-
Notifications
You must be signed in to change notification settings - Fork 50
/
train_UDA.py
181 lines (142 loc) · 6.36 KB
/
train_UDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from torch.backends import cudnn
from utils.logger import setup_logger
from model import make_model
from solver import make_optimizer, WarmupMultiStepLR
from loss import make_loss
from datasets.sampler import RandomIdentitySampler
from datasets.bases import ImageDataset
from datasets.make_dataloader import train_collate_fn
import argparse
from config import cfg
from config import cfg_test
from processor import do_train, do_inference_Pseudo
import random
import torch
import numpy as np
from datasets import make_dataloader_Pseudo, make_dataloader
import os
import os.path as osp
from torch.utils.data import DataLoader
from collections import defaultdict
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="ReID Baseline Training")
parser.add_argument(
"--config_file", default="", help="path to config file", type=str
)
parser.add_argument(
"--config_file_test", default="", help="path to config file", type=str
)
parser.add_argument(
"--data_dir_query", default="", help="dir to the query datasets", type=str
)
parser.add_argument(
"--data_dir_gallery", default="", help="dir to the gallery datasets", type=str
)
parser.add_argument("opts", help="Modify config options using the command-line", default=None,
nargs=argparse.REMAINDER)
args = parser.parse_args()
imgs_dir_query = args.data_dir_query
imgs_dir_test = args.data_dir_gallery
if args.config_file_test != "":
cfg_test.merge_from_file(args.config_file_test)
cfg_test.freeze()
if args.config_file_test != "":
print("Loaded test configuration file {}".format(args.config_file_test))
with open(args.config_file_test, 'r') as cf:
config_str = "\n" + cf.read()
print(config_str)
os.environ['CUDA_VISIBLE_DEVICES'] = cfg_test.MODEL.DEVICE_ID
print(cfg_test, 'cfg_test')
train_loader, val_loader_green, val_loader_normal, num_query_green, num_query_normal, num_classes = make_dataloader(cfg_test)
KNOWN = num_classes
print("num_class in the custom training: {}".format(KNOWN))
model = make_model(cfg_test, num_class=num_classes)
model.load_param(cfg_test.TEST.WEIGHT)
print('Ready for inference')
distmat, img_name_q, img_name_g = do_inference_Pseudo(cfg_test, model, val_loader_green, num_query_green)
print(distmat, 'distmat')
print('The shape of distmat is: {}'.format(distmat.shape))
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
set_seed(cfg.SOLVER.SEED)
output_dir = cfg.OUTPUT_DIR
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
logger = setup_logger("reid_baseline", output_dir, if_train=True)
logger.info("Saving model in the path :{}".format(cfg.OUTPUT_DIR))
logger.info(args)
if args.config_file != "":
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, 'r') as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID
indexes = np.argwhere(distmat < cfg.MODEL.THRESH)
logger.info('Model thresh: {}'.format(cfg.MODEL.THRESH))
logger.info('The number of galleries selected at the beginning: {}'.format(len(indexes)))
final_index = defaultdict(list)
gallery_container = set()
for index in indexes:
if index[1] not in gallery_container:
gallery_container.add(index[1])
final_index[index[1]] = index[0]
else:
if distmat[index[0]][index[1]] < distmat[final_index[index[1]]][index[1]]:
final_index.pop(index[1])
final_index[index[1]] = index[0]
logger.info('The number of galleries selected after processing: {}'.format(len(final_index)))
seletcted_data = []
pid_container = set()
for gallery, query in final_index.items():
pid_container.add(query)
pid2label = {pid: label for label, pid in enumerate(pid_container)}
for gallery, query in final_index.items():
seletcted_data.append((osp.join(imgs_dir_test,
img_name_g[gallery]), pid2label[query] + KNOWN, 1))
for pid in pid_container:
seletcted_data.append((osp.join(imgs_dir_query,
img_name_q[pid]), pid2label[pid] + KNOWN, 1))
logger.info("the Number of Pseudo-seletcted_data is :{}".format(len(seletcted_data)))
logger.info("the class of Pseudo-label is :{}".format(len(pid_container)))
train_loader, val_loader, num_query, num_classes, dataset, train_set, train_transforms = make_dataloader_Pseudo(cfg)
seletcted_set = ImageDataset(seletcted_data, train_transforms)
new_train_data = train_set + seletcted_set
train_loader_test = DataLoader(
new_train_data, batch_size=cfg.SOLVER.IMS_PER_BATCH,
sampler=RandomIdentitySampler(dataset.train + seletcted_data, cfg.SOLVER.IMS_PER_BATCH,
cfg.DATALOADER.NUM_INSTANCE),
num_workers=cfg.DATALOADER.NUM_WORKERS, collate_fn=train_collate_fn
)
num_classes = KNOWN + len(pid_container)
model = make_model(cfg, num_class=num_classes)
loss_func, center_criterion = make_loss(cfg, num_classes=num_classes)
optimizer, optimizer_center = make_optimizer(cfg, model, center_criterion)
scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA,
cfg.SOLVER.WARMUP_FACTOR,
cfg.SOLVER.WARMUP_EPOCHS, cfg.SOLVER.WARMUP_METHOD)
if cfg.MODEL.PRETRAIN_CHOICE == 'finetune':
model.load_param_finetune(cfg.MODEL.PRETRAIN_PATH)
print('Loading pretrained model for finetuning......')
do_train(
cfg,
model,
center_criterion,
train_loader_test,
val_loader,
optimizer,
optimizer_center,
scheduler, # modify for using self trained model
loss_func,
num_query
)