-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
81 lines (78 loc) · 2.84 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import math
from statistics import mean
import gym
import gym.envs.toy_text.frozen_lake
import random
import matplotlib
import matplotlib.pyplot as plt
plt.close(plt.figure(1))
plt.ion()
fig, ax = plt.subplots()
env = gym.make('FrozenLake-v0')
q_tab = {}
episode_id = 0
gamma = 0.99
epsilon = 0.04
alpha = 0.03
success_memory = []
epsilon_memory = []
last_20_success_memory = []
while True:
done = False
rewards = []
epsilon = min((1, 1 / ((episode_id + 1)/10)))
epsilon_memory.append(epsilon)
state = env.reset()
print("state = ", state)
while not done:
# Choose action
if not str(state) in q_tab.keys() or random.random() < epsilon:
# Explore
action = env.action_space.sample()
else:
actions_values = [value for _, value in q_tab[str(state)].items()]
if sum(actions_values) == 0:
action = env.action_space.sample()
else:
max_action_value = None
action = None
for a, value in q_tab[str(state)].items():
if max_action_value is None or max_action_value < value:
max_action_value = value
action = a
action = int(action)
# Step
next_state, reward, done, _ = env.step(action)
if reward == 0 and done:
reward = -1
# print("state =", state, ", action =", action, ", next_state =", next_state, ", reward =",
# reward, ", done =", done)
if not str(state) in q_tab.keys():
q_tab[str(state)] = {}
if not str(action) in q_tab[str(state)].keys():
q_tab[str(state)][str(action)] = 0.0
if not str(next_state) in q_tab.keys():
max_next_action_value = 0.0
else:
max_next_action_value = None
for _, value in q_tab[str(next_state)].items():
if max_next_action_value is None or max_next_action_value < value:
max_next_action_value = value
q_tab[str(state)][str(action)] = (1 - alpha) * q_tab[str(state)][str(action)] + \
alpha * (reward + gamma * max_next_action_value)
state = next_state
rewards.append(reward)
if done:
# for state, value in q_tab.items():
# print("state: ", state, ", actions: ", value)
# print("Episode " + str(episode_id) + ", rewards = " + str(sum(rewards)))
# env.render()
success_memory.append(sum(rewards))
if len(success_memory) >= 20:
last_20_success_memory.append(mean(success_memory[-20:]))
episode_id += 1
ax.clear()
ax.plot(last_20_success_memory)
ax.plot(epsilon_memory, c="red", label="e=" + str(epsilon_memory[-1]))
ax.legend()
plt.pause(0.00001)