-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
477 lines (380 loc) · 16.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import argparse
import numpy as np
import os
import random
import time
import shutil
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from bisect import bisect_right
from models.oadis import OADIS
from dataset import CompositionDataset
import evaluator_ge
from tqdm import tqdm
from utils import utils
from config import cfg
from torch.utils.tensorboard import SummaryWriter
from config.config import ex
import copy
import functools
from transformers import (
get_polynomial_decay_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_constant_schedule_with_warmup,
)
import feasibility
import wandb
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
def freeze(m):
"""Freezes module m.
"""
# for modules in m:
m.eval()
for p in m.parameters():
p.requires_grad = False
p.grad = None
def decay_learning_rate(parameters,wd, cfg):
"""Decays layerwise learning rate using the decay factor in cfg.
"""
new_parameters = []
lr_trans= cfg['lr_transformer']
lr_mult=0.9
temp_parameters=[p for (n,p) in parameters if ("norm.weight" in n) or ("norm.bias" in n)]
print('got temp 1',len(temp_parameters))
# store params & learning rates
for idx in range(cfg['num_layers'],-1,-1):
for (name,param) in parameters:
if "blocks."+str(idx)+"." in name:
temp_parameters.append(param)
print(f'{idx}: lr = {lr_trans:.6f}, {len(temp_parameters)}')
lr_trans = lr_trans*lr_mult
print('got temp 2',len(temp_parameters))
new_parameters.append({'params': temp_parameters, 'lr':lr_trans,"weight_decay":wd})
temp_parameters=[]
temp_parameters=[p for (n,p) in parameters if ("token" in n) or ("embed" in n)]
print('got temp 3',len(temp_parameters))
new_parameters.append({'params': temp_parameters, 'lr':lr_trans,"weight_decay":wd})
return new_parameters
def save_checkpoint(model_or_optim, name, cfg):
"""Saves checkpoint.
"""
state_dict = model_or_optim.state_dict()
path = os.path.join(
f'{cfg.TRAIN.checkpoint_dir}/{cfg.config_name}_{cfg.TRAIN.seed}/{name}.pth')
torch.save(state_dict, path)
def train(epoch, model, optimizer, scheduler,trainloader, logger, device, cfg,_config):
model.train()
list_meters = [
'loss_total'
]
if cfg.MODEL.use_obj_loss:
list_meters.append('loss_aux_obj')
list_meters.append('acc_aux_obj')
if cfg.MODEL.use_attr_loss:
list_meters.append('loss_aux_attr')
list_meters.append('acc_aux_attr')
if cfg.MODEL.use_emb_pair_loss:
list_meters.append('emb_loss')
dict_meters = {
k: utils.AverageMeter() for k in list_meters
}
acc_attr_meter = utils.AverageMeter()
acc_obj_meter = utils.AverageMeter()
acc_pair_meter = utils.AverageMeter()
batch_time = utils.AverageMeter()
data_time = utils.AverageMeter()
end_time = time.time()
start_iter = (epoch - 1) * len(trainloader)
for idx, batch in enumerate(tqdm(trainloader)):
it = start_iter + idx + 1
data_time.update(time.time() - end_time)
for k in batch:
if isinstance(batch[k], list):
continue
batch[k] = batch[k].to(device, non_blocking=True)
out = model(batch)
loss = out['loss_total'].sum()
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
acc_attr_meter.update(out['acc_attr'].mean().detach().item())
acc_obj_meter.update(out['acc_obj'].mean().detach().item())
acc_pair_meter.update(out['acc_pair'].mean().detach().item())
for k in out:
if k in dict_meters:
dict_meters[k].update(out[k].mean().detach().item())
batch_time.update(time.time() - end_time)
end_time = time.time()
if (idx + 1) % cfg.TRAIN.disp_interval == 0:
print(
f'Epoch: {epoch} Iter: {idx+1}/{len(trainloader)}, '
f'Loss: {dict_meters["loss_total"].avg:.5f},'
f'Acc_Pair: {acc_pair_meter.avg*100:.2f},'
f'Batch_time: {batch_time.avg:.3f}, Data_time: {data_time.avg:.3f}',
flush=True)
for k in out:
if k in dict_meters:
logger.add_scalar('train/%s' % k, dict_meters[k].avg, it)
logger.add_scalar('train/acc_pair', acc_pair_meter.avg, it)
last_log_loss=dict_meters["loss_total"].avg
batch_time.reset()
data_time.reset()
acc_pair_meter.reset()
acc_attr_meter.reset()
acc_obj_meter.reset()
for k in out:
if k in dict_meters:
dict_meters[k].reset()
del loss
del out
def validate_ge(epoch, model, testloader, evaluator, device,ontesing_set=False, topk=1):
model.eval()
dset = testloader.dataset
val_attrs, val_objs = zip(*dset.pairs)
val_attrs = [dset.get_text(attr)[1] for attr in val_attrs]
val_objs = [dset.get_text(obj)[1] for obj in val_objs]
model.val_pairs = dset.pairs
acc_val_meter = utils.AverageMeter()
attr_val_meter = utils.AverageMeter()
obj_val_meter = utils.AverageMeter()
_, _, all_attr_gt, all_obj_gt, all_pair_gt, all_pred = [], [], [], [], [], []
for data in tqdm((testloader), total=len(testloader), desc='Testing'):
for k in data:
if isinstance(data[k], list):
continue
data[k] = data[k].to(device, non_blocking=True)
with torch.no_grad():
out = model.module(data)
predictions = out['scores']
for i in list(predictions.keys()):
predictions[i]=predictions[i].detach().cpu()
acc_val_meter.update(out['acc_pair'].item())
attr_val_meter.update(out['acc_attr'].item())
obj_val_meter.update(out['acc_obj'].item())
attr_truth, obj_truth, pair_truth = data['attr'].clone().detach(), data['obj'].clone().detach(), data['pair'].clone().detach()
all_pred.append(predictions)
all_attr_gt.append(attr_truth)
all_obj_gt.append(obj_truth)
all_pair_gt.append(pair_truth)
del out
all_attr_gt = torch.cat(all_attr_gt).to('cpu')
all_obj_gt = torch.cat(all_obj_gt).to('cpu')
all_pair_gt = torch.cat(all_pair_gt).to('cpu')
all_pred_dict = {}
# # # Gather values as dict of (attr, obj) as key and list of predictions as values
for k in all_pred[0].keys():
all_pred_dict[k] = torch.cat(
[all_pred[i][k].to('cpu') for i in range(len(all_pred))])
del all_pred
# # Calculate best unseen accuracy
results = evaluator.score_model(all_pred_dict, all_obj_gt, bias=1e3, topk=topk)
stats = evaluator.evaluate_predictions(results, all_attr_gt, all_obj_gt, all_pair_gt, all_pred_dict, topk=topk)
stats['a_epoch'] = epoch
stats['pair_accuracy'] = acc_val_meter.avg
stats['attribute_accuracy'] = attr_val_meter.avg
stats['object_accuracy'] = obj_val_meter.avg
acc_val_meter.reset()
attr_val_meter.reset()
obj_val_meter.reset()
result = ''
# # write to Tensorboard
for key in stats:
result = result + key + ' ' + str(round(stats[key], 4)) + '| '
print(f'Val Epoch: {epoch}')
print(result)
del val_attrs
del val_objs
del model.val_pairs
del data
del predictions
return stats['AUC'], stats['best_hm']
def show_batch(dl, nmax=8):
for data in dl:
images=data['img']
print(torch.max(images),torch.min(images),torch.mean(images),torch.median(images))
torchvision.utils.save_image(images,f'batch.png')
break
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def main_worker(gpu, cfg,_config):
"""Main training code.
"""
seed = cfg.TRAIN.seed
np.random.seed(seed)
torch.manual_seed(seed)
print(f'Use GPU {gpu} for training', flush=True)
torch.cuda.set_device(gpu)
device = f'cuda:{gpu}'
# Log directory for tensorboard.
log_dir = f'{cfg.TRAIN.log_dir}/{cfg.config_name}_{cfg.TRAIN.seed}'
logger = SummaryWriter(log_dir=log_dir)
# Directory to save checkpoints.
ckpt_dir = f'{cfg.TRAIN.checkpoint_dir}/{cfg.config_name}_{cfg.TRAIN.seed}'
if os.path.exists(ckpt_dir):
shutil.rmtree(ckpt_dir, ignore_errors=False)
os.makedirs(ckpt_dir)
cfg.TRAIN.batch_size = _config['per_gpu_batchsize']
print('Batch size on each gpu: %d' % cfg.TRAIN.batch_size)
print('Prepare dataset with',cfg.TRAIN.num_workers)
trainset = CompositionDataset(
phase='train', split=cfg.DATASET.splitname, cfg=cfg)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=cfg.TRAIN.batch_size, shuffle=True,
num_workers=cfg.TRAIN.num_workers,
pin_memory=True, drop_last=False, worker_init_fn=seed_worker)
show_batch(trainloader)
valset = CompositionDataset(
phase='val', split=cfg.DATASET.splitname, cfg=cfg)
valloader = torch.utils.data.DataLoader(
valset, batch_size=cfg.TRAIN.test_batch_size, shuffle=False,
num_workers=cfg.TRAIN.num_workers)
testset = CompositionDataset(
phase='test', split=cfg.DATASET.splitname, cfg=cfg)
testloader = torch.utils.data.DataLoader(
testset, batch_size=cfg.TRAIN.test_batch_size, shuffle=False,
num_workers=cfg.TRAIN.num_workers)
#set threshold
feasibility_threshold,unseen_scores=feasibility.thresholding(valset.val_seen_mask,trainset.seen_mask,cfg.DATASET.name,_config['offset_val'])
unseen_scores=unseen_scores.to(device)
cfg.DATASET.feasibility_threshold=feasibility_threshold.item()
model = OADIS(trainset, unseen_scores, cfg,_config)
for i in range(_config['num_freeze_layers']):
freeze(model.transformer.blocks[i])
model = nn.DataParallel(model,device_ids=[0,1,2,3])
model.to(device)
print('Feasibility thereshold:',feasibility_threshold.item())
total_params = utils.count_parameters(model)
evaluator_val_ge = evaluator_ge.Evaluator(valset, model)
evaluator_test_ge = evaluator_ge.Evaluator(testset, model)
torch.backends.cudnn.benchmark = True
no_decay = [
"bias",
"LayerNorm.bias",
"LayerNorm.weight",
"norm.bias",
"norm.weight",
"norm1.bias",
"norm1.weight",
"norm2.bias",
"norm2.weight",
]
params_word_embedding = []
params_name_transformer_nd = []
params_name_transformer_d = []
params_cross_nd = []
params_cross_d = []
params_nd = []
params_d = []
opt_parameters = []
for name, p in model.named_parameters():
if not p.requires_grad:
continue
if cfg.TRAIN.lr_word_embedding > 0:
params_word_embedding.append(p)
print('params_word_embedding: %s' % name)
if (name.startswith('module.transformer_cross_attr') or name.startswith('module.transformer_cross_obj')):
if any(nd in name for nd in no_decay):
params_cross_nd.append(p)
else:
params_cross_d.append(p)
print('params_cross: %s' % name)
elif name.startswith('module.transformer') or name.startswith('module.token_type_embeddings'):
if any(nd in name for nd in no_decay):
params_name_transformer_nd.append((name,p))
else:
params_name_transformer_d.append((name,p))
print('params_transformer: %s' % name)
else:
if any(nd in name for nd in no_decay):
params_nd.append(p)
else:
params_d.append(p)
print('params_main: %s' % name)
#layerwise lr for transformer
opt_parameters.append({"params": params_cross_nd, "lr": _config['lr_cross'], "weight_decay": 0.0001})
opt_parameters.append({"params": params_cross_d, "lr": _config['lr_cross'], "weight_decay": cfg.TRAIN.wd})
opt_parameters.extend(decay_learning_rate(params_name_transformer_nd,0.0001,_config))
opt_parameters.extend(decay_learning_rate(params_name_transformer_d,cfg.TRAIN.wd,_config))
opt_parameters.append({"params": params_nd, "lr": _config['lr'], "weight_decay": 0.0001})
opt_parameters.append({"params": params_d, "lr": _config['lr'], "weight_decay": cfg.TRAIN.wd})
optimizer = optim.AdamW(opt_parameters, lr=_config['lr_cross'], weight_decay=cfg.TRAIN.wd)
group_lrs = [_config['lr_transformer'], _config['lr'], _config['lr_cross']]
for i in range(len(optimizer.param_groups)):
print(i,len(optimizer.param_groups[i]['params']),optimizer.param_groups[i]['lr'])
warmup_steps = cfg.TRAIN.warmup_steps
if isinstance(cfg.TRAIN.warmup_steps, float):
warmup_steps = int(len(trainloader) * cfg.TRAIN.max_epoch * cfg.TRAIN.warmup_steps)
print('number of warmup steps:', warmup_steps,len(trainloader))
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=len(trainloader) * cfg.TRAIN.max_epoch,
num_cycles=0.5
)
start_epoch = cfg.TRAIN.start_epoch
epoch = start_epoch
best_records = {
'val/best_auc': 0.0,
'val/best_hm': 0.0,
'test/auc_at_best_val': 0.0,
'test/hm_at_best_val': 0.0,
}
best_auc = -1
while epoch <= cfg.TRAIN.max_epoch:
train(epoch, model, optimizer,scheduler, trainloader, logger, device, cfg,_config)
print('current lr for the epoch',scheduler._last_lr)
wandb.log({'lr0':scheduler._last_lr[0],'lr1':scheduler._last_lr[1]})
max_gpu_usage_mb = torch.cuda.max_memory_allocated(device=device) / 1048576.0
print(f'Max GPU usage in MB till now: {max_gpu_usage_mb}')
if epoch < cfg.TRAIN.start_epoch_validate:
epoch += 1
continue
if epoch % cfg.TRAIN.eval_every_epoch == 0:
# Validate.
print('Validation set ===>')
auc, best_hm = validate_ge(epoch, model, valloader, evaluator_val_ge, device,ontesing_set=False, topk=cfg.EVAL.topk)
logger.add_scalar('val/auc', auc, epoch * len(trainloader))
logger.add_scalar('val/best_hm', best_hm, epoch * len(trainloader))
if (auc > best_auc or auc / best_auc >= 0.99) and epoch == cfg.TRAIN.max_epoch and epoch+1 < cfg.TRAIN.final_max_epoch:
cfg.TRAIN.max_epoch += 1
if auc > best_records['val/best_auc']:
best_records['val/best_auc'] = auc
best_records['val/best_hm'] = best_hm
print('Beat best Val AUC, now evaluate on test set')
# Test.
print('Testing set ===>')
auc, best_hm = validate_ge(epoch, model, testloader, evaluator_test_ge,device,ontesing_set=True,topk=cfg.EVAL.topk)
logger.add_scalar('test/auc', auc, epoch * len(trainloader))
logger.add_scalar('test/best_hm', best_hm, epoch * len(trainloader))
best_records['test/auc_at_best_val'] = auc
best_records['test/hm_at_best_val'] = best_hm
save_checkpoint(model, f'model_epoch{epoch}', cfg)
print(f'Ending epoch {epoch}')
epoch += 1
logger.close()
print('Done: %s' % cfg.config_name)
print('New Best AUC:',best_records['val/best_auc'])
print('New Best HM:',best_records['val/best_hm'])
@ex.automain
def main(_config):
# get number of GPUs available
print(torch.cuda.device_count())
# get the name of the device
print(torch.cuda.get_device_name(0))
_config = copy.deepcopy(_config)
cfg.merge_from_file(_config['cfg'])
print(cfg)
print(_config)
seed = cfg.TRAIN.seed
if seed == -1:
seed = np.random.randint(1, 10000)
print('Random seed:', seed)
cfg.TRAIN.seed = seed
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled = True
main_worker(0, cfg,_config)