Skip to content

hexhowells/onegrad.js

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A lightweight deep learning framework in JavaScript. Designed to feel like PyTorch. Uses reverse-mode automatic differentiation and wraps around numjs for base matrix operations.

See Examples/ to see what onegrad can do.

There's also a web demo demonstrating entirely in the browser machine learning with Onegrad.

Example

var onegrad = require("./../onegrad/tensor.js")

var x = new onegrad.eye(3);
var y = new onegrad.tensor([[2, 0, -2]]);

var z = y.dot(x).sum();

z.backward();

console.log("x: ", x.grad.tolist());  // dz/dx
console.log("y: ", y.grad.tolist());  // dz/dy

Tensor Creation

Onegrad has many helper functions for creating tensors. All helper functions have the optional argument requiresGrad for specifying if the tensors gradient should be saved after a backwards pass (set to true by default)

> onegrad.tensor([1, 2, 3]);
tensor([1, 2, 3])

> onegrad.ones([2, 2]);
tensor([[1, 1], 
        [1, 1]])

> onegrad.zeros([2, 2]);
tensor([[0, 0], 
        [0, 0]])

> onegrad.randn([2]);
tensor([0.5607564512157093, 0.9575847907431982])

> onegrad.arange([5]);
tensor([0, 1, 2, 3, 4])

> onegrad.arange([5, 10]);
tensor([5, 6, 7, 8, 9])

> onegrad.eye(3);
tensor([[ 1, 0, 0 ], 
        [ 0, 1, 0 ], 
        [ 0, 0, 1 ]])

Infomation about the Tensor

Onegrad tensors have multiple properties that can be accessed by the user:

  • .shape dimenstions of the tensor
  • .selection Numjs array contained in the tensor
  • .grad gradient of the tensor
  • .op operation used to create the tensor (set to none when made with the above helper functions)
  • .parents parent tensors used for the tensors creation (empty array for tensors made with the above helpers)
  • requiresGrad whether the tensor will save its gradient value after each backwards pass

Additionaly .tolist() is used to convert the tensor into a js array.

> var a = onegrad.tensor([1, 2, 3]);
> a
tensor([1, 2, 3])

> a.tolist();
[1, 2, 3]

> a.shape
[3]

> a.selection
array([1, 2, 3])

> a.requiresGrad
true

Calling .backward() on a tensor performs a backwards pass on its DAG.

> var a = onegrad.tensor([1, 2, 3]);
> var b = onegrad.tensor([2, 2, 2]);
> var c = a.sub(b);
> c
tensor([-1, 0, 1])

> c.parents
[tensor([1, 2, 3]), tensor([2, 2, 2])

> c.op
Sub

> c.backward();
> a.grad
tensor([1, 1, 1])
> b.grad
tensor([-1, -1, -1])

Tensor Operations

Onegrad supports most tensor operations required for deep learning

Unary operations

> var a = onegrad.tensor([1, 2]);

> a.max()
tensor([2])

> a.min()
tensor([1])

> a.sum()
tensor([3])

> a.exp()
tensor([2.718281828459045, 7.38905609893065])

> a.negative()
tensor([-1, -2])

> a.log()
tensor([0, 0.300975762292638])

Binary Operations

> var a = onegrad.tensor([1, 2]);
> var b = onegrad.tensor([3, 4]);
> var c = onegrad.tensor([2]);

> a.dot(b)
tensor([11])

> a.add(b)
tensor([4, 6])

> a.sub(b)
tensor([-2, -2])

> a.pow(b)
tensor([1, 4])

Tensor Manipulation

Onegrad supports the transpose and reshape operations for manipulating tensors.

Note: reshape reshapes the tensor in-place

> var a = onegrad.tensor([[1, 2, 3, 4]]);
> a.shape
[1, 4]

> a.transpose()
tensor([[1], [2], [3], [4]])
> a.transpose().shape
[4, 1]

> a.reshape([2, 2])
> a
tensor([[1, 2], 
        [3, 4]])
> a.shape
[2, 2]

Activation Functions

Onegrad supports most of the common activations functions

> var a = onegrad.tensor([-2.5673934, 4]);

> onegrad.sigmoid(a)
tensor([0.07126663626540311, 0.9820137900379085])

> onegrad.tanh(a)
tensor([-0.9882923248658222, 0.999329299739067])

> onegrad.relu(a)
tensor([0, 4])

> onegrad.relu6(a)
tensor([0, 4])

> onegrad.leakyRelu(a)
tensor([-0.025673934, 4])

> onegrad.selu(a)
tensor([-1.5448988171423363, 4])

> var b = onegrad.tensor([[1.3, 5.1, 2.2, 0.7, 1.1]]);
> onegrad.softmax(b)
tensor([
  0.02019046473258069,
  0.9025376890165726,
  0.04966052987196014,
  0.011080761983386348,
  0.016530554395500222
])

Layer Abstractions

Onegrad supports some layer abstractions to help make building networks easier. All layers have 3 parameters:

  • inDim number of input nodes
  • outDim number of output nodes
  • useBias bias toggle (true by default)

Note: recurrent layers requires a call to .resetPrev() to reset the previous hidden output.

> var x = onegrad.randn([1, 10]);

> var denselayer = new nn.Linear(10, 1, false);
> denseLayer.forward(x)
tensor([0.4736675307891193])

> var rnnLayer = new nn.RNN(10, 1, false);
> rnnLayer.forward(x)
tensor([0.06440360973284968])

// reset previous hidden output after each complete forward pass on a sequence
> rnnLayer.resetPrev()

The parameters of each layer can be accessed using the .parameters() function.

> var rnnLayer = new nn.RNN(10, 1, true);
> rnnLayer.parameters()
list([tensor([...]), tensor([...]), tensor([...])])

Modules

Modules can be used to define entire models inside a class by extending from nn.Modules. Defined models requires constructor() for defining the model layers and forward(x) for specifying how the layers interact.

Model layers need to be placed in an array called layers (required for the framework to extract model parameters)

> class Model extends nn.Module {
    constructor(inDim, outDim) {
      super()
      this.layers = [
          new nn.Linear(inDim, 100),
          new nn.Linear(100, outDim)
      ]
    }
    
    forward(x) {
      x = onegrad.sigmoid(this.layers[0].forward(x))
      x = onegrad.sigmoid(this.layers[1].forward(x))
      return x
    }
  }
> var model = new Model(10, 1);
> var x = onegrad.randn([1, 10]);
> model.forward(x)
tensor([0.7826402419856238])

Save and Load Models

Models can be saved and loaded from a .json file. requires the model filepath to be specified.

> model.save('model.json');
> model.load('model.json');

Loss Functions

Onegrad supports a few of the basic loss functions.

To compute the loss call .compute(output, target) on the loss function.

> var x = onegrad.randn([1, 10]);
> var tar = onegrad.randn([1, 10]);

> var lossfn = new nn.MSE();
> lossfn.compute(x, tar)
tensor([0.0270..., 0.2257..., 0.0173..., 0.4238..., 0.2901...])

> var lossfn = new nn.MAE();
> lossfn.compute(x, tar)
tensor([0.1082..., 0.0471..., 0.4704..., 0.4681..., 0.0965...])

Optimisers

Onegrad currently supports the SGD and Adam optimisers.

Parameters of SGD

  • params parameters to update
  • lr learning rate (default 0.01)
  • bs batch size (default 1)

Parameters of Adam

  • params parameters to update
  • lr learning rate (default 0.001)
  • bs batch size
  • b1 beta 1 (default 0.9)
  • b2 beta 2 (default 0.999)
  • eps epsilon (default 1e-8)
> var opt = new optim.SGD(model.parameters(), lr=0.01);

// update model weights
> opt.step()

// reset parameter gradients
> opt.zeroGrad()

Gradient Decay

Onegrad supports a basic learning rate scheduler which decays the learning rate every n steps.

Parameters

  • optim optimiser to schedule
  • stepSize how many steps to decay on (default 30)
  • gamma how much to decay the gradient (default 0.1)
  • lastEpoch the index of last epoch (default -1)
> var opt = new optim.SGD(model.parameters(), lr=0.01);
> var scheduler = new optim.StepLR(opt);

// step scheduler every iteration
scheduler.step()

Visualisations

Onegrad supports the ability to visualise the computational graph of a model. Each node in the graph corresponds to a tensor which contains information about its creation, shape, etc.

To visualise the model first construct the graph by calling .constructDAG on the last tensor, then pass the DAG to vis.visualise(DAG). The graph of the model will then be visable at localhost:5000.

Note: A forward pass is required to compute the computational graph which is to be displayed.

// Compute forward pass through model
> var out = model.forward(x);
> var loss = lossfn.forward(out);

// Create computational graph and visualise
> var dag = loss.constructDAG();
> vis.visualise(dag)
'View graph at http://localhost:5000'

Node labelling

By default tensors are given generic names, however individual tensors can be labelled which will be displayed on the graph instead, this often makes for easier interpretation and is recommended.

Note: layers created with nn abstractions will be labelled by default to indicate the tensors purpose and which layer it belongs to.

// Add label on tensor creation
> var a = onegrad.tensor([1, 2, 3], {label:"input"});

// Add label after tensor creation
> var b = onegrad.tensor([4, 5, 6]);
> b.label = "second input";

The following is an example visualisation on a 2 layer feed forward network, the code to generate this graph can be found at tests/visualise.js.

TODO

  • add ability to convert trained pytorch models to onegrad
  • implement backprop for all operations
  • add more optimiser functions
  • add module class for defining models
  • add more activation functions (LeakyReLU, ReLU6, SELU)
  • add ability to save and load model weights
  • add visualisations for the DAG
  • add more loss functions (CategoricalCrossEntropy, NLLLoss)
  • add more nn abstractions (LSTM, GRU, Conv2d)
  • add more examples
  • bundle source code for in browser support

About

Lightweight deep learning framework in JavaScript

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published