forked from HengLan/Visualize-KITTI-Objects-in-Videos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utility.py
144 lines (104 loc) · 4.77 KB
/
utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
define some utility functions
"""
import numpy as np
def get_all_index_in_list(L, item):
"""
get all the indexies of the same items in the list
:param L: list
:param item: item to be found
:return: the indexies of all same items in the list
"""
return [index for (index, value) in enumerate(L) if value == item]
def custom_colors():
"""
define some colors in BGR, add more if needed
:return: return a list of colors
"""
colors = []
colors.append([0, 255, 255]) # yellow
colors.append([245, 135, 56]) # light blue
colors.append([0, 255, 0]) # green
colors.append([255, 0, 255]) # magenta
colors.append([240, 32, 160]) # purple
colors.append([255, 255, 0]) # cyan
colors.append([0, 0, 255]) # red
colors.append([0, 215, 255]) # gold
colors.append([144, 238, 144]) # light green
colors.append([128, 0, 0]) # navy
colors.append([0, 0, 128]) # maroon
colors.append([255, 0, 0]) # blue
colors.append([128, 128, 0]) # teal
colors.append([0, 128, 128]) # olive
colors.append([128, 0, 0]) # navy
return colors
def transform_3dbox_to_pointcloud(dimension, location, rotation):
"""
convert the 3d box to coordinates in pointcloud
:param dimension: height, width, and length
:param location: x, y, and z
:param rotation: rotation parameter
:return: transformed coordinates
"""
height, width, lenght = dimension
x, y, z = location
x_corners = [lenght/2, lenght/2, -lenght/2, -lenght/2, lenght/2, lenght/2, -lenght/2, -lenght/2]
y_corners = [0, 0, 0, 0, -height, -height, -height, -height]
z_corners = [width/2, -width/2, -width/2, width/2, width/2, -width/2, -width/2, width/2]
corners_3d = np.vstack([x_corners, y_corners, z_corners])
# transform 3d box based on rotation along Y-axis
R_matrix = np.array([[np.cos(rotation), 0, np.sin(rotation)],
[0, 1, 0],
[-np.sin(rotation), 0, np.cos(rotation)]])
corners_3d = np.dot(R_matrix, corners_3d).T
# shift the corners to from origin to location
corners_3d = corners_3d + np.array([x, y, z])
# from camera coordinate to velodyne coordinate
corners_3d = corners_3d[:, [2, 0, 1]] * np.array([[1, -1, -1]])
return corners_3d
def velodyne_to_camera_2(pcloud, calib):
pcloud_temp = np.hstack((pcloud[:, :3], np.ones((pcloud.shape[0], 1), dtype=np.float32))) # [N, 4]
pcloud_C0 = np.dot(pcloud_temp, np.dot(calib['Tr_velo_cam'].T, calib['Rect'].T)) # [N, 3]
pcloud_C0_temp = np.hstack((pcloud_C0, np.ones((pcloud.shape[0], 1), dtype=np.float32)))
pcloud_C2 = np.dot(pcloud_C0_temp, calib['P2'].T) # [N, 3]
pcloud_C2_depth = pcloud_C2[:, 2]
pcloud_C2 = (pcloud_C2[:, :2].T / pcloud_C2[:, 2]).T
return pcloud_C2_depth, pcloud_C2
def remove_cloudpoints_out_of_image(pcloud_C2_depth, pcloud_C2, pcloud, img_size):
inds = pcloud_C2_depth > 0
inds = np.logical_and(inds, pcloud_C2[:, 0] > 0)
inds = np.logical_and(inds, pcloud_C2[:, 0] < img_size['width'])
inds = np.logical_and(inds, pcloud_C2[:, 1] > 0)
inds = np.logical_and(inds, pcloud_C2[:, 1] < img_size['height'])
pcloud_in_img = pcloud[inds]
return pcloud_in_img
def transform_3dbox_to_image(dimension, location, rotation, calib):
"""
convert the 3d box to coordinates in pointcloud
:param dimension: height, width, and length
:param location: x, y, and z
:param rotation: rotation parameter
:return: transformed coordinates
"""
height, width, lenght = dimension
x, y, z = location
x_corners = [lenght / 2, lenght / 2, -lenght / 2, -lenght / 2, lenght / 2, lenght / 2, -lenght / 2, -lenght / 2]
y_corners = [0, 0, 0, 0, -height, -height, -height, -height]
z_corners = [width / 2, -width / 2, -width / 2, width / 2, width / 2, -width / 2, -width / 2, width / 2]
corners_3d = np.vstack([x_corners, y_corners, z_corners])
# transform 3d box based on rotation along Y-axis
R_matrix = np.array([[np.cos(rotation), 0, np.sin(rotation)],
[0, 1, 0],
[-np.sin(rotation), 0, np.cos(rotation)]])
corners_3d = np.dot(R_matrix, corners_3d).T
# shift the corners to from origin to location
corners_3d = corners_3d + np.array([x, y, z])
# only show 3D bounding box for objects in front of the camera
if np.any(corners_3d[:, 2] < 0.1):
corners_3d_img = None
else:
# from camera coordinate to image coordinate
corners_3d_temp = np.concatenate((corners_3d, np.ones((8, 1))), axis=1)
corners_3d_img = np.matmul(corners_3d_temp, calib['P2'].T)
corners_3d_img = corners_3d_img[:, :2] / corners_3d_img[:, 2][:, None]
return corners_3d_img