forked from minivision-ai/photo2cartoon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
83 lines (65 loc) · 3.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from models import UgatitSadalinHourglass
import argparse
import shutil
from utils import *
def parse_args():
"""parsing and configuration"""
desc = "photo2cartoon"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--phase', type=str, default='train', help='[train / test]')
parser.add_argument('--light', type=str2bool, default=True, help='[U-GAT-IT full version / U-GAT-IT light version]')
parser.add_argument('--dataset', type=str, default='photo2cartoon', help='dataset name')
parser.add_argument('--iteration', type=int, default=1000000, help='The number of training iterations')
parser.add_argument('--batch_size', type=int, default=1, help='The size of batch size')
parser.add_argument('--print_freq', type=int, default=1000, help='The number of image print freq')
parser.add_argument('--save_freq', type=int, default=1000, help='The number of model save freq')
parser.add_argument('--decay_flag', type=str2bool, default=True, help='The decay_flag')
parser.add_argument('--lr', type=float, default=0.0001, help='The learning rate')
parser.add_argument('--adv_weight', type=int, default=1, help='Weight for GAN')
parser.add_argument('--cycle_weight', type=int, default=50, help='Weight for Cycle')
parser.add_argument('--identity_weight', type=int, default=10, help='Weight for Identity')
parser.add_argument('--cam_weight', type=int, default=1000, help='Weight for CAM')
parser.add_argument('--faceid_weight', type=int, default=1, help='Weight for Face ID')
parser.add_argument('--ch', type=int, default=32, help='base channel number per layer')
parser.add_argument('--n_dis', type=int, default=6, help='The number of discriminator layer')
parser.add_argument('--img_size', type=int, default=256, help='The size of image')
parser.add_argument('--img_ch', type=int, default=3, help='The size of image channel')
parser.add_argument('--device', type=str, default='cuda:0', help='Set gpu mode: [cpu, cuda]')
parser.add_argument('--benchmark_flag', type=str2bool, default=False)
parser.add_argument('--resume', type=str2bool, default=False)
parser.add_argument('--rho_clipper', type=float, default=1.0)
parser.add_argument('--w_clipper', type=float, default=1.0)
parser.add_argument('--pretrained_weights', type=str, default='', help='pretrained weight path')
args = parser.parse_args()
args.result_dir = './experiment/{}-size{}-ch{}-{}-lr{}-adv{}-cyc{}-id{}-identity{}-cam{}'.format(
os.path.basename(__file__)[:-3],
args.img_size,
args.ch,
args.light,
args.lr,
args.adv_weight,
args.cycle_weight,
args.faceid_weight,
args.identity_weight,
args.cam_weight)
return check_args(args)
def check_args(args):
check_folder(os.path.join(args.result_dir, args.dataset, 'model'))
check_folder(os.path.join(args.result_dir, args.dataset, 'img'))
check_folder(os.path.join(args.result_dir, args.dataset, 'test'))
shutil.copy(__file__, args.result_dir)
return args
def main():
args = parse_args()
if args is None:
exit()
gan = UgatitSadalinHourglass(args)
gan.build_model()
if args.phase == 'train':
gan.train()
print(" [*] Training finished!")
if args.phase == 'test':
gan.test()
print(" [*] Test finished!")
if __name__ == '__main__':
main()