forked from ghliu/SB-FBSDE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsde.py
362 lines (275 loc) · 12.5 KB
/
sde.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import numpy as np
import abc
from tqdm import tqdm
from functools import partial
import torch
import util
import loss
from ipdb import set_trace as debug
def _assert_increasing(name, ts):
assert (ts[1:] > ts[:-1]).all(), '{} must be strictly increasing'.format(name)
def build(opt, p, q):
print(util.magenta("build base sde..."))
return {
'vp': VPSDE,
've': VESDE,
'simple': SimpleSDE,
}.get(opt.sde_type)(opt, p, q)
class BaseSDE(metaclass=abc.ABCMeta):
def __init__(self, opt, p, q):
self.opt = opt
self.dt=opt.T/opt.interval
self.p = p # data distribution
self.q = q # prior distribution
@abc.abstractmethod
def _f(self, x, t):
raise NotImplementedError
@abc.abstractmethod
def _g(self, x, t):
raise NotImplementedError
def f(self, x, t, direction):
sign = 1. if direction=='forward' else -1.
return sign * self._f(x,t)
def g(self, t):
return self._g(t)
def dw(self, x, dt=None):
dt = self.dt if dt is None else dt
return torch.randn_like(x)*np.sqrt(dt)
def propagate(self, t, x, z, direction, f=None, dw=None, dt=None):
g = self.g( t)
f = self.f(x,t,direction) if f is None else f
dt = self.dt if dt is None else dt
dw = self.dw(x,dt) if dw is None else dw
return x + (f + g*z)*dt + g*dw
def propagate_x0_trick(self, x, policy, direction):
""" propagate x0 by a tiny step """
t0 = torch.Tensor([0])
dt0 = self.opt.t0 - 0
assert dt0 > 0
z0 = policy(x,t0)
return self.propagate(t0, x, z0, direction, dt=dt0)
def denoise_step(self,opt,policy,policy2,x,t):
""" currently deprecated function
"""
if opt.sde_type=='ve':#VP's denosing step is just apply_trick2, this is only for VE.
# z2 =policy2(x,t)
zero=torch.zeros_like(t)
z = policy(x,zero)
g=self.g(zero)
z=z
x=x+z/g*self.sigma_min**2*self.opt.t0
print('trick applied,sigma_min{}'.format(self.sigma_min))
return x
def sample_traj(self, ts, policy, corrector=None, apply_trick=True, save_traj=True):
# first we need to know whether we're doing forward or backward sampling
opt = self.opt
direction = policy.direction
assert direction in ['forward','backward']
# set up ts and init_distribution
_assert_increasing('ts', ts)
init_dist = self.p if direction=='forward' else self.q
ts = ts if direction=='forward' else torch.flip(ts,dims=[0])
x = init_dist.sample() # [bs, x_dim]
apply_trick1, apply_trick2, apply_trick3 = compute_tricks_condition(opt, apply_trick, direction)
# [trick 1] propagate img (x0) by a tiny step
if apply_trick1: x = self.propagate_x0_trick(x, policy, direction)
xs = torch.empty((x.shape[0], len(ts), *x.shape[1:])) if save_traj else None
zs = torch.empty_like(xs) if save_traj else None
# don't use tqdm for fbsde since it'll resample every itr
_ts = ts if opt.train_method=='joint' else tqdm(ts,desc=util.yellow("Propagating Dynamics..."))
for idx, t in enumerate(_ts):
_t=t if idx==ts.shape[0]-1 else ts[idx+1]
f = self.f(x,t,direction)
z =policy(x,t)
dw = self.dw(x)
t_idx = idx if direction=='forward' else len(ts)-idx-1
if save_traj:
xs[:,t_idx,...]=x
zs[:,t_idx,...]=z
# [trick 2] zero out dw
if apply_trick2(t_idx=t_idx): dw = torch.zeros_like(dw)
x = self.propagate(t, x, z, direction, f=f, dw=dw)
if corrector is not None:
denoise_xT = False # apply_trick3(t_idx=t_idx) # [trick 3] additional denoising step for xT
x = self.corrector_langevin_update(_t ,x, corrector, denoise_xT)
x_term = x
res = [xs, zs, x_term]
return res
def corrector_langevin_update(self, t, x, corrector, denoise_xT):
opt = self.opt
batch = x.shape[0]
alpha_t = compute_alphas(t, opt.beta_min, opt.beta_max) if util.use_vp_sde(opt) else 1.
g_t = self.g(t)
for _ in range(opt.num_corrector):
# here, z = g * score
z = corrector(x,t)
# score-based model : eps_{SGM} = 2 * alpha * (snr * \norm{noise/score} )^2
# schrodinger bridge: eps_{SB} = 2 * alpha * (snr * \norm{noise/z} )^2
# = g^{-2} * eps_{SGM}
z_avg_norm = z.reshape(batch,-1).norm(dim=1).mean()
eps_temp = 2 * alpha_t * (opt.snr / z_avg_norm )**2
noise=torch.randn_like(z)
noise_avg_norm = noise.reshape(batch,-1).norm(dim=1).mean()
eps = eps_temp * (noise_avg_norm**2)
# score-based model: x <- x + eps_SGM * score + sqrt{2 * eps_SGM} * noise
# schrodinger bridge: x <- x + g * eps_SB * z + sqrt(2 * eps_SB) * g * noise
# (so that drift and diffusion are of the same scale)
x = x + g_t*eps*z + g_t*torch.sqrt(2*eps)*noise
if denoise_xT: x = x + g_t*z
return x
def compute_nll(self, samp_bs, ts, z_f, z_b):
assert z_f.direction == 'forward'
assert z_b.direction == 'backward'
opt = self.opt
x = self.p.sample() # [bs, x_dim]
delta_logp = 0
e = loss.sample_e(opt, x)
for idx, t in enumerate(tqdm(ts,desc=util.yellow("Propagating Dynamics..."))):
with torch.set_grad_enabled(True):
x.requires_grad_(True)
g = self.g( t)
f = self.f(x,t,'forward')
z = z_f(x,t)
z2 = z_b(x,t)
dx_dt = f + g * z - 0.5 * g * (z + z2)
divergence = divergence_approx(dx_dt, x, e=e)
dlogp_x_dt = - divergence.view(samp_bs, 1)
del divergence, z2, g
x, dx_dt, dlogp_x_dt = x.detach(), dx_dt.detach(), dlogp_x_dt.detach()
z, f, direction = z.detach(), f.detach(), z_f.direction
x = self.propagate(t, x, z, direction, f=f)
# ===== uncomment if using corrector =====
# _t=t if idx==ts.shape[0]-1 else ts[idx+1]
# x = self.corrector_langevin_update(_t, x, z_f, z_b, False)
# ========================================
if idx == 0: # skip t = t0 since we'll get its parametrized value later
continue
delta_logp = delta_logp + dlogp_x_dt*self.dt
x_dim = np.prod(opt.data_dim)
loc = torch.zeros(x_dim).to(opt.device)
covariance_matrix = opt.sigma_max**2*torch.eye(x_dim).to(opt.device)
p_xT = torch.distributions.MultivariateNormal(loc=loc, covariance_matrix=covariance_matrix)
log_px = p_xT.log_prob(x.reshape(samp_bs, -1)).to(x.device)
logp_x = log_px - delta_logp.view(-1)
logpx_per_dim = torch.sum(logp_x) / x.nelement() # averaged over batches
bits_per_dim = -(logpx_per_dim - np.log(256)) / np.log(2)
return bits_per_dim
def compute_tricks_condition(opt, apply_trick, direction):
if not apply_trick:
return False, lambda t_idx: False, False
# [trick 1] source: Song et al ICLR 2021 Appendix C
# when: (i) image, (ii) p -> q, (iii) t0 > 0,
# do: propagate img (x0) by a tiny step.
apply_trick1 = (util.is_image_dataset(opt) and direction == 'forward' and opt.t0 > 0)
# [trick 2] Improved DDPM
# when: (i) image, (ii) q -> p, (iii) vp, (iv) last sampling step
# do: zero out dw
trick2_cond123 = (util.is_image_dataset(opt) and direction=='backward' and util.use_vp_sde(opt))
def _apply_trick2(trick2_cond123, t_idx):
return trick2_cond123 and t_idx==0
apply_trick2 = partial(_apply_trick2, trick2_cond123=trick2_cond123)
# [trick 3] NCSNv2, Alg 1
# when: (i) image, (ii) q -> p, (iii) last sampling step
# do: additional denoising step
trick3_cond12 = (util.is_image_dataset(opt) and direction=='backward')
def _apply_trick3(trick3_cond12, t_idx):
return trick3_cond12 and t_idx==0
apply_trick3 = partial(_apply_trick3, trick3_cond12=trick3_cond12)
return apply_trick1, apply_trick2, apply_trick3
def divergence_approx(f, y, e=None):
e_dzdx = torch.autograd.grad(f, y, e, create_graph=True)[0]
e_dzdx_e = e_dzdx * e
approx_tr_dzdx = e_dzdx_e.view(y.shape[0], -1).sum(dim=1)
return approx_tr_dzdx
class SimpleSDE(BaseSDE):
def __init__(self, opt, p, q, var=1.0):
super(SimpleSDE, self).__init__(opt, p, q)
self.var = var
def _f(self, x, t):
return torch.zeros_like(x)
def _g(self, t):
return torch.Tensor([self.var])
class VPSDE(BaseSDE):
def __init__(self, opt, p, q):
super(VPSDE,self).__init__(opt, p, q)
self.b_min=opt.beta_min
self.b_max=opt.beta_max
def _f(self, x, t):
return compute_vp_drift_coef(t, self.b_min, self.b_max)*x
def _g(self, t):
return compute_vp_diffusion(t, self.b_min, self.b_max)
class VESDE(BaseSDE):
def __init__(self, opt, p, q):
super(VESDE,self).__init__(opt, p, q)
self.s_min=opt.sigma_min
self.s_max=opt.sigma_max
def _f(self, x, t):
return torch.zeros_like(x)
def _g(self, t):
return compute_ve_diffusion(t, self.s_min, self.s_max)
####################################################
## Implementation of SDE analytic kernel ##
## Ref: https://arxiv.org/pdf/2011.13456v2.pdf, ##
## page 15-16, Eq (30,32,33) ##
####################################################
def compute_sigmas(t, s_min, s_max):
return s_min * (s_max/s_min)**t
def compute_ve_g_scale(s_min, s_max):
return np.sqrt(2*np.log(s_max/s_min))
def compute_ve_diffusion(t, s_min, s_max):
return compute_sigmas(t, s_min, s_max) * compute_ve_g_scale(s_min, s_max)
def compute_vp_diffusion(t, b_min, b_max):
return torch.sqrt(b_min+t*(b_max-b_min))
def compute_vp_drift_coef(t, b_min, b_max):
g = compute_vp_diffusion(t, b_min, b_max)
return -0.5 * g**2
def compute_vp_kernel_mean_scale(t, b_min, b_max):
return torch.exp(-0.25*t**2*(b_max-b_min)-0.5*t*b_min)
def compute_alphas(t, b_min, b_max):
return compute_vp_kernel_mean_scale(t, b_min, b_max)**2
def compute_ve_xs_label(opt, x0, sigmas, samp_t_idx):
""" return xs.shape == [batch_x, *x_dim] """
s_max = opt.sigma_max
s_min = opt.sigma_min
x_dim = opt.data_dim
assert x_dim==list(x0.shape[1:])
batch_x, batch_t = x0.shape[0], len(samp_t_idx)
# p(x_t|x_0) = N(x_0, sigma_t^2)
# x_t = x_0 + sigma_t * noise
noise = torch.randn(batch_x, batch_t, *x_dim)
sigma_t = sigmas[samp_t_idx].reshape(1,-1,*([1,]*len(x_dim))) # shape = [1,batch_t,1,1,1]
analytic_xs = sigma_t * noise + x0[:,None,...]
# score_of_p = -1/sigma_t^2 (x_t - x_0) = -noise/sigma_t
# dx_t = g dw_t, where g = sigma_t * g_scaling
# hence, g * score_of_p = - noise * g_scaling
label = - noise * compute_ve_g_scale(s_min, s_max)
return analytic_xs, label
def compute_vp_xs_label(opt, x0, sqrt_betas, mean_scales, samp_t_idx):
""" return xs.shape == [batch_x, batch_t, *x_dim] """
x_dim = opt.data_dim
assert x_dim==list(x0.shape[1:])
batch_x, batch_t = x0.shape[0], len(samp_t_idx)
# p(x_t|x_0) = N(mean_scale * x_0, std_t^2)
# x_t = mean_scale * x_0 + std_t * noise
noise = torch.randn(batch_x, batch_t, *x_dim)
mean_scale_t = mean_scales[samp_t_idx].reshape(1,-1,*([1,]*len(x_dim))) # shape = [1,batch_t,1,1,1]
std_t = torch.sqrt(1 - mean_scale_t**2)
analytic_xs = std_t * noise + mean_scale_t * x0[:,None,...]
# score_of_p = -1/std_t^2 (x_t - mean_scale_t * x_0) = -noise/std_t
# hence, g * score_of_p = - noise / std_t * sqrt_beta_t
sqrt_beta_t = sqrt_betas[samp_t_idx].reshape(1,-1,*([1,]*len(x_dim))) # shape = [1,batch_t,1,1,1]
label = - noise / std_t * sqrt_beta_t
return analytic_xs, label
def get_xs_label_computer(opt, ts):
if opt.sde_type == 'vp':
mean_scales = compute_vp_kernel_mean_scale(ts, opt.beta_min, opt.beta_max)
sqrt_betas = compute_vp_diffusion(ts, opt.beta_min, opt.beta_max)
fn = compute_vp_xs_label
kwargs = dict(opt=opt, sqrt_betas=sqrt_betas, mean_scales=mean_scales)
elif opt.sde_type == 've':
sigmas = compute_sigmas(ts, opt.sigma_min, opt.sigma_max)
fn = compute_ve_xs_label
kwargs = dict(opt=opt, sigmas=sigmas)
else:
raise RuntimeError()
return partial(fn, **kwargs)