-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
157 lines (132 loc) · 5.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
import argparse
import importlib
import torch
import os
from src.utils.worker_utils import read_data
from config import OPTIMIZERS, DATASETS, MODEL_PARAMS, TRAINERS
def read_options():
parser = argparse.ArgumentParser()
# General setting
parser.add_argument('--algo',
help='name of trainer;',
type=str,
choices=OPTIMIZERS,
default='fedavg')
parser.add_argument('--wd',
help='weight decay parameter;',
type=float,
default=0.001)
parser.add_argument('--num_round',
help='number of rounds to simulate;',
type=int,
default=200)
parser.add_argument('--batch_size',
help='batch size when clients train on data;',
type=int,
default=64)
parser.add_argument('--local_step',
help='number of steps when clients train on data;',
type=int,
default=5)
parser.add_argument('--participation_level',
help='lower bound for the participation probabilities. (e.g., participation_level = 4 means the participation probabilities of the devices are in [0.4, 1]). ',
type=int,
default=1)
parser.add_argument('--participation_pattern',
help='participation probabilities pattern: random or adversarial',
type=str,
choices=['random','adversarial'],
default='random')
parser.add_argument('--lr',
help='learning rate for inner solver;',
type=float,
default=0.1)
# Algorithm Speicific setting
parser.add_argument('--clients_per_round',
help='number of clients trained per round (only for FedAvg)',
type=int,
default=10)
parser.add_argument('--importance_sampling',
action='store_true',
default=False,
help='whether to perform importance sampling (only for SGD) (default: False)')
# dataset and models
parser.add_argument('--dataset',
help='name of dataset;',
type=str,
default='mnist_all_data_0_equal_niid')
parser.add_argument('--model',
help='name of model;',
type=str,
default='logistic')
# other training settings
parser.add_argument('--gpu',
action='store_true',
default=False,
help='use gpu (default: False)')
parser.add_argument('--noprint',
action='store_true',
default=False,
help='whether to print inner result (default: False)')
parser.add_argument('--device',
help='selected CUDA device',
default=0,
type=int)
parser.add_argument('--seed',
help='seed for randomness;',
type=int,
default=0)
parser.add_argument('--num_user',
help='number of users',
default = '',
type=str)
parser.add_argument('--dirichlet',
help='dirichlet parameter',
default = '',
type=str)
parser.add_argument('--result_dir',
help='result dir',
type=str,
default='result')
parsed = parser.parse_args()
options = parsed.__dict__
options['gpu'] = options['gpu'] and torch.cuda.is_available()
# Set seeds
np.random.seed(1 + options['seed'])
torch.manual_seed(12 + options['seed'])
if options['gpu']:
torch.cuda.manual_seed_all(123 + options['seed'])
# read data
idx = options['dataset'].find("_")
if idx != -1:
dataset_name, sub_data = options['dataset'][:idx], options['dataset'][idx+1:]
else:
dataset_name, sub_data = options['dataset'], None
assert dataset_name in DATASETS, "{} not in dataset {}!".format(dataset_name, DATASETS)
# Add model arguments
options.update(MODEL_PARAMS(dataset_name, options['model']))
# Load selected trainer
trainer_path = 'src.trainers.%s' % options['algo']
mod = importlib.import_module(trainer_path)
trainer_class = getattr(mod, TRAINERS[options['algo']])
# Print arguments and return
max_length = max([len(key) for key in options.keys()])
fmt_string = '\t%' + str(max_length) + 's : %s'
print('>>> Arguments:')
for keyPair in sorted(options.items()):
print(fmt_string % keyPair)
return options, trainer_class, dataset_name, sub_data
def main():
# Parse command line arguments
options, trainer_class, dataset_name, sub_data = read_options()
train_path = os.path.join('./data', dataset_name + options['dirichlet'], 'data', 'train')
test_path = os.path.join('./data', dataset_name + options['dirichlet'], 'data', 'test')
avail_prob_file = os.path.join('./data', dataset_name + options['dirichlet'], 'data' ,'avail_prob_{}_{}.pkl'.format(options['participation_level'], options['participation_pattern']))
# `dataset` is a tuple like (cids, groups, train_data, test_data)
all_data_info = read_data(train_path, test_path, avail_prob_file, sub_data)
# Call appropriate trainer
trainer = trainer_class(options, all_data_info, options['result_dir'])
trainer.train()
if __name__ == '__main__':
main()