-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHighwayEnvironment_Single_Adversarial.py
147 lines (120 loc) · 4.57 KB
/
HighwayEnvironment_Single_Adversarial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import warnings
import os
import sys
import gymnasium as gym
import highway_env
import numpy as np
from stable_baselines3 import DQN
from stable_baselines3.common.callbacks import CheckpointCallback
save_base_path = "single_adversarial"
# Configuration (default values in parenthesis)
env = gym.make("highway-fast-v0", render_mode='human')
env.configure({
"lanes_count": 1, # (4)
"collision_reward": 1,
"right_lane_reward": 0.0, # (0.1),
"reward_speed_range": [0,40],
"high_speed_reward": 2,
"action": {
"type": "DiscreteMetaAction",
"target_speeds": [0,5,10,15,20,25,30,35,40]}
})
# env.configure({
# "lanes_count": 3, # (4)
# "vehicles_count": 40, # (50)
# "duration": 40, # (40) [s]
#
# # (-1) The reward received when colliding with a vehicle.
# "collision_reward": -1,
# # ([20, 30]) [m/s] The reward for high speed is mapped linearly from this range to [0, HighwayEnv.HIGH_SPEED_REWARD].
# "reward_speed_range": [20, 30],
# # (0.1) The reward received when driving on the right-most lanes, linearly mapped to
# "right_lane_reward": 0.2, # (0.1)
# # zero for other lanes.
# # (0.4) The reward received when driving at full speed, linearly mapped to zero for
# "high_speed_reward": 0.5, # (0.4)
# # lower speeds according to config["reward_speed_range"].
# # The reward received at each lane change action.
# "lane_change_reward": 0.1, # (0)
#
# "simulation_frequency": 15, # (15) [Hz]
# "policy_frequency": 1, # (1) [Hz]
#
# "normalize_reward": True, # (True)
# "offroad_terminal": False, # (False)
#
# # Changes for faster training
# # cf. https://github.com/Farama-Foundation/HighwayEnv/issues/223
# "disable_collision_checks": True,
# })
env.reset()
def display_script_help():
print("Usage: python3 highway_agent.py train [model_id]")
print(" python3 highway_agent.py test [model_id]")
print()
print("model_id: The name of the model to save/load (default: 'new')")
def get_paths():
global save_base_path
if len(sys.argv) > 2:
model_id = sys.argv[2]
else:
model_id = 'new'
save_path = os.path.join(save_base_path, model_id)
model_path = os.path.join(save_path, "trained_model")
return save_path, model_path
if __name__ == '__main__':
if len(sys.argv) < 2:
display_script_help()
sys.exit(1)
if sys.argv[1] == 'train':
save_path, model_path = get_paths()
# Settings adapted from
# https://github.com/Farama-Foundation/HighwayEnv/blob/master/scripts/sb3_highway_dqn.py
model = DQN('MlpPolicy', env,
policy_kwargs=dict(net_arch=[256, 256]),
learning_rate=5e-4,
buffer_size=15000,
learning_starts=200,
batch_size=32,
gamma=0.9, # Discount factor
exploration_fraction=0.3,
exploration_initial_eps=1.0,
exploration_final_eps=0.05,
train_freq=1,
gradient_steps=1,
target_update_interval=50,
verbose=1,
tensorboard_log=save_path)
# Save a checkpoint every 1000 steps
checkpoint_callback = CheckpointCallback(
save_freq=1000,
save_path=save_path,
name_prefix="rl_model"
)
model.learn(int(20_000), callback=checkpoint_callback, tb_log_name="new_dqn", progress_bar=True)
model.save(model_path)
elif sys.argv[1] == 'test':
save_path, model_path = get_paths()
model = DQN.load(model_path)
env.configure({"simulation_frequency": 15})
action_counter = [0]*5 # It seems model only takes one action; check this
crashes = 0
test_runs = 100
for _ in range(test_runs):
state = env.reset()[0]
done = False
truncated = False
while not done and not truncated:
action = model.predict(state, deterministic=True)[0]
next_state, reward, done, truncated, info = env.step(action)
state = next_state
env.render()
action_counter[action] += 1
print('\r', action_counter, end='') # Verify multiple actions are taken
if info and info['crashed']:
crashes += 1
print("\rCrashes:", crashes, "/", test_runs, "runs", f"({crashes/test_runs*100:0.1f} %)")
env.close()
else:
display_script_help()
env.close()