-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathanalyst.py
419 lines (318 loc) · 13.2 KB
/
analyst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
"""`Analyst` contains a list of metrics and the observations happens in each
specific event such as tick or schedule. In these events, we update the metric
with the new information from the simulation. `Analyst` also summarizes and
generates the metrics files into disk which can be triggered at the end of a
simulation.
"""
import logging
import json
import matplotlib.pyplot as plt
import pandas as pd
from utils import get_time_delta, get_output_dir_name
from config import Config
class TaxitimeMetric():
"""`TaxitimeMetric` logs the taxi-time of all aircrafts in the simulation.
We define the taxi time as the time an aircraft locates in the airport
but is not parked at the gate.
"""
def __init__(self, sim_time):
self.moving_aircraft_count_on_tick = 0
self.sim_time = sim_time
def update_on_tick(self, aircrafts, scenario):
"""Updates the metric with the current aircrafts states and the
scenario.
"""
for aircraft in aircrafts:
# If an aircraft is not close to its gate, it's on its taxiway
flight = scenario.get_flight(aircraft)
if not aircraft.location.is_close_to(flight.from_gate):
self.moving_aircraft_count_on_tick += 1
@property
def taxi_time(self):
"""Returns the sum of the taxi time we've observed."""
return self.moving_aircraft_count_on_tick * self.sim_time
@property
def summary(self):
"""Returns a summary string of this metric."""
return "Taxitime: %d seconds" % self.taxi_time
class MakespanMetric():
"""`MakespanMetric` logs the makespan of a simulation. We define makespan
as the time period between the first aircraft and the last aircraft we've
observed during a simulation.
"""
def __init__(self):
self.aircraft_first_time = None
self.aircraft_last_time = None
def update_on_tick(self, aircrafts, now):
"""Updates the metrics with all active aircrafts."""
if not aircrafts:
return
if self.aircraft_first_time is None:
self.aircraft_first_time = now
self.aircraft_last_time = now
@property
def __is_ready(self):
return self.aircraft_first_time and self.aircraft_last_time
@property
def makespan(self):
"""Returns the makespan value."""
return (get_time_delta(self.aircraft_last_time,
self.aircraft_first_time)
if self.__is_ready else 0)
@property
def summary(self):
"""Returns a summary string of this metric."""
if not self.__is_ready:
return "Makespan: insufficient data"
return "Makespan: %d seconds" % self.makespan
class AircraftCountMetric():
"""`AircraftCountMetric` logs the number of active aircrafts in the
simulation.
"""
def __init__(self):
self.counter = pd.DataFrame(columns=["count"])
def update_on_tick(self, aircrafts, now):
"""Updates the metrics with all active aircrafts."""
self.counter.set_value(now, "count", len(aircrafts))
@property
def avg_n_aircrafts(self):
"""Returns the average number of aircrafts."""
return self.counter["count"].mean()
@property
def summary(self):
"""Returns a summary string of this metric."""
if not self.counter:
return "Aircraft count: insufficient data"
cnt = self.counter
return ("Aircraft count: top %d low %d mean %d remaining %d" %
(cnt.max(), cnt.min(), cnt.mean(), cnt.iloc[-1]))
class ConflictMetric():
"""`ConflictMetric` logs the number of conflicts in the simulation."""
def __init__(self):
self.conflict = pd.DataFrame(columns=["count"])
def update_on_tick(self, conflicts, now):
"""Updates the metric with the conflicts observed in a tick."""
self.conflict.set_value(now, "count", len(conflicts))
@property
def conflicts(self):
"""Returns the number of conflicts."""
return self.conflict["count"].sum()
@property
def summary(self):
"""Returns a summary string of this metric."""
if not self.conflicts:
return "Conflict: insufficient data"
cnf = self.conflict
return (
"Conflict: top %d low %d mean %d" %
(cnf.max(), cnf.min(), cnf.mean())
)
class GateQueueMetric():
"""`GateQueueMetric` logs the size of the queues at gate."""
def __init__(self):
self.gate_queue_size = pd.DataFrame(columns=["size"])
def update_on_tick(self, airport, now):
"""Updates the metric with the airport state."""
self.gate_queue_size.set_value(
now, "size", sum([len(q) for q in airport.gate_queue.values()]))
@property
def avg_queue_size(self):
"""Returns the average size of the queue among the queue."""
return self.gate_queue_size["size"].mean()
@property
def summary(self):
"""Returns a summary string of this metric."""
if not self.gate_queue_size:
return "Gate Queue: insufficient data"
queue_size = self.gate_queue_size
return "Gate Queue: top %d low %d mean %d" % (
queue_size.max(), queue_size.min(), queue_size.mean()
)
class ExecutionTimeMetric():
"""`ExecutionTimeMetric` logs the execution time taken each time the
scheduler schedules.
"""
def __init__(self):
# Reschedule execution time
self.rs_exec_time = pd.DataFrame(columns=["rs_exec_time"])
def update_on_reschedule(self, rs_exec_time, now):
"""Updates the metric with the execution time taken for scheduling."""
self.rs_exec_time.set_value(now, "rs_exec_time", rs_exec_time)
@property
def avg_reschedule_exec_time(self):
"""Returns the reschedule execution time."""
return self.rs_exec_time["rs_exec_time"].mean()
@property
def summary(self):
"""Returns a summary string of this metric."""
if not self.rs_exec_time:
return "Execution Time: insufficient data"
rst = self.rs_exec_time
return "Reschedule execution time: top %d low %d mean %d" % (
rst.max(), rst.min(), rst.mean()
)
class DelayMetric():
"""`DelayMetric` logs the delay of each aircraft encountered in each tick.
"""
def __init__(self):
self.delay = pd.DataFrame(
columns=["n_scheduler_delay", "n_uncertainty_delay"]
)
def update_on_tick(self, aircrafts, now):
"""Updates the metric with the active aircrafts."""
n_scheduler_delay = len([
aircraft for aircraft in aircrafts
if aircraft.itinerary is not None and
aircraft.itinerary.is_delayed_by_scheduler
])
n_uncertainty_delay = len([
aircraft for aircraft in aircrafts
if aircraft.itinerary is not None and
aircraft.itinerary.is_delayed_by_uncertainty
])
self.delay.set_value(now, "n_scheduler_delay", n_scheduler_delay)
self.delay.set_value(now, "n_uncertainty_delay", n_uncertainty_delay)
@property
def n_scheduler_delay(self):
"""Returns the number of the scheduler delays."""
# Average number of delay added by the scheduler per tick
return self.delay["n_scheduler_delay"].sum()
@property
def n_uncertainty_delay(self):
"""Returns the number of uncertainty delays."""
# Average number of delay added by the uncertainty module per tick
return self.delay["n_uncertainty_delay"].sum()
@property
def n_delay(self):
"""Returns the total number of delays (that is, the scheduler delay and
the uncertainty delay).
"""
return self.n_scheduler_delay + self.n_uncertainty_delay
@property
def summary(self):
"""Returns a summary string of this metric."""
if not self.delay:
return "Delay: insufficient data"
delay = self.delay
return "Delay: top %d low %d mean %d" % (delay.max(),
delay.min(), delay.mean())
class Analyst:
"""`Analyst` maintains multiple metrics by observing the simulation states
on tick and schedule events, then generates the final output metrics to
string or file.
"""
def __init__(self, simulation):
self.logger = logging.getLogger(__name__)
self.airport_name = simulation.airport.name
sim_time = simulation.clock.sim_time
self.taxitime_metric = TaxitimeMetric(sim_time)
self.makespan_metric = MakespanMetric()
self.aircraft_count_metric = AircraftCountMetric()
self.conflict_metric = ConflictMetric()
self.gate_queue_metric = GateQueueMetric()
self.execution_time_metric = ExecutionTimeMetric()
self.delay_metric = DelayMetric()
self.__save_airport_name()
def observe_on_tick(self, simulation):
"""Observe the simulation state on tick."""
now = simulation.now
airport = simulation.airport
aircrafts = airport.aircrafts
scenario = simulation.scenario
conflicts = simulation.airport.conflicts
self.taxitime_metric.update_on_tick(aircrafts, scenario)
self.makespan_metric.update_on_tick(aircrafts, now)
self.aircraft_count_metric.update_on_tick(aircrafts, now)
self.conflict_metric.update_on_tick(conflicts, now)
self.gate_queue_metric.update_on_tick(airport, now)
self.delay_metric.update_on_tick(aircrafts, now)
def observe_on_reschedule(self, simulation):
"""Observe the simulation state on reschedule."""
now = simulation.now
self.execution_time_metric.update_on_reschedule(
simulation.last_schedule_exec_time, now)
def print_summary(self):
"""Prints the summary."""
self.logger.debug(self.taxitime_metric.summary)
self.logger.debug(self.makespan_metric.summary)
self.logger.debug(self.aircraft_count_metric.summary)
self.logger.debug(self.conflict_metric.summary)
self.logger.debug(self.gate_queue_metric.summary)
self.logger.debug(self.execution_time_metric.summary)
self.logger.debug(self.delay_metric.summary)
def save(self):
"""Saves the output metrics to file."""
self.__save_tick_summary()
self.__save_schedule_summary()
self.__save_metrics()
plt.close('all')
def __save_tick_summary(self):
cnt = self.aircraft_count_metric.counter
cnf = self.conflict_metric.conflict
queue_size = self.gate_queue_metric.gate_queue_size
delay = self.delay_metric.delay
stats = cnt.join(
cnf,
rsuffix="_conflict"
).join(
queue_size,
rsuffix="_queue_size"
).join(
delay
)
with pd.option_context("display.max_rows", None):
self.logger.debug("\n" + str(stats))
save_csv("tick", stats)
save_fig("conflicts", cnf, "line")
save_fig("gate_queue_size", queue_size, "line")
save_fig("delay", delay, "line")
def __save_schedule_summary(self):
# Execution time
rst = self.execution_time_metric.rs_exec_time
with pd.option_context("display.max_rows", None):
self.logger.debug("\n" + str(rst))
save_fig("schedule_execution_time", rst, "line")
# Writes to one csv file
save_csv("schedule", rst)
def __save_metrics(self):
"""Saves the output metrics of the simulation to a JSON file."""
filename = "%smetrics.json" % get_output_dir_name()
response = {
"avg_active_aircrafts": self.aircraft_count_metric.avg_n_aircrafts,
"conflicts": self.conflict_metric.conflicts,
"makespan": self.makespan_metric.makespan,
"avg_queue_size": self.gate_queue_metric.avg_queue_size,
"avg_reschedule_exec_time":
self.execution_time_metric.avg_reschedule_exec_time,
"n_delay": self.delay_metric.n_delay,
"n_scheduler_delay":
self.delay_metric.n_scheduler_delay,
"n_uncertainty_delay":
self.delay_metric.n_uncertainty_delay
}
with open(filename, "w") as fout:
fout.write(json.dumps(response, indent=4))
self.logger.info("Output metrics saved to %s", filename)
def __save_airport_name(self):
filename = "%sairport.txt" % get_output_dir_name()
with open(filename, "w") as fout:
fout.write(self.airport_name)
self.logger.info("Airport name logged to %s", filename)
def __getstate__(self):
attrs = dict(self.__dict__)
del attrs["logger"]
return attrs
def __setstate__(self, attrs):
self.__dict__.update(attrs)
def save_csv(type_name, dataframe):
"""Saves the given dataframe to a csv file."""
filename = "%s%s.csv" % (get_output_dir_name(), type_name)
dataframe.to_csv(filename)
def save_fig(fig_name, dataframe, kind):
"""Saves the given dataframe to a figure file."""
filename = "%s%s.png" % (get_output_dir_name(), fig_name)
plt.clf()
plt.figure(figsize=Config.OUTPUT_FIG_SIZE)
dataframe.plot(kind=kind)
plt.tight_layout()
plt.savefig(filename, dpi=Config.OUTPUT_FIG_DPI)