forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeonDepthwiseConvTranspose.cpp
136 lines (113 loc) · 4.62 KB
/
NeonDepthwiseConvTranspose.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "NeonDepthwiseConv.h"
#include "paddle/function/ConvOp.h"
namespace paddle {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
template <DeviceType Device>
class NeonDepthwiseConvTransposeFunction : public ConvFunctionBase {
public:
void init(const FuncConfig& config) override {
ConvFunctionBase::init(config);
}
void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
const TensorShape& input = inputs[0].shape();
const TensorShape& filter = inputs[1].shape();
const TensorShape& output = outputs[0].shape();
checkShape(input, filter, output);
}
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ(numInputs_, inputs.size());
CHECK_EQ(numOutputs_, outputs.size());
check(inputs, outputs);
const TensorShape& input = inputs[0].shape();
const TensorShape& filter = inputs[1].shape();
const TensorShape& output = outputs[0].shape();
int batchSize = input[0];
int inputChannels = input[1];
int inputHeight = input[2];
int inputWidth = input[3];
int filterHeight = getFilterHeight(filter);
int filterWidth = getFilterWidth(filter);
int outputChannels = output[1];
int outputHeight = output[2];
int outputWidth = output[3];
int filterMultiplier = outputChannels / groups_;
CHECK_EQ(inputChannels, groups_);
// only support strideH() == strideW() and filterHeight == filterWidth.
CHECK_EQ(strideH(), strideW());
CHECK_EQ(paddingH(), paddingW());
CHECK_EQ(filterHeight, filterWidth);
float* inputData = inputs[0].data<float>();
float* filterData = inputs[1].data<float>();
float* outputData = outputs[0].data<float>();
// padding the input, input -> inputPadding
float* inputPadding = inputData;
int padInputHeight =
(inputHeight - 1) * strideH() + 2 * filterHeight - 1 - 2 * paddingH();
int padInputWidth =
(inputWidth - 1) * strideW() + 2 * filterWidth - 1 - 2 * paddingW();
if (padInputHeight > inputHeight || padInputWidth > inputWidth) {
int newSize = batchSize * inputChannels * padInputHeight * padInputWidth;
resizeBuffer<Device>(newSize);
inputPadding = reinterpret_cast<float*>(memory_->getBuf());
if (strideH() == 1) {
neon::Padding<float>::run(inputData,
inputPadding,
batchSize * inputChannels,
inputHeight,
inputWidth,
padInputHeight,
padInputWidth);
} else if (strideH() == 2) {
neon::StridePadding::run(inputData,
inputPadding,
batchSize * inputChannels,
inputHeight,
inputWidth,
padInputHeight,
padInputWidth);
} else {
LOG(FATAL) << "Not supported";
}
}
std::function<void(
const float*, const float*, int, int, int, int, int, int, float*)>
DepthWiseConv;
if (filterWidth == 3) {
DepthWiseConv = neon::DepthwiseConvKernel<3, 1>::run;
} else if (filterWidth == 4) {
DepthWiseConv = neon::DepthwiseConvKernel<4, 1>::run;
} else {
LOG(FATAL) << "Not supported";
}
for (int i = 0; i < batchSize; i++) {
DepthWiseConv(inputPadding,
filterData,
padInputHeight,
padInputWidth,
outputChannels,
outputHeight,
outputWidth,
filterMultiplier,
outputData);
inputPadding += inputChannels * padInputHeight * padInputWidth;
outputData += outputChannels * outputHeight * outputWidth;
}
}
};
#ifndef PADDLE_TYPE_DOUBLE
REGISTER_TYPED_FUNC(NeonDepthwiseConvTranspose,
CPU,
NeonDepthwiseConvTransposeFunction);
#endif
#endif
} // namespace paddle