-> ", grad_values)
return None, grad_values, None, None, None
class SpecialSpmmFinal(nn.Module):
def forward(self, edge, edge_w, N, E, out_features):
return SpecialSpmmFunctionFinal.apply(edge, edge_w, N, E, out_features)
class SpGraphAttentionLayer(nn.Module):
"""
Sparse version GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, num_nodes, in_features, out_features, nrela_dim, dropout, alpha, concat=True):
super(SpGraphAttentionLayer, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.num_nodes = num_nodes
self.alpha = alpha
self.concat = concat
self.nrela_dim = nrela_dim
self.a = nn.Parameter(torch.zeros(
size=(out_features, 2 * in_features + nrela_dim)))
nn.init.xavier_normal_(self.a.data, gain=1.414)
self.a_2 = nn.Parameter(torch.zeros(size=(1, out_features)))
nn.init.xavier_normal_(self.a_2.data, gain=1.414)
self.dropout = nn.Dropout(dropout)
self.leakyrelu = nn.LeakyReLU(self.alpha)
self.special_spmm_final = SpecialSpmmFinal()
def forward(self, input, edge, edge_embed, edge_list_nhop, edge_embed_nhop):
N = input.size()[0]
# Self-attention on the nodes - Shared attention mechanism
edge = torch.cat((edge[:, :], edge_list_nhop[:, :]), dim=1)
edge_embed = torch.cat(
(edge_embed[:, :], edge_embed_nhop[:, :]), dim=0)
edge_h = torch.cat(
(input[edge[0, :], :], input[edge[1, :], :], edge_embed[:, :]), dim=1).t()
# edge_h: (2*in_dim + nrela_dim) x E
edge_h = edge_h.to(device)
self.a = self.a.to(device)
edge_m = self.a.mm(edge_h)
# edge_m: D * E
# to be checked later
powers = -self.leakyrelu(self.a_2.mm(edge_m).squeeze())
edge_e = torch.exp(powers).unsqueeze(1)
assert not torch.isnan(edge_e).any()
# edge_e: E
e_rowsum = self.special_spmm_final(
edge, edge_e, N, edge_e.shape[0], 1)
e_rowsum[e_rowsum == 0.0] = 1e-12
e_rowsum = e_rowsum
# e_rowsum: N x 1
edge_e = edge_e.squeeze(1)
edge_e = self.dropout(edge_e)
# edge_e: E
edge_w = (edge_e * edge_m).t()
# edge_w: E * D
h_prime = self.special_spmm_final(
edge, edge_w, N, edge_w.shape[0], self.out_features)
assert not torch.isnan(h_prime).any()
# h_prime: N x out
h_prime = h_prime.div(e_rowsum)
# h_prime: N x out
assert not torch.isnan(h_prime).any()
if self.concat:
# if this layer is not last layer,
return F.elu(h_prime)
else:
# if this layer is last layer,
return h_prime
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'