This repository has been archived by the owner on Feb 12, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhomework1.py
97 lines (83 loc) · 3.65 KB
/
homework1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import json
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.stats.stats
import seaborn as sns
import urllib.request
def tax_calculator(salary):
tax = 0
if (salary <= 9325):
tax += salary * .1
elif (salary <= 37950):
tax += (salary * .15) - 466.25
elif (salary <= 91900):
tax += (salary * .25) - 4261.25
elif (salary <= 191650):
tax += (salary * .28) - 7018.25
elif (salary <= 416700):
tax += (salary * .33) - 16600.75
elif (salary <= 418400):
tax += (salary * .35) - 24934.75
else:
tax += (salary * .396) - 44181.15
return tax
vtax_calculator = np.vectorize(tax_calculator)
# Songs
song_lengths = np.random.normal(180, 30, 10000)
plays = np.random.normal(500000, 100000, 10000)
songs = pd.DataFrame(data={'Length (s)': song_lengths, 'Plays': plays})
song_plot = sns.regplot(x='Length (s)', y='Plays', data=songs, scatter_kws={"s": 5})
song_plot.set_title('Song Length vs Plays')
plt.tight_layout()
plt.show()
song_kernal = sns.jointplot(x='Length (s)', y='Plays', data=songs, kind="kde")
plt.tight_layout()
plt.show()
print(scipy.stats.stats.pearsonr(song_lengths, plays))
# Taxes
salaries = np.random.normal(50000, 15000, 5093).clip(min=0)
taxes = vtax_calculator(salaries)
tax_df = pd.DataFrame(data={'Salary': salaries, 'Taxes': taxes})
tax_plot = sns.regplot(x='Salary', y='Taxes', data=tax_df, scatter_kws={"s": 5})
tax_plot.set_title('Salary vs Taxes (US$)')
tax_plot.set_ylim(bottom=0)
plt.tight_layout()
plt.show()
# Accidents
accident_speeds = np.random.normal(40, 10, 1935)
damages = (accident_speeds * 100) + 500 + np.random.normal(1000, 500, 1935)
accident_df = pd.DataFrame(data={'Speed (mph)': accident_speeds, 'Damages (US$)': damages})
accident_plot = sns.regplot(x='Speed (mph)', y='Damages (US$)', data=accident_df, scatter_kws={"s": 10})
accident_plot.set_title("Accident Speed vs Damages")
plt.tight_layout()
plt.show()
print(scipy.stats.stats.pearsonr(accident_speeds, damages))
# Students
university = np.random.choice(['UMW', 'JMU', 'Richmond', 'VATech'], p=[.15, .38, .06, .41], size=8932)
mascot = np.where(university == 'UMW', 'eagle', np.where(university == 'JMU', 'duke',
np.where(university == 'Richmond', 'spider', 'hoakie')))
fave_food = np.random.choice(['pizza', 'sushi', 'falafel'], p=[.6, .3, .1], size=8932)
choices = ['partier', 'scholar', 'rebel', 'dropout']
umw_types = np.random.choice(choices, p=[.3, .4, .2, .1], size=8932)
jmu_types = np.random.choice(choices, p=[.6, .1, .2, .1], size=8932)
richmond_types = np.random.choice(choices, p=[.2, .3, .3, .2], size=8932)
tech_types = np.random.choice(choices, p=[.6, .2, .1, .1], size=8932)
student_type = np.where(university == 'UMW', umw_types, np.where(university == 'JMU', jmu_types,
np.where(university == 'Richmond', richmond_types,
tech_types)))
uni_vs_mascot = pd.crosstab(university, mascot)
print(uni_vs_mascot)
print(scipy.stats.chi2_contingency(uni_vs_mascot))
uni_vs_food = pd.crosstab(university, fave_food)
print(uni_vs_food)
print(scipy.stats.chi2_contingency(uni_vs_food))
uni_vs_type = pd.crosstab(university, student_type)
print(uni_vs_type)
print(scipy.stats.chi2_contingency(uni_vs_type))
# JSON
data = json.load(urllib.request.urlopen("http://data.consumerfinance.gov/api/views.json"))
print(data[3]['description'])
for i in data:
if(i['viewCount'] >= 4000):
print(i['name'])