-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_hyperparams.py
138 lines (123 loc) · 5.83 KB
/
run_hyperparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/env python
# coding: utf-8
import numpy as np
import torch
import os
import time
from tensorboardX import SummaryWriter
import ast
from parse_args import args
from datareader import reader_from_pickle
from train import on_policy_training
from models import LinearModel, MLP
from evaluation import evaluate_model
from utils import serialize, transform_dataset, unserialize
if __name__ == "__main__":
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
torch.set_num_threads(args.num_cores)
train_data = reader_from_pickle(
args.partial_train_data) if args.fullinfo == "partial" else reader_from_pickle(args.full_train_data)
train_data = train_data.data
train_data = transform_dataset(
train_data, args.gpu, args.weighted)
val_data = reader_from_pickle(
args.partial_val_data) if args.fullinfo == "partial" else reader_from_pickle(args.full_val_data)
val_data = val_data.data
val_data = transform_dataset(
val_data, args.gpu, args.weighted)
test_data = reader_from_pickle(args.full_test_data)
test_data = test_data.data
if args.summary_writing:
if not os.path.exists(args.log_dir):
try:
os.makedirs(args.log_dir)
except FileExistsError:
pass
writer = SummaryWriter(args.log_dir)
else:
writer = None
model_params_list = []
a = ast.literal_eval(args.lambda_list)
lambdas_list = [float(c) for c in a]
plt_data = []
plt_data_dict = []
if not os.path.exists(args.hyperparam_folder):
os.makedirs(args.hyperparam_folder)
for i, lgroup in enumerate(lambdas_list):
args.lambda_reward = 1.0
args.lambda_ind_fairness = 0.0
args.lambda_group_fairness = lgroup
wd = args.weight_decay
er = args.entropy_regularizer
lgroup_name = str(
lgroup) if lgroup >= 0.01 else "{:.1e}".format(lgroup)
experiment_name = "{}_{}_lambda{}_lr{}_wd{}_er{}_ed{}".format(
args.experiment_prefix, args.fullinfo, lgroup_name, args.lr,
args.weight_decay, args.entropy_regularizer, args.entreg_decay)
model_kwargs = {'clamp': args.clamp}
if args.mask_group_feat:
model_kwargs['masked_feat_id'] = args.group_feat_id
if args.hidden_layer is None:
model = LinearModel(
input_dim=args.input_dim, **model_kwargs)
else:
model = MLP(input_dim=args.input_dim,
hidden_layer=args.hidden_layer,
dropout=args.dropout, **model_kwargs)
result = on_policy_training(
train_data, val_data, model, writer=writer,
experiment_name=experiment_name, args=args)
model, performance = result
print(model)
print("Get best performance {} at weight decay {}, entropy_regularizer {}".format(
performance, wd, er))
test_data = transform_dataset(test_data, args.gpu, True)
results_test = evaluate_model(
model, test_data, fairness_evaluation=False,
group_fairness_evaluation=True, track_other_disparities=True,
deterministic=args.evaluation_deterministic,
args=args, num_sample_per_query=args.sample_size, normalize=True,
noise=False, en=0.0)
print("Best performance on valid set: {}".format(performance))
out_dict = {'best_perf': performance, "test": results_test, 'args': vars(args)}
if args.eval_weighted_val:
weighted_validation_data_reader = reader_from_pickle(args.eval_weighted_val_location)
weighted_validation_data = transform_dataset(weighted_validation_data_reader.data, args.gpu, True)
results_validation = evaluate_model(model, weighted_validation_data, fairness_evaluation=False,
group_fairness_evaluation=True, track_other_disparities=True,
deterministic=args.evaluation_deterministic, args=args,
num_sample_per_query=args.sample_size, normalize=True, noise=False,
en=0.0)
out_dict['valid'] = results_validation
if args.eval_other_train:
other_train_data_reader = reader_from_pickle(args.eval_other_train_location)
other_train_data = transform_dataset(other_train_data_reader.data, args.gpu, True)
results_train = evaluate_model(model, other_train_data, fairness_evaluation=False,
group_fairness_evaluation=True, track_other_disparities=True,
deterministic=args.evaluation_deterministic, args=args,
num_sample_per_query=args.sample_size, normalize=True, noise=False,
en=0.0)
out_dict['train'] = results_train
out_dict.update({
"gf_lambda": lgroup,
"weight_decay": wd,
"entropy_regularizer": er,
"early_stopping": args.early_stopping,
"full_info": args.fullinfo,
"learning_rate": args.lr,
"performance": performance
})
plt_data_dict.append(out_dict)
if args.save_checkpoints:
torch.save(model, os.path.join(
args.hyperparam_folder, "best_{}_{}_lr{}_wd{}_er{}_es{}.ckpt".format(
args.fullinfo, lgroup, args.lr, wd, er,
args.early_stopping)))
serialize(
plt_data_dict, os.path.join(
args.hyperparam_folder, 'plt_data_pl_{}_{}_tune{}_{}.json'.format(
lambdas_list, args.fullinfo, args.tuning,
time.strftime("%m-%d-%H-%M"))),
in_json=True)
if writer is not None:
writer.close()