-
Notifications
You must be signed in to change notification settings - Fork 38
/
nne.py
executable file
·109 lines (87 loc) · 4.44 KB
/
nne.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import keras
import numpy as np
from utils.utils import calculate_metrics
from utils.utils import create_directory
from utils.utils import check_if_file_exits
import gc
from utils.constants import UNIVARIATE_ARCHIVE_NAMES as ARCHIVE_NAMES
import time
class Classifier_NNE:
def create_classifier(self, model_name, input_shape, nb_classes, output_directory, verbose=False,
build=True, load_weights=False):
if model_name == 'fcn':
from classifiers import fcn
return fcn.Classifier_FCN(output_directory, input_shape, nb_classes, verbose, build=build)
if model_name == 'mlp':
from classifiers import mlp
return mlp.Classifier_MLP(output_directory, input_shape, nb_classes, verbose, build=build)
if model_name == 'resnet':
from classifiers import resnet
return resnet.Classifier_RESNET(output_directory, input_shape, nb_classes, verbose,
build=build, load_weights=load_weights)
if model_name == 'encoder':
from classifiers import encoder
return encoder.Classifier_ENCODER(output_directory, input_shape, nb_classes, verbose, build=build)
if model_name == 'mcdcnn':
from classifiers import mcdcnn
return mcdcnn.Classifier_MCDCNN(output_directory, input_shape, nb_classes, verbose, build=build)
if model_name == 'cnn':
from classifiers import cnn
return cnn.Classifier_CNN(output_directory, input_shape, nb_classes, verbose, build=build)
def __init__(self, output_directory, input_shape, nb_classes, verbose=False):
self.classifiers = ['mlp','fcn','resnet','encoder','mcdcnn','cnn']
self.classifiers = ['fcn','resnet','encoder'] # this represents NNE in the paper
out_add = ''
for cc in self.classifiers:
out_add = out_add + cc + '-'
self.archive_name = ARCHIVE_NAMES[0]
self.output_directory = output_directory.replace('nne',
'nne'+'/'+out_add)
create_directory(self.output_directory)
self.dataset_name = output_directory.split('/')[-2]
self.verbose = verbose
self.models_dir = output_directory.replace('nne','classifier')
self.iterations = 10
def fit(self, x_train, y_train, x_test, y_test, y_true):
# no training since models are pre-trained
start_time = time.time()
y_pred = np.zeros(shape=y_test.shape)
l = 0
# loop through all classifiers
for model_name in self.classifiers:
# loop through different initialization of classifiers
for itr in range(self.iterations):
if itr == 0:
itr_str = ''
else:
itr_str = '_itr_' + str(itr)
curr_archive_name = self.archive_name+itr_str
curr_dir = self.models_dir.replace('classifier',model_name).replace(
self.archive_name,curr_archive_name)
model = self.create_classifier(model_name, None, None,
curr_dir, build=False)
predictions_file_name = curr_dir+'y_pred.npy'
# check if predictions already made
if check_if_file_exits(predictions_file_name):
# then load only the predictions from the file
curr_y_pred = np.load(predictions_file_name)
else:
# then compute the predictions
curr_y_pred = model.predict(x_test,y_true,x_train,y_train,y_test,
return_df_metrics = False)
keras.backend.clear_session()
np.save(predictions_file_name,curr_y_pred)
y_pred = y_pred+curr_y_pred
l+=1
# average predictions
y_pred = y_pred / l
# save predictiosn
np.save(self.output_directory+'y_pred.npy',y_pred)
# convert the predicted from binary to integer
y_pred = np.argmax(y_pred, axis=1)
duration = time.time() - start_time
df_metrics = calculate_metrics(y_true, y_pred, duration)
df_metrics.to_csv(self.output_directory + 'df_metrics.csv', index=False)
# the creation of this directory means
create_directory(self.output_directory + '/DONE')
gc.collect()