-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathisosceles_triangle.py
155 lines (120 loc) · 6.08 KB
/
isosceles_triangle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from manim import *
import math
import random
import sys
import argparse
import json
import os
# manim -ql --save_last_frame -o 1.png isosceles_triangle.py -- --point --length --angle --ec_file 2.json
class IsoscelesTriangleWithDetails(Scene):
def __init__(self, **kwargs):
super().__init__(**kwargs)
# 通过命令行参数来控制添加的元素
parser = argparse.ArgumentParser()
parser.add_argument("--point", action="store_true", help="Show points")
parser.add_argument("--length", action="store_true", help="Show lengths")
parser.add_argument("--angle", action="store_true", help="Show angles")
parser.add_argument("--ec_file", type=str)
self.args = parser.parse_args(sys.argv[7:])
# 生成坐标点 [-7, 7] 宽,[-4, 4] 高
B_x = random.randint(-5, -4)
B_y = random.randint(-3, -2)
C_x = random.randint(2, 3)
A_x = (B_x + C_x) / 2
A_y = random.randint(1, 3)
self.A = [A_x, A_y, 0]
self.B = [B_x, B_y, 0]
self.C = [C_x, B_y, 0]
self.MathTex_A = "A(" + f"{self.A[0]}" + ", " + f"{self.A[1]}" + ")"
self.MathTex_B = "B(" + f"{self.B[0]}" + ", " + f"{self.B[1]}" + ")"
self.MathTex_C = "C(" + f"{self.C[0]}" + ", " + f"{self.C[1]}" + ")"
# 线段长度
self.length_AB = self.calculate_distance(self.A, self.B)
self.length_BC = self.calculate_distance(self.B, self.C)
self.length_AC = self.calculate_distance(self.A, self.C)
def calculate_distance(self, point1, point2):
distance = round(math.sqrt(
(point2[0] - point1[0])**2 +
(point2[1] - point1[1])**2
), 2)
formatted_distance = f"{distance:.2f}".rstrip('0').rstrip('.') if '.' in f"{distance:.2f}" else f"{int(distance)}"
return formatted_distance
def calculate_angle(self, A, B, C):
# 计算向量 AB 和 AC
AB = [B[i] - A[i] for i in range(len(A))]
AC = [C[i] - A[i] for i in range(len(A))]
# 计算点积
dot_product = sum(AB[i] * AC[i] for i in range(len(A)))
# 计算向量的模
magnitude_AB = math.sqrt(sum(AB[i] ** 2 for i in range(len(A))))
magnitude_AC = math.sqrt(sum(AC[i] ** 2 for i in range(len(A))))
# 计算夹角的余弦值
cos_theta = dot_product / (magnitude_AB * magnitude_AC)
# 计算夹角,使用 acos 函数,并转换为角度
angle_radians = math.acos(cos_theta)
angle_degrees = math.degrees(angle_radians)
formatted_angle = f"{angle_degrees:.2f}".rstrip('0').rstrip('.') if '.' in f"{angle_degrees:.2f}" else f"{int(angle_degrees)}"
return formatted_angle, cos_theta
def construct(self):
# Create points
point_A = Dot(self.A, color=BLUE, radius=0.01)
point_B = Dot(self.B, color=BLUE, radius=0.01)
point_C = Dot(self.C, color=BLUE, radius=0.01)
# Create labels for points
label_A = MathTex(self.MathTex_A).scale(0.5).next_to(point_A, UP)
label_B = MathTex(self.MathTex_B).scale(0.5).next_to(point_B, DOWN)
label_C = MathTex(self.MathTex_C).scale(0.5).next_to(point_C, DOWN)
vertex_A = MathTex('A').scale(0.5).next_to(point_A, UP)
vertex_B = MathTex('B').scale(0.5).next_to(point_B, DOWN)
vertex_C = MathTex('C').scale(0.5).next_to(point_C, DOWN)
# Create lines between points
line_AB = Line(self.A, self.B)
line_BC = Line(self.B, self.C)
line_AC = Line(self.A, self.C)
# Create edge lengths
length_AB = MathTex(f"{self.length_AB}").scale(0.5).next_to(line_AB, LEFT, buff=0.2)
length_BC = MathTex(f"{self.length_BC}").scale(0.5).next_to(line_BC, DOWN, buff=0.2)
length_AC = MathTex(f"{self.length_AC}").scale(0.5).next_to(line_AC, RIGHT, buff=0.2)
length_AB.shift(RIGHT * 1)
length_AC.shift(LEFT * 1)
# 标注角度
angle_A_degrees, cos_theta_A = self.calculate_angle(self.A, self.B, self.C)
angle_B_degrees, cos_theta_B = self.calculate_angle(self.B, self.A, self.C)
angle_C_degrees, cos_theta_C = self.calculate_angle(self.C, self.A, self.B)
angle_A = Angle(line_AB, line_AC, radius=0.5, other_angle=False)
angle_B = Angle(line_BC, Line(self.B, self.A), radius=0.5, other_angle=False)
angle_C = Angle(Line(self.C, self.A), Line(self.C, self.B), radius=0.5, other_angle=False)
angle_label_A = MathTex(f"{angle_A_degrees}^{{\\circ}}").scale(0.4).next_to(angle_A, DOWN)
angle_label_B = MathTex(f"{angle_B_degrees}^{{\\circ}}").scale(0.4).next_to(angle_B, UP)
angle_label_C = MathTex(f"{angle_C_degrees}^{{\\circ}}").scale(0.4).next_to(angle_C, UP)
# angle_label_B.rotate(-cos_theta_B, about_point=self.B)
angle_label_B.shift(RIGHT * 0.7)
angle_label_B.shift(DOWN * 0.2)
angle_label_C.shift(LEFT * 0.7)
angle_label_C.shift(DOWN * 0.2)
# Draw the parallelogram, labels, and edge lengths at once
ecs = []
self.add(point_A, point_B, point_C)
if self.args.point:
self.add(label_A, label_B, label_C)
else:
self.add(vertex_A, vertex_B, vertex_C)
self.add(line_AB, line_BC, line_AC)
if self.args.length:
self.add(length_AB, length_BC, length_AC)
ecs.append(f'AB={self.length_AB}')
ecs.append(f'BC={self.length_BC}')
ecs.append(f'CD={self.length_AC}')
self.add(angle_A, angle_B, angle_C)
if self.args.angle:
self.add(angle_label_A, angle_label_B, angle_label_C)
ecs.append(f'∠A={angle_A_degrees}°')
ecs.append(f'∠B={angle_B_degrees}°')
ecs.append(f'∠C={angle_C_degrees}°')
ec_file = self.args.ec_file
if ec_file:
ec_path = os.path.join(os.getcwd(), 'ec', ec_file)
with open(ec_path, 'w', encoding='utf-8') as f:
json.dump(ecs, f, ensure_ascii=False, indent=4)
# Wait for a moment at the end to keep everything displayed
self.wait(2)