forked from Nealcly/templateNER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
executable file
·164 lines (143 loc) · 5.91 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from utils_metrics import get_entities_bio, f1_score, classification_report
from transformers import BartForConditionalGeneration, BartTokenizer, BartConfig
import torch
import time
import math
class InputExample():
def __init__(self, words, labels):
self.words = words
self.labels = labels
def template_entity(words, input_TXT, start):
# input text -> template
words_length = len(words)
words_length_list = [len(i) for i in words]
input_TXT = [input_TXT]*(5*words_length)
input_ids = tokenizer(input_TXT, return_tensors='pt')['input_ids']
model.to(device)
template_list = [" is a location entity .", " is a person entity .", " is an organization entity .",
" is an other entity .", " is not a named entity ."]
entity_dict = {0: 'LOC', 1: 'PER', 2: 'ORG', 3: 'MISC', 4: 'O'}
temp_list = []
for i in range(words_length):
for j in range(len(template_list)):
temp_list.append(words[i]+template_list[j])
output_ids = tokenizer(temp_list, return_tensors='pt', padding=True, truncation=True)['input_ids']
output_ids[:, 0] = 2
output_length_list = [0]*5*words_length
for i in range(len(temp_list)//5):
base_length = ((tokenizer(temp_list[i * 5], return_tensors='pt', padding=True, truncation=True)['input_ids']).shape)[1] - 4
output_length_list[i*5:i*5+ 5] = [base_length]*5
output_length_list[i*5+4] += 1
score = [1]*5*words_length
with torch.no_grad():
output = model(input_ids=input_ids.to(device), decoder_input_ids=output_ids[:, :output_ids.shape[1] - 2].to(device))[0]
for i in range(output_ids.shape[1] - 3):
# print(input_ids.shape)
logits = output[:, i, :]
logits = logits.softmax(dim=1)
# values, predictions = logits.topk(1,dim = 1)
logits = logits.to('cpu').numpy()
# print(output_ids[:, i+1].item())
for j in range(0, 5*words_length):
if i < output_length_list[j]:
score[j] = score[j] * logits[j][int(output_ids[j][i + 1])]
end = start+(score.index(max(score))//5)
# score_list.append(score)
return [start, end, entity_dict[(score.index(max(score))%5)], max(score)] #[start_index,end_index,label,score]
def prediction(input_TXT):
input_TXT_list = input_TXT.split(' ')
entity_list = []
for i in range(len(input_TXT_list)):
words = []
for j in range(1, min(9, len(input_TXT_list) - i + 1)):
word = (' ').join(input_TXT_list[i:i+j])
words.append(word)
entity = template_entity(words, input_TXT, i) #[start_index,end_index,label,score]
if entity[1] >= len(input_TXT_list):
entity[1] = len(input_TXT_list)-1
if entity[2] != 'O':
entity_list.append(entity)
i = 0
if len(entity_list) > 1:
while i < len(entity_list):
j = i+1
while j < len(entity_list):
if (entity_list[i][1] < entity_list[j][0]) or (entity_list[i][0] > entity_list[j][1]):
j += 1
else:
if entity_list[i][3] < entity_list[j][3]:
entity_list[i], entity_list[j] = entity_list[j], entity_list[i]
entity_list.pop(j)
else:
entity_list.pop(j)
i += 1
label_list = ['O'] * len(input_TXT_list)
for entity in entity_list:
label_list[entity[0]:entity[1]+1] = ["I-"+entity[2]]*(entity[1]-entity[0]+1)
label_list[entity[0]] = "B-"+entity[2]
return label_list
def cal_time(since):
now = time.time()
s = now - since
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
# input_TXT = "Japan began the defence of their Asian Cup title with a lucky 2-1 win against Syria in a Group C championship match on Friday ."
model = BartForConditionalGeneration.from_pretrained('./checkpoint-3060')
# model = BartForConditionalGeneration.from_pretrained('../dialogue/bart-large')
model.eval()
model.config.use_cache = False
# input_ids = tokenizer(input_TXT, return_tensors='pt')['input_ids']
# print(input_ids)
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
score_list = []
file_path = './conll2003/test.txt'
guid_index = 1
examples = []
with open(file_path, "r", encoding="utf-8") as f:
words = []
labels = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if words:
examples.append(InputExample(words=words, labels=labels))
words = []
labels = []
else:
splits = line.split(" ")
words.append(splits[0])
if len(splits) > 1:
labels.append(splits[-1].replace("\n", ""))
else:
# Examples could have no label for mode = "test"
labels.append("O")
if words:
examples.append(InputExample(words=words, labels=labels))
trues_list = []
preds_list = []
str = ' '
num_01 = len(examples)
num_point = 0
start = time.time()
for example in examples:
sources = str.join(example.words)
preds_list.append(prediction(sources))
trues_list.append(example.labels)
print('%d/%d (%s)'%(num_point+1, num_01, cal_time(start)))
print('Pred:', preds_list[num_point])
print('Gold:', trues_list[num_point])
num_point += 1
true_entities = get_entities_bio(trues_list)
pred_entities = get_entities_bio(preds_list)
results = {
"f1": f1_score(true_entities, pred_entities)
}
print(results["f1"])
for num_point in range(len(preds_list)):
preds_list[num_point] = ' '.join(preds_list[num_point]) + '\n'
trues_list[num_point] = ' '.join(trues_list[num_point]) + '\n'
with open('./pred.txt', 'w') as f0:
f0.writelines(preds_list)
with open('./gold.txt', 'w') as f0:
f0.writelines(trues_list)