-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathutf32_str.rs
355 lines (325 loc) · 11.5 KB
/
utf32_str.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
use std::borrow::Cow;
use std::ops::{Bound, RangeBounds};
use std::{fmt, slice};
use crate::chars;
/// A UTF32 encoded (char array) string that is used as an input to (fuzzy) matching.
///
/// Usually rusts' utf8 encoded strings are great. However during fuzzy matching
/// operates on codepoints (it should operate on graphemes but that's too much
/// hassle to deal with). We want to quickly iterate these codepoints between
/// (up to 5 times) during matching.
///
/// Doing codepoint segmentation on the fly not only blows trough the cache
/// (lookuptables and Icache) but also has nontrivial runtime compared to the
/// matching itself. Furthermore there are a lot of exta optimizations available
/// for ascii only text (but checking during each match has too much overhead).
///
/// Ofcourse this comes at exta memory cost as we usually still need the ut8
/// encoded variant for rendering. In the (dominant) case of ascii-only text
/// we don't require a copy. Furthermore fuzzy matching usually is applied while
/// the user is typing on the fly so the same item is potentially matched many
/// times (making the the upfront cost more worth it). That means that its
/// basically always worth it to presegment the string.
///
/// For usecases that only match (a lot of) strings once its possible to keep
/// char buffer around that is filled with the presegmented chars
///
/// Another advantage of this approach is that the matcher will naturally
/// produce char indices (instead of utf8 offsets) anyway. With a
/// codepoint basic representation like this the indices can be used
/// directly
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash)]
pub enum Utf32Str<'a> {
/// A string represented as ASCII encoded bytes.
/// Correctness invariant: must only contain valid ASCII (<=127)
Ascii(&'a [u8]),
/// A string represented as an array of unicode codepoints (basically UTF-32).
Unicode(&'a [char]),
}
impl<'a> Utf32Str<'a> {
/// Convenience method to construct a `Utf32Str` from a normal utf8 str
pub fn new(str: &'a str, buf: &'a mut Vec<char>) -> Self {
if str.is_ascii() {
Utf32Str::Ascii(str.as_bytes())
} else {
buf.clear();
buf.extend(crate::chars::graphemes(str));
if buf.iter().all(|c| c.is_ascii()) {
return Utf32Str::Ascii(str.as_bytes());
}
Utf32Str::Unicode(&*buf)
}
}
/// Returns the number of characters in this string.
#[inline]
pub fn len(self) -> usize {
match self {
Utf32Str::Unicode(codepoints) => codepoints.len(),
Utf32Str::Ascii(ascii_bytes) => ascii_bytes.len(),
}
}
/// Returns whether this string is empty.
#[inline]
pub fn is_empty(self) -> bool {
match self {
Utf32Str::Unicode(codepoints) => codepoints.is_empty(),
Utf32Str::Ascii(ascii_bytes) => ascii_bytes.is_empty(),
}
}
/// Creates a slice with a string that contains the characters in
/// the specified **character range**.
#[inline]
pub fn slice(self, range: impl RangeBounds<usize>) -> Utf32Str<'a> {
let start = match range.start_bound() {
Bound::Included(&start) => start,
Bound::Excluded(&start) => start + 1,
Bound::Unbounded => 0,
};
let end = match range.end_bound() {
Bound::Included(&end) => end + 1,
Bound::Excluded(&end) => end,
Bound::Unbounded => self.len(),
};
match self {
Utf32Str::Ascii(bytes) => Utf32Str::Ascii(&bytes[start..end]),
Utf32Str::Unicode(codepoints) => Utf32Str::Unicode(&codepoints[start..end]),
}
}
/// Returns the number of leading whitespaces in this string
#[inline]
pub(crate) fn leading_white_space(self) -> usize {
match self {
Utf32Str::Ascii(bytes) => bytes
.iter()
.position(|b| !b.is_ascii_whitespace())
.unwrap_or(0),
Utf32Str::Unicode(codepoints) => codepoints
.iter()
.position(|c| !c.is_whitespace())
.unwrap_or(0),
}
}
/// Returns the number of leading whitespaces in this string
#[inline]
pub(crate) fn trailing_white_space(self) -> usize {
match self {
Utf32Str::Ascii(bytes) => bytes
.iter()
.rev()
.position(|b| !b.is_ascii_whitespace())
.unwrap_or(0),
Utf32Str::Unicode(codepoints) => codepoints
.iter()
.rev()
.position(|c| !c.is_whitespace())
.unwrap_or(0),
}
}
/// Same as `slice` but accepts a u32 range for convenience since
/// those are the indices returned by the matcher.
#[inline]
pub fn slice_u32(self, range: impl RangeBounds<u32>) -> Utf32Str<'a> {
let start = match range.start_bound() {
Bound::Included(&start) => start as usize,
Bound::Excluded(&start) => start as usize + 1,
Bound::Unbounded => 0,
};
let end = match range.end_bound() {
Bound::Included(&end) => end as usize + 1,
Bound::Excluded(&end) => end as usize,
Bound::Unbounded => self.len(),
};
match self {
Utf32Str::Ascii(bytes) => Utf32Str::Ascii(&bytes[start..end]),
Utf32Str::Unicode(codepoints) => Utf32Str::Unicode(&codepoints[start..end]),
}
}
/// Returns whether this string only contains ascii text.
pub fn is_ascii(self) -> bool {
matches!(self, Utf32Str::Ascii(_))
}
/// Returns the `n`th character in this string.
pub fn get(self, n: u32) -> char {
match self {
Utf32Str::Ascii(bytes) => bytes[n as usize] as char,
Utf32Str::Unicode(codepoints) => codepoints[n as usize],
}
}
pub(crate) fn last(self) -> char {
match self {
Utf32Str::Ascii(bytes) => bytes[bytes.len() - 1] as char,
Utf32Str::Unicode(codepoints) => codepoints[codepoints.len() - 1],
}
}
pub(crate) fn first(self) -> char {
match self {
Utf32Str::Ascii(bytes) => bytes[0] as char,
Utf32Str::Unicode(codepoints) => codepoints[0],
}
}
/// Returns an iterator over the characters in this string
pub fn chars(self) -> Chars<'a> {
match self {
Utf32Str::Ascii(bytes) => Chars::Ascii(bytes.iter()),
Utf32Str::Unicode(codepoints) => Chars::Unicode(codepoints.iter()),
}
}
}
impl fmt::Debug for Utf32Str<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "\"")?;
for c in self.chars() {
for c in c.escape_debug() {
write!(f, "{c}")?
}
}
write!(f, "\"")
}
}
impl fmt::Display for Utf32Str<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for c in self.chars() {
write!(f, "{c}")?
}
Ok(())
}
}
pub enum Chars<'a> {
Ascii(slice::Iter<'a, u8>),
Unicode(slice::Iter<'a, char>),
}
impl Iterator for Chars<'_> {
type Item = char;
fn next(&mut self) -> Option<Self::Item> {
match self {
Chars::Ascii(iter) => iter.next().map(|&c| c as char),
Chars::Unicode(iter) => iter.next().copied(),
}
}
}
impl DoubleEndedIterator for Chars<'_> {
fn next_back(&mut self) -> Option<Self::Item> {
match self {
Chars::Ascii(iter) => iter.next_back().map(|&c| c as char),
Chars::Unicode(iter) => iter.next_back().copied(),
}
}
}
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Hash)]
/// An owned version of [`Utf32Str`].
pub enum Utf32String {
/// A string represented as ASCII encoded bytes.
/// Correctness invariant: must only contain valid ASCII (<=127)
Ascii(Box<str>),
/// A string represented as an array of unicode codepoints (basically UTF-32).
Unicode(Box<[char]>),
}
impl Default for Utf32String {
fn default() -> Self {
Self::Ascii(String::new().into_boxed_str())
}
}
impl Utf32String {
/// Returns the number of characters in this string.
#[inline]
pub fn len(&self) -> usize {
match self {
Utf32String::Unicode(codepoints) => codepoints.len(),
Utf32String::Ascii(ascii_bytes) => ascii_bytes.len(),
}
}
/// Returns whether this string is empty.
#[inline]
pub fn is_empty(&self) -> bool {
match self {
Utf32String::Unicode(codepoints) => codepoints.is_empty(),
Utf32String::Ascii(ascii_bytes) => ascii_bytes.is_empty(),
}
}
/// Creates a slice with a string that contains the characters in
/// the specified **character range**.
#[inline]
pub fn slice(&self, range: impl RangeBounds<usize>) -> Utf32Str {
let start = match range.start_bound() {
Bound::Included(&start) => start,
Bound::Excluded(&start) => start + 1,
Bound::Unbounded => 0,
};
let end = match range.end_bound() {
Bound::Included(&end) => end + 1,
Bound::Excluded(&end) => end,
Bound::Unbounded => self.len(),
};
match self {
Utf32String::Ascii(bytes) => Utf32Str::Ascii(&bytes.as_bytes()[start..end]),
Utf32String::Unicode(codepoints) => Utf32Str::Unicode(&codepoints[start..end]),
}
}
/// Same as `slice` but accepts a u32 range for convenience since
/// those are the indices returned by the matcher.
#[inline]
pub fn slice_u32(&self, range: impl RangeBounds<u32>) -> Utf32Str {
let start = match range.start_bound() {
Bound::Included(&start) => start,
Bound::Excluded(&start) => start + 1,
Bound::Unbounded => 0,
};
let end = match range.end_bound() {
Bound::Included(&end) => end + 1,
Bound::Excluded(&end) => end,
Bound::Unbounded => self.len() as u32,
};
match self {
Utf32String::Ascii(bytes) => {
Utf32Str::Ascii(&bytes.as_bytes()[start as usize..end as usize])
}
Utf32String::Unicode(codepoints) => {
Utf32Str::Unicode(&codepoints[start as usize..end as usize])
}
}
}
}
impl From<&str> for Utf32String {
#[inline]
fn from(value: &str) -> Self {
if value.is_ascii() {
Self::Ascii(value.to_owned().into_boxed_str())
} else {
Self::Unicode(chars::graphemes(value).collect())
}
}
}
impl From<Box<str>> for Utf32String {
fn from(value: Box<str>) -> Self {
if value.is_ascii() {
Self::Ascii(value)
} else {
Self::Unicode(chars::graphemes(&value).collect())
}
}
}
impl From<String> for Utf32String {
#[inline]
fn from(value: String) -> Self {
value.into_boxed_str().into()
}
}
impl<'a> From<Cow<'a, str>> for Utf32String {
#[inline]
fn from(value: Cow<'a, str>) -> Self {
match value {
Cow::Borrowed(value) => value.into(),
Cow::Owned(value) => value.into(),
}
}
}
impl fmt::Debug for Utf32String {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self.slice(..))
}
}
impl fmt::Display for Utf32String {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.slice(..))
}
}