-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmain.py
363 lines (302 loc) · 13.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
"""
Dynamic Group Convolution
date: July 5th, 2020
authors: Zhuo Su, Linpu Fang
paper: Dynamic Group Convolution for Accelerating Convolutional Neural Networks, ECCV 2020.
Code forked from "https://github.com/ShichenLiu/CondenseNet"
"""
from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import print_function
from __future__ import division
import argparse
import os
import time
import models
from utils import *
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
parser = argparse.ArgumentParser(description='PyTorch main code for Dynamic Group Convolution')
parser.add_argument('--data', type=str, default='imagenet',
help='name of dataset',
choices=['cifar10', 'cifar100', 'imagenet'])
parser.add_argument('--datadir', type=str, default='../data',
help='dir to the dataset')
parser.add_argument('--savedir', type=str, default='results/exp',
help='path to save result and checkpoint')
parser.add_argument('--model', type=str, default='dydensenet',
help='model to train the dataset')
parser.add_argument('-j', '--workers', type=int, default=8,
help='number of data loading workers')
parser.add_argument('--epochs', type=int, default=120,
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', type=int, default=256,
help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', type=float, default=0.1,
help='initial learning rate')
parser.add_argument('--lr-type', type=str, default='cosine',
help='learning rate strategy',
choices=['cosine', 'multistep'])
parser.add_argument('--group-lasso-lambda', type=float, default=1e-5,
help='group lasso loss weight')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum for sgd')
parser.add_argument('--weight-decay', '--wd', type=float, default=1e-4,
help='weight decay')
parser.add_argument('--seed', type=int, default=None,
help='manual seed')
parser.add_argument('--gpu', type=str, default='',
help='gpu available')
parser.add_argument('--stages', type=str,
help='per layer depth')
parser.add_argument('--squeeze-rate', type=int, default=16,
help='squeeze rate in SE head')
parser.add_argument('--heads', type=int, default=4,
help='number of heads for 1x1 convolution')
parser.add_argument('--group-3x3', type=int, default=4,
help='3x3 group convolution')
parser.add_argument('--gate-factor', type=float, default=0.25,
help='gate factor')
parser.add_argument('--growth', type=str,
help='per layer growth')
parser.add_argument('--bottleneck', type=int, default=4,
help='bottleneck in densenet')
parser.add_argument('--print-freq', type=int, default=10,
help='print frequency')
parser.add_argument('--save-freq', type=int, default=10,
help='save frequency')
parser.add_argument('--resume', action='store_true',
help='use latest checkpoint if have any')
parser.add_argument('--evaluate', type=str, default=None,
help="full path to checkpoint to be evaluated")
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
best_prec1 = 0
def main():
global args, best_prec1
if args.seed is None:
args.seed = int(time.time())
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
R = 32
if args.data == 'cifar10':
args.num_classes = 10
elif args.data == 'cifar100':
args.num_classes = 100
else:
args.num_classes = 1000
R = 224
if 'densenet' in args.model:
args.stages = list(map(int, args.stages.split('-')))
args.growth = list(map(int, args.growth.split('-')))
### Calculate FLOPs & Param
model = getattr(models, args.model)(args)
n_flops, n_params = measure_model(model, R, R)
print('FLOPs: %.2fM, Params: %.2fM' % (n_flops / 1e6, n_params / 1e6))
os.makedirs(args.savedir, exist_ok=True)
log_file = os.path.join(args.savedir, "%s_%d_%d.txt" % \
(args.model, int(n_params), int(n_flops)))
del(model)
### Create model
model = getattr(models, args.model)(args)
model = torch.nn.DataParallel(model).cuda()
### Define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=True)
cudnn.benchmark = True
### Data loading
if args.data == "cifar10":
normalize = transforms.Normalize(mean=[0.4914, 0.4824, 0.4467],
std=[0.2471, 0.2435, 0.2616])
train_set = datasets.CIFAR10(args.datadir, train=True, download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
val_set = datasets.CIFAR10(args.datadir, train=False,
transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]))
elif args.data == "cifar100":
normalize = transforms.Normalize(mean=[0.5071, 0.4867, 0.4408],
std=[0.2675, 0.2565, 0.2761])
train_set = datasets.CIFAR100(args.datadir, train=True, download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
val_set = datasets.CIFAR100(args.datadir, train=False,
transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]))
else: #imagenet
traindir = os.path.join(args.datadir, 'train')
valdir = os.path.join(args.datadir, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_set = datasets.ImageFolder(traindir, transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
val_set = datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
train_loader = torch.utils.data.DataLoader(
train_set,
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
val_set,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
### Optionally resume from a checkpoint
args.start_epoch = 0
if args.resume or (args.evaluate is not None):
checkpoint = load_checkpoint(args)
if checkpoint is not None:
model.load_state_dict(checkpoint['state_dict'])
try:
args.start_epoch = checkpoint['epoch'] + 1
best_prec1 = checkpoint['best_prec1']
optimizer.load_state_dict(checkpoint['optimizer'])
except KeyError:
pass
### Evaluate directly if required
print(args)
if args.evaluate is not None:
validate(val_loader, model, criterion, args)
return
saveID = None
for epoch in range(args.start_epoch, args.epochs):
### Train for one epoch
tr_prec1, tr_prec5, loss, lr = \
train(train_loader, model, criterion, optimizer, epoch, args)
### Evaluate on validation set
val_prec1, val_prec5 = validate(val_loader, model, criterion, args)
### Remember best prec@1 and save checkpoint
is_best = val_prec1 >= best_prec1
best_prec1 = max(val_prec1, best_prec1)
log = ("Epoch %03d/%03d: top1 %.4f | top5 %.4f" + \
" | train-top1 %.4f | train-top5 %.4f | loss %.4f | lr %.5f | Time %s\n") \
% (epoch, args.epochs, val_prec1, val_prec5, tr_prec1, \
tr_prec5, loss, lr, time.strftime('%Y-%m-%d %H:%M:%S'))
with open(log_file, 'a') as f:
f.write(log)
saveID = save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, epoch, args.savedir, is_best,
saveID, keep_freq=args.save_freq)
return
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
lasso_losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
### Switch to train mode
model.train()
wD = len(str(len(train_loader)))
wE = len(str(args.epochs))
end = time.time()
for i, (input, target) in enumerate(train_loader):
progress = float(epoch * len(train_loader) + i) / \
(args.epochs * len(train_loader))
## Adjust learning rate
lr = adjust_learning_rate(optimizer, epoch, args, batch=i,
nBatch=len(train_loader), method=args.lr_type)
## Measure data loading time
data_time.update(time.time() - end)
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
## Compute output
output, _lasso_list = model(input, progress)
loss = criterion(output, target)
## Add group lasso loss
lasso_loss = 0
if args.group_lasso_lambda > 0:
for lasso_m in _lasso_list:
lasso_loss = lasso_loss + lasso_m.mean()
loss = loss + args.group_lasso_lambda * lasso_loss
## Measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
lasso_losses.update(lasso_loss.item())
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
## Compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
## Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
## Record
if i % args.print_freq == 0:
print(('Epoch: [{0}/{1}][{2}/{3}]\t' + \
'Time {batch_time.val:.3f}\t' + \
'Data {data_time.val:.3f}\t' + \
'Loss (lasso_loss) {loss.val:.4f} ({lasso_loss.val:.4f})\t' + \
'Prec@1 {top1.val:.3f}\t' + \
'Prec@5 {top5.val:.3f}\t' + \
'lr {lr: .5f}\t').format(
epoch, args.epochs, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, lasso_loss=lasso_losses,
top1=top1, top5=top5, lr=lr))
return top1.avg, top5.avg, losses.avg, lr
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
## Switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
## Compute output
with torch.no_grad():
target = target.cuda(non_blocking=True)
input = input.cuda(non_blocking=True)
output, _ = model(input)
loss = criterion(output, target)
## Measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
## Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg, top5.avg
if __name__ == '__main__':
main()