-
Notifications
You must be signed in to change notification settings - Fork 9
/
train_val_seg.py
342 lines (294 loc) · 14.3 KB
/
train_val_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import argparse
import math
from datetime import datetime
import h5py
import numpy as np
import tensorflow as tf
import socket
import importlib
import os
import sys
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
import provider
import tf_util
import part_dataset_all_normal
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='RIConv', help='Model name [default: model]')
parser.add_argument('--log_dir', default='log/part_seg', help='Log dir [default: log]')
parser.add_argument('--num_point', type=int, default=2048, help='Point Number [default: 2048]')
parser.add_argument('--max_epoch', type=int, default=201, help='Epoch to run [default: 201]')
parser.add_argument('--batch_size', type=int, default=16, help='Batch Size during training [default: 32]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=16881*20, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.5, help='Decay rate for lr decay [default: 0.7]')
FLAGS = parser.parse_args()
EPOCH_CNT = 0
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(ROOT_DIR, 'models', FLAGS.model+'.py')
LOG_DIR = FLAGS.log_dir
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_partseg_rio_z_so3.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
NUM_CLASSES = 50
# Shapenet official train/test split
DATA_PATH = os.path.join('../data/shapenet_partseg/', 'shapenetcore_partanno_segmentation_benchmark_v0_normal')
TRAIN_DATASET = part_dataset_all_normal.PartNormalDataset(root=DATA_PATH, npoints=NUM_POINT, classification=False, split='trainval', return_cls_label=True)
TEST_DATASET = part_dataset_all_normal.PartNormalDataset(root=DATA_PATH, npoints=NUM_POINT, classification=False, split='test', return_cls_label=True)
riconv_param_name = ('K', 'D', 'P', 'C', 'links')
riconv_params = [dict(zip(riconv_param_name, riconv_param)) for riconv_param in
[
(64, 4, 512, 128, []),
(32, 2, 128, 256, []),
(16, 1, 32, 512, [])]]
ridconv_param_name = ('K', 'D', 'pts_layer_idx', 'qrs_layer_idx')
ridconv_params = [dict(zip(ridconv_param_name, ridconv_param)) for ridconv_param in
[
(8, 1, 2, 1),
(16, 2, 1, 0),
(32, 2, 0, -1)]]
x = 1
fc_param_name = ('C', 'dropout_rate')
fc_params = [dict(zip(fc_param_name, fc_param)) for fc_param in
[(128 * x, 0),
(64 * x, 0.5)]]
WITH_LOCAL = True
WITH_MULTI = True
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def train():
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
pointclouds_pl, labels_pl, _ = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT)
is_training_pl = tf.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
batch = tf.Variable(0)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
# Get model and loss
pred = MODEL.get_model(pointclouds_pl, is_training_pl, riconv_params, ridconv_params, fc_params, sampling='fps', bn_decay=bn_decay, part_num=NUM_CLASSES)
loss, per_instance_seg_loss, per_instance_seg_pred_res = MODEL.get_loss(pred, labels_pl)
# Get training operator
learning_rate = get_learning_rate(batch)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
# train_op = optimizer.minimize(loss, global_step=batch)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step=batch)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Init variables
init = tf.global_variables_initializer()
sess.run(init)
#sess.run(init, {is_training_pl: True})
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'loss': loss,
'train_op': train_op,
'step': batch}
eval_iou_max = 0
maxIoU_epoch = 0
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_one_epoch(sess, ops)
iou = eval_one_epoch(sess, ops)
# Save the variables to disk.
if iou > eval_iou_max:
max_save_path = saver.save(sess, os.path.join(LOG_DIR, 'model_max_%d.ckpt' % epoch))
maxIoU_epoch = epoch
eval_iou_max = iou
log_string("Model saved in file: %s" % max_save_path)
if epoch == (MAX_EPOCH-1):
save_path = saver.save(sess, os.path.join(LOG_DIR, "model.ckpt"))
log_string("Model saved in file: %s" % save_path)
log_string("Max iou model saved in epoch: %d" % maxIoU_epoch)
log_string("Max iou is: %f" % eval_iou_max)
def get_batch(dataset, idxs, start_idx, end_idx):
bsize = end_idx-start_idx
batch_data = np.zeros((bsize, NUM_POINT, 6))
batch_label = np.zeros((bsize, NUM_POINT), dtype=np.int32)
batch_cls_label = np.zeros((bsize,), dtype=np.int32)
for i in range(bsize):
ps,normal,seg,cls = dataset[idxs[i+start_idx]]
batch_data[i,:,0:3] = ps
batch_data[i,:,3:6] = normal
batch_label[i,:] = seg
batch_cls_label[i] = cls
return batch_data, batch_label, batch_cls_label
def train_one_epoch(sess, ops):
""" ops: dict mapping from string to tf ops """
is_training = True
# Shuffle train samples
train_idxs = np.arange(0, len(TRAIN_DATASET))
np.random.shuffle(train_idxs)
num_batches = len(TRAIN_DATASET)/BATCH_SIZE
log_string(str(datetime.now()))
total_correct = 0
total_seen = 0
loss_sum = 0
for batch_idx in range(int(num_batches)):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
batch_data, batch_label, batch_cls_label = get_batch(TRAIN_DATASET, train_idxs, start_idx, end_idx)
# Augment batched point clouds by rotation and jittering
batch_data[:,:,0:3] = provider.jitter_point_cloud(batch_data[:,:,0:3])
batch_data[:,:,0:3] = provider.rotate_point_cloud(batch_data[:,:,0:3]) # rotation z
feed_dict = {ops['pointclouds_pl']: batch_data[:,:,0:3],
ops['labels_pl']: batch_label,
ops['is_training_pl']: is_training,}
step, _, loss_val, pred_val = sess.run([ops['step'],
ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict)
pred_val = np.argmax(pred_val, 2)
correct = np.sum(pred_val == batch_label)
total_correct += correct
total_seen += (BATCH_SIZE*NUM_POINT)
loss_sum += loss_val
if (batch_idx+1)%100 == 0:
log_string(' -- %03d / %03d --' % (batch_idx+1, num_batches))
log_string('mean loss: %f' % (loss_sum / 10))
log_string('accuracy: %f' % (total_correct / float(total_seen)))
total_correct = 0
total_seen = 0
loss_sum = 0
def eval_one_epoch(sess, ops):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT
is_training = False
test_idxs = np.arange(0, len(TEST_DATASET))
# Test on all data: last batch might be smaller than BATCH_SIZE
num_batches = (len(TEST_DATASET)+BATCH_SIZE-1)/BATCH_SIZE
total_correct = 0
total_seen = 0
loss_sum = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
seg_classes = TEST_DATASET.seg_classes
shape_ious = {cat:[] for cat in seg_classes.keys()}
seg_label_to_cat = {} # {0:Airplane, 1:Airplane, ...49:Table}
for cat in seg_classes.keys():
for label in seg_classes[cat]:
seg_label_to_cat[label] = cat
log_string(str(datetime.now()))
log_string('---- EPOCH %03d EVALUATION ----'%(EPOCH_CNT))
batch_data = np.zeros((BATCH_SIZE, NUM_POINT, 3))
batch_label = np.zeros((BATCH_SIZE, NUM_POINT)).astype(np.int32)
batch_cls_label = np.zeros((BATCH_SIZE,)).astype(np.int32)
for batch_idx in range(int(num_batches)):
if batch_idx %20==0:
log_string('%03d/%03d'%(batch_idx, num_batches))
start_idx = batch_idx * BATCH_SIZE
end_idx = min(len(TEST_DATASET), (batch_idx+1) * BATCH_SIZE)
cur_batch_size = end_idx-start_idx
cur_batch_data, cur_batch_label, cur_batch_cls_label = get_batch(TEST_DATASET, test_idxs, start_idx, end_idx)
if cur_batch_size == BATCH_SIZE:
batch_data = cur_batch_data
batch_label = cur_batch_label
batch_cls_label = cur_batch_cls_label
else:
batch_data[0:cur_batch_size] = cur_batch_data
batch_label[0:cur_batch_size] = cur_batch_label
batch_cls_label[0:cur_batch_size] = cur_batch_cls_label
# ---------------------------------------------------------------------
batch_data[:,:,0:3] = provider.rotate_point_cloud_so3(batch_data[:,:,0:3])
feed_dict = {ops['pointclouds_pl']: batch_data[:,:,0:3],
ops['labels_pl']: batch_label,
ops['is_training_pl']: is_training}
step, loss_val, pred_val = sess.run([ops['step'],
ops['loss'], ops['pred']], feed_dict=feed_dict)
# ---------------------------------------------------------------------
# Select valid data
cur_pred_val = pred_val[0:cur_batch_size]
# Constrain pred to the groundtruth classes (selected by seg_classes[cat])
cur_pred_val_logits = cur_pred_val
cur_pred_val = np.zeros((cur_batch_size, NUM_POINT)).astype(np.int32)
for i in range(cur_batch_size):
cat = seg_label_to_cat[cur_batch_label[i,0]]
logits = cur_pred_val_logits[i,:,:]
cur_pred_val[i,:] = np.argmax(logits[:,seg_classes[cat]], 1) + seg_classes[cat][0]
correct = np.sum(cur_pred_val == cur_batch_label)
total_correct += correct
total_seen += (cur_batch_size*NUM_POINT)
if cur_batch_size==BATCH_SIZE:
loss_sum += loss_val
for l in range(NUM_CLASSES):
total_seen_class[l] += np.sum(cur_batch_label==l)
total_correct_class[l] += (np.sum((cur_pred_val==l) & (cur_batch_label==l)))
for i in range(cur_batch_size):
segp = cur_pred_val[i,:]
segl = cur_batch_label[i,:]
cat = seg_label_to_cat[segl[0]]
part_ious = [0.0 for _ in range(len(seg_classes[cat]))]
for l in seg_classes[cat]:
if (np.sum(segl==l) == 0) and (np.sum(segp==l) == 0): # part is not present, no prediction as well
part_ious[l-seg_classes[cat][0]] = 1.0
else:
part_ious[l-seg_classes[cat][0]] = np.sum((segl==l) & (segp==l)) / float(np.sum((segl==l) | (segp==l)))
shape_ious[cat].append(np.mean(part_ious))
all_shape_ious = []
for cat in shape_ious.keys():
for iou in shape_ious[cat]:
all_shape_ious.append(iou)
shape_ious[cat] = np.mean(shape_ious[cat])
mean_shape_ious = np.mean(list(shape_ious.values()))
log_string('eval mean loss: %f' % (loss_sum / float(len(TEST_DATASET)/BATCH_SIZE)))
log_string('eval accuracy: %f'% (total_correct / float(total_seen)))
log_string('eval avg class acc: %f' % (np.mean(np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float))))
for cat in sorted(shape_ious.keys()):
log_string('eval mIoU of %s:\t %f'%(cat, shape_ious[cat]))
log_string('eval mean mIoU: %f' % (mean_shape_ious))
log_string('eval mean mIoU (all shapes): %f' % (np.mean(all_shape_ious)))
EPOCH_CNT += 1
return np.mean(all_shape_ious)
if __name__ == "__main__":
log_string('pid: %s'%(str(os.getpid())))
train()
LOG_FOUT.close()