diff --git a/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/language-modeling-multi-gpu-single-node.ipynb b/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/language-modeling/gpt-2.ipynb similarity index 71% rename from sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/language-modeling-multi-gpu-single-node.ipynb rename to sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/language-modeling/gpt-2.ipynb index 6c4ff1b8aa..c68f7f0089 100644 --- a/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/language-modeling-multi-gpu-single-node.ipynb +++ b/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/language-modeling/gpt-2.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "c5608edd", + "id": "aa619cfc", "metadata": {}, "source": [ "# Compile and Train the GPT2 Model using the Transformers Trainer API with the SST2 Dataset for Single-Node Multi-GPU Training" @@ -10,7 +10,7 @@ }, { "cell_type": "markdown", - "id": "ec894c6c", + "id": "2f479baf", "metadata": {}, "source": [ "1. [Introduction](#Introduction) \n", @@ -25,7 +25,7 @@ }, { "cell_type": "markdown", - "id": "9e9d46c4", + "id": "83e922ff", "metadata": {}, "source": [ "## SageMaker Training Compiler Overview\n", @@ -40,14 +40,14 @@ "\n", "In this demo, you'll use Hugging Face's `transformers` and `datasets` libraries with Amazon SageMaker Training Compiler to train the `gpt-2` model on the `Stanford Sentiment Treebank v2 (SST2)` dataset. To get started, we need to set up the environment with a few prerequisite steps, for permissions, configurations, and so on. \n", "\n", - "**NOTE:** You can run this demo in SageMaker Studio, SageMaker notebook instances, or your local machine with AWS CLI set up. If using SageMaker Studio or SageMaker notebook instances, make sure you choose one of the PyTorch-based kernels, `Python 3 (PyTorch x.y Python 3.x CPU Optimized)` or `conda_pytorch_p36` respectively.\n", + "**NOTE:** You can run this demo in SageMaker Studio, SageMaker notebook instances, or your local machine with AWS CLI set up. If using SageMaker Studio or SageMaker notebook instances, make sure you choose one of the PyTorch-based kernels, `Python 3 (PyTorch x.y Python 3.x CPU Optimized)` or `conda_pytorch_p38` respectively.\n", "\n", - "**NOTE:** This notebook uses two `ml.p3.8xlarge` instances that have multiple GPUs. If you don't have enough quota, see [Request a service quota increase for SageMaker resources](https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html#service-limit-increase-request-procedure). " + "**NOTE:** This notebook uses 2 `ml.g4dn.12xlarge` instances that have multiple GPUs. If you don't have enough quota, see [Request a service quota increase for SageMaker resources](https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html#service-limit-increase-request-procedure). " ] }, { "cell_type": "markdown", - "id": "3977fe0f", + "id": "7bb2751c", "metadata": {}, "source": [ "## Development Environment " @@ -55,54 +55,44 @@ }, { "cell_type": "markdown", - "id": "dbc4930a", + "id": "b945c6f4", "metadata": {}, "source": [ "### Installation\n", "\n", - "This example notebook requires the **SageMaker Python SDK v2.70.0** and **transformers v4.11.0**." + "This example notebook requires the **SageMaker Python SDK v2.108.0**." ] }, { "cell_type": "code", "execution_count": null, - "id": "7045eb46", + "id": "37613be5", "metadata": {}, "outputs": [], "source": [ - "!pip install --force-reinstall sagemaker==2.70.0" + "!pip install \"sagemaker>=2.108.0\" botocore boto3 awscli pandas numpy --upgrade" ] }, { "cell_type": "code", "execution_count": null, - "id": "25f110f1", - "metadata": {}, - "outputs": [], - "source": [ - "!pip install transformers==4.11.0" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f7a8ceb9", + "id": "5bed8ad5", "metadata": {}, "outputs": [], "source": [ "import botocore\n", "import boto3\n", "import sagemaker\n", - "import transformers\n", "import pandas as pd\n", "\n", "print(f\"sagemaker: {sagemaker.__version__}\")\n", - "print(f\"transformers: {transformers.__version__}\")" + "print(f\"boto3: {boto3.__version__}\")\n", + "print(f\"botocore: {botocore.__version__}\")" ] }, { "cell_type": "markdown", - "id": "6bcc3a46", + "id": "51a693fa", "metadata": {}, "source": [ "Copy and run the following code if you need to upgrade IPython widgets for `datasets` library and restart kernel. This is only needed when preprocessing is done in the notebook.\n", @@ -118,7 +108,7 @@ }, { "cell_type": "markdown", - "id": "5e5c0cdb", + "id": "5a4f105f", "metadata": {}, "source": [ "### SageMaker environment " @@ -127,7 +117,7 @@ { "cell_type": "code", "execution_count": null, - "id": "655beb77", + "id": "8a56b484", "metadata": {}, "outputs": [], "source": [ @@ -152,129 +142,148 @@ }, { "cell_type": "markdown", - "id": "12032413", + "id": "97e3b0d2", "metadata": {}, "source": [ "## SageMaker Training Job\n", "\n", - "To create a SageMaker training job, we use a `HuggingFace` estimator. Using the estimator, you can define which fine-tuning script should SageMaker use through `entry_point`, which `instance_type` to use for training, which `hyperparameters` to pass, and so on.\n", + "To create a SageMaker training job, we use an estimator. We use a `HuggingFace` estimator for SageMaker Training Compiler. Using the estimator, you can define which training script should SageMaker use through `entry_point`, which `instance_type` to use for training, which `hyperparameters` to pass, and so on.\n", "\n", - "When a SageMaker training job starts, SageMaker takes care of starting and managing all the required machine learning instances, picks up the `HuggingFace` Deep Learning Container, uploads your training script, and downloads the data from `sagemaker_session_bucket` into the container at `/opt/ml/input/data`.\n", + "When a SageMaker training job starts, SageMaker takes care of starting and managing all the required machine learning instances, picks up the appropriate `HuggingFace` Deep Learning Container, uploads your training script, and downloads the data from `sagemaker_session_bucket` into the container at `/opt/ml/input/data`.\n", "\n", - "In the following section, you learn how to set up two versions of the SageMaker `HuggingFace` estimator, a native one without the compiler and an optimized one with the compiler." - ] - }, - { - "cell_type": "markdown", - "id": "5f608b6c", - "metadata": {}, - "source": [ - "### Training Setup" + "First, we define some basic parameters common to all estimators.\n", + "\n", + "**Note**: We recommend you to turn the SageMaker Debugger's profiling and debugging tools off to avoid additional overheads." ] }, { "cell_type": "code", "execution_count": null, - "id": "182822a2", + "id": "f8f50795", "metadata": {}, "outputs": [], "source": [ - "# Here we configure the training job. Please configure the appropriate options below:\n", - "EPOCHS = 100\n", - "\n", - "# Choose between Causal Language Model and Masked Language Model\n", - "LANGUAGE_MODELING_LOSS = \"clm\" # or \"mlm\"\n", - "\n", - "MODEL_NAME = \"gpt2\"\n", - "TOKENIZER_NAME = \"gpt2\"\n", - "MODEL_CONFIG = \"model_type\"\n", - "\n", - "# For more information about the options, please look into the training scripts\n", + "estimator_args = dict(\n", + " source_dir=\"scripts\",\n", + " entry_point=\"run_clm.py\",\n", + " instance_type=\"ml.g4dn.12xlarge\",\n", + " instance_count=1,\n", + " role=role,\n", + " py_version=\"py38\",\n", + " volume_size=100,\n", + " disable_profiler=True, # Disabling SageMaker Profiler to avoid overheads during benchmarking\n", + " debugger_hook_config=False, # Disabling SageMaker Debugger to avoid overheads during benchmarking\n", + " base_job_name=\"trcomp-pt-example\",\n", + " metric_definitions=[\n", + " {\"Name\": \"summary_train_runtime\", \"Regex\": \"'train_runtime': ([0-9.]*)\"},\n", + " {\n", + " \"Name\": \"summary_train_samples_per_second\",\n", + " \"Regex\": \"'train_samples_per_second': ([0-9.]*)\",\n", + " },\n", + " {\"Name\": \"summary_train_steps_per_second\", \"Regex\": \"'train_steps_per_second': ([0-9.]*)\"},\n", + " {\"Name\": \"summary_train_loss\", \"Regex\": \"'train_loss': ([0-9.]*)\"},\n", + " {\"Name\": \"epoch\", \"Regex\": \"'epoch': ([0-9.]*)\"},\n", + " {\"Name\": \"train_loss\", \"Regex\": \"'loss': ([0-9.]*)\"},\n", + " {\"Name\": \"learning_rate\", \"Regex\": \"'learning_rate': ([0-9.]*)\"},\n", + " ],\n", + ")\n", "\n", - "# SageMaker Training Compiler currently only supports training on GPU\n", - "# Select Instance type for training\n", - "INSTANCE_TYPE = \"ml.p3.8xlarge\" # ml.p3.8xlarge is easily available. However, p3.16xlarge provides better performance.\n", + "# Since ml.g4dn.12xlarge instance has 4 GPUs, we set num_gpus_per_instance to 4\n", "num_gpus_per_instance = 4" ] }, { "cell_type": "markdown", - "id": "03b85427", + "id": "6c2b1bb3", "metadata": {}, "source": [ - "### Training with Native PyTorch" - ] - }, - { - "cell_type": "markdown", - "id": "2b6e9683", - "metadata": {}, - "source": [ - "The batch size below is the maximum batch we could fit into the memory of a `ml.p3.8xlarge` instance. If you change the model, instance type, sequence length, and other parameters, you need to do some experiments to find the largest batch size that will fit into GPU memory.\n", - "\n", - "This example uses HuggingFace training script `run_clm.py`, which you can find it inside the `scripts` folder. \n", - "\n", - "To get the most performance out of the multi GPU configuration, we use a wrapper script to launch a single training process per GPU using `pytorch.distributed`. This allows us to get around the Python GIL bottleneck." + "Next, we define some basic arguments to be passed to the training script." ] }, { "cell_type": "code", "execution_count": null, - "id": "2d1efd5b", + "id": "db0f6871", "metadata": {}, "outputs": [], "source": [ - "from sagemaker.huggingface import HuggingFace\n", + "# Hyperparameters are passed to the training script as arguments.\n", "\n", - "# The original LR was set for a batch of 32. Here we scale learning_rate with an adjusted batch size and the number of GPUs per instance.\n", - "batch_size_native = 8\n", - "learning_rate_native = float(\"5e-5\") / 32 * batch_size_native * num_gpus_per_instance\n", - "\n", - "# hyperparameters are passed to the training entrypoint as arguments\n", "hyperparameters = {\n", - " \"training_script\": f\"run_{LANGUAGE_MODELING_LOSS}.py\",\n", - " MODEL_CONFIG: MODEL_NAME,\n", - " \"tokenizer_name\": TOKENIZER_NAME,\n", + " \"model_type\": \"gpt2\",\n", + " \"tokenizer_name\": \"gpt2\",\n", " \"dataset_name\": \"glue\",\n", " \"dataset_config_name\": \"sst2\",\n", " \"do_train\": True,\n", - " \"do_eval\": True,\n", + " \"do_eval\": False,\n", " \"fp16\": True,\n", - " \"per_device_train_batch_size\": batch_size_native,\n", - " \"learning_rate\": learning_rate_native,\n", - " \"per_device_eval_batch_size\": 16,\n", - " \"num_train_epochs\": EPOCHS,\n", + " \"per_device_eval_batch_size\": 8,\n", + " \"num_train_epochs\": 100,\n", " \"block_size\": 512,\n", " \"overwrite_output_dir\": True,\n", " \"save_strategy\": \"no\",\n", + " \"evaluation_strategy\": \"no\",\n", " \"logging_strategy\": \"epoch\",\n", " \"output_dir\": \"/opt/ml/model\",\n", - "}\n", + " \"dataloader_drop_last\": True,\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "6b5204bc", + "metadata": {}, + "source": [ + "In the following sections, we will create estimators and start training.\n", "\n", - "# configure the training job\n", - "native_estimator = HuggingFace(\n", - " entry_point=\"launch_pt_dt_sm_native.py\",\n", - " source_dir=\"./scripts\",\n", - " instance_type=INSTANCE_TYPE,\n", - " instance_count=1,\n", - " role=role,\n", - " py_version=\"py38\",\n", - " transformers_version=\"4.11.0\",\n", - " pytorch_version=\"1.9.0\",\n", - " volume_size=100,\n", - " hyperparameters=hyperparameters,\n", - " disable_profiler=True, # Disabling SageMaker Profiler to avoid overheads during benchmarking\n", - " debugger_hook_config=False, # Disabling SageMaker Debugger to avoid overheads during benchmarking\n", + "### Training with Native PyTorch\n", + "\n", + "In the following sections, we will create estimators and start training.\n", + "\n", + "The `per_device_train_batch_size` below is the largest batch we could fit into the memory of a `ml.g4dn.12xlarge` instance. If you change the model, instance type, sequence length, or other parameters that affect memory consumption, you need to find the corresponding largest batch size.\n", + "\n", + "This example uses HuggingFace training script `run_clm.py`, which you can find it inside the `scripts` folder. \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8dbc83ab", + "metadata": {}, + "outputs": [], + "source": [ + "from sagemaker.pytorch import PyTorch\n", + "\n", + "# The original learning rate was set for a batch of 32. Here we scale learning rate linearly with an adjusted batch size\n", + "per_device_train_batch_size = 10\n", + "global_batch_size = (\n", + " per_device_train_batch_size * num_gpus_per_instance * estimator_args[\"instance_count\"]\n", + ")\n", + "learning_rate = float(\"5e-5\") / 32 * global_batch_size\n", + "\n", + "# Configure the training job\n", + "native_estimator = PyTorch(\n", + " framework_version=\"1.11\",\n", + " hyperparameters=dict(\n", + " **hyperparameters,\n", + " **{\n", + " \"per_device_train_batch_size\": per_device_train_batch_size,\n", + " \"learning_rate\": learning_rate,\n", + " },\n", + " ),\n", + " distribution={\"pytorchddp\": {\"enabled\": True}},\n", + " **estimator_args,\n", ")\n", "\n", - "# start the training job\n", + "# Start the training job\n", "native_estimator.fit(wait=False)\n", + "\n", "native_estimator.latest_training_job.name" ] }, { "cell_type": "markdown", - "id": "85e624f7", + "id": "2ef182d4", "metadata": {}, "source": [ "### Training with Optimized PyTorch" @@ -282,68 +291,55 @@ }, { "cell_type": "markdown", - "id": "d63763c1", + "id": "8c2011e0", "metadata": {}, "source": [ - "Compilation through Training Compiler changes the memory footprint of the model. Most commonly, this manifests as a reduction in memory utilization and a consequent increase in the largest batch size that can fit on the GPU. Note that if you want to change the batch size, you must adjust the learning rate appropriately.\n", - "\n", - "**Note:** We recommend you to turn the SageMaker Debugger's profiling and debugging tools off when you use compilation to avoid additional overheads.\n", + "Compilation through Training Compiler changes the memory footprint of the model. Most commonly, this manifests as a reduction in memory utilization and a consequent increase in the largest batch size that can fit on the GPU. Note that when you change the batch size, you must adjust the learning rate appropriately. Below, we have scaled the learning rate linearly with the increase in batch size.\n", "\n", - "Here, instead of using the `distribution` kwarg to launch a multi node training job, we use a wrapper script to set up an inter-node communication using `torch_xla.distributed.sm_dist`, which has been optimized to work with SageMaker Training Compiler." + "**Note:** We are using distribution mechanism `pytorchxla` which is a compiler aware method of distributed training.\n" ] }, { "cell_type": "code", "execution_count": null, - "id": "96d5450c", - "metadata": {}, - "outputs": [], - "source": [ - "!pygmentize ./scripts/launch_sm_training_compiler.py" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a1948135", + "id": "405d7bec", "metadata": {}, "outputs": [], "source": [ "from sagemaker.huggingface import HuggingFace, TrainingCompilerConfig\n", "\n", - "# with SageMaker Training Compiler we are able to fit a larger batch into memory\n", - "hyperparameters[\"per_device_train_batch_size\"] = 22\n", - "\n", - "# The original LR was set for a batch of 32. Here we scale learning_rate with an adjusted batch size and the number of GPUs per instance.\n", - "hyperparameters[\"learning_rate\"] = (\n", - " float(\"5e-5\") / 32 * hyperparameters[\"per_device_train_batch_size\"] * num_gpus_per_instance\n", + "# The original learning rate was set for a batch of 32. Here we scale learning rate linearly with an adjusted batch size\n", + "new_per_device_train_batch_size = 20\n", + "global_batch_size = (\n", + " new_per_device_train_batch_size * num_gpus_per_instance * estimator_args[\"instance_count\"]\n", ")\n", + "learning_rate = float(\"5e-5\") / 32 * global_batch_size\n", "\n", - "# configure the training job\n", + "# Configure the training job\n", "optimized_estimator = HuggingFace(\n", - " entry_point=\"launch_sm_training_compiler.py\", # Wrapper around training script that enables multi GPU training\n", - " compiler_config=TrainingCompilerConfig(), # We are enabling SageMaker Training Compiler here !\n", - " source_dir=\"./scripts\",\n", - " instance_type=\"ml.p3.8xlarge\",\n", - " instance_count=1,\n", - " role=role,\n", - " volume_size=100,\n", - " py_version=\"py38\",\n", - " transformers_version=\"4.11.0\",\n", - " pytorch_version=\"1.9.0\",\n", - " hyperparameters=hyperparameters,\n", - " disable_profiler=True, # Disabling SageMaker Profiler to avoid overheads during benchmarking\n", - " debugger_hook_config=False, # Disabling SageMaker Debugger to avoid overheads during benchmarking\n", + " compiler_config=TrainingCompilerConfig(),\n", + " transformers_version=\"4.21\",\n", + " pytorch_version=\"1.11\",\n", + " hyperparameters=dict(\n", + " **hyperparameters,\n", + " **{\n", + " \"per_device_train_batch_size\": new_per_device_train_batch_size,\n", + " \"learning_rate\": learning_rate,\n", + " },\n", + " ),\n", + " distribution={\"pytorchxla\": {\"enabled\": True}},\n", + " **estimator_args,\n", ")\n", "\n", - "# start the training job\n", + "# Start the training job\n", "optimized_estimator.fit(wait=False)\n", + "\n", "optimized_estimator.latest_training_job.name" ] }, { "cell_type": "markdown", - "id": "56f47e19", + "id": "acc95f44", "metadata": {}, "source": [ "### Wait for training jobs to complete" @@ -352,7 +348,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5676eefc", + "id": "1b8ca2bd", "metadata": {}, "outputs": [], "source": [ @@ -360,15 +356,12 @@ " \"training_job_completed_or_stopped\"\n", ")\n", "waiter.wait(TrainingJobName=native_estimator.latest_training_job.name)\n", - "waiter = optimized_estimator.sagemaker_session.sagemaker_client.get_waiter(\n", - " \"training_job_completed_or_stopped\"\n", - ")\n", "waiter.wait(TrainingJobName=optimized_estimator.latest_training_job.name)" ] }, { "cell_type": "markdown", - "id": "78053474", + "id": "25f266b9", "metadata": {}, "source": [ "## Analysis" @@ -376,19 +369,31 @@ }, { "cell_type": "markdown", - "id": "7591a352", + "id": "85df1b04", "metadata": {}, "source": [ "**Note:** If the estimator object is no longer available due to a kernel break or refresh, you need to directly use the training job name and manually attach the training job to a new HuggingFace estimator. For example:\n", "\n", "```python\n", - "huggingface_estimator = HuggingFace.attach(\"your_huggingface_training_job_name\")\n", + "native_estimator = PyTorch.attach(\"your_huggingface_training_job_name\")\n", + "optimized_estimator = HuggingFace.attach(\"your_huggingface_training_job_name\")\n", "```" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "7a4195d5", + "metadata": {}, + "outputs": [], + "source": [ + "native_estimator = PyTorch.attach(native_estimator.latest_training_job.name)\n", + "optimized_estimator = HuggingFace.attach(optimized_estimator.latest_training_job.name)" + ] + }, { "cell_type": "markdown", - "id": "b5e54aca", + "id": "20bb89b1", "metadata": {}, "source": [ "### Load logs of the training job *with* SageMaker Training Compiler" @@ -397,7 +402,7 @@ { "cell_type": "code", "execution_count": null, - "id": "64b14de7", + "id": "b14fa522", "metadata": {}, "outputs": [], "source": [ @@ -409,7 +414,7 @@ }, { "cell_type": "markdown", - "id": "a9f687a0", + "id": "14944bde", "metadata": {}, "source": [ "### Load logs of the training job *without* SageMaker Training Compiler" @@ -418,7 +423,7 @@ { "cell_type": "code", "execution_count": null, - "id": "279602f2", + "id": "bb9f1be8", "metadata": {}, "outputs": [], "source": [ @@ -430,7 +435,7 @@ }, { "cell_type": "markdown", - "id": "a1d72507", + "id": "ba586740", "metadata": {}, "source": [ "### Create helper functions for analysis" @@ -439,7 +444,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2a1b029c", + "id": "5376e667", "metadata": {}, "outputs": [], "source": [ @@ -480,7 +485,7 @@ }, { "cell_type": "markdown", - "id": "5800d165", + "id": "853afbef", "metadata": {}, "source": [ "### Plot Optimized vs Native Training Throughput\n", @@ -491,7 +496,7 @@ { "cell_type": "code", "execution_count": null, - "id": "01e672f5", + "id": "bd5f2774", "metadata": {}, "outputs": [], "source": [ @@ -510,7 +515,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3d26ca26", + "id": "7eed5237", "metadata": {}, "outputs": [], "source": [ @@ -528,7 +533,7 @@ }, { "cell_type": "markdown", - "id": "4cdd3e80", + "id": "f17d5bbd", "metadata": {}, "source": [ "### Convergence of Training Loss\n", @@ -539,7 +544,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2ce7fbd4", + "id": "dc92a294", "metadata": {}, "outputs": [], "source": [ @@ -558,7 +563,7 @@ }, { "cell_type": "markdown", - "id": "ee290661", + "id": "85bcad63", "metadata": {}, "source": [ "### Training Stats\n", @@ -569,7 +574,7 @@ { "cell_type": "code", "execution_count": null, - "id": "27462c06", + "id": "f34beb9b", "metadata": {}, "outputs": [], "source": [ @@ -581,7 +586,7 @@ { "cell_type": "code", "execution_count": null, - "id": "055d4fb2", + "id": "214e263f", "metadata": {}, "outputs": [], "source": [ @@ -598,7 +603,7 @@ }, { "cell_type": "markdown", - "id": "6fd0199c", + "id": "468541aa", "metadata": {}, "source": [ "### Total Billable Time\n", @@ -609,7 +614,7 @@ { "cell_type": "code", "execution_count": null, - "id": "612a6491", + "id": "0a9192ac", "metadata": {}, "outputs": [], "source": [ @@ -624,7 +629,7 @@ { "cell_type": "code", "execution_count": null, - "id": "12742c78", + "id": "7b30b9ed", "metadata": {}, "outputs": [], "source": [ @@ -637,7 +642,7 @@ { "cell_type": "code", "execution_count": null, - "id": "bfc2a8b4", + "id": "b696a714", "metadata": {}, "outputs": [], "source": [ @@ -647,7 +652,7 @@ }, { "cell_type": "markdown", - "id": "c580614f", + "id": "a0dfc123", "metadata": {}, "source": [ "## Clean up\n", @@ -658,7 +663,7 @@ { "cell_type": "code", "execution_count": null, - "id": "983acde4", + "id": "34367f18", "metadata": {}, "outputs": [], "source": [ @@ -679,7 +684,7 @@ }, { "cell_type": "markdown", - "id": "33bec82a", + "id": "7524e3ba", "metadata": {}, "source": [ "Also, to find instructions on cleaning up resources, see [Clean Up](https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-cleanup.html) in the *Amazon SageMaker Developer Guide*." @@ -688,9 +693,9 @@ ], "metadata": { "kernelspec": { - "display_name": "conda_pytorch_latest_p36", + "display_name": "conda_pytorch_p38", "language": "python", - "name": "conda_pytorch_latest_p36" + "name": "conda_pytorch_p38" }, "language_info": { "codemirror_mode": { @@ -702,7 +707,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.13" + "version": "3.8.12" } }, "nbformat": 4, diff --git a/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/language-modeling/scripts/requirements.txt b/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/language-modeling/scripts/requirements.txt new file mode 100644 index 0000000000..c8f87cceeb --- /dev/null +++ b/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/language-modeling/scripts/requirements.txt @@ -0,0 +1,2 @@ +transformers==4.21.1 +datasets==1.18.4 \ No newline at end of file diff --git a/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/scripts/run_clm.py b/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/language-modeling/scripts/run_clm.py similarity index 100% rename from sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/scripts/run_clm.py rename to sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/language-modeling/scripts/run_clm.py diff --git a/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/scripts/launch_pt_dt_sm_native.py b/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/scripts/launch_pt_dt_sm_native.py deleted file mode 100644 index 28727d0074..0000000000 --- a/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/scripts/launch_pt_dt_sm_native.py +++ /dev/null @@ -1,34 +0,0 @@ -import argparse -import os, subprocess -from pdb import run - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - - # hyperparameters sent by the client are passed as command-line arguments to the script. - parser.add_argument("--training_script", type=str, default="run_mlm.py") - parser.add_argument("--n_gpus", type=str, default=os.environ["SM_NUM_GPUS"]) - parser.add_argument("--output_dir", type=str, default=os.environ["SM_OUTPUT_DIR"]) - - args, rem_args = parser.parse_known_args() - print("Parsed Arguments: ", vars(args), rem_args) - os.environ["GPU_NUM_DEVICES"] = str(args.n_gpus) - - # native torch distributed as benchmark - training_command = "python -m torch.distributed.launch " - training_command += f"--nproc_per_node={args.n_gpus} " - training_command += "--nnodes=1 --node_rank=0 --master_addr=127.0.0.1 --master_port=1234 " - - training_command += args.training_script + " " - - # output directory - training_command += f"--output_dir {args.output_dir} " - for i in range(0, len(rem_args), 2): - arg, value = rem_args[i], rem_args[i + 1] - if value == "True": - training_command += f"{arg} " - elif value != "False": - training_command += f"{arg} {value} " - - print("Training Command: ", training_command) - subprocess.check_call(training_command, shell=True) diff --git a/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/scripts/launch_sm_training_compiler.py b/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/scripts/launch_sm_training_compiler.py deleted file mode 100644 index 655af389a2..0000000000 --- a/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/scripts/launch_sm_training_compiler.py +++ /dev/null @@ -1,9 +0,0 @@ -import subprocess -import sys - -if __name__ == "__main__": - arguments_command = " ".join([arg for arg in sys.argv[1:]]) - """ - The following line will take care of setting up inter node communication as well as managing intra node workers for each GPU. - """ - subprocess.check_call("python -m torch_xla.distributed.sm_dist " + arguments_command, shell=True) diff --git a/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/scripts/run_mlm.py b/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/scripts/run_mlm.py deleted file mode 100644 index 3a1375bf86..0000000000 --- a/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/scripts/run_mlm.py +++ /dev/null @@ -1,600 +0,0 @@ -#!/usr/bin/env python -# coding=utf-8 -# Copyright 2020 The HuggingFace Team All rights reserved. -# Modifications Copyright 2021 Amazon.com, Inc. or its affiliates. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) on a text file or a dataset. - -Here is the full list of checkpoints on the hub that can be fine-tuned by this script: -https://huggingface.co/models?filter=masked-lm -""" -# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments. - -import logging -import math -import os -import sys -from dataclasses import dataclass, field -from typing import Optional - -import datasets -from datasets import load_dataset - -import transformers -from transformers import ( - CONFIG_MAPPING, - MODEL_FOR_MASKED_LM_MAPPING, - AutoConfig, - AutoModelForMaskedLM, - AutoTokenizer, - DataCollatorForLanguageModeling, - HfArgumentParser, - Trainer, - TrainingArguments, - set_seed, -) -from transformers.trainer_utils import get_last_checkpoint -from transformers.utils import check_min_version -from transformers.utils.versions import require_version - - -# Will error if the minimal version of Transformers is not installed. Remove at your own risks. -check_min_version("4.10.0") - -require_version( - "datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt" -) - -logger = logging.getLogger(__name__) -MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) -MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) - - -@dataclass -class ModelArguments: - """ - Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. - """ - - model_name_or_path: Optional[str] = field( - default=None, - metadata={ - "help": "The model checkpoint for weights initialization." - "Don't set if you want to train a model from scratch." - }, - ) - model_type: Optional[str] = field( - default=None, - metadata={ - "help": "If training from scratch, pass a model type from the list: " - + ", ".join(MODEL_TYPES) - }, - ) - config_overrides: Optional[str] = field( - default=None, - metadata={ - "help": "Override some existing default config settings when a model is trained from scratch. Example: " - "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" - }, - ) - config_name: Optional[str] = field( - default=None, - metadata={"help": "Pretrained config name or path if not the same as model_name"}, - ) - tokenizer_name: Optional[str] = field( - default=None, - metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, - ) - cache_dir: Optional[str] = field( - default=None, - metadata={ - "help": "Where do you want to store the pretrained models downloaded from huggingface.co" - }, - ) - use_fast_tokenizer: bool = field( - default=True, - metadata={ - "help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not." - }, - ) - model_revision: str = field( - default="main", - metadata={ - "help": "The specific model version to use (can be a branch name, tag name or commit id)." - }, - ) - use_auth_token: bool = field( - default=False, - metadata={ - "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " - "with private models)." - }, - ) - - def __post_init__(self): - if self.config_overrides is not None and ( - self.config_name is not None or self.model_name_or_path is not None - ): - raise ValueError( - "--config_overrides can't be used in combination with --config_name or --model_name_or_path" - ) - - -@dataclass -class DataTrainingArguments: - """ - Arguments pertaining to what data we are going to input our model for training and eval. - """ - - dataset_name: Optional[str] = field( - default=None, - metadata={"help": "The name of the dataset to use (via the datasets library)."}, - ) - dataset_config_name: Optional[str] = field( - default=None, - metadata={ - "help": "The configuration name of the dataset to use (via the datasets library)." - }, - ) - train_file: Optional[str] = field( - default=None, metadata={"help": "The input training data file (a text file)."} - ) - validation_file: Optional[str] = field( - default=None, - metadata={ - "help": "An optional input evaluation data file to evaluate the perplexity on (a text file)." - }, - ) - overwrite_cache: bool = field( - default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} - ) - validation_split_percentage: Optional[int] = field( - default=5, - metadata={ - "help": "The percentage of the train set used as validation set in case there's no validation split" - }, - ) - max_seq_length: Optional[int] = field( - default=None, - metadata={ - "help": "The maximum total input sequence length after tokenization. Sequences longer " - "than this will be truncated." - }, - ) - preprocessing_num_workers: Optional[int] = field( - default=None, - metadata={"help": "The number of processes to use for the preprocessing."}, - ) - mlm_probability: float = field( - default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} - ) - line_by_line: bool = field( - default=False, - metadata={ - "help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences." - }, - ) - pad_to_max_length: bool = field( - default=False, - metadata={ - "help": "Whether to pad all samples to `max_seq_length`. " - "If False, will pad the samples dynamically when batching to the maximum length in the batch." - }, - ) - max_train_samples: Optional[int] = field( - default=None, - metadata={ - "help": "For debugging purposes or quicker training, truncate the number of training examples to this " - "value if set." - }, - ) - max_eval_samples: Optional[int] = field( - default=None, - metadata={ - "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " - "value if set." - }, - ) - - def __post_init__(self): - if self.dataset_name is None and self.train_file is None and self.validation_file is None: - raise ValueError("Need either a dataset name or a training/validation file.") - else: - if self.train_file is not None: - extension = self.train_file.split(".")[-1] - assert extension in [ - "csv", - "json", - "txt", - ], "`train_file` should be a csv, a json or a txt file." - if self.validation_file is not None: - extension = self.validation_file.split(".")[-1] - assert extension in [ - "csv", - "json", - "txt", - ], "`validation_file` should be a csv, a json or a txt file." - - -def main(): - # See all possible arguments in src/transformers/training_args.py - # or by passing the --help flag to this script. - # We now keep distinct sets of args, for a cleaner separation of concerns. - - parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) - if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): - # If we pass only one argument to the script and it's the path to a json file, - # let's parse it to get our arguments. - model_args, data_args, training_args = parser.parse_json_file( - json_file=os.path.abspath(sys.argv[1]) - ) - else: - model_args, data_args, training_args = parser.parse_args_into_dataclasses() - - # Setup logging - logging.basicConfig( - format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", - datefmt="%m/%d/%Y %H:%M:%S", - handlers=[logging.StreamHandler(sys.stdout)], - ) - - log_level = training_args.get_process_log_level() - logger.setLevel(log_level) - datasets.utils.logging.set_verbosity(log_level) - transformers.utils.logging.set_verbosity(log_level) - transformers.utils.logging.enable_default_handler() - transformers.utils.logging.enable_explicit_format() - - # Log on each process the small summary: - logger.warning( - f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" - + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" - ) - # Set the verbosity to info of the Transformers logger (on main process only): - logger.info(f"Training/evaluation parameters {training_args}") - - # Detecting last checkpoint. - last_checkpoint = None - if ( - os.path.isdir(training_args.output_dir) - and training_args.do_train - and not training_args.overwrite_output_dir - ): - last_checkpoint = get_last_checkpoint(training_args.output_dir) - if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: - raise ValueError( - f"Output directory ({training_args.output_dir}) already exists and is not empty. " - "Use --overwrite_output_dir to overcome." - ) - elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: - logger.info( - f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " - "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." - ) - - # Set seed before initializing model. - set_seed(training_args.seed) - - # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) - # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ - # (the dataset will be downloaded automatically from the datasets Hub - # - # For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this - # behavior (see below) - # - # In distributed training, the load_dataset function guarantee that only one local process can concurrently - # download the dataset. - if data_args.dataset_name is not None: - # Downloading and loading a dataset from the hub. - raw_datasets = load_dataset( - data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir - ) - if "validation" not in raw_datasets.keys(): - raw_datasets["validation"] = load_dataset( - data_args.dataset_name, - data_args.dataset_config_name, - split=f"train[:{data_args.validation_split_percentage}%]", - cache_dir=model_args.cache_dir, - ) - raw_datasets["train"] = load_dataset( - data_args.dataset_name, - data_args.dataset_config_name, - split=f"train[{data_args.validation_split_percentage}%:]", - cache_dir=model_args.cache_dir, - ) - else: - data_files = {} - if data_args.train_file is not None: - data_files["train"] = data_args.train_file - extension = data_args.train_file.split(".")[-1] - if data_args.validation_file is not None: - data_files["validation"] = data_args.validation_file - extension = data_args.validation_file.split(".")[-1] - if extension == "txt": - extension = "text" - raw_datasets = load_dataset( - extension, data_files=data_files, cache_dir=model_args.cache_dir - ) - - # If no validation data is there, validation_split_percentage will be used to divide the dataset. - if "validation" not in raw_datasets.keys(): - raw_datasets["validation"] = load_dataset( - extension, - data_files=data_files, - split=f"train[:{data_args.validation_split_percentage}%]", - cache_dir=model_args.cache_dir, - ) - raw_datasets["train"] = load_dataset( - extension, - data_files=data_files, - split=f"train[{data_args.validation_split_percentage}%:]", - cache_dir=model_args.cache_dir, - ) - - # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at - # https://huggingface.co/docs/datasets/loading_datasets.html. - - # Load pretrained model and tokenizer - # - # Distributed training: - # The .from_pretrained methods guarantee that only one local process can concurrently - # download model & vocab. - config_kwargs = { - "cache_dir": model_args.cache_dir, - "revision": model_args.model_revision, - "use_auth_token": True if model_args.use_auth_token else None, - } - if model_args.config_name: - config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs) - elif model_args.model_name_or_path: - config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) - else: - config = CONFIG_MAPPING[model_args.model_type]() - logger.warning("You are instantiating a new config instance from scratch.") - if model_args.config_overrides is not None: - logger.info(f"Overriding config: {model_args.config_overrides}") - config.update_from_string(model_args.config_overrides) - - tokenizer_kwargs = { - "cache_dir": model_args.cache_dir, - "use_fast": model_args.use_fast_tokenizer, - "revision": model_args.model_revision, - "use_auth_token": True if model_args.use_auth_token else None, - } - if model_args.tokenizer_name: - tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs) - elif model_args.model_name_or_path: - tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs) - else: - raise ValueError( - "You are instantiating a new tokenizer from scratch. This is not supported by this script." - "You can do it from another script, save it, and load it from here, using --tokenizer_name." - ) - - if model_args.model_name_or_path: - model = AutoModelForMaskedLM.from_pretrained( - model_args.model_name_or_path, - from_tf=bool(".ckpt" in model_args.model_name_or_path), - config=config, - cache_dir=model_args.cache_dir, - revision=model_args.model_revision, - use_auth_token=True if model_args.use_auth_token else None, - ) - else: - logger.info("Training new model from scratch") - model = AutoModelForMaskedLM.from_config(config) - - model.resize_token_embeddings(len(tokenizer)) - - # Preprocessing the datasets. - # First we tokenize all the texts. - if training_args.do_train: - column_names = raw_datasets["train"].column_names - else: - column_names = raw_datasets["validation"].column_names - text_column_name = "text" if "text" in column_names else column_names[0] - - if data_args.max_seq_length is None: - max_seq_length = tokenizer.model_max_length - if max_seq_length > 1024: - logger.warning( - f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " - "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx." - ) - max_seq_length = 1024 - else: - if data_args.max_seq_length > tokenizer.model_max_length: - logger.warning( - f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" - f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." - ) - max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) - - if data_args.line_by_line: - # When using line_by_line, we just tokenize each nonempty line. - padding = "max_length" if data_args.pad_to_max_length else False - - def tokenize_function(examples): - # Remove empty lines - examples[text_column_name] = [ - line for line in examples[text_column_name] if len(line) > 0 and not line.isspace() - ] - return tokenizer( - examples[text_column_name], - padding=padding, - truncation=True, - max_length=max_seq_length, - # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it - # receives the `special_tokens_mask`. - return_special_tokens_mask=True, - ) - - with training_args.main_process_first(desc="dataset map tokenization"): - tokenized_datasets = raw_datasets.map( - tokenize_function, - batched=True, - num_proc=data_args.preprocessing_num_workers, - remove_columns=[text_column_name], - load_from_cache_file=not data_args.overwrite_cache, - desc="Running tokenizer on dataset line_by_line", - ) - else: - # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts. - # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more - # efficient when it receives the `special_tokens_mask`. - def tokenize_function(examples): - return tokenizer(examples[text_column_name], return_special_tokens_mask=True) - - with training_args.main_process_first(desc="dataset map tokenization"): - tokenized_datasets = raw_datasets.map( - tokenize_function, - batched=True, - num_proc=data_args.preprocessing_num_workers, - remove_columns=column_names, - load_from_cache_file=not data_args.overwrite_cache, - desc="Running tokenizer on every text in dataset", - ) - - # Main data processing function that will concatenate all texts from our dataset and generate chunks of - # max_seq_length. - def group_texts(examples): - # Concatenate all texts. - concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} - total_length = len(concatenated_examples[list(examples.keys())[0]]) - # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can - # customize this part to your needs. - if total_length >= max_seq_length: - total_length = (total_length // max_seq_length) * max_seq_length - # Split by chunks of max_len. - result = { - k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)] - for k, t in concatenated_examples.items() - } - return result - - # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a - # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value - # might be slower to preprocess. - # - # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: - # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map - - with training_args.main_process_first(desc="grouping texts together"): - tokenized_datasets = tokenized_datasets.map( - group_texts, - batched=True, - num_proc=data_args.preprocessing_num_workers, - load_from_cache_file=not data_args.overwrite_cache, - desc=f"Grouping texts in chunks of {max_seq_length}", - ) - - if training_args.do_train: - if "train" not in tokenized_datasets: - raise ValueError("--do_train requires a train dataset") - train_dataset = tokenized_datasets["train"] - if data_args.max_train_samples is not None: - train_dataset = train_dataset.select(range(data_args.max_train_samples)) - - if training_args.do_eval: - if "validation" not in tokenized_datasets: - raise ValueError("--do_eval requires a validation dataset") - eval_dataset = tokenized_datasets["validation"] - if data_args.max_eval_samples is not None: - eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) - - # Data collator - # This one will take care of randomly masking the tokens. - pad_to_multiple_of_8 = ( - data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length - ) - data_collator = DataCollatorForLanguageModeling( - tokenizer=tokenizer, - mlm_probability=data_args.mlm_probability, - pad_to_multiple_of=8 if pad_to_multiple_of_8 else None, - ) - - # Initialize our Trainer - trainer = Trainer( - model=model, - args=training_args, - train_dataset=train_dataset if training_args.do_train else None, - eval_dataset=eval_dataset if training_args.do_eval else None, - tokenizer=tokenizer, - data_collator=data_collator, - ) - - # Training - if training_args.do_train: - checkpoint = None - if training_args.resume_from_checkpoint is not None: - checkpoint = training_args.resume_from_checkpoint - elif last_checkpoint is not None: - checkpoint = last_checkpoint - train_result = trainer.train(resume_from_checkpoint=checkpoint) - trainer.save_model() # Saves the tokenizer too for easy upload - metrics = train_result.metrics - - max_train_samples = ( - data_args.max_train_samples - if data_args.max_train_samples is not None - else len(train_dataset) - ) - metrics["train_samples"] = min(max_train_samples, len(train_dataset)) - - trainer.log_metrics("train", metrics) - trainer.save_metrics("train", metrics) - trainer.save_state() - - # Evaluation - if training_args.do_eval: - logger.info("*** Evaluate ***") - - metrics = trainer.evaluate() - - max_eval_samples = ( - data_args.max_eval_samples - if data_args.max_eval_samples is not None - else len(eval_dataset) - ) - metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) - try: - perplexity = math.exp(metrics["eval_loss"]) - except OverflowError: - perplexity = float("inf") - metrics["perplexity"] = perplexity - - trainer.log_metrics("eval", metrics) - trainer.save_metrics("eval", metrics) - - if training_args.push_to_hub: - kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "fill-mask"} - if data_args.dataset_name is not None: - kwargs["dataset_tags"] = data_args.dataset_name - if data_args.dataset_config_name is not None: - kwargs["dataset_args"] = data_args.dataset_config_name - kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" - else: - kwargs["dataset"] = data_args.dataset_name - - trainer.push_to_hub(**kwargs) - - -def _mp_fn(index): - # For xla_spawn (TPUs) - main() - - -if __name__ == "__main__": - main()