-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNMFA.py
414 lines (369 loc) · 12.7 KB
/
NMFA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
'''
Deciphering the Generating Rules and Functionalities of Complex Networks
Author X. Xiao, H. Chen, P. Bogdan
Nov. 25 2021
https://www.nature.com/articles/s41598-021-02203-4
'''
from scipy.stats import linregress
import numpy as np
import networkx as nx
from collections import Counter
import matplotlib.pyplot as plt
import os
from multiprocessing import Pool
from tqdm import tqdm
import time
def is_isomorphic(G1,G2,Q = [q/100 for q in range(-2000,2001,10)]):
ntauls1 = np.array(nfd_nk(G1,Q))
ntauls2 = np.array(nfd_nk(G2,Q))
if np.array_equal(ntauls1, ntauls2):
return True
else:
return False
def node_dimension_single(G,node,weight=None,fig=True):
grow = []
r_g = []
num_g = []
num_nodes = 0
if weight == None:
spl = nx.single_source_shortest_path_length(G,node)
else:
spl = nx.single_source_dijkstra_path_length(G,node)
for s in spl.values():
if s>0:
grow.append(s)
grow.sort()
num = Counter(grow)
for i,j in num.items():
num_nodes += j
if i>0:
r_g.append(i)
num_g.append(num_nodes)
x = np.log(r_g)
y = np.log(num_g)
slope, intercept, r_value, _, _ = linregress(x, y)
dimension = slope
if fig:
plt.plot(x,y,'o',label='fitted data')
plt.plot(x,intercept + slope*x,'r',label='fitted line')
plt.title("NFD of "+str(node)+'='+str(slope))
return dimension,r_value**2
def nfd(G,Q = [q/100 for q in range(-2000,2001,10)]):
N_list = []
rmax_list = []
for node in tqdm(G.nodes(), total=G.number_of_nodes()):
grow = []
r_g_all = []
num_g_all = []
num_nodes = 0
num_nodes_all = 0
spl = nx.single_source_shortest_path_length(G,node)
for s in spl.values():
if s>0:
grow.append(s)
grow.sort()
num = Counter(grow)
rmax_list.append(grow[-1])
for k,h in num.items():
num_nodes_all += h
for i,j in num.items():
num_nodes += j
if i>0:
r_g_all.append(i)
num_g_all.append(num_nodes/num_nodes_all)
N_list.append(num_g_all)
diameter = np.max(rmax_list)
r_max = diameter
r_min=0
tau_list=[]
cnt = 0
Zq_list_q=[]
for q in Q:
Zq_list_q.append([])
for j in range(r_min,r_max):
Zq_q = [0]*len(Q)
for k in range(len(N_list)):
if j < len(N_list[k]):
for idx, q in enumerate(Q):
Zq_q[idx] += (N_list[k][j])**q
else:
for idx, q in enumerate(Q):
Zq_q[idx] += 1
for idx, q in enumerate(Q):
Zq_list_q[idx].append(Zq_q[idx])
for idx, q in enumerate(Q):
Zq_list = Zq_list_q[idx]
x = np.log(range(r_min+1,r_max+1)/diameter)
y = np.log(Zq_list)
q = format (q, '.0f' )
slope, intercept, _, _, _ = linregress(x, y)
tau_list.append(slope)
cnt += 1
return tau_list
def wnfd(G,Q = [q/100 for q in range(-2000,2001,10)],fdigi=3):
N_list = []
r_g_all = []
num_nodes_all = nx.number_of_nodes(G)
for node in G.nodes():
grow = []
spl = nx.single_source_dijkstra_path_length(G,node)
for s in spl.values():
if s>0:
s = round(s,fdigi)
grow.append(s)
if s not in r_g_all:
r_g_all.append(s)
grow.sort()
grow = [round(d,fdigi) for d in grow]
num = Counter(grow)
N_list.append(num)
r_g_all.sort()
r_num = len(r_g_all)
Nw_mat = np.zeros((num_nodes_all,r_num))
for column,r in enumerate(r_g_all):
for row,n_ls in enumerate(N_list):
num_r = 1
for key in n_ls:
if key <= r:
num_r += n_ls[key]
Nw_mat[row,column] = num_r
diameter = r_g_all[-1]
Zq_list = [[] for i in range(len(Q))]
for j in range(len(r_g_all)):
Zq_q = [0 for i in range(len(Q))]
for i in range(num_nodes_all):
for qdx, q in enumerate(Q):
Zq_q[qdx] += (Nw_mat[i][j]/num_nodes_all)**q
for idx,q in enumerate(Q):
Zq_list[idx].append(Zq_q[idx])
tau_list = []
for idx, q in enumerate(Q):
r_g_all_np = np.array(r_g_all)
x = np.log(r_g_all_np/diameter)
y = np.log(Zq_list[idx])
slope, _, _, _, _ = linregress(x, y)
tau_list.append(slope)
return tau_list
def nfd_nk(G,Q = [q/100 for q in range(-2000,2001,10)]):
import networkit as nk
N_list = []
rmax_list = []
G = nx.convert_node_labels_to_integers(G)
G_nk = nk.nxadapter.nx2nk(G)
for node in tqdm(G.nodes(), total=G.number_of_nodes()):
r_g_all = []
num_g_all = []
num_nodes = 0
num_nodes_all = 0
grow = nk.distance.BFS(G_nk, node, storePaths=False).run().getDistances()
grow = list(map(int,grow))
grow.sort()
grow = grow[1:]
num = Counter(grow)
rmax_list.append(grow[-1])
for k,h in num.items():
num_nodes_all += h
for i,j in num.items():
num_nodes += j
if i>0:
r_g_all.append(i)
num_g_all.append(num_nodes/num_nodes_all)
N_list.append(num_g_all)
diameter = np.max(rmax_list)
r_max = diameter
r_min=0
tau_list=[]
cnt = 0
Zq_list_q=[]
for q in Q:
Zq_list_q.append([])
for j in range(r_min,r_max):
Zq_q = [0]*len(Q)
for k in range(len(N_list)):
if j < len(N_list[k]):
for idx, q in enumerate(Q):
Zq_q[idx] += (N_list[k][j])**q
else:
for idx, q in enumerate(Q):
Zq_q[idx] += 1
for idx, q in enumerate(Q):
Zq_list_q[idx].append(Zq_q[idx])
for idx, q in enumerate(Q):
Zq_list = Zq_list_q[idx]
x = np.log(range(r_min+1,r_max+1)/diameter)
y = np.log(Zq_list)
q = format (q, '.0f' )
slope, intercept, _, _, _ = linregress(x, y)
tau_list.append(slope)
cnt += 1
return tau_list
def wnfd_nk(G,Q = [q/100 for q in range(-2000,2001,10)],fdigi=3):
import networkit as nk
N_list = []
r_g_all_set = set()
num_nodes_all = nx.number_of_nodes(G)
G = nx.convert_node_labels_to_integers(G)
G_nk = nk.nxadapter.nx2nk(G,weightAttr='weight')
for node in tqdm(G.nodes(), total=num_nodes_all):
grow = nk.distance.Dijkstra(G_nk, node, storePaths=False).run().getDistances()
grow.sort()
grow = [round(d,fdigi) for d in grow]
grow = grow[1:]
num = Counter(grow)
r_g_all_set.update(num.keys())
N_list.append(num)
r_g_all = sorted(list(r_g_all_set))
r_num = len(r_g_all)
Nw_mat = np.zeros((num_nodes_all,r_num))
for column,r in enumerate(r_g_all):
for row,n_ls in enumerate(N_list):
num_r = 1
for key in n_ls:
if key <= r:
num_r += n_ls[key]
Nw_mat[row,column] = num_r
diameter = r_g_all[-1]
Zq_list = [[] for i in range(len(Q))]
for j in range(len(r_g_all)):
Zq_q = [0 for i in range(len(Q))]
for i in range(num_nodes_all):
for qdx, q in enumerate(Q):
Zq_q[qdx] += (Nw_mat[i][j]/num_nodes_all)**q
for idx,q in enumerate(Q):
Zq_list[idx].append(Zq_q[idx])
tau_list = []
for idx, q in tqdm(enumerate(Q),total=len(Q)):
r_g_all_np = np.array(r_g_all)
x = np.log(r_g_all_np/diameter)
y = np.log(Zq_list[idx])
slope, _, _, _, _ = linregress(x, y)
tau_list.append(slope)
return tau_list
def _calcSPL_nx(G,node_list):
result = {}
for node in node_list:
result[node] = nx.single_source_shortest_path_length(G,node)
return result
def nfd_multiprocess(G,Q = [q/100 for q in range(-2000,2001,10)],cpu_num=os.cpu_count()-1):
node_list_list = []
node_list = list(G.nodes())
num_per_core = G.number_of_nodes() // cpu_num
num_left = G.number_of_nodes() % cpu_num
num_temp = 0
for idx in range(cpu_num):
if num_left:
node_list_list.append(node_list[idx*num_per_core+num_temp:(idx+1)*num_per_core+1+num_temp])
num_left -= 1
num_temp += 1
else:
node_list_list.append(node_list[idx*num_per_core+num_temp:(idx+1)*num_per_core+num_temp])
pool = Pool(processes=cpu_num)
multi_result = [pool.apply_async(_calcSPL_nx,(G, node_list)) for node_list in node_list_list]
pool.close()
pool.join()
spl_dict = {}
for res in multi_result:
spl_dict.update(res.get())
N_list = []
rmax_list = []
for node in tqdm(G.nodes(), total=G.number_of_nodes()):
grow = []
r_g_all = []
num_g_all = []
num_nodes = 0
num_nodes_all = 0
spl = spl_dict[node]
for s in spl.values():
if s>0:
grow.append(s)
grow.sort()
num = Counter(grow)
rmax_list.append(grow[-1])
for k,h in num.items():
num_nodes_all += h
for i,j in num.items():
num_nodes += j
if i>0:
r_g_all.append(i)
num_g_all.append(num_nodes/num_nodes_all)
N_list.append(num_g_all)
diameter = np.max(rmax_list)
r_max = diameter
r_min=0
tau_list=[]
cnt = 0
Zq_list_q=[]
for q in Q:
Zq_list_q.append([])
for j in range(r_min,r_max):
Zq_q = [0]*len(Q)
for k in range(len(N_list)):
if j < len(N_list[k]):
for idx, q in enumerate(Q):
Zq_q[idx] += (N_list[k][j])**q
else:
for idx, q in enumerate(Q):
Zq_q[idx] += 1
for idx, q in enumerate(Q):
Zq_list_q[idx].append(Zq_q[idx])
for idx, q in enumerate(Q):
Zq_list = Zq_list_q[idx]
x = np.log(range(r_min+1,r_max+1)/diameter)
y = np.log(Zq_list)
q = format (q, '.0f' )
slope, _, _, _, _ = linregress(x, y)
tau_list.append(slope)
cnt += 1
return tau_list
def nspectrum(tau_list,q_list=[q/100 for q in range(-2000,2001,10)],name=None,linewidth=5):
tau_list = tau_list[170:231]
q_list = q_list[170:231]
al_list = []
fal_list = []
for i in range(1,len(q_list)):
al=(tau_list[i]-tau_list[i-1])/(q_list[i]-q_list[i-1])
al_list.append(al)
for j in range(len(q_list)-1):
fal=q_list[j]*al_list[j]-tau_list[j]
fal_list.append(fal)
if name is not None:
plt.plot(al_list,fal_list,label=name,linewidth=linewidth)
plt.legend()
else:
plt.plot(al_list,fal_list,linewidth=linewidth)
plt.xlabel('Lipschitz-Holder exponent, 'r'$\alpha$')
plt.ylabel('Multi-fractal spectrum, 'r'$f(\alpha)$')
alpha_0 = np.argmax(fal_list)
asymmetry_ratio = np.log((al_list[-1] - al_list[alpha_0])/(al_list[alpha_0]-al_list[0]))
return al_list,fal_list, asymmetry_ratio
def ndimension(tau_list,q_list=[q/100 for q in range(-2000,2001,10)],linewidth=5,name=None):
dim_list = []
qd_list = []
for i in range(len(q_list)):
if q_list[i] != 0:
dim = tau_list[i]/q_list[i]
dim_list.append(dim)
qd_list.append(q_list[i])
if name is not None:
plt.plot(qd_list,dim_list,label=name,linewidth=linewidth)
plt.legend()
else:
plt.plot(qd_list,dim_list,linewidth=linewidth)
plt.xlabel('Distortion exponent, 'r'$q$')
plt.ylabel('Generalized fractal dimension, 'r'$D(q)$')
return dim_list, qd_list
def distance(ndim_list):
dn = len(ndim_list)
dist = np.zeros((dn,dn))
for i in range(dn):
for j in range(dn):
d1 = np.array(ndim_list[i])
d2 = np.array(ndim_list[j])
dist[i][j] = np.sqrt(np.sum((d1-d2)**2)/len(ndim_list[i]))
return dist
def nheat(tau_list, q_list=[q/100 for q in range(-2000,2001,10)]):
heat_list = []
for i in range(2,len(tau_list)):
heat = -100 * (tau_list[i] - 2*tau_list[i-1] + tau_list[i-2])
heat_list.append(heat)
return heat_list, q_list[2:]