Skip to content

Latest commit

 

History

History
76 lines (66 loc) · 4.75 KB

README.md

File metadata and controls

76 lines (66 loc) · 4.75 KB

CFR - Continued Fraction Regression

HEAL.CFR is a C#/.NET implementation of Continued Fraction Regression as described in

Pablo Moscato, Haoyuan Sun, Mohammad Nazmul Haque.
Analytic Continued Fractions for Regression: A Memetic Algorithm Approach.
Expert Systems with Applications 179 (2021): 115018, 10.1016/j.eswa.2021.115018

The preprint is available from arxiv.org

The code depends on MathNET.Numerics for the Nelder-Mead Simplex algorithm for derivative-free optimization of model parameters.

Run demo

To run the demo code which tries to reproduce the result for the Gamma function use the following:

git clone https://github.com/heal-research/HEAL.CFR
cd HEAL.CFR/src
dotnet build -c Release
cd Demo
dotnet run

After 200 generations and approximately 200 seconds the result is the following expression with depth=6 and an MSE of 405.6 (NMSE=36%).

2.7364 + 0.037962 * x^3 + (-0.54806 + 5.6751 * x^3) /
  (2.3982 + 2.1704 * x^3 + (-2.2502 + 0.47104 * x^3) / 
    (3.9529 + 0.51109 * x^3 + (1.8246 + -0.54095 * x^3) / 
      (1.5209 + 2.8155 * x^3 + (-1.4091 + 0.93799 * x^3) / 
        (1.6708 + -0.64989 * x^3 + (0.13653 + -2.1031 * x^3) / 
          (3.5042 + 3.4784 * x^3 + (0.66668 + -0.71069 * x^3) / 
            (-2.7499 + -0.42627 * x^3))))))

The result for the Gamma function is worse than the result reported in the paper.

Scatter plot for Gamma function

Results for PennML (without Friedman functions)

The following table shows the median MSE values from 30 runs on a part of the PennML problems. When compared to the results reported by Moscato et al. the implementation produces better results on the training set and worse result on the test set. A cause for the difference could be that HEAL.CFR does not stop early when the Nelder-Mead Simplex optimization stagnates.

nr Instance Moscato et al. (train) Median MSE (train) Stdev (train) Moscato et al. (test) Median MSE (test) Stdev (test) count
192 vineyard 4.734 3.439 0.656 7.993 9.493 78.494 30
195 auto_price 6540000 7096209.604 1275695.969 7620000 8035568.986 2071094.757 30
207 autoPrice 6350000 6297275.053 1116406.049 7560000 7827328.823 6343703.564 30
210 cloud 0.095 0.061 0.010 0.165 0.335 0.856 30
228 elusage 86.7 83.154 13.131 119 128.058 11662.035 30
230 machine_cpu 2240 2290.480 704.100 3740 4530.875 20231.100 30
485 a.vehicle 21700 19799.554 6464.678 37300 37382.613 26984.828 30
519 vinnie 2.375 2.293 0.099 2.371 2.514 0.351 30
522 pm10 0.681 0.647 0.042 0.693 0.683 0.107 30
523 a.neavote 0.725 0.737 0.079 0.903 0.755 0.454 30
527 a.elec2000 4090000 2369044.844 18009766.336 14200000 13654235.001 106630949.380 30
542 pollution 1290 1062.995 322.863 2400 2180.441 3703.602 30
547 no2 0.303 0.282 0.018 0.32 0.304 0.070 30
556 a.apnea2 1170000 910053.603 157977.790 1170000 1374304.924 473594.166 30
557 a.apnea1 1160000 964706.233 120008.381 1210000 1057566.636 432611.656 30
561 cpu 637 700.402 966.492 1330 2101.871 100387.980 30
659 sl_ex1714 1110000 1522781.116 1906213.556 1860000 2791205.448 3218940.610 30
663 rabe_266 8.381 5.935 6.275 9.641 8.240 35.170 30
665 sl_case2002 55.722 48.428 5.495 59.521 59.223 95.357 30
666 rmftsa_ladata 3.135 3.389 0.479 3.208 3.774 5440.485 30
678 v.env. 7.38 6.690 0.886 8.412 9.895 765.319 30
687 sl_ex1605 95.07 76.615 8.889 103.057 123.636 66.445 30
690 v.galaxy 800 853.299 67.139 886 930.552 4994.997 30
695 chatfield_4 247 220.129 20.880 296 287.365 1429.303 30
706 sl_case1202 2170 2214.299 352.884 2800 2901.182 1284.255 30
712 chs_geyser1 36.539 32.972 2.298 38.619 38.342 7.085 30
1027 ESL 0.265 0.252 0.018 0.309 0.325 0.203 30
1028 SWD 0.484 0.473 0.028 0.488 0.475 0.043 30
1029 LEV 0.409 0.412 0.034 0.418 0.451 0.054 30
1030 ERA 2.553 2.492 0.099 2.665 2.622 0.190 30
1089 USCrime 202 222.194 89.198 372 621.820 124476.809 30
1096 FacultySalry 1.751 1.860 0.628 3.127 3.870 8.632 30